WorldWideScience

Sample records for mice sustained high-level

  1. Chronic free-choice drinking in crossed high alcohol preferring mice leads to sustained blood ethanol levels and metabolic tolerance without evidence of liver damage.

    Science.gov (United States)

    Matson, Liana; Liangpunsakul, Suthat; Crabb, David; Buckingham, Amy; Ross, Ruth Ann; Halcomb, Meredith; Grahame, Nicholas

    2013-02-01

    Crossed high alcohol preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines, and we demonstrate blood ethanol concentrations (BECs) during free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. Therefore, this line may provide an unprecedented opportunity to learn about the consequences of excessive voluntary ethanol (EtOH) consumption, including metabolic tolerance and liver pathology. Cytochrome p450 2E1 (CYP2E1) induction plays a prominent role in driving both metabolic tolerance and EtOH-induced liver injury. In this report, we sought to characterize cHAP drinking by assessing whether pharmacologically relevant BEC levels are sustained throughout the active portion of the light-dark cycle. Given that cHAP intakes and BECs are similar to those observed in mice given an EtOH liquid diet, we assessed whether free-choice exposure results in metabolic tolerance, hepatic enzyme induction, and hepatic steatosis. In experiment 1, blood samples were taken across the dark portion of a 12:12 light-dark cycle to examine the pattern of EtOH accumulation in these mice. In experiments 1 and 2, mice were injected with EtOH following 3 to 4 weeks of access to water or 10% EtOH and water, and blood samples were taken to assess metabolic tolerance. In experiment 3, 24 mice had 4 weeks of access to 10% EtOH and water or water alone, followed by necropsy and hepatological assessment. In experiment 1, cHAP mice mean BEC values exceeded 80 mg/dl at all sampling points and approached 200 mg/dl during the middle of the dark cycle. In experiments 1 and 2, EtOH-exposed mice metabolized EtOH faster than EtOH-naïve mice, demonstrating metabolic tolerance (p alcohol dehydrogenase and aldehyde dehydrogenase. These results demonstrate that excessive intake by cHAP mice results in sustained BECs throughout the active period, leading to the development of metabolic tolerance and evidence of CYP2E1 induction

  2. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice.

    Directory of Open Access Journals (Sweden)

    Theofilos Poutahidis

    Full Text Available The decline of circulating testosterone levels in aging men is associated with adverse health effects. During studies of probiotic bacteria and obesity, we discovered that male mice routinely consuming purified lactic acid bacteria originally isolated from human milk had larger testicles and increased serum testosterone levels compared to their age-matched controls. Further investigation using microscopy-assisted histomorphometry of testicular tissue showed that mice consuming Lactobacillus reuteri in their drinking water had significantly increased seminiferous tubule cross-sectional profiles and increased spermatogenesis and Leydig cell numbers per testis when compared with matched diet counterparts This showed that criteria of gonadal aging were reduced after routinely consuming a purified microbe such as L. reuteri. We tested whether these features typical of sustained reproductive fitness may be due to anti-inflammatory properties of L. reuteri, and found that testicular mass and other indicators typical of old age were similarly restored to youthful levels using systemic administration of antibodies blocking pro-inflammatory cytokine interleukin-17A. This indicated that uncontrolled host inflammatory responses contributed to the testicular atrophy phenotype in aged mice. Reduced circulating testosterone levels have been implicated in many adverse effects; dietary L. reuteri or other probiotic supplementation may provide a viable natural approach to prevention of male hypogonadism, absent the controversy and side-effects of traditional therapies, and yield practical options for management of disorders typically associated with normal aging. These novel findings suggest a potential high impact for microbe therapy in public health by imparting hormonal and gonad features of reproductive fitness typical of much younger healthy individuals.

  3. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  4. Pharmacokinetics of Sustained-Release Analgesics in Mice

    Science.gov (United States)

    Kendall, Lon V; Hansen, Ryan J; Dorsey, Kathryn; Kang, Sooah; Lunghofer, Paul J; Gustafson, Daniel L

    2014-01-01

    Buprenorphine and carprofen, 2 of the most commonly used analgesics in mice, must be administered every 8 to 12 h to provide sustained analgesia. Sustained-release (SR) formulations of analgesics maintain plasma levels that should be sufficient to provide sustained analgesia yet require less frequent dosing and thus less handling of and stress to the animals. The pharmacokinetics of SR formulations of buprenorphine (Bup-SR), butorphanol (Butp-SR), fentanyl (Fent-SR), carprofen (Carp-SR), and meloxicam (Melox-SR) were evaluated in mice over 72 h and compared with those of traditional, nonSR formulations. Bup-SR provided plasma drug levels greater than the therapeutic level for the first 24 to 48 h after administration, but plasma levels of Bup-HCl fell below the therapeutic level by 4 h. Fent-SR maintained plasma levels greater than reported therapeutic levels for 12 h. Therapeutic levels of the remaining drugs are unknown, but Carp-SR provided plasma drug levels similar to those of Carp for the first 24 h after administration, whereas Melox-SR had greater plasma levels than did Melox for the first 8 h. Butp-SR provided detectable plasma drug levels for the first 24 h, with a dramatic decrease over the first 4 h. These results indicate that Bup-SR provides a stable plasma drug level adequate for analgesia for 24 to 48 h after administration, whereas Carp-SR, Melox-SR, Fent-SR, and Butp-SR would require additional doses to provide analgesic plasma levels beyond 24 h in mice. PMID:25255070

  5. Sustainability of High-Level Isolation Capabilities among US Ebola Treatment Centers.

    Science.gov (United States)

    Herstein, Jocelyn J; Biddinger, Paul D; Gibbs, Shawn G; Le, Aurora B; Jelden, Katelyn C; Hewlett, Angela L; Lowe, John J

    2017-06-01

    To identify barriers to maintaining and applying capabilities of US high-level isolation units (HLIUs) used during the Ebola virus disease outbreak, during 2016 we surveyed HLIUs. HLIUs identified sustainability challenges and reported the highly infectious diseases they would treat. HLIUs expended substantial resources in development but must strategize models of sustainability to maintain readiness.

  6. Standards for high level waste disposal: A sustainability perspective

    International Nuclear Information System (INIS)

    Dougherty, W.W.; Powers, V.; Johnson, F.X.; Cornland, D.

    1999-01-01

    Spent reactor fuel from commercial power stations contains high levels of plutonium, other fissionable actinides, and fission products, all of which pose serious challenges for permanent disposal because of the very long half-lives of some isotopes. The 'nuclear nations' have agreed on the use of permanent geologic repositories for the ultimate disposal of high-level nuclear waste. However, it is premature to claim that a geologic repository offers permanent isolation from the biosphere, given high levels of uncertainty, nascent risk assessment frameworks for the time periods considered, and serious intergenerational equity issues. Many have argued for a broader consideration of disposal options that include extended monitored retrievable storage and accelerator-driven transmutation of wastes. In this paper we discuss and compare these three options relative to standards that emerge from the application of sustainable development principles, namely long-lasting technical viability, intergenerational equity, rational resource allocation, and rights of future intervention. We conclude that in order to maximise the autonomy of future generations, it is imperative to leave future options more open than does permanent disposal

  7. Crossfostering in mice selectively bred for high and low levels of open-field thigmotaxis.

    Science.gov (United States)

    Leppänen, Pia K; Ewalds-Kvist, S Béatrice M

    2005-02-01

    The main purpose of this research was to investigate whether the difference in open-field (OF) thigmotaxis between mice selectively bred for high and low levels of wall-seeking behavior originated from genetic or acquired sources. Unfostered, infostered, and crossfostered mice were compared in two experiments in which the effects of strain, sex, and fostering on ambulation, defecation, exploration, grooming, latency to move, radial latency, rearing, thigmotaxis, and urination were studied. These experiments revealed that OF thigmotaxis was unaffected by the foster condition and thus genetically determined. The selected strains of mice also diverged repeatedly with regard to exploration and rearing. The findings are in line with the previously described existence of an inverse relationship between emotionality and exploration.

  8. IMPLEMENTASI KONSEP “SUSTAINABLE EVENT MANAGEMENT” DALAM PENGELOLAAN KEGIATAN MICE DI KAWASAN WISATA NUSA DUA, BALI

    OpenAIRE

    Komang Trisna Pratiwi Arcana

    2014-01-01

    The growth of MICE (Meeting, Incentive, Conference, and Exhibition) Tourism and a requirement to incorporate the principle of sustainability in the management of tourism sector, bring such a concept of sustainable development for business which called as Sustainable Event Management. This study determines the characteristic of MICE Tourism and discovers the reason why Nusa Dua Resort, Bali, becomes a well known MICE tourism destination. Besides, it tries to obtain a clear picture as well ...

  9. Increased high-density lipoprotein cholesterol levels in mice with XX versus XY sex chromosomes.

    Science.gov (United States)

    Link, Jenny C; Chen, Xuqi; Prien, Christopher; Borja, Mark S; Hammerson, Bradley; Oda, Michael N; Arnold, Arthur P; Reue, Karen

    2015-08-01

    The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels. © 2015 American Heart Association, Inc.

  10. Learning and extinction of a passive avoidance response in mice with high levels of predisposition to catalepsy.

    Science.gov (United States)

    Dubrovina, N I; Zinov'ev, D R; Zinov'eva, D V; Kulikov, A V

    2009-06-01

    This report presents results obtained from comparative analysis of learning and the dynamics of extinction of a conditioned passive avoidance response in ASC mice, which were bred for a high level of predisposition to catalepsy, and in CBA and AKR mice. The following findings were obtained: 1) impairments to the extinction of the memory of fear represent an important symptom of depression in ASC mice; 2) extinction is delayed in CBA mice; and 3) new inhibitory learning occurs quickly in AKR mice. Prolonged retention of the fear memory in ASC mice appears to be related to increased anxiety on prolonged testing without a punishment. The deficit of inhibition of the fear reaction in ASC mice allows this strain to be regarded as a genetic model of depression.

  11. Sustainable integration of high levels of intermittent generation

    International Nuclear Information System (INIS)

    Pereira, R.; Cabral, P.

    2005-01-01

    The sustainable development of electric power systems rely on three main drivers: the security of supply, the competitiveness and the protection of the environment. For this purpose the promotion of endogenous energy sources, mainly the renewable ones, should be underlined. Still, most of renewable energy sources raise very sensitive issues concerning the security of supply, due to its randomness and unpredictability. The wind power, currently in its fast growing development, plays a relevant role on this matter. From the demand-side perspective, there is also a lot to do regarding the promotion of more efficient use of energy as well as mechanisms that contribute to security of supply. This paper aims to present guidelines for the selection of the most adequate solutions regarding: sustainable evolution of renewable generation technologies, based on the most meritorious resources under economic and security of supply assessments; complementary energy storage systems that allow the integration of intermittent generation ensuring adequate security of supply levels; and sustainable evolution of demand, based on DSM measures selected from different available alternatives. (author)

  12. Epicutaneous immunotherapy (EPIT blocks the allergic esophago-gastro-enteropathy induced by sustained oral exposure to peanuts in sensitized mice.

    Directory of Open Access Journals (Sweden)

    Lucie Mondoulet

    Full Text Available Food allergy may affect the gastrointestinal tract and eosinophilia is often associated with allergic gastrointestinal disorders. Allergy to peanuts is a life-threatening condition and effective and safe treatments still need to be developed. The present study aimed to evaluate the effects of sustained oral exposure to peanuts on the esophageal and jejunal mucosa in sensitized mice. We also evaluated the effects of desensitization with epicutaneous immunotherapy (EPIT on these processes.Mice were sensitized by gavages with whole peanut protein extract (PPE given with cholera toxin. Sensitized mice were subsequently exposed to peanuts via a specific regimen and were then analysed for eosinophilia in the esophagus and gut. We also assessed mRNA expression in the esophagus, antibody levels, and peripheral T-cell response. The effects of EPIT were tested when intercalated with sensitization and sustained oral peanut exposure.Sustained oral exposure to peanuts in sensitized mice led to severe esophageal eosinophilia and intestinal villus sub-atrophia, i.e. significantly increased influx of eosinophils into the esophageal mucosa (136 eosinophils/mm(2 and reduced villus/crypt ratios (1.6±0.15. In the sera, specific IgE levels significantly increased as did secretion of Th2 cytokines by peanut-reactivated splenocytes. EPIT of sensitized mice significantly reduced Th2 immunological response (IgE response and splenocyte secretion of Th2 cytokines as well as esophageal eosinophilia (50 eosinophils/mm(2, p<0.05, mRNA expression of Th2 cytokines in tissue--eotaxin (p<0.05, IL-5 (p<0.05, and IL-13 (p<0.05--GATA-3 (p<0.05, and intestinal villus sub-atrophia (2.3±0.15. EPIT also increased specific IgG2a (p<0.05 and mRNA expression of Foxp3 (p<0.05 in the esophageal mucosa.Gastro-intestinal lesions induced by sustained oral exposure in sensitized mice are efficaciously treated by allergen specific EPIT.

  13. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  14. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  15. Adiponectin gene therapy ameliorates high-fat, high-sucrose diet-induced metabolic perturbations in mice.

    Science.gov (United States)

    Kandasamy, A D; Sung, M M; Boisvenue, J J; Barr, A J; Dyck, J R B

    2012-09-10

    Adiponectin is an adipokine secreted primarily from adipose tissue that can influence circulating plasma glucose and lipid levels through multiple mechanisms involving a variety of organs. In humans, reduced plasma adiponectin levels induced by obesity are associated with insulin resistance and type 2 diabetes, suggesting that low adiponectin levels may contribute the pathogenesis of obesity-related insulin resistance. The objective of the present study was to investigate whether gene therapy designed to elevate circulating adiponectin levels is a viable strategy for ameliorating insulin resistance in mice fed a high-fat, high-sucrose (HFHS) diet. Electroporation-mediated gene transfer of mouse adiponectin plasmid DNA into gastrocnemius muscle resulted in elevated serum levels of globular and high-molecular weight adiponectin compared with control mice treated with empty plasmid. In comparison to HFHS-fed mice receiving empty plasmid, mice receiving adiponectin gene therapy displayed significantly decreased weight gain following 13 weeks of HFHS diet associated with reduced fat accumulation, and exhibited increased oxygen consumption and locomotor activity as measured by indirect calorimetry, suggesting increased energy expenditure in these mice. Consistent with improved whole-body metabolism, mice receiving adiponectin gene therapy also had lower blood glucose and insulin levels, improved glucose tolerance and reduced hepatic gluconeogenesis compared with control mice. Furthermore, immunoblot analysis of livers from mice receiving adiponectin gene therapy showed an increase in insulin-stimulated phosphorylation of insulin signaling proteins. Based on these data, we conclude that adiponectin gene therapy ameliorates the metabolic abnormalities caused by feeding mice a HFHS diet and may be a potential therapeutic strategy to improve obesity-mediated impairments in insulin sensitivity.

  16. Krill protein hydrolysate reduces plasma triacylglycerol level with concurrent increase in plasma bile acid level and hepatic fatty acid catabolism in high-fat fed mice

    Directory of Open Access Journals (Sweden)

    Marie S. Ramsvik

    2013-11-01

    Full Text Available Background: Krill powder, consisting of both lipids and proteins, has been reported to modulate hepatic lipid catabolism in animals. Fish protein hydrolysate diets have also been reported to affect lipid metabolism and to elevate bile acid (BA level in plasma. BA interacts with a number of nuclear receptors and thus affects a variety of signaling pathways, including very low density lipoprotein (VLDL secretion. The aim of the present study was to investigate whether a krill protein hydrolysate (KPH could affect lipid and BA metabolism in mice. Method: C57BL/6 mice were fed a high-fat (21%, w/w diet containing 20% crude protein (w/w as casein (control group or KPH for 6 weeks. Lipids and fatty acid composition were measured from plasma, enzyme activity and gene expression were analyzed from liver samples, and BA was measured from plasma. Results: The effect of dietary treatment with KPH resulted in reduced levels of plasma triacylglycerols (TAG and non-esterified fatty acids (NEFAs. The KPH treated mice had also a marked increased plasma BA concentration. The increased plasma BA level was associated with induction of genes related to membrane canalicular exporter proteins (Abcc2, Abcb4 and to BA exporters to blood (Abcc3 and Abcc4. Of note, we observed a 2-fold increased nuclear farnesoid X receptor (Fxr mRNA levels in the liver of mice fed KPH. We also observed increased activity of the nuclear peroxiosme proliferator-activated receptor alpha (PPARα target gene carnitine plamitoyltransferase 2 (CPT-2. Conclusion: The KPH diet showed to influence lipid and BA metabolism in high-fat fed mice. Moreover, increased mitochondrial fatty acid oxidation and elevation of BA concentration may regulate the plasma level of TAGs and NEFAs.

  17. Polycythemia and high levels of erythropoietin in blood and brain blunt the hypercapnic ventilatory response in adult mice.

    Science.gov (United States)

    Menuet, Clément; Khemiri, Hanan; de la Poëze d'Harambure, Théodora; Gestreau, Christian

    2016-05-15

    Changes in arterial Po2, Pco2, and pH are the strongest stimuli sensed by peripheral and central chemoreceptors to adjust ventilation to the metabolic demand. Erythropoietin (Epo), the main regulator of red blood cell production, increases the hypoxic ventilatory response, an effect attributed to the presence of Epo receptors in both carotid bodies and key brainstem structures involved in integration of peripheral inputs and control of breathing. However, it is not known whether Epo also has an effect on the hypercapnic chemoreflex. In a first attempt to answer this question, we tested the hypothesis that Epo alters the ventilatory response to increased CO2 levels. Basal ventilation and hypercapnic ventilatory response (HCVR) were recorded from control mice and from two transgenic mouse lines constitutively expressing high levels of human Epo in brain only (Tg21) or in brain and plasma (Tg6), the latter leading to polycythemia. To tease apart the potential effects of polycythemia and levels of plasma Epo in the HCVR, control animals were injected with an Epo analog (Aranesp), and Tg6 mice were treated with the hemolytic agent phenylhydrazine after splenectomy. Ventilatory parameters measured by plethysmography in conscious mice were consistent with data from electrophysiological recordings in anesthetized animals and revealed a blunted HCVR in Tg6 mice. Polycythemia alone and increased levels of plasma Epo blunt the HCVR. In addition, Tg21 mice with an augmented level of cerebral Epo also had a decreased HCVR. We discuss the potential implications of these findings in several physiopathological conditions. Copyright © 2016 the American Physiological Society.

  18. Maximal sustained levels of energy expenditure in humans during exercise.

    Science.gov (United States)

    Cooper, Jamie A; Nguyen, David D; Ruby, Brent C; Schoeller, Dale A

    2011-12-01

    Migrating birds have been able to sustain an energy expenditure (EE) that is five times their basal metabolic rate. Although humans can readily reach these levels, it is not yet clear what levels can be sustained for several days. The study's purposes were 1) to determine the upper limits of human EE and whether or not those levels can be sustained without inducing catabolism of body tissues and 2) to determine whether initial body weight is related to the levels that can be sustained. We compiled data on documented EE as measured by doubly labeled water during high levels of physical activity (minimum of five consecutive days). We calculated the physical activity level (PAL) of each individual studied (PAL = total EE / basal metabolic rate) from the published data. Correlations were run to examine the relationship between initial body weight and body weight lost with both total EE and PAL. The uppermost limit of EE was a peak PAL of 6.94 that was sustained for 10 consecutive days of a 95-d race. Only two studies reported PALs above 5.0; however, significant decreases in body mass were found in each study (0.45-1.39 kg·wk(-1) of weight loss). To test whether initial weight affects the ability to sustain high PALs, we found a significant positive correlation between TEE and initial body weight (r = 0.46, P body weight (r = 0.27, not statistically significant). Some elite humans are able to sustain PALs above 5.0 for a minimum of 10 d. Although significant decreases in body weight occur at this level, catabolism of body tissue may be preventable in situations with proper energy intake. Further, initial body weight does not seem to affect the sustainability of PALs.

  19. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  20. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    International Nuclear Information System (INIS)

    Kubo, Fumiyo; Miyatsuka, Takeshi; Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki; Watada, Hirotaka; Kaneto, Hideaki; Gannon, Maureen; Matsuoka, Taka-aki; Shimomura, Iichiro

    2016-01-01

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1"P"B-CreER"T"M; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated glucose

  1. Sustained expression of GLP-1 receptor differentially modulates β-cell functions in diabetic and nondiabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Fumiyo [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Miyatsuka, Takeshi, E-mail: miyatsuka-takeshi@umin.net [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Sasaki, Shugo; Takahara, Mitsuyoshi; Yamamoto, Yuichi; Shimo, Naoki [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Watada, Hirotaka [Department of Medicine, Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Kaneto, Hideaki [Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577 Matsushima, Kurashiki, Japan Okayama 701-0192 (Japan); Gannon, Maureen [Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, 2220 Pierce Ave. 746 PRB, Nashville, TN 37232-6303 (United States); Matsuoka, Taka-aki; Shimomura, Iichiro [Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2016-02-26

    Glucagon-like peptide 1 (GLP-1) has been shown to play important roles in maintaining β-cell functions, such as insulin secretion and proliferation. While expression levels of GLP-1 receptor (Glp1r) are compromised in the islets of diabetic rodents, it remains unclear when and to what degree Glp1r mRNA levels are decreased during the progression of diabetes. In this study, we performed real-time PCR with the islets of db/db diabetic mice at different ages, and found that the expression levels of Glp1r were comparable to those of the islets of nondiabetic db/misty controls at the age of four weeks, and were significantly decreased at the age of eight and 12 weeks. To investigate whether restored expression of Glp1r affects the diabetic phenotypes, we generated the transgenic mouse model Pdx1{sup PB}-CreER{sup TM}; CAG-CAT-Glp1r (βGlp1r) that allows for induction of Glp1r expression specifically in β cells. Whereas the expression of exogenous Glp1r had no measurable effect on glucose tolerance in nondiabetic βGlp1r;db/misty mice, βGlp1r;db/db mice exhibited higher glucose and lower insulin levels in blood on glucose challenge test than control db/db littermates. In contrast, four weeks of treatment with exendin-4 improved the glucose profiles and increased serum insulin levels in βGlp1r;db/db mice, to significantly higher levels than those in control db/db mice. These differential effects of exogenous Glp1r in nondiabetic and diabetic mice suggest that downregulation of Glp1r might be required to slow the progression of β-cell failure under diabetic conditions. - Highlights: • Expression levels of incretin receptors were significantly decreased in diabetic db/db islets after the age of eight weeks. • A transgenic mouse model expressing Glp1r specifically in β cells was generated. • Exogenous expression of Glp1r in β cells did not affect metabolic profiles in nondiabetic mice. • Sustained expression of Glp1r in diabetic db/db β cells deteriorated

  2. Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns

    Directory of Open Access Journals (Sweden)

    Ozburn Angela R

    2012-10-01

    Full Text Available Abstract Background The inability to reduce or regulate alcohol intake is a hallmark symptom for alcohol use disorders. Research on novel behavioral and genetic models of experience-induced changes in drinking will further our knowledge on alcohol use disorders. Distinct alcohol self-administration behaviors were previously observed when comparing two F1 hybrid strains of mice: C57BL/6J x NZB/B1NJ (BxN show reduced alcohol preference after experience with high concentrations of alcohol and periods of abstinence while C57BL/6J x FVB/NJ (BxF show sustained alcohol preference. These phenotypes are interesting because these hybrids demonstrate the occurrence of genetic additivity (BxN and overdominance (BxF in ethanol intake in an experience dependent manner. Specifically, BxF exhibit sustained alcohol preference and BxN exhibit reduced alcohol preference after experience with high ethanol concentrations; however, experience with low ethanol concentrations produce sustained alcohol preference for both hybrids. In the present study, we tested the hypothesis that these phenotypes are represented by differential production of the inducible transcription factor, ΔFosB, in reward, aversion, and stress related brain regions. Results Changes in neuronal plasticity (as measured by ΔFosB levels were experience dependent, as well as brain region and genotype specific, further supporting that neuronal circuitry underlies motivational aspects of ethanol consumption. BxN mice exhibiting reduced alcohol preference had lower ΔFosB levels in the Edinger-Westphal nucleus than mice exhibiting sustained alcohol preference, and increased ΔFosB levels in central medial amygdala as compared with control mice. BxN mice showing sustained alcohol preference exhibited higher ΔFosB levels in the ventral tegmental area, Edinger-Westphal nucleus, and amygdala (central and lateral divisions. Moreover, in BxN mice ΔFosB levels in the Edinger-Westphal nucleus and ventral

  3. Mtf-1 lymphoma-susceptibility locus affects retention of large thymocytes with high ROS levels in mice after γ-irradiation

    International Nuclear Information System (INIS)

    Maruyama, Masaki; Yamamoto, Takashi; Kohara, Yuki; Katsuragi, Yoshinori; Mishima, Yukio; Aoyagi, Yutaka; Kominami, Ryo

    2007-01-01

    Mouse strains exhibit different susceptibilities to γ-ray-induced thymic lymphomas. Our previous study identified Mtf-1 (metal responsive transcription factor-1) as a candidate susceptibility gene, which is involved in the radiation-induced signaling pathway that regulates the cellular reactive oxygen species (ROS). To reveal the mechanism for the increased susceptibility conferred by Mtf-1 locus, we examined early effects of γ-ray on ROS levels in vivo and its difference between Mtf-1 susceptible and resistant congenic mice. Here, we show the detection of clonally growing thymocytes at 4 weeks after irradiation, indicating the start of clonal expansion at a very early stage. We also show that large thymocytes with higher ROS levels and a proliferation capacity were more numerous in the Mtf-1 susceptible mice than the resistant mice when examined at 7 days after irradiation, although such tendency was not found in mice lacking one allele of Bcl11b tumor suppressor gene. This high retention of the large thymocytes, at a high risk for ROS-induced mutation, is a compensatory proliferation and regeneration response to depletion of the thymocytes after irradiation and the response is likely to augment the development of prelymphoma cells leading to thymic lymphomas

  4. Metabolic impacts of high dietary exposure to persistent organic pollutants in mice

    DEFF Research Database (Denmark)

    Ibrahim, Mohammad Madani; Fjære, Even; Lock, Erik-Jan

    2012-01-01

    Persistent organic pollutants (POPs) have been linked to metabolic diseases. Yet, the effects of high exposure to dietary POPs remain unclear. We therefore investigated whether elevated exposure to POPs provided by whale meat supplementation could contribute to insulin resistance. C57BL/6J mice...... were fed control (C) or very high-fat diet (VHF) containing low or high levels of POPs (VHF+POPs) for eight weeks. To elevate the dietary concentrations of POPs, casein was replaced by whale meat containing high levels of pollutants. Feeding VHF+POPs induced high POP accumulation in the adipose tissue...... of mice. However, compared with VHF-fed mice, animals fed VHF+POPs had improved insulin sensitivity and glucose tolerance, and reduced body weight. Levels of ectopic fat in skeletal muscles and liver were reduced in mice fed VHF+POPs. These mice also gained less adipose tissue and had a tendency...

  5. Sustainable Development and High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Mikael [Swedish Radiation Protection Inst., Stockholm (Sweden)

    2001-07-01

    Sustainable development, defined by the BrundtIand Commission as 'development that meets the needs of the present without compromising the ability of future generations to meet their own needs', relates to a number of issues such as population, health, food, species and ecosystems, energy, industrial development, urbanization, societal issues and economy, and how these global challenges could be met within a long term strategy. It is not obvious how the principle may be applied to final disposal of radioactive waste, but the global scope of the principle suggests that no sector in society should be exempted from scrutinizing its practices in the light of the challenge presented by sustainable development. Waste management, as pointed out by the International Commission on Radiological Protection, ICRP, cannot be seen as a free standing practice in need of its own justification. The produced waste cannot be seen separately from the other components of nuclear production. However, the existence of very long-lived radioactive nuclei in the spent fuel warrants a careful examination of this subpractice. Health based post-closure criteria or standards for long-lived waste, usually make use of the concept of partitioning dose limit. ICRP recommends that individuals in the public do not receive a yearly dose in excess of 1 mSv as a result of releases in connection with activities involving the use of ionising radiation, and that any single facility does not generate a dose burden to individuals in excess of a fraction of this value. For an operating facility, this fraction is normally at least a factor of three. By definition, operational changes are not possible for a closed repository. It follows from this that the partitioning has another function. One interpretation is that it can allow for the simultaneous use and burdens of future generation's activities. Both the Swedish and the proposed US criteria and from EPA and NRC, as well as standards from

  6. Sustainable Development and High Level Waste

    International Nuclear Information System (INIS)

    Jensen, Mikael

    2001-01-01

    Sustainable development, defined by the BrundtIand Commission as 'development that meets the needs of the present without compromising the ability of future generations to meet their own needs', relates to a number of issues such as population, health, food, species and ecosystems, energy, industrial development, urbanization, societal issues and economy, and how these global challenges could be met within a long term strategy. It is not obvious how the principle may be applied to final disposal of radioactive waste, but the global scope of the principle suggests that no sector in society should be exempted from scrutinizing its practices in the light of the challenge presented by sustainable development. Waste management, as pointed out by the International Commission on Radiological Protection, ICRP, cannot be seen as a free standing practice in need of its own justification. The produced waste cannot be seen separately from the other components of nuclear production. However, the existence of very long-lived radioactive nuclei in the spent fuel warrants a careful examination of this subpractice. Health based post-closure criteria or standards for long-lived waste, usually make use of the concept of partitioning dose limit. ICRP recommends that individuals in the public do not receive a yearly dose in excess of 1 mSv as a result of releases in connection with activities involving the use of ionising radiation, and that any single facility does not generate a dose burden to individuals in excess of a fraction of this value. For an operating facility, this fraction is normally at least a factor of three. By definition, operational changes are not possible for a closed repository. It follows from this that the partitioning has another function. One interpretation is that it can allow for the simultaneous use and burdens of future generation's activities. Both the Swedish and the proposed US criteria and from EPA and NRC, as well as standards from Canada, UK and

  7. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  8. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  9. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  10. Metabolic risk factors in mice divergently selected for BMR fed high fat and high carb diets.

    Science.gov (United States)

    Sadowska, Julita; Gębczyński, Andrzej K; Konarzewski, Marek

    2017-01-01

    Factors affecting contribution of spontaneous physical activity (SPA; activity associated with everyday tasks) to energy balance of humans are not well understood, as it is not clear whether low activity is related to dietary habits, precedes obesity or is a result of thereof. In particular, human studies on SPA and basal metabolic rates (BMR, accounting for >50% of human energy budget) and their associations with diet composition, metabolic thrift and obesity are equivocal. To clarify these ambiguities we used a unique animal model-mice selected for divergent BMR rates (the H-BMR and L-BMR line type) presenting a 50% between-line type difference in the primary selected trait. Males of each line type were divided into three groups and fed either a high fat, high carb or a control diet. They then spent 4 months in individual cages under conditions emulating human "sedentary lifestyle", with SPA followed every month and measurements of metabolic risk indicators (body fat mass %, blood lipid profile, fasting blood glucose levels and oxidative damage in the livers, kidneys and hearts) taken at the end of study. Mice with genetically determined high BMR assimilated more energy and had higher SPA irrespective of type of diet. H-BMR individuals were characterized by lower dry body fat mass %, better lipid profile and lower fasting blood glucose levels, but higher oxidative damage in the livers and hearts. Genetically determined high BMR may be a protective factor against diet-induced obesity and most of the metabolic syndrome indicators. Elevated spontaneous activity is correlated with high BMR, and constitutes an important factor affecting individual capability to sustain energy balance even under energy dense diets.

  11. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.

    Science.gov (United States)

    Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François

    2014-05-01

    Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.

  12. The Inhibitory Effects of Purple Sweet Potato Color on Hepatic Inflammation Is Associated with Restoration of NAD⁺ Levels and Attenuation of NLRP3 Inflammasome Activation in High-Fat-Diet-Treated Mice.

    Science.gov (United States)

    Wang, Xin; Zhang, Zi-Feng; Zheng, Gui-Hong; Wang, Ai-Min; Sun, Chun-Hui; Qin, Su-Ping; Zhuang, Juan; Lu, Jun; Ma, Dai-Fu; Zheng, Yuan-Lin

    2017-08-08

    Purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, exhibits beneficial effects on metabolic syndrome. Sustained inflammation plays a crucial role in the pathogenesis of metabolic syndrome. Here we explored the effects of PSPC on high-fat diet (HFD)-induced hepatic inflammation and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + PSPC group, and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. Nicotinamide riboside (NR) was used to increase NAD⁺ levels. Our results showed that PSPC effectively ameliorated obesity and liver injuries in HFD-fed mice. Moreover, PSPC notably blocked hepatic oxidative stress in HFD-treated mice. Furthermore, PSPC dramatically restored NAD⁺ level to abate endoplasmic reticulum stress (ER stress) in HFD-treated mouse livers, which was confirmed by NR treatment. Consequently, PSPC remarkably suppressed the nuclear factor-κB (NF-κB) p65 nuclear translocation and nucleotide oligomerization domain protein1/2 (NOD1/2) signaling in HFD-treated mouse livers. Thereby, PSPC markedly diminished the NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation, ultimately lowering the expressions of inflammation-related genes in HFD-treated mouse livers. In summary, PSPC protected against HFD-induced hepatic inflammation by boosting NAD⁺ level to inhibit NLRP3 inflammasome activation.

  13. Temporal changes in nutritional state affect hypothalamic POMC peptide levels independently of leptin in adult male mice.

    Science.gov (United States)

    Mercer, Aaron J; Stuart, Ronald C; Attard, Courtney A; Otero-Corchon, Veronica; Nillni, Eduardo A; Low, Malcolm J

    2014-04-15

    Hypothalamic proopiomelanocortin (POMC) neurons constitute a critical anorexigenic node in the central nervous system (CNS) for maintaining energy balance. These neurons directly affect energy expenditure and feeding behavior by releasing bioactive neuropeptides but are also subject to signals directly related to nutritional state such as the adipokine leptin. To further investigate the interaction of diet and leptin on hypothalamic POMC peptide levels, we exposed 8- to 10-wk-old male POMC-Discosoma red fluorescent protein (DsRed) transgenic reporter mice to either 24-48 h (acute) or 2 wk (chronic) food restriction, high-fat diet (HFD), or leptin treatment. Using semiquantitative immunofluorescence and radioimmunoassays, we discovered that acute fasting and chronic food restriction decreased the levels of adrenocorticotropic hormone (ACTH), α-melanocyte-stimulating hormone (α-MSH), and β-endorphin in the hypothalamus, together with decreased DsRed fluorescence, compared with control ad libitum-fed mice. Furthermore, acute but not chronic HFD or leptin administration selectively increased α-MSH levels in POMC fibers and increased DsRed fluorescence in POMC cell bodies. HFD and leptin treatments comparably increased circulating leptin levels at both time points, suggesting that transcription of Pomc and synthesis of POMC peptide products are not modified in direct relation to the concentration of plasma leptin. Our findings indicate that negative energy balance persistently downregulated POMC peptide levels, and this phenomenon may be partially explained by decreased leptin levels, since these changes were blocked in fasted mice treated with leptin. In contrast, sustained elevation of plasma leptin by HFD or hormone supplementation did not significantly alter POMC peptide levels, indicating that enhanced leptin signaling does not chronically increase Pomc transcription and peptide synthesis.

  14. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    Science.gov (United States)

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  15. Electricity intensity backstop level to meet sustainable backstop supply technologies

    International Nuclear Information System (INIS)

    Verbruggen, Aviel

    2006-01-01

    The concept of a backstop level of electricity intensity is introduced and illustrated for the highest income economies of the world. The backstop level corresponds with the intensity that would be triggered by applying end-use electricity prices equal to the cost price of a fully sustainable electricity supply. Section 1 of the paper discusses the issue of electricity (also energy) intensity of economies. It is argued that identifying a 'demand for electricity intensity' bridges the gap between the high willingness to pay for electricity services on the one hand and the disinterested attitude of consumers regarding the invisible and impalpable product electricity on the other hand. Assessment of the demand curve for electricity intensity in a cross section of high income OECD countries comes to a long-run price elasticity of almost -1. Section 2 revives Nordhaus' concept of backstop supply technologies for weighing three power sources (fossil, nuclear, and renewable sources) in meeting today's criteria of sustainable backstop technology. Only renewable sources meet the main sustainability criteria, but the economic cost of a fully sustainable electricity supply will be elevated. The closing question of Section 3, that is, whether the countries can afford the high cost of backstop electricity supplies, is answered by indicating what reductions in intensity are required to keep the electricity bills stable. The targeted intensity level is called the backstop level, and provides a fixed point for electricity efficiency policies. The analysis supports the call for comprehensive and enduring tax reform policies

  16. Plasma levels of 27-hydroxycholesterol in humans and mice with monogenic disturbances of high density lipoprotein metabolism

    DEFF Research Database (Denmark)

    Karuna, Ratna; Holleboom, Adriaan G; Motazacker, Mohammad M

    2011-01-01

    Secretion of 27-hydroxycholesterol (27OHC) from macrophages is considered as an alternative to HDL-mediated reverse transport of excess cholesterol. We investigated 27OHC-concentrations in plasma of humans and mice with monogenic disorders of HDL metabolism. As compared to family controls mutations...... activities of LCAT and CETP, respectively, than the formation and transfer of cholesterylesters. 27OHC plasma levels were also decreased in apoA-I-, ABCA1- or LCAT-knockout mice but increased in SR-BI-knockout mice. Transplantation of ABCA1- and/or ABCG1-deficient bone marrow into LDL receptor deficient mice...... decreased plasma levels of 27OHC. In conclusion, mutations or absence of HDL genes lead to distinct alterations in the quantity, esterification or lipoprotein distribution of 27OHC. These findings argue against the earlier suggestion that 27OHC-metabolism in plasma occurs independently of HDL....

  17. Effects of spinach nitrate on insulin resistance, endothelial dysfunction markers and inflammation in mice with high-fat and high-fructose consumption

    Directory of Open Access Journals (Sweden)

    Ting Li

    2016-09-01

    Full Text Available Background: Insulin resistance, which is associated with an increased risk of cardiovascular morbidity and mortality, has become a leading nutrition problem. Inorganic nitrate enriched in spinach has been demonstrated to reverse the pathological features of insulin resistance and endothelial dysfunction. However, the effects of a direct intake of nitrate-enriched spinach on insulin resistance and endothelial dysfunction have not been studied. Objective: To investigate the effects of spinach nitrate on insulin resistance, lipid metabolism, endothelial function, and inflammation in mice fed with a high-fat and high-fructose diet. Design: A diet intervention of spinach with or without nitrate was performed in mice. A high-fat and high-fructose diet was used to cause insulin resistance, endothelial dysfunction, and inflammation in mice. The impacts of spinach nitrate on lipid profile, insulin resistance, markers of endothelial function, and inflammation were determined in mice. Results: Spinach nitrate improved the vascular endothelial function of the mice with high-fat and high-fructose consumption, as evidenced by the elevated plasma nitrite level, increased serum nitric oxide (NO level and decreased serum ET-1 level after spinach nitrate intervention. Spinach nitrate also reduced serum triglycerides, total cholesterol, and low-density lipoprotein-cholesterol levels and elevated serum high-density lipoprotein-cholesterol levels in the mice fed with a high-fat and high-fructose diet. Mice receiving spinach with 60 mg/kg of nitrate (1.02±0.34 showed a significantly low homeostasis model assessment-insulin resistance index as compared with the model mice (2.05±0.58, which is indicating that spinach nitrate could effectively improve the insulin resistance. In addition, spinach nitrate remarkably decreased the elevated serum C-reactive protein, tumor necrosis factor α, and interleukin-6 levels induced by a high-fat and high-fructose diet

  18. Perceived Attributes of Event Sustainability in the MICE Industry in Thailand: A Viewpoint from Governmental, Academic, Venue and Practitioner

    Directory of Open Access Journals (Sweden)

    Kantapop Buathong

    2017-07-01

    Full Text Available The environmental impacts of meetings, incentives, conventions, and exhibitions (MICE, Event industries are as far reaching as their economic reach. The travelers who attend events patronize a wide variety of businesses: airlines, car rental agencies, hotels, restaurants, performance venues, and tour operators. The overall research objectives of this study fall on two aspects of sustainability in the event industry: the most prevalent practices that the industry employs and the relative importance of sustainability to convention consumers. This study implements mixed research methods in order to explore the perceptions of sustainable event development in the metropolitan area of Bangkok, Thailand. Empirical evidence on significant issues for event sustainability is provided. Based on the results, recommendations are made to improve sustainable event development in Thailand and offer guidance to the event industry so that it can develop its potential and gain greater prominence on the world MICE stage.

  19. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.

    Directory of Open Access Journals (Sweden)

    Haruka Tamura

    Full Text Available We are routinely exposed to low frequency noise (LFN; below 0.5 kHz at moderate levels of 60-70 dB sound pressure level (SPL generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz and high frequency noise (HFN; 16 kHz at 70 dB SPL at a distance of approximately 10-20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance.

  20. High tidal volume ventilation in infant mice.

    Science.gov (United States)

    Cannizzaro, Vincenzo; Zosky, Graeme R; Hantos, Zoltán; Turner, Debra J; Sly, Peter D

    2008-06-30

    Infant mice were ventilated with either high tidal volume (V(T)) with zero end-expiratory pressure (HVZ), high V(T) with positive end-expiratory pressure (PEEP) (HVP), or low V(T) with PEEP. Thoracic gas volume (TGV) was determined plethysmographically and low-frequency forced oscillations were used to measure the input impedance of the respiratory system. Inflammatory cells, total protein, and cytokines in bronchoalveolar lavage fluid (BALF) and interleukin-6 (IL-6) in serum were measured as markers of pulmonary and systemic inflammatory response, respectively. Coefficients of tissue damping and tissue elastance increased in all ventilated mice, with the largest rise seen in the HVZ group where TGV rapidly decreased. BALF protein levels increased in the HVP group, whereas serum IL-6 rose in the HVZ group. PEEP keeps the lungs open, but provides high volumes to the entire lungs and induces lung injury. Compared to studies in adult and non-neonatal rodents, infant mice demonstrate a different response to similar ventilation strategies underscoring the need for age-specific animal models.

  1. The effect of salvianolate on serum levels of tumor necrosis factor-alpha in ApoE-/- mice

    International Nuclear Information System (INIS)

    Gao Yuqi; Wu Zonggui; Liang Chun; Luo Nanping; Zhang Hongming; Xu Jun; Li Xiaoyan; Xu Lin

    2008-01-01

    Objective: To study the possible antiatherosclerotic mechanism of salvianolate, through examination of the effect of salvianolate on serum levels of tumor necrosis factor-alpha (TNF-α) in C57BL/6J ApoE -/- mice. Methods: Fifty C57BL/6J ApoE -/- mice of 8 week-old were fed high cholesterol diet for 12 weeks. After sacrificing 2 mice to examine formation of atheromatous plaques at root of aorta, the remaining 48 C57BL/6J ApoE -/- mice were divided randomly into 4 groups: (1) model group (without salvianolate treatment) (2) low dosage of salvianolate (60mg/kg) group (3) medium dosage of salvianolate (120mg/kg) group and (4) high dosage of salvianolate(240mg/kg) group. Ten C57BL/6 wild-type mice served as controls. At the end of 32nd week, serum levels of TNF-α were measured with specific radioimmunoassay. Results: The serum levels of TNF-α were decreased in ApoE -/- mice with the increase of salvianolate dosage (P 0.05). Conclusion: Salvianolate treatment can decrease the serum levels of TNF-α in C57BL/6 ApoE -/- mice and inhibit inflammation process. This may be one of the possible mechanism of antiatherosclerosis of salvianolate. (authors)

  2. Long-term high-level expression of human beta-globin occurs following transplantation of transgenic marrow into irradiated mice.

    Science.gov (United States)

    Himelstein, A; Ward, M; Podda, S; de la Flor Weiss, E; Costantini, F; Bank, A

    1993-03-01

    When the human beta-globin gene is transferred into the bone marrow cells of live mice, its expression is very low. To investigate the reason for this, we transferred the bone marrow of transgenic mice containing and expressing the human beta-globin into irradiated recipients. We demonstrate that long-term high level expression of the human beta-globin gene can be maintained in the marrow and blood of irradiated recipients following transplantation. Although expression decreased over time in most animals because of host marrow reconstitution, the ratio of human beta-globin transgene expression to endogenous mouse beta-globin gene expression in donor-derived erythroid cells remained constant over time. We conclude that there is no inherent limitation to efficient expression of an exogenous human beta-globin gene in mouse bone marrow cells following marrow transplantation.

  3. 2-deoxyglucose tissue levels and insulin levels following tolazamide dosing in normal and obese mice

    International Nuclear Information System (INIS)

    Skillman, C.A.; Fletcher, H.P.

    1986-01-01

    The effect of tolazamide (TZ), a sulfonylurea, on 14 C-2-deoxyglucose ( 14 C-2DG) tissue distribution and insulin levels of normal and obese mice was investigated using an in vivo physiological method. Acute doses of TZ (50 mg/kg ip) increased 14 C-2DG levels in gastrocnemius muscle and retroperitoneal fat and produced a transient elevation of insulin which most likely accounts for the increased 14 C-2DG levels in muscle and fat. The results demonstrate that the in vivo 14 C-2DG method produced results consistent with known actions of sulfonylureas on in vitro hexose assimilation in muscle and fat. Subchronic treatment (7 days) with TZ 50 mg/kg ip twice daily did not result in increased insulin-stimulated 14 C-2DG tissue levels in normal mice when compared to saline treated controls. However, insulin levels were lower in mice treated subchronically with TZ compared to saline controls suggesting an enhancement of insulin action. Viable yellow obese mice represent a model of maturity onset obesity presenting with insulin resistance. The insulin resistance of this obese strain appears to reside in the fat tissue as assessed by comparing 14 C-2DG tissue levels of obese mice with lean littermate controls. Subchronic TZ treatment had no effect on 14 C-2DG uptake in fat or muscle tissue of viable yellow obese mice and did not alter their plasma insulin levels. It appears that genetically obese viable mice may be resistant to subchronic treatment with TZ. (author)

  4. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Science.gov (United States)

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  5. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.

    Science.gov (United States)

    Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas

    2017-03-01

    The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA

  6. Brain levels of N-acylethanolamine phospholipids in mice during pentylenetetrazol-induced seizure

    DEFF Research Database (Denmark)

    Moesgaard, B.; Hansen, H.H.; Petersen, G.

    2003-01-01

    occur in response to seizure activity. Therefore, we investigated the effect of pentylenetetrazol (PTZ)-induced seizures in PTZ-kindled mice on the level of NAPE in the brain. Male NMRI mice were kindled with PTZ injections 3 times/wk, thereby developing clonic seizures in response to PTZ. Mice were...... killed within 30 min after the clonic seizure on the test day (12th injection) and the brains were collected. Eight species of NAPE were analyzed as the glycerophospho-N-acylethanolamines by high-performance liquid chromatography-coupled electrospray ionization mass spectrometry. No effect of the PTZ...... accumulate during seizure....

  7. Selenium and Selenoprotein Deficiencies Induce Widespread Pyogranuloma Formation in Mice, while High Levels of Dietary Selenium Decrease Liver Tumor Size Driven by TGFα

    Science.gov (United States)

    Zhong, Nianxin; Ward, Jerrold M.; Perella, Christine M.; Hoffmann, Victoria J.; Rogers, Keith; Combs, Gerald F.; Schweizer, Ulrich; Merlino, Glenn; Gladyshev, Vadim N.; Hatfield, Dolph L.

    2013-01-01

    Changes in dietary selenium and selenoprotein status may influence both anti- and pro-cancer pathways, making the outcome of interventions different from one study to another. To characterize such outcomes in a defined setting, we undertook a controlled hepatocarcinogenesis study involving varying levels of dietary selenium and altered selenoprotein status using mice carrying a mutant (A37G) selenocysteine tRNA transgene (TrsptG37) and/or a cancer driver TGFα transgene. The use of TrsptG37 altered selenoprotein expression in a selenoprotein and tissue specific manner and, at sufficient dietary selenium levels, separate the effect of diet and selenoprotein status. Mice were maintained on diets deficient in selenium (0.02 ppm selenium) or supplemented with 0.1, 0.4 or 2.25 ppm selenium or 30 ppm triphenylselenonium chloride (TPSC), a non-metabolized selenium compound. TrsptG37 transgenic and TGFα/TrsptG37 bi-transgenic mice subjected to selenium-deficient or TPSC diets developed a neurological phenotype associated with early morbidity and mortality prior to hepatocarcinoma development. Pathology analyses revealed widespread disseminated pyogranulomatous inflammation. Pyogranulomas occurred in liver, lungs, heart, spleen, small and large intestine, and mesenteric lymph nodes in these transgenic and bi-transgenic mice. The incidence of liver tumors was significantly increased in mice carrying the TGFα transgene, while dietary selenium and selenoprotein status did not affect tumor number and multiplicity. However, adenoma and carcinoma size and area were smaller in TGFα transgenic mice that were fed 0.4 and 2.25 versus 0.1 ppm of selenium. Thus, selenium and selenoprotein deficiencies led to widespread pyogranuloma formation, while high selenium levels inhibited the size of TGFα–induced liver tumors. PMID:23460847

  8. Chronic high-sucrose diet increases fibroblast growth factor 21 production and energy expenditure in mice.

    Science.gov (United States)

    Maekawa, Ryuya; Seino, Yusuke; Ogata, Hidetada; Murase, Masatoshi; Iida, Atsushi; Hosokawa, Kaori; Joo, Erina; Harada, Norio; Tsunekawa, Shin; Hamada, Yoji; Oiso, Yutaka; Inagaki, Nobuya; Hayashi, Yoshitaka; Arima, Hiroshi

    2017-11-01

    Excess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated. To address the role of anti-obesity hormones in response to increased sucrose intake, we analyzed mice fed a high-sucrose diet, a high-starch diet or a normal diet for 15 weeks. Mice fed a high-sucrose diet showed resistance to body weight gain, in comparison with mice fed a high-starch diet or control diet, due to increased energy expenditure. Plasma FGF21 levels were highest among the three groups in mice fed a high-sucrose diet, whereas no significant difference in GLP-1 levels was observed. Expression levels of uncoupling protein 1 (UCP-1), FGF receptor 1c (FGFR1c) and β-klotho (KLB) mRNA in brown adipose tissue were significantly increased in high sucrose-fed mice, suggesting increases in FGF21 sensitivity and energy expenditure. Expression of carbohydrate responsive element binding protein (ChREBP) mRNA in liver and brown adipose tissue was also increased in high sucrose-fed mice. These results indicate that FGF21 production in liver and brown adipose tissue is increased in high-sucrose diet and participates in resistance to weight gain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die based upon high IL-6 levels

    Science.gov (United States)

    Vyas, Dinesh; Javadi, Pardis; DiPasco, Peter J; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-01-01

    Elevated interleukin (IL)-6 levels correlate with increased mortality following sepsis. IL-6 levels >14,000 pg/ml drawn 6 hours following cecal ligation and puncture (CLP) are associated with 100% mortality in ND4 mice, even if antibiotic therapy is initiated 12 hours after the septic insult. The first aim of this study was to see if earlier institution of antibiotic therapy could improve overall survival in septic mice and rescue the subset of animals predicted to die based upon high IL-6 levels. Mice (n=184) were subjected to CLP, had IL-6 levels drawn six hours later and then were randomized to receive imipenem, a broad spectrum antimicrobial agent, beginning six or twelve hours post-operatively. Overall one-week survival improved from 25.5% to 35.9% with earlier administration of antibiotics (p14,000 pg/ml, 25% survived if imipenem was started at 6 hours, while none survived if antibiotics were started later (p14,000 pg/ml. These results demonstrate that earlier systemic therapy can improve outcome in a subset of mice predicted to die in sepsis, but we are unable to demonstrate any benefit in similar animals using targeted therapy directed at IL-6. PMID:15947070

  10. Early antibiotic administration but not antibody therapy directed against IL-6 improves survival in septic mice predicted to die on basis of high IL-6 levels.

    Science.gov (United States)

    Vyas, Dinesh; Javadi, Pardis; Dipasco, Peter J; Buchman, Timothy G; Hotchkiss, Richard S; Coopersmith, Craig M

    2005-10-01

    Elevated interleukin (IL)-6 levels correlate with increased mortality following sepsis. IL-6 levels >14,000 pg/ml drawn 6 h after cecal ligation and puncture (CLP) are associated with 100% mortality in ND4 mice, even if antibiotic therapy is initiated 12 h after septic insult. Our first aim was to see whether earlier institution of antibiotic therapy could improve overall survival in septic mice and rescue the subset of animals predicted to die on the basis of high IL-6 levels. Mice (n = 184) were subjected to CLP, had IL-6 levels drawn 6 h later, and then were randomized to receive imipenem, a broad spectrum antimicrobial agent, beginning 6 or 12 h postoperatively. Overall 1-wk survival improved from 25.5 to 35.9% with earlier administration of antibiotics (P 14,000 pg/ml, 25% survived if imipenem was started at 6 h, whereas none survived if antibiotics were started later (P 14,000 pg/ml. These results demonstrate that earlier systemic therapy can improve outcome in a subset of mice predicted to die in sepsis, but we are unable to demonstrate any benefit in similar animals using targeted therapy directed at IL-6.

  11. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  12. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    Science.gov (United States)

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    Directory of Open Access Journals (Sweden)

    Heather L. Vellers

    2017-08-01

    Full Text Available Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels.Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD or high fat/high sugar (HFHS diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males and 17β-estradiol (females to determine if sex hormone augmentation altered diet-induced changes in activity.Results: 117 mice (56♂, 61♀ were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001 and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001. The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28% and female mice (p = 0.02, 57 ± 26%. In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat.Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  14. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice

    Science.gov (United States)

    Artesi, Maria; Jalinot, Pierre

    2018-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization. PMID:29566098

  15. PDZ domain-binding motif of Tax sustains T-cell proliferation in HTLV-1-infected humanized mice.

    Science.gov (United States)

    Pérès, Eléonore; Blin, Juliana; Ricci, Emiliano P; Artesi, Maria; Hahaut, Vincent; Van den Broeke, Anne; Corbin, Antoine; Gazzolo, Louis; Ratner, Lee; Jalinot, Pierre; Duc Dodon, Madeleine

    2018-03-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma (ATLL), an aggressive malignant proliferation of activated CD4+ T lymphocytes. The viral Tax oncoprotein is critically involved in both HTLV-1-replication and T-cell proliferation, a prerequisite to the development of ATLL. In this study, we investigated the in vivo contribution of the Tax PDZ domain-binding motif (PBM) to the lymphoproliferative process. To that aim, we examined T-cell proliferation in humanized mice (hu-mice) carrying a human hemato-lymphoid system infected with either a wild type (WT) or a Tax PBM-deleted (ΔPBM) provirus. We observed that the frequency of CD4+ activated T-cells in the peripheral blood and in the spleen was significantly higher in WT than in ΔPBM hu-mice. Likewise, human T-cells collected from WT hu-mice and cultivated in vitro in presence of interleukin-2 were proliferating at a higher level than those from ΔPBM animals. We next examined the association of Tax with the Scribble PDZ protein, a prominent regulator of T-cell polarity, in human T-cells analyzed either after ex vivo isolation or after in vitro culture. We confirmed the interaction of Tax with Scribble only in T-cells from the WT hu-mice. This association correlated with the presence of both proteins in aggregates at the leading edge of the cells and with the formation of long actin filopods. Finally, data from a comparative genome-wide transcriptomic analysis suggested that the PBM-PDZ association is implicated in the expression of genes regulating proliferation, apoptosis and cytoskeletal organization. Collectively, our findings suggest that the Tax PBM is an auxiliary motif that contributes to the sustained growth of HTLV-1 infected T-cells in vivo and in vitro and is essential to T-cell immortalization.

  16. Prunus mume leaf extract lowers blood glucose level in diabetic mice.

    Science.gov (United States)

    Lee, Min Woo; Kwon, Jung Eun; Lee, Young-Jong; Jeong, Yong Joon; Kim, Inhye; Cho, Young Mi; Kim, Yong-Min; Kang, Se Chan

    2016-10-01

    Context Diabetes is a common metabolic disease with long-term complications. Prunus mume Sieb. et Zucc. (Rosaceae) fruits have shown to ameliorate glucose intolerance. However, the antidiabetic effects of P. mume leaves have not been investigated. Objective This study evaluated the effects of P. mume leaf 70% ethanol extract (PMLE) on alleviating diabetes in vivo and in vitro. Materials and methods PMLE was fractionated into n-hexane, dichloromethane (CH2Cl2), ethyl acetate (EtOAc), n-butanol (BuOH) and water. Polyphenol and flavonoid contents in PMLE fractions were determined using Folin-Ciocalteu reagent and the aluminium chloride colorimetric method, respectively. We evaluated α-glucosidase inhibition using a microplate reader at 400 nm. Adipocyte differentiation by lipid accumulation was measured using Nile Red staining. Male imprinting control region (ICR) mice were injected with streptozotocin (STZ, 100 mg/kg, i.p.). High-fat diets were provided for three weeks prior to PMLE treatments to induce type 2 diabetes. PMLE (0, 5, 25 or 50 mg/kg) was administrated for four weeks with high-fat diets. Results The EtOAc fraction of PMLE inhibited α-glucosidase activity (IC50 = 68.2 μg/mL) and contained 883.5 ± 14.9 mg/g of polyphenols and 820.1 ± 7.7 mg/g of flavonoids. The 50 mg/kg PMLE supplement reduced 40% of blood glucose level compared to obese/diabetes mice. Obese/diabetic mice treated with 50 mg/kg PMLE showed a lower level of triacylglycerol (320.7 ± 20.73 mg/dL) compared to obese/diabetes mice (494.9 ± 14.80 mg/dL). Conclusion The data demonstrate that P. mume leaves exert antidiabetic effects that may be attributable to high concentrations of polyphenols and flavonoids.

  17. Practical appraisal of sustainable development-Methodologies for sustainability measurement at settlement level

    International Nuclear Information System (INIS)

    Moles, Richard; Foley, Walter; Morrissey, John; O'Regan, Bernadette

    2008-01-01

    This paper investigates the relationships between settlement size, functionality, geographic location and sustainable development. Analysis was carried out on a sample of 79 Irish settlements, located in three regional clusters. Two methods were selected to model the level of sustainability achieved in settlements, namely, Metabolism Accounting and Modelling of Material and Energy Flows (MA) and Sustainable Development Index Modelling. MA is a systematic assessment of the flows and stocks of material within a system defined in space and time. The metabolism of most settlements is essentially linear, with resources flowing through the urban system. The objective of this research on material and energy flows was to provide information that might aid in the development of a more circular pattern of urban metabolism, vital to sustainable development. In addition to MA, a set of forty indicators were identified and developed. These target important aspects of sustainable development: transport, environmental quality, equity and quality of life issues. Sustainability indices were derived through aggregation of indicators to measure dimensions of sustainable development. Similar relationships between settlement attributes and sustainability were found following both methods, and these were subsequently integrated to provide a single measure. Analysis identified those attributes of settlements preventing, impeding or promoting progress towards sustainability

  18. Scallop protein with endogenous high taurine and glycine content prevents high-fat, high-sucrose-induced obesity and improves plasma lipid profile in male C57BL/6J mice

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup; Keenan, Alison H.; Madsen, Lise

    2014-01-01

    High-protein diets induce alterations in metabolism that may prevent diet-induced obesity. However, little is known as to whether different protein sources consumed at normal levels may affect diet-induced obesity and associated co-morbidities. We fed obesity-prone male C57BL/6J mice high-fat, high......-fed mice, but otherwise no changes in lean body mass were observed between the groups. Feed efficiency and apparent nitrogen digestibility were reduced in scallop-fed mice suggesting alterations in energy utilization and metabolism. Overnight fasted plasma triacylglyceride, non-esterified fatty acids......, glycerol and hydroxy-butyrate levels were significantly reduced, indicating reduced lipid mobilization in scallop-fed mice. The plasma HDL-to-total-cholesterol ratio was higher, suggesting increased reverse cholesterol transport or cholesterol clearance in scallop-fed mice in both fasted and non-fasted...

  19. The Acute Phase of Trypanosoma cruzi Infection Is Attenuated in 5-Lipoxygenase-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Adriana M. C. Canavaci

    2014-01-01

    Full Text Available In the present work we examine the contribution of 5-lipoxygenase- (5-LO- derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO−/− mice and wild-type (WT mice. Compared with WT mice, the 5-LO−/− mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO−/− mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8+CD44highCD62Llow memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.

  20. [Influence of 1, 2-dichloroethane on open field behavior and levels of neurotransmitters in brain of mice].

    Science.gov (United States)

    Qi, Ying; Shi, Lei; Gao, Lan-Yue; Wang, Gao-Yang; Li, Ge-Xin; Lv, Xiu-Qiang; Jin, Ya-Ping

    2011-06-01

    To explore the effects of 1,2-dichloroethane (1,2-DCE) on the behavior and the brain neurotransmitter levels in mice. Thirty mice were randomly divided into four groups, which were control group and groups of low, middle and high exposure (225, 450 and 900 mg/m3) to 1,2-DCE for 10 days (3.5 h a day) by inhalation. After the last exposure, the open field test was performed immediately. After exposure all mice were killed and the brain tissues were taken up rapidly. The levels of aspartate (Asp), glutamate (Glu) and gamma-aminobutyric acid (GABA) in the brain were detected by high performance liquid chromatography (HPLC). Levels of Asp and Glu in all exposure groups increased with doses. As compared to the control group, levels of Glu in all exposure groups increased significantly (P open field test showed that effect of low exposure to 1,2-DCE on the behavior was stimulant, but the high exposure to 1,2-DCE inhibited behavior of exploration, excitement and sport. Subacute exposure to 1,2-DCE could result in the change of amino acid neurotransmitter content and ratio in the brain, thereby change the behavior of mice appeared, which might be the mechanism of neurotoxicity caused by 1,2-DCE in part.

  1. Chronic corticosterone exposure reduces hippocampal glycogen level and induces depression-like behavior in mice.

    Science.gov (United States)

    Zhang, Hui-yu; Zhao, Yu-nan; Wang, Zhong-li; Huang, Yu-fang

    2015-01-01

    Long-term exposure to stress or high glucocorticoid levels leads to depression-like behavior in rodents; however, the cause remains unknown. Increasing evidence shows that astrocytes, the most abundant cells in the central nervous system (CNS), are important to the nervous system. Astrocytes nourish and protect the neurons, and serve as glycogen repositories for the brain. The metabolic process of glycogen, which is closely linked to neuronal activity, can supply sufficient energy substrates for neurons. The research team probed into the effects of chronic corticosterone (CORT) exposure on the glycogen level of astrocytes in the hippocampal tissues of male C57BL/6N mice in this study. The results showed that chronic CORT injection reduced hippocampal neurofilament light protein (NF-L) and synaptophysin (SYP) levels, induced depression-like behavior in male mice, reduced hippocampal glycogen level and glycogen synthase activity, and increased glycogen phosphorylase activity. The results suggested that the reduction of the hippocampal glycogen level may be the mechanism by which chronic CORT treatment damages hippocampal neurons and induces depression-like behavior in male mice.

  2. African high-level regional meeting on energy and sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wamukonya, N [UNEP Collaborating Centre on Energy and Environment (Denmark)

    2001-07-01

    The United Nations Environment Programme (UNEP) jointly with the Government of Kenya and the UN Department for Economic and Social Affairs (DESA) organised the 'African High-Level Regional Meeting on Energy and Sustainable Development' in Januar 2001 at UNEP headquarters in Nairobi, Kenya. The purpose was to support the preparations for CSD 9 and enable African countries to discuss key issues related to energy for sustainable development in their regional context. This report presents the technical statements and papers prepared for the technical workshop. As the reader will quickly notice, the papers reflect the views of the range of experts who participated. Speakers and participants came from ministries or agencies dealing with energy issues, rural development and finance institutions, utilities, private enterprises, NGOs, and research institutions. The papers follow the thermes identified for the CSD 9 session but provide an Africa-specific perspective. In the region, increased access to energy is clearly still a major development issue and has strong links to another key theme - rural energy. A number of papers address these issues from the woodfuel or biomass side, as the majority of the rural population in African countries relies on this energy source and will continue to do so for the foreseeable future. At the same time, improved access to commercial energy forms, particularly through rural electrification programmes, received much attention and several papers present new approaches and experience gained in this area. On the commercial energy supply side the major challenge facing most African countries is the need to reform institutional structures, especially in the power sector. These reforms are generally part of larger economic reform packages promoted by the World Bank, International Monetary Fund, and other financial institutions. In the energy sector the reform process offers an opportunity to introduce more efficiency and competition but it must

  3. Ameliorative effects of curcumin on the spermatozoon tail length, count, motility and testosterone serum level in metronidazole-treated mice.

    Science.gov (United States)

    Karbalay-Doust, S; Noorafshan, A

    2011-01-01

    Metronidazole (MTZ) is used as an antiparasitic drug. Curcumin is considered as anti-oxidant and anti-inflammatory agent. The ameliorative effects of curcumin on MTZ induced toxicity on mice spermatozoon tail length, count, motility and testosterone level were investigated. MTZ was administered in 500 and 165 (high and therapeutic doses) mg/kg/day, with and without curcumin (100 mg/kg/day). After 16 days the above parameters were assessed. Spermatozoon count and motility and serum testosterone level MTZ-treated (500 and 165) mice were reduced. In the mice treated with MTZ+curcumin these parameters decreased but in a lesser extent than the MTZ-treated animals. Mid-piece and total lengths of the spermatozoon tail in control animals were 31.6 ± 9.0 μm and 100.3 ± 15.0 μm and in the mice treated with high doses (500) of MTZ were reduced. The mid-piece and total spermatozoon tail length has been decreased in a lesser extent in the mice treated with high dose MTZ+curcumin than the mice treated with high dose MTZ (paverage increase in mid-piece and total lengths in comparison with the MTZ-treated (500) animals. Stereological estimation of the sperm tail length, including sampling of spermatozoa and also counting of the intersections of their tails with the stereological grids was a rapid technique and took only 5-10 minutes. It can be concluded that curcumin has an ameliorative effect on the spermatozoon, testosterone level and tail length in MTZ-treated mice.

  4. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    Science.gov (United States)

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  5. Immunologic and metabolic effects of high-refined carbohydrate-containing diet in food allergic mice.

    Science.gov (United States)

    Yamada, Letícia Tamie Paiva; de Oliveira, Marina Chaves; Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Pereira, Rafaela Vaz Sousa; Perez, Denise Alves; Teixeira, Mauro Martins; Cara, Denise Carmona; Ferreira, Adaliene Versiani Matos

    2016-02-01

    Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice

    Directory of Open Access Journals (Sweden)

    Farias JM

    2012-10-01

    Full Text Available Abstract Background The aim of the present study was to evaluate the protective effect of concurrent exercise in the degree of the insulin resistance in mice fed with a high-fat diet, and assess adiponectin receptors (ADIPOR1 and ADIPOR2 and endosomal adaptor protein APPL1 in different tissues. Methods Twenty-four mice were randomized into four groups (n = 6: chow standard diet and sedentary (C; chow standard diet and simultaneous exercise training (C-T; fed on a high-fat diet and sedentary (DIO; and fed on a high-fat diet and simultaneous exercise training (DIO-T. Simultaneously to starting high-fat diet feeding, the mice were submitted to a swimming exercise training protocol (2 x 30 minutes, with 5 minutes of interval/day, five days per week, for twelve weeks (90 days. Animals were then euthanized 48 hours after the last exercise training session, and adipose, liver, and skeletal muscle tissue were extracted for an immunoblotting analysis. Results IR, IRs, and Akt phosphorylation decreased in the DIO group in the three analyzed tissues. In addition, the DIO group exhibited ADIPOR1 (skeletal muscle and adipose tissue, ADIPOR2 (liver, and APPL1 reduced when compared with the C group. However, it was reverted when exercise training was simultaneously performed. In parallel, ADIPOR1 and 2 and APPL1 protein levels significantly increase in exercised mice. Conclusions Our findings demonstrate that exercise training performed concomitantly to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in the hepatic, adipose, and skeletal muscle tissue.

  7. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice.

    Science.gov (United States)

    Nuñez, Denisse; Olavegoya, Paola; Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia

    2017-12-01

    Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.

  8. African high-level regional meeting on energy and sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wamukonya, N. (ed.) [UNEP Collaborating Centre on Energy and Environment (Denmark)

    2001-07-01

    The United Nations Environment Programme (UNEP) jointly with the Government of Kenya and the UN Department for Economic and Social Affairs (DESA) organised the 'African High-Level Regional Meeting on Energy and Sustainable Development' in Januar 2001 at UNEP headquarters in Nairobi, Kenya. The purpose was to support the preparations for CSD 9 and enable African countries to discuss key issues related to energy for sustainable development in their regional context. This report presents the technical statements and papers prepared for the technical workshop. As the reader will quickly notice, the papers reflect the views of the range of experts who participated. Speakers and participants came from ministries or agencies dealing with energy issues, rural development and finance institutions, utilities, private enterprises, NGOs, and research institutions. The papers follow the thermes identified for the CSD 9 session but provide an Africa-specific perspective. In the region, increased access to energy is clearly still a major development issue and has strong links to another key theme - rural energy. A number of papers address these issues from the woodfuel or biomass side, as the majority of the rural population in African countries relies on this energy source and will continue to do so for the foreseeable future. At the same time, improved access to commercial energy forms, particularly through rural electrification programmes, received much attention and several papers present new approaches and experience gained in this area. On the commercial energy supply side the major challenge facing most African countries is the need to reform institutional structures, especially in the power sector. These reforms are generally part of larger economic reform packages promoted by the World Bank, International Monetary Fund, and other financial institutions. In the energy sector the reform process offers an opportunity to introduce more efficiency and competition

  9. Effect of Different Starvation Levels on Cognitive Ability in Mice

    Science.gov (United States)

    Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan

    2018-01-01

    Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.

  10. Leptin Is Required for Glucose Homeostasis after Roux-en-Y Gastric Bypass in Mice.

    Directory of Open Access Journals (Sweden)

    Mohamad Mokadem

    Full Text Available Leptin, the protein product of the ob gene, increases energy expenditure and reduces food intake, thereby promoting weight reduction. Leptin also regulates glucose homeostasis and hepatic insulin sensitivity via hypothalamic proopiomelanocortin neurons in mice. Roux-en-Y gastric bypass (RYGB induces weight loss that is substantial and sustained despite reducing plasma leptin levels. In addition, patients who fail to undergo diabetes remission after RYGB are hypoletinemic compared to those who do and to lean controls. We have previously demonstrated that the beneficial effects of RYGB in mice require the melanocortin-4 receptor, a downstream effector of leptin action. Based on these observations, we hypothesized that leptin is required for sustained weight reduction and improved glucose homeostasis observed after RYGB.To investigate this hypothesis, we performed RYGB or sham operations on leptin-deficient ob/ob mice maintained on regular chow. To investigate whether leptin is involved in post-RYGB weight maintenance, we challenged post-surgical mice with high fat diet.RYGB reduced total body weight, fat and lean mass and caused reduction in calorie intake in ob/ob mice. However, it failed to improve glucose tolerance, glucose-stimulated plasma insulin, insulin tolerance, and fasting plasma insulin. High fat diet eliminated the reduction in calorie intake observed after RYGB in ob/ob mice and promoted weight regain, although not to the same extent as in sham-operated mice. We conclude that leptin is required for the effects of RYGB on glucose homeostasis but not body weight or composition in mice. Our data also suggest that leptin may play a role in post-RYGB weight maintenance.

  11. High levels of eukaryotic Initiation Factor 6 (eIF6) are required for immune system homeostasis and for steering the glycolytic flux of TCR-stimulated CD4+ T cells in both mice and humans.

    Science.gov (United States)

    Manfrini, Nicola; Ricciardi, Sara; Miluzio, Annarita; Fedeli, Maya; Scagliola, Alessandra; Gallo, Simone; Brina, Daniela; Adler, Thure; Busch, Dirk H; Gailus-Durner, Valerie; Fuchs, Helmut; Hrabě de Angelis, Martin; Biffo, Stefano

    2017-12-01

    Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4 + Effector Memory T cells. In human CD4 + T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4 + T cells, eIF6 levels control interferon-γ (IFN-γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Behavioural changes in mice exposed to low level microwave fields

    International Nuclear Information System (INIS)

    Goiceanu, C.; Gradinaru, F.; Danulescu, R.; Balaceanu, G.; Sandu, D. D.; Avadanei, O. G.

    2001-01-01

    The aim of our study is to point out some changes in mice behaviour due possibly to exposure to low-level microwave fields. Animals spontaneous behaviour were monitored and the exploring behaviour and motor activity were assessed. Ten selected Swiss male mice were exposed to low-level microwave fields of about 1 mW/cm 2 power density for a relatively long period of time (13 weeks), comparing to their lifetime. The exposure system consists in a transverse electromagnetic (TEM) Cell. A control lot of ten Swiss male mice was used. All twenty mice were selected to be of same age and of 202 g initial body weight. Each animal was placed in his own holder. The behaviour of the animals, from both exposed and control lots, was assessed by using a battery of three behavioural tests. The test sessions were performed every two weeks. During exposure period it was recorded a progressive but moderate loss of motor activity for both exposed and controls, probably due to weight gain and aging. Concerning exploratory activity there is a significant difference between control and exposed animals. Control mice had approximately constant performances in time. On the other hand exposed mice showed a progressive decrease in time of their exploratory ability. Motor activity of exposed animals does not seem to be affected by microwave exposure, in spite of moderate loss in time of motor activity in both lots, as long as it was recorded a quite similar evolution. The difference in performances of exposed and controls concerning exploratory activity seem to emphasise an effect of long-term low-level microwave exposure. The progressive loss in time of exploratory activity of exposed mice, in contrast with controls, could be due to the interference of microwaves with central nervous activity. (authors)

  13. Some factors influencing liver metallothionein levels in rats and mice

    International Nuclear Information System (INIS)

    Jang, T.; Lee, M.

    1981-01-01

    Liver metallothionein (MT) was measured by the 203-mercury binding method of Piotrowski in the livers of rats and mice subjected to bilateral adrenalectomy or to sham adrenalectomy. Sham operation was followed by an increase in the level of MT at 24 hours; this immediately began to decrease, reaching control levels by 7 days. Adrenalectomy was also followed by an increase in MT, but the levels remained elevated for several days before beginning to decline. Mice which were adrenalectomized and allowed to recover for 28 days showed an increase in MT when subjected to sham operation. Ether anaesthesia without an incision did not increase the level of MT. Hypophysectomized mice had higher levels of MT than did controls, and these levels were further increased by sham adrenalectomy. Sprague-Dawley rats showed a similar response to adrenalectomy and to sham operation. It is concluded that the sham operation-induced increase in MT is probably not a result of a stress-induced release of adrenal hormones, but that adrenal hormones may play some role in the degradation or turnover of MT. The pituitary may also have some role in MT turnover

  14. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  15. Exposure to DEHP decreased four fatty acid levels in plasma of prepartum mice

    International Nuclear Information System (INIS)

    Nakashima, Ryosuke; Hayashi, Yumi; Khalequzzaman, Md.; Jia, Xiaofang; Wang, Dong; Naito, Hisao; Ito, Yuki; Kamijima, Michihiro; Gonzalez, Frank J.; Nakajima, Tamie

    2013-01-01

    Maternal exposure to di(2-ethylhexyl) phthalate (DEHP) decreased the plasma triglyceride in prepartum mice. To identify the fatty acid (FA) species involved and to understand the underlying mechanisms, pregnant Sv/129 wild-type (mPPARα), peroxisome proliferator-activated receptor α-null (Pparα-null) and humanized PPARα (hPPARα) mice were treated with diets containing 0%, 0.01%, 0.05% or 0.1% DEHP. Dams were dissected on gestational day 18 together with fetuses, and on postnatal day 2 together with newborns. n-3/n-6 polyunsaturated, saturated, and monounsaturated FAs in maternal plasma and in liver of wild-type offspring, and representative enzymes for FA desaturation and elongation in maternal liver, were measured. The plasma levels of linoleic acid, α-linolenic acid, palmitic acid and oleic acid were higher in the pregnant control mPPARa mice than in Ppara-null and hPPARa mice. DEHP exposure significantly decreased the levels of these four FAs only in pregnant mPPARα mice. Plasma levels of many FAs were higher in pregnant mice than in postpartum ones in a genotype-independent manner, while it was lower in the livers of fetuses than pups. DEHP exposure slightly increased hepatic arachidonic acid, α-linolenic acid, palmitoleic acid and oleic acid in fetuses, but not in pups. However, DEHP exposure did not clearly influence FA desaturase 1 and 2 nor elongase 2 and 5 expressions in the liver of all maternal mice. Taken together, the levels of plasma four FAs with shorter carbon chains were higher in pregnant mPPARα mice than in other genotypes, and DEHP exposure decreased these specific FA concentrations only in mPPARα mice, similarly to triglyceride levels

  16. Alteration of putative amino acid levels and morphological findings in neural tissues of methylmercury-intoxicated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hirayama, K.; Inouye, M.; Fujisaki, T.

    1985-04-01

    Methylmercury chloride was administered PO to male Kud:ddY mice at a dose of 5 mg/kg/day for 20 days. The contents of taurine, aspartate, glutamate, glycine, and ..gamma..-aminobutyric acid were determined in tissue and crude synaptosomal (P/sub 2/) fraction of cerebellum, cerebral cortex, and spinal cord of methylmercury-treated mice with or without ataxia. In the cerebellum of ataxic mice, increased levels of taurine and glycine were found in the tissue and P/sub 2/ fraction, and increased levels of glutamate were found in the P/sub 2/ fraction. In the cerebral cortex, the levels of ..gamma..-aminobutylic acid decreased in the tissue and in the P/sub 2/ fraction of ataxic mice, but increased levels were found in the tissue of non-ataxic mice. A decreased asparate level in the cerebral cortex of ataxic mice and an increased taurine level in the cerebral cortex of non-ataxic mice were also found. In the spinal cord of ataxic mice, taurine increased in the tissue and in the P/sub 2/ fraction. Glutamate level decreased in the spinal cord of ataxic mice, but increased in the P/sub 2/ fraction of non-ataxic mice. Increased glycine levels in the P/sub 2/ fraction of the spinal cord were also found in non-axtaxic mice. Histologically, some degenerative changes were demonstrated in the cerebral and cerebellar cortices of ataxic mice. Such changes were also present to a mild degree in non-ataxic mice. In conclusion, methylmercury treatment altered the levels of putative neurotransmitter amino acids in neutral tissue of mice. These alterations might be caused by specific neural cell dysfunction and could be related to the appearance of ataxia.

  17. Brain Levels of the Neurotoxic Pyridinium Metabolite HPP+ and Extrapyramidal Symptoms in Haloperidol-Treated Mice

    Science.gov (United States)

    Crowley, James J.; Ashraf-Khorassani, Mehdi; Castagnoli, Neal; Sullivan, Patrick F.

    2013-01-01

    The typical antipsychotic haloperidol is a highly effective treatment for schizophrenia but its use is limited by a number of serious, and often irreversible, motor side effects. These adverse drug reactions, termed extrapyramidal syndromes (EPS), result from an unknown pathophysiological mechanism. One theory relates to the observation that the haloperidol metabolite HPP+ (4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-pyridinium) is structurally similar to MPP+ (1-methyl-4-phenylpyridinium), a neurotoxin responsible for an irreversible neurodegenerative condition similar to Parkinson's disease. To determine whether HPP+ contributes to haloperidol-induced EPS, we measured brain HPP+ and haloperidol levels in strains of mice at high (C57BL/6J and NZO/HILtJ) and low (BALB/cByJ and PWK/PhJ) liability to haloperidol-induced EPS following chronic treatment (7–10 adult male mice per strain). Brain levels of HPP+ and the ratio of HPP+ to haloperidol were not significantly different between the haloperidol-sensitive and haloperidol-resistant strain groups (P = 0.50). Within each group, however, strain differences were seen (P haloperidol treatment, the findings from this study are physiologically relevant to humans. The results suggest that strain differences in steady-state HPP+ levels do not explain sensitivity to haloperidol-induced EPS in the mice we studied. PMID:24107597

  18. Co-segregation of hyperactivity, active coping styles and cognitive dysfunction in mice selectively bred for low levels of anxiety

    Directory of Open Access Journals (Sweden)

    Yi-Chun eYen

    2013-08-01

    Full Text Available We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania and attention deficit hyperactivity disorder (ADHD share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field test with deficits in habituation, compared to mice bred for normal (NAB and high anxiety-related behavior (HAB. Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition, implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD

  19. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Anderzhanova, Elmira; Bunck, Mirjam; Schuller, Julia; Landgraf, Rainer; Wotjak, Carsten T

    2013-01-01

    We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms.

  20. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety

    Science.gov (United States)

    Yen, Yi-Chun; Anderzhanova, Elmira; Bunck, Mirjam; Schuller, Julia; Landgraf, Rainer; Wotjak, Carsten T.

    2013-01-01

    We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms

  1. Developing micro-level urban ecosystem indicators for sustainability assessment

    Energy Technology Data Exchange (ETDEWEB)

    Dizdaroglu, Didem, E-mail: dizdaroglu@bilkent.edu.tr

    2015-09-15

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [Turkish] Highlights: • As the impacts of environmental problems have multi-scale characteristics, sustainability assessment needs to be considered on all scales. • The detailed data is necessary to assess local environmental change in urban ecosystems to provide insights into the national and global scales. • This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. • This paper also describes theoretical foundations for the selection of each indicator with reference to the literature.

  2. Effect of myostatin depletion on weight gain, hyperglycemia, and hepatic steatosis during five months of high-fat feeding in mice.

    Directory of Open Access Journals (Sweden)

    Kerri Burgess

    Full Text Available The marked hypermuscularity in mice with constitutive myostatin deficiency reduces fat accumulation and hyperglycemia induced by high-fat feeding, but it is unclear whether the smaller increase in muscle mass caused by postdevelopmental loss of myostatin activity has beneficial metabolic effects during high-fat feeding. We therefore examined how postdevelopmental myostatin knockout influenced effects of high-fat feeding. Male mice with ubiquitous expression of tamoxifen-inducible Cre recombinase were fed tamoxifen for 2 weeks at 4 months of age. This depleted myostatin in mice with floxed myostatin genes, but not in control mice with normal myostatin genes. Some mice were fed a high-fat diet (60% of energy for 22 weeks, starting 2 weeks after cessation of tamoxifen feeding. Myostatin depletion increased skeletal muscle mass ∼30%. Hypermuscular mice had ∼50% less weight gain than control mice over the first 8 weeks of high-fat feeding. During the subsequent 3 months of high-fat feeding, additional weight gain was similar in control and myostatin-deficient mice. After 5 months of high-fat feeding, the mass of epididymal and retroperitoneal fat pads was similar in control and myostatin-deficient mice even though myostatin depletion reduced the weight gain attributable to the high-fat diet (mean weight with high-fat diet minus mean weight with low-fat diet: 19.9 g in control mice, 14.1 g in myostatin-deficient mice. Myostatin depletion did not alter fasting blood glucose levels after 3 or 5 months of high-fat feeding, but reduced glucose levels measured 90 min after intraperitoneal glucose injection. Myostatin depletion also attenuated hepatic steatosis and accumulation of fat in muscle tissue. We conclude that blocking myostatin signaling after maturity can attenuate some of the adverse effects of a high-fat diet.

  3. The absence of GH signaling affects the susceptibility to high-fat diet-induced hypothalamic inflammation in male mice

    DEFF Research Database (Denmark)

    Baquedano, Eva; Ruiz-Lopez, Ana M; Sustarsic, Elahu G

    2014-01-01

    GH is important in metabolic control, and mice with disruption of the gene encoding the GH receptor (GHR) and GH binding protein (GHR-/- mice) are dwarf with low serum IGF-1 and insulin levels, high GH levels, and increased longevity, despite their obesity and altered lipid and metabolic profiles...

  4. Medium-chain triglyceride ameliorates insulin resistance and inflammation in high fat diet-induced obese mice.

    Science.gov (United States)

    Geng, Shanshan; Zhu, Weiwei; Xie, Chunfeng; Li, Xiaoting; Wu, Jieshu; Liang, Zhaofeng; Xie, Wei; Zhu, Jianyun; Huang, Cong; Zhu, Mingming; Wu, Rui; Zhong, Caiyun

    2016-04-01

    The aim of the present study was to investigate the in vivo effects of dietary medium-chain triglyceride (MCT) on inflammation and insulin resistance as well as the underlying potential molecular mechanisms in high fat diet-induced obese mice. Male C57BL/6J mice (n = 24) were fed one of the following three diets for a period of 12 weeks: (1) a modified AIN-76 diet with 5 % corn oil (normal diet); (2) a high-fat control diet (17 % w/w lard and 3 % w/w corn oil, HFC); (3) an isocaloric high-fat diet supplemented with MCT (17 % w/w MCT and 3 % w/w corn oil, HF-MCT). Glucose metabolism was evaluated by fasting blood glucose levels and intraperitoneal glucose tolerance test. Insulin sensitivity was evaluated by fasting serum insulin levels and the index of homeostasis model assessment-insulin resistance. The levels of serum interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α were measured by ELISA, and hepatic activation of nuclear factor κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways was determined using western blot analysis. Compared to HFC diet, consumption of HF-MCT did not induce body weight gain and white adipose tissue accumulation in mice. HFC-induced increases in serum fasting glucose and insulin levels as well as glucose intolerance were prevented by HF-MCT diet. Meanwhile, HF-MCT resulted in significantly lower serum IL-6 level and higher IL-10 level, and lower expression levels of inducible nitric oxide synthase and cyclooxygenase-2 protein in liver tissues when compared to HFC. In addition, HF-MCT attenuated HFC-triggered hepatic activation of NF-κB and p38 MAPK. Our study demonstrated that MCT was efficacious in suppressing body fat accumulation, insulin resistance, inflammatory response, and NF-κB and p38 MAPK activation in high fat diet-fed mice. These data suggest that MCT may exert beneficial effects against high fat diet-induced insulin resistance and inflammation.

  5. Beyond Magnet® Designation: Perspectives From Nurse Managers on Factors of Sustainability and High-Performance Programming.

    Science.gov (United States)

    Hayden, Margaret A; Wolf, Gail A; Zedreck-Gonzalez, Judith F

    2016-10-01

    The aim of this study was to identify patterns of high-performing behaviors and nurse manager perceptions of the factors of Magnet® sustainability at a multidesignated Magnet organization. The Magnet program recognizes exemplary professional nursing practice and is challenging to achieve and sustain. Only 10% (n = 42) of Magnet hospitals sustained designation for 12 years or longer. This study explored the perspectives of Magnet nurse managers regarding high-performing teams and the sustainability of Magnet designation. A qualitative study of nurse managers was conducted at 1 multidesignated Magnet organization (n = 13). Interview responses were analyzed using pattern recognition of Magnet model domains and characteristics of high-performing teams and then related to factors of Magnet sustainability. Transformational leadership is both an essential factor for sustainability and a potential barrier to sustainability of Magnet designation. Transformational nursing leaders lead high-performing teams and should be in place at all levels as an essential factor in sustaining Magnet redesignation.

  6. The role of red dragon fruit peel (Hylocereus polyrhizus) to improvement blood lipid levels of hyperlipidaemia male mice

    Science.gov (United States)

    Hernawati; Setiawan, N. A.; Shintawati, R.; Priyandoko, D.

    2018-05-01

    The purpose of this research was to know the role of red dragon fruit peel powder to total cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and weight in the male hyperlipidaemic Balb-C mice (Mus musculus). This study used a completely randomized design (CRD) and four replicates for each dose treatments. Samples were 24 male mice that divided into six groups i.e. positive and negative controls, doses of 50; 100; 150 and 200 mg/kgBW/days red dragon fruit peel powder. Before being given treatment, mice were given feed containing high fat for 20 days until experiencing conditions hyperlipidaemia. The red dragon fruit peel powder was given at oral with used gavage for 30 days. Blood samples were taken from the tail on vena caudalis. Blood lipid samples were analysed at enzymatic with BIOLABO kits. The results of this study indicate that after administration of red dragon fruit peel powder total cholesterol levels, triglycerides and LDL-c decreased, along with increasing doses of red dragon fruit peel powder for 30 days. Furthermore showed that dragon fruit powder can increase HDL-c levels. The conclusion of this research was The red dragon fruit peel powder can improve blood lipid level of male Balb-c mice hyperlipidaemia.

  7. Rapamycin-ameliorated diabetic symptoms involved in increasing adiponectin expression in diabetic mice on a high-fat diet.

    Science.gov (United States)

    Gong, Fang-Hua; Ye, Yan-Na; Li, Jin-Meng; Zhao, Hai-Yang; Li, Xiao-Kun

    2017-07-01

    Recent studies showed that rapamycin improved diabetic complications. Here, we investigated the metabolic effects of rapamycin in type 2 diabetes model (T2DM) mice. Mice were treated with a daily intraperitoneal injection of rapamycin at 2 mg/kg or vehicle only for 3 weeks and were maintained on a high-fat diet. The treated diabetic mice exhibited decreased body weight, blood glucose levels, and fat mass. FGF21 expression was suppressed in C57B/L6 mice, but adiponectin expression increased both in FGF21 KO and C57B/L6 mice. These results suggest that rapamycin may alleviate FGF21 resistance in mice on a high-fat diet. The reduction of adipose tissue mass of the diabetic mice may be due to the increased adiponectin. Copyright © 2017. Published by Elsevier Taiwan.

  8. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    International Nuclear Information System (INIS)

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.; Katiyar, Santosh K.

    2009-01-01

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm 2 ) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fed the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E 2 ), proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.

  9. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2010-12-01

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  10. A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice.

    Science.gov (United States)

    Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie

    2017-10-01

    The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The m

  11. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice.

    Science.gov (United States)

    Arrant, Andrew E; Patel, Aashka R; Roberson, Erik D

    2015-01-01

    Loss-of-function mutations in progranulin ( GRN ) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous ( Grn + / - ) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn + / - mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn - / - mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn - / - mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.

  12. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  13. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  14. Different perception levels of histamine-induced itch sensation in young adult mice.

    Science.gov (United States)

    Ji, Yeounjung; Jang, Yongwoo; Lee, Wook Joo; Yang, Young Duk; Shim, Won-Sik

    2018-05-01

    Itch is an unpleasant sensation that evokes behavioral responses such as scratching the skin. Interestingly, it is conceived that the perception of itch sensation is influenced by age. Indeed, accumulating evidence supports the idea that even children or younger adults show distinctive itch sensation depending on age. This evidence implies the presence of a mechanism that regulates the perception of itch sensation in an age-dependent fashion. Therefore, the purpose of the present study was to investigate a putative mechanism for the age-dependent perception of itch sensation by comparing histamine-induced scratching behaviors in 45-day old (D45) and 75-day old male "young adult" mice. The results indicated that, following histamine administration, the D75 mice spent a longer time scratching than D45 mice. However, the intensity of the calcium influx induced by histamine in primary culture of dorsal root ganglia (DRG) neurons was not different between D45 and D75 mice. Moreover, no apparent difference was observed in mRNA levels of a characteristic His-related receptor and ion channel. In contrast, the mRNA levels of Toll-Like Receptor 4 (TLR4) were increased approximately by two-fold in D75 DRG compared with D45 DRG. Additionally, D75-derived DRG neurons exhibited enhanced intracellular calcium increase by lipopolysaccharide (LPS, a TLR4 agonist) than those of D45 mice. Furthermore, intensities of calcium influx induced by histamine were significantly potentiated when co-treated with LPS in D75 DRG neurons, but not in those of D45 mice. Thus, it appears that D75 mice showed enhanced histamine-induced scratching behaviors not by increased expression levels of histamine-related genes, but probably due to augmented TLR4 expression in DRG neurons. Consequently, the current study found that different perception levels of histamine-induced itch sensation are present in different age groups of young adult mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Teaching Sustainability from a Scientific Standpoint at the Introductory Level

    Science.gov (United States)

    Campbell-Stone, E.; Myers, J. D.

    2008-12-01

    In recent decades, humankind has recognized that current levels of resource utilization are seriously impacting our planet's life support systems and threatening the ability of future generations to provide for themselves. The concept of sustainability has been promoted by a variety of national and international organizations as a method to devise ways to adjust humanity's habits and consumption to levels that can be maintained over the long term, i.e. sustained. Courses on sustainability are being offered at many universities and colleges, but most are taught outside of science departments; they are often designed around policy concerns or focus primarily on environmental impacts while neglecting the science of sustainability. Because the three foundations necessary to implement sustainability are sustainability governance, sustainability accounting, and sustainability science, it is imperative that science departments play an active role in preparing citizens and professionals for dealing with sustainability issues. The geosciences are one of the scientific disciplines that offer a logical foundation from which to teach sustainability science. Geoscientists can also offer a unique and relevant geologic perspective on sustainability issues. The authors have developed an introductory, interdisciplinary course entitled 'Global Sustainability: Managing Earth's Resources' that integrates scientific disciplines in the examination of real world sustainability issues. In-depth understanding of physical, Earth and biological science principles are necessary for students to identify the limits and constraints imposed on important issues facing modern society, e.g. water, energy, population growth, etc. This course exposes students to all the scientific principles that apply directly to sustainability. The subject allows the instructors to present open-ended, multifaceted and complex problems relevant to today's industrialized and globalized world, and it encourages

  16. [Effects of nootropic drugs on hippocampal and cortical BDNF levels in mice with different exploratory behavior efficacy].

    Science.gov (United States)

    Firstova, Iu Iu; Dolotov, O V; Kondrakhin, e A; Dubynina, E V; Grivennikov, I A; Kovalev, G I

    2009-01-01

    The influence of subchronic administration of nootropic drugs (piracetam, phenotropil, meclophenoxate, pantocalcine, semax, nooglutil) on the brain-derived neurotrophic factor (BDNF) content in hippocampal and cortical tissues in mice with different exploratory behavior--high efficacy (HE) against low efficacy (LE)--in cross-maze test has been studied. The initial BDNF concentration in hippocamp (but not in cortex) of control HE mice was higher than that in LE mice (LE, 0.091 +/- 0.005 pg/microg; HE, 0.177 +/- 0.005 pg/microg; p nootrope effects, at least partially, via increase in hippocampal BDNF level, which is achieved only under conditions of cognitive deficiency.

  17. Effects of a treatment with Se-rich rice flour high in resistant starch on enteric dysbiosis and chronic inflammation in diabetic ICR mice.

    Science.gov (United States)

    Yuan, Huaibo; Wang, Wenjuan; Chen, Deyi; Zhu, Xiping; Meng, Lina

    2017-05-01

    Enteric dysbiosis is associated with chronic inflammation and interacts with obesity and insulin resistance. Obesity and diabetes are induced in ICR (Institute of Cancer Research) mice fed a high-fat diet and administered a streptozocin injection. These mice were treated with normal rice (NR), normal rice with a high resistant starch content (NRRS) or Se-rich rice (selenium-enriched rice) with a high resistant starch content (SRRS). Faecal cell counts of Bifidobacterium, Lactobacillus and Enterococcus were significantly higher in SRRS-treated mice than in diabetic controls, while Enterobacter cloacae were lower. Similar results were also found in NRRS-treated mice. In contrast, no significant difference was found between NR-treated and diabetic control groups. The treatments with SRRS and NRRS reduced the faecal pH values of the diabetic mice. Regarding the inflammatory factor levels, lower levels of serum C-reactive protein (CRP), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), nuclear factor-k-gene binding (NF-κB) and leptin (LEP) and higher adiponutrin (ADPN) levels were found in the SRRS and NRRS-treated mice compared with the diabetic and NR-treated mice. In addition, the CRP, IL-6 and NF-κB levels in the SRRS-treated mice were significantly reduced compared with those observed in the NRRS-treated mice. The reverse transcription-PCR (RT-PCR) results showed that the SRRS and NRRS-treated mice presented higher expression levels of orphan G protein-coupled receptor 41 (GPR41) and orphan G protein-coupled receptor 43 (GPR43) proteins compared with diabetic mice and NR-treated mice. These results indicate that treatments with rice high in RS exert beneficial effects by improving enteric dysbiosis and chronic inflammation. In addition, selenium and RS may exert synergistic effects on chronic inflammation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Sustained High Levels of Both Total and High Molecular Weight Adiponectin in Plasma during the Convalescent Phase of Haemorrhagic Fever with Renal Syndrome Are Associated with Disease Severity

    Directory of Open Access Journals (Sweden)

    Kang Tang

    2017-01-01

    Full Text Available Haemorrhagic fever with renal syndrome (HFRS is characterised by an uncontrolled immune response that causes vascular leakage. Adiponectin (APN is an adipocytokine involved in prorevascularisation and immunomodulation. To investigate the possible effects of APN in the pathogenesis of HFRS, total and high molecular weight (HMW APN levels in the plasma of patients with HFRS were quantified using enzyme-linked immunosorbent assay (ELISA. Compared with those in healthy controls, the plasma total and HMW APN levels in patients were elevated to different degrees from the fever onset and remained high at the convalescent phase. Consistent with these results, western blot analysis additionally showed that low molecular weight (LMW, middle molecular weight (MMW, and HMW APN levels were all elevated and contributed to the elevation of the total APN level. Importantly, sustained high levels of total and HMW APN at the convalescent phase were significantly higher in patients with critical disease than those in patients with mild or moderate disease. Moreover, total and HMW APN levels negatively correlated with white blood cell count and positively correlated with platelet count and serum albumin level. These results may provide insights into understanding the roles of total and HMW APN in the pathogenesis of HFRS.

  19. High levels of circulating triiodothyronine induce plasma cell differentiation.

    Science.gov (United States)

    Bloise, Flavia Fonseca; Oliveira, Felipe Leite de; Nobrega, Alberto Félix; Vasconcellos, Rita; Cordeiro, Aline; Paiva, Luciana Souza de; Taub, Dennis D; Borojevic, Radovan; Pazos-Moura, Carmen Cabanelas; Mello-Coelho, Valéria de

    2014-03-01

    The effects of hyperthyroidism on B-cell physiology are still poorly known. In this study, we evaluated the influence of high-circulating levels of 3,5,3'-triiodothyronine (T3) on bone marrow, blood, and spleen B-cell subsets, more specifically on B-cell differentiation into plasma cells, in C57BL/6 mice receiving daily injections of T3 for 14 days. As analyzed by flow cytometry, T3-treated mice exhibited increased frequencies of pre-B and immature B-cells and decreased percentages of mature B-cells in the bone marrow, accompanied by an increased frequency of blood B-cells, splenic newly formed B-cells, and total CD19(+)B-cells. T3 administration also promoted an increase in the size and cellularity of the spleen as well as in the white pulp areas of the organ, as evidenced by histological analyses. In addition, a decreased frequency of splenic B220(+) cells correlating with an increased percentage of CD138(+) plasma cells was observed in the spleen and bone marrow of T3-treated mice. Using enzyme-linked immunospot assay, an increased number of splenic immunoglobulin-secreting B-cells from T3-treated mice was detected ex vivo. Similar results were observed in mice immunized with hen egg lysozyme and aluminum adjuvant alone or together with treatment with T3. In conclusion, we provide evidence that high-circulating levels of T3 stimulate plasma cytogenesis favoring an increase in plasma cells in the bone marrow, a long-lived plasma cell survival niche. These findings indicate that a stimulatory effect on plasma cell differentiation could occur in untreated patients with Graves' disease.

  20. Developing micro-level urban ecosystem indicators for sustainability assessment

    International Nuclear Information System (INIS)

    Dizdaroglu, Didem

    2015-01-01

    Sustainability assessment is increasingly being viewed as an important tool to aid in the shift towards sustainable urban ecosystems. An urban ecosystem is a dynamic system and requires regular monitoring and assessment through a set of relevant indicators. An indicator is a parameter which provides information about the state of the environment by producing a quantitative value. Indicator-based sustainability assessment needs to be considered on all spatial scales to provide efficient information of urban ecosystem sustainability. The detailed data is necessary to assess environmental change in urban ecosystems at local scale and easily transfer this information to the national and global scales. This paper proposes a set of key micro-level urban ecosystem indicators for monitoring the sustainability of residential developments. The proposed indicator framework measures the sustainability performance of urban ecosystem in 3 main categories including: natural environment, built environment, and socio-economic environment which are made up of 9 sub-categories, consisting of 23 indicators. This paper also describes theoretical foundations for the selection of each indicator with reference to the literature [tr

  1. Extract of Ginkgo Biloba Ameliorates Streptozotocin-Induced Type 1 Diabetes Mellitus and High-Fat Diet-Induced Type 2 Diabetes Mellitus in Mice.

    Science.gov (United States)

    Rhee, Ki-Jong; Lee, Chang Gun; Kim, Sung Woo; Gim, Dong-Hyeon; Kim, Hyun-Cheol; Jung, Bae Dong

    2015-01-01

    Diabetes mellitus (DM) is caused by either destruction of pancreatic β-cells (type 1 DM) or unresponsiveness to insulin (type 2 DM). Conventional therapies for diabetes mellitus have been developed but still needs improvement. Many diabetic patients have complemented conventional therapy with alternative methods including oral supplementation of natural products. In this study, we assessed whether Ginkgo biloba extract (EGb) 761 could provide beneficial effects in the streptozotocin-induced type 1 DM and high-fat diet-induced type 2 DM murine model system. For the type 1 DM model, streptozotocin-induced mice were orally administered EGb 761 for 10 days prior to streptozotocin injection and then again administered EGb 761 for an additional 10 days. Streptozotocin-treated mice administered EGb 761 exhibited lower blood triglyceride levels, lower blood glucose levels and higher blood insulin levels compared to streptozotocin-treated mice. Furthermore, liver LPL and liver PPAR-α were increased whereas IL-1β and TNF-α were decreased in streptozotocin-injected mice treated with EGb 761 compared to mice injected with streptozotocin alone. For the type 2 DM model, mice were given high-fat diet for 60 days and then orally administered EGb 761 every other day for 80 days. We found that mice given a high-fat diet and EGb 761 showed decreased blood triglyceride levels, increased liver LPL, increased liver PPAR-α and decreased body weight compared to mice given high-fat diet alone. These results suggest that EGb 761 can exert protective effects in both type 1 and type 2 DM murine models.

  2. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.

    Science.gov (United States)

    Priyadarshini, Emayavaramban; Anuradha, Carani Venkatraman

    2017-02-01

    High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  3. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Rouse, Rodney, E-mail: rodney.rouse@fda.hhs.gov; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-04-15

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment.

  4. High fat diet and GLP-1 drugs induce pancreatic injury in mice

    International Nuclear Information System (INIS)

    Rouse, Rodney; Xu, Lin; Stewart, Sharron; Zhang, Jun

    2014-01-01

    Glucagon Like Peptide-1 (GLP-1) drugs are currently used to treat type-2 diabetes. Safety concerns for increased risk of pancreatitis and pancreatic ductal metaplasia have accompanied these drugs. High fat diet (HFD) is a type-2 diabetes risk factor that may affect the response to GLP-1 drug treatment. The objective of the present study was to investigate the effects of diet and GLP-1 based drugs on the exocrine pancreas in mice. Experiments were designed in a mouse model of insulin resistance created by feeding a HFD or standard diet (STD) for 6 weeks. The GLP-1 drugs, sitagliptin (SIT) and exenatide (EXE) were administered once daily for additional 6 weeks in both mice fed HFD or STD. The results showed that body weight, blood glucose levels, and serum levels of pro-inflammatory cytokines (TNFα, IL-1β, and KC) were significantly greater in HFD mice than in STD mice regardless of GLP-1 drug treatment. The semi-quantitative grading showed that pancreatic changes were significantly greater in EXE and SIT-treated mice compared to control and that HFD exacerbated spontaneous exocrine pancreatic changes seen in saline-treated mice on a standard diet. Exocrine pancreatic changes identified in this study included acinar cell injury (hypertrophy, autophagy, apoptosis, necrosis, and atrophy), vascular injury, interstitial edema and inflammation, fat necrosis, and duct changes. These findings support HFD as a risk factor to increased susceptibility/severity for acute pancreatitis and indicate that GLP-1 drugs cause pancreatic injury that can be exacerbated in a HFD environment

  5. Citrus flavanones prevent systemic inflammation and ameliorate oxidative stress in C57BL/6J mice fed high-fat diet.

    Science.gov (United States)

    Ferreira, Paula S; Spolidorio, Luis C; Manthey, John A; Cesar, Thais B

    2016-06-15

    The flavanones hesperidin, eriocitrin and eriodictyol were investigated for their prevention of the oxidative stress and systemic inflammation caused by high-fat diet in C57BL/6J mice. The mice received a standard diet (9.5% kcal from fat), high-fat diet (45% kcal from fat) or high-fat diet supplemented with hesperidin, eriocitrin or eriodictyol for a period of four weeks. Hesperidin, eriocitrin and eriodictyol increased the serum total antioxidant capacity, and restrained the elevation of interleukin-6 (IL-6), macrophage chemoattractant protein-1 (MCP-1), and C-reactive protein (hs-CRP). In addition, the liver TBARS levels and spleen mass (g per kg body weight) were lower for the flavanone-treated mice than in the unsupplemented mice. Eriocitrin and eriodictyol reduced TBARS levels in the blood serum, and hesperidin and eriodictyol also reduced fat accumulation and liver damage. The results showed that hesperidin, eriocitrin and eriodictyol had protective effects against inflammation and oxidative stress caused by high-fat diet in mice, and may therefore prevent metabolic alterations associated with the development of cardiovascular diseases in other animals.

  6. Organization-level predictors of sustained social movement participation.

    Science.gov (United States)

    Tesdahl, Eric A; Speer, Paul W

    2015-03-01

    Long-term sustained participation represents one of the most important resources available to community organizations and social movement organizations (SMOs). The participatory literature on community and SMOs has identified a host of individual-level factors that influence participation beyond initial engagement, and has more recently identified contextual factors that influence participation. This study builds upon current understandings of participation in SMOs by examining how sustained participation in movement activities is affected by two qualities of SMO settings: repertoire of organizational activity, and equality of staff contact with organization members to cultivate and facilitate individual participation. To this end, we employ multi-level regression techniques to examine longitudinal data on participation within 50 local chapters of a national congregation-based community organizing federation. We find that the conduct of organizational activities previously shown to increase levels of participation among individual persons does not necessarily lead to increases in aggregate or organization-level participation. Further, we find that conditions of unequal staff contact among organization members represent a notable drag on organization-level participation over time. Our findings suggest that organizers and organizational leaders may well see greater levels of participation in their organizations by simply re-distributing resources and opportunities more equitably within their organizations.

  7. Multi level governance framework for sustainable urban mobility

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    2013-01-01

    Cities constitute the backbone of European historic development and provide the basis of its economic future. The near neglect of cities in existing European policies for sustainable growth and development such as the Europe 2020 strategy is untenable. The 2011 White Paper has sought to face...... seem essential to move cities beyond business as usual. Research-wise we need to understand in more detail the political and contextual background for successes - and failures - of European cities. This could help build an effective multi level governance framework for sustainable urban mobility...

  8. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    Science.gov (United States)

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  9. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress.

    Science.gov (United States)

    Franceschelli, A; Sens, J; Herchick, S; Thelen, C; Pitychoutis, P M

    2015-04-02

    During the past decade, one of the most striking discoveries in the treatment of major depression was the clinical finding that a single infusion of a sub-anesthetic dose of the N-methyl-d-aspartate receptor antagonist ketamine produces a rapid (i.e. within a few hours) and long-lasting (i.e. up to two weeks) antidepressant effect in both treatment-resistant depressed patients and in animal models of depression. Notably, converging clinical and preclinical evidence support that responsiveness to antidepressant drugs is sex-differentiated. Strikingly, research regarding the antidepressant-like effects of ketamine has focused almost exclusively on the male sex. Herein we report that female C57BL/6J stress-naïve mice are more sensitive to the rapid and the sustained antidepressant-like effects of ketamine in the forced swim test (FST). In particular, female mice responded to lower doses of ketamine (i.e. 3mg/kg at 30 min and 5mg/kg at 24h post-injection), doses that were not effective in their male counterparts. Moreover, tissue levels of the excitatory amino acids glutamate and aspartate, as well as serotonergic activity, were affected in a sex-dependent manner in the prefrontal cortex and the hippocampus, at the same time-points. Most importantly, a single injection of ketamine (10mg/kg) induced sex-dependent behavioral effects in mice subjected to the chronic mild stress (CMS) model of depression. Intriguingly, female mice were more reactive to the earlier effects of ketamine, as assessed in the open field and the FST (at 30 min and 24h post-treatment, respectively) but the antidepressant potential of the drug proved to be longer lasting in males, as assessed in the splash test and the FST (days 5 and 7 post-treatment, respectively). Taken together, present data revealed that ketamine treatment induces sex-dependent rapid and sustained neurochemical and behavioral antidepressant-like effects in stress-naïve and CMS-exposed C57BL/6J mice. Copyright © 2015 IBRO

  10. Heterozygous deficiency of endoglin decreases insulin and hepatic triglyceride levels during high fat diet.

    Directory of Open Access Journals (Sweden)

    Daniel Beiroa

    Full Text Available Endoglin is a transmembrane auxiliary receptor for transforming growth factor-beta (TGF-beta that is predominantly expressed on proliferating endothelial cells. It plays a wide range of physiological roles but its importance on energy balance or insulin sensitivity has been unexplored. Endoglin deficient mice die during midgestation due to cardiovascular defects. Here we report for first time that heterozygous endoglin deficiency in mice decreases high fat diet-induced hepatic triglyceride content and insulin levels. Importantly, these effects are independent of changes in body weight or adiposity. At molecular level, we failed to detect relevant changes in the insulin signalling pathway at basal levels in liver, muscle or adipose tissues that could explain the insulin-dependent effect. However, we found decreased triglyceride content in the liver of endoglin heterozygous mice fed a high fat diet in comparison to their wild type littermates. Overall, our findings indicate that endoglin is a potentially important physiological mediator of insulin levels and hepatic lipid metabolism.

  11. Beneficial effects of Allium sativum L. stem extract on lipid metabolism and antioxidant status in obese mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Inhye; Kim, Haeng-Ran; Kim, Jae-Hyun; Om, Ae-Son

    2013-08-30

    This study was designed to examine the potential health benefits of Allium sativum L. (garlic) stem extract (ASSE) on obesity and related disorders in high-fat diet-induced obese mice. Obese mice were orally administered ASSE at doses of 100, 250 and 500 mg kg(-1) body weight day(-1) for 4 weeks. Consumption of ASSE significantly suppressed body weight gain and white adipose tissue (WAT) weight regardless of daily food intake. Obese mice fed ASSE also exhibited a significant decrease in WAT cell size. The decreased level of adiponectin and increased level of leptin in obese mice reverted to near normal mice levels in ASSE-treated mice. ASSE administration significantly improved lipid parameters of the serum and liver and inhibited fat accumulation in the liver by modulating the activities of hepatic lipid-regulating enzymes in obese mice. Administration of ASSE also led to significant increases in antioxidant enzymes and suppressed glutathione depletion and lipid peroxidation in hepatic tissue. These results suggest that ASSE may ameliorate obesity, insulin resistance and oxidative damage in high-fat diet-induced obese mice. © 2013 Society of Chemical Industry.

  12. The CMS High-Level Trigger

    International Nuclear Information System (INIS)

    Covarelli, R.

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the 'High-Level Trigger'(HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  13. The CMS High-Level Trigger

    CERN Document Server

    Covarelli, Roberto

    2009-01-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, tau leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  14. The CMS High-Level Trigger

    Science.gov (United States)

    Covarelli, R.

    2009-12-01

    At the startup of the LHC, the CMS data acquisition is expected to be able to sustain an event readout rate of up to 100 kHz from the Level-1 trigger. These events will be read into a large processor farm which will run the "High-Level Trigger" (HLT) selection algorithms and will output a rate of about 150 Hz for permanent data storage. In this report HLT performances are shown for selections based on muons, electrons, photons, jets, missing transverse energy, τ leptons and b quarks: expected efficiencies, background rates and CPU time consumption are reported as well as relaxation criteria foreseen for a LHC startup instantaneous luminosity.

  15. Role of pentoxifylline in non-alcoholic fatty liver disease in high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Acedo, Simone Coghetto; Caria, Cintia Rabelo E Paiva; Gotardo, Érica Martins Ferreira; Pereira, José Aires; Pedrazzoli, José; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2015-10-28

    To study pentoxifylline effects in liver and adipose tissue inflammation in obese mice induced by high-fat diet (HFD). Male swiss mice (6-wk old) were fed a high-fat diet (HFD; 60% kcal from fat) or AIN-93 (control diet; 15% kcal from fat) for 12 wk and received pentoxifylline intraperitoneally (100 mg/kg per day) for the last 14 d. Glucose homeostasis was evaluated by measurements of basal glucose blood levels and insulin tolerance test two days before the end of the protocol. Final body weight was assessed. Epididymal adipose tissue was collected and weighted for adiposity evaluation. Liver and adipose tissue biopsies were homogenized in solubilization buffer and cytokines were measured in supernatant by enzyme immunoassay or multiplex kit, respectively. Hepatic histopathologic analyses were performed in sections of paraformaldehyde-fixed, paraffin-embedded liver specimens stained with hematoxylin-eosin by an independent pathologist. Steatosis (macrovesicular and microvesicular), ballooning degeneration and inflammation were histopathologically determined. Triglycerides measurements were performed after lipid extraction in liver tissue. Pentoxifylline treatment reduced microsteatosis and tumor necrosis factor (TNF)-α in liver (156.3 ± 17.2 and 62.6 ± 7.6 pg/mL of TNF-α for non-treated and treated obese mice, respectively; P < 0.05). Serum aspartate aminotransferase levels were also reduced (23.2 ± 6.9 and 12.1 ± 1.6 U/L for non-treated and treated obese mice, respectively; P < 0.05) but had no effect on glucose homeostasis. In obese adipose tissue, pentoxifylline reduced TNF-α (106.1 ± 17.6 and 51.1 ± 9.6 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) and interleukin-6 (340.8 ± 51.3 and 166.6 ± 22.5 pg/mL for non-treated and treated obese mice, respectively; P < 0.05) levels; however, leptin (8.1 ± 0.7 and 23.1 ± 2.9 ng/mL for non-treated and treated lean mice, respectively; P < 0.05) and plasminogen activator inhibitor-1 (600

  16. Genotoxicity detected in wild mice living in a highly polluted wetland area in south western Spain

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, Santiago; Daza, Paula; Dominguez, Inmaculada; Cardenas, Jose Antonio [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain); Cortes, Felipe [University of Seville, Department of Cell Biology, Faculty of Biology, Avenida de la Reina Mercedes no 6, E-41012 Seville (Spain)], E-mail: cortes@us.es

    2008-06-15

    A field study was carried out in the south of the Iberian Peninsula in an industrial area in the neighbourhood of Huelva city, SW Spain, and in a natural area (Donana National Park) for comparison, to estimate the genetic risk induced by environmental pollution in wild mice. Genotoxic effects in a sentinel organism, the Algerian mice (Mus spretus) free living in the industrial area were compared with animals of the same species living in the natural protected area. The single cell gel electrophoresis, or Comet assay, was performed as a genotoxicity test in peripheral blood of mice. Our results clearly show that mice free living in the contaminated area bear a high burden of genetic damage as compared with control individuals. The results suggest that the assessing of genotoxicity levels by the Comet assay in wild mice can be used as a valuable test in pollution monitoring and environmental conservation. - We have found an increased genotoxic damage in wild mice in a highly polluted area from industry, mining and agriculture in SW Spain, as assessed by the Comet assay.

  17. Classification of EU Countries in Terms of the Level of Sustainable Development

    Directory of Open Access Journals (Sweden)

    Stec Małgorzata

    2017-01-01

    Full Text Available This article has classified the EU countries in terms of the level of sustainable development. The study was based on main sustainability indicators developed by Eurostat. In empirical research, one of the methods used was Cluster Analysis - Ward's method. Grouping methods make it possible to distinguish countries with a similar level of sustainability which is particularly useful for monitoring the progress of individual EU countries in implementation of the Sustainable Development Strategy. For specific groups of countries, appropriate control instruments and strategies can be proposed. The research period is 2016. As a result of the research, 6 clusters of countries were obtained. For specific groups of countries, their characteristics were defined.

  18. Daily supplementation with fresh pomegranate juice increases paraoxonase 1 expression and activity in mice fed a high-fat diet.

    Science.gov (United States)

    Estrada-Luna, D; Martínez-Hinojosa, E; Cancino-Diaz, J C; Belefant-Miller, H; López-Rodríguez, G; Betanzos-Cabrera, G

    2018-02-01

    Studies have found that pomegranate juice (PJ) consumption increases the binding of high-density lipoproteins (HDL) to paraoxonase 1 (PON1), thus increasing the catalytic activity of this enzyme. PON1 is an antioxidant arylesterase synthesized in the liver and transported in plasma in association with HDL. Decreased levels of PON1 are associated with higher levels of cholesterol. We determined the effects of PJ on body weight, cholesterol, and triacylglycerols through 5 months of supplementation. In addition, the effect of PJ on pon1 gene expression in the liver was also measured by RT-qPCR as well as the activity in serum by a semiautomated method using paraoxon as a substrate. CD-1 mice were either fed a control diet or were fed a high-fat diet 1.25% (wt/wt) cholesterol, 0.5% (wt/wt) sodium cholate, and 15% (wt/wt) saturated fat. 300 μL of PJ containing 0.35 mmol total polyphenols was administered by oral gavage to half of the high fat mice daily. The rest of the high fat mice and the control mice were administered with 300 μL of water. PJ-supplemented animals had significantly higher levels of expression of pon1 compared to the unsupplemented group. PJ-supplemented animals had twice the PON1 activity of the unsupplemented group. In addition, PJ-supplemented animals had the lowest body weight and significantly reduced cholesterol and triacylglycerol levels, although the tricylglycerol levels were not consistently decreased. These results suggest that PJ protects against the effects of a high-fat diet in body weight, and cholesterol levels.

  19. Effects of ingredients of Korean brown rice cookies on attenuation of cholesterol level and oxidative stress in high-fat diet-fed mice.

    Science.gov (United States)

    Hong, Sun Hee; Kim, Mijeong; Woo, Minji; Song, Yeong Ok

    2017-10-01

    Owing to health concerns related to the consumption of traditional snacks high in sugars and fats, much effort has been made to develop functional snacks with low calorie content. In this study, a new recipe for Korean rice cookie, dasik , was developed and its antioxidative, lipid-lowering, and anti-inflammatory effects and related mechanisms were elucidated. The effects were compared with those of traditional rice cake dasik (RCD), the lipid-lowering effect of which is greater than that of traditional western-style cookies. Ginseng-added brown rice dasik (GBRD) was prepared with brown rice flour, fructooligosaccharide, red ginseng extract, and propolis. Mice were grouped (n = 7 per group) into those fed a normal AIN-76 diet, a high-fat diet (HFD), and HFD supplemented with RCD or GBRD. Dasik in the HFD accounted for 7% of the total calories. The lipid, reactive oxygen species, and peroxynitrite levels, and degree of lipid peroxidation in the plasma or liver were determined. The expression levels of proteins involved in lipid metabolism and inflammation, and those of antioxidant enzymes were determined by western blot analysis. The plasma and hepatic total cholesterol concentrations in the GBRD group were significantly decreased via downregulation of sterol regulatory element-binding protein-2 and 3-hydroxy-3-methylglutaryl-CoA reductase ( P < 0.05). The hepatic peroxynitrite level was significantly lower, whereas glutathione was higher, in the GBRD group than in the RCD group. Among the antioxidant enzymes, catalase (CAT) and glutathione peroxidase (GPx) were significantly upregulated in the GBRD group ( P < 0.05). In addition, nuclear factor-kappaB (NF-κB) expression in the GBRD group was significantly lower than that in the RCD group. GBRD decreases the plasma and hepatic cholesterol levels by downregulating cholesterol synthesis. This new dasik recipe also improves the antioxidative and anti-inflammatory status in HFD-fed mice via CAT and GPx upregulation and

  20. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent.

    Science.gov (United States)

    Tetri, Laura H; Basaranoglu, Metin; Brunt, Elizabeth M; Yerian, Lisa M; Neuschwander-Tetri, Brent A

    2008-11-01

    The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.

  1. Voluntary exercise inhibits intestinal tumorigenesis in ApcMin/+ mice and azoxymethane/dextran sulfate sodium-treated mice

    International Nuclear Information System (INIS)

    Ju, Jihyeung; Nolan, Bonnie; Cheh, Michelle; Bose, Mousumi; Lin, Yong; Wagner, George C; Yang, Chung S

    2008-01-01

    Epidemiological studies suggest that physical activity reduces the risk of colon cancer in humans. Results from animal studies, however, are inconclusive. The present study investigated the effects of voluntary exercise on intestinal tumor formation in two different animal models, Apc Min/+ mice and azoxymethane (AOM)/dextran sulfate sodium (DSS)-treated mice. In Experiments 1 and 2, five-week old female Apc Min/+ mice were either housed in regular cages or cages equipped with a running wheel for 6 weeks (for mice maintained on the AIN93G diet; Experiment 1) or 9 weeks (for mice on a high-fat diet; Experiment 2). In Experiment 3, male CF-1 mice at 6 weeks of age were given a dose of AOM (10 mg/kg body weight, i.p.) and, 12 days later, 1.5% DSS in drinking fluid for 1 week. The mice were then maintained on a high-fat diet and housed in regular cages or cages equipped with a running wheel for 16 weeks. In the Apc Min/+ mice maintained on either the AIN93G or the high-fat diet, voluntary exercise decreased the number of small intestinal tumors. In the AOM/DSS-treated mice maintained on a high-fat diet, voluntary exercise also decreased the number of colon tumors. In Apc Min/+ mice, voluntary exercise decreased the ratio of serum insulin like growth factor (IGF)-1 to IGF binding protein (BP)-3 levels. It also decreased prostaglandin E 2 and nuclear β-catenin levels, but increased E-cadherin levels in the tumors. These results indicate hat voluntary exercise inhibited intestinal tumorigenesis in Apc Min/+ mice and AOM/DSS-treated mice, and the inhibitory effect is associated with decreased IGF-1/IGFBP-3 ratio, aberrant β-catenin signaling, and arachidonic acid metabolism

  2. Anti-Diabetic Effects of Phenolic Extract from Rambutan Peels (Nephelium lappaceum) in High-Fat Diet and Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Ma, Qingyu; Guo, Yan; Sun, Liping; Zhuang, Yongliang

    2017-07-26

    Recent studies have shown that rambutan peel phenolic (RPP) extract demonstrate high antioxidant and antiglycation activities in vitro and in vivo. This study further evaluated the anti-diabetic activity of RPP in a mouse model of Type II diabetes induced by streptozotocin combined with high-fat diet. Results showed that RPP increased the body weight and reduced the fasting blood glucose level of the diabetic mice. RPP significantly reduced the serum levels of total cholesterol, triglyceride, creatinine, and glycated serum protein in diabetic mice in a dose-dependent manner. Glycogen content in mice liver was recovered by RPP, which further increased the activity of superoxide dismutase and glutathione peroxidase and reduced lipid peroxidation in diabetic mice. Histological analysis showed that RPP effectively protected the tissue structure of the liver, kidney, and pancreas. In addition, RPP decreased the mesangial index and inhibited the expression of TGF-β in the kidney of diabetic mice.

  3. ST2 Deficiency Ameliorates High Fat Diet-Induced Liver Steatosis In BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Jovicic Nemanja

    2015-03-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is strongly associated with obesity, but the molecular mechanisms of liver steatosis and its progression to non-alcoholic steatohepatitis and fibrosis are incompletely understood. Immune reactivity plays an important role in the pathogenesis of NAFLD. The IL-33/ST2 axis has a protective role in adiposity and atherosclerosis, but its role in obesity-associated metabolic disorders requires further clarification. To investigate the unresolved role of IL-33/ST2 signalling in NAFLD, we used ST2-deficient (ST2-/- and wild type (WT BALB/c mice maintained on a high-fat diet (HFD for 24 weeks. HFD-fed ST2-/- mice exhibited increased weight gain, visceral adipose tissue weight and triglyceridaemia and decreased liver weight compared with diet-matched WT mice. Compared with WT mice on an HFD, ST2 deletion significantly reduced hepatic steatosis, liver inflammation and fibrosis and downregulated the expression of genes related to lipid metabolism in the liver. The frequency of innate immune cells in the liver, including CD68+ macrophages and CD11c+ dendritic cells, was lower in HFD-fed ST2-/- mice, accompanied by lower TNFα serum levels compared with diet-matched WT mice. Less collagen deposition in the livers of ST2-/- mice on an HFD was associated with lower numbers of profibrotic CD11b+Ly6clow monocytes and CD4+IL-17+ T cells in the liver, lower hepatic gene expression of procollagen, IL-33 and IL-13, and lower serum levels of IL-33 and IL-13 compared with diet-matched WT mice.

  4. Effects of angiotensin (1-7 on nephrosis of the mice with metabolic syndrome induced by high-salt and high-fat diet

    Directory of Open Access Journals (Sweden)

    Nan ZHU

    2013-11-01

    Full Text Available Objective  To establish a metabolic syndrome model of C57BL/6 mice by high-salt and high-fat diet, and investigate the effects of angiotensin converting enzyme 2 (ACE 2 and angiotensin (1-7 on renal damage in mice. Methods Fifty-six male C57BL/6 mice were randomly divided into 7 groups (8 each, and fed with normal diet (0.3% NaCl, 10% fat, high-salt diet (8% NaCl, 10% fat, high-fat diet (0.3% NaCl, 60% fat, high-salt and high-fat diet (8% NaCl, 60% fat, high-salt and high-fat diet with enalapril 20mg/(kg•d, with valsartan 50mg/(kg•d, and with valsartan 50mg/(kg•d plus Mas receptor antagonist (A-779 150ng/(kg•d, respectively for 16 weeks. Basal metabolic index including blood pressure, body weight, blood glucose and urinary albumin excretion rate (UAER were tested. After intraperitoneal anesthesia with chloral hydrate, the blood was collected from the carotid artery. Serum angiotensin Ⅱ and angiotensin (1-7 levels were detected by ELISA; Western blotting was performed to evaluate the expression of ACE 2 protein and collagen Ⅲ in renal tissue; renal pathological changes were observed by HE and Masson staining. Results The blood pressure, ratio of visceral fat weight/body weight, blood lipid, blood glucose and UAER increased significantly in the C57BL/6 mice fed with high-salt and high-fat diet for 16 weeks, and the renal fibrosis change was obvious, serum angiotensin Ⅱ level increased, expressions of ACE 2 and angiotensin (1-7 decreased significantly in the renal tissue. In different intervention groups, valsartan obviously alleviated the abnormal metabolism, ameliorated renal injury, promoted the expression of ACE2 and angiotensin (1-7 in the kidney and serum. However, no significant change was observed in the groups with intervention of enalapril or valsartan+A-779 compared with non-intervention group. Conclusions High-salt and high-fat diet can be used to successfully establish the model of metabolic syndrome in C57BL/6

  5. Guarana (Paullinia cupana Stimulates Mitochondrial Biogenesis in Mice Fed High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Natália da Silva Lima

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effects of guarana on mitochondrial biogenesis in a high-fat diet (HFD-fed mice. C57BL6J mice were divided in two groups: high-fat diet HFD and high-fat diet + guarana (HFD-GUA. Both groups received HFD and water ad libitum and the HFD-GUA group also received a daily gavage of guarana (1 g/kg weight. Body weight and food intake was measured weekly. Glycemic, triglyceride, and cholesterol levels were determined. VO2 and energy expenditure (EE were determined by indirect calorimetry. Gene expression was evaluated by real-time PCR and protein content by western blotting. The HFD-GUA group presented lower body weight, subcutaneous, retroperitoneal, visceral, and epididyimal adipose tissue depots, and glycemic and triglyceride levels, with no change in food intake and cholesterol levels. Furthermore, the HFD-GUA group presented an increase in VO2 and basal energy expenditure (EE, as well as Pgc1α, Creb1, Ampka1, Nrf1, Nrf2, and Sirt1 expression in the muscle and brown adipose tissue. In addition, the HFD-GUA group presented an increase in mtDNA (mitochondrial deoxyribonucleic acid content in the muscle when compared to the HFD group. Thus, our data showed that guarana leads to an increase in energetic metabolism and stimulates mitochondrial biogenesis, contributing to control of weight gain, even when associated with high-fat diet.

  6. High sugar and butter (HSB) diet induces obesity and metabolic syndrome with decrease in regulatory T cells in adipose tissue of mice.

    Science.gov (United States)

    Maioli, Tatiani Uceli; Gonçalves, Juliana Lauar; Miranda, Mariana Camila Gonçalves; Martins, Vinícius Dantas; Horta, Laila Sampaio; Moreira, Thais Garcias; Godard, Ana Lucia Brunialti; Santiago, Andrezza Fernanda; Faria, Ana Maria Caetano

    2016-02-01

    The purpose of the study was to develop a novel diet based on standard AIN93G diet that would be able to induce experimental obesity and impair immune regulation with high concentrations of both carbohydrate and lipids. To compare the effects of this high sugar and butter (HSB) diet with other modified diets, male C57BL/6 mice were fed either mouse chow, or AIN93G diet, or high sugar (HS) diet, or high-fat (HF) diet, or high sugar and butter (HSB) diet for 11 weeks ad libitum. HSB diet induced higher weight gain. Therefore, control AIN93G and HSB groups were chosen for additional analysis. Regulatory T cells were studied by flow cytometry, and cytokine levels were measured by ELISA. Although HF and HSB diets were able to induce a higher weight gain compatible with obesity in treated mice, HSB-fed mice presented the higher levels of serum glucose after fasting and the lowest frequency of regulatory T cells in adipose tissue. In addition, mice that were fed HSB diet presented higher levels of cholesterol and triglycerides, hyperleptinemia, increased resistin and leptin levels as well as reduced adiponectin serum levels. Importantly, we found increased frequency of CD4(+)CD44(+) effector T cells, reduction of CD4(+)CD25(+)Foxp3(+) and Th3 regulatory T cells as well as decreased levels of IL-10 and TGF-β in adipose tissue of HSB-fed mice. Therefore, HSB represents a novel model of obesity-inducing diet that was efficient in triggering alterations compatible with metabolic syndrome as well as impairment in immune regulatory parameters.

  7. The PPARalpha agonist, fenofibrate decreases levels of anorectic N-acylethanolamines in the small intestine of mice

    DEFF Research Database (Denmark)

    Diep, Thi Ai; Golbas, Golfam; Hansen, Harald S.

    2014-01-01

    contribute to the hyperphagic effect of dietary fat. Male C57BL/6 mice were fed with either chow (minced Altromin) (n=8 from Taconic and n=8 from Charles River) or chow mixed with supplemented 0.5 wt% Fenofibrate (n=8 from Taconic and n=8 from Charles River) for seven days, and intestinal levels of NAEs were...... measured by LC-MS as previously described (3,4). The levels of PEA and LEA were significantly decreased (23-64%) in both strain of mice , while the decrease in OEA only reached significance in Charles river mice. There was no difference in levels of anandamide in any strain of mice. This suggests...

  8. Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Directory of Open Access Journals (Sweden)

    Jeri-Anne Lyons

    2010-09-01

    Full Text Available A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO resistant (SWR/J and susceptible (C57BL/6 mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+/CD44(hi and CD8(+/CD44(hi cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism.

  9. Effects of high-fat diet and/or body weight on mammary tumor leptin and apoptosis signaling pathways in MMTV-TGF-α mice

    Science.gov (United States)

    Dogan, Soner; Hu, Xin; Zhang, Yan; Maihle, Nita J; Grande, Joseph P; Cleary, Margot P

    2007-01-01

    Introduction Obesity is a risk factor for postmenopausal breast cancer and is associated with shortened mammary tumor (MT) latency in MMTV-TGF-α mice with dietary-induced obesity. One link between obesity and breast cancer is the adipokine, leptin. Here, the focus is on diet-induced obesity and MT and mammary fat pad (MFP) leptin and apoptotic signaling proteins. Methods MMTV-TGF-α mice were fed low-fat or high-fat diets from 10 to 85 weeks of age. High-Fat mice were divided into Obesity-Prone and Obesity-Resistant groups based on final body weights. Mice were followed to assess MT development and obtain serum, MFP, and MT. Results Incidence of palpable MTs was significantly different: Obesity-Prone > Obesity-Resistant > Low-Fat. Serum leptin was significantly higher in Obesity-Prone compared with Obesity-Resistant and Low-Fat mice. Low-Fat mice had higher MFP and MT ObRb (leptin receptor) protein and Jak2 (Janus kinase 2) protein and mRNA levels in comparison with High-Fat mice regardless of body weight. Leptin (mRNA) and pSTAT3 (phosphorylated signal transducer and activator of transcription 3) (mRNA and protein) also were higher in MTs from Low-Fat versus High-Fat mice. Expression of MT and MFP pro-apoptotic proteins was higher in Low-Fat versus High-Fat mice. Conclusion These results confirm a connection between body weight and MT development and between body weight and serum leptin levels. However, diet impacts MT and MFP leptin and apoptosis signaling proteins independently of body weight. PMID:18162139

  10. A mixed-methods study of system-level sustainability of evidence-based practices in 12 large-scale implementation initiatives.

    Science.gov (United States)

    Scudder, Ashley T; Taber-Thomas, Sarah M; Schaffner, Kristen; Pemberton, Joy R; Hunter, Leah; Herschell, Amy D

    2017-12-07

    In recent decades, evidence-based practices (EBPs) have been broadly promoted in community behavioural health systems in the United States of America, yet reported EBP penetration rates remain low. Determining how to systematically sustain EBPs in complex, multi-level service systems has important implications for public health. This study examined factors impacting the sustainability of parent-child interaction therapy (PCIT) in large-scale initiatives in order to identify potential predictors of sustainment. A mixed-methods approach to data collection was used. Qualitative interviews and quantitative surveys examining sustainability processes and outcomes were completed by participants from 12 large-scale initiatives. Sustainment strategies fell into nine categories, including infrastructure, training, marketing, integration and building partnerships. Strategies involving integration of PCIT into existing practices and quality monitoring predicted sustainment, while financing also emerged as a key factor. The reported factors and strategies impacting sustainability varied across initiatives; however, integration into existing practices, monitoring quality and financing appear central to high levels of sustainability of PCIT in community-based systems. More detailed examination of the progression of specific activities related to these strategies may aide in identifying priorities to include in strategic planning of future large-scale initiatives. ClinicalTrials.gov ID NCT02543359 ; Protocol number PRO12060529.

  11. Ajoene restored behavioral patterns and liver glutathione level in morphine treated C57BL6 mice.

    Science.gov (United States)

    Yun, Jaesuk; Oliynyk, Sergiy; Lee, Yeonju; Kim, Jieun; Yun, Kyunghwa; Jeon, Raok; Ryu, Jae-Ha; Oh, Seikwan

    2017-01-01

    Oxidative stress exacerbates drug dependence induced by administration of opiate analgesics such as morphine-induced tolerance and physical dependence associated with the reduction in hepatic glutathione (GSH) level. Ajoene obtained from garlic (Allium sativum L.) has been reported for anti-tumorigenic, anti-oxidative and neuroprotective properties, however, little is known about its effect on morphine-induced dependence. Therefore, this study aimed at the effect of ajoene on physical and/or psychological dependence and liver GSH content in morphine-treated mice. Conditioned place preference (CPP) test and measurement of morphine withdrawal syndrome were performed in C57BL6 mice for behavioral experiments. Thereafter, mice were sacrificed for measurement of serum and liver GSH levels. Ajoene restored CPP and naloxone-precipitated jumping behavior in mice exposed to morphine. Moreover, the reduced level of liver GSH content in morphine treated mice was back to normal after ajoene administration. Taken together, ajoene improved behavioral patterns in mice exposed to morphine suggesting its potential therapeutic benefit against morphine-induced dependence.

  12. Anti-diabetic effects of DA-11004, a synthetic IDPc inhibitor in high fat high sucrose diet-fed C57BL/6J mice.

    Science.gov (United States)

    Shin, Chang Yell; Jung, Mi Young; Lee, In Ki; Son, Miwon; Kim, Dong Sung; Lim, Joong In; Kim, Soon Hoe; Yoo, Moohi; Huh, Tae Lin; Sohn, Young Taek; Kim, Won Bae

    2004-01-01

    DA-11004 is a synthetic, potent NADP-dependent isocitrate dehydrogenase (IDPc) inhibitor where IC50 for IDPc is 1.49 microM. The purpose of this study was to evaluate the effects of DA-11004 on the high fat high sucrose (HF)-induced obesity in male C57BL/6J mice. After completing a 8-week period of experimentation, the mice were sacrificed 1 hr after the last DA-11004 treatment and their blood, liver, and adipose tissues (epididymal and retroperitoneal fat) were collected. There was a significant difference in the pattern of increasing body weight between the HF control and the DA-11004 group. In the DA-11004 (100 mg/kg) treated group the increase in body weight significantly declined and a content of epididymal fat and retroperitoneal fat was also significantly decreased as opposed to the HF control. DA-11004 (100 mg/ kg) inhibited the IDPc activity, and thus, NADPH levels in plasma and the levels of free fatty acid (FFA) or glucose in plasma were less than the levels of the HF control group. In conclusion, DA-11004 inhibited the fatty acid synthesis in adipose tissues via IDPc inhibition, and it decreased the plasma glucose levels and FFA in HF diet-induced obesity of C57BL/6J mice.

  13. Hypothalamic Leptin Gene Therapy Reduces Bone Marrow Adiposity in ob/ob Mice Fed Regular and High Fat Diets

    Directory of Open Access Journals (Sweden)

    Laurence B Lindenmaier

    2016-08-01

    Full Text Available Low bone mass is often associated with increased bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Genetic (e.g., leptin deficiency and high fat diet-induced (e.g., leptin resistance obesity are associated with increased marrow adipose tissue (MAT and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice using recombinant adeno-associated virus (rAAV gene therapy. In a first study, eight- to ten-week-old male ob/ob mice were randomized into 4 groups: (1 untreated, (2 rAAV-Lep, (3 rAAV-green fluorescent protein (rAAV-GFP, or (4 pair-fed to rAAV-Lep. For vector administration, mice were placed in a Kopf stereotaxic apparatus, and injected intracerebroventricularly with either rAAV-Lep or rAAV-GFP (9 × 107 particles in 1.5 µl. The mice were maintained for 30 weeks following vector administration. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high fat diets. Eight- to ten-week-old male ob/ob mice were randomized into 2 groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high fat diet for 8 weeks. Wild type (WT controls included age-matched mice fed regular or high fat diet. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high fat diet to values similar to WT mice fed regular diet. These

  14. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Wang, Li; Zhang, Xue Tong; Zhang, Hai Yan; Yao, Hui Yuan; Zhang, Hui

    2010-08-09

    To investigate the hypoglycemic effects of Vaccinium bracteatum Thunb. leaves (VBTL) extract in streptozotocin-induced diabetic mice. After administration of VBTL extract for 4 weeks, the body weight, organ weight, blood glucose (BG), insulin and plasma lipid levels of streptozotocin-induced diabetic mice were measured. Body weights of diabetic mice treated with VBTL extract were partly recovered. The BG levels of AEG (diabetic mice treated with VBTL aqueous extract) were reduced to 91.52 and 85.82% at week 2 and week 4, respectively (P0.05). The insulin levels of AEG and EEG were obviously higher (P<0.05) than those of MC (diabetic mice in model control group). Comparing with MC, AEG and EEG had significantly lower (P<0.05) TC or TG levels and similar HDL-cholesterol or LDL-cholesterol levels. In comparison with non-diabetic control mice, AEG had similar plasma lipid levels except higher LDL-cholesterol level, while EEG had higher TC, TG and LDL-cholesterol levels and lower HDL-cholesterol levels. Both aqueous and ethanolic extract of VBTL possess a potential hypoglycemic effect in streptozotocin-induced diabetic mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  15. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  16. A role for the endocannabinoid 2-arachidonoyl-sn-glycerol for social and high-fat food reward in male mice.

    Science.gov (United States)

    Wei, Don; Lee, DaYeon; Li, Dandan; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele

    2016-05-01

    The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.

  17. Product-service system method to measure sustainability level of traditional smoked fish processing industries

    Directory of Open Access Journals (Sweden)

    Purwaningsih Ratna

    2018-01-01

    Full Text Available Small Medium Enterprise’s (SME of traditional fish processing at Semarang, Central Java, Indonesia still focus their business on gain more profits. Sustainability aspect has not received enough attention yet. This study aims to review the sustainability level of SME smoked fish Semarang using product service system (PSS method. PSS consists of three dimensions (1 Environment, (2 Socio-cultural and (3 Economic. Each dimension consists of 6 criteria's. PSS not only assess the level of sustainability but also formulated the recommendation to increase the industries sustainability level. Sustainability assessment and recommendations formulation is guided by a check-list form. Then, the portfolio diagram used to select these recommendations according to its feasibility to be implemented and its importance for the industries. The result of sustainability assessment for traditional fish processing is 0.44, categorized as medium level. The recommendations for the environmental dimension are (1 use of liquid smoke on fish processing and (2 use of wastewater treatment with anaerobic ponds Recommendation for the socio-cultural dimension is use personal protective tool to reduce worker risk on safety and health. Recommendation for the economic dimension is used social media for product marketing and increasing the economic value of fish lung wastes. Recommendations are then illustrated in a diagram in the form of radar sustainability.

  18. Quercetin Isolated from Toona sinensis Leaves Attenuates Hyperglycemia and Protects Hepatocytes in High-Carbohydrate/High-Fat Diet and Alloxan Induced Experimental Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yali Zhang

    2016-01-01

    Full Text Available The development of diabetes mellitus is related to oxidant stress induced by a high carbohydrate/high-fat diet (HFD. Quercetin, as a major bioactive component in Toona sinensis leaves (QTL, is a natural antioxidant. However, the exact mechanism by which QTL ameliorate diabetes mellitus is still unknown. In this study, we investigated the hypoglycemic effects and hepatocytes protection of QTL on HFD and alloxan induced diabetic mice. Intragastric administration of QTL significantly reduced body weight gain, serum glucose, insulin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, alanine aminotransferase, and aspartate aminotransferase serum levels compared to those of diabetic mice. Furthermore, it significantly attenuated oxidative stress, as determined by lipid peroxidation, nitric oxide content, and inducible nitric oxide synthase activity and as a result attenuated liver injury. QTL also significantly suppressed the diabetes-induced activation of the p65/NF-κB and ERK1/2/MAPK pathways, as well as caspase-9 and caspase-3 levels in liver tissues of diabetic mice. Finally, micrograph analysis of liver samples showed decreased cellular organelle injury in hepatocytes of QTL treated mice. Taken together, QTL can be viewed as a promising dietary agent that can be used to reduce the risk of diabetes mellitus and its secondary complications by ameliorating oxidative stress in the liver.

  19. Effects of dietary heme iron and exercise training on abdominal fat accumulation and lipid metabolism in high-fat diet-fed mice.

    Science.gov (United States)

    Katsumura, Masanori; Takagi, Shoko; Oya, Hana; Tamura, Shohei; Saneyasu, Takaoki; Honda, Kazuhisa; Kamisoyama, Hiroshi

    2017-08-01

    Animal by-products can be recycled and used as sources of essential nutrients. Water-soluble heme iron (WSHI), a functional food additive for supplementing iron, is produced by processing animal blood. In this study, we investigated the effects of dietary supplementation of 3% WSHI and exercise training for 4 weeks on the accumulation of abdominal fat and lipid metabolism in mice fed high-fat diet. Exercise-trained mice had significantly less perirenal adipose tissue, whereas WSHI-fed mice tended to have less epididymal adipose tissue. In addition, total weight of abdominal adipose tissues was significantly decreased in the Exercise + WSHI group. Dietary WSHI significantly increased the messenger RNA (mRNA) levels of lipoprotein lipase and hormone-sensitive lipase. WSHI-fed mice also tended to show increased mRNA levels of adipose triglyceride lipase in their epididymal adipose tissue. Dietary WSHI also significantly decreased the mRNA levels of fatty acid oxidation-related enzymes in the liver, but did not influence levels in the Gastrocnemius muscle. Exercise training did not influence the mRNA levels of lipid metabolism-related enzymes in the epididymal adipose tissue, liver or the Gastrocnemius muscle. These findings suggest that the accumulation of abdominal fat can be efficiently decreased by the combination of dietary WSHI and exercise training in mice fed high-fat diet. © 2016 Japanese Society of Animal Science.

  20. Effect of Ginseng (Panax ginseng Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement

    Directory of Open Access Journals (Sweden)

    Chang Hyeon Park

    2015-01-01

    Full Text Available High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM. The effect of ginseng (Panax ginseng berry ethyl acetate fraction (GBEF on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests, blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE activity and malondialdehyde (MDA levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside.

  1. Plasma adiponectin is increased in mice selectively bred for high wheel-running activity, but not by wheel running per se

    NARCIS (Netherlands)

    Vaanholt, L. M.; Meerlo, P.; Garland, T.; Visser, G. H.; van Dijk, G.

    2007-01-01

    Mice selectively bred for high wheel-running activity (S) have decreased fat content compared to mice from randomly bred control (C) lines. We explored whether this difference was associated with alterations in levels of circulating hormones involved in regulation of food intake and energy balance,

  2. Decreased levels of free D-aspartic acid in the forebrain of serine racemase (Srr) knock-out mice.

    Science.gov (United States)

    Horio, Mao; Ishima, Tamaki; Fujita, Yuko; Inoue, Ran; Mori, Hisashi; Hashimoto, Kenji

    2013-05-01

    d-Serine, an endogenous co-agonist of the N-methyl-d-aspartate (NMDA) receptor is synthesized from l-serine by serine racemase (SRR). A previous study of Srr knockout (Srr-KO) mice showed that levels of d-serine in forebrain regions, such as frontal cortex, hippocampus, and striatum, but not cerebellum, of mutant mice are significantly lower than those of wild-type (WT) mice, suggesting that SRR is responsible for d-serine production in the forebrain. In this study, we attempted to determine whether SRR affects the level of other amino acids in brain tissue. We found that tissue levels of d-aspartic acid in the forebrains (frontal cortex, hippocampus and striatum) of Srr-KO mice were significantly lower than in WT mice, whereas levels of d-aspartic acid in the cerebellum were not altered. Levels of d-alanine, l-alanine, l-aspartic acid, taurine, asparagine, arginine, threonine, γ-amino butyric acid (GABA) and methionine, remained the same in frontal cortex, hippocampus, striatum and cerebellum of WT and mutant mice. Furthermore, no differences in d-aspartate oxidase (DDO) activity were detected in the forebrains of WT and Srr-KO mice. These results suggest that SRR and/or d-serine may be involved in the production of d-aspartic acid in mouse forebrains, although further detailed studies will be necessary to confirm this finding. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Western diet increases wheel running in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, T H; Eisenmann, J C; Garland, T

    2010-06-01

    Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.

  4. Energy efficiency and sustainability of complex biogas systems: A 3-level emergetic evaluation

    International Nuclear Information System (INIS)

    Chen, Shaoqing; Chen, Bin

    2014-01-01

    Highlights: • The metabolism of complex biogas system increased from 2000 to 2008. • System renewability has been increased due to biogas utilization. • Electricity, diesels and infrastructure were the most efficient supplies. • All processes were challenged by high transformity and low sustainability. - Abstract: Biogas engineering and the biogas-linked agricultural industries as a whole has been used as both a developmental strategy for rural new emergy and an important part of renewable agriculture revolution in China. In this paper, we proposed a 3-level emergetic evaluation framework to investigate the energy efficiency and sustainability of a complex biogas system (CBS) in South China, comprising agro-industries such as planting, aquaculture, breeding and biogas. The framework is capable of tracking dynamical behaviors of the whole complex system (Level I), transformation processes (Level II) and resource components (Level III) simultaneously. Two new indicators, emergy contribution rate (ECR) and emergy supply efficiency (ESE) were developed to address the contribution and efficiency of resource components within each agro-industrial process. Our findings suggested the metabolism of the CBS were increased from 2000 to 2008, in which planting production was the biggest process in terms of total emergy input, while breeding was the most productive one with its highest total emergy yield. The CBS was under an industry transaction process stimulated by biogas construction, while the traditional agricultural activities still play an important role. For economic input, a trend towards a more renewable regime was found behind the total increase over time. With different preferences for renewable or non-renewable resources, planting and aquaculture production were proved natural donation-reliant, while breeding and biogas were economic input-dependent. Among all the economic inputs, electricity, diesels and infrastructure were the most efficient components

  5. Hamp1 mRNA and plasma hepcidin levels are influenced by sex and strain but do not predict tissue iron levels in inbred mice.

    Science.gov (United States)

    McLachlan, Stela; Page, Kathryn E; Lee, Seung-Min; Loguinov, Alex; Valore, Erika; Hui, Simon T; Jung, Grace; Zhou, Jie; Lusis, Aldons J; Fuqua, Brie; Ganz, Tomas; Nemeth, Elizabeta; Vulpe, Chris D

    2017-11-01

    Iron homeostasis is tightly regulated, and the peptide hormone hepcidin is considered to be a principal regulator of iron metabolism. Previous studies in a limited number of mouse strains found equivocal sex- and strain-dependent differences in mRNA and serum levels of hepcidin and reported conflicting data on the relationship between hepcidin ( Hamp1 ) mRNA levels and iron status. Our aim was to clarify the relationships between strain, sex, and hepcidin expression by examining multiple tissues and the effects of different dietary conditions in multiple inbred strains. Two studies were done: first, Hamp1 mRNA, liver iron, and plasma diferric transferrin levels were measured in 14 inbred strains on a control diet; and second, Hamp1 mRNA and plasma hepcidin levels in both sexes and iron levels in the heart, kidneys, liver, pancreas, and spleen in males were measured in nine inbred/recombinant inbred strains raised on an iron-sufficient or high-iron diet. Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). However, liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice fed iron-sufficient or high-iron diets, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least in males. We also measured plasma erythroferrone, performed RNA-sequencing analysis of liver samples from six inbred strains fed the iron-sufficient, low-iron, or high-iron diets, and explored differences in gene expression between the strains with the highest and lowest hepcidin levels. NEW & NOTEWORTHY Both sex and strain have a significant effect on both hepcidin mRNA (primarily a sex effect) and plasma hepcidin levels (primarily a strain effect). Liver iron and diferric transferrin levels are not predictors of Hamp1 mRNA levels in mice, nor are the Hamp1 mRNA and plasma hepcidin levels good predictors of tissue iron levels, at least

  6. Dissociation of hepatic insulin resistance from susceptibility of nonalcoholic fatty liver disease induced by a high-fat and high-carbohydrate diet in mice.

    Science.gov (United States)

    Asai, Akihiro; Chou, Pauline M; Bu, Heng-Fu; Wang, Xiao; Rao, M Sambasiva; Jiang, Anthony; DiDonato, Christine J; Tan, Xiao-Di

    2014-03-01

    Liver steatosis in nonalcoholic fatty liver disease is affected by genetics and diet. It is associated with insulin resistance (IR) in hepatic and peripheral tissues. Here, we aimed to characterize the severity of diet-induced steatosis, obesity, and IR in two phylogenetically distant mouse strains, C57BL/6J and DBA/2J. To this end, mice (male, 8 wk old) were fed a high-fat and high-carbohydrate (HFHC) or control diet for 16 wk followed by the application of a combination of classic physiological, biochemical, and pathological studies to determine obesity and hepatic steatosis. Peripheral IR was characterized by measuring blood glucose level, serum insulin level, homeostasis model assessment of IR, glucose intolerance, insulin intolerance, and AKT phosphorylation in adipose tissues, whereas the level of hepatic IR was determined by measuring insulin-triggered hepatic AKT phosphorylation. We discovered that both C57BL/6J and DBA/2J mice developed obesity to a similar degree without the feature of liver inflammation after being fed an HFHC diet for 16 wk. C57BL/6J mice in the HFHC diet group exhibited severe pan-lobular steatosis, a marked increase in hepatic triglyceride levels, and profound peripheral IR. In contrast, DBA/2J mice in the HFHC diet group developed only a mild degree of pericentrilobular hepatic steatosis that was associated with moderate changes in peripheral IR. Interestingly, both C57BL/6J and DBA/2J developed severe hepatic IR after HFHC diet treatment. Collectively, these data suggest that the severity of diet-induced hepatic steatosis is correlated to the level of peripheral IR, not with the severity of obesity and hepatic IR. Peripheral rather than hepatic IR is a dominant factor of pathophysiology in nonalcoholic fatty liver disease.

  7. Deteriorated glucose metabolism with a high-protein, low-carbohydrate diet in db mice, an animal model of type 2 diabetes, might be caused by insufficient insulin secretion.

    Science.gov (United States)

    Arimura, Emi; Pulong, Wijang Pralampita; Marchianti, Ancah Caesarina Novi; Nakakuma, Miwa; Abe, Masaharu; Ushikai, Miharu; Horiuchi, Masahisa

    2017-02-01

    We previously showed the deleterious effects of increased dietary protein on renal manifestations and glucose metabolism in leptin receptor-deficient (db) mice. Here, we further examined its effects on glucose metabolism, including urinary C-peptide. We also orally administered mixtures corresponding to low- or high-protein diets to diabetic mice. In diet experiments, under pair-feeding (equivalent energy and fat) conditions using a metabolic cage, mice were fed diets with different protein content (L diet: 12 % protein, 71 % carbohydrate, 17 % fat; H diet: 24 % protein, 59 % carbohydrate, 17 % fat) for 15 days. In oral administration experiments, the respective mixtures (L mixture: 12 % proline, 71 % maltose or starch, 17 % linoleic acid; H mixture: 24 % proline, 59 % maltose or starch, 17 % linoleic acid) were supplied to mice. Biochemical parameters related to glucose metabolism were measured. The db-H diet mice showed significantly higher water intake, urinary volume, and glucose levels than db-L diet mice but similar levels of excreted urinary C-peptide. In contrast, control-H diet mice showed significantly higher C-peptide excretion than control-L diet mice. Both types of mice fed H diet excreted high levels of urinary albumin. When maltose mixtures were administered, db-L mixture mice showed significantly higher blood glucose after 30 min than db-H mixture mice. However, db mice administered starch-H mixture showed significantly higher blood glucose 120-300 min post-administration than db-L mixture mice, although both groups exhibited similar insulin levels. High-protein, low-carbohydrate diets deteriorated diabetic conditions and were associated with insufficient insulin secretion in db mice. Our findings may have implications for dietary management of diabetic symptoms in human patients.

  8. Pharmacologically relevant intake during chronic, free-choice drinking rhythms in selectively bred high alcohol-preferring mice.

    Science.gov (United States)

    Matson, Liana M; Grahame, Nicholas J

    2013-11-01

    Multiple lines of high alcohol-preferring (HAP) mice were selectively bred for their intake of 10% ethanol (v/v) during 24-hour daily access over a 4-week period, with the highest drinking lines exhibiting intakes in excess of 20 g/kg/day. We observed circadian drinking patterns and resulting blood ethanol concentrations (BECs) in the HAP lines. We also compared the drinking rhythms and corresponding BECs of the highest drinking HAP lines to those of the C57BL/6J (B6) inbred strain. Adult male and female crossed HAP (cHAP), HAP replicate lines 1, 2, 3 and B6 mice had free-choice access to 10% ethanol and water for 3 weeks prior to bi-hourly assessments of intake throughout the dark portion of the light-dark cycle. All HAP lines reached and maintained a rate of alcohol intake above the rate at which HAP1 mice metabolize alcohol, and BECs were consistent with this finding. Further, cHAP and HAP1 mice maintained an excessive level of intake throughout the dark portion of the cycle, accumulating mean BEC levels of 261.5 ± 18.09 and 217.9 ± 25.02 mg/dl, respectively. B6 mice drank comparatively modestly, and did not accumulate high BEC levels (53.63 + 8.15 mg/dl). Free-choice drinking demonstrated by the HAP1 and cHAP lines may provide a unique opportunity for modeling the excessive intake that often occurs in alcohol-dependent individuals, and allow for exploration of predisposing factors for excessive consumption, as well as the development of physiological, behavioral and toxicological outcomes following alcohol exposure. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  9. Intracage ammonia levels in static and individually ventilated cages housing C57BL/6 mice on 4 bedding substrates.

    Science.gov (United States)

    Ferrecchia, Christie E; Jensen, Kelly; Van Andel, Roger

    2014-03-01

    The relationship among ammonia levels, cage-changing frequency, and bedding types is an important and potentially controversial topic in the laboratory animal science community. Some bedding options may not provide sufficient urine absorption and bacterial regulation to minimize ammonia production during the interval between cage changes. High intracage ammonia levels can cause subclinical degeneration and inflammation of nasal passages, rhinitis and olfactory epithelial necrosis in exposed mice. Here we sought to compare the effects of 4 commonly used bedding substrates (1/4-in. irradiated corncob, reclaimed wood pulp, aspen wood chips, and recycled newspaper) on ammonia generation when housing female C57BL/6 mice in static and individually ventilated caging. Intracage ammonia levels were measured daily for 1 wk (static cage experiment) or 2 wk (IVC experiment). The results of this study suggest that the corncob, aspen wood chip, and recycled newspaper beddings that we tested are suitable for once-weekly cage changing for static cages and for changing every 2 wk for IVC. However, ammonia levels were not controlled appropriately in cages containing reclaimed wood pulp bedding, and pathologic changes occurred within 1 wk in the nares of mice housed on this bedding in static cages.

  10. Blueberry supplementation improves memory in middle-aged mice fed a high-fat diet.

    Science.gov (United States)

    Carey, Amanda N; Gomes, Stacey M; Shukitt-Hale, Barbara

    2014-05-07

    Consuming a high-fat diet may result in behavioral deficits similar to those observed in aging animals. It has been demonstrated that blueberry supplementation can allay age-related behavioral deficits. To determine if supplementation of a high-fat diet with blueberries offers protection against putative high-fat diet-related declines, 9-month-old C57Bl/6 mice were maintained on low-fat (10% fat calories) or high-fat (60% fat calories) diets with and without 4% freeze-dried blueberry powder. Novel object recognition memory was impaired by the high-fat diet; after 4 months on the high-fat diet, mice spent 50% of their time on the novel object in the testing trial, performing no greater than chance performance. Blueberry supplementation prevented recognition memory deficits after 4 months on the diets, as mice on this diet spent 67% of their time on the novel object. After 5 months on the diets, mice consuming the high-fat diet passed through the platform location less often than mice on low-fat diets during probe trials on days 2 and 3 of Morris water maze testing, whereas mice consuming the high-fat blueberry diet passed through the platform location as often as mice on the low-fat diets. This study is a first step in determining if incorporating more nutrient-dense foods into a high-fat diet can allay cognitive dysfunction.

  11. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen.

    Science.gov (United States)

    Inglis, Julia J; Criado, Gabriel; Medghalchi, Mino; Andrews, Melanie; Sandison, Ann; Feldmann, Marc; Williams, Richard O

    2007-01-01

    Many genetically modified mouse strains are now available on a C57BL/6 (H-2b) background, a strain that is relatively resistant to collagen-induced arthritis. To facilitate the molecular understanding of autoimmune arthritis, we characterised the induction of arthritis in C57BL/6 mice and then validated the disease as a relevant pre-clinical model for rheumatoid arthritis. C57BL/6 mice were immunised with type II collagen using different protocols, and arthritis incidence, severity, and response to commonly used anti-arthritic drugs were assessed and compared with DBA/1 mice. We confirmed that C57BL/6 mice are susceptible to arthritis induced by immunisation with chicken type II collagen and develop strong and sustained T-cell responses to type II collagen. Arthritis was milder in C57BL/6 mice than DBA/1 mice and more closely resembled rheumatoid arthritis in its response to therapeutic intervention. Our findings show that C57BL/6 mice are susceptible to collagen-induced arthritis, providing a valuable model for assessing the role of specific genes involved in the induction and/or maintenance of arthritis and for evaluating the efficacy of novel drugs, particularly those targeted at T cells.

  12. Antibody Drug Conjugates Differentiate Uptake and DNA Alkylation of Pyrrolobenzodiazepines in Tumors from Organs of Xenograft Mice.

    Science.gov (United States)

    Ma, Yong; Khojasteh, S Cyrus; Hop, Cornelis E C A; Erickson, Hans K; Polson, Andrew; Pillow, Thomas H; Yu, Shang-Fan; Wang, Hong; Dragovich, Peter S; Zhang, Donglu

    2016-12-01

    Pyrrolobenzodiazepine (PBD)-dimer is a DNA minor groove alkylator, and its CD22 THIOMAB antibody drug conjugate (ADC) demonstrated, through a disulfide linker, an efficacy in tumor reduction for more than 7 weeks with minimal body weight loss in xenograft mice after a single 0.5-1 mg/kg i.v. dose. The DNA alkylation was investigated here in tumors and healthy organs of mice to understand the sustained efficacy and tolerability. The experimental procedures included the collection of tumors and organ tissues of xenograft mice treated with the ADC followed by DNA isolation/hydrolysis/quantitation and payload recovery from reversible DNA alkylation. PBD-dimer formed a considerable amount of adducts with tissue DNA, representing approximately 98% (at 24 hours), and 99% (at 96 hours) of the total PBD-dimer in tumors, and 78-89% in liver and lung tissues, suggesting highly efficient covalent binding of the released PBD-dimer to tissue DNA. The amount of PBD-DNA adducts in tumor tissues was approximately 24-fold (at 24 hours) and 70-fold (at 96 hours) greater than the corresponding amount of adducts in liver and lung tissues. In addition, the DNA alkylation levels increased 3-fold to 4-fold from 24 to 96 hours in tumors [41/10 6 base pairs (bp) at 96 hours] but remained at the same level (1/10 6 bp) in livers and lungs. These results support the typical target-mediated cumulative uptake of ADC into tumors and payload release that offers an explanation for its sustained antitumor efficacy. In addition, the low level of DNA alkylation in normal tissues is consistent with the tolerability observed in mice. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  13. Hydronephrosis alters cardiac ACE2 and Mas receptor expression in mice.

    Science.gov (United States)

    Zhang, Yanling; Ma, Lulu; Wu, Junyan; Chen, Tingting

    2015-06-01

    Hydronephrosis is characterized by substantial loss of tubules and affects renin secretion in the kidney. However, whether alterations of angiotensin-converting enzyme (ACE), ACE2 and Mas receptor in the heart are observed in hydronephrosis is unknown. Thus, we assessed these components in hydronephrotic mice treated with AT1 receptor blockade and ACE inhibitor. Hydronephrosis was induced by left ureteral ligation in Balb/C mice except sham-operated animals. The levels of cardiac ACE, ACE2 and Mas receptor were measured after treatment of losartan or enalapril. Hydronephrosis led to an increase of ACE level and a decrease of ACE2 and Mas receptor in the heart. Losartan decreased cardiac ACE level, but ACE2 and Mas receptor levels significantly increased in hydronephrotic mice (p Hydronephrosis increased cardiac ACE and suppressed ACE2 and Mas receptor levels. AT1 blockade caused sustained activation of cardiac ACE2 and Mas receptor, but ACE inhibitor had the limitation of such activation of Mas receptor in hydronephrotic animals. © The Author(s) 2015.

  14. Effects of Altered Levels of Extracellular Superoxide Dismutase and Irradiation on Hippocampal Neurogenesis in Female Mice

    International Nuclear Information System (INIS)

    Zou, Yani; Leu, David; Chui, Jennifer; Fike, John R.; Huang, Ting-Ting

    2013-01-01

    Purpose: Altered levels of extracellular superoxide dismutase (EC-SOD) and cranial irradiation have been shown to affect hippocampal neurogenesis. However, previous studies were only conducted in male mice, and it was not clear if there was a difference between males and females. Therefore, female mice were studied and the results compared with those generated in male mice from an earlier study. Methods and Materials: Female wild-type, EC-SOD-null (KO), and EC-SOD bigenic mice with neuronal-specific expression of EC-SOD (OE) were subjected to a single dose of 5-Gy gamma rays to the head at 8 weeks of age. Progenitor cell proliferation, differentiation, and long-term survival of newborn neurons were determined. Results: Similar to results from male mice, EC-SOD deficiency and irradiation both resulted in significant reductions in mature newborn neurons in female mice. EC-SOD deficiency reduced long-term survival of newborn neurons whereas irradiation reduced progenitor cell proliferation. Overexpression of EC-SOD corrected the negative impacts from EC-SOD deficiency and irradiation and normalized the production of newborn neurons in OE mice. Expression of neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 were significantly reduced by irradiation in wild-type mice, but the levels were not changed in KO and OE mice even though both cohorts started out with a lower baseline level. Conclusion: In terms of hippocampal neurogenesis, EC-SOD deficiency and irradiation have the same overall effects in males and females at the age the studies were conducted

  15. Serum steroid levels in intact and endocrine ablated BALB/c nude mice and their intact littermates

    DEFF Research Database (Denmark)

    Brünner, N; Svenstrup, B; Spang-Thomsen, M

    1986-01-01

    An investigation was made of the serum steroid levels found in intact and endocrine ablated nude mice of both sexes and in their intact homozygous littermates. The results showed that nude mice have a normal steroidogenesis, but with decreased levels of circulating steroids compared to those...

  16. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Ji-Hee Kang

    Full Text Available Previously, we reported that Lactobacillus gasseri BNR17 (BNR17, a probiotic strain isolated from human breast milk, inhibited increases in body weight and adipocyte tissue weight in high-sucrose diet-fed Sprague-Dawley (SD rats and reduced glucose levels in type 2 diabetes mice. In the current study, we conducted further experiments to extend these observations and elucidate the mechanism involved. C57BL/6J mice received a normal diet, high-sucrose diet or high-sucrose diet containing L. gasseri BNR17 (10(9 or 10(10 CFU for 10 weeks. The administration of L. gasseri BNR17 significantly reduced the body weight and white adipose tissue weight regardless of the dose administered. In BNR17-fed groups, mRNA levels of fatty acid oxidation-related genes (ACO, CPT1, PPARα, PPARδ were significantly higher and those of fatty acid synthesis-related genes (SREBP-1c, ACC were lower compared to the high-sucrose-diet group. The expression of GLUT4, main glucose transporter-4, was elevated in BNR17-fed groups. L. gasseri BNR17 also reduced the levels of leptin and insulin in serum. These results suggest that the anti-obesity actions of L. gasseri BNR17 can be attributed to elevated expression of fatty acid oxidation-related genes and reduced levels of leptin. Additionally, data suggested the anti-diabetes activity of L. gasseri BNR17 may be to due elevated GLUT4 and reduced insulin levels.

  17. High-level transfer and long-term expression of the human beta-globin gene in a mouse transplant model.

    Science.gov (United States)

    Raftopoulos, H; Ward, M; Bank, A

    1998-06-30

    Insertion of a normally functioning human beta-globin gene into the hematopoietic stem cells (HSC) of patients with beta-thalassemia may be an effective approach to the therapy of this disorder. Safe, efficient gene transfer and long-term, high-level expression of the transferred human beta-globin gene in animal models are prerequisites for HSC somatic gene therapy. We have recently shown for the first time that, using a modified beta-globin retroviral vector in a mouse transplant model, long-term, high-level expression of a transferred human beta-globin gene is possible. The human beta-globin gene continues to be detected up to eight months post-transplantation of beta-globin-transduced hematopoietic cells into lethally irradiated mice. The transferred human beta-globin gene is detected in three of five mice surviving long-term (> 4 months) transplanted with bone marrow cells transduced with high-titer virus. The unrearranged 5.1 kb human beta-globin gene-containing provirus is seen by Southern blotting in two of these mice. More importantly, long-term expression of the transferred gene is seen in two mice at levels of 5% and 20% that of endogenous murine beta-globin. We document stem cell transduction by showing continued high-level expression of the human beta-globin gene in secondarily transplanted recipient mice. These results provide evidence of HSC transduction with a human beta-globin gene in animals and demonstrate that retroviral-mediated unrearranged human beta-globin gene transfer leads to a high level of human beta-globin gene expression in the long term for the first time. A gene therapy strategy may be a feasible therapeutic approach to the beta-thalassemias if consistent human beta-globin gene transfer and expression into HSC can be achieved.

  18. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  20. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  1. Mice Expressing a "Hyper-Sensitive" Form of the Cannabinoid Receptor 1 (CB1 Are Neither Obese Nor Diabetic.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism. Therefore, the hypothesis that sustained endocannabinoid signaling can lead to obesity and diabetes was examined in this study using S426A/S430A mutant mice expressing a desensitization-resistant CB1 receptor. These mice display exaggerated and prolonged responses to acute administration of phytocannabinoids, synthetic cannabinoids, and endocannabinoids. As a consequence these mice represent a novel model for determining the effect of enhanced endocannabinoid signaling on metabolic disease. S426A/S430A mutants consumed equivalent amounts of both high fat (45% and low fat (10% chow control diet compared to wild-type littermate controls. S426A/S430A mutants and wild-type mice fed either high or low fat control diet displayed similar fasting blood glucose levels and normal glucose clearance following a 2 g/kg glucose challenge. Furthermore, S426A/S430A mutants and wild-type mice consumed similar amounts of chow following an overnight fast. While both THC and JZL195 significantly increased food intake two hours after injection, this increase was similar between the S426A/S430A mutant and wildtype control mice Our results indicate that S426A/S430A mutant mice expressing the desensitization-resistant form of CB1 do not exhibit differences in body weight, food intake, glucose homeostasis, or re-feeding following a fast.

  2. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Science.gov (United States)

    Tan, Si; Li, Mingxia; Ding, Xiaobo; Fan, Shengjie; Guo, Lu; Gu, Ming; Zhang, Yu; Feng, Li; Jiang, Dong; Li, Yiming; Xi, Wanpeng; Huang, Cheng; Zhou, Zhiqin

    2014-01-01

    Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice. The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  3. Effects of Fortunella margarita fruit extract on metabolic disorders in high-fat diet-induced obese C57BL/6 mice.

    Directory of Open Access Journals (Sweden)

    Si Tan

    Full Text Available INTRODUCTION: Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle fruit extract (FME on high-fat diet-induced C57BL/6 obese mice. METHODS: The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow, high-fat diet (HF, and high-fat diet with 1% (w/w extract of kumquat (HF+FME for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay. RESULTS: In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC, serum low density lipoprotein cholesterol (LDL-c levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG, serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes. CONCLUSION: Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.

  4. Classification of the European Union member states according to the relative level of sustainable development.

    Science.gov (United States)

    Anna, Bluszcz

    Nowadays methods of measurement and assessment of the level of sustained development at the international, national and regional level are a current research problem, which requires multi-dimensional analysis. The relative assessment of the sustainability level of the European Union member states and the comparative analysis of the position of Poland relative to other countries was the aim of the conducted studies in the article. EU member states were treated as objects in the multi-dimensional space. Dimensions of space were specified by ten diagnostic variables describing the sustainability level of UE countries in three dimensions, i.e., social, economic and environmental. Because the compiled statistical data were expressed in different units of measure, taxonomic methods were used for building an aggregated measure to assess the level of sustainable development of EU member states, which through normalisation of variables enabled the comparative analysis between countries. Methodology of studies consisted of eight stages, which included, among others: defining data matrices, calculating the variability coefficient for all variables, which variability coefficient was under 10 %, division of variables into stimulants and destimulants, selection of the method of variable normalisation, developing matrices of normalised data, selection of the formula and calculating the aggregated indicator of the relative level of sustainable development of the EU countries, calculating partial development indicators for three studies dimensions: social, economic and environmental and the classification of the EU countries according to the relative level of sustainable development. Statistical date were collected based on the Polish Central Statistical Office publication.

  5. Activity test of various mangosteen (Garcinia mangostana pericarp extract fractions to decrease fasting blood cholesterol levels and lipid peroxidation activity in diabetic mice

    Directory of Open Access Journals (Sweden)

    Saikhu Akhmad Husen

    2017-01-01

    Full Text Available The objectives of this study were to determine the effect of various fractions of mangosteen (Garcinia mangostana pericarp extract to the changes of the fasting blood cholesterol and serum malondialdehyde (MDA levels on diabetic mice (Mus musculus. Thirty 3-4 months old male mice strain BALB/c, weight 20-30 g were divided into six groups. The first group was KN as a non diabetic control group, KD as a diabetic control, KM as a group of diabetic mice treated with metformin, and NP, SP, and P as the treatment groups that were treated by using three different fractions from mangosteen pericarp extract, non polar, semi polar, and polar respectively. The induction of Diabetes mellitus was done by the injection of STZ, and the mice were given a high fat diet treatment to induce the hiperlipidemia condition using lard for three weeks. The blood cholesterol levels were measured in all groups before and after the injection of lard, and day 1, 7, and 14 of treatment as well. The serum MDA level as the indicator of lipid peroxidation were measured by using QuantiChrom TBARS Assay Kit (DTBA-100. The data of cholesterol levels were statistically analyzed by t-test, while the data of serum MDA levels were analyzed by variance analysis followed by Duncan test. The results showed that the polar fraction of mangosteen pericarp had effect to decrease the fasting blood cholesterol level in mice, however the non polar and semi polar fraction had no simmilar effect. All of the fractions has shown significant effect to decrease the serum MDA level in mice. Key words: cholesterol, diabetes mellitus, Garcinia mangostana, malondialdehyde (mda, obesity.

  6. Effect of individual and group housing of mice on the level of radioresistance

    Directory of Open Access Journals (Sweden)

    Dorozhkina O.V.

    2015-12-01

    Full Text Available Aim: to examine the effect of individual and group housing of mice on radioresistance. Material and methods. Effects of individual and group housing of mice on immunity and blood systems were studied on ICR (CD-1 and C57BI6 male mice before and after proton irradiation. Results. Group housing of intact animals resulted in a decline in the number of nucleated cells in the femur bone marrow and thymus mass. The irradiation with proton with energy of 171 MeV at a dose of 1 Gy causes a statistically significant greater reduction of the number of nucleated cells in the femur bone marrow in group-housed mice. A trend toward greater safety of the number of leukocytes in the peripheral blood and higher proliferative activity of bone marrow cells, as well as lower level of aberrant mitoses have been noted in individually-housed mice. Reduction processes in the recovery period of radiation sickness take place at a greater rate in group-housed mice. Conclusion. Group housing of male mice causes increased sensitivity of the blood and immunity systems to the effects of radiation and at the same time accelerates processes of radiation recovery.

  7. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa Martha Perez Gutierrez; Rita Valadez Romero

    2016-01-01

    Objective: To evaluate the anti-obesity activity of bixin (BIX) on C57BL/6J mice which were fed a high-fat diet (HFD) and to determine the mechanism of this effect. Methods: C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8 weeks, then they were treated with BIX for another 13 weeks. After administration for 13 weeks, the animals were sacrificed. Body adiposity, serum lipid level, and insulin resistance were evaluated. In addition, a histological assay of pancreas and liver, an evaluation of the inhibitory properties on pancreatic lipase, and a-amylase were conducted. Results: Administration of BIX significantly decreased the body weight gain, adipocyte size, fat pad weights, hepatic lipid levels in HFD-induced obese mice. In addition, reduced liver weight exhibited decreased serum leptin levels, malic enzyme, glucose-6-phosphate dehydrogenase, hepatic fatty acid synthase, aspartate aminotransferase, alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity. However, superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels were increased in hepatic tissue. BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase. Long term supplementation of BIX significantly decreased hyperlipidemia, insulin resistance and glucose level. Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice. Conclusions: The antiobesity effect of BIX appears to be associated at least in part, to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase, a-glucosidase, and a-amylase. The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels, improving insulin resistance and increasing energy expenditure. Therefore, achiote which has a main component, the carotenoid BIX, could be a viable food for the treatment of obesity and diabetes.

  8. Effects of bixin in high-fat diet-fed-induced fatty liver in C57BL/6J mice

    Institute of Scientific and Technical Information of China (English)

    Rosa; Martha; Perez; Gutierrez; Rita; Valadez; Romero

    2016-01-01

    Objective:To evaluate the anti-obesity activity of bixin(BIX) on C57BL/6J mice which were fed a high-fat diet(HFD) and to determine the mechanism of this effect.Methods:C57BL/6J mice were separately fed a high-calorie diet or a normal diet for 8weeks,then they were treated with BIX for another 13 weeks.After administration for 13 weeks,the animals were sacrificed.Body adiposity,serum lipid level,and insulin resistance were evaluated.In addition,a histological assay of pancreas and liver,an evaluation of the inhibitory properties on pancreatic lipase,and a-amylase were conducted.Results:Administration of BIX significantly decreased the body weight gain,adipocyte size,fat pad weights,hepatic lipid levels in HFD-induced obese mice.In addition,reduced liver weight exhibited decreased serum leptin levels,malic enzyme,glucose-6-phosphate dehydrogenase,hepatic fatty acid synthase,aspartate aminotransferase,alanine aminotransferase and hepatic phosphatidate phosphohydrolase activity.However,superoxide dismutase,catalase,glutathione peroxidase,and glutathione levels were increased in hepatic tissue.BIX also decreased lipid and carbohydrates absorption due to inhibition of pancreatic lipase and a-amylase.Long term supplementation of BIX significantly decreased hyperlipidemia,insulin resistance and glucose level.Decreased levels of hepatic steatosis and the islets of Langerhans appeared less shrunken in HFD-fed mice.Conclusions:The antiobesity effect of BIX appears to be associated at least in part,to its inhibitory effect on lipids and carbohydrate digestion enzymes such as pancreatic lipase,a-glucosidase,and a-amylase.The results suggested that BIX also act as an antioxidant and may treat visceral obesity normalizing glucose levels,improving insulin resistance and increasing energy expenditure.Therefore,achiote which has a main component,the carotenoid BIX,could be a viable food for the treatment of obesity and diabetes.

  9. Endurance capacity of mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Meek, Thomas H; Lonquich, Brian P; Hannon, Robert M; Garland, Theodore

    2009-09-15

    Mice from four lines bred for high voluntary wheel activity run approximately 3-fold more revolutions per day and have elevated maximal oxygen consumption during forced treadmill exercise, as compared with four unselected control (C) lines. We hypothesized that these high runner (HR) lines would have greater treadmill endurance-running capacity. Ninety-six mice from generation 49 were familiarized with running on a motorized treadmill for 3 days. On days 4 and 5, mice were given an incremental speed test (starting at 20 m min(-1), increased 1.5 m min(-1) every 2 min) and endurance was measured as the total time or distance run to exhaustion. Blood samples were taken to measure glucose and lactate concentrations at rest during the photophase, during peak nightly wheel running, and immediately following the second endurance test. Individual differences in endurance time were highly repeatable between days (r=0.79), and mice tended to run longer on the second day (paired t-test, Pwheel running and treadmill endurance differed between the sexes, reinforcing previous studies that indicate sex-specific responses to selective breeding. HR mice appear to have a higher endurance capacity than reported in the literature for inbred strains of mice or transgenics intended to enhance endurance.

  10. Treatment of lysosomal storage disease in MPS VII mice using a recombinant adeno-associated virus.

    Science.gov (United States)

    Watson, G L; Sayles, J N; Chen, C; Elliger, S S; Elliger, C A; Raju, N R; Kurtzman, G J; Podsakoff, G M

    1998-12-01

    Mucopolysaccharidosis type VII (MPS VII) is a lysosomal storage disease caused by a genetic deficiency of beta-glucuronidase (GUS). We used a recombinant adeno-associated virus vector (AAV-GUS) to deliver GUS cDNA to MPS VII mice. The route of vector administration had a dramatic effect on the extent and distribution of GUS activity. Intramuscular injection of AAV-GUS resulted in high, localized production of GUS, while intravenous administration produced low GUS activity in several tissues. This latter treatment of MPS VII mice reduced glycosaminoglycan levels in the liver to normal and reduced storage granules dramatically. We show that a single administration of AAV-GUS can provide sustained expression of GUS in a variety of cell types and is sufficient to reverse the disease phenotype at least in the liver.

  11. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations

    Directory of Open Access Journals (Sweden)

    Cong Xu

    2016-01-01

    Full Text Available On 16 March 2014, the State Council of China launched its first urbanization planning initiative dubbed “National New Urbanization Planning (2014–2020” (NNUP. NNUP put forward 20 urban agglomerations and a sustainable development approach aiming to transform traditional Chinese urbanization to sustainable new urbanization. This study quantitatively evaluates the level of sustainability of the present new urbanization process in 20 Chinese urban agglomerations and provides some positive suggestions for the achievement of sustainable new urbanization. A three-level index system which is based on six fundamental elements in a city and a Full Permutation Polygon Synthetic Indicator evaluation method are adopted. The results show that China is undergoing a new urbanization process with a low level of sustainability and there are many problems remaining from traditional urbanization processes. There exists a polarized phenomenon in the urbanization of 20 urban agglomerations. Based on their own development patterns, the 20 urban agglomerations can be divided into seven categories. Every category has its own development characteristics. The analyses also show that waste of water resources, abuse of land resources, and air pollution are three big problems that are closely linked to traditional Chinese urbanization processes. To achieve sustainable new urbanization in China, four relevant suggestions and comments have been provided.

  12. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice1,2,3

    Science.gov (United States)

    Arrant, Andrew E.; Patel, Aashka R.

    2015-01-01

    Abstract Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/− mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn−/−mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn−/−mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels. PMID:26361634

  13. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    International Nuclear Information System (INIS)

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-01-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG 1 antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk

  14. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  15. INTEGRATION OF SUSTAINABLE DEVELOPMENT AND QUALITY ON ORGANISATIONAL AND REGIONAL LEVEL

    Directory of Open Access Journals (Sweden)

    Aleksandra Kokic Arsic

    2016-09-01

    Full Text Available Subject of the article is an integration of quality management and sustainable development, with the basis of considerations of sustainable development and the structure of the key quality factors pointed to the possibility of achieving synergy of action on the most important variables, as well as the established model of integration of these two complex concepts. Areas of our study were 83 organizations in the region of Central Serbia. The study was based on questionnaires which contained 50 questions about the level of quality and sustainable development in the companies surveyed. Results of research highlights the most influenced variables in condition of constraints related to transition economy characteristics.

  16. Allomyrina dichotoma (Arthropoda: Insecta Larvae Confer Resistance to Obesity in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Young-Il Yoon

    2015-03-01

    Full Text Available To clarify the anti-obesity effect of Allomyrina dichotoma larvae (ADL, we previously reported that ADL block adipocyte differentiation on 3T3-L1 cell lines through downregulation of transcription factors, such as peroxisome proliferator-activated receptor-γ (PPARG and CCAAT/enhancer binding protein-α (CEBPA. In this study, we tested whether ADL prevent obesity in mice fed a high-fat diet (HFD and further investigated the mechanism underlying the effects of ADL. All mice were maintained on a normal-fat diet (NFD for 1 week and then assigned to one of five treatment groups: (1 NFD; (2 HFD; (3 HFD and 100 mg·kg−1·day−1 ADL; (4 HFD and 3000 mg·kg−1·day−1ADL; or (5 HFD and 3000 mg·kg−1·day−1 yerba mate (Ilex paraguariensis, positive control. ADL and yerba mate were administered orally daily. Mice were fed experimental diets and body weight was monitored weekly for 6 weeks. Our results indicated that ADL reduced body weight gain, organ weight and adipose tissue volume in a dose-dependent manner. Body weight gain was approximately 22.4% lower compared to mice fed only HFD, but the difference did not reach the level of statistical significance. Real-time polymerase chain reaction (PCR analysis revealed that gene expression levels of PPARG, CEBPA and lipoprotein lipase (LPL in the epididymal fat tissue of HFD-fed mice receiving 3000 mg·kg−1·day−1 ADL were reduced by 12.4-, 25.7-, and 12.3-fold, respectively, compared to mice fed HFD only. Moreover, mice administered ADL had lower serum levels of triglycerides and leptin than HFD-fed mice that did not receive ADL. Taken together our results suggest that ADL and its constituent bioactive compounds hold potential for the treatment and prevention of obesity.

  17. Antihyperglycemic and anti-inflammatory effects of fermented food paste in high-fat diet and streptozotocin-challenged mice

    Science.gov (United States)

    Zulkawi, Noraisyah; Ng, Kam Heng; Zamberi, Nur Rizi; Yeap, Swee Keong; Satharasinghe, Dilan A; Tan, Sheau Wei; Ho, Wan Yong; Abd Rashid, Nur Yuhasliza; Md Lazim, Mohd Izwan; Jamaluddin, Anisah; Alitheen, Noorjahan Banu; Long, Kamariah

    2018-01-01

    Background Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP), has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed. Methods In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD) and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW) of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment. Results Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration. This effect was contributed by the improvement of insulin sensitivity in the hyperglycemic mice indicated by the oral glucose tolerance test, insulin tolerance test, and end point insulin level. In addition, gene expression study has shown that the antihyperglycemic effect of FFP is related to the improvement of lipid and glucose metabolism in the mice. Furthermore, both 0.1 and 1 g/kg BW of FFP was able to reduce hyperglycemia-related inflammation indicated by the reduction of proinflammatory cytokines, NF-kB and iNOS gene expression and nitric oxide level. Conclusion FFP potentially demonstrated in vivo antihyperglycemic and anti-inflammatory effects on HFD and streptozotocin-induced diabetic mice. PMID:29872261

  18. Sustainability in Canadian Post-Secondary Institutions: The Interrelationships among Sustainability Initiatives and Geographic and Institutional Characteristics

    Science.gov (United States)

    Beveridge, Dan; McKenzie, Marcia; Vaughter, Philip; Wright, Tarah

    2015-01-01

    Purpose: This paper aims to report on a census of high-level sustainability initiatives at all accredited post-secondary institutions in Canada by documenting the institutions that have undertaken sustainability assessments, have signed one or more sustainability declarations, have sustainability offices or officers or have sustainability…

  19. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.; Magistretti, Pierre J.; Petit, Jean Marie

    2015-01-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  1. Sustained sleep fragmentation induces sleep homeostasis in mice

    KAUST Repository

    Baud, Maxime O.

    2015-04-01

    Study Objectives: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. Design: N/A. Setting: Animal sleep research laboratory. Participants : Sixty-six C57BL6/J adult mice. Interventions: Instrumental sleep disruption at a rate of 60/h during 14 days Measurements and Results: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. Conclusions: Chronic sleep fragmentation (SF) increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.

  2. High-Throughput Automatic Training System for Odor-Based Learned Behaviors in Head-Fixed Mice

    Directory of Open Access Journals (Sweden)

    Zhe Han

    2018-02-01

    Full Text Available Understanding neuronal mechanisms of learned behaviors requires efficient behavioral assays. We designed a high-throughput automatic training system (HATS for olfactory behaviors in head-fixed mice. The hardware and software were constructed to enable automatic training with minimal human intervention. The integrated system was composed of customized 3D-printing supporting components, an odor-delivery unit with fast response, Arduino based hardware-controlling and data-acquisition unit. Furthermore, the customized software was designed to enable automatic training in all training phases, including lick-teaching, shaping and learning. Using HATS, we trained mice to perform delayed non-match to sample (DNMS, delayed paired association (DPA, Go/No-go (GNG, and GNG reversal tasks. These tasks probed cognitive functions including sensory discrimination, working memory, decision making and cognitive flexibility. Mice reached stable levels of performance within several days in the tasks. HATS enabled an experimenter to train eight mice simultaneously, therefore greatly enhanced the experimental efficiency. Combined with causal perturbation and activity recording techniques, HATS can greatly facilitate our understanding of the neural-circuitry mechanisms underlying learned behaviors.

  3. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  4. Indomethacin Treatment of Mice with Premalignant Oral Lesions Sustains Cytokine Production and Slows Progression to Cancer.

    Science.gov (United States)

    Johnson, Sara D; Young, M Rita I

    2016-01-01

    Current treatment options for head and neck squamous cell carcinoma (HNSCC) patients are often ineffective due to tumor-localized and systemic immunosuppression. Using the 4-NQO mouse model of oral carcinogenesis, this study showed that premalignant oral lesion cells produce higher levels of the immune modulator, PGE 2 , compared to HNSCC cells. Inhibiting prostaglandin production of premalignant lesion cells with the pan-cyclooxygenase inhibitor indomethacin stimulated their induction of spleen cell cytokine production. In contrast, inhibiting HNSCC prostaglandin production did not stimulate their induction of spleen cell cytokine production. Treatment of mice bearing premalignant oral lesions with indomethacin slowed progression of premalignant oral lesions to HNSCC. Flow cytometric analysis of T cells in the regional lymph nodes of lesion-bearing mice receiving indomethacin treatment showed an increase in lymph node cellularity and in the absolute number of CD8 + T cells expressing IFN-γ compared to levels in lesion-bearing mice receiving diluent control treatment. The cytokine-stimulatory effect of indomethacin treatment was not localized to regional lymph nodes but was also seen in the spleen of mice with premalignant oral lesions. Together, these data suggest that inhibiting prostaglandin production at the premalignant lesion stage boosts immune capability and improves clinical outcomes.

  5. Effects of aqueous extract of Portulaca oleracea L. on oxidative stress and liver, spleen leptin, PARα and FAS mRNA expression in high-fat diet induced mice.

    Science.gov (United States)

    Chen, Bendong; Zhou, Haining; Zhao, Wenchao; Zhou, Wenyan; Yuan, Quan; Yang, Guangshun

    2012-08-01

    We reported that an aqueous extract of Portulaca oleracea L. inhibited high-fat-diet-induced oxidative injury in a dose-dependent manner. Male kunming mice (5-weeks-old, 24 g) were used in this experiment. After a 4-day adaptation period, animals were randomly divided into four groups (n = 10 in each group); Group 1: animals received normal powdered rodent diet; Group 2: animals received high fat diet; Groups 3 and 4: animals received high fat diet and were fed by gavage to mice once a day with aqueous extract at the doses of 100 and 200 mg/kg body weight, respectively. In mice fed with high-fat diet, blood and liver lipid peroxidation level was significantly increased, whereas antioxidant enzymes activities were markedly decreased compared to normal control mice. Administration of an aqueous extract of P. oleracea L. significantly dose-dependently reduced levels of blood and liver lipid peroxidation and increased the activities of blood and liver antioxidant enzymes activities in high fat mice. Moreover, administration of an aqueous extract of P. oleracea L. significantly dose-dependently increase liver Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels. Taken together, these data demonstrate that aqueous extract of P. oleracea L. can markedly alleviate high fat diet-induced oxidative injury by enhancing blood and liver antioxidant enzyme activities, modulating Leptin/β-actin (B), and Liver PPARα/β-actin, decrease liver, spleen FAS mRNA, p-PERK and p-PERK/PERK protein expression levels in mice.

  6. A tripeptide Diapin effectively lowers blood glucose levels in male type 2 diabetes mice by increasing blood levels of insulin and GLP-1.

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    Full Text Available The prevalence of type 2 diabetes (T2D is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1, require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.

  7. Intermittent but not sustained hypoxia activates orexin-containing neurons in mice.

    Science.gov (United States)

    Yamaguchi, Keiji; Futatsuki, Takahiro; Ushikai, Jumpei; Kuroki, Chiharu; Minami, Toshiaki; Kakihana, Yasuyuki; Kuwaki, Tomoyuki

    2015-01-15

    Hypothalamic orexin-containing neurons are activated by CO2 and contribute to hypercapnic ventilatory activation. However, their role in oxygen-related regulation of breathing is not well defined. In this study, we examined whether an experimental model mimicking apnea-induced repetitive hypoxemia (intermittent hypoxia [IH]) activates orexin-containing neurons. Mice were exposed to IH (5×5min at 10% O2), intermittent hyperoxia (IO; 5×5min at 50% O2), sustained hypoxia (SH; 25min at 10% O2), or sham stimulation. Their brains were examined using double immunohistochemical staining for orexin and c-Fos. The results indicated that IH (25.8±3.0%), but not SH (9.0±1.5%) activated orexin-containing neurons when compared to IO (5.5±0.6%) and sham stimulation (5.9±1.4%). These results correlate with those of our previous work showing that IH-induced respiratory long-term facilitation is dependent on orexin-containing neurons. Taken together, orexin contributes to repetitive hypoxia-induced respiratory activation and the hypoxic activation of orexin-containing neurons is pattern dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The E2F2 transcription factor sustains hepatic glycerophospholipid homeostasis in mice.

    Directory of Open Access Journals (Sweden)

    Eduardo N Maldonado

    Full Text Available Increasing evidence links metabolic signals to cell proliferation, but the molecular wiring that connects the two core machineries remains largely unknown. E2Fs are master regulators of cellular proliferation. We have recently shown that E2F2 activity facilitates the completion of liver regeneration after partial hepatectomy (PH by regulating the expression of genes required for S-phase entry. Our study also revealed that E2F2 determines the duration of hepatectomy-induced hepatic steatosis. A transcriptomic analysis of normal adult liver identified "lipid metabolism regulation" as a major E2F2 functional target, suggesting that E2F2 has a role in lipid homeostasis. Here we use wild-type (E2F2+/+ and E2F2 deficient (E2F2-/- mice to investigate the in vivo role of E2F2 in the composition of liver lipids and fatty acids in two metabolically different contexts: quiescence and 48-h post-PH, when cellular proliferation and anabolic demands are maximal. We show that liver regeneration is accompanied by large triglyceride and protein increases without changes in total phospholipids both in E2F2+/+ and E2F2-/- mice. Remarkably, we found that the phenotype of quiescent liver tissue from E2F2-/- mice resembles the phenotype of proliferating E2F2+/+ liver tissue, characterized by a decreased phosphatidylcholine to phosphatidylethanolamine ratio and a reprogramming of genes involved in generation of choline and ethanolamine derivatives. The diversity of fatty acids in total lipid, triglycerides and phospholipids was essentially preserved on E2F2 loss both in proliferating and non-proliferating liver tissue, although notable exceptions in inflammation-related fatty acids of defined phospholipid classes were detected. Overall, our results indicate that E2F2 activity sustains the hepatic homeostasis of major membrane glycerolipid components while it is dispensable for storage glycerolipid balance.

  9. Public services on a district level. The environment closer to the people. More sustainability or not?

    International Nuclear Information System (INIS)

    De Boer, J.; Van Drunen, M.A.; Lammers, P.E.M.; Olsthoorn, A.A.

    2000-01-01

    One way to stimulate households in the Netherlands socially, culturally and economically is to provide them with technological services and tools that are economically and ecologically sound and contribute to sustainability. Every technological service or tool has social, cultural and economical stimuli. However, those incentives are not used systematically in the present Dutch environmental policy. Therefore, an important question in this study is whether those incentives can be used such that they can contribute to sustainability more than the performance level of the technology. In this study special attention is paid to the level on which the services and tools for households in a specific district are organized and provided and how it can contribute to sustainability. In chapter 2 the incentives for sustainable behavior of households are described. In chapter 3 three scenarios are introduced in which the district level is explained by comparing them with two other levels: the micro-level (per households) and the macro-level (per province, national, international). In chapter 4 the expectations with respect to the services and tools and sustainability for the three scenarios are evaluated. Examples of experiments and case studies are spread over the report. 61 refs

  10. Iron-dependent regulation of hepcidin in Hjv-/- mice: evidence that hemojuvelin is dispensable for sensing body iron levels.

    Directory of Open Access Journals (Sweden)

    Konstantinos Gkouvatsos

    Full Text Available Hemojuvelin (Hjv is a bone morphogenetic protein (BMP co-receptor involved in the control of systemic iron homeostasis. Functional inactivation of Hjv leads to severe iron overload in humans and mice due to marked suppression of the iron-regulatory hormone hepcidin. To investigate the role of Hjv in body iron sensing, Hjv-/- mice and isogenic wild type controls were placed on a moderately low, a standard or a high iron diet for four weeks. Hjv-/- mice developed systemic iron overload under all regimens. Transferrin (Tf was highly saturated regardless of the dietary iron content, while liver iron deposition was proportional to it. Hepcidin mRNA expression responded to fluctuations in dietary iron intake, despite the absence of Hjv. Nevertheless, iron-dependent upregulation of hepcidin was more than an order of magnitude lower compared to that seen in wild type controls. Likewise, iron signaling via the BMP/Smad pathway was preserved but substantially attenuated. These findings suggest that Hjv is not required for sensing of body iron levels and merely functions as an enhancer for iron signaling to hepcidin.

  11. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  12. Differential effect of walnut oil and safflower oil on the serum cholesterol level and lesion area in the aortic root of apolipoprotein E-deficient mice.

    Science.gov (United States)

    Iwamoto, Masako; Kono, Misaki; Kawamoto, Daisuke; Tomoyori, Hiroko; Sato, Masao; Imaizumi, Katsumi

    2002-01-01

    Walnut oil (WO) is a good source of alpha-linolenic acid. We compared the effects of WO and high-linoleic safflower oil (HLSO) on the serum lipid level and atherosclerosis development in male and female apolipoprotein (apo) E-deficient mice. The WO diet resulted in a higher level of serum cholesterol than with HLSO. Female mice fed on the WO diet had a greater lesion area in the aortic root than did those on the HLSO diet. There was no diet-dependent difference in the level of cholesterol and its oxidation products in the abdominal and thoracic aorta. These results suggest that the unpleasant effects of the WO diet on apo E-deficient mice may be attributable to alpha-linolenic acid.

  13. Application of a naturalistic psychogenic stressor in periadolescent mice: effect on serum corticosterone levels differs by strain but not sex

    Directory of Open Access Journals (Sweden)

    Klein Laura C

    2010-06-01

    Full Text Available Abstract Background As a first step in determining whether psychogenic stressors might be incorporated into periadolescent mouse models of stress, we evaluated whether a commonly used psychogenic stressor, exposure to red fox urine, alters serum corticosterone levels in periadolescent C57BL/6J and DBA/2J mice. Findings In a 1-day experiment, forty-eight 38-day-old C57BL/6J (N = 12 males; N = 12 females and DBA/2J (N = 12 males; N = 12 females mice were exposed to 10-min of red fox urine via cotton ball (N = 12 C57BL/6J mice; N = 12 DBA/2J mice or to a non-saturated cotton ball (N = 12 C57BL/6J mice; N = 12 DBA/2J mice. All mice were sacrificed 15-min after cotton ball exposure and serum was collected for corticosterone assessment. Overall, there was a main effect for strain such that C57BL/6J male and female mice displayed higher corticosterone levels than did male and female DBA/2J mice. There were no main effects for sex or odor exposure. However, there was a significant strain by odor exposure interaction, whereby, within odor-exposed mice, DBA/2J mice displayed lower corticosterone levels (ng/mL compared to C57BL/6J mice, regardless of sex. Further, among DBA/2J mice, predator odor exposure reduced corticosterone levels compared to no odor exposure. Conclusions Findings indicate that mouse strain, but not sex, may play an important role in the efficacy of a predator odor among periadolescent mice.

  14. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet.

    Science.gov (United States)

    Wang, Jun; Ryu, Ho Kyung

    2015-10-01

    The present study was conducted to investigate the effects of dried Momordica charantia aqueous extracts (MCA) and ethanol extracts (MCE) on obesity and lipid profiles in mice fed a high-fat diet. Forty two ICR mice were randomly divided into six groups. The normal group was fed a basal diet, and other groups were fed a 45% high-fat diet (HFD) for 7 weeks. The normal and HFD groups were also orally administered distilled water each day for 7 weeks. The remaining groups received Momordica charantia extract (0.5 or 1.0 g/kg/day MCA, and 0.5 or 1.0 g/kg/day MCE). In order to measure the anti-obesity and lipid profile improvement effects, body and visceral tissue weight, lipid profiles, plasma insulin levels, hepatic malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity were measured. Both MCA and MCE significantly decreased body and visceral tissue weight relative to those of the HFD group (P Momordica charantia extracts have anti-obesity effects and the ability to modulate lipid prolife of mice fed a HFD by suppressing body weight gain, visceral tissue weight, plasma and hepatic lipid concentrations, and lipid peroxidation along with increasing lipid metabolism.

  15. Nrf2 represses FGF21 during long-term high-fat diet-induced obesity in mice.

    Science.gov (United States)

    Chartoumpekis, Dionysios V; Ziros, Panos G; Psyrogiannis, Agathoklis I; Papavassiliou, Athanasios G; Kyriazopoulou, Venetsana E; Sykiotis, Gerasimos P; Habeos, Ioannis G

    2011-10-01

    Obesity is characterized by chronic oxidative stress. Fibroblast growth factor 21 (FGF21) has recently been identified as a novel hormone that regulates metabolism. NFE2-related factor 2 (Nrf2) is a transcription factor that orchestrates the expression of a battery of antioxidant and detoxification genes under both basal and stress conditions. The current study investigated the role of Nrf2 in a mouse model of long-term high-fat diet (HFD)-induced obesity and characterized its crosstalk to FGF21 in this process. Wild-type (WT) and Nrf2 knockout (Nrf2-KO) mice were fed an HFD for 180 days. During this period, food consumption and body weights were measured. Glucose metabolism was assessed by an intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Total RNA was prepared from liver and adipose tissue and was used for quantitative real-time RT-PCR. Fasting plasma was collected and analyzed for blood chemistries. The ST-2 cell line was used for transfection studies. Nrf2-KO mice were partially protected from HFD-induced obesity and developed a less insulin-resistant phenotype. Importantly, Nrf2-KO mice had higher plasma FGF21 levels and higher FGF21 mRNA levels in liver and white adipose tissue than WT mice. Thus, the altered metabolic phenotype of Nrf2-KO mice under HFD was associated with higher expression and abundance of FGF21. Consistently, the overexpression of Nrf2 in ST-2 cells resulted in decreased FGF21 mRNA levels as well as in suppressed activity of a FGF21 promoter luciferase reporter. The identification of Nrf2 as a novel regulator of FGF21 expands our understanding of the crosstalk between metabolism and stress defense.

  16. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression

    NARCIS (Netherlands)

    van der Vegt, BJ; de Boer, SF; Buwalda, B; de Ruiter, AJH; de Jong, JG; Koolhaas, JM

    2001-01-01

    Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT1A) receptors,

  17. Mice selectively bred for high voluntary wheel-running behavior conserve more fat despite increased exercise.

    Science.gov (United States)

    Hiramatsu, Layla; Garland, Theodore

    2018-04-20

    Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Effects of α-Galactooligosaccharides from Chickpeas on High-Fat-Diet-Induced Metabolic Syndrome in Mice.

    Science.gov (United States)

    Dai, Zhuqing; Lyu, Wanyong; Xie, Minhao; Yuan, Qingxia; Ye, Hong; Hu, Bing; Zhou, Li; Zeng, Xiaoxiong

    2017-04-19

    The gut microbiota has the ability to modulate host energy homeostasis, which may regulate metabolic disorders. Functional oligosaccharide may positively regulate the intestinal microbiota. Therefore, effects of α-galactooligosaccharides (α-GOS) from chickpea on high-fat-diet (HFD)-induced metabolic syndrome and gut bacterial dysbiosis were investigated. After 6 weeks of intervention, HFD led to significant increases in levels of blood glucose, total cholesterol, triglyceride, glycated serum protein, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol of mice compared to normal-chow-fed mice. Meanwhile, all of the α-GOS-treated groups significantly decreased above parameters compared to the HFD group. HFD could significantly decrease the content of all bacteria, especially Bacteroides (9.82 ± 0.09 versus 10.3 ± 0.10; p bacterial ecosystem in a positive way.

  19. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  20. The analysis of the sustainable mobility level in selected European cities

    Energy Technology Data Exchange (ETDEWEB)

    Ciaston-Ciulkin, A.

    2016-07-01

    Transport needs have to be met through efficient and integrated usage of existing transport infrastructure and urban space together with actions taken in order to reduce traffic congestion by reducing the number and length of travels by car and reducing the demand for the travelling. The expected effect of these actions is the less noise, air pollution and greenhouse gas emissions. The article presents the proposal of the indicator for measuring the degree of sustainable mobility based on the example of European Union cities. The presented method for determining the level of sustainable mobility has been inspired by different researches and it is based on a study of different sub-indicators used for measuring the degree of sustainability of the modal split. (Author)

  1. Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study.

    Science.gov (United States)

    Fifer, Helen; Cole, Michelle; Hughes, Gwenda; Padfield, Simon; Smolarchuk, Christa; Woodford, Neil; Wensley, Adrian; Mustafa, Nazim; Schaefer, Ulf; Myers, Richard; Templeton, Kate; Shepherd, Jill; Underwood, Anthony

    2018-05-01

    Between Nov 3, 2014, and Feb 24, 2017, 70 cases of high-level azithromycin-resistant (HL-AziR; minimum inhibitory concentration [MIC] ≥256 mg/L) Neisseria gonorrhoeae were reported from across England. Whole-genome sequencing was done to investigate this outbreak to determine whether the ongoing outbreak represented clonal spread of an HL-AziR N gonorrhoeae strain identified in Leeds. We also wanted to elucidate the molecular mechanisms of azithromycin resistance in N gonorrhoeae in the UK. In this observational study, whole-genome sequencing was done on the HL-AziR N gonorrhoeae isolates from England. As comparators, 110 isolates from the UK and Ireland with a range of azithromycin MICs were also sequenced, including eight isolates from Scotland with azithromycin MICs ranging from 0·12 mg/L to 1·00 mg/L that were N gonorrhoeae multi-antigen sequence type 9768 (ST9768), which was the sequence type initially responsible for the outbreak. The presence of mutations or genes associated with azithromycin resistance was also investigated. 37 of the 60 HL-AziR isolates from England belonged to ST9768, and were genetically similar (mean 4·3 single-nucleotide polymorphisms). A 2059A→G mutation was detected in three or all four alleles of the 23S rRNA gene. Five susceptible ST9768 isolates had one mutated 23S rRNA allele and one low-level resistant ST9768 isolate had two mutated alleles. Sustained transmission of a successful HL-AziR clone was seen across England. Mutation 2059A→G was found in isolates with lower azithromycin MICs. Azithromycin exposure might have provided the selection pressure for one or two mutated copies of the 23S rRNA gene to recombine with wild-type copies, leading to three or four mutated copies and the HL-AziR phenotype. HL-AziR could emerge in isolates with low azithromycin MICs and eliminate the effectiveness of azithromycin as part of dual therapy for the treatment of gonorrhoea. Public Health England. Copyright © 2018 Elsevier Ltd. All

  2. Sustainability labels on food products

    DEFF Research Database (Denmark)

    Grunert, Klaus G; Hieke, Sophie; Wills, Josephine

    2014-01-01

    of sustainability was limited, but understanding of four selected labels (Fair Trade, Rainforest Alliance, Carbon Footprint, and Animal Welfare) was better, as some of them seem to be self-explanatory. The results indicated a low level of use, no matter whether use was measured as self-reported use of different......This study investigates the relationship between consumer motivation, understanding and use of sustainability labels on food products (both environmental and ethical labels), which are increasingly appearing on food products. Data was collected by means of an online survey implemented in the UK......, France, Germany, Spain, Sweden, and Poland, with a total sample size of 4408 respondents. Respondents expressed medium high to high levels of concern with sustainability issues at the general level, but lower levels of concern in the context of concrete food product choices. Understanding of the concept...

  3. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Rosa Martha Perez Gutierrez

    2014-01-01

    Full Text Available Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H in high-fat diet- (HFD- induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD and severely diabetic (SD mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis.

  4. Ameliorative Effect of Hexane Extract of Phalaris canariensis on High Fat Diet-Induced Obese and Streptozotocin-Induced Diabetic Mice.

    Science.gov (United States)

    Perez Gutierrez, Rosa Martha; Madrigales Ahuatzi, Diana; Horcacitas, Maria Del Carmen; Garcia Baez, Efren; Cruz Victoria, Teresa; Mota-Flores, Jose Maria

    2014-01-01

    Obesity is one of the major factors to increase various disorders like diabetes. The present paper emphasizes study related to the antiobesity effect of Phalaris canariensis seeds hexane extract (Al-H) in high-fat diet- (HFD-) induced obese CD1 mice and in streptozotocin-induced mild diabetic (MD) and severely diabetic (SD) mice.AL-H was orally administered to MD and SD mice at a dose of 400 mg/kg once a day for 30 days, and a set of biochemical parameters were studied: glucose, cholesterol, triglycerides, lipid peroxidation, liver and muscle glycogen, ALP, SGOT, SGPT, glucose-6-phosphatase, glucokinase, hexokinase, SOD, CAT, GSH, GPX activities, and the effect on insulin level. HS-H significantly reduced the intake of food and water and body weight loss as well as levels of blood glucose, serum cholesterol, triglyceride, lipoprotein, oxidative stress, showed a protective hepatic effect, and increased HDL-cholesterol, serum insulin in diabetic mice. The mice fed on the high-fat diet and treated with AL-H showed inhibitory activity on the lipid metabolism decreasing body weight and weight of the liver and visceral adipose tissues and cholesterol and triglycerides in the liver. We conclude that AL-H can efficiently reduce serum glucose and inhibit insulin resistance, lipid abnormalities, and oxidative stress in MD and SD mice. Our results demonstrate an antiobesity effect reducing lipid droplet accumulation in the liver, indicating that its therapeutic properties may be due to the interaction plant components soluble in the hexane extract, with any of the multiple targets involved in obesity and diabetes pathogenesis.

  5. Dietary supplementation of chinese ginseng prevents obesity and metabolic syndrome in high-fat diet-fed mice.

    Science.gov (United States)

    Li, Xiaoxiao; Luo, Jing; Anandh Babu, Pon Velayutham; Zhang, Wei; Gilbert, Elizabeth; Cline, Mark; McMillan, Ryan; Hulver, Matthew; Alkhalidy, Hana; Zhen, Wei; Zhang, Haiyan; Liu, Dongmin

    2014-12-01

    Obesity and diabetes are growing health problems worldwide. In this study, dietary provision of Chinese ginseng (0.5 g/kg diet) prevented body weight gain in high-fat (HF) diet-fed mice. Dietary ginseng supplementation reduced body fat mass gain, improved glucose tolerance and whole body insulin sensitivity, and prevented hypertension in HF diet-induced obese mice. Ginseng consumption led to reduced concentrations of plasma insulin and leptin, but had no effect on plasma adiponectin levels in HF diet-fed mice. Body temperature was higher in mice fed the ginseng-supplemented diet but energy expenditure, respiration rate, and locomotive activity were not significantly altered. Dietary intake of ginseng increased fatty acid oxidation in the liver but not in skeletal muscle. Expression of several transcription factors associated with adipogenesis (C/EBPα and PPARγ) were decreased in the adipose tissue of HF diet-fed mice, effects that were mitigated in mice that consumed the HF diet supplemented with ginseng. Abundance of fatty acid synthase (FASN) mRNA was greater in the adipose tissue of mice that consumed the ginseng-supplemented HF diet as compared with control or un-supplemented HF diet-fed mice. Ginseng treatment had no effect on the expression of genes involved in the regulation of food intake in the hypothalamus. These data suggest that Chinese ginseng can potently prevent the development of obesity and insulin resistance in HF diet-fed mice.

  6. Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemic Mice.

    Science.gov (United States)

    Cui, Xuezhi; Navneet, Soumya; Wang, Jing; Roon, Penny; Chen, Wei; Xian, Ming; Smith, Sylvia B

    2017-04-01

    Hyperhomocysteinemia (Hhcy) is implicated in certain retinal neurovascular diseases, although whether it is causative remains uncertain. In isolated ganglion cells (GCs), mild Hhcy induces profound death, whereas retinal phenotypes in Hhcy mice caused by mutations in remethylation (methylene tetrahydrofolatereductase [Mthfr+/-]) or transsulfuration pathways (cystathionine β-synthase [Cbs+/-]) demonstrate mild GC loss and mild vasculopathy. The current work investigated compensation in vivo of one pathway for the other, and, because the transsulfuration pathway yields cysteine necessary for formation of glutathione (GSH), taurine, and hydrogen sulfide (H2S), they were analyzed also. Retinas isolated from wild-type (WT), Mthfr+/-, and Cbs+/- mice (12 and 22 weeks) were analyzed for methylene tetrahydrofolate reductase (MTHFR), cystathionine-β-synthase (CBS), and cystathionase (CTH) RNA/protein levels. Retinas were evaluated for levels of reduced:oxidized GSH (GSH:GSSG), Slc7a11 (xCT), taurine, taurine transporter (TAUT), and H2S. Aside from decreased CBS RNA/protein levels in Cbs+/- retinas, there were minimal alterations in remethylation/transsulfuration pathways in the two mutant mice strains. Glutathione and taurine levels in Mthfr+/- and Cbs+/- retinas were similar to WT, which may be due to robust levels of xCT and TAUT in mutant retinas. Interestingly, levels of H2S were markedly increased in retinas of Mthfr+/- and Cbs+/- mice compared with WT. Ganglion cell loss and vasculopathy observed in Mthfr+/- and Cbs+/- mouse retinas may be milder than expected, not because of compensatory increases of enzymes in remethylation/transsulfuration pathways, but because downstream transsulfuration pathway products GSH, taurine, and H2S are maintained at robust levels. Elevation of H2S is particularly intriguing owing to neuroprotective properties reported for this gasotransmitter.

  7. Preventive and ameliorating effects of citrus D-limonene on dyslipidemia and hyperglycemia in mice with high-fat diet-induced obesity.

    Science.gov (United States)

    Jing, Li; Zhang, Yu; Fan, Shengjie; Gu, Ming; Guan, Yu; Lu, Xiong; Huang, Cheng; Zhou, Zhiqin

    2013-09-05

    D-limonene is a major constituent in citrus essential oil, which is used in various foods as a flavoring agent. Recently, d-limonene has been reported to alleviate fatty liver induced by a high-fat diet. Here we determined the preventive and therapeutic effects of d-limonene on metabolic disorders in mice with high-fat diet-induced obesity. In the preventive treatment, d-limonene decreased the size of white and brown adipocytes, lowered serum triglyceride (TG) and fasting blood glucose levels, and prevented liver lipid accumulations in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, d-limonene reduced serum TG, low-density lipoprotein cholesterol (LDL-c) and fasting blood glucose levels and glucose tolerance, and increased serum high-density lipoprotein cholesterol (HDL-c) in obese mice. Using a reporter assay and gene expression analysis, we found that d-limonene activated peroxisome proliferator-activated receptor (PPAR)-α signaling, and inhibited liver X receptor (LXR)-β signaling. Our data suggest that the intake of d-limonene may benefit patients with dyslipidemia and hyperglycemia and is a potential dietary supplement for preventing and ameliorating metabolic disorders. © 2013 Elsevier B.V. All rights reserved.

  8. N-Acetyl-Cysteine Alleviates Gut Dysbiosis and Glucose Metabolic Disorder in High-Fat Diet-Induced Mice.

    Science.gov (United States)

    Zheng, Junping; Yuan, Xubing; Zhang, Chen; Jia, Peiyuan; Jiao, Siming; Zhao, Xiaoming; Yin, Heng; Du, Yuguang; Liu, Hongtao

    2018-05-30

    N-acetyl cysteine (NAC), an anti-oxidative reagent for clinical diseases, shows potential application to diabetes and other metabolic diseases. However, it is unknown how NAC modulates the gut microbiota of mice with metabolic syndrome. In present study, we aim to demonstrate the preventive effect of NAC on intestinal dysbiosis and glucose metabolic disorder. C57BL/6J mice were fed with normal chow diet (NCD), NCD plus NAC, high-fat diet (HFD) or HFD plus NAC for five months. After the treatment, the glucose level, circulating endotoxin and metabolism-related key proteins were determined. The fecal samples were analyzed by 16S rRNA sequencing. A novel analysis was carried out to predict the functional changes of gut microbiota. In addition, Spearman's correlation between metabolic biomarkers and bacterial abundance was also assayed. The results show that NAC treatment significantly reversed the glucose intolerance, fasting glucose level, body weight and plasma endotoxin in HFD-fed mice. Further, NAC upregulated the levels of Occludin protein and mucin glycoproteins in proximal colons of HFD-treated mice. Noticeably, NAC promoted the growth of beneficial bacteria such as Akkermansia, Bifidobacterium, Lactobacillus and Allobaculum, and hampered the population of diabetes-related genera including Desulfovibrio and Blautia. Also, NAC may influence the metabolic pathways of intestinal bacteria including lipopolysaccharide biosynthesis, oxidative stress and bacterial motility. Finally, the modified gut microbiota showed close association with the metabolic changes of the NAC treated HFD-fed mice. In summary, NAC may be a potential drug to prevent glucose metabolic disturbance by reshaping the structure of gut microbiota. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Assessment of Dopaminergic Homeostasis in Mice by Use of High-performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake

    DEFF Research Database (Denmark)

    Jensen, Kathrine L; Runegaard, Annika H; Weikop, Pia

    2017-01-01

    Dopamine (DA) is a modulatory neurotransmitter controlling motor activity, reward processes and cognitive function. Impairment of dopaminergic (DAergic) neurotransmission is strongly associated with several central nervous system-associated diseases such as Parkinson's disease, attention...... therapeutic targets for these diseases. Here, we present two useful experimental protocols that when combined provide a functional read-out of the DAergic system in mice. Biochemical and functional parameters on DA homeostasis are obtained through assessment of DA levels and dopamine transporter (DAT......) functionality(5). When investigating the DA system, the ability to reliably measure endogenous levels of DA from adult brain is essential. Therefore, we present how to perform high-performance liquid chromatography (HPLC) on brain tissue from mice to determine levels of DA. We perform the experiment on tissue...

  10. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  11. INFLUENCE OF MICROBIOTA IN EXPERIMENTAL CUTANEOUS LEISHMANIASIS IN SWISS MICE

    Directory of Open Access Journals (Sweden)

    OLIVEIRA Marcia Rosa de

    1999-01-01

    Full Text Available Infection of Swiss/NIH mice with Leishmania major was compared with infection in isogenic resistant C57BL/6 and susceptible BALB/c mice. Swiss/NIH mice showed self-controlled lesions in the injected foot pad. The production of high levels of interferon-g (IFN-g and low levels of interleukin-4 (IL-4 by cells from these animals suggests that they mount a Th1-type immune response. The importance of the indigenous microbiota on the development of murine leishmaniasis was investigated by infecting germfree Swiss/NIH in the hind footpad with L. major and conventionalizing after 3 weeks of infection. Lesions from conventionalized Swiss/NIH mice were significantly larger than conventional mice. Histopathological analysis of lesions from conventionalized animals showed abscesses of variable shapes and sizes and high numbers of parasitized macrophages. In the lesions from conventional mice, besides the absence of abscess formation, parasites were rarely observed. On the other hand, cells from conventional and conventionalized mice produced similar Th1-type response characterized by high levels of IFN-g and low levels of IL-4. In this study, we demonstrated that Swiss/NIH mice are resistant to L. major infection and that the absence of the normal microbiota at the beginning of infection significantly influenced the lesion size and the inflammatory response at the site of infection.

  12. Effect of aerobic exercise and fish oil supplements on plasma levels of inflammatory indexes in mice.

    Science.gov (United States)

    Alizadeh, Hamid; Bazgir, Behzad; Daryanoosh, Farhad; Koushki, Maryam; Sobhani, Vahid

    2014-01-01

    Exercise has positive and negative effects on immune system. Herein, we would like to investigate the effects of incremental aerobic training and fish oil supplementation on the plasma levels of CRP, CPK and IL-17 in trained mice. One of the major roles of immune system is to produce soluble or cellular components that provide the immunity against inflammatory agent. The purpose of this study is to investigate distinct and combine effects of incremental aerobic training and fish oil supplement on plasma levels of IL-17, CPK and CRP in trained male mice. Totally, 54 healthy male mice (2 months old, weight= 34±1 grams) were selected. At first 10 mice were killed to determine base line values, the rest of them were randomly divided into four groups, control group (C, n=11), supplement group (S, n=11), training group (T, n=11) and supplement-training group (ST, n=11).The supplement and supplement-training groups were fed with 0.2cc/day fish oil for 8 weeks. Training and supplement-training groups underwent exercise for 5 sessions per week for a period of 8 weeks on animal treadmill. SPSS 16.0 software and multivariate analysis of variance were used for statistical analysis of data Exercise and fish oil supplement lead to a decrease in CRP levels and subsequently causing a reduction in plasma levels of IL-17 and CK in mice (poil can reduce regulate inflammatory response caused by incremental exercise.

  13. Long-lived hypopituitary Ames dwarf mice are resistant to the detrimental effects of high-fat diet on metabolic function and energy expenditure.

    Science.gov (United States)

    Hill, Cristal M; Fang, Yimin; Miquet, Johanna G; Sun, Liou Y; Masternak, Michal M; Bartke, Andrzej

    2016-06-01

    Growth hormone (GH) signaling stimulates the production of IGF-1; however, increased GH signaling may induce insulin resistance and can reduce life expectancy in both mice and humans. Interestingly, disruption of GH signaling by reducing plasma GH levels significantly improves health span and extends lifespan in mice, as observed in Ames dwarf mice. In addition, these mice have increased adiposity, yet are more insulin sensitive compared to control mice. Metabolic stressors such as high-fat diet (HFD) promote obesity and may alter longevity through the GH signaling pathway. Therefore, our objective was to investigate the effects of a HFD (metabolic stressor) on genetic mechanisms that regulate metabolism during aging. We show that Ames dwarf mice fed HFD for 12 weeks had an increase in subcutaneous and visceral adiposity as a result of diet-induced obesity, yet are more insulin sensitive and have higher levels of adiponectin compared to control mice fed HFD. Furthermore, energy expenditure was higher in Ames dwarf mice fed HFD than in control mice fed HFD. Additionally, we show that transplant of epididymal white adipose tissue (eWAT) from Ames dwarf mice fed HFD into control mice fed HFD improves their insulin sensitivity. We conclude that Ames dwarf mice are resistant to the detrimental metabolic effects of HFD and that visceral adipose tissue of Ames dwarf mice improves insulin sensitivity in control mice fed HFD. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Galantamine Alleviates Inflammation and Other Obesity-Associated Complications in High-Fat Diet–Fed Mice

    Science.gov (United States)

    Satapathy, Sanjaya K; Ochani, Mahendar; Dancho, Meghan; Hudson, LaQueta K; Rosas-Ballina, Mauricio; Valdes-Ferrer, Sergio I; Olofsson, Peder S; Harris, Yael Tobi; Roth, Jesse; Chavan, Sangeeta; Tracey, Kevin J; Pavlov, Valentin A

    2011-01-01

    Obesity, a serious and growing health threat, is associated with low-grade inflammation that plays a role in mediating its adverse consequences. Previously, we have discovered a role for neural cholinergic signaling in controlling inflammation, and demonstrated that the cholinergic agent galantamine suppresses excessive proinflammatory cytokine release. The main objective of this study was to examine the efficacy of galantamine, a clinically-approved drug, in alleviating obesity-related inflammation and associated complications. After 8 wks on a high-fat diet, C57BL/6J mice were treated with either galantamine (4 mg/kg, intraperitoneally [i.p.]) or saline for 4 wks in parallel with mice on a low-fat diet and treated with saline. Galantamine treatment of obese mice significantly reduced body weight, food intake, abdominal adiposity, plasma cytokine and adipokine levels, and significantly improved blood glucose, insulin resistance and hepatic steatosis. In addition, galantamine alleviated impaired insulin sensitivity and glucose intolerance significantly. These results indicate a previously unrecognized potential of galantamine in alleviating obesity, inflammation and other obesity-related complications in mice. These findings are of interest for studying the efficacy of this clinically-approved drug in the context of human obesity and metabolic syndrome. PMID:21738953

  15. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) Harms leaves in high-fat-diet fed mice.

    Science.gov (United States)

    Nishida, Miyako; Kondo, Momoko; Shimizu, Taro; Saito, Tetsuo; Sato, Shinji; Hirayama, Masao; Konishi, Tetsuya; Nishida, Hiroshi

    2016-08-01

    Metabolic syndrome is a major risk factor for a variety of obesity-related diseases. Recently, the effects of functional foods have been investigated on lipid metabolism as a means to reduce lipid content in the blood, liver and adipose tissues associated with carnitine O-palmitoyltransferase (CPT) activity. Acanthopanax senticosus (Rupr. et Maxim) Harms (AS) is a medicinal herb possessing a wide spectra of functions including antioxidant, anti-inflammatory and anti-fatigue actions. Despite much research being focused on the cortical roots of AS, little information is available regarding its leaves, which are also expected to promote human health, for example by improving abnormal lipid metabolism. Here, we explored whether AS leaves affect lipid metabolism in mice fed a high-fat diet. The administration of AS to BALB/c mice fed a high-fat diet significantly decreased plasma triglycerides (TG). CPT activity in the liver of these mice was significantly enhanced by AS treatment. These findings indicate that AS leaves have the potential to alleviate increase in plasma TG levels due to high-fat diet intake in mice, possibly by increasing mitochondrial fatty acid β-oxidation, especially via CPT activation. Consequently, daily intake of AS leaves could promote beneficial health effects including the prevention of metabolic syndrome. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  17. L-citrulline protects from kidney damage in type 1 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Maritza J Romero

    2013-12-01

    Full Text Available Rationale. Diabetic nephropathy is a major cause of end-stage renal disease, associated with endothelial dysfunction. Chronic supplementation of L-arginine (L-arg, the substrate for endothelial nitric oxide synthase (eNOS, failed to improve vascular function. L-citrulline (L-cit supplementation not only increases L-arg synthesis, but also inhibits cytosolic arginase I (Arg I, a competitor of eNOS for the use of L-arg, in the vasculature. Aims. To investigate whether L-cit treatment reduces diabetic nephropathy in streptozotocin (STZ-induced type 1 diabetes in mice and rats and to study its effects on arginase II (ArgII function, the main renal isoform. Methods. STZ-C57BL6 mice received L-cit or vehicle supplemented in the drinking water. For comparative analysis, diabetic ArgII knock out mice and L-cit-treated STZ-rats were evaluated. Results. L-cit exerted protective effects in kidneys of STZ-rats, and markedly reduced urinary albumin excretion, tubulo-interstitial fibrosis and kidney hypertrophy, observed in untreated diabetic mice. Intriguingly, L-cit treatment was accompanied by a sustained elevation of tubular ArgII at 16 wks and significantly enhanced plasma levels of the anti-inflammatory cytokine IL-10. Diabetic ArgII knock out mice showed greater BUN levels, hypertrophy, and dilated tubules than diabetic wild type mice. Despite a marked reduction in collagen deposition in ArgII knock out mice, their albuminuria was not significantly different from diabetic wild type animals. L-cit also restored NO/ROS balance and barrier function in high glucose-treated monolayers of human glomerular endothelial cells. Moreover, L-cit also has the ability to establish an anti-inflammatory profile, characterized by increased IL-10 and reduced IL-1beta and IL-12(p70 generation in the human proximal tubular cells. Conclusions. L-cit supplementation established an anti-inflammatory profile and significantly preserved the nephron function during type 1

  18. In LDL receptor-deficient mice, catabolism of remnant lipoproteins requires a high level of apoE but is inhibited by excess apoE

    NARCIS (Netherlands)

    Dijk, K.W. van; Vlijmen, B.J.M. van; Hof, H.B. van 't; Zee, A. van der; Santamarina-Fojo, S.; Berkel, T.J.C. van; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    To investigate the quantitative requirement for apolipoprotein (apo) E in the clearance of lipoproteins via the non-low density lipoprotein (LDL) receptor mediated pathway, human APOE was overexpressed at various levels in the livers of mice deficient for both the endogenous Apoe and Ldlr genes

  19. Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice.

    Science.gov (United States)

    Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao

    2010-03-15

    The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.

  20. Towards a new paradigm: Activity level balanced sustainability reporting.

    Science.gov (United States)

    Samudhram, Ananda; Siew, Eu-Gene; Sinnakkannu, Jothee; Yeow, Paul H P

    2016-11-01

    Technoeconomic paradigms based economic growth theories suggest that waves of technological innovations drove the economic growth of advanced economies. Widespread economic degradation and pollution is an unintended consequence of such growth. Tackling environmental and social issues at firm levels would help us to overcome such issues at macro-levels. Consequently, the Triple Bottom Line (TBL) reporting approach promotes firm level economic, environmental and social performances. Incorporating Zink's (2014) 3-pillar presentation model, this paper indicates that economic, social and environmental performances tend to be reported at firm level. All three pillars are not covered evenly at the activity levels. Thus, a loophole is identified whereby excellent environmental performance at activity levels could potentially leave poor social performance undisclosed. A refinement of the TBL paradigm, whereby all three pillars are covered at the activity level, is suggested, to enhance sustainability reporting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  2. A model of sustainable development of scientific research health institutions, providing high-tech medical care

    Directory of Open Access Journals (Sweden)

    I. Yu. Bedoreva

    2017-01-01

    Full Text Available The issue of sustainability is relevant for all types of businesses and organizations. Long-term development has always been and remains one of the most difficult tasks faced by organizations. The implementation the provisions of international standards ISO series 9000 has proven to be effective. The ISO standards are concentrated on the global experience for sustainable success of organizations. The standards incorporated all the rational that has been accumulated in this field of knowledge and practice. These standards not only eliminate technical barriers in collaboration and have established standardized approaches, but also serve as a valuable source of international experience and ready management solutions. They became a practical guide for the creation of management systems for sustainable development in organizations of different spheres of activity.Problem and purpose. The article presents the author’s approach to the problem of sustainable development health of the organization. The purpose of this article is to examine the approaches to management for sustainable success of organizations and to describe a model of sustainable development applied in research healthcare institutions providing high-tech medical care.Methodology. The study used general scientific methods of empirical and theoretical knowledge, general logical methods and techniques and methods of system analysis, comparison, analogy, generalization, the materials research for the development of medical organizations.The main results of our work are to first develop the technique of complex estimation of activity of the scientific-research institutions of health and deploy key elements of the management system that allows the level of maturity of the management system of the institution to be set in order to identify its strengths and weaknesses, and to identify areas for improvements and innovation, and to set priorities for determining the sequence of action when

  3. Polyphenol-Rich Fraction of Ecklonia cava Improves Nonalcoholic Fatty Liver Disease in High Fat Diet-Fed Mice

    Directory of Open Access Journals (Sweden)

    Eun-Young Park

    2015-11-01

    Full Text Available Ecklonia cava (E. cava; CA is an edible brown alga with beneficial effects in diabetes via regulation of various metabolic processes such as lipogenesis, lipolysis, inflammation, and the antioxidant defense system in liver and adipose tissue. We investigated the effect of the polyphenol-rich fraction of E. cava produced from Gijang (G-CA on nonalcoholic fatty liver disease (NAFLD in high-fat diet (HFD-fed mice. C57BL6 mice were fed a HFD for six weeks and then the HFD group was administered 300 mg/kg of G-CA extracts by oral intubation for 10 weeks. Body weight, fat mass, and serum biochemical parameters were reduced by G-CA extract treatment. MRI/MRS analysis showed that liver fat and liver volume in HFD-induced obese mice were reduced by G-CA extract treatment. Further, we analyzed hepatic gene expression related to inflammation and lipid metabolism. The mRNA expression levels of inflammatory cytokines and hepatic lipogenesis-related genes were decreased in G-CA-treated HFD mice. The mRNA expression levels of cholesterol 7 alpha-hydroxylase 1 (CYP7A1, the key enzyme in bile acid synthesis, were dramatically increased by G-CA treatment in HFD mice. We suggest that G-CA treatment ameliorated hepatic steatosis by inhibiting inflammation and improving lipid metabolism.

  4. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    Science.gov (United States)

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR5 and CXCR3 and are the most permissive to HIV-1 infection. A single low-dose intravaginal HIV-1 challenge of humanized DRAG mice results in 100% infectivity with accumulation of TFH-cells mainly in the Peyer’s patches and FRT. The novel finding of TFH-cells in the FRT may contribute to the high susceptibility of DRAG mice to HIV-1 infection. This mouse model thus provides new opportunities to study TFH-cells and to evaluate HIV-1 vaccines. PMID:26034905

  5. A Comprehensive Quantitative Evaluation of New Sustainable Urbanization Level in 20 Chinese Urban Agglomerations

    OpenAIRE

    Cong Xu; Shixin Wang; Yi Zhou; Litao Wang; Wenliang Liu

    2016-01-01

    On 16 March 2014, the State Council of China launched its first urbanization planning initiative dubbed “National New Urbanization Planning (2014–2020)” (NNUP). NNUP put forward 20 urban agglomerations and a sustainable development approach aiming to transform traditional Chinese urbanization to sustainable new urbanization. This study quantitatively evaluates the level of sustainability of the present new urbanization process in 20 Chinese urban agglomerations and provides some positive sugg...

  6. High-fat diet exacerbates pain-like behaviors and periarticular bone loss in mice with CFA-induced knee arthritis.

    Science.gov (United States)

    Loredo-Pérez, Aleyda A; Montalvo-Blanco, Carlos E; Hernández-González, Luis I; Anaya-Reyes, Maricruz; Fernández Del Valle-Laisequilla, Cecilia; Reyes-García, Juan G; Acosta-González, Rosa I; Martínez-Martínez, Arisai; Villarreal-Salcido, Jaira C; Vargas-Muñoz, Virginia M; Muñoz-Islas, Enriqueta; Ramírez-Rosas, Martha B; Jiménez-Andrade, Juan M

    2016-05-01

    Our aim was to quantify nociceptive spontaneous behaviors, knee edema, proinflammatory cytokines, bone density, and microarchitecture in high-fat diet (HFD)-fed mice with unilateral knee arthritis. ICR male mice were fed either standard diet (SD) or HFD starting at 3 weeks old. At 17 weeks, HFD and SD mice received intra-articular injections either with Complete Freund's Adjuvant (CFA) or saline into the right knee joint every 7 days for 4 weeks. Spontaneous pain-like behaviors and knee edema were assessed for 26 days. At day 26 post-first CFA injection, serum levels of IL-1β, IL-6, and RANKL were measured by ELISA, and microcomputed tomography analysis of knee joints was performed. HFD-fed mice injected with CFA showed greater spontaneous pain-like behaviors of the affected extremity as well as a decrease in the weight-bearing index compared to SD-fed mice injected with CFA. Knee edema was not significantly different between diets. HFD significantly exacerbated arthritis-induced bone loss at the distal femoral metaphysis but had no effect on femoral diaphyseal cortical bone. HFD did not modify serum levels of proinflammatory cytokines. HFD exacerbates pain-like behaviors and significantly increases the magnitude of periarticular trabecular bone loss in a murine model of unilateral arthritis. © 2016 The Obesity Society.

  7. Effects of exercise on depressive behavior and striatal levels of norepinephrine, serotonin and their metabolites in sleep-deprived mice.

    Science.gov (United States)

    Daniele, Thiago Medeiros da Costa; de Bruin, Pedro Felipe Carvalhedo; Rios, Emiliano Ricardo Vasconcelos; de Bruin, Veralice Meireles Sales

    2017-08-14

    Exercise is a promising adjunctive therapy for depressive behavior, sleep/wake abnormalities, cognition and motor dysfunction. Conversely, sleep deprivation impairs mood, cognition and functional performance. The objective of this study is to evaluate the effects of exercise on anxiety and depressive behavior and striatal levels of norepinephrine (NE), serotonin and its metabolites in mice submitted to 6h of total sleep deprivation (6h-TSD) and 72h of Rapid Eye Movement (REM) sleep deprivation (72h-REMSD). Experimental groups were: (1) mice submitted to 6h-TSD by gentle handling; (2) mice submitted to 72h-REMSD by the flower pot method; (3) exercise (treadmill for 8 weeks); (4) exercise followed by 6h-TSD; (5) exercise followed by 72h-REMSD; (6) control (home cage). Behavioral tests included the Elevated Plus Maze and tail-suspension. NE, serotonin and its metabolites were determined in the striatum using high-performance liquid chromatography (HPLC). Sleep deprivation increased depressive behavior (time of immobilization in the tail-suspension test) and previous exercise hindered it. Sleep deprivation increased striatal NE and previous exercise reduced it. Exercise only was associated with higher levels of serotonin. Furthermore, exercise reduced serotonin turnover associated with sleep deprivation. In brief, previous exercise prevented depressive behavior and reduced striatal high NE levels and serotonin turnover. The present findings confirm the effects of exercise on behavior and neurochemical alterations associated with sleep deprivation. These findings provide new avenues for understanding the mechanisms of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Determination of consumer awareness about sustainable fashion

    Science.gov (United States)

    Saricam, C.; Erdumlu, N.; Silan, A.; Dogan, B. L.; Sonmezcan, G.

    2017-10-01

    The concept of sustainability has begun to gain importance in fashion industry. The companies, which are acting in sustainable fashion, want to gain recognition, inform the consumer about their products and services and generate a demand from the consumers. But the awareness of the consumers about sustainability is still an unknown. In this study, the level of awareness of consumers about sustainable fashion was tried to be determined with a survey established in Turkey in which the socio-demographic characteristics and the awareness level of the participants were questioned. The result of the survey showed that the level of awareness among the participants is not so high and the perception of sustainability is mostly limited to some aspects of sustainable fashion such as “Usage of organic materials” and “Recycling”. Besides, the analysis of the relation between socio-demographic characteristics and awareness level of sustainable fashion showed that the awareness level increased with the education level and income to some extent. But specifically, the males and the participants aged between 24-29 have higher levels of awareness compared with the other participants.

  9. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice*

    Science.gov (United States)

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C. E.; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M. Mahmood

    2016-01-01

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe−/− mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. PMID:27365390

  10. Nature of fatty acids in high fat diets differentially delineates obesity-linked metabolic syndrome components in male and female C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    El Akoum Souhad

    2011-12-01

    Full Text Available Abstract Background Adverse effects of high-fat diets (HFD on metabolic homeostasis are linked to adipose tissue dysfunction. The goal of this study was to examine the effect of the HFD nature on adipose tissue activity, metabolic disturbances and glucose homeostasis alterations in male mice compared with female mice. Methods C57BL/6J mice were fed either a chow diet or HFD including vegetal (VD or animal (AD fat. Body weight, plasmatic parameters and adipose tissue mRNA expression levels of key genes were evaluated after 20 weeks of HFD feeding. Results HFD-fed mice were significantly heavier than control at the end of the protocol. Greater abdominal visceral fat accumulation was observed in mice fed with AD compared to those fed a chow diet or VD. Correlated with weight gain, leptin levels in systemic circulation were increased in HFD-fed mice in both sexes with a significant higher level in AD group compared to VD group. Circulating adiponectin levels as well as adipose tissue mRNA expression levels were significantly decreased in HFD-fed male mice. Although its plasma levels remained unchanged in females, adiponectin mRNA levels were significantly reduced in adipose tissue of both HFD-fed groups with a more marked decrease in AD group compared to VD group. Only HFD-fed male mice were diabetic with increased fasting glycaemia. On the other hand, insulin levels were only increased in AD-fed group in both sexes associated with increased resistin levels. VD did not induce any apparent metabolic alteration in females despite the increased weight gain. Peroxisome Proliferator-Activated Receptors gamma-2 (PPARγ2 and estrogen receptor alpha (ERα mRNA expression levels in adipose tissue were decreased up to 70% in HFD-fed mice but were more markedly reduced in male mice as compared with female mice. Conclusions The nature of dietary fat determines the extent of metabolic alterations reflected in adipocytes through modifications in the pattern of

  11. High LDL levels lead to increased synovial inflammation and accelerated ectopic bone formation during experimental osteoarthritis

    NARCIS (Netherlands)

    Munter, W. de; Bosch, M.H. van den; Sloetjes, A.W.; Croce, K.J.; Vogl, T.; Roth, J.; Koenders, M.I.; Loo, F.A.J. van de; Berg, W.B. van den; Kraan, P.M. van der; Lent, P.L.E.M. van

    2016-01-01

    OBJECTIVE: A relation between osteoarthritis (OA) and increased cholesterol levels is apparent. In the present study we investigate OA pathology in apolipoprotein E (ApoE)(-)(/-) mice with and without a cholesterol-rich diet, a model for high systemic low density lipoprotein (LDL) cholesterol levels

  12. Circular swimming in mice after exposure to a high magnetic field.

    Science.gov (United States)

    Houpt, Thomas A; Houpt, Charles E

    2010-06-16

    There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field. (c) 2010 Elsevier Inc. All rights reserved.

  13. Groundwater-level trends and implications for sustainable water use in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Chornack, Michael P.; Taher, Mohammad R.

    2013-01-01

    The Kabul Basin, which includes the city of Kabul, Afghanistan, with a population of approximately 4 million, has several Afghan, United States, and international military installations that depend on groundwater resources for a potable water supply. This study examined groundwater levels in the Kabul Basin from 2004 to 2012. Groundwater levels have increased slightly in rural areas of the Kabul Basin as a result of normal precipitation after the drought of the early 2000s. However, groundwater levels have decreased in the city of Kabul due to increasing water use in an area with limited recharge. The rate of groundwater-level decrease in the city is greater for the 2008–2012 period (1.5 meters per year (m/yr) on average) than for the 2004–2008 period (0–0.7 m/yr on average). The analysis, which is corroborated by groundwater-flow modeling and a non-governmental organization decision-support model, identified groundwater-level decreases and associated implications for groundwater sustainability in the city of Kabul. Military installations in the city of Kabul (the Central Kabul subbasin) are likely to face water management challenges resulting from long-term groundwater sustainability concerns, such as the potential drying of shallow water-supply wells. Installations in the northern part of the Kabul Basin may have fewer issues with long-term water sustainability. Groundwater-level monitoring and groundwater-flow simulation can be valuable tools for assessing groundwater management options to improve the sustainability of water resources in the Kabul Basin.

  14. Product-service system method to measure sustainability level of traditional smoked fish processing industries

    OpenAIRE

    Purwaningsih Ratna; Cahyantari Anggaina Elfandora; Ariyani Zulfaida; Susanty Aries; Arvianto Ary; Santoso Haryo

    2018-01-01

    Small Medium Enterprise’s (SME) of traditional fish processing at Semarang, Central Java, Indonesia still focus their business on gain more profits. Sustainability aspect has not received enough attention yet. This study aims to review the sustainability level of SME smoked fish Semarang using product service system (PSS) method. PSS consists of three dimensions (1) Environment, (2) Socio-cultural and (3) Economic. Each dimension consists of 6 criteria's. PSS not only assess the level of sust...

  15. Low-level human equivalent gestational lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice.

    Science.gov (United States)

    Leasure, J Leigh; Giddabasappa, Anand; Chaney, Shawntay; Johnson, Jerry E; Pothakos, Konstantinos; Lau, Yuen Sum; Fox, Donald A

    2008-03-01

    Low-level developmental lead exposure is linked to cognitive and neurological disorders in children. However, the long-term effects of gestational lead exposure (GLE) have received little attention. Our goals were to establish a murine model of human equivalent GLE and to determine dose-response effects on body weight, motor functions, and dopamine neurochemistry in year-old offspring. We exposed female C57BL/6 mice to water containing 0, 27 (low), 55 (moderate), or 109 ppm (high) of lead from 2 weeks prior to mating, throughout gestation, and until postnatal day 10 (PN10). Maternal and litter measures, blood lead concentrations ([BPb]), and body weights were obtained throughout the experiment. Locomotor behavior in the absence and presence of amphetamine, running wheel activity, rotarod test, and dopamine utilization were examined in year-old mice. Peak [BPb] were obesity. Similarly, we observed male-specific decreased spontaneous motor activity, increased amphetamine-induced motor activity, and decreased rotarod performance in year-old GLE mice. Levels of dopamine and its major metabolite were altered in year-old male mice, although only forebrain utilization increased. GLE-induced alterations were consistently larger in low-dose GLE mice. Our novel results show that GLE produced permanent male-specific deficits. The nonmonotonic dose-dependent responses showed that low-level GLE produced the most adverse effects. These data reinforce the idea that lifetime measures of dose-response toxicant exposure should be a component of the neurotoxic risk assessment process.

  16. Treatment with anti-IL-6 receptor antibody prevented increase in serum hepcidin levels and improved anemia in mice inoculated with IL-6–producing lung carcinoma cells

    International Nuclear Information System (INIS)

    Noguchi-Sasaki, Mariko; Sasaki, Yusuke; Shimonaka, Yasushi; Mori, Kazushige; Fujimoto-Ouchi, Kaori

    2016-01-01

    Hepcidin, a key regulator of iron metabolism, is produced mainly by interleukin-6 (IL-6) during inflammation. A mechanism linking cancer-related anemia and IL-6 through hepcidin production is suggested. To clarify the hypothesis that overproduction of IL-6 elevates hepcidin levels and contributes to the development of cancer-related anemia, we evaluated anti-IL-6 receptor antibody treatment of cancer-related anemia in an IL-6–producing human lung cancer xenograft model. Nude mice were subcutaneously inoculated with cells of the IL-6–producing human lung cancer cell line LC-06-JCK and assessed as a model of cancer-related anemia. Mice bearing LC-06-JCK were administered rat anti-mouse IL-6 receptor antibody MR16-1 and their serum hepcidin levels and hematological parameters were determined. LC-06-JCK–bearing mice developed anemia according to the production of human IL-6 from xenografts, with decreased values of hemoglobin, hematocrit, and mean corpuscular volume (MCV) compared to non–tumor-bearing (NTB) mice. LC-06-JCK–bearing mice showed decreased body weight and serum albumin with increased serum amyloid A. MR16-1 treatment showed significant inhibition of decreased body weight and serum albumin levels, and suppressed serum amyloid A level. There was no difference in tumor volume between MR16-1-treated mice and immunoglobulin G (IgG)-treated control mice. Decreased hemoglobin, hematocrit, and MCV in LC-06-JCK–bearing mice was significantly relieved by MR16-1 treatment. LC-06-JCK–bearing mice showed high red blood cell counts and erythropoietin levels as compared to NTB mice, whereas MR16-1 treatment did not affect their levels. Serum hepcidin and ferritin levels were statistically elevated in mice bearing LC-06-JCK. LC-06-JCK–bearing mice showed lower values of MCV, mean corpuscular hemoglobin (MCH), and serum iron as compared to NTB mice. Administration of MR16-1 to mice bearing LC-06-JCK significantly suppressed levels of both serum hepcidin and

  17. High Phenolics Rutgers Scarlet Lettuce Improves Glucose Metabolism in High Fat Diet-Induced Obese Mice

    Science.gov (United States)

    Cheng, Diana M.; Roopchand, Diana E.; Poulev, Alexander; Kuhn, Peter; Armas, Isabel; Johnson, William D.; Oren, Andrew; Ribnicky, David; Zelzion, Ehud; Bhattacharya, Debashish; Raskin, Ilya

    2016-01-01

    Scope The ability of high phenolic Rutgers Scarlet Lettuce (RSL) to attenuate metabolic syndrome and gut dysbiosis was studied in very high fat diet (VHFD)-fed mice. Phenolic absorption was assessed in vivo and in a gastrointestinal tract model. Methods and results Mice were fed VHFD, VHFD supplemented with RSL (RSL-VHFD) or store-purchased green lettuce (GL-VHFD), or low-fat diet (LFD) for 13 weeks. Compared to VHFD or GL-VHFD-fed groups, RSL-VHFD group showed significantly improved oral glucose tolerance (p<0.05). Comparison of VHFD, RSL-VHFD, and GL-VHFD groups revealed no significant differences with respect to insulin tolerance, hepatic lipids, body weight gain, fat mass, plasma glucose, triglycerides, free fatty acid, and lipopolysaccharide levels, as well as relative abundances of major bacterial phyla from 16S rDNA amplicon data sequences (from fecal and cecal samples). However, RSL and GL-supplementation increased abundance of several taxa involved in plant polysaccharide degradation/fermentation. RSL phenolics chlorogenic acid, quercetin-3-glucoside, and quercetin-malonyl-glucoside were bioaccessible in the TIM-1 digestion model, but had relatively low recovery. Conclusions RSL phenolics contributed to attenuation of postprandial hyperglycemia. Changes in gut microbiota were likely due to microbiota accessible carbohydrates in RSL and GL rather than RSL phenolics, which may be metabolized, absorbed, or degraded before reaching the colon. PMID:27529448

  18. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High Fat Diet

    Science.gov (United States)

    McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin

    2014-01-01

    SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560

  19. Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet.

    Science.gov (United States)

    Hogan, Shelly; Canning, Corene; Sun, Shi; Sun, Xiuxiu; Kadouh, Hoda; Zhou, Kequan

    2011-04-13

    Dietary antioxidants may provide a cost-effective strategy to promote health in obesity by targeting oxidative stress and inflammation. We recently found that the antioxidant-rich grape skin extract (GSE) also exerts a novel anti-hyperglycemic activity. This study investigated whether 3-month GSE supplementation can improve oxidative stress, inflammation, and hyperglycemia associated with a Western diet-induced obesity. Young diet-induced obese (DIO) mice were randomly divided to three treatment groups (n = 12): a standard diet (S group), a Western high fat diet (W group), and the Western diet plus GSE (2.4 g GSE/kg diet, WGSE group). By week 12, DIO mice in the WGSE group gained significantly more weight (24.6 g) than the W (20.2 g) and S groups (11.2 g); the high fat diet groups gained 80% more weight than the standard diet group. Eight of 12 mice in the W group, compared to only 1 of 12 mice in the WGSE group, had fasting blood glucose levels above 140 mg/dL. Mice in the WGSE group also had 21% lower fasting blood glucose and 17.1% lower C-reactive protein levels than mice in the W group (P < 0.05). However, the GSE supplementation did not affect oxidative stress in diet-induced obesity as determined by plasma oxygen radical absorbance capacity, glutathione peroxidase, and liver lipid peroxidation. Collectively, the results indicated a beneficial role of GSE supplementation for improving glycemic control and inflammation in diet-induced obesity.

  20. Identification of a sustainable two-plant diet that effectively prevents age-related metabolic syndrome and extends lifespan in aged mice.

    Science.gov (United States)

    Li, Xiang-Yong; Liu, Ying-Hua; Wang, Bin; Chen, Chih-Yu; Zhang, Hong-Man; Kang, Jing X

    2018-01-01

    The current system of food production is linked to both the increasing prevalence of chronic disease and the deterioration of the environment, and thereby calls for novel ways of producing nutritious foods in a sustainable manner. In the "longevity village" of Bama, China, we have identified two plant foods, hemp seed and bitter vegetable (Sonchus oleraceus), that are commonly consumed by its residents and grow abundantly in unfarmed land without fertilizers or pesticides. Here, we show that a diet composed of these two foods (the "HB diet") provides a sufficient variety of nutrients and confers significant health benefits. Aged mice allowed ad libitum access to the HB diet not only had longer life spans and improved cognitive function but were also protected against age-related metabolic syndrome, fatty liver, gut dysbiosis and chronic inflammation compared to aged mice fed a control Western diet. Furthermore, longevity-related genes (including 5'adenosine monophosphate-activated protein kinase, sirtuin 1, nuclear respiratory factor 1 and forkhead box O3) were significantly up-regulated, while aging-related genes (including mammalian target of rapamycin and nuclear factor kappa B) were down-regulated. These results demonstrate that the HB diet is capable of promoting health and longevity, and present a sustainable source of healthy foods that can help control the prevalence of chronic diseases and reduce agricultural impact on the environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. NFKB activity decreased in BALB/c mice with high fat diet and fructose

    Science.gov (United States)

    Nur'aini, Farida Dewi; Rahayu, Sri; Rifa'i, Muhaimin

    2017-05-01

    Excessive consumption of fat and fructose leads to obesity due to lipid accumulation. The excessive lipid causes hypertrophy in the adipocytes which lead to cell death. Consequently, dead adipocytes will produce adipokines, which cause macrophages and lymphocytes to infiltrate into the adipose tissue, elevating pro-inflammatory cytokines, thus triggering the production of pro-inflammatory cytokines through NFκB activity. Elicited soybeans extract (ESE) with bacteria and light contain Glyceollin and Isoflavones, which inhibit the activation of NFKB and reduce plasma cholesterol levels by upregulating cholesterol metabolism. This study aimed to analyze the effect of ESE against the relative number of CD4+ NFκB+ cells in BALB/c mice spleen after administrated by high-fat diet food and fructose (HFD) for 20 weeks. Mice were given orally with ESE after administrated by HFD at dose 78 mg/kgBW (D1), 104 mg/kgBW (D2), and 130 mg/kgBW (D3) for 4 weeks. This study also used positive control (HFD mice model without ESE treatment) and normal mice. Identification of NFKB activation was conducted using Flowcytometry analytical methods. Our result indicated that ESE could decrease significantly activation of NFκB in CD4 cell compare than positive control. The optimum dose that can decrease the relative number of CD4+ NFκB+ cells is dose 3.

  2. Effects of Chronic Exposure to Ultrasound of Alternating Frequencies on the Levels of Aggression and Anxiety in CBA and BALB/c mice.

    Science.gov (United States)

    Pavlov, D A; Gorlova, A V; Ushakova, V M; Zubkov, E A; Morozova, A Yu; Inozemtsev, A N; Chekhonin, V P

    2017-08-01

    Stress-induced changes in the behavior of CBA and BALB/c mice were studied after 3-week ultrasound exposure (22-45 kHz). The mice of both lines demonstrated increased aggression in the resident-intruder and social interest paradigms and reduced number of social interactions in the social interest test. Elevated plus maze test showed a decrease in anxiety level in CBA mice and an increase in this parameter in BALB/c mice. Chronic exposure to ultrasound induced an increase in aggression level in mice of both lines that was not directly related to changes in anxiety level.

  3. Differential sensitivity of long-sleep and short-sleep mice to high doses of cocaine.

    Science.gov (United States)

    de Fiebre, C M; Ruth, J A; Collins, A C

    1989-12-01

    The cocaine sensitivity of male and female long-sleep (LS) and short-sleep (SS) mice, which have been selectively bred for differential ethanol-induced "sleep-time," was examined in a battery of behavioral and physiological tests. Differences between these two mouse lines were subtle and were seen primarily at high doses. At high doses, SS mice were more sensitive than LS mice, particularly to cocaine-induced hypothermia; however, significant hypothermia was not seen except at doses which were very near to the seizure threshold. During a 60-min test of locomotor activity, LS mice showed greater stimulation of Y-maze activity by 20 mg/kg cocaine than SS mice. Consistent with the finding of subtle differences in sensitivity to low doses of cocaine. LS and SS mice did not differ in sensitivity to cocaine inhibition of synaptosomal uptake of [3H]-dopamine, [3H]-norepinephrine or [3H]-5-hydroxytryptamine. However, consistent with the finding of differential sensitivity to high doses of cocaine, SS mice were more sensitive to the seizure-producing effects of the cocaine and lidocaine, a local anesthetic. It is hypothesized that the differential sensitivity of these mouse lines to high doses of cocaine is due to differential sensitivity to cocaine's actions on systems that regulate local anesthetic effects. Selective breeding for differential duration of alcohol-induced "sleep-time" may have resulted in differential ion channel structure or function in these mice.

  4. A High-Fat, High-Fructose Diet Induces Antioxidant Imbalance and Increases the Risk and Progression of Nonalcoholic Fatty Liver Disease in Mice

    Directory of Open Access Journals (Sweden)

    Kanokwan Jarukamjorn

    2016-01-01

    Full Text Available Excessive fat liver is an important manifestation of nonalcoholic fatty liver disease (NAFLD, associated with obesity, insulin resistance, and oxidative stress. In the present study, the effects of a high-fat, high-fructose diet (HFFD on mRNA levels and activities of the antioxidant enzymes, including superoxide dismutase (SOD, catalase (CAT, and glutathione peroxidase (GPx, were determined in mouse livers and brains. The histomorphology of the livers was examined and the state of nonenzymatic reducing system was evaluated by measuring the glutathione system and the lipid peroxidation. Histopathology of the liver showed that fat accumulation and inflammation depended on the period of the HFFD-consumption. The levels of mRNA and enzymatic activities of SOD, CAT, and GPx were raised, followed by the increases in malondialdehyde levels in livers and brains of the HFFD mice. The oxidized GSSG content was increased while the total GSH and the reduced GSH were decreased, resulting in the increase in the GSH/GSSG ratio in both livers and brains of the HFFD mice. These observations suggested that liver damage and oxidative stress in the significant organs were generated by continuous HFFD-consumption. Imbalance of antioxidant condition induced by long-term HFFD-consumption might increase the risk and progression of NAFLD.

  5. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    Science.gov (United States)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  6. A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity

    Directory of Open Access Journals (Sweden)

    Hoe-Yune Jung

    2016-01-01

    Full Text Available This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA, which is a combination of four natural components: Fomitopsis pinicola Jeseng; Acanthopanax senticosus; Viscum album coloratum; and Allium tuberosum. High-fat diet- (HFD- fed male C57BL/6J mice were treated with FAVA (200 mg/kg/day for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD. Body and white adipose tissue (WAT weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serum lipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.

  7. Sustainability and Efficiency Improvements of Gas-Cooled High Temperature Reactors

    NARCIS (Netherlands)

    Marmier, A.

    2012-01-01

    The work presented in this thesis covers three fundamental aspects of High Temperature Reactor (HTR) performance, namely fuel testing under irradiation for maximized safety and sustainability, fuel architecture for improved economy and sustainability, and a novel Balance of Plant concept to enable

  8. Refeeding with a high-protein diet after a 48 h fast causes acute hepatocellular injury in mice.

    Science.gov (United States)

    Oarada, Motoko; Tsuzuki, Tsuyoshi; Nikawa, Takeshi; Kohno, Shohei; Hirasaka, Katsuya; Gonoi, Tohru

    2012-05-01

    Elucidating the effects of refeeding a high-protein diet after fasting on disease development is of interest in relation to excessive protein ingestion and irregular eating habits in developed countries. The objective of the present study was to address the hepatic effects of refeeding a high-protein diet after fasting. Mice were fasted for 48 h and then refed with a test diet containing 3, 15, 35, 40, 45 or 50 % casein. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and liver immediate-early gene expression levels were sequentially measured for the first 24 h after initiation of refeeding. Refeeding with a 50 % casein diet after 48 h of fasting led to a rapid (within 2-3 h) and abnormal elevation in serum ALT (P = 0·006) and AST (P = 0·001) activities and a marked increase in liver Finkel-Biskis-Jinkins (FBJ) osteosarcoma oncogene (P = 0·007) and nuclear receptor subfamily 4, group A, member 1 (P = 0·002) mRNA levels. In contrast, refeeding of the 3, 15 or 35 % casein diets produced no substantial increases in serum ALT and AST activities in mice. Refeeding of 40, 45 or 50 % casein increased serum ALT and AST activities in proportion to this dietary casein content. In mice refed the 3, 15 or 35, but not 50 %, casein diets, liver heat shock protein 72 transcript levels greatly increased. We conclude from these data that the consumption of a high-protein diet after fasting causes acute hepatocellular injury in healthy animals, and propose that careful attention should be paid to the use of such diets.

  9. Macro-level integrated renewable energy production schemes for sustainable development

    International Nuclear Information System (INIS)

    Subhadra, Bobban G.

    2011-01-01

    The production of renewable clean energy is a prime necessity for the sustainable future existence of our planet. However, because of the resource-intensive nature, and other challenges associated with these new generation renewable energy sources, novel industrial frameworks need to be co-developed. Integrated renewable energy production schemes with foundations on resource sharing, carbon neutrality, energy-efficient design, source reduction, green processing plan, anthropogenic use of waste resources for the production green energy along with the production of raw material for allied food and chemical industries is imperative for the sustainable development of this sector especially in an emission-constrained future industrial scenario. To attain these objectives, the scope of hybrid renewable production systems and integrated renewable energy industrial ecology is briefly described. Further, the principles of Integrated Renewable Energy Park (IREP) approach, an example for macro-level energy production, and its benefits and global applications are also explored. - Research highlights: → Discusses the need for macro-level renewable energy production schemes. → Scope of hybrid and integrated industrial ecology for renewable energy production. → Integrated Renewable Energy Parks (IREPs): A macro-level energy production scheme. → Discusses the principle foundations and global applications of IREPs. → Describes the significance of IREPs in the carbon-neutral future business arena.

  10. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Science.gov (United States)

    Nganou-Makamdop, Krystelle; van Gemert, Geert-Jan; Arens, Theo; Hermsen, Cornelus C; Sauerwein, Robert W

    2012-01-01

    Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2) = 0.60, pmemory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  11. Long term protection after immunization with P. berghei sporozoites correlates with sustained IFNγ responses of hepatic CD8+ memory T cells.

    Directory of Open Access Journals (Sweden)

    Krystelle Nganou-Makamdop

    Full Text Available Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS, resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected naïve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2 = 0.60, p<0.0001. The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.

  12. Oat beta-glucan ameliorates insulin resistance in mice fed on high-fat and high-fructose diet

    Directory of Open Access Journals (Sweden)

    Jie Zheng

    2013-12-01

    Full Text Available Methods: This study sought to evaluate the impact of oat beta-glucan on insulin resistance in mice fed on high-fat and high-fructose diet with fructose (10%, w/v added in drinking water for 10 weeks. Results: The results showed that supplementation with oat beta-glucan could significantly reduce the insulin resistance both in low-dose (200 mg/kg−1 body weight and high-dose (500 mg/kg−1 body weight groups, but the high-dose group showed a more significant improvement in insulin resistance (P<0.01 compared with model control (MC group along with significant improvement in hepatic glycogen level, oral glucose, and insulin tolerance. Moreover, hepatic glucokinase activity was markedly enhanced both in low-dose and high-dose groups compared with that of MC group (P<0.05. Conclusion: These results suggested that supplementation of oat beta-glucan alleviated insulin resistance and the effect was dose dependent.

  13. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  14. Dietary coconut water vinegar for improvement of obesity-associated inflammation in high-fat-diet-treated mice

    Science.gov (United States)

    Mohamad, Nurul Elyani; Yeap, Swee Keong; Ky, Huynh; Ho, Wan Yong; Boo, Sook Yee; Chua, Joelle; Beh, Boon-Kee; Sharifuddin, Shaiful Adzni; Long, Kamariah; Alitheen, Noorjahan Banu

    2017-01-01

    ABSTRACT Obesity has become a serious health problem worldwide. Various types of healthy food, including vinegar, have been proposed to manage obesity. However, different types of vinegar may have different bioactivities. This study was performed to evaluate the anti-obesity and anti-inflammatory effects of coconut water vinegar on high-fat-diet (HFD)-induced obese mice. Changes in the gut microbiota of the mice were also evaluated. To induce obesity, C57/BL mice were continuously fed an HFD for 33 weeks. Coconut water vinegar (0.08 and 2 ml/kg body weight) was fed to the obese mice from early in week 24 to the end of week 33. Changes in the body weight, fat-pad weight, serum lipid profile, expression of adipogenesis-related genes and adipokines in the fat pad, expression of inflammatory-related genes, and nitric oxide levels in the livers of the untreated and coconut water vinegar-treated mice were evaluated. Faecal samples from the untreated and coconut water vinegar-treated mice (2 ml/kg body weight) were subjected to 16S metagenomic analysis to compare their gut microbiota. The oral intake of coconut water vinegar significantly (p coconut water vinegar also reduced HFD-induced inflammation by down-regulating nuclear factor-κB and inducible nitric oxide synthase expression, which consequently reduced the nitric oxide level in the liver. Alterations in the gut microbiota due to an increase in the populations of the Bacteroides and Akkermansia genera by the coconut water vinegar may have helped to overcome the obesity and inflammation caused by the HFD. These results provide valuable insights into coconut water vinegar as a potential food ingredient with anti-obesity and anti-inflammatory effects. PMID:29056887

  15. Management of Sustainable Energy Efficient Development at the Local Level: Stakeholder-Oriented Approach

    Directory of Open Access Journals (Sweden)

    Horban Vasylyna B.

    2016-11-01

    Full Text Available There presented a theoretical rationale for the expediency of using the stakeholder-oriented approach to improve the process of management of sustainable energy efficient development at the local level. The evolution of theories by scientific schools that studied the concepts of «stakeholders» and «interested parties» is analyzed and generalized. A classification of types of stakeholders in the context of eighteen typological features is suggested, which allows to more effectively align their interests and contributes to establishing constructive forms of cooperation in order to achieve efficient final results. An algorithm of interaction with interested parties in achieving the goals of sustainable energy efficient development at the local level is elaborated. Typical motivational interests of stakeholders at the local level in the field of sustainable energy efficient development (on the example of Ukraine are identified. Instruments of prioritization of stakeholders depending on the life cycle stages of energy efficiency projects are proposed. The results obtained in the course of the research can be used to develop local energy efficient programs, business plans and feasibility studies for energy efficient projects.

  16. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  17. Silymarin alleviates hepatic oxidative stress and protects against metabolic disorders in high-fat diet-fed mice.

    Science.gov (United States)

    Feng, Bin; Meng, Ran; Huang, Bin; Shen, Shanmei; Bi, Yan; Zhu, Dalong

    2016-01-01

    Silymarin is a potent antioxidant medicine and has been widely used for the treatment of liver diseases over 30 years. Recent studies suggest that silymarin may benefit patients with glucose intolerance. However, the mechanism underlying the action of silymarin is not clarified. The aim of this work was to assess the impact of silymarin on glucose intolerance in high-fat diet (HFD)-fed mice, and explore the potential therapeutic mechanisms. C57BL/6 mice were fed with HFD for 12 weeks, randomized, and treated orally with vehicle saline or silymarin (30 mg/kg) daily for 30 days. We found that silymarin significantly improved HFD-induced body weight gain, glucose intolerance, and insulin resistance in mice. Silymarin treatment reduced HFD-increased oxidative stress indicators (reactive oxygen species, lipid peroxidation, protein oxidation) and restored HFD-down-regulated activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) in the plasma and/or liver of the HFD-fed mice. Furthermore, silymarin decreased HFD-up-regulated hepatic NADPH oxidase expression and NF-κB activation in mice. Additionally, silymarin treatment mitigated HFD-increased plasma IL-1β, TNF-α levels, and HFD-enhanced hepatic NO, TLR4, and iNOS expression in mice. These novel data indicate that silymarin has potent anti-diabetic actions through alleviating oxidative stress and inflammatory response, partially by inhibiting hepatic NADPH oxidase expression and the NF-κB signaling.

  18. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    Science.gov (United States)

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  19. The Bidirectional Causality between Country-Level Governance, Economic Growth and Sustainable Development: A Cross-Country Data Analysis

    Directory of Open Access Journals (Sweden)

    Cristina Boţa-Avram

    2018-02-01

    Full Text Available In the context of contemporary society, characterized by the information users’ growing and differentiated needs, the way country-level governance and social responsibility contribute to the ensuring of sustainable economic development is a concern for all the actors of the economic sphere. The aim of this paper is to test the causal linkages between the quality of country-level governance, economic growth and a well-known indicator of economic sustainable development, for a large panel of world-wide countries for a period of 10 years (2006–2015. While there are some prior studies that have argued the bidirectional causality between good public governance and economic development, this study intends to provide a new focus on the relationship between country-level governance and economic growth, on one hand, and between country-level governance and adjusted net savings, as a selected indicator of economic sustainable development, on the other hand. Four hypotheses on the causal relationship between good governance, economic growth and sustainable development were tested by using Granger non-causality tests. Our findings resulting from Granger non-causality tests provide reasonable evidence of Granger causality from country-level governance to economic growth, but from economic growth to country-level governance, the causality is not confirmed. In what regards the relationship between country-level governance and adjusted net savings, the bidirectional Granger causality is not confirmed. The main implication of our study is that improving economic growth and sustainable development is a very challenging issue, and the impact of macro-level factors such as country-level governance should not be neglected.

  20. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  1. High Intensity Interval Training Improves Physical Performance and Frailty in Aged Mice.

    Science.gov (United States)

    Seldeen, Kenneth Ladd; Lasky, Ginger; Leiker, Merced Marie; Pang, Manhui; Personius, Kirkwood Ely; Troen, Bruce Robert

    2018-03-14

    Sarcopenia and frailty are highly prevalent in older individuals, increasing the risk of disability and loss of independence. High intensity interval training (HIIT) may provide a robust intervention for both sarcopenia and frailty by achieving both strength and endurance benefits with lower time commitments than other exercise regimens. To better understand the impacts of HIIT during aging, we compared 24-month-old C57BL/6J sedentary mice with those that were administered 10-minute uphill treadmill HIIT sessions three times per week over 16 weeks. Baseline and end point assessments included body composition, physical performance, and frailty based on criteria from the Fried physical frailty scale. HIIT-trained mice demonstrated dramatic improvement in grip strength (HIIT 10.9% vs -3.9% in sedentary mice), treadmill endurance (32.6% vs -2.0%), and gait speed (107.0% vs 39.0%). Muscles from HIIT mice also exhibited greater mass, larger fiber size, and an increase in mitochondrial biomass. Furthermore, HIIT exercise led to a dramatic reduction in frailty scores in five of six mice that were frail or prefrail at baseline, with four ultimately becoming nonfrail. The uphill treadmill HIIT exercise sessions were well tolerated by aged mice and led to performance gains, improvement in underlying muscle physiology, and reduction in frailty.

  2. Operationalising Ecologically Sustainable Development at the Micro Level Pareto Optimality and the Preservation of Biologically Crucial Levels.

    NARCIS (Netherlands)

    Bithas, K.; Nijkamp, P.

    2006-01-01

    The concept of Ecologically Sustainable Economic Development (ESED) has led to relentlessly heated debate. Yet, it still remains without a clear operational framework. At the micro level where a multitude of projects and programmes are designed, the absence of operational principles has serious

  3. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  4. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  5. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    Science.gov (United States)

    McGrath-Morrow, Sharon A; Hayashi, Madoka; Aherrera, Angela; Lopez, Armando; Malinina, Alla; Collaco, Joseph M; Neptune, Enid; Klein, Jonathan D; Winickoff, Jonathan P; Breysse, Patrick; Lazarus, Philip; Chen, Gang

    2015-01-01

    Electronic cigarette (E-cigarettes) emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth. Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG) or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI) method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml). After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (pE-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  6. [Pulsatilla decoction inhibits vulvovaginal Candida albicans proliferation and reduces inflammatory cytokine levels in vulvovaginal candidiasis mice].

    Science.gov (United States)

    Xia, Dan; Zhang, Mengxiang; Shi, Gaoxiang; Xu, Zhiqing; Wu, Daqiang; Shao, Jing; Wang, Tianming; Wang, Changzhong

    2016-02-01

    To explore the possible regulatory effect of Pulsatilla decoction on Th17 cells and inflammatory cytokines of vulvovaginal candidiasis (VVC) mice. Seventy-two female Kunming mice were randomly assigned into six groups: a blank control group, a VVC model group, a fluconazole group and three Pulsatilla decoction groups (dose levels: 22.5, 15.0 and 7.5 g/kg, respectively). The VVC mouse models were established by vaginal inoculation with Candida albicans (C. albicans) in female mice in pseudoestrus state caused by estradiol injection. After 7-day treatment on VVC mice, the vaginal C. albicans burden was assessed using dilution spread plate method; the vaginal C. albicans morphology was observed by Gram staining method; the levels of interleukin 6 (IL-6), IL-17, IL-21 and tumor necrosis factor α (TNF-α) in sera were detected by ELISA. The content of the transcription factor retinoid related orphan receptor gamma t (RORγt) in vaginal tissues was detected by immunohistochemistry. The VVC mouse models were successfully developed. After treatment, the vaginal C. albicans burden of the fluconazole group and 22.5 g/kg Pulsatilla decoction group dropped significantly compared with that of the VVC model group. Gram staining showed that the VVC mice had lots of C. albicans hyphae in vaginal discharge, that 7.5 g/kg Pulsatilla decoction group remained the mycelia-phase C. albicans, and that 15.0 g/kg Pulsatilla decoction group had the majority of yeast-phase C. albicans and a few of mycelia-phase, while no hyphae and only very few of yeast-phase C. albicans were observed in 22.5 g/kg Pulsatilla decoction group and fluconazole group. After 7-day treatment, compared with the model group, the levels of IL-6, IL- 17, IL-21 and TNF-α in the sera of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups were reduced significantly and the levels of RORγt in the vaginal tissues of the fluconazole group, 15.0 and 22.5 g/kg Pulsatilla decoction groups also decreased

  7. Apolipoprotein A5: A newly identified gene impacting plasmatriglyceride levels in humans and mice

    Energy Technology Data Exchange (ETDEWEB)

    Pennacchio, Len A.; Rubin, Edward M.

    2002-09-15

    Apolipoprotein A5 (APOA5) is a newly described member of theapolipoprotein gene family whose initial discovery arose from comparativesequence analysis of the mammalian APOA1/C3/A4 gene cluster. Functionalstudies in mice indicated that alteration in the level of APOA5significantly impacted plasma triglyceride concentrations. Miceover-expressing human APOA5 displayed significantly reducedtriglycerides, while mice lacking apoA5 had a large increase in thislipid parameter. Studies in humans have also suggested an important rolefor APOA5 in determining plasma triglyceride concentrations. In theseexperiments, polymorphisms in the human gene were found to define severalcommon haplotypes that were associated with significant changes intriglyceride concentrations in multiple populations. Several separateclinical studies have provided consistent and strong support for theeffect with 24 percent of Caucasians, 35 percent of African-Americans and53 percent of Hispanics carrying APOA5 haplotypes associated withincreased plasma triglyceride levels. In summary, APOA5 represents anewly discovered gene involved in triglyceride metabolism in both humansand mice whose mechanism of action remains to be deciphered.

  8. An extremely high dietary iodide supply forestalls severe hypothyroidism in Na+/I- symporter (NIS) knockout mice.

    Science.gov (United States)

    Ferrandino, Giuseppe; Kaspari, Rachel R; Reyna-Neyra, Andrea; Boutagy, Nabil E; Sinusas, Albert J; Carrasco, Nancy

    2017-07-13

    The sodium/iodide symporter (NIS) mediates active iodide (I - ) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I - transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I - . Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate ( 99m TcO 4 - ). NIS KO mice showed undetectable serum T 4 and very low serum T 3 levels when fed a diet supplying the minimum I - requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I - diet partially rescued TH biosynthesis, demonstrating that, at high I - concentrations, I - enters the thyroid through routes other than NIS.

  9. Antidiabetic Effects of Carassius auratus Complex Formula in High Fat Diet Combined Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhi-Hong Wang

    2014-01-01

    Full Text Available Carassius auratus complex formula, including Carassius auratus, Rhizoma dioscoreae, Lycium chinense, and Rehmannia glutinosa Libosch, is a combination prescription of traditional Chinese medicine, which has always been used to treat diabetes mellitus in ancient China. In this study, we provided experimental evidence for the use of Carassius auratus complex formula in the treatment of high fat diet combined streptozotocin- (STZ- induced type 2 diabetes. Carassius auratus complex formula aqueous extract was prepared and the effects of it on blood glucose, serum insulin, adipose tissue weight, oral glucose tolerance test (OGTT, total cholesterol, and triglyceride (TG levels in mice were measured. Moreover, adiponectin, TG synthesis related gene expressions, and the inhibitory effect of aldose reductase (AR were performed to evaluate its antidiabetic effects. After the 8-week treatment, blood glucose, insulin levels, and adipose tissue weight were significantly decreased. OGTT and HOMA-IR index showed improved glucose tolerance. It could also lower plasma TG, TC, and liver TG levels. Furthermore, Carassius auratus complex formula could inhibit the activity of AR and restore adiponectin expression in serum. Based on these findings, it is suggested that Carassius auratus complex formula possesses potent anti-diabetic effects on high fat diet combined STZ-induced diabetic mice.

  10. Elevated mRNA-levels of gonadotropin-releasing hormone and its receptor in plaque-bearing Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Syed Nuruddin

    Full Text Available Research on Alzheimer's disease (AD has indicated an association between hormones of the hypothalamic-pituitary-gonadal (HPG axis and cognitive senescence, indicating that post meno-/andropausal changes in HPG axis hormones are implicated in the neuropathology of AD. Studies of transgenic mice with AD pathologies have led to improved understanding of the pathophysiological processes underlying AD. The aims of this study were to explore whether mRNA-levels of gonadotropin-releasing hormone (Gnrh and its receptor (Gnrhr were changed in plaque-bearing Alzheimer's disease transgenic mice and to investigate whether these levels and amyloid plaque deposition were downregulated by treatment with a gonadotropin-releasing hormone analog (Gnrh-a; Leuprorelin acetate. The study was performed on mice carrying the Arctic and Swedish amyloid-β precursor protein (AβPP mutations (tgArcSwe. At 12 months of age, female tgArcSwe mice showed a twofold higher level of Gnrh mRNA and more than 1.5 higher level of Gnrhr mRNA than age matched controls. Male tgArcSwe mice showed the same pattern of changes, albeit more pronounced. In both sexes, Gnrh-a treatment caused significant down-regulation of Gnrh and Gnrhr mRNA expression. Immunohistochemistry combined with quantitative image analysis revealed no significant changes in the plaque load after Gnrh-a treatment in hippocampus and thalamus. However, plaque load in the cerebral cortex of treated females tended to be lower than in female vehicle-treated mice. The present study points to the involvement of hormonal changes in AD mice models and demonstrates that these changes can be effectively counteracted by pharmacological treatment. Although known to increase in normal aging, our study shows that Gnrh/Gnrhr mRNA expression increases much more dramatically in tgArcSwe mice. Treatment with Leuprorelin acetate successfully abolished the transgene specific effects on Gnrh/Gnrhr mRNA expression. The present experimental

  11. Effect of inulin supplementation in male mice fed with high fat diet on ...

    African Journals Online (AJOL)

    Purpose: To evaluate the preventive and therapeutic effects of inulin supplementation in Naval Medical Research Institute (NMRI) male mice fed with high fat diet. Methods: NMRI male mice (n = 36) were divided into three groups. Control (C1), obese (O1) and experimental mice (E1) were fed during 8 weeks as follows: C1 ...

  12. The immune-regulating effect of Xiao'er Qixingcha in constipated mice induced by high-heat and high-protein diet.

    Science.gov (United States)

    Qu, Chang; Yang, Guang-Hua; Zheng, Rong-Bo; Yu, Xiu-Ting; Peng, Shao-Zhong; Xie, Jian-Hui; Chen, Jian-Nan; Wang, Xiu-Fen; Su, Zi-Ren; Zhang, Xiao-Jun

    2017-03-31

    Xiao'er Qixingcha (EXQ) has been extensively applied to relieve dyspepsia and constipation in children for hundreds of years in China. However, the therapeutic mechanism underlying its efficacy remained to be defined. The present study aimed to clarify the possible laxative and immune-regulating effects of EXQ on two models of experimental constipation in mice, which mimicked the pediatric constipation caused by high-heat and high-protein diet (HHPD). The two models of constipated mice were induced by HHPD or HHPD + atropine respectively. To investigate the laxative and immune-regulating activities of EXQ, animals were treated with three doses of EXQ (0.75, 1.5 and 3 g/kg) for 7 consecutive days. The fecal output parameters (number and weight), weight of intestinal content and, the thymus and spleen indexes were measured. The levels of sIgA, IL-10, TNF-α and LPS in colon and serum were determined by ELISA. Furthermore, the pathological changes of colon tissue were examined after routine H&E staining. Both HHPD and HHPD + atropine treatments obviously inhibited the fecal output and reduced the colonic sIgA, prominently increased the levels of IL-10 and TNF-α in colonic tissue and elevated the contents of LPS in serum and colonic tissues. In contrast, oral administration of EXQ significantly improved the feces characters and dose-dependently decreased the intestinal changes in both models. In HHPD model test, EXQ efficaciously boosted the sIgA level in a dose-dependent manner, significantly elicited decreases in TNF-α and IL-10 levels, and evidently decreased the spleen and thymus indexes. In HHPD + atropine model test, EXQ treatment reversed the pathological changes by not only dramatically decreasing the spleen index and the levels of LPS and IL-10, but also markedly elevating the thymus index. Furthermore, microscopic observation revealed that EXQ treatment maintained the integrity of colonic mucosa, and protected the colonic tissues from inflammation in the

  13. High density lipoproteins improve insulin sensitivity in high-fat diet-fed mice by suppressing hepatic inflammation[S

    Science.gov (United States)

    McGrath, Kristine C.; Li, Xiao Hong; Whitworth, Phillippa T.; Kasz, Robert; Tan, Joanne T.; McLennan, Susan V.; Celermajer, David S.; Barter, Philip J.; Rye, Kerry-Anne; Heather, Alison K.

    2014-01-01

    Obesity-induced liver inflammation can drive insulin resistance. HDL has anti-inflammatory properties, so we hypothesized that low levels of HDL would perpetuate inflammatory responses in the liver and that HDL treatment would suppress liver inflammation and insulin resistance. The aim of this study was to investigate the effects of lipid-free apoAI on hepatic inflammation and insulin resistance in mice. We also investigated apoAI as a component of reconstituted HDLs (rHDLs) in hepatocytes to confirm results we observed in vivo. To test our hypothesis, C57BL/6 mice were fed a high-fat diet (HFD) for 16 weeks and administered either saline or lipid-free apoAI. Injections of lipid-free apoAI twice a week for 2 or 4 weeks with lipid-free apoAI resulted in: i) improved insulin sensitivity associated with decreased systemic and hepatic inflammation; ii) suppression of hepatic mRNA expression for key transcriptional regulators of lipogenic gene expression; and iii) suppression of nuclear factor κB (NF-κB) activation. Human hepatoma HuH-7 cells exposed to rHDLs showed suppressed TNFα-induced NF-κB activation, correlating with decreased NF-κB target gene expression. We conclude that apoAI suppresses liver inflammation in HFD mice and improves insulin resistance via a mechanism that involves a downregulation of NF-κB activation. PMID:24347528

  14. Multidimensional Scaling Approach to Evaluate the Level of Community Forestry Sustainability in Babak Watershed, Lombok Island, West Nusa Tenggara

    Directory of Open Access Journals (Sweden)

    Ryke Nandini

    2017-07-01

    Full Text Available Community forestry in Babak watershed is one of the efforts to reduce critical land area. The aim of this research was to evaluate the level of community forestry sustainability in both of community forest (HKm and private forest in Babak watershed. Multidimensional scaling (MDS was used to analyse the level of community forest sustainability based on the five dimensions of ecology, economy, social, institutional, and technology as well as 29 attributes. Leverage analysis was used to know the sensitive attributes of sustainability, while Monte Carlo analysis and goodness of fit was used to find the accuracy of MDS analysis. The result shows that HKm was in moderate sustainability level (sustainability index 54.08% and private forest was in less sustainability level (sustainability index 48.53%. Furthermore, the ecology and technology in HKm were classified as less sustainable, while the institution and technology in private forest were considered less sustainable. There were 11 sensitive attributes of HKm and 19 sensitive attributes of private forest. The priorities of attribute improvement in HKm include land recovering (the dimension of ecology and cooperative development (the dimension of technology. In private forest, the priorities of attribute improvement include leadership capacity building (the institutional dimension and also the use of silviculture intensive and soil conservation (the dimension of technology.

  15. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice.

    Science.gov (United States)

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C E; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M Mahmood

    2016-08-26

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe(-/-) mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Corporate Sustainability Strategies: A Case Study in Brazil Focused on High Consumers of Electricity

    Directory of Open Access Journals (Sweden)

    Fabricio Casarejos

    2016-08-01

    Full Text Available The decline of socio-ecological resilience has emerged as an unprecedented truth with high risks to local and global economies, thereby increasing the vulnerability of businesses and markets while potentially threatening the wellbeing of civil society as a whole. From a business perspective, corporate strategies towards sustainability are crucial to strengthen the social and economic foundations that foster sustainable development. In order to assist enterprises pursuing leading market positions, this work proposes a set of strategic actions towards sustainability and an evaluation scheme to assess the effectiveness of their implementation process. This proposed global strategy encompasses five key sustainability indices—commitment, investment, difficulty, proactivity and vulnerability—focusing the investigation on a sample of enterprises representing the highest consumers of electricity in the state of Rio de Janeiro, Brazil. Addressing the energy consumption, this study also discusses the concerning level of GHG emissions that are associated with the generation of electricity. Although 85% of the enterprises participating in this survey recognized the relevance of the actions proposed, the current degree of proactivity and vulnerability associated with these enterprises indicate that very few of them have effectively implemented and invested in corporate sustainability programs, certainly a symptom of their institutional vulnerability.

  17. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  18. Extract of Kuding tea prevents high-fat diet-induced metabolic disorders in C57BL/6 mice via liver X receptor (LXR β antagonism.

    Directory of Open Access Journals (Sweden)

    Shengjie Fan

    Full Text Available To investigate the effects of ilex kudingcha C. J. Tseng (kuding tea, a traditional beverage in China, on the metabolic disorders in C57BL/6 mice induced by high-fat diets.For the preventive experiment, the female C57BL/6 mice were fed with a standard diet (Chow, high-fat diet (HF, and high-fat diet mixed with 0.05% ethanol extract of kuding tea (EK for 5 weeks. For the therapeutic experiment, the C57BL/6 mice were fed high-fat diet for 3 months, and then mice were split and EK was given with oral gavages for 2 weeks at 50 mg/day/kg. Body weight and daily food intake amounts were measured. At the end of treatment, the adipocyte images were assayed with a scanning electron microscope, and the fasting blood glucose, glucose tolerance test, serum lipid profile and lipids in the livers were analyzed. A reporter gene assay system was used to test the whether EK could act on nuclear receptor transcription factors, and the gene expression analysis was performed with a quantitative PCR assay.In the preventive treatment, EK blocked the body weight gain, reduced the size of the adipocytes, lowered serum triglyceride, cholesterol, LDL-cholesterol, fasting blood glucose levels and glucose tolerance in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, EK reduced the size of the white adipocytes, serum TG and fasting blood glucose levels in obese mice. With the reporter assay, EK inhibited LXRβ transactivity and mRNA expression of LXRβ target genes.We observed that EK has both preventive and therapeutic roles in metabolic disorders in mice induced with high-fat diets. The effects appear to be mediated through the antagonism of LXRβ transactivity. Our data indicate that kuding tea is a useful dietary therapy and a potential source for the development of novel anti-obesity and lipid lowering drugs.

  19. The influence of blood glucose level on distribution of 18F-FDG in mice with tumor

    International Nuclear Information System (INIS)

    Fu Zhanli; Lin Jinghui; Wang Rongfu; Zhu Shaoli; Zhang Chunli; Pan Zhongyun

    2003-01-01

    To explore the influence of blood glucose level on 18 F-FDG uptake in tumor and normal tissues of mice, thirty five mice carrying Ehrlich ascitic cancer (EAC) are fasted 20 h and divided into four groups. The glucose loading group (n=12) and the control group (n=11) is given a solution of 50% glucose and distilled water orally just one hour before the 18 F FDG injection. Another two groups (n=5, n=7) is given a solution of 10%, 30% glucose respectively. Before 18 F-FDG intravenous injection, blood glucose levels are measured. The mice are killed one hour after the 18 F FDG injection. The tumor and normal tissues are excised, weighed, and counted by a γ well counter. The quantity of 18 F-FDG uptake is expressed as standardized uptake value (SUV). Blood glucose levels of the mice with EAC in the glucose loading group are significantly elevated than the control group (11.98 ± 3.01 mmol/L vs. 3.95 ± 1. 11 mmol/L, P 18 F-FDG uptake ratios of tumor and muscle in the glucose-loading group (1.34, 0.86, 0.48, 0.09, 1.38 respectively) are significantly lower than those in the control group (3.02, 2.62, 0.80, 0.16, 5.38 respectively) (P 18 F-FDG uptake ratios of tumor and brain, heart and blood in the glucose loading group (8.31. 1.05, 1.58, 103.00 respectively) are significantly higher than those in the control group (1.57, 0.64, 1.20, 9.73 respectively) (P 18 F-FDG distribution in mice. suggesting the blood glucose level should be controlled during clinically 18 F-FDG imaging

  20. Community Vitality: The Role of Community-Level Resilience Adaptation and Innovation in Sustainable Development

    Directory of Open Access Journals (Sweden)

    Lenore Newman

    2010-01-01

    Full Text Available Community level action towards sustainable development has emerged as a key scale of intervention in the effort to address our many serious environmental issues. This is hindered by the large-scale destruction of both urban neighbourhoods and rural villages in the second half of the twentieth century. Communities, whether they are small or large, hubs of experimentation or loci of traditional techniques and methods, can be said to have a level of community vitality that acts as a site of resilience, adaptation and innovation in the face of environmental challenges. This paper outlines how community vitality acts as a cornerstone of sustainable development and suggests some courses for future research. A meta-case analysis of thirty-five Canadian communities reveals the characteristics of community vitality emerging from sustainable development experiments and its relationship to resilience, applied specifically to community development.

  1. Serotonin augmentation therapy by escitalopram has minimal effects on amyloid-β levels in early-stage Alzheimer's-like disease in mice.

    Science.gov (United States)

    von Linstow, Christian Ulrich; Waider, Jonas; Grebing, Manuela; Metaxas, Athanasios; Lesch, Klaus Peter; Finsen, Bente

    2017-09-12

    Dysfunction of the serotonergic (5-HTergic) system has been implicated in the cognitive and behavioural symptoms of Alzheimer's disease (AD). Accumulation of toxic amyloid-β (Aβ) species is a hallmark of AD and an instigator of pathology. Serotonin (5-HT) augmentation therapy by treatment with selective serotonin reuptake inhibitors (SSRIs) in patients with AD has had mixed success in improving cognitive function, whereas SSRI administration to mice with AD-like disease has been shown to reduce Aβ pathology. The objective of this study was to investigate whether an increase in extracellular levels of 5-HT induced by chronic SSRI treatment reduces Aβ pathology and whether 5-HTergic deafferentation of the cerebral cortex could worsen Aβ pathology in the APP swe /PS1 ΔE9 (APP/PS1) mouse model of AD. We administered a therapeutic dose of the SSRI escitalopram (5 mg/kg/day) in the drinking water of 3-month-old APP/PS1 mice to increase levels of 5-HT, and we performed intracerebroventricular injections of the neurotoxin 5,7-dihydroxytryptamine (DHT) to remove 5-HTergic afferents. We validated the effectiveness of these interventions by serotonin transporter autoradiography (neocortex 79.7 ± 7.6%) and by high-performance liquid chromatography for 5-HT (neocortex 64% reduction). After 6 months of escitalopram treatment or housing after DHT-induced lesion, we evaluated brain tissue by mesoscale multiplex analysis and sections by IHC analysis. Amyloid-β-containing plaques had formed in the neocortex and hippocampus of 9-month-old APP/PS1 mice after 6 months of escitalopram treatment and 5-HTergic deafferentation. Unexpectedly, levels of insoluble Aβ42 were unaffected in the neocortex and hippocampus after both types of interventions. Levels of insoluble Aβ40 increased in the neocortex of SSRI-treated mice compared with those treated with vehicle control, but they were unaffected in the hippocampus. 5-HTergic deafferentation was without effect on the levels of

  2. Chronic mild stress increases alcohol intake in mice with low dopamine D2 receptor levels.

    Science.gov (United States)

    Delis, Foteini; Thanos, Panayotis K; Rombola, Christina; Rosko, Lauren; Grandy, David; Wang, Gene-Jack; Volkow, Nora D

    2013-02-01

    Alcohol use disorders emerge from a complex interaction between environmental and genetic factors. Stress and dopamine D2 receptor levels (DRD2) have been shown to play a central role in alcoholism. To better understand the interactions between DRD2 and stress in ethanol intake behavior, we subjected Drd2 wild-type (+/+), heterozygous (+/-), and knockout (-/-) mice to 4 weeks of chronic mild stress (CMS) and to an ethanol two-bottle choice during CMS weeks 2-4. Prior to and at the end of the experiment, the animals were tested in the forced swim and open field tests. We measured ethanol intake and preference, immobility in the force swim test, and activity in the open field. We show that under no CMS, Drd2+/- and Drd2-/- mice had lower ethanol intake and preference compared with Drd2+/+. Exposure to CMS decreased ethanol intake and preference in Drd2+/+ and increased them in Drd2+/- and Drd2-/- mice. At baseline, Drd2+/- and Drd2-/- mice had significantly lower activity in the open field than Drd2+/+, whereas no genotype differences were observed in the forced swim test. Exposure to CMS increased immobility during the forced swim test in Drd2+/- mice, but not in Drd2+/+ or Drd2-/- mice, and ethanol intake reversed this behavior. No changes were observed in open field test measures. These findings suggest that in the presence of a stressful environment, low DRD2 levels are associated with increased ethanol intake and preference and that under this condition, increased ethanol consumption could be used as a strategy to alleviate negative mood. (PsycINFO Database Record (c) 2013 APA, all rights reserved).

  3. Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice

    Directory of Open Access Journals (Sweden)

    Andre Bento Chaves Santana

    2014-01-01

    Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.

  4. Implementing the Sustainable Development Goals at University Level

    Science.gov (United States)

    Albareda-Tiana, Silvia; Vidal-Raméntol, Salvador; Fernández-Morilla, Mónica

    2018-01-01

    Purpose: The purpose of this case study is to explore the principles and practices of sustainable development (SD) in the university curriculum. Design/methodology/approach: To explore the principles linked with the sustainable development goals (SDGs) and the learning and teaching practices in sustainability at the International University of…

  5. Differences Between Tg2576 and Wild Type Mice in the NMDA Receptor-Nitric Oxide Pathway After Prolonged Application of a Diet High in Advanced Glycation End Products.

    Science.gov (United States)

    Kristofikova, Zdena; Ricny, Jan; Sirova, Jana; Ripova, Daniela; Lubitz, Irit; Schnaider-Beeri, Michal

    2015-08-01

    It has been suggested that advanced glycation end (AGE) products, via cognate receptor activation, are implicated in several diseases, including Alzheimer's disease. The NMDA receptor-nitric oxide pathway appears to be influenced by AGE products and involved in the pathogenesis of this type of dementia. In this study, C57BL/6J (WT) and transgenic (Tg2576) mice expressing human mutant amyloid precursor protein were kept on prolonged (8 months) diets containing regular or high amounts of AGE products. After the decapitation of 11-months old mice, brain tissue analyses were performed [expressions of the NR1, NR2A and NR2B subunits of NMDA receptors, activities of neuronal, endothelial and inducible nitric oxide synthase (nNOS, eNOS and iNOS)]. Moreover, levels of malondialdehyde and of human amyloid β 1-42 were estimated. We found increased activity of nNOS in WT mice maintained on a high compared to regular AGE diet; however, no similar differences were found in Tg2576 mice. In addition, we observed an increase in NR1 expression in Tg2576 compared to WT mice, both kept on a diet high in AGE products. Correlation analyses performed on mice kept on the regular AGE diet supported close links between particular subunits (NR2A-NR2B, in WT as well as in Tg2576 mice), between subunits and synthase (NR2A/NR2B-nNOS, only in WT mice) or between particular synthases (nNOS-iNOS, only in WT). Correlation analysis also revealed differences between WT mice kept on both diets (changed correlations between NR2A/NR2B-nNOS, between nNOS-eNOS and between eNOS-iNOS). Malondialdehyde levels were increased in both Tg2576 groups when compared to the corresponding WT mice, but no effects of the diets were observed. Analogously, no significant effects of diets were found in the levels of soluble or insoluble amyloid β 1-42 in Tg2576 mice. Our results demonstrate that prolonged ingestion of AGE products can influence the NMDA receptor-nitric oxide pathway in the brain and that only WT mice

  6. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Directory of Open Access Journals (Sweden)

    Wang Jia

    2009-11-01

    Full Text Available Abstract Background Protein kinase C interacting protein (PKCI/HINT1 is a small protein belonging to the histidine triad (HIT family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. Results Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST and the tail suspension (TST tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. Conclusion PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.

  7. Effects of Moxibustion Temperature on Blood Cholesterol Level in a Mice Model of Acute Hyperlipidemia: Role of TRPV1

    Directory of Open Access Journals (Sweden)

    Gui-Ying Wang

    2013-01-01

    Full Text Available Objectives. To compare the effects of moxibustion at two different temperatures (38°C and 46°C on the blood cholesterol level in a mice model of acute hyperlipidemia, to detect the different expression levels of transient receptor potential vanilloid subfamily 1 (TRPV1 in the dorsal root ganglions of the wild mice, and to explore the correlation between TRPV1 and moxibustion’s cholesterol-lowering effects. Method. Two different mice models were used: C57BL/6J wild type (WT and TRPV1 gene knockout (TRPV1−/−. Each model was randomly divided into control group and model group with three subgroups after acute hyperlipidemia was established: model control group, 38°C moxibustion group, and 46°C moxibustion group. The mice in 38°C group and 46°C group were subject to moxibustion. After the therapy, the cholesterol concentration in serum was measured, and the expression of TRPV1 was quantified. Results. In WT mice, moxibustion caused a decrease in blood cholesterol level and upregulation of TRPV1 at the mRNA level, which was significantly greater in the 46°C group. In contrast, in TRPV1−/− mice, the differences of cholesterol-lowering effects of moxibustion were lost. Conclusions. Temperature is one of the important factors affecting the effects of moxibustion, and the cholesterol -lowering effect of moxibustion is related to the activation of TRPV1.

  8. Prevention and reversal of hepatic steatosis with a high-protein diet in mice

    NARCIS (Netherlands)

    Garcia-Caraballo, Sonia C.; Comhair, Tine M.; Verheyen, Fons; Gaemers, Ingrid; Schaap, Frank G.; Houten, Sander M.; Hakvoort, Theodorus B. M.; Dejong, Cornelis H. C.; Lamers, Wouter H.; Koehler, S. Eleonore

    2013-01-01

    The hallmark of NAFLD is steatosis of unknown etiology. We tested the effect of a high-protein (HP)(2) diet on diet-induced steatosis in male C57BL/6 mice with and without pre-existing fatty liver. Mice were fed all combinations of semisynthetic low-fat (LF) or high-fat (HF) and low-protein (LP) or

  9. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    Science.gov (United States)

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  10. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    did not change from baseline levels of intake. In contrast, HAP-2 females and LAP-2 mice of both sexes did not show changes in ethanol intake as a consequence of intermittent ethanol exposure. Conclusions Overall, these results indicate that the magnitude of ethanol withdrawal-related seizures is inversely related to inherited ethanol intake preference. Additionally, intermittent ethanol vapor exposure appears more likely to affect high-drinking mice (C57BL/6J and HAP-2) than low drinkers, even though these animals are less affected by ethanol withdrawal. PMID:21314693

  11. Storage of High Level Nuclear Waste in Germany

    Directory of Open Access Journals (Sweden)

    Dietmar P. F. Möller

    2007-01-01

    Full Text Available Nuclear energy is very often used to generate electricity. But first the energy must be released from atoms what can be done in two ways: nuclear fusion and nuclear fission. Nuclear power plants use nuclear fission to produce electrical energy. The electrical energy generated in nuclear power plants does not produce polluting combustion gases but a renewable energy, an important fact that could play a key role helping to reduce global greenhouse gas emissions and tackling global warming especially as the electricity energy demand rises in the years ahead. This could be assumed as an ideal win-win situation, but the reverse site of the medal is that the production of high-level nuclear waste outweighs this advantage. Hence the paper attempt to highlight the possible state-of-art concepts for the safe and sustaining storage of high-level nuclear waste in Germany.

  12. Functional Deficits Precede Structural Lesions in Mice With High-Fat Diet-Induced Diabetic Retinopathy.

    Science.gov (United States)

    Rajagopal, Rithwick; Bligard, Gregory W; Zhang, Sheng; Yin, Li; Lukasiewicz, Peter; Semenkovich, Clay F

    2016-04-01

    Obesity predisposes to human type 2 diabetes, the most common cause of diabetic retinopathy. To determine if high-fat diet-induced diabetes in mice can model retinal disease, we weaned mice to chow or a high-fat diet and tested the hypothesis that diet-induced metabolic disease promotes retinopathy. Compared with controls, mice fed a diet providing 42% of energy as fat developed obesity-related glucose intolerance by 6 months. There was no evidence of microvascular disease until 12 months, when trypsin digests and dye leakage assays showed high fat-fed mice had greater atrophic capillaries, pericyte ghosts, and permeability than controls. However, electroretinographic dysfunction began at 6 months in high fat-fed mice, manifested by increased latencies and reduced amplitudes of oscillatory potentials compared with controls. These electroretinographic abnormalities were correlated with glucose intolerance. Unexpectedly, retinas from high fat-fed mice manifested striking induction of stress kinase and neural inflammasome activation at 3 months, before the development of systemic glucose intolerance, electroretinographic defects, or microvascular disease. These results suggest that retinal disease in the diabetic milieu may progress through inflammatory and neuroretinal stages long before the development of vascular lesions representing the classic hallmark of diabetic retinopathy, establishing a model for assessing novel interventions to treat eye disease. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  13. The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice.

    Directory of Open Access Journals (Sweden)

    Sharon A McGrath-Morrow

    Full Text Available Electronic cigarette (E-cigarettes emissions present a potentially new hazard to neonates through inhalation, dermal and oral contact. Exposure to nicotine containing E-cigarettes may cause significant systemic absorption in neonates due to the potential for multi-route exposure. Systemic absorption of nicotine and constituents of E-cigarette emissions may adversely impact weight and lung development in the neonate. To address these questions we exposed neonatal mice to E-cigarette emissions and measured systemic cotinine levels and alveolar lung growth.Neonatal mice were exposed to E-cigarettes for the first 10 days of life. E-cigarette cartridges contained either 1.8% nicotine in propylene glycol (PG or PG vehicle alone. Daily weights, plasma and urine cotinine levels and lung growth using the alveolar mean linear intercept (MLI method were measured at 10 days of life and compared to room air controls. Mice exposed to 1.8% nicotine/PG had a 13.3% decrease in total body weight compared to room air controls. Plasma cotinine levels were found to be elevated in neonatal mice exposed to 1.8% nicotine/PG E-cigarettes (mean 62.34± 3.3 ng/ml. After adjusting for sex and weight, the nicotine exposed mice were found to have modestly impaired lung growth by MLI compared to room air control mice (p<.054 trial 1; p<.006 trial 2. These studies indicate that exposure to E-cigarette emissions during the neonatal period can adversely impact weight gain. In addition exposure to nicotine containing E-cigarettes can cause detectable levels of systemic cotinine, diminished alveolar cell proliferation and a modest impairment in postnatal lung growth.

  14. Anti-obesity effect of a novel caffeine-loaded dissolving microneedle patch in high-fat diet-induced obese C57BL/6J mice.

    Science.gov (United States)

    Dangol, Manita; Kim, Suyong; Li, Cheng Guo; Fakhraei Lahiji, Shayan; Jang, Mingyu; Ma, Yonghao; Huh, Inyoung; Jung, Hyungil

    2017-11-10

    Natural products such as caffeine have been found to be effective in reducing body weight through lipolysis. Here, we report the successful loading of caffeine onto dissolving microneedle following inhibition of its crystal growth by hyaluronic acid (HA), the matrix material of the dissolving microneedle (DMN). Further, the anti-obesity activity of caffeine was evaluated in high-fat diet-induced obese C57BL/6J mice. After 6weeks of caffeine loaded dissolving microneedle patch (CMP) administration, lipolysis improved significantly as shown by leptin and adiponectin activity, which resulted in considerable weight loss of about 12.8±0.75% in high-fat diet-induced obese mice. Comparison of the levels of triglyceride, total cholesterol, high-density lipoprotein (HDL)-cholesterol, and low-density lipoprotein (LDL)-cholesterol after CMP administration with the initial levels in obese mice indicated significant anti-obesity activity of CMP. These findings suggested that a novel CMP with an increased amount of caffeine loaded onto DMN has therapeutic activity against obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dwarfism in homozygous Agc1CreERT mice is associated with decreased expression of aggrecan.

    Science.gov (United States)

    Rashid, Harunur; Chen, Haiyan; Hassan, Quamarul; Javed, Amjad

    2017-10-01

    Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, Agc Cre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the Agc Cre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc +/Cre ), and Cre-homozygous (Agc Cre/Cre ) littermates were indistinguishable at birth. However, by 1-month, Agc Cre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc +/Cre littermates, long bones and vertebrae were shorter in Agc Cre/Cre mice. Histological analysis of Agc Cre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of Agc Cre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of Agc Cre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in Agc Cre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc +/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc +/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue. © 2017 Wiley Periodicals, Inc.

  16. Local delivery of biodegradable pirfenidone nanoparticles ameliorates bleomycin-induced pulmonary fibrosis in mice

    Science.gov (United States)

    Trivedi, Ruchit; Redente, Elizabeth F.; Thakur, Ashish; Riches, David W. H.; Kompella, Uday B.

    2012-12-01

    Our purpose was to assess sustained delivery and enhanced efficacy of pirfenidone-loaded nanoparticles after intratracheal instillation. Poly(lactide-co-glycolide) nanoparticles containing pirfenidone (NPs) were prepared and characterized. Biodistribution of NPs and solution was assessed using LC-MS after intratracheal administration in C57Bl/6 mice at 3 and 24 h and 1 week post-administration. Efficacy was tested in C57Bl/6 mice in a bleomycin-induced pulmonary fibrosis model. Mice received 10 μg pirfenidone intratracheally in solution or NPs, once a week, for 3 weeks after bleomycin administration. Drug effects were monitored on day 28. Lung hydroxyproline content, total number of cells, and numbers of macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage (BAL) were assessed. Numbers of macrophages, lymphocytes, and neutrophils were assessed in the lung as well. NPs sustained significantly higher levels of pirfenidone in the lungs and BAL at 24 h and 1 week, compared to the solution group. Pirfenidone solution and NPs significantly reduced hydroxyproline levels by 57 and 81%, respectively, compared to bleomycin alone. At the end of 4 weeks, BAL cellularity was reduced by 25.4% and 56% with solution and NP treatment, respectively. The numbers of lymphocytes and neutrophils in the BAL were also reduced by 58.9 and 82.4% for solution and 74.5% and 89.7% for NPs, respectively. The number of inflammatory macrophages in the lung was reduced by 62.8% and the number of neutrophils was reduced by 59.1% in the NP group and by 37.7% and 44.5%, respectively, in the solution group, compared to bleomycin alone. In conclusion, nanoparticles sustain lung pirfenidone delivery and enhance its anti-fibrotic efficacy.

  17. Sustainment of high confinement in JT-60U reversed shear plasmas

    International Nuclear Information System (INIS)

    Fujita, T.; Kamada, Y.; Ide, S.; Takeji, S.; Sakamoto, Y.; Isayama, A.; Suzuki, T.; Oikawa, T.; Fukuda, T.

    2001-01-01

    confinement is achieved owing to strong internal transport barriers (ITBs), are reported. In a high current plasma with an L-mode edge, deuterium-tritium-equivalent fusion power gain, Q DT eq =0.5 was sustained for 0.8 s (∼ energy confinement time) by adjusting plasma beta precisely using feedback control of stored energy. In a high triangularity plasma with an ELMy H-mode edge, the shrinkage of reversed shear region was suppressed and quasi steady sustainment of high confinement was achieved by raising the poloidal beta and enhancing the bootstrap current peaked at the ITB layer. High bootstrap current fraction (∼80%) was obtained in a high q regime (q 95 ∼9), which leaded to full non-inductive current drive condition. The normalized beta (β N ) of ∼ 2 and H-factor of H 89 ∼3.5 (HH 98y2 ∼2.2) were sustained for 2.7 s (∼ 6 times energy confinement time). (author)

  18. The beneficial effects of exercise on cartilage are lost in mice with reduced levels of ECSOD in tissues.

    Science.gov (United States)

    Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A

    2015-03-15

    Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.

  19. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  20. Hepatic uptake of conjugated bile acids is mediated by both sodium taurocholate cotransporting polypeptide and organic anion transporting polypeptides and modulated by intestinal sensing of plasma bile acid levels in mice.

    Science.gov (United States)

    Slijepcevic, Davor; Roscam Abbing, Reinout L P; Katafuchi, Takeshi; Blank, Antje; Donkers, Joanne M; van Hoppe, Stéphanie; de Waart, Dirk R; Tolenaars, Dagmar; van der Meer, Jonathan H M; Wildenberg, Manon; Beuers, Ulrich; Oude Elferink, Ronald P J; Schinkel, Alfred H; van de Graaf, Stan F J

    2017-11-01

    The Na + -taurocholate cotransporting polypeptide (NTCP/SLC10A1) is believed to be pivotal for hepatic uptake of conjugated bile acids. However, plasma bile acid levels are normal in a subset of NTCP knockout mice and in mice treated with myrcludex B, a specific NTCP inhibitor. Here, we elucidated which transport proteins mediate the hepatic uptake of conjugated bile acids and demonstrated intestinal sensing of elevated bile acid levels in plasma in mice. Mice or healthy volunteers were treated with myrcludex B. Hepatic bile acid uptake kinetics were determined in wild-type (WT), organic anion transporting polypeptide (OATP) knockout mice (lacking Slco1a/1b isoforms), and human OATP1B1-transgenic mice. Effects of fibroblast growth factor 19 (FGF19) on hepatic transporter mRNA levels were assessed in rat hepatoma cells and in mice by peptide injection or adeno-associated virus-mediated overexpression. NTCP inhibition using myrcludex B had only moderate effects on bile acid kinetics in WT mice, but completely inhibited active transport of conjugated bile acid species in OATP knockout mice. Cholesterol 7α-hydroxylase Cyp7a1 expression was strongly down-regulated upon prolonged inhibition of hepatic uptake of conjugated bile acids. Fgf15 (mouse counterpart of FGF19) expression was induced in hypercholanemic OATP and NTCP knockout mice, as well as in myrcludex B-treated cholestatic mice, whereas plasma FGF19 was not induced in humans treated with myrcludex B. Fgf15/FGF19 expression was induced in polarized human enterocyte-models and mouse organoids by basolateral incubation with a high concentration (1 mM) of conjugated bile acids. NTCP and OATPs contribute to hepatic uptake of conjugated bile acids in mice, whereas the predominant uptake in humans is NTCP mediated. Enterocytes sense highly elevated levels of (conjugated) bile acids in the systemic circulation to induce FGF15/19, which modulates hepatic bile acid synthesis and uptake. (Hepatology 2017;66:1631-1643).

  1. Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Wone, Bernard W M; Yim, Won C; Schutz, Heidi; Meek, Thomas H; Garland, Theodore

    2018-04-04

    Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNA Arg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (F st  = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (F sc  = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity. Copyright © 2018. Published by Elsevier B.V.

  2. Effects of chocolate supplementation on metabolic and cardiovascular parameters in ApoE3L mice fed a high-cholesterol atherogenic diet.

    Science.gov (United States)

    Yakala, Gopala K; Wielinga, Peter Y; Suarez, Manuel; Bunschoten, Annelies; van Golde, Jolanda M; Arola, Lluis; Keijer, Jaap; Kleemann, Robert; Kooistra, Teake; Heeringa, Peter

    2013-11-01

    Dietary intake of cocoa and/or chocolate has been suggested to exhibit protective cardiovascular effects although this is still controversial. The aim of this study was to investigate the effects of chocolate supplementation on metabolic and cardiovascular parameters. Four groups of ApoE*3Leiden mice were exposed to the following diet regimens. Group 1: cholesterol-free control diet (CO). Group 2: high-dose (1.0% w/w) control cholesterol (CC). Group 3: CC supplemented chocolate A (CCA) and Group 4: CC supplemented chocolate B (CCB). Both chocolates differed in polyphenol and fiber content, CCA had a relatively high-polyphenol and low-fiber content compared to CCB. Mice fed a high-cholesterol diet showed increased plasma-cholesterol and developed atherosclerosis. Both chocolate treatments, particularly CCA, further increased plasma-cholesterol and increased atherosclerotic plaque formation. Moreover, compared to mice fed a high-cholesterol diet, both chocolate-treated groups displayed increased liver injury. Mice on high-cholesterol diet had elevated plasma levels of sVCAM-1, sE-selectin and SAA, which was further increased in the CCB group. Similar effects were observed for renal inflammation markers. The two chocolate preparations showed unfavorable, but different effects on cardiometabolic health in E3L mice, which dissimilarities may be related to differences in chocolate composition. We conclude that discrepancies reported on the effects of chocolate on cardiometabolic health may at least partly be due to differences in chocolate composition. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary; Becker, Howard C

    2016-04-01

    The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The High Rise Low Cost Housing : Sustainable Neighbourhood Elements (Green Elements) in Malaysia

    Science.gov (United States)

    Wahi, Noraziah; Mohamad, Ismail; Mohamad Zin, Rosli; Munikanan, Vikneswaran; Junaini, Syahrizan

    2018-03-01

    The sustainable development is a vital measure to alleviate the greenhouse gas effect, global warming and any other environment issues. The sustainable neighbourhood concept is not new in Malaysia, However, the concept still needs attention and awareness from the stakeholders. This paper discusses on the sustainable neighbourhood elements specifically green elements application on the high rise low cost housing in Malaysia. Malaysia should have focused sustainable neighbourhood planning and design especially on the high rise low cost housing therefore the future generation can be benefited from this type development.

  5. Radix Stellariae extract prevents high-fat-diet-induced obesity in C57BL/6 mice by accelerating energy metabolism

    Directory of Open Access Journals (Sweden)

    Yin Li

    2017-05-01

    Full Text Available Stellaria dichotoma L. is widely distributed in Ningxia and surrounding areas in northwestern China. Its root, Radix Stellariae (RS, has been used in herbal formulae for treating asthenic-fever, infection, malaria, dyspepsia in children and several other symptoms. This study investigated whether the RS extract (RSE alleviates metabolic disorders. The results indicated that RSE significantly inhibited body weight gain in high-fat (HF-diet-fed C57BL/6 mice, reduced fasting glucose levels, and improved insulin tolerance. Moreover, RSE increased the body temperature of the mice and the expression of uncoupling proteins and peroxisome proliferator-activated receptors in the white adipose tissue. Thus, RSE alleviated metabolic disorders in HF-diet-fed C57BL/6 mice by potentially activating UCP and PPAR signaling.

  6. Sustainability in Business

    DEFF Research Database (Denmark)

    Tollin, Karin; Vej, Jesper

    2012-01-01

    How do companies integrate sustainability into their strategy and practices, and what factors explain their approach? In this paper a typology of sustainability strategies is presented as well as a conceptual framework relating sustainability at the company level to the functional level of market...... managers' mindsets, a framework addressing sustainability from four organisational learning schools was designed and followed......How do companies integrate sustainability into their strategy and practices, and what factors explain their approach? In this paper a typology of sustainability strategies is presented as well as a conceptual framework relating sustainability at the company level to the functional level...... of marketing. The central contribution of the typology is a strategic and managerial view on sustainability. Furthermore, the typology shows that sustainability in business is enacted from different areas of competences and fields in the literature (e.g. supply chain management, corporate branding, value...

  7. Eco-efficiency guiding micro-level actions towards sustainability. Ten basic steps for analysis

    International Nuclear Information System (INIS)

    Huppes, Gjalt; Ishikawa, Masanobu

    2009-01-01

    This paper looks at the compatibility between technological improvements at the micro-level and sustainability at the macro-level. The two main approaches to prevent environmental degradation are technological improvement and economic degrowth. How do we establish the sustainability of technological options? LCA-type analysis of the technology system, combined with economic cost analysis, offers a first integrated eco-efficiency score. However, such a technology analysis focuses on micro-level technology relations only, is usually too optimistic and ignores other constraints implied in a choice. Fitting more comprehensive knowledge into the sustainability evaluation of options requires a unifying systematic framework, which is worked out in the present paper as a ten-step procedure. The integrative framework for empirical analysis is ultimately a comparative-static systems analysis at macro-level, not in a deterministic dynamic mode, which is impossible, but as a knowledge-fed scenario analysis. The analysis shows the change in society's overall eco-efficiency, combining total value creation with total environmental impacts. Possible domains of application include not only technology choices like those in eco-innovation, including changed consumption styles and volumes, but also changes in policies regarding technologies and markets, whether direct policy shifts or indirect changes through institutional adaptations. Ultimately, such a framework also allows culturally framed questions about the type of society we would like to live in, to be analysed in terms of their economic and environmental consequences. (author)

  8. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE-/- mice.

    Science.gov (United States)

    Ma, Ang; Wang, Jing; Yang, Liu; An, Yuanyuan; Zhu, Haibo

    2017-08-01

    HDL plays crucial roles at multiple stages of the pathogenesis of atherosclerosis. AMP-activated protein kinase (AMPK) is a therapeutic candidate for the treatment of cardiovascular disease. However, the effect of AMPK activation on HDL functionality has not been established in vivo. We assessed the effects of pharmacological AMPK activation using A-769662, AICAR, metformin, and IMM-H007 on the atheroprotective functions of HDL in apoE-deficient (apoE -/- ) mice fed with a high-fat diet. After administration, there were no changes in serum lipid levels among the groups. However, mice treated with AMPK activators showed significantly enhanced reverse cholesterol transport in vivo and in vitro. AMPK activation also increased the expression of ABCA1 and ABCG1 in macrophages and scavenger receptor class B type I and LCAT in the liver. HDL from AMPK activation mice exhibited lower HDL inflammatory index and myeloperoxidase activity and higher paraoxonase 1 activity than HDL from untreated mice, implying superior antioxidant and anti-inflammatory capacities. Pharmacological AMPK activation also induced polarization of macrophages to the M2 state and reduced plasma lipid peroxidation, inflammatory cytokine production, and atherosclerotic plaque formation in apoE -/- mice. These observations suggest that pharmacological AMPK activation enhances the anti-atherogenic properties of HDL in vivo. This likely represents a key mechanism by which AMPK activation attenuates atherosclerosis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  9. Mice prefer draught-free housing.

    Science.gov (United States)

    Krohn, T C; Hansen, A K

    2010-10-01

    An increasing number of rodents are housed in individually ventilated cage (IVC) systems, as these seem to be very effective for the protection of animals against infections, as well as protecting the staff against allergens. For the IVC systems to be properly ventilated, a huge amount of air has to be blown into the cage, which may cause a draught at animal level inside the cage. The aim of the present study was to evaluate the preferences of mice for differing levels of air speeds and air changes inside the cage. It has been concluded that mice do react to draughts, whereas they do not seem to be affected by a high number of air changes delivered without draught, which underlines the importance of applying draught-free IVC systems for mice.

  10. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA

    International Nuclear Information System (INIS)

    Zhou, Yuanxiu; Wang, Zhouyu; Xia, Minghan; Zhuang, Siyi; Gong, Xiaobing; Pan, Jianwen; Li, Chuhua; Fan, Ruifang; Pang, Qihua; Lu, Shaoyou

    2017-01-01

    To investigate the neuron toxicities of low-dose exposure to bisphenol A (BPA) in children, mice were used as an animal model. We examined brain cell damage and the effects of learning and memory ability after BPA exposure in male mice (4 weeks of age) that were divided into four groups and chronically received different BPA treatments for 8 weeks. The comet assay and hippocampal neuron counting were used to detect the brain cell damage. The Y-maze test was applied to test alterations in learning and memory ability. Long term potentiation induction by BPA exposure was performed to study the potential mechanism of performance. The percentages of tail DNA, tail length and tail moment in brain cells increased with increasing BPA exposure concentrations. Significant differences in DNA damage were observed among the groups, including between the low-dose and control groups. In the Y-maze test, the other three groups qualified for the learned standard one day earlier than the high-exposed group. Furthermore, the ratio of qualified mice in the high-exposed group was always the lowest among the groups, indicating that high BPA treatment significantly altered the spatial memory performance of mice. Different BPA treatments exerted different effects on the neuron numbers of different regions in the hippocampus. In the CA1 region, the high-exposed group had a significant decrease in neuron numbers. A non-monotonic relationship was observed between the exposure concentrations and neuron quantity in the CA3 region. The hippocampal slices in the control and medium-exposed groups generated long-term potentiation after induction by theta burst stimulation, but the low-exposed group did not. A significant difference was observed between the control and low-exposed groups. In conclusion, chronic exposure to a low level of BPA had adverse effects on brain cells and altered the learning and memory ability of adolescent mice. - Highlights: • Low dose BPA exposure could lead to DNA

  11. The ovary is an alternative site of origin for high-grade serous ovarian cancer in mice.

    Science.gov (United States)

    Kim, Jaeyeon; Coffey, Donna M; Ma, Lang; Matzuk, Martin M

    2015-06-01

    Although named "ovarian cancer," it has been unclear whether the cancer actually arises from the ovary, especially for high-grade serous carcinoma (HGSC), also known as high-grade serous ovarian cancer, the most common and deadliest ovarian cancer. In addition, the tumor suppressor p53 is the most frequently mutated gene in HGSC. However, whether mutated p53 can cause HGSC remains unknown. In this study, we bred a p53 mutation, p53(R172H), into conditional Dicer-Pten double-knockout (DKO) mice, a mouse model duplicating human HGSC, to generate triple-mutant (TKO) mice. Like DKO mice, these TKO mice develop metastatic HGSCs originating from the fallopian tube. Unlike DKO mice, however, even after fallopian tubes are removed in TKO mice, ovaries alone can develop metastatic HGSCs, indicating that a p53 mutation can drive HGSC arising from the ovary. To confirm this, we generated p53(R172H)-Pten double-mutant mice, one of the genetic control lines for TKO mice. As anticipated, these double-mutant mice also develop metastatic HGSCs from the ovary, verifying the HGSC-forming ability of ovaries with a p53 mutation. Our study therefore shows that ovaries harboring a p53 mutation, as well as fallopian tubes, can be a distinct tissue source of high-grade serous ovarian cancer in mice.

  12. The Magnolia Bioactive Constituent 4-O-Methylhonokiol Protects against High-Fat Diet-Induced Obesity and Systemic Insulin Resistance in Mice

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhang

    2014-01-01

    Full Text Available Obesity is caused by a combination of both genetic and environmental risks. Disruption in energy balance is one of these risk factors. In the present study, the preventive effect on high-fat diet- (HFD- induced obesity and insulin resistance in mice by Magnolia bioactive constituent 4-O-methylhonokiol (MH was compared with Magnolia officinalis extract BL153. C57BL/6J mice were fed by normal diet or by HFD with gavage-administered vehicle, BL153, low-dose MH, and high-dose MH simultaneously for 24 weeks, respectively. Either MH or BL153 slightly inhibited body-weight gain of mice by HFD feeding although the food intake had no obvious difference. Body fat mass and the epididymal white adipose tissue weight were also mildly decreased by MH or BL153. Moreover, MH significantly lowered HFD-induced plasma triglyceride, cholesterol levels and activity of alanine transaminase (ALT, liver weight and hepatic triglyceride level, and ameliorated hepatic steatosis. BL153 only significantly reduced ALT and liver triglyceride level. Concurrently, low-dose MH improved HFD-induced hyperinsulinemia and insulin resistance. Furthermore, the infiltration of mast cells in adipose tissue was decreased in MH or in BL153 treatment. These results suggested that Magnolia bioactive constituent MH might exhibit potential benefits for HFD-induced obesity by improvement of lipid metabolism and insulin resistance.

  13. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  14. Countries three wise men: Sustainability, Innovation, and Competitiveness

    Directory of Open Access Journals (Sweden)

    Luis Miguel Fonseca

    2015-09-01

    Full Text Available Purpose: The studies on links between sustainability, innovation, and competitiveness have been mainly focused at organizational and business level. The purpose of this research is to investigate if there is a correlation between these three variables at country level. Using international well recognized rankings of countries sustainability, innovation, and competitiveness, correlation analysis was performed allowing for the conclusion that there are indeed high correlations (and possible relationships between the three variables at country level. Design/methodology/approach: Sustainability, innovation, and competitiveness literature were reviewed identifying a lack of studies examining these three variables at country level. Three major well recognized indexes were used to support the quantitative research: The World Economic Forum (2013 Sustainability-adjusted global competitiveness index, the Global Innovation Index (2014 issued by Cornell University, INSEAD, and WIPO and the IMD World Competitiveness Yearbook (2014. After confirming the distributions normality, Pearson correlation analysis was made with results showing high linear correlations between the three indexes. Findings: The results of the correlation analysis using Pearson correlation coefficient (all correlation coefficients are greater than 0.73 give a strong support to the conclusion that there is indeed a high correlation (and a possible relationship between social sustainability, innovation and competitiveness at country level. Research limitations/implications: Further research is advisable to better understand the factors that contribute to the presented results and to establish a global paradigm linking these three main constructs (social sustainability, innovation, and competitiveness. Some authors consider that these measurements are not fully supported (e.g. due to different countries standards, however, it is assumed these differing underlying methodological approaches

  15. Large-conductance Ca2+-activated K+ channel β1-subunit knockout mice are not hypertensive

    Science.gov (United States)

    Garver, Hannah; Galligan, James J.; Fink, Gregory D.

    2011-01-01

    Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca2+ channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension. PMID:21131476

  16. Dehydroepiandrosterone Supplementation Combined with Whole-Body Vibration Training Affects Testosterone Level and Body Composition in Mice.

    Science.gov (United States)

    Chen, Wen-Chyuan; Chen, Yi-Ming; Huang, Chi-Chang; Tzeng, Yen-Dun

    2016-01-01

    Dehydroepiandrosterone (DHEA), the most abundant sex steroid, is primarily secreted by the adrenal gland and a precursor hormone used by athletes for performance enhancement. Whole-body vibration (WBV) is a well-known light-resistance exercise by automatic adaptations to rapid and repeated oscillations from a vibrating platform, which is also a simple and convenient exercise for older adults. However, the potential effects of DHEA supplementation combined with WBV training on to body composition, exercise performance, and hormone regulation are currently unclear. The objective of the study is to investigate the effects of DHEA supplementation combined with WBV training on body composition, exercise performance, and physical fatigue-related biochemical responses and testosterone content in young-adult C57BL/6 mice. In this study, male C57BL/6 mice were divided into four groups (n = 8 per group) for 6-weeks treatment: sedentary controls with vehicle (SC), DHEA supplementation (DHEA, 10.2 mg/kg), WBV training (WBV; 5.6 Hz, 2 mm, 0.13 g), and WBV training with DHEA supplementation (WBV+DHEA; WBV: 5.6 Hz, 2 mm, 0.13 g and DHEA: 10.2 mg/kg). Exercise performance was evaluated by forelimb grip strength and exhaustive swimming time, as well as changes in body composition and anti-fatigue levels of serum lactate, ammonia, glucose, creatine kinase (CK), and blood urea nitrogen (BUN) after a 15-min swimming exercise. In addition, the biochemical parameters and the testosterone content were measured at the end of the experiment. Six-week DHEA supplementation alone significantly increased mice body weight (BW), muscle weight, testosterone level, and glycogen contents (liver and muscle) when compared with SC group. DHEA supplementation alone had no negative impact on all tissue and biochemical profiles, but could not improve exercise performance. However, WBV+DHEA supplementation also significantly decreased BW, testosterone level and glycogen content of liver, as well as serum

  17. C57Bl/6 N mice on a western diet display reduced intestinal and hepatic cholesterol levels despite a plasma hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    Desmarchelier Charles

    2012-03-01

    Full Text Available Abstract Background Small intestine and liver greatly contribute to whole body lipid, cholesterol and phospholipid metabolism but to which extent cholesterol and phospholipid handling in these tissues is affected by high fat Western-style obesogenic diets remains to be determined. Methods We therefore measured cholesterol and phospholipid concentration in intestine and liver and quantified fecal neutral sterol and bile acid excretion in C57Bl/6 N mice fed for 12 weeks either a cholesterol-free high carbohydrate control diet or a high fat Western diet containing 0.03% (w/w cholesterol. To identify the underlying mechanisms of dietary adaptations in intestine and liver, changes in gene expression were assessed by microarray and qPCR profiling, respectively. Results Mice on Western diet showed increased plasma cholesterol levels, associated with the higher dietary cholesterol supply, yet, significantly reduced cholesterol levels were found in intestine and liver. Transcript profiling revealed evidence that expression of numerous genes involved in cholesterol synthesis and uptake via LDL, but also in phospholipid metabolism, underwent compensatory regulations in both tissues. Alterations in glycerophospholipid metabolism were confirmed at the metabolite level by phospolipid profiling via mass spectrometry. Conclusions Our findings suggest that intestine and liver react to a high dietary fat intake by an activation of de novo cholesterol synthesis and other cholesterol-saving mechanisms, as well as with major changes in phospholipid metabolism, to accommodate to the fat load.

  18. Assessing the sustainable construction of large construction companies in Malaysia

    Science.gov (United States)

    Adewale, Bamgbade Jibril; Mohammed, Kamaruddeen Ahmed; Nasrun, Mohd Nawi Mohd

    2016-08-01

    Considering the increasing concerns for the consideration of sustainability issues in construction project delivery within the construction industry, this paper assesses the extent of sustainable construction among Malaysian large contractors, in order to ascertain the level of the industry's impacts on both the environment and the society. Sustainable construction explains the construction industry's responsibility to efficiently utilise the finite resources while also reducing construction impacts on both humans and the environment throughout the phases of construction. This study used proportionate stratified random sampling to conduct a field study with a sample of 172 contractors out of the 708 administered questionnaires. Data were collected from large contractors in the eleven states of peninsular Malaysia. Using the five-level rating scale (which include: 1= Very Low; 2= Low; 3= Moderate; 4= High; 5= Very High) to describe the level of sustainable construction of Malaysian contractors based on previous studies, statistical analysis reveals that environmental, social and economic sustainability of Malaysian large contractors are high.

  19. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate.

    Directory of Open Access Journals (Sweden)

    Maxi Meissner

    Full Text Available AIMS/HYPOTHESIS: Bile acid sequestrants (BAS reduce plasma glucose levels in type II diabetics and in murine models of diabetes but the mechanism herein is unknown. We hypothesized that sequestrant-induced changes in hepatic glucose metabolism would underlie reduced plasma glucose levels. Therefore, in vivo glucose metabolism was assessed in db/db mice on and off BAS using tracer methodology. METHODS: Lean and diabetic db/db mice were treated with 2% (wt/wt in diet Colesevelam HCl (BAS for 2 weeks. Parameters of in vivo glucose metabolism were assessed by infusing [U-(13C]-glucose, [2-(13C]-glycerol, [1-(2H]-galactose and paracetamol for 6 hours, followed by mass isotopologue distribution analysis, and related to metabolic parameters as well as gene expression patterns. RESULTS: Compared to lean mice, db/db mice displayed an almost 3-fold lower metabolic clearance rate of glucose (p = 0.0001, a ∼300% increased glucokinase flux (p = 0.001 and a ∼200% increased total hepatic glucose production rate (p = 0.0002. BAS treatment increased glucose metabolic clearance rate by ∼37% but had no effects on glucokinase flux nor total hepatic or endogenous glucose production. Strikingly, BAS-treated db/db mice displayed reduced long-chain acylcarnitine content in skeletal muscle (p = 0.0317 but not in liver (p = 0.189. Unexpectedly, BAS treatment increased hepatic FGF21 mRNA expression 2-fold in lean mice (p = 0.030 and 3-fold in db/db mice (p = 0.002. CONCLUSIONS/INTERPRETATION: BAS induced plasma glucose lowering in db/db mice by increasing metabolic clearance rate of glucose in peripheral tissues, which coincided with decreased skeletal muscle long-chain acylcarnitine content.

  20. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    Science.gov (United States)

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  1. From Sustainability-as-usual to Sustainability Excellence in Local Bioenergy Business

    Directory of Open Access Journals (Sweden)

    Heli Kasurinen

    2017-06-01

    Full Text Available Bioenergy business operators can significantly contribute to the sustainability of bioenergy systems. While research has addressed the maturity of corporate responsibility for sustainability, the maturity levels of bioenergy business have not been determined. The objectives of this research were to characterise the maturity levels of bioenergy corporate responsibility for sustainability and outline an approach by which companies can operate at the most mature sustainability excellence level. Literature, three workshops attended by bioenergy experts and a case study on biobutanol production in Brazil were used to develop the maturity model and approach. The results characterise the profitability, acceptability, and sustainability orientation maturity levels through sustainability questions and methods, and list the components of a systemic, holistic approach. Although the shift of business mindset from sustainability-as-usual to sustainability excellence is challenging, a systemic approach is necessary to broadly identify sustainability questions and a multitude of methods by which they can be answered.

  2. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  3. Quality Disclosure in Sustainability Reporting: Evidence From Universities

    Directory of Open Access Journals (Sweden)

    Alberto ROMOLINI

    2015-02-01

    Full Text Available Attention towards sustainability reporting is very high with reference to higher education. The paper aims to assess the maturity level of sus-tainability reporting and to measure its quality by evaluating the Global Reporting Initiative (GRI indicators currently disclosed. The research was carried out using the inductive method. We de-limited the study to universities and we evaluated the quality of sustainability reporting by analyzing the indicators disclosed in 2012 reports accord-ing to GRI guidelines. The research gives an overview of sustainability reporting in universities by evaluating the quality level of their disclosure. The results confrm previous research by high-lighting the necessity to improve sustainability reporting. Moreover, the results show there are differences between universities that are con-nected to the peculiarities of each country. They also enable us to draw up an initial classifcation of universities. The paper provides one of the frst in-depth studies of sustainability reporting quality for universities included in the GRI database.

  4. Lifespan studies on different strains of mice exposed chronically to low levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Fox, L.A.; Klein, A.K.; Cain, G.R.; Rosenblatt, L.S.

    1982-01-01

    Several strains of mice, chosen for their predisposition to immunohematological disorders, were exposed to low levels of 60 irradiation continuously for four weeks. All individuals were subsequently followed throughout their lifetimes. W/W/sup v/ mice, which are tyically subject to a stem cell deficiency, had a lower cumulative survival rate for the irradiated group than for the unirradiated controls. Irradiated RF/sub j/ mice had a dramatically lower cumulative survival rate than their unirradiated controls. Conversely, BXSB mice, which have a lumphoproliferative autoimmune disorder, had a higher cumulative survival rate after chronic irradiation than did unirradiated BXSBs. Irradiation had no effect upon the survival rate curves of the NZB strain, the murine model for Lupus Erythematosus

  5. Antihyperglycemic and anti-inflammatory effects of fermented food paste in high-fat diet and streptozotocin-challenged mice

    Directory of Open Access Journals (Sweden)

    Zulkawi N

    2018-05-01

    Full Text Available Noraisyah Zulkawi,1 Kam Heng Ng,1 Nur Rizi Zamberi,2,3 Swee Keong Yeap,4 Dilan A Satharasinghe,5 Sheau Wei Tan,2 Wan Yong Ho,6 Nur Yuhasliza Abd Rashid,3 Mohd Izwan Md Lazim,3 Anisah Jamaluddin,3 Noorjahan Banu Alitheen,2,7 Kamariah Long3 1Technical Research – Product Development Department, Elken Global Sdn. Bhd, Kuala Lumpur, Malaysia; 2Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Malaysian Agricultural Research and Development Institute (MARDI, Serdang, Selangor, Malaysia; 4China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Selangor, Malaysia; 5Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, Sri Lanka; 6School of Biomedical Sciences, The University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia; 7Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Background: Fermented food has been widely consumed as health food to ameliorate or prevent several chronic diseases including diabetes. Xeniji™, a fermented food paste (FFP, has been previously reported with various bioactivities, which may be caused by the presence of several metabolites including polyphenolic acids, flavonoids, and vitamins. In this study, the anti-hyperglycemic and anti-inflammatory effects of FFP were assessed. Methods: In this study, type 2 diabetes model mice were induced by streptozotocin and high-fat diet (HFD and used to evaluate the antihyperglycemic and anti-inflammatory effects of FFP. Mice were fed with HFD and challenged with 30 mg/kg body weight (BW of streptozotocin for 1 month followed by 6 weeks of supplementation with 0.1 and 1.0 g/kg BW of FFP. Metformin was used as positive control treatment. Results: Xeniji™-supplemented hyperglycemic mice were recorded with lower glucose level after 6 weeks of duration

  6. Can renewable energy sources sustain affluent society?

    International Nuclear Information System (INIS)

    Trainer, F.E.

    1995-01-01

    Figures commonly quoted on costs of generating energy from renewable sources can give the impression that it will be possible to switch to renewables as the foundation for the continuation of industrial societies with high material living standards. Although renewable energy must be the sole source in a sustainable society, major difficulties become evident when conversions, storage and supply for high latitudes are considered. It is concluded that renewable energy sources will not be able to sustain present rich world levels of energy use and that a sustainable world order must be based on acceptance of much lower per capita levels of energy use, much lower living standards and a zero growth economy. (Author)

  7. 17β-estradiol increases liver and serum docosahexaenoic acid in mice fed varying levels of α-linolenic acid.

    Science.gov (United States)

    Mason, Julie K; Kharotia, Shikhil; Wiggins, Ashleigh K A; Kitson, Alex P; Chen, Jianmin; Bazinet, Richard P; Thompson, Lilian U

    2014-08-01

    Docosahexaenoic acid (DHA) is considered to be important for cardiac and brain function, and 17β-estradiol (E2) appears to increase the conversion of α-linolenic acid (ALA) into DHA. However, the effect of varying ALA intake on the positive effect of E2 on DHA synthesis is not known. Therefore, the objective of this study was to investigate the effects of E2 supplementation on tissue and serum fatty acids in mice fed a low-ALA corn oil-based diet (CO, providing 0.6 % fatty acids as ALA) or a high ALA flaxseed meal-based diet (FS, providing 11.2 % ALA). Ovariectomized mice were implanted with a slow-release E2 pellet at 3 weeks of age and half the mice had the pellet removed at 7 weeks of age. Mice were then randomized onto either the CO or FS diet. After 4 weeks, the DHA concentration was measured in serum, liver and brain. A significant main effect of E2 was found for liver and serum DHA, corresponding to 25 and 15 % higher DHA in livers of CO and FS rats, respectively, and 19 and 13 % in serum of CO and FS rats, respectively, compared to unsupplemented mice. There was no effect of E2 on brain DHA. E2 results in higher DHA in serum and liver, at both levels of dietary ALA investigated presently, suggesting that higher ALA intake may result in higher DHA in individuals with higher E2 status.

  8. Effect of visfatin on lipid profile of obese and diabetic mice

    International Nuclear Information System (INIS)

    Naz, R.; Hussain, M.M.; Aslam, M.

    2012-01-01

    Objective: To determine the effect of visfatin on blood lipid levels in balb/c strain of albino mice. Design: Quasi experimental study. Place and duration of study: The study was carried out at the department of Physiology, Army Medical College, Rawalpindi and National Institute of Health Sciences, Islamabad from April to December 2007. Material and Methods: One hundred and twenty balb/c strain albino mice were procured from NIH, Islamabad. After taking base line blood samples, mice were divided randomly into four groups. Animals in groups I and II were made obese by feeding high fat / high carbohydrate diet whereas mice in Groups III and IV were induced diabetes mellitus by injecting streptozotocin. Groups I (obese) and III (diabetic) served as controls whereas groups II (obese treated) and IV (diabetic treated) were administered visfatin injection. Terminal intracardiac blood sample was used to measure the serum lipid and visfatin levels. Results: Serum lipid levels were found increased in obese and diabetic groups as compared to healthy mice. The administration of recombinant-histidine soluble (mice) visfatin significantly (p< 0.01) decreased the serum lipid levels with concomitant increase in HDL levels (p< 0.01) in obese and diabetic groups of mice and were comparable with baseline normal values of healthy controls. Conclusion: Visfatin is a potential antilipidemic adipocytokine that probably modulates insulin sensitivity and decreases atherogenic lipids (triglycerides, cholesterol, LDL and VLDL) with concomitant increase in HDL in obesity and diabetes mellitus. (author)

  9. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  10. Key characteristics for tool choice in indicator-based sustainability assessment at farm level

    Directory of Open Access Journals (Sweden)

    Fleur Marchand

    2014-09-01

    Full Text Available Although the literature on sustainability assessment tools to support decision making in agriculture is rapidly growing, little attention has been paid to the actual tool choice. We focused on the choice of more complex integrated indicator-based tools at the farm level. The objective was to determine key characteristics as criteria for tool choice. This was done with an in-depth comparison of 2 cases: the Monitoring Tool for Integrated Farm Sustainability and the Public Goods Tool. They differ in characteristics that may influence tool choice: data, time, and budgetary requirements. With an enhanced framework, we derived 11 key characteristics to describe differences between the case tools. Based on the key characteristics, we defined 2 types of indicator-based tools: full sustainability assessment (FSA and rapid sustainability assessment (RSA. RSA tools are more oriented toward communicating and learning. They are therefore more suitable for use by a larger group of farmers, can help to raise awareness, trigger farmers to become interested in sustainable farming, and highlight areas of good or bad performance. If and when farmers increase their commitment to on-farm sustainability, they can gain additional insight by using an FSA tool. Based on complementary and modular use of the tools, practical recommendations for the different end users, i.e., researchers, farmers, advisers, and so forth, have been suggested.

  11. Caffeine and sleep-deprivation mediated changes in open-field behaviours, stress response and antioxidant status in mice.

    Science.gov (United States)

    Onaolapo, J Olakunle; Onaolapo, Y Adejoke; Akanmu, A Moses; Olayiwola, Gbola

    2016-01-01

    Effects of daily caffeine consumption on open-field behaviours, serum corticosterone and brain antioxidant levels were investigated after six hours of total sleep-deprivation in prepubertal mice. We tested the hypothesis that daily caffeine consumption may significantly alter behaviour, stress and antioxidative response of prepubertal mice to an acute episode of total sleep-deprivation. Prepubertal Swiss mice of both sexes were assigned to two main groups of 120 each (subdivided into 6 groups of 10 each, based on sex), and administered vehicle or graded oral doses of caffeine (10, 20, 40, 80 and 120 mg/kg/day) for 14 days. On day 14, a main group was subjected to 6 h of total sleep-deprivation by 'gentle-handling'. Open-field behaviours were then assessed in both groups, after which animals were euthanized, and levels of corticosterone, superoxide dismutase and glutathione peroxidase assayed. Horizontal locomotion, rearing and grooming increased significantly, compared to control, with sleep-deprived (SD) mice showing stronger caffeine-driven responses at higher doses; and SD female mice showing sustained response to caffeine, compared to respective males. Plasma corticosterone increased with increasing doses of caffeine in both non sleep-deprived (NSD) and SD mice; although SD mice had higher corticosterone levels. Sleep-deprivation and/or higher doses of caffeine were associated with derangements in brain antioxidant levels. Repeated caffeine consumption and/or acute sleep-deprivation led to significant changes in pattern of open-field behaviour and stress/antioxidant response in mice. Responses seen in the study are probably due to modulatory effects of caffeine on the total body response to stressful stimuli.

  12. KPI-Driven Methodology for Urban Renovation at District Level. Sustainable Strategic Urban Planning

    Directory of Open Access Journals (Sweden)

    Cristina Criado

    2018-03-01

    Full Text Available Sustainable urban renovation is characterized by multiple factors (e.g., technical, socio-economic, environmental and ethical perspectives, different spatial scales and a number of administrative structures that should address the evaluation of alternative scenarios or solutions. This defines a complex decision problem that includes different stakeholders where several aspects need to be considered simultaneously. In spite of the knowledge and experiences during the recent years, there is a need of methods that lead the decision-making processes. In response, a methodology based on a KPI-driven approach for urban renovation at district level is proposed in the European Smart City project CITyFiED. The methodology is a procedure with the energy efficiency as main pillar and the local authorities as client. It is composed of seven phases that ensures an effective dialogue among all the stakeholders, aiming to understand the objectives and needs of the city to deliver a set of customized Strategies for Sustainable Urban Renovation. In order to provide guidance and quantitative criteria, three levels of indicators are integrated into the approach: City Level Indicators (L1 at city & district level, Project Level KPIs (L2, and Impact Assessment Indicators at city level (L3.

  13. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Puberty is delayed in male mice with dextran sodium sulfate colitis out of proportion to changes in food intake, body weight, and serum levels of leptin.

    Science.gov (United States)

    Deboer, Mark D; Li, Yongli

    2011-01-01

    In boys, inflammatory bowel disease often results in delayed puberty associated with decreased bone mineral density and decreased linear growth. Our goal was to investigate whether pubertal timing and levels of leptin differed between prepubertal male mice with colitis and food-restricted (FR) mice maintained at a similar weight. We induced colitis in 32-d-old male mice using dextran sodium sulfate (DSS), resulting in 10 d of worsening colitis. We followed up these mice for separation of the prepuce from the glans penis as a marker of pubertal progression. Compared with free-feeding control mice, DSS and FR mice had significantly lower weight on d 7-10 of treatment. DSS mice had later puberty than control and FR mice. DSS mice also had smaller testes, lower FSH levels, increased systemic cytokines, and increased colonic inflammation by histology. Leptin levels were similar between DSS and FR mice, whereas both had decreases in leptin compared with controls. We conclude that DSS colitis causes delayed puberty in sexually immature male mice beyond what is seen among FR mice of similar weight, food intake, and leptin levels. These experiments provide support for the hypothesis that pubertal delay in colitis is influenced by factors beyond poor weight gain alone.

  15. Korean Pine Nut Oil Attenuated Hepatic Triacylglycerol Accumulation in High-Fat Diet-Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2016-01-01

    Full Text Available Korean pine nut oil (PNO has been reported to influence weight gain and lipid metabolism. We examined whether PNO replacement in a high-fat diet (HFD can ameliorate HFD-induced hepatic steatosis. Five-week-old male C57BL mice were fed control diets containing 10% of the energy from fat from PNO or soybean oil (SBO (PC, SC or HFDs with 45% of the energy from fat, with 10% from PNO or SBO and 35% from lard (PHFD, SHFD, for 12 weeks. Body weight gain and amount of white adipose tissue were lower in PHFD (10% and 18% lower, respectively compared with SHFD. Hepatic triacylglycerol (TG level was significantly lower in PHFD than the SHFD (26% lower. PNO consumption upregulated hepatic ACADL mRNA levels. The hepatic PPARG mRNA level was lower in the PC than in the SC. Expression of the sirtuin (SIRT 3 protein in white adipose tissue was down-regulated in the SHFD and restored in the PHFD to the level in the lean control mice. SIRT 3 was reported to be upregulated under conditions of caloric restriction (CR and plays a role in regulating mitochondrial function. PNO consumption resulted in lower body fat and hepatic TG accumulation in HFD-induced obesity, which seemed to be associated with the CR-mimetic response.

  16. Mice divergently selected for high and low basal metabolic rates evolved different cell size and organ mass.

    Science.gov (United States)

    Maciak, S; Bonda-Ostaszewska, E; Czarnołęski, M; Konarzewski, M; Kozłowski, J

    2014-03-01

    Evolution of metabolic rates of multicellular organisms is hypothesized to reflect the evolution of their cell architecture. This is likely to stem from a tight link between the sizes of cells and nuclei, which are expected to be inversely related to cell metabolism. Here, we analysed basal metabolic rate (BMR), internal organ masses and the cell/nucleus size in different tissues of laboratory mice divergently selected for high/low mass-corrected BMR and four random-bred mouse lines. Random-bred lines had intermediate levels of BMR as compared to low- and high-BMR lines. Yet, this pattern was only partly consistent with the between-line differences in cell/nucleus sizes. Erythrocytes and skin epithelium cells were smaller in the high-BMR line than in other lines, but the cells of low-BMR and random-bred mice were similar in size. On the other hand, the size of hepatocytes, kidney proximal tubule cells and duodenum enterocytes were larger in high-BMR mice than other lines. All cell and nucleus sizes were positively correlated, which supports the role of the nucleus in cell size regulation. Our results suggest that the evolution of high BMR involves a reduction in cell size in specialized tissues, whose functions are primarily dictated by surface-to-volume ratios, such as erythrocytes. High BMR may, however, also incur an increase in cell size in tissues with an intense transcription and translation, such as hepatocytes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  17. Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes

    Directory of Open Access Journals (Sweden)

    Nuernberg Karin

    2011-08-01

    Full Text Available Abstract Background Increasing evidence suggests that diets high in polyunsaturated fatty acids (PUFA confer health benefits by improving insulin sensitivity and lipid metabolism in liver, muscle and adipose tissue. Methods The present study investigates metabolic responses in two different lines of mice either selected for high body weight (DU6 leading to rapid obesity development, or selected for high treadmill performance (DUhTP leading to a lean phenotype. At 29 days of age the mice were fed standard chow (7.2% fat, 25.7% protein, or a high-fat diet rich in n-3 PUFA (n-3 HFD, 27.7% fat, 19% protein or a high-fat diet rich in n-6 PUFA (n-6 HFD, 27.7% fat, 18.6% protein for 8 weeks. The aim of the study was to determine the effect of these PUFA-rich high-fat diets on the fatty acid profile and on the protein expression of key components of insulin signalling pathways. Results Plasma concentrations of leptin and insulin were higher in DU6 in comparison with DUhTP mice. The high-fat diets stimulated a strong increase in leptin levels and body fat only in DU6 mice. Muscle and liver fatty acid composition were clearly changed by dietary lipid composition. In both lines of mice n-3 HFD feeding significantly reduced the hepatic insulin receptor β protein concentration which may explain decreased insulin action in liver. In contrast, protein kinase C ζ expression increased strongly in abdominal fat of n-3 HFD fed DUhTP mice, indicating enhanced insulin sensitivity in adipose tissue. Conclusions A diet high in n-3 PUFA may facilitate a shift from fuel deposition in liver to fuel storage as fat in adipose tissue in mice. Tissue specific changes in insulin sensitivity may describe, at least in part, the health improving properties of dietary n-3 PUFA. However, important genotype-diet interactions may explain why such diets have little effect in some population groups.

  18. Ghrelin administered spinally increases the blood glucose level in mice.

    Science.gov (United States)

    Sim, Yun-Beom; Park, Soo-Hyun; Kim, Sung-Su; Kim, Chea-Ha; Kim, Su-Jin; Lim, Su-Min; Jung, Jun-Sub; Suh, Hong-Won

    2014-04-01

    Ghrelin is known as a regulator of the blood glucose homeostasis and food intake. In the present study, the possible roles of ghrelin located in the spinal cord in the regulation of the blood glucose level were investigated in ICR mice. We found that intrathecal (i.t.) injection with ghrelin (from 1 to 10 μg) caused an elevation of the blood glucose level. In addition, i.t. pretreatment with YIL781 (ghrelin receptor antagonist; from 0.1 to 5 μg) markedly attenuated ghrelin-induced hyperglycemic effect. The plasma insulin level was increased by ghrelin. The enhanced plasma insulin level by ghrelin was reduced by i.t. pretreatment with YIL781. However, i.t. pretreatment with glucagon-like peptide-1 (GLP-1; 5 μg) did not affect the ghrelin-induced hyperglycemia. Furthermore, i.t. administration with ghrelin also elevated the blood glucose level, but in an additive manner, in d-glucose-fed model. Our results suggest that the activation of ghrelin receptors located in the spinal cord plays important roles for the elevation of the blood glucose level. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  20. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  1. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Zhu PL

    2015-02-01

    Full Text Available Pei-Li Zhu,1 Si-Yuan Pan,1 Shu-Feng Zhou,2 Yi Zhang,1 Xiao-Yan Wang,1 Nan Sun,1 Zhu-Sheng Chu,1 Zhi-Ling Yu,3 Kam-Ming Ko41Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China; 4Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People’s Republic of ChinaBackground: Currently, combined therapy using herbs and synthetic drugs has become a feasible therapeutic intervention against some diseases. The purpose of this study was to assess the effects of supplementation with fenofibrate (FF, a chemical drug used for the treatment of hyperlipidemia, and the aqueous extract of Schisandrae Fructus (SF, a Chinese herb pulp (AqSF-P or an SF-related synthetic analog, bicyclol (BY, on serum/hepatic lipid levels and liver status in normal and hypercholesterolemic (HCL mice.Methods: Male mice obtained from the Institute of Cancer Research (ICR were fed on a normal diet (ND or high cholesterol/bile salt (0.5%/0.15%, w/w diet (HCBD containing FF (0.03% or 0.1%, w/w with or without AqSF-P (0.3%-9.0%, based on crude herbal material, w/w or BY (0.025%, w/w for 10 days. Then serum lipid levels and alanine aminotransferase (ALT activity, as well as hepatic triglyceride (TG, total cholesterol (TC, and glucose levels, were measured.Results: Oral supplementation with FF significantly reduced serum and hepatic TG, TC, and hepatic glucose levels (approximately 79% in mice fed with ND or HCBD. FF supplementation combined with AqSF-P or BY increased FF-induced reduction in hepatic TC and TG contents in ND-fed mice (up to 67% and in HCBD-fed mice (up to 54%, when compared with FF supplementation alone. Hepatic glucose-lowering effect of FF was

  2. Hypercholesterolemia and hepatic steatosis in mice fed on low-cost high-fat diet - doi: 10.4025/actascihealthsci.v35i1.10871

    Directory of Open Access Journals (Sweden)

    Lívia Bracht

    2013-03-01

    Full Text Available To verify whether high-fat diet prepared from commercial diet plus chocolate, roasted peanuts and corn cookies induces hypercholesterolemia in mice and whether there is any hepatic involvement in this type of animal testing. Swiss mice received a high-fat diet for 15 and 30 days; plasma cholesterol, triglycerides and glucose rates were determined. Hepatic impairment was evaluated by histopathological analysis. Cholesterol levels increased 43% in animals treated with high-fat diet for 30 days. Further, histopathological analysis revealed that treatment of animals for 15 and 30 days produced hepatic steatosis and steatohepatitis, respectively. Experimental model is suitable for assessing the action of anti-hypercholesterolemia and the treatment of steatohepatitis.  

  3. Evaluating the level and nature of sustainable development for a geothermal power plant

    International Nuclear Information System (INIS)

    Phillips, Jason

    2010-01-01

    The paper provides for an evaluation of the potential level and nature of sustainable development of the Sabalan geothermal power plant in NW Iran, to be operational in 2011. The paper achieves this by applying a mathematical model of sustainable development developed by the author (re: Phillips), in respect to the Environmental Impact Assessment (EIA) conducted by Yousefi et al. using the Rapid Impact Assessment Matrix (RIAM) methodology (re: Pastakia; Pastakia and Jensen). Using a model application methodology developed for the RIAM, the results indicated that the nature of sustainable development for Sabalan was considered to be very weak (S = 0.063). This was due to the imbalance between negative environmental impacts and positive socio-economic impacts deriving from the project. Further, when placed into context with a similar set of results obtained from the EIA of the Tuzla geothermal power plant by Baba also using the RIAM methodology, then the similarities between the results obtained raises some legimate questions as to the sustainable development credentials of geothermal power production. (author)

  4. Why Organization May Be the Primary Limitation to Implementing Sustainability at the Local Level: Examples from Swedish Case Studies

    Directory of Open Access Journals (Sweden)

    E. Carina H. Keskitalo

    2017-03-01

    Full Text Available Much of the effort to address environmental issues at the local level has focused on defining principles and aims rather than addressing the operational difficulties of implementation. Drawing upon insights from sustainability scholarship, this study reviews two cases: the development of a Swedish standard for implementing sustainable development at municipality, county council, and regional levels, and attempts by a small rural municipality to establish a process towards implementing the Aalborg Commitments. The research illustrates the specific organizational and managerial complexity of these case study experiences. It concludes that an organizational focus on integration and mainstreaming deserves particular attention to achieve broader sustainability, or related environmental or adaptation goals. The results, in particular, highlight the role that integrated management systems can play for sustainability work at the local level.

  5. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice.

    Science.gov (United States)

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean-François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-07-24

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans.

  6. Interventions to encourage sustainable consumption

    NARCIS (Netherlands)

    Dam, van Y.K.; Trijp, van J.C.M.

    2016-01-01

    Sustainable consumption is hampered by a discrepancy between consumers’ attitudes and their actual behaviour in the market place. Psychological construal level theory provides an explanation for the attitude to behaviour gap as a motivational conflict between high and low level of mental construal.

  7. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  8. Curcumin suppresses intestinal polyps in APC Min mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2011-06-01

    Full Text Available Colorectal cancer (CRC is a leading cause of cancer deaths in the United States. Various risk factors have been associated with CRC including increasing age and diet. Epidemiological and experimental studies have implicated a diet high in fat as an important risk factor for colon cancer. High fat diets can promote obesity resulting in insulin resistance and inflammation and the development of oxidative stress, increased cell proliferation, and suppression of apoptosis. Because of the high consumption of dietary fats, especially saturated fats, by Western countries, it is of interest to see if non-nutrient food factors might be effective in preventing or delaying CRC in the presence of high saturated fat intake. Curcumin (Curcuma longa, the main yellow pigment in turmeric, was selected to test because of its reported anti-tumor activity. APC Min mice, which develop intestinal polyps and have many molecular features of CRC, were fed a diet containing 35% pork fat, 33% sucrose, and a protein and vitamin mineral mixture (HFD with or without 0.5% curcumin. These cohorts were compared to APC Min mice receiving standard rodent chow (RC with 8% fat. APC Min mice fed the HFD for 3 months had a 23% increase in total number of polyps compared to APC Min mice on RC. Curcumin was able to significantly reverse the accelerated polyp development associated with the HFD suggesting it may be effective clinically in helping prevent colon cancer even when ingesting high amounts of fatty foods. The anti-tumor effect of curcumin was shown to be associated with enhanced apoptosis and increased efficiency of DNA repair. Since curcumin prevented the gain in body weight seen in APC Min mice ingesting the HFD, modulation of energy metabolism may also be a factor.

  9. Ceruloplasmin deficiency reduces levels of iron and BDNF in the cortex and striatum of young mice and increases their vulnerability to stroke.

    Directory of Open Access Journals (Sweden)

    Sarah J Texel

    Full Text Available Ceruloplasmin (Cp is an essential ferroxidase that plays important roles in cellular iron trafficking. Previous findings suggest that the proper regulation and subcellular localization of iron are very important in brain cell function and viability. Brain iron dyshomeostasis is observed during normal aging, as well as in several neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases, coincident with areas more susceptible to insults. Because of their high metabolic demand and electrical excitability, neurons are particularly vulnerable to ischemic injury and death. We therefore set out to look for abnormalities in the brain of young adult mice that lack Cp. We found that iron levels in the striatum and cerebral cortex of these young animals are significantly lower than wild-type (WT controls. Also mRNA levels of the neurotrophin brain derived neurotrophic factor (BDNF, known for its role in maintenance of cell viability, were decreased in these brain areas. Chelator-mediated depletion of iron in cultured neural cells resulted in reduced BDNF expression by a posttranscriptional mechanism, suggesting a causal link between low brain iron levels and reduced BDNF expression. When the mice were subjected to middle cerebral artery occlusion, a model of focal ischemic stroke, we found increased brain damage in Cp-deficient mice compared to WT controls. Our data indicate that lack of Cp increases neuronal susceptibility to ischemic injury by a mechanism that may involve reduced levels of iron and BDNF.

  10. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  11. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  12. Potential utility of eGFP-expressing NOG mice (NOG-EGFP as a high purity cancer sampling system

    Directory of Open Access Journals (Sweden)

    Shima Kentaro

    2012-06-01

    Full Text Available Abstract Purpose It is still technically difficult to collect high purity cancer cells from tumor tissues, which contain noncancerous cells. We hypothesized that xenograft models of NOG mice expressing enhanced green fluorescent protein (eGFP, referred to as NOG-EGFP mice, may be useful for obtaining such high purity cancer cells for detailed molecular and cellular analyses. Methods Pancreato-biliary cancer cell lines were implanted subcutaneously to compare the tumorigenicity between NOG-EGFP mice and nonobese diabetic/severe combined immunodeficiency (NOD/SCID mice. To obtain high purity cancer cells, the subcutaneous tumors were harvested from the mice and enzymatically dissociated into single-cell suspensions. Then, the cells were sorted by fluorescence-activated cell sorting (FACS for separation of the host cells and the cancer cells. Thereafter, the contamination rate of host cells in collected cancer cells was quantified by using FACS analysis. The viability of cancer cells after FACS sorting was evaluated by cell culture and subsequent subcutaneous reimplantation in NOG-EGFP mice. Results The tumorigenicity of NOG-EGFP mice was significantly better than that of NOD/SCID mice in all of the analyzed cell lines (p  Conclusions This method provides a novel cancer sampling system for molecular and cellular analysis with high accuracy and should contribute to the development of personalized medicine.

  13. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Guodong Zheng

    Full Text Available In order to investigate the mechanisms by which puerarin from kudzu root extract regulates lipid metabolism, fifty mice were randomly assigned to five groups: normal diet, high-fat diet (HFD, and HFD containing 0.2%, 0.4% or 0.8% puerarin for 12 weeks. Body weight, intraperitioneal adipose tissue (IPAT weight, serum biochemical parameters, and hepatic and feces lipids were measured. Activity and mRNA and protein expressions of hepatic lipid metabolism-related enzymes were analyzed. Compared with HFD, 0.4% and 0.8% puerarin significantly decreased body and IPAT weight. There was a significant decrease in the serum and hepatic concentrations of total cholesterol, triglycerides and leptin in mice fed the 0.4% and 0.8% puerarin diets compared with HFD. Fatty acid synthase activity was suppressed in mice fed the 0.4% and 0.8% puerarin diets, while the activities of AMP-activated protein kinase (AMPK, carnitine acyltransferase (CAT and hormone-sensitive lipase (HSL were increased. mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ 2 was down-regulated in liver of mice fed the 0.8% diet compared with HFD, while mRNA expression of CAT and HSL was considerably up-regulated by 0.4% and 0.8% puerarin diets. The protein expression of PPARγ2 in liver was decreased and those of p-AMPK, HSL and p-HSL were increased in mice fed 0.4% and 0.8% puerarin diets. These results suggest that > 0.4% puerarin influenced the activity, mRNA and protein levels of hepatic lipid metabolism-related enzymes, decreasing serum and liver lipids, body weight gain and fat accumulation. Puerarin might be beneficial to prevent lifestyle-related diseases.

  14. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Daiju Oba

    2018-01-01

    Full Text Available Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.

  15. Intermittent hypoxia induces hyperlipidemia in lean mice.

    Science.gov (United States)

    Li, Jianguo; Thorne, Laura N; Punjabi, Naresh M; Sun, Cheuk-Kwan; Schwartz, Alan R; Smith, Philip L; Marino, Rafael L; Rodriguez, Annabelle; Hubbard, Walter C; O'Donnell, Christopher P; Polotsky, Vsevolod Y

    2005-09-30

    Obstructive sleep apnea, a syndrome leading to recurrent intermittent hypoxia (IH), has been associated previously with hypercholesterolemia, independent of underlying obesity. We examined the effects of experimentally induced IH on serum lipid levels and pathways of lipid metabolism in the absence and presence of obesity. Lean C57BL/6J mice and leptin-deficient obese C57BL/6J-Lep(ob) mice were exposed to IH for five days to determine changes in serum lipid profile, liver lipid content, and expression of key hepatic genes of lipid metabolism. In lean mice, exposure to IH increased fasting serum levels of total cholesterol, high-density lipoprotein (HDL) cholesterol, phospholipids (PLs), and triglycerides (TGs), as well as liver TG content. These changes were not observed in obese mice, which had hyperlipidemia and fatty liver at baseline. In lean mice, IH increased sterol regulatory element binding protein 1 (SREBP-1) levels in the liver, increased mRNA and protein levels of stearoyl-coenzyme A desaturase 1 (SCD-1), an important gene of TG and PL biosynthesis controlled by SREBP-1, and increased monounsaturated fatty acid content in serum, which indicated augmented SCD-1 activity. In addition, in lean mice, IH decreased protein levels of scavenger receptor B1, regulating uptake of cholesterol esters and HDL by the liver. We conclude that exposure to IH for five days increases serum cholesterol and PL levels, upregulates pathways of TG and PL biosynthesis, and inhibits pathways of cholesterol uptake in the liver in the lean state but does not exacerbate the pre-existing hyperlipidemia and metabolic disturbances in leptin-deficient obesity.

  16. Effects of leptin treatment and Western diet on wheel running in selectively bred high runner mice.

    Science.gov (United States)

    Meek, Thomas H; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2012-05-15

    The role of leptin in regulating physical activity is varied. The behavioral effects of leptin signaling depend on the type of activity and the animal's physiological state. We used mice from lines selectively bred for high voluntary wheel running to further study how leptin regulates volitional exercise. Mice from four replicate high runner (HR) lines typically run ~3-fold more revolutions per day than those from four non-selected control (C) lines. HR mice have altered dopamine function and differences from C in brain regions known to be important in leptin-mediated behavior. Furthermore, male HR mice have been found to dramatically increase running when administered Western diet, an effect possibly mediated through leptin signaling. Male mice from generation 61 (representing three HR lines and one C line) were allowed wheel access at 24 days of age and given either Western diet (high in fat and with added sucrose) or standard chow. After four weeks, Western diet significantly increased circulating leptin, insulin, C-peptide, gastric inhibitory polypeptide, and inflammatory hormone resistin concentrations in HR mice (C mice not measured). Western diet increased running in HR mice, but did not significantly affect running in C mice. During the fifth week, all mice received two days of intra-peritoneal sham injections (physiological saline) followed by three days of murine recombinant leptin injections, and then another six days of sham injections. Leptin treatment significantly decreased caloric intake (adjusted for body mass) and body mass in all groups. Wheel running significantly increased with leptin injections in HR mice (fed Western or standard diet), but was unaffected in C mice. Whether Western diet and leptin treatment stimulate wheel running in HR mice through the same physiological pathways awaits future study. These results have implications for understanding the neural and endocrine systems that control locomotor activity, food consumption, and body

  17. Two centuries of heating our homes. An empirical - historical contribution to the problem of sustainability on a micro level

    International Nuclear Information System (INIS)

    De Vooght, D.; Scholliers, P.; Spirinckx, C.; Geerken, T.

    2006-01-01

    Discussions about sustainability are often restricted to statements about energy. However, when the notion was first used, it had a broader meaning. It argued that every generation should strive for economic progress, yet this should affect all generations in a positive way. This interpretation was evolved by the Brundtland commission in 1987. Since the publication of its report 'Our common future', it is widely accepted that sustainable development involves a social, economic and environmental dimension. Since there is no unambiguous definition of 'sustainable development' on hand, a set of sustainability indicators was developed. However, these indicators are not very instructive about the micro level: can we label a particular commodity 'sustainable' or does this have only relatively limited value? To what extent is mankind capable of producing, distributing and consuming in a 'pure', efficient and cheap way? To create a long-term view on 'sustainable development', important lessons could be learned from the past. 'Sustainability' has little meaning without an understanding of long-term ecosystem trajectories and a knowledge of baseline conditions, if they ever existed. The interdisciplinary research project '(Un)sustainability developments of product systems, 1800 - 2000' investigates the (un)sustainability development of four basic needs (potable water, bread, transportation of people over land, and heated living space) in Belgium over the last two centuries, to gain insight into sustainable development on a micro level. This paper focuses on the case study of the heated living space. It explores the boundaries of the research subject, before examining sources and methodology. The project employs Life Cycle Assessment techniques on historical data, which is a first in historical research in Belgium. After studying the social, economic and environmental indicators, the results are combined. This leads to several (cautious) conclusions about sustainability on a

  18. High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD

    Science.gov (United States)

    Gibbs, Elizabeth M.; Marshall, Jamie L.; Ma, Eva; Nguyen, Thien M.; Hong, Grace; Lam, Jessica S.; Spencer, Melissa J.

    2016-01-01

    Abstract Duchenne muscular dystrophy (DMD) is a genetic disorder that causes progressive muscle weakness, ultimately leading to early mortality in affected teenagers and young adults. Previous work from our lab has shown that a small transmembrane protein called sarcospan (SSPN) can enhance the recruitment of adhesion complex proteins to the cell surface. When human SSPN is expressed at three-fold levels in mdx mice, this increase in adhesion complex abundance improves muscle membrane stability, preventing many of the histopathological changes associated with DMD. However, expressing higher levels of human SSPN (ten-fold transgenic expression) causes a severe degenerative muscle phenotype in wild-type mice. Since SSPN-mediated stabilization of the sarcolemma represents a promising therapeutic strategy in DMD, it is important to determine whether SSPN can be introduced at high levels without toxicity. Here, we show that mouse SSPN (mSSPN) can be overexpressed at 30-fold levels in wild-type mice with no deleterious effects. In mdx mice, mSSPN overexpression improves dystrophic pathology and sarcolemmal stability. We show that these mice exhibit increased resistance to eccentric contraction-induced damage and reduced fatigue following exercise. mSSPN overexpression improved pulmonary function and reduced dystrophic histopathology in the diaphragm. Together, these results demonstrate that SSPN overexpression is well tolerated in mdx mice and improves sarcolemma defects that underlie skeletal muscle and pulmonary dysfunction in DMD. PMID:27798107

  19. Pouteria ramiflora extract inhibits salivary amylolytic activity and decreases glycemic level in mice

    Directory of Open Access Journals (Sweden)

    NEIRE M. DE GOUVEIA

    2013-09-01

    Full Text Available In this study, extracts of plant species from the Cerrado biome were assessed in order to find potential inhibitors of human salivary alpha-amylase. The plants were collected and extracts were obtained from leaves, bark, and roots. We performed a preliminary phytochemical analysis and a screening for salivar alpha-amylase inhibitory activity. Only three botanical families (Sapotaceae, Sapindaceae and Flacourtiaceae and 16 extracts showed a substantial inhibition (>75% of alpha-amylase. The ethanolic extracts of Pouteria ramiflora obtained from stem barks and root barks decreased amylolytic activity above 95% at a final concentration of 20 µg/mL. Thus, adult male Swiss mice were treated orally with P. ramiflora in acute toxicity and glycemic control studies. Daily administration with 25, 50 and 100 mg/kg of aqueous extract of P. ramiflora for eight days can reduce significantly body weight and blood glucose level in mice. These data suggest that the crude polar extract of P. ramiflora decreases salivary amylolytic activity while lowering the blood levels of glucose.

  20. Legitimising Corporate Sustainability Reporting Throughout the World

    Directory of Open Access Journals (Sweden)

    Faisal

    2012-06-01

    Full Text Available This paper explores corporate sustainability disclosure practices in a global context. A unique sample of 2009 sustainability reports from some of the world’s largest companies in 24 diverse countries are examined using a comprehensive disclosure index. These reports are analysed to better understand how company characteristics and institutional factors explain sustainability communication using a legitimacy theory framework. The world renowned Global ReportingInitiative 2006 guidelines are used as the benchmark disclosure index checklist. The empirical results indicate that the average level of sustainability disclosure is a surprisingly high 61.9 percent.Statistical analysis indicates that high profile industries and additional assurance procedures influence the disclosure of more sustainability information. Interestingly, companies operating inemerging country systems disclose more sustainability information than Anglo-Saxon or Communitarian jurisdictions. Consistent with legitimacy theory, these results suggest that these globally well known firms use sustainability disclosure as a legitimising tool.

  1. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  2. Three months of high-fructose feeding fails to induce excessive weight gain or leptin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Erik J Tillman

    Full Text Available High-fructose diets have been implicated in obesity via impairment of leptin signaling in humans and rodents. We investigated whether fructose-induced leptin resistance in mice could be used to study the metabolic consequences of fructose consumption in humans, particularly in children and adolescents. Male C57Bl/6 mice were weaned to a randomly assigned diet: high fructose, high sucrose, high fat, or control (sugar-free, low-fat. Mice were maintained on their diets for at least 14 weeks. While fructose-fed mice regularly consumed more kcal and expended more energy, there was no difference in body weight compared to control by the end of the study. Additionally, after 14 weeks, both fructose-fed and control mice displayed similar leptin sensitivity. Fructose-feeding also did not change circulating glucose, triglycerides, or free fatty acids. Though fructose has been linked to obesity in several animal models, our data fail to support a role for fructose intake through food lasting 3 months in altering of body weight and leptin signaling in mice. The lack of impact of fructose in the food of growing mice on either body weight or leptin sensitivity over this time frame was surprising, and important information for researchers interested in fructose and body weight regulation.

  3. Consumption of baru nuts (Dipteryx alata in the treatment of obese mice

    Directory of Open Access Journals (Sweden)

    Andreia Cristina Ferraz Araújo

    Full Text Available ABSTRACT: The present study evaluated the effects of baru nut consumption on body weight, percent adiposity, amount of adipose tissue and blood levels in obese male Swiss mice. After inducing obesity by providing high-glucose diet (60 days, the mice were divided into 4 groups (7 animals per group and were fed on a control diet (C, high-glucose diet (HG or high-glucose diet added with baru (HGBA or soybean oil (HGSO. Groups fed with diet HGBA had a decrease in the weight gain and glucose and triglyceride levels when compared to diet HG. Aimals fed with HG exhibited a higher proportion of epididymal and retroperitoneal adipose tissue. The inclusion of baru nut in the diet improved the control of weight gain and glucose and triglyceride levels in obese mice.

  4. Phytosterol Feeding Causes Toxicity in ABCG5/G8 Knockout Mice

    Science.gov (United States)

    McDaniel, Allison L.; Alger, Heather M.; Sawyer, Janet K.; Kelley, Kathryn L.; Kock, Nancy D.; Brown, J. Mark; Temel, Ryan E.; Rudel, Lawrence L.

    2014-01-01

    Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol diet was extremely toxic to the ABCG5/G8 knockout mice but had no adverse effects on wild-type mice. ABCG5/G8 knockout mice died prematurely and developed a phenotype that included high levels of plant sterols in many tissues, liver abnormalities, and severe cardiac lesions. This study is the first to report such toxic effects of phytosterol accumulation in ABCG5/G8 knockout mice. We believe these new data support the conclusion that plant sterols are excluded from the body because they are toxic when present at high levels. PMID:23380580

  5. High fat diet prevents over-crowding induced decrease of sex ratio in mice.

    Directory of Open Access Journals (Sweden)

    Madhukar Shivajirao Dama

    Full Text Available Adaptive theory predicts that mothers would be advantaged by adjusting the sex ratio of their offspring in relation to their offspring's future reproductive success. In the present study, we tested the effect of housing mice under crowded condition on the sex ratio and whether the fat content of the diet has any influence on the outcome of pregnancies. Three-week-old mice were placed on the control diet (NFD for 3 weeks. Thereafter the mice were allotted randomly to two groups of 7 cages each with 4, 6, 8, 10, 12, 14, and 16 mice in every cage to create increasing crowding gradient and fed either NFD or high fat diet (HFD. After 4 weeks, dams were bred and outcomes of pregnancy were analyzed. The average dam body weight (DBW at conception, litter size (LS and SR were significantly higher in HFD fed dams. Further, male biased litters declined with increasing crowding in NFD group but not in HFD. The LS and SR in NFD declined significantly with increasing crowding, whereas only LS was reduced in HFD group. We conclude that female mice housed under overcrowding conditions shift offspring SR in favor of daughters in consistent with the TW hypothesis and high fat diet reduces this influence of overcrowding.

  6. Open-field behavior of house mice selectively bred for high voluntary wheel-running.

    Science.gov (United States)

    Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T

    2001-05-01

    Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.

  7. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  8. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  9. Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9.

    Science.gov (United States)

    Roche-Molina, Marta; Sanz-Rosa, David; Cruz, Francisco M; García-Prieto, Jaime; López, Sergio; Abia, Rocío; Muriana, Francisco J G; Fuster, Valentín; Ibáñez, Borja; Bernal, Juan A

    2015-01-01

    Patients with mutations in the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene have hypercholesterolemia and are at high risk of adverse cardiovascular events. We aimed to stably express the pathological human D374Y gain-of-function mutant form of PCSK9 (PCSK9(DY)) in adult wild-type mice to generate a hyperlipidemic and proatherogenic animal model, achieved with a single systemic injection with adeno-associated virus (AAV). We constructed an AAV-based vector to support targeted transfer of the PCSK9(DY) gene to liver. After injection with 3.5×10(10) viral particles, mice in the C57BL/6J, 129/SvPasCrlf, or FVB/NCrl backgrounds developed long-term hyperlipidemia with a strong increase in serum low-density lipoprotein. Macroscopic and histological analysis showed atherosclerotic lesions in the aortas of AAV-PCSK9(DY) mice fed a high-fat-diet. Advanced lesions in these high-fat-diet-fed mice also showed evidence of macrophage infiltration and fibrous cap formation. Hepatic AAV-PCSK9(DY) infection did not result in liver damage or signs of immunologic response. We further tested the use of AAV-PCSK9(DY) to study potential genetic interaction with the ApoE gene. Histological analysis of ApoE(-/-) AAV-PCSK9(DY) mice showed a synergistic response to ApoE deficiency, with aortic lesions twice as extensive in ApoE(-/-) AAV-PCSK9(DY)-transexpressing mice as in ApoE(-/-) AAV-Luc controls without altering serum cholesterol levels. Single intravenous AAV-PCSK9(DY) injection is a fast, easy, and cost-effective approach, resulting in rapid and long-term sustained hyperlipidemia and atherosclerosis. We demonstrate as a proof of concept the synergy between PCSK9(DY) gain-of-function and ApoE deficiency. This methodology could allow testing of the genetic interaction of several mutations without the need for complex and time-consuming backcrosses. © 2014 American Heart Association, Inc.

  10. Granulocyte colony-stimulating factor protects mice during respiratory virus infections.

    Directory of Open Access Journals (Sweden)

    Tamar Hermesh

    Full Text Available A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.

  11. High Performance Education Fails in Sustainability?--A Reflection on Finnish Primary Teacher Education

    Science.gov (United States)

    Wolff, Lili-Ann; Sjöblom, Pia; Hofman-Bergholm, Maria; Palmberg, Irmeli

    2017-01-01

    Sustainability is internationally often emphasized as an essential aim of higher education, but more as a principle than on the practical level. This is also obvious in the academic education of primary teachers in Finland. Therefore, it is a great challenge for Finnish teachers to include sustainability in their teaching and everyday life in…

  12. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  13. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice.

    Science.gov (United States)

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-08-01

    Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Low-dose-rate high-let radiation cytogenetic effects on mice in vivo as model of space radiation action on mammalian

    Science.gov (United States)

    Sorokina, Svetlana; Zaichkina, Svetlana; Rozanova, Olga; Aptikaeva, Gella; Romanchenko, Sergei; Smirnova, Helene; Dyukina, Alsu; Peleshko, Vladimir

    found that: 1) high-LET irradiation of mice with all doses in both dose rates leads to an increase in the level of cytogenetic damage compared with the level of spontaneous lesions; 2) high-LET irradiation of mice with these doses leads to no decrease in the yield of cytogenetic damage after irradiation with the challenging dose of 1.5 Gy, i. e., no AR takes place in PCE as opposite to low doses of chronic X-radiation; 3) mean size of the tumor in males irradiated with dose of 16 cGy of low-dose-rate high-LET radiation was increased as compared to unirradiated males. These findings may be used to estimate radiation risks from long-term high-altitude aircraft and space flights and to elaborate the theoretical basis for radiotherapy of tumor.

  15. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice.

    Science.gov (United States)

    Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A

    2014-07-01

    The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Treatment with constitutive androstane receptor ligand during pregnancy prevents insulin resistance in offspring from high-fat diet-induced obese pregnant mice.

    Science.gov (United States)

    Masuyama, Hisashi; Hiramatsu, Yuji

    2012-07-15

    The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance even during pregnancy, while exposure to a high-fat diet (HFD) in utero in mice can induce a type 2 diabetes phenotype that can be transmitted to the progeny. Therefore, we examined whether treatment with a CAR ligand during pregnancy could prevent hypertension, insulin resistance, and hyperlipidemia in the offspring from HFD-induced obese pregnant mice (OH mice). We employed four groups of offspring from HFD-fed and control diet-fed pregnant mice with or without treatment with a CAR ligand. Treatment with a CAR ligand during pregnancy improved glucose tolerance and the levels of triglyceride and adipocytokine and restored the changes induced by HFD with amelioration of hypertension in the adult OH mice. This treatment also increased adiponectin mRNA expression, suppressed leptin expression in adipose tissues of OH mice, and abolished the effect of HFD on the epigenetic modifications of the genes encoding adiponectin and leptin in the offspring during immaturity and adulthood. Our data suggest that CAR might be a potential therapeutic target to prevent metabolic syndrome in adulthood of offspring exposed to an HFD in utero.

  17. Antecedent and Concurrent Psychosocial Skills That Support High Levels of Achievement within Talent Domains

    Science.gov (United States)

    Olszewski-Kubilius, Paula; Subotnik, Rena F.; Worrell, Frank C.

    2015-01-01

    Motivation and emotional regulation are important for the sustained focused study and practice required for high levels of achievement and creative productivity in adulthood. Using the talent development model proposed by the authors as a framework, the authors discuss several important psychosocial skills based on the psychological research…

  18. A Rationally Designed TNF-α Epitope-Scaffold Immunogen Induces Sustained Antibody Response and Alleviates Collagen-Induced Arthritis in Mice.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available The TNF-α biological inhibitors have significantly improved the clinical outcomes of many autoimmune diseases, in particular rheumatoid arthritis. However, the practical uses are limited due to high costs and the risk of anti-drug antibody responses. Attempts to develop anti-TNF-α vaccines have generated encouraging data in animal models, however, data from clinical trials have not met expectations. In present study, we designed a TNF-α epitope-scaffold immunogen DTNF7 using the transmembrane domain of diphtheria toxin, named DTT as a scaffold. Molecular dynamics simulation shows that the grafted TNF-α epitope is entirely surface-exposed and presented in a native-like conformation while the rigid helical structure of DTT is minimally perturbed, thereby rendering the immunogen highly stable. Immunization of mice with alum formulated DTNF7 induced humoral responses against native TNF-α, and the antibody titer was sustained for more than 6 months, which supports a role of the universal CD4 T cell epitopes of DTT in breaking self-immune tolerance. In a mouse model of rheumatoid arthritis, DTNF7-alum vaccination markedly delayed the onset of collagen-induced arthritis, and reduced incidence as well as clinical score. DTT is presumed safe as an epitope carrier because a catalytic inactive mutant of diphtheria toxin, CRM197 has good clinical safety records as an active vaccine component. Taken all together, we show that DTT-based epitope vaccine is a promising strategy for prevention and treatment of autoimmune diseases.

  19. Evaluation of green pepper (Capsicum annuum L.) juice on the weight gain and changes in lipid profile in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Kim, Na-Hyung; Park, Seong Hoon

    2015-01-01

    Capsicum pepper (green pepper, Capsicum annuum L.), a natural product available in many countries, is considered to be a food additive, with healthful or medical applications. The aim of this study was to evaluate green pepper juice for its potential to reduce weight gain and to determine its effects on lipid profiles in C57BL/6 mice fed a high-fat diet. Mice given a high-fat diet with green pepper juice gained significantly less weight and showed a significant decrease in serum triglycerides, total cholesterol, low density lipoproteins, and alanine aminotransferase compared to mice given only a high-fat diet (P juice were similar to those in mice in the control group. In addition, abdominal fat volume (subcutaneous and visceral), which was quantified by using 4.7 T magnetic resonance imaging, including multi-slice spin-echo T2-weighted images, in mice administered a high-fat diet with green pepper juice tended to decrease compared to the fat volume of mice administered only a high-fat diet. These results suggest that green pepper juice, as a drink, may possibly be helpful in reducing weight gain by regulating the levels of serum lipids. © 2014 Society of Chemical Industry.

  20. Low level light in combination with metabolic modulators for effective therapy

    Science.gov (United States)

    Dong, Tingting; Zhang, Qi; Hamblin, Michael R.; Wu, Mei X.

    2015-03-01

    Vascular damage occurs frequently at the injured brain causing hypoxia and is associated with poor outcomes in the clinics. We found high levels of glycolysis, reduced ATP generation, and increased formation of reactive oxygen species (ROS) and apoptosis in neurons under hypoxia. Strikingly, these adverse events were reversed significantly by noninvasive exposure of injured brain to low-level light (LLL). LLL illumination sustained the mitochondrial membrane potential, constrained cytochrome C leakage in hypoxic cells, and protected them from apoptosis, underscoring a unique property of LLL. The effect of LLL was further bolstered by combination with metabolic substrates such as pyruvate or lactate both in vivo and in vitro. The combinational treatment retained memory and learning activities of injured mice to a normal level, whereas those treated with LLL or pyruvate alone, or sham light displayed partial or severe deficiency in these cognitive functions. In accordance with well-protected learning and memory function, the hippocampal region primarily responsible for learning and memory was completely protected by a combination of LLL and pyruvate, in marked contrast to the severe loss of hippocampal tissue due to secondary damage in control mice. These data clearly suggest that energy metabolic modulators can additively or synergistically enhance the therapeutic effect of LLL in energy-producing insufficient tissues like injured brain. Keywords:

  1. Antioxidative Diet Supplementation Reverses High-Fat Diet-Induced Increases of Cardiovascular Risk Factors in Mice

    Directory of Open Access Journals (Sweden)

    Hilda Vargas-Robles

    2015-01-01

    Full Text Available Obesity is a worldwide epidemic that is characterized not only by excessive fat deposition but also by systemic microinflammation, high oxidative stress, and increased cardiovascular risk factors. While diets enriched in natural antioxidants showed beneficial effects on oxidative stress, blood pressure, and serum lipid composition, diet supplementation with synthetic antioxidants showed contradictive results. Thus, we tested in C57Bl/6 mice whether a daily dosage of an antioxidative mixture consisting of vitamin C, vitamin E, L-arginine, eicosapentaenoic acid, and docosahexaenoic acid (corabion would affect cardiovascular risk factors associated with obesity. Obese mice showed increased serum triglyceride and glucose levels and hypertension after eight weeks of being fed a high-fat diet (HFD. Importantly, corabion ameliorated all of these symptoms significantly. Oxidative stress and early signs of systemic microinflammation already developed after two weeks of high-fat diet and were significantly reduced by daily doses of corabion. Of note, the beneficial effects of corabion could not be observed when applying its single antioxidative components suggesting that a combination of various nutrients is required to counteract HFD-induced cardiovascular risk factors. Thus, daily consumption of corabion may be beneficial for the management of obesity-related cardiovascular complications.

  2. Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice.

    Science.gov (United States)

    Patel, Hiralben R; Qi, Yong; Hawkins, Evan J; Hileman, Stanley M; Elmquist, Joel K; Imai, Yumi; Ahima, Rexford S

    2006-11-01

    Neuropeptide Y (NPY) stimulates feeding and weight gain, but deletion of the NPY gene does not affect food intake and body weight in mice bred on a mixed genetic background. We reasoned that the orexigenic action of NPY would be evident in C57Bl/6J mice susceptible to obesity. NPY deficiency has no significant effect in mice fed a normal rodent diet. However, energy expenditure is elevated during fasting, and hyperphagia and weight gain are blunted during refeeding. Expression of agouti-related peptide (AGRP) in the hypothalamus is increased in NPY knockout (NPYko) than wild-type mice, but unlike wild type there is no further increase in AGRP when NPYko mice are fasted. Moreover, NPYko mice have higher oxygen consumption and uncoupling protein-1 expression in brown adipose tissue during fasting. The failure of an increase in orexigenic peptides and higher thermogenesis may contribute to attenuation of weight gain when NPYko mice are refed. C57Bl/6J mice lacking NPY are also less susceptible to diet-induced obesity (DIO) as a result of reduced feeding and increased energy expenditure. The resistance to DIO in NPYko mice is associated with a reduction in nocturnal feeding and increased expression of anorexigenic hypothalamic peptides. Insulin, leptin, and triglyceride levels increase with adiposity in both wild-type and NPYko mice.

  3. Diet Matters: Endotoxin in the Diet Impacts the Level of Allergic Sensitization in Germ-Free Mice.

    Directory of Open Access Journals (Sweden)

    Martin Schwarzer

    Full Text Available Germ-free animals have been used to define the vital role of commensal bacteria on the maturation of the host immune system. However, the role of bacterial residues in diet in this setting is poorly understood. Here we investigated the effect of bacterial contamination in sterile diet on the level of allergic sensitization in germ-free mice. Sterile grain-based diets ST1 and R03 were tested for the level of bacterial contamination. ST1 contained higher amount of bacterial DNA, approximately ten times more endotoxin, and induced higher, TLR4-dependent, cytokine production in dendritic cells compared to R03. In a germ-free mouse model of sensitization to the major birch pollen allergen Bet v 1, feeding on ST1 for at least two generations was associated with decreased production of allergen-specific IgE and IgG1 antibodies in sera in comparison to R03. Furthermore, reduced levels of allergen-specific and ConA-induced cytokines IL-4, IL-5 and IL-13 accompanied by increased levels of IFN-γ were detected in splenocytes cultures of these mice. Our results show that contamination of experimental diet with bacterial residues, such as endotoxin, significantly affects the development of allergic sensitization in germ-free mice. Therefore, careful selection of sterile food is critical for the outcomes of germ-free or gnotobiotic experimental models of immune-deviated diseases.

  4. The role of renal aquaporin 2 in the alleviation of dehydration associated with diabetic polyuria in KKAy mice.

    Science.gov (United States)

    Satake, Masako; Ikarashi, Nobutomo; Ichikawa, Yuhei; Maniwa, Ayaka; Toda, Takahiro; Ito, Kiyomi; Ochiai, Wataru; Sugiyama, Kiyoshi

    2010-10-09

    Polyuria is a symptom that appears in association with diabetes mellitus. Because sustained polyuria causes serious dehydration, it is believed that the body has a compensating mechanism to alleviate dehydration. In the present study, the role of renal aquaporin 2 (AQP2) in the compensating mechanism was investigated in KKAy mice, a type 2 diabetes model. The renal AQP2 expression levels in KKAy mice aged between 5 and 24 weeks were determined using Western blotting. The hypothalamic vasopressin mRNA expression levels also were measured by real-time RT-PCR. Insulin was subcutaneously administered to 11-week-old KKAy mice twice a day for 7 days. After insulin treatment, the renal AQP2 protein expression and the hypothalamic vasopressin mRNA expression were measured. The urinary volumes of 5- and 12-week-old KKAy mice were 1.5 ± 0.3 mL and 9.5 ± 1.2 mL, respectively. The inner medullary AQP2 protein expression of 12-week-old KKAy mice was approximately 2.5-fold higher than that of 5-week-old KKAy mice. The hypothalamic vasopressin mRNA expression of 12-week-old KKAy mice was approximately twice that of 5-week-old KKAy mice. Insulin treatment in KKAy mice resulted in a significant reduction in the plasma glucose level, urinary volume, and inner medullary AQP2 protein and hypothalamic vasopressin mRNA expression. The present study demonstrated that AQP2 is a renal functional molecule of vasopressin that controls urinary volume and that AQP2 in the kidney increases to alleviate dehydration due to type 2 diabetes with polyuria. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. TFH cells accumulate in mucosal tissues of humanized-DRAG mice and are highly permissive to HIV-1

    OpenAIRE

    Allam, Atef; Majji, Sai; Peachman, Kristina; Jagodzinski, Linda; Kim, Jiae; Ratto-Kim, Silvia; Wijayalath, Wathsala; Merbah, Melanie; Kim, Jerome H.; Michael, Nelson L.; Alving, Carl R.; Casares, Sofia; Rao, Mangala

    2015-01-01

    CD4+ T follicular helper cells (TFH) in germinal centers are required for maturation of B-cells. While the role of TFH-cells has been studied in blood and lymph nodes of HIV-1 infected individuals, its role in the mucosal tissues has not been investigated. We show that the gut and female reproductive tract (FRT) of humanized DRAG mice have a high level of human lymphocytes and a high frequency of TFH (CXCR5+PD-1++) and precursor-TFH (CXCR5+PD-1+) cells. The majority of TFH-cells expressed CCR...

  6. Chronic Co-species Housing Mice and Rats Increased the Competitiveness of Male Mice.

    Science.gov (United States)

    Liu, Ying-Juan; Li, Lai-Fu; Zhang, Yao-Hua; Guo, Hui-Fen; Xia, Min; Zhang, Meng-Wei; Jing, Xiao-Yuan; Zhang, Jing-Hua; Zhang, Jian-Xu

    2017-03-01

    Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Out-of-Core Computations of High-Resolution Level Sets by Means of Code Transformation

    DEFF Research Database (Denmark)

    Christensen, Brian Bunch; Nielsen, Michael Bang; Museth, Ken

    2012-01-01

    We propose a storage efficient, fast and parallelizable out-of-core framework for streaming computations of high resolution level sets. The fundamental techniques are skewing and tiling transformations of streamed level set computations which allow for the combination of interface propagation, re...... computations are now CPU bound and consequently the overall performance is unaffected by disk latency and bandwidth limitations. We demonstrate this with several benchmark tests that show sustained out-of-core throughputs close to that of in-core level set simulations....

  8. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  9. Effects of high fat diet on the Basal activity of the hypothalamus-pituitary-adrenal axis in mice: a systematic review.

    Science.gov (United States)

    Auvinen, H E; Romijn, J A; Biermasz, N R; Havekes, L M; Smit, J W A; Rensen, P C N; Pereira, A M

    2011-12-01

    Hypothalamus-pituitary-adrenal-axis activity is suggested to be involved in the pathophysiology of the metabolic syndrome. In diet-induced obesity mouse models, features of the metabolic syndrome are induced by feeding high fat diet. However, the models reveal conflicting results with respect to the hypothalamus-pituitary-adrenal-axis activation. The aim of this review was to assess the effects of high fat feeding on the activity of the hypothalamus-pituitary-adrenal-axis in mice. PubMed, EMBASE, Web of Science, the Cochrane database, and Science Direct were electronically searched and reviewed by 2 individual researchers. We included only original mouse studies reporting parameters of the hypothalamus-pituitary-adrenal-axis after high fat feeding, and at least 1 basal corticosterone level with a proper control group. Studies with adrenalectomized mice, transgenic animals only, high fat diet for less than 2 weeks, or other interventions besides high fat diet, were excluded. 20 studies were included. The hypothalamus-pituitary-adrenal-axis evaluation was the primary research question in only 5 studies. Plasma corticosterone levels were unchanged in 40%, elevated in 30%, and decreased in 20% of the studies. The effects in the peripheral tissues and the central nervous system were also inconsistent. However, major differences were found between mouse strains, experimental conditions, and the content and duration of the diets. This systematic review demonstrates that the effects of high fat feeding on the basal activity of the hypothalamus-pituitary-adrenal-axis in mice are limited and inconclusive. Differences in experimental conditions hamper comparisons and accentuate the need for standardized evaluations to discern the effects of diet-induced obesity on the hypothalamus-pituitary-adrenal-axis. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  11. Self-sustained high-temperature reactions : Initiation, propagation and synthesis

    NARCIS (Netherlands)

    Martinez Pacheco, M.

    2007-01-01

    Self-Propagating High-Temperature Synthesis (SHS), also called combustion synthesis is an exothermic and self-sustained reaction between the constituents, which has assumed significance for the production of ceramics and ceramic-metallic materials (cermets), because it is a very rapid processing

  12. Beta-Glucan-Rich Extract from Pleurotus sajor-caju (Fr. Singer Prevents Obesity and Oxidative Stress in C57BL/6J Mice Fed on a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    G. Kanagasabapathy

    2013-01-01

    Full Text Available Mushrooms have been used in folk medicine for thousands of years. In this study, the effect of β-glucan-rich extract of P. sajor-caju (GE on lipid lowering and antioxidant potential was assessed in C57BL/6J mice fed on a high-fat diet. Obesity was induced in C57BL/6J mice by feeding a high-fat diet. The control groups in this study were ND (for normal diet and HFD (for high-fat diet. The treated groups were ND240 (for normal diet (240 mg/kg b.w and HFD60, HFD120, and HFD240 (for high-fat diet, where the mice were administrated with three dosages of GE (60, 120, and 240 mg GE/kg b.w. Metformin (2 mg/kg b.w served as positive control. GE-treated groups showed significantly reduced body weight, serum lipid, and liver enzymes levels. GE also attenuated protein carbonyl and lipid hydroperoxide levels by increasing the enzymic antioxidants (SOD, CAT, and GPx activities in the mice. GE-treated groups induced the expression of hormone sensitive lipase (HSL and adipose triglyceride lipase (ATGL while downregulated the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ, sterol regulatory binding protein-1c (SREBP-1c, and lipoprotein lipase (LPL. Hence, GE prevented weight gain in the mice by inducing lipolysis and may be valuable in the formulation of adjuvant therapy for obesity.

  13. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Liaocheng People’s Hospital of Shandong University, Liaocheng, Shandong 252000 (China); Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Huili [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lei, Zhenmin [Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Chen, Xiaoqing [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Gao, Fei; Dong, Mei [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Li, Rongda [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Ling, E-mail: qzlinl@163.com [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China)

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  14. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    International Nuclear Information System (INIS)

    Wang, Yuehai; Lu, Huixia; Huang, Ziyang; Lin, Huili; Lei, Zhenmin; Chen, Xiaoqing; Tang, Mengxiong; Gao, Fei; Dong, Mei; Li, Rongda; Lin, Ling

    2014-01-01

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE −/− and Fas −/− mice. • The spleen weights and glomerular areas were similar in ApoE −/− and Fas −/− mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE −/− and Fas −/− mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE −/− mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE −/− ) mice is a classic model of atherosclerosis. We have found that ApoE −/− mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE −/− mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE −/− , Fas −/− and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas −/− mice, a model of systemic lupus erythematosus (SLE), ApoE −/− mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE −/− mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE −/− mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

  15. Effect of poloxamer 407 administration on the serum lipids profile, anxiety level and protease activity in the heart and liver of mice

    Science.gov (United States)

    Johnston, Thomas P.; Dubrovina, Nina I.; Kisarova, Yana A.; Zhanaeva, Svetlana Ya.; Cherkanova, Marina S.; Filjushina, Elena E.; Alexeenko, Tatyana V.; Machova, Eva; Zhukova, Natalya A.

    2013-01-01

    Chronic administration of the poloxamer 407 (P-407), a block copolymer, to elevate serum lipids in mice is a well-established mouse model of hyperlipidemia and atherosclerosis. We tested the hypothesis that the activity of several types of proteases in heart and liver tissue is changed in the early stages of atherosclerosis development. Additionally, we evaluated whether increased serum lipids would induce anxiety in mice, as determined by using a ‘plus-maze’ test. The mice were administered P-407 by intraperitoneal injection twice a week for one month. P-407 administration to mice resulted in a marked increase in total serum cholesterol, atherogenic non-HDL-cholesterol, and especially in total triglycerides, and it also increased anxiety. Morphological changes observed in P-407-treated mice included contractile type changes in cardiomyocytes and foamy macrophages in liver. A significant increase of cysteine proteases cathepsin B and cathepsin L (at 24 h) and aspartate protease cathepsin D (at both 24 h and 5 days) was determined in heart tissue following P-407 administration. However, no changes were noted in heart matrix metalloproteinase activity. The activity of cysteine and aspartate proteases was significantly increased in liver at both 24 hours and 5 days after P-407 administration. In conclusion, administration of P-407 to mice for one month resulted in increased anxiety, and more importantly, there was an increase in the activity of heart and liver proteases secondary to sustained dyslipidemia. It is suggested that heart and liver cysteine and aspartate proteases may represent potential therapeutic targets in the early stages of atherosclerosis. PMID:24170975

  16. Novel bitter melon extracts highly yielded from supercritical extraction reduce the adiposity through the enhanced lipid metabolism in mice fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Li Xu

    2016-12-01

    Full Text Available Bitter melon (Momordica charantia is a species of edible plant known for its medicinal value towards diabetes and obesity. Due to the various compositions of bitter melon extracts (BME, the comprehensive knowledge concerning their anti-obesity effects was insufficient. Here we first introduced supercritical extraction to BME's preparation, (supercritical extraction is a relatively advanced extraction method with a better efficiency and selectivity and expected to be extensively used in future applications and the resultants were subjected to HPLC analysis, validating the presence of 42.60% of conjugated linolenic acid (CLnA, cis9, trans11, trans13-18:3 and 13.17% of conjugated linoleic acid (CLA, cis9, trans11-18:2. The BMSO (bitter melon seed oil was then administered to the HFD mice, an obesity model established by feeding C57BL/6J mice a high fat diet. Consequently, due to the BMSO's supplementation, the HFD mice showed a significantly decreased body-weight, Lee's index, fat index and adipose size, whereas the liver weight stayed unchanged. Meanwhile, the serum FFA (free fatty acids levels returned to normal at the dosage of 10 g/kg, and the elevated serum leptin levels were also recovered by BMSO's supplementation with moderate and high dose. These findings suggested that BMSO restored the balance between lipid intake and metabolism, which was probably mediated by leptin's variation. In summary, a detailed anti-obesity effect was described with regard to a potent CFA's (conjugated fatty acid combination offered by BME. A potential mechanism underlying BME's beneficial effects was proposed, paving the way for the better use of BME's pharmaceutical function to serve the obesity's treatment.

  17. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  18. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Directory of Open Access Journals (Sweden)

    Swee Keong Yeap

    2014-01-01

    Full Text Available Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA, higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR. In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA.

  19. In Vivo Hypocholesterolemic Effect of MARDI Fermented Red Yeast Rice Water Extract in High Cholesterol Diet Fed Mice

    Science.gov (United States)

    Beh, Boon Kee; Kong, Joan; Ho, Wan Yong; Mohd Yusof, Hamidah; Hussin, Aminuddin bin; Jaganath, Indu Bala; Alitheen, Noorjahan Banu; Jamaluddin, Anisah

    2014-01-01

    Fermented red yeast rice has been traditionally consumed as medication in Asian cuisine. This study aimed to determine the in vivo hypocholesterolemic and antioxidant effects of fermented red yeast rice water extract produced using Malaysian Agricultural Research and Development Institute (MARDI) Monascus purpureus strains in mice fed with high cholesterol diet. Absence of monacolin-k, lower level of γ-aminobutyric acid (GABA), higher content of total amino acids, and antioxidant activities were detected in MARDI fermented red yeast rice water extract (MFRYR). In vivo MFRYR treatment on hypercholesterolemic mice recorded similar lipid lowering effect as commercial red yeast rice extract (CRYR) as it helps to reduce the elevated serum liver enzyme and increased the antioxidant levels in liver. This effect was also associated with the upregulation of apolipoproteins-E and inhibition of Von Willebrand factor expression. In summary, MFRYR enriched in antioxidant and amino acid without monacolin-k showed similar hypocholesterolemic effect as CRYR that was rich in monacolin-k and GABA. PMID:25031606

  20. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice.

    Science.gov (United States)

    Raber, Jacob; Torres, Eileen Ruth S; Akinyeke, Tunde; Lee, Joanne; Weber Boutros, Sydney J; Turker, Mitchell S; Kronenberg, Amy

    2018-04-20

    The space radiation environment includes helium (⁴He) ions that may impact brain function. As little is known about the effects of exposures to ⁴He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1) mice three months following irradiation with ⁴He ions (250 MeV/n; linear energy transfer (LET) = 1.6 keV/μm; 0, 21, 42 or 168 cGy). Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. ⁴He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2) in the cortex. There was an effect of radiation on apolipoprotein E (apoE) levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued fear

  1. Detrimental Effects of Helium Ion Irradiation on Cognitive Performance and Cortical Levels of MAP-2 in B6D2F1 Mice

    Directory of Open Access Journals (Sweden)

    Jacob Raber

    2018-04-01

    Full Text Available The space radiation environment includes helium (4He ions that may impact brain function. As little is known about the effects of exposures to 4He ions on the brain, we assessed the behavioral and cognitive performance of C57BL/6J × DBA2/J F1 (B6D2F1 mice three months following irradiation with 4He ions (250 MeV/n; linear energy transfer (LET = 1.6 keV/μm; 0, 21, 42 or 168 cGy. Sham-irradiated mice and mice irradiated with 21 or 168 cGy showed novel object recognition, but mice irradiated with 42 cGy did not. In the passive avoidance test, mice received a slight foot shock in a dark compartment, and latency to re-enter that compartment was assessed 24 h later. Sham-irradiated mice and mice irradiated with 21 or 42 cGy showed a higher latency on Day 2 than Day 1, but the latency to enter the dark compartment in mice irradiated with 168 cGy was comparable on both days. 4He ion irradiation, at 42 and 168 cGy, reduced the levels of the dendritic marker microtubule-associated protein-2 (MAP-2 in the cortex. There was an effect of radiation on apolipoprotein E (apoE levels in the hippocampus and cortex, with higher apoE levels in mice irradiated at 42 cGy than 168 cGy and a trend towards higher apoE levels in mice irradiated at 21 than 168 cGy. In addition, in the hippocampus, there was a trend towards a negative correlation between MAP-2 and apoE levels. While reduced levels of MAP-2 in the cortex might have contributed to the altered performance in the passive avoidance test, it does not seem sufficient to do so. The higher hippocampal and cortical apoE levels in mice irradiated at 42 than 168 cGy might have served as a compensatory protective response preserving their passive avoidance memory. Thus, there were no alterations in behavioral performance in the open filed or depressive-like behavior in the forced swim test, while cognitive impairments were seen in the object recognition and passive avoidance tests, but not in the contextual or cued

  2. Radiofrequency initiation and radiofrequency sustainment of laser initiated seeded high pressure plasma

    International Nuclear Information System (INIS)

    Paller, Eric S.; Scharer, John E.; Akhtar, Kamran; Kelly, Kurt; Ding, Guowen

    2001-01-01

    We examine radiofrequency initiation of high pressure(1-70 Torr) inductive plasma discharges in argon, nitrogen, air and organic seed gas mixtures. Millimeter wave interferometry, optical emission and antenna wave impedance measurements for double half-turn helix and helical inductive antennas are used to interpret the rf/plasma coupling, measure the densities in the range of 10 12 cm -3 and analyze the ionization and excited states of the gas mixtures. We have also carried out 193 nm excimer laser initiation of an organic gas seed plasma which is sustained at higher pressures(150 Torr) by radiofrequency coupling at 2.8 kW power levels

  3. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  4. A reconsideration on deep sea bed disposal of high level radiological wastes. A post-Fukushima reflection on sustainable nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2013-01-01

    The ultimate disposal of high-level radioactive waste (HLW) is a common issue among all nuclear developing countries. However, this becomes especially a hard issue for sustainable nuclear energy in Japan after Fukushima Daiichi accident. In this paper, the difficulty of realizing underground HLW disposal in Japanese islands is first discussed from socio-political aspects. Then, revival of old idea of deep seabed disposal of HLW in Pacific Ocean is proposed as an alternative way of HLW disposal. Although this old idea had been abandoned in the past for the reason that it would violate London Convention which prohibits dumping radioactive wastes in public sea, the author will stress the merit of seabed disposal of HLW deep in Pacific Ocean not only from the view point of more safe and ultimate way of disposing HLWs (both vitrified and spent fuel) than by underground disposal, but also the emergence of new marine project by synergetic collaboration of rare-earth resource exploration from the deep sea floor in Pacific Ocean. (author)

  5. Evaluation of possibility to increasing sustainability of high-rise buildings through use university intellectual property

    Science.gov (United States)

    Potekhin, Igor; Mischenko, Valeryi; Mottaeva, Angela; Zheltenkov, Alexander

    2018-03-01

    In this article explained approach of valuation of intellectual property of Voronezh State Technical University, as her usefulness to increasing the sustainability and ecological safety of high-rise building. High-rise building is main type of buildings in modern cities. They include large volume of material mass, high volume of energy using and high volume of emissions. Using innovation solutions to improving ecology safety of high-rise buildings has large potential to city in whole. Explained in the article methods of calculation of effects helps to value sustainable solutions of present and future generations. Thus usefulness of patents express through usefulness regarding to high-rise building, including for sustainable development.

  6. Anti-Obesity and Hypoglycemic Effects of Poncirus trifoliata L. Extracts in High-Fat Diet C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Sheng Jia

    2016-04-01

    Full Text Available The present study investigated the possible anti-obesity and hypoglycemic effects of Poncirus trifoliata L. extracts. Mature fruit were divided into flavedo (PF and juice sacs (PJ, and extracts from them were tested on C57BL/6 mice fed a high-fat diet (HFD for thirteen weeks. Both fruit extracts (40 mg/kg body weight, respectively showed anti-obesity and hypoglycemic effects. Consumption of PF and PJ extracts reduced body weight by 9.21% and 20.27%, respectively. Liver and adipose weights, fasting glucose, serum triglyceride (TG, and low density lipoprotein cholesterol (LDL-c levels decreased significantly, while serum high density lipoprotein cholesterol (HDL-c and oral glucose tolerance levels increased significantly in response to two fruit extracts. These effects were due in part to the modulation of serum insulin, leptin, and adiponectin. Furthermore, transcript levels of fatty acid synthase (FAS and stearoyl-CoA desaturase 1 (SCD1 were reduced while those of carnitine palmitoyltransferase 1α (CPT1α and insulin receptor substrate 2 (IRS2 were increased in the liver of C57BL/6 mice, which might be an important mechanism affecting lipid and glucose metabolism. Taken together, P. trifoliata fruit can be potentially used to prevent or treat obesity and associated metabolic disorders.

  7. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  8. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  9. SUSTAINABLE DEVELOPMENT OF HIGHLY TOURISTIC REGION OF ISTRIA

    Directory of Open Access Journals (Sweden)

    Jasmina GRZINIC

    2010-01-01

    Full Text Available As the scale of tourism grows, the resource use threatens to become unsustainable. Withought environmental responsibility the levels of cheaper mass tourism will increase, forcing more “nature-based” tourism to move on to new destinations. This scenario is opposite to the “Croatian Tourism Development by 2010” strategy. With a favourable geographic position, almost at the heart of Europe, Istria has always represented a bridge connecting the Middle European continental area with the Mediterranean. This area is the most visited Croatian tourist region with 27% of all visitors and 35% of time spent in all of Croatia. The Croatian National Bank’s preliminary figures for 2007 show that international tourism generated 18.4% of Croatian GDP. For these reasons the Istrian tourism industry can not ignore environmental issues in its management and requires the informed participation of all relevant stakeholders (according to the Agenda 21 for tourism industry. Properly planned tourism development, combined with environmental protection, produces the concept of sustainable tourism. Environmentally sustainable form of tourism represents a step forward from "sea and sun" mass tourism developed at the coastal part of Istria. There are a myriad of definitions for Sustainable Tourism, including eco-tourism, green travel, environmentally and culturally responsible tourism, fair trade and ethical travel. Mentioned selective tourism forms are adopted as the concept of the present and future Istrian destination development.

  10. Neighborhood Sustainability Assessment: Evaluating Residential Development Sustainability in a Developing Country Context

    Directory of Open Access Journals (Sweden)

    Tan Yigitcanlar

    2015-03-01

    Full Text Available Rapid urbanization, improved quality of life, and diversified lifestyle options have collectively led to an escalation in housing demand in our cities, where residential areas, as the largest portion of urban land use type, play a critical role in the formation of sustainable cities. To date there has been limited research to ascertain residential development layouts that provide a more sustainable urban outcome. This paper aims to evaluate and compare sustainability levels of residential types by focusing on their layouts. The paper scrutinizes three different development types in a developing country context—i.e., subdivision, piecemeal, and master-planned developments. This study develops a “Neighborhood Sustainability Assessment” tool and applies it to compare their sustainability levels in Ipoh, Malaysia. The analysis finds that the master-planned development, amongst the investigated case studies, possesses the potential to produce higher levels of sustainability outcomes. The results reveal insights and evidence for policymakers, planners, development agencies and researchers; advocate further studies on neighborhood-level sustainability analysis, and; emphasize the need for collective efforts and an effective process in achieving neighborhood sustainability and sustainable city formation.

  11. Sustaining anti-littering behavior within coastal and marine environments: Through the macro-micro level lenses.

    Science.gov (United States)

    Beeharry, Yashna Devi; Bekaroo, Girish; Bokhoree, Chandradeo; Phillips, Michael Robert; Jory, Neelakshi

    2017-06-30

    Being regarded as a problem of global dimensions, marine litter has been a growing concern that affects human beings, wildlife and the economic health of coastal communities to varying degrees. Due to its involvement with human behavior, marine littering has been regarded as a cultural matter encompassing macro and micro level aspects. At the micro or individual level, behavior and behavioral motivation of an individual are driven by perception of that person while at the macro or societal level, aspects including policies and legislations influence behavior. This paper investigates marine littering through the macro-micro level lenses in order to analyze and recommend how anti-littering behavior can be improved and sustained. Using Coleman's model of micro-macro relations, research questions are formulated and investigated through a social survey. Results showed important differences in perceptions among participating groups and to address key issues, potential actions are proposed along with a framework to sustain anti-littering behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Arachidonic acid metabolites in normal and autoimmune mice do not influence lymphocyte-high endothelial venule interactions.

    Science.gov (United States)

    Manolios, N; Bakiera, B; Geczy, C L; Schrieber, L

    1991-02-01

    In peripheral lymphoid organs the number of lymphocytes and the proportion of functional lymphocyte subsets are regulated by multiple factors including the control of lymphocyte migration by selective lymphocyte-high endothelial venule (HEV) interactions. In this study, prostaglandin E2 (PGE2) levels from normal and autoimmune mouse lymph node cells were measured. The contribution of eicosanoids to lymphocyte-HEV interactions in normal (CBA/T6) and autoimmune (MRL/n) mice was examined. There was no association between PGE2 production in normal or autoimmune mice and the age of onset of disease activity in the latter strains. Arachidonic acid metabolites, in particular PGE2 and leukotriene B4 (LTB4), did not have any effects on lymphocyte-HEV binding. Likewise, lymphocytes treated in vivo and/or in vitro with arachidonic acid metabolite inhibitors (acetyl salicylic acid, indomethacin, BW755C) did not alter lymphocyte-HEV binding interactions in both normal and autoimmune mice. No clinical significance could be attributed to lymph node PGE2 production and the age of onset of autoimmune disease. In summary, these findings cast doubt on the role of arachidonic acid metabolites in lymphocyte-HEV binding interactions.

  13. PUBLIC DEBT ANALYSIS BASED ON SUSTAINABILITY INDICATORS

    Directory of Open Access Journals (Sweden)

    Elena DASCALU

    2016-09-01

    Full Text Available This article is an analysis of public debt, in terms of sustainability and vulnerability indicators, under a functioning market economy. The problems encountered regarding the high level of public debt or the potential risks of budgetary pressure converge to the idea that sustainability of public finances should be a major challenge for public policy. Thus, the policy adequate to address public finance sustainability must have as its starting point the overall strategy of the European Union, as well as the economic development of Member States, focusing on the most important performance components, namely, reducing public debt levels, increasing productivity and employment and, last but not the least, reforming social security systems. In order to achieve sustainable levels of public debt, the European Union Member States are required to establish and accomplish medium term strategic budgetary goals to ensure a downward trend in public debt.

  14. Singlet oxygen generation in a high pressure non-self-sustained electric discharge

    International Nuclear Information System (INIS)

    Hicks, Adam; Norberg, Seth; Shawcross, Paul; Lempert, Walter R; Rich, J William; Adamovich, Igor V

    2005-01-01

    This paper presents results of singlet oxygen generation experiments in a high-pressure, non-self-sustained crossed discharge. The discharge consists of a high-voltage, short pulse duration, high repetition rate pulsed discharge, which produces ionization in the flow, and a low-voltage dc discharge which sustains current in a decaying plasma between the pulses. The sustainer voltage can be independently varied to maximize the energy input into electron impact excitation of singlet delta oxygen (SDO). The results demonstrate operation of a stable and diffuse crossed discharge in O 2 -He mixtures at static pressures of at least up to P 0 = 380 Torr and sustainer discharge powers of at least up to 1200 W, achieved at P 0 = 120 Torr. The reduced electric field in the positive column of the sustainer discharge varies from E/N = 0.3 x 10 -16 to 0.65 X 10 -16 V cm 2 , which is significantly lower than E/N in self-sustained discharges and close to the theoretically predicted optimum value for O 2 (a 1 Δ) excitation. Measurements of visible emission spectra O 2 (b 1 Σ → X 3 Σ) in the discharge afterglow show the O 2 (b 1 Σ) concentration to increase with the sustainer discharge power and to decrease as the O 2 fraction in the flow is increased. Rotational temperatures inferred from these spectra in 10% O 2 -90% He flows at P 0 = 120 Torr and mass flow rates of m-dot = 2.2 are 365-465 K. SDO yield at these conditions, 1.7% to 4.4%, was inferred from the integrated intensity of the (0, 0) band of the O 2 (a 1 Δ → X 3 Σ) infrared emission spectra calibrated using a blackbody source. The yield remains nearly constant in the discharge afterglow, up to at least 15 cm distance from the discharge. Kinetic modelling calculations using a quasi-one-dimensional nonequilibrium pulser-sustainer discharge model coupled with the Boltzmann equation for plasma electrons predict gas temperature rise in the discharge in satisfactory agreement with the experimental measurements

  15. Obese mice on a high-fat alternate-day fasting regimen lose weight and improve glucose tolerance.

    Science.gov (United States)

    Joslin, P M N; Bell, R K; Swoap, S J

    2017-10-01

    Alternate-day fasting (ADF) causes body weight (BW) loss in humans and rodents. However, it is not clear that ADF while maintaining a high-fat (HF) diet results in weight loss and the accompanying improvement in control of circulating glucose. We tested the hypotheses that a high-fat ADF protocol in obese mice would result in (i) BW loss, (ii) improved glucose control, (iii) fluctuating phenotypes on 'fasted' days when compared to 'fed' days and (iv) induction of torpor on 'fasted days'. We evaluated the physiological effects of ADF in diet-induced obese mice for BW, heart rate (HR), body temperature (T b ), glucose tolerance, insulin responsiveness, blood parameters (leptin, insulin, free fatty acids) and hepatic gene expression. Diet-induced obese male C57BL/6J mice lost one-third of their pre-diet BW while on an ADF diet for 10 weeks consisting of HF food. The ADF protocol improved glucose tolerance and insulin sensitivity, although mice on a fast day were less glucose tolerant than the same mice on a fed day. ADF mice on a fast day had low circulating insulin, but had an enhanced response to an insulin-assisted glucose tolerance test, suggesting the impaired glucose tolerance may be a result of insufficient insulin production. On fed days, ADF mice were the warmest, had a high HR and displayed hepatic gene expression and circulating leptin that closely mimicked that of mice fed an ad lib HF diet. ADF mice never entered torpor as assessed by HR and T b . However, on fast days, they were the coolest, had the slowest HR, and displayed hepatic gene expression and circulating leptin that closely mimicked that of Chow-Fed mice. Collectively, the ADF regimen with a HF diet in obese mice results in weight loss, improved blood glucose control, and daily fluctuations in selected physiological and biochemical parameters in the mouse. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  16. Tartary buckwheat flavonoids ameliorate high fructose-induced insulin resistance and oxidative stress associated with the insulin signaling and Nrf2/HO-1 pathways in mice.

    Science.gov (United States)

    Hu, Yuanyuan; Hou, Zuoxu; Yi, Ruokun; Wang, Zhongming; Sun, Peng; Li, Guijie; Zhao, Xin; Wang, Qiang

    2017-08-01

    The present study was conducted to explore the effects of a purified tartary buckwheat flavonoid fraction (TBF) on insulin resistance and hepatic oxidative stress in mice fed high fructose in drinking water (20%) for 8 weeks. The results indicated that continuous administration of TBF dose-dependently improved the insulin sensitivity and glucose intolerance in high fructose-fed mice. TBF treatment also reversed the reduced level of insulin action on the phosphorylation of insulin receptor substrate-1 (IRS-1), protein kinase B (Akt) and phosphatidylinositol 3-kinase (PI3K), as well as the translocation of glucose transporter type 4 (GLUT4) in the insulin-resistant liver. Furthermore, TBF was found to exert high antioxidant capacity as it acts as a shield against oxidative stress induced by high fructose by restoring the antioxidant status, and modulating nuclear factor E2 related factor 2 (Nrf2) translocation to the nucleus with subsequently up-regulated antioxidative enzyme protein expression. Histopathological examinations revealed that impaired pancreatic/hepatic tissues were effectively restored in high fructose-fed mice following TBF treatment. Our results show that TBF intake is effective in preventing the conversion of high fructose-induced insulin resistance and hepatic oxidative stress in mice by improving the insulin signaling molecules and the Nrf2 signal pathway in the liver.

  17. 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Dorothy D Sears

    2009-09-01

    Full Text Available Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD-induced insulin resistance.Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT and 12/15LO knockout (KO mice after 2-4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b(+, F4/80(+ macrophages and elevated protein levels of the inflammatory markers IL-1beta, IL-6, IL-10, IL-12, IFNgamma, Cxcl1 and TNFalpha. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice.These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding.

  18. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  19. A Multi-Objective Trade-Off Model in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-10-01

    Full Text Available Based on the consideration of the relative importance of sustainability-related objectives and the inherent nature of sustainable construction projects, this study proposes that the contractor can balance the levels of efforts and resources used to improve the overall project sustainability. A multi-objective trade-off model using game theory was established and verified through simulation and numerical example under a moral hazard situation. Results indicate that effort levels of the contractor on sustainability-related objectives are positively related to the outcome coefficient while negatively to the coefficients of effort cost of the relevant objectives. High levels of the relative importance of sustainability-related objectives contribute to high levels of effort of the contractor. With the variation in effort levels and the coefficient of benefit allocation, the project net benefit increases before declining. The function of project benefit has a marked peak value, with an inverted “U” shape. An equilibrium always exists as for the given relative importance and coefficients of the effort costs of sustainability-related objectives. Under this condition, the owner may offer the contractor a less intense incentive and motivate the contractor reasonably arranging input resources. The coefficient of benefit allocation is affected by the contractor characteristic factors and the project characteristic factors. The owner should balance these two types of factors and select the most appropriate incentive mechanism to improve the project benefit. Meanwhile, the contractor can balance the relative importance of the objectives and arrange the appropriate levels of effort and resources to achieve a sustainability-related objective. Very few studies have emphasized the effects of the relative importance of sustainability-related objectives on the benefits of sustainable construction projects. This study therefore builds a multi-objective trade

  20. High-intensity interval training beneficial effects on body mass, blood pressure, and oxidative stress in diet-induced obesity in ovariectomized mice.

    Science.gov (United States)

    Pimenta, Marcel; Bringhenti, Isabele; Souza-Mello, Vanessa; Dos Santos Mendes, Iara Karise; Aguila, Marcia B; Mandarim-de-Lacerda, Carlos A

    2015-10-15

    To investigate the possible beneficial effect of high-intensity interval training (HIIT) on skeletal muscle oxidative stress, body mass (BM) and systolic blood pressure (SBP) in ovariectomized mice fed or not fed a high-fat diet. Three-month-old female C57BL/6 mice were bilaterally ovariectomized (OVX group) or submitted to surgical stress without ovariectomy (SHAM group) and separated into standard chow (SHAM-SC; OVX-SC) and high-fat diet (SHAM-HF; OVX-HF) groups. After 13 weeks, an HIIT program (swimming) was carried out for 8 weeks in non-trained (NT) and trained (T) groups. The significant reduction of uterine mass and the cytological examination of vaginal smears in the OVX group confirmed that ovariectomy was successful. Before the HIIT protocol, the ovariectomized groups showed a greater BM than the SHAM group, irrespective of the diet they received. The HIIT minimized BM gain in animals fed an HF diet and/or ovariectomized. SBP and total cholesterol were increased in the OVX and HF animals compared to their counterparts, and the HIIT efficiently reduced these factors. In the HF and OVX mice, the muscular superoxide dismutase and catalase levels were low while their glutathione peroxidase and glutathione reductase levels were high and the HIIT normalized these parameters. Diet-induced obesity maximizes the deleterious effects of an ovariectomy. The HIIT protocol significantly reduced BM, SBP and oxidative stress in the skeletal muscle indicating that HIIT diminishes the cardiovascular and metabolic risk that is inherent to obesity and menopause. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. In vivo variation of micronuclei in BALB/c mice after low and high doses of gamma radiation

    International Nuclear Information System (INIS)

    Strain, D.; Allen, B.J.

    1996-01-01

    Full text: An adaptive response to ionising radiation exists if a low level or priming dose reduces the effect of a subsequent high or challenge dose. This has been demonstrated in vitro using the frequency of micronuclei formation as a measure of radiation-induced DNA damage. The objective of this project was to use the same approach with an animal model to investigate the existence of an in vivo adaptive response. The experimental design involved priming doses of 0.005 or 0.01 Gy and a challenge dose of 4 Gy administered 1, 2, 4, 8 or 16 hours after the priming dose. Ten mice at a time were housed in a perspex animal cage and irradiated using Co-60 gamma radiation. For every time point (1, 2, 4, 8 or 16 hours), there were four treatment groups of 5 mice for statistical analysis. The first group acted as a non-irradiated control (0 Gy). The second group of mice received only the priming dose (0.005 Gy), while the third group of mice received only the challenge dose (4 Gy). The fourth group of mice received both the priming and challenge doses 0.005 Gy + 4 Gy). The process was repeated for the second priming dose of 0.01 Gy. A total of 200 mice were used. The animals were sacrificed by cervical dislocation 24 hours after receiving the challenge dose. Both femora were removed and cleared of adhering muscle tissue. The bone marrow cells of five mice were collected and the nucleated cells removed using filtration through a mixed cellulose column incorporating a self-locking filter. The cell suspension was placed onto microscope slides using a cytocentrifuge, air-dried and then stained for the micronuclei. Then the slides were coded, and reticulocytes were scored for the presence or absence of micronuclei. Approximately 2500 cells were scored for each treatment point, and the number of micronuclei counted ranged from 3 to 125 in this sample size. While it appears that the adaptive response may be present in 2 of 9 groups of mice pre-exposed to 0.005 or 0.01 Gy, this

  2. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    Science.gov (United States)

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. © The Author (2016). Published by

  3. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    Science.gov (United States)

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Abstract Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  4. Impact of food restriction and cocaine on locomotion in ghrelin- and ghrelin-receptor knockout mice.

    Science.gov (United States)

    Clifford, Shane; Zeckler, Rosie Albarran; Buckman, Sam; Thompson, Jeff; Hart, Nigel; Wellman, Paul J; Smith, Roy G

    2011-07-01

    Food restriction (FR) augments the behavioral and reinforcing effects of psychomotor stimulants such as cocaine or amphetamine; effects that may be related to the capacity of FR to increase plasma levels of ghrelin (GHR), a 28-amino acid orexigenenic peptide linked to activation of brain dopamine systems. The present study used wild-type (WT) mice or mutant mice sustaining knockout of either GHR [GHR((-/-)) ] or of the growth hormone secretagogue receptor [GHS-R((-/-)) ] and subjected to FR or not to evaluate the role of GHR and GHS-R in cocaine-stimulated locomotion. WT, GHR((-/-)) , and GHS-R((-/-)) mice were either restricted to 60% of baseline caloric intake or allowed to free-feed (FF). Mice were treated with 0, 1.25, 2.5 and 5.0 mg/kg cocaine on separate test days (in random dose order) and forward locomotion was recorded on each drug day for 45 minutes after drug dosing. Food (and water) was available immediately after (but not during) each activity test. For FF mice, there was no interaction between cocaine and GHR status on locomotion. FR-WT mice treated with saline exhibited significant increases in anticipatory locomotion (relative to FF-WT mice), whereas FR-GHS-R((-/-)) mice did not. Cocaine significantly increased locomotion in FR-GHR((-/-)) and FR-GHS-R((-/-)) mice to the levels noted in FR-WT mice. These results suggest that GHS-R activity, but not GHR activity, is required for FR to augment food-associated anticipatory locomotion, but do not support the contention that GHR pathways are required for the capacity of FR to augment the acute effect of cocaine on locomotion. © 2010 The Authors, Addiction Biology © 2010 Society for the Study of Addiction.

  5. Comparative study on 2,2′,4,5,5′-pentachlorobiphenyl-mediated decrease in serum thyroxine level between C57BL/6 and its transthyretin-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yoshihisa, E-mail: kato@kph.bunri-u.ac.jp [Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa 769-2193 (Japan); Tamaki, Sekihiro [School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan); Haraguchi, Koichi [Daiichi College of Pharmaceutical Sciences, Fukuoka 815-8511 (Japan); Ikushiro, Shin-ichi [Faculty of Engineering, Toyama Prefectural University, Toyama 939-0398 (Japan); Sekimoto, Masashi [School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan); Ohta, Chiho [Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka 814-0198 (Japan); Endo, Tetsuya [Faculty of Pharmaceutical Sciences, Health Science University of Hokkaido, Hokkaido 061-0293 (Japan); Koga, Nobuyuki [Faculty of Nutritional Sciences, Nakamura Gakuen University, Fukuoka 814-0198 (Japan); Yamada, Shizuo; Degawa, Masakuni [School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan)

    2012-09-15

    The relationships between the changes in the levels of serum total thyroxine (T{sub 4}), serum T{sub 4}-transthyretin (TTR) complex, and accumulation of T{sub 4} in tissues by 2,2′,4,5,5′-pentachlorobiphenyl (PentaCB) were examined using wild-type C57BL/6 (WT) and its TTR-deficient (TTR-null) mice. The constitutive level of serum total T{sub 4} was much higher in WT mice than in TTR-null mice. In WT mice 4 days after a single intraperitoneal injection with PentaCB (112 mg/kg), serum total T{sub 4} level was significantly decreased along with a decrease in serum T{sub 4}–TTR complex, and the levels of serum total T{sub 4} in the PentaCB-treated WT mice were almost the same to those in PentaCB-untreated (control) TTR-null mice. In addition, a slight decrease in serum total T{sub 4} by PentaCB treatment was observed in TTR-null mice. Furthermore, clearance of [{sup 125}I]T{sub 4} from the serum after [{sup 125}I]T{sub 4}-administration was promoted by the PentaCB-pretreatment in either strain of mice, especially WT mice. On the other hand, accumulation level of [{sup 125}I]T{sub 4} in the liver, but not in extrahepatic tissues, was strikingly enhanced in the PentaCB-pretreated WT and TTR-null mice. Furthermore, in both strains of mice, PentaCB-pretreatment led to significant increases in the steady-state distribution volume of [{sup 125}I]T{sub 4} and the concentration ratio of the liver to serum. The present findings demonstrate that PentaCB-mediated decrease in serum T{sub 4} level occurs mainly through increase in accumulation level of T{sub 4} in the liver and further indicate that the increased accumulation of T{sub 4} in the liver of WT mice is primarily dependent on the PentaCB-mediated inhibition of serum T{sub 4}–TTR complex formation.

  6. The Geocybernetic Assessment Matrix (GAM) — A new assessment tool for evaluating the level and nature of sustainability or unsustainability

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jason, E-mail: jp1@tiscali.co.uk

    2016-01-15

    Evaluating sustainability from EIA-based assessments has been problematic at best. This is due to the use of reductionist and qualitative approaches which is dependent upon the perspective of the assessor(s). Therefore, a more rigorous and holistic approach is required to evaluate sustainability in a more consistent way. In this paper, a matrix-based methodology in order to assess the indicated level and nature of sustainability for any project, policy, indicators, legislation, regulation, or other framework is described. The Geocybernetic Assessment Matrix (GAM) is designed to evaluate the level and nature of sustainability or unsustainability occurring in respect the fundamental and complex geocybernetic paradigms. The GAM method is described in detail in respect to the theory behind it and the methodology. The GAM is then demonstrated using an appropriate case study — Part 1 of the UK Climate Change Act (2008) concerning carbon budgets and targets. The results indicate that the Part 1 of Act may not achieve the desired goals in contributing towards sustainable development through the stated mechanisms for carbon budgets and targets. The paper then discusses the broader context of the GAM with respect to the core themes evident in the development and application of the GAM of: sustainability science; sustainability assessment; application value of the GAM; and future research and development. - Highlights: • A new assessment tool called the Geocybernetic Assessment Matrix (GAM) described. • GAM evaluates the level and nature of sustainability or unsustainability. • GAM demonstrated by application to Part 1 of the UK Climate Change Act (CCA). • Part 1 of CCA has significant flaws in achieving a sustainable pathway. • GAM offers a potentially useful tool for quantitatively evaluating sustainability.

  7. The Geocybernetic Assessment Matrix (GAM) — A new assessment tool for evaluating the level and nature of sustainability or unsustainability

    International Nuclear Information System (INIS)

    Phillips, Jason

    2016-01-01

    Evaluating sustainability from EIA-based assessments has been problematic at best. This is due to the use of reductionist and qualitative approaches which is dependent upon the perspective of the assessor(s). Therefore, a more rigorous and holistic approach is required to evaluate sustainability in a more consistent way. In this paper, a matrix-based methodology in order to assess the indicated level and nature of sustainability for any project, policy, indicators, legislation, regulation, or other framework is described. The Geocybernetic Assessment Matrix (GAM) is designed to evaluate the level and nature of sustainability or unsustainability occurring in respect the fundamental and complex geocybernetic paradigms. The GAM method is described in detail in respect to the theory behind it and the methodology. The GAM is then demonstrated using an appropriate case study — Part 1 of the UK Climate Change Act (2008) concerning carbon budgets and targets. The results indicate that the Part 1 of Act may not achieve the desired goals in contributing towards sustainable development through the stated mechanisms for carbon budgets and targets. The paper then discusses the broader context of the GAM with respect to the core themes evident in the development and application of the GAM of: sustainability science; sustainability assessment; application value of the GAM; and future research and development. - Highlights: • A new assessment tool called the Geocybernetic Assessment Matrix (GAM) described. • GAM evaluates the level and nature of sustainability or unsustainability. • GAM demonstrated by application to Part 1 of the UK Climate Change Act (CCA). • Part 1 of CCA has significant flaws in achieving a sustainable pathway. • GAM offers a potentially useful tool for quantitatively evaluating sustainability.

  8. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    Energy Technology Data Exchange (ETDEWEB)

    Vaid, Mudit; Singh, Tripti; Prasad, Ram [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Katiyar, Santosh K., E-mail: skatiyar@uab.edu [Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294 (United States)

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  9. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  10. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice.

    Science.gov (United States)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang; Chen, Ning; Xia, Zhongkui; Li, Xiaoping; Fang, Zhiwei; Zhang, Dongya; Fjære, Even; Midtbø, Lisa Kolden; Derrien, Muriel; Hugenholtz, Floor; Tang, Longqing; Li, Junhua; Zhang, Jianfeng; Liu, Chuan; Hao, Qin; Vogel, Ulla Birgitte; Mortensen, Alicja; Kleerebezem, Michiel; Licht, Tine Rask; Yang, Huanming; Wang, Jian; Li, Yingrui; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2017-04-08

    It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those associated with obesity, we took advantage of the different susceptibility of C57BL/6JBomTac (BL6) and 129S6/SvEvTac (Sv129) mice to diet-induced obesity and of their different responses to inhibition of cyclooxygenase (COX) activity, where inhibition of COX activity in BL6 mice prevents HF diet-induced obesity, but in Sv129 mice accentuates obesity. Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF or a HF diet. Conversely, the abundance of genes involved in propionate metabolism, associated with increased energy harvest, was higher in BL6 mice than Sv129 mice. The changes in the composition of the gut microbiota were predominantly driven by high-fat feeding rather than reflecting the obese state of the mice. Differences in the abundance of butyrate and propionate producing bacteria in the gut may at least in part contribute to the observed differences in obesity propensity in Sv129 and BL6 mice.

  11. Fish oil prevents sucrose-induced fatty liver but exacerbates high-safflower oil-induced fatty liver in ddy mice.

    Science.gov (United States)

    Yamazaki, Tomomi; Nakamori, Akiko; Sasaki, Eriko; Wada, Satoshi; Ezaki, Osamu

    2007-12-01

    Diets high in sucrose/fructose or fat can result in hepatic steatosis (fatty liver). We analyzed the effects of dietary fish oil on fatty liver induced by sucrose, safflower oil, and butter in ddY mice. In experiment I, mice were fed a high-starch diet [70 energy% (en%) starch] plus 20% (wt/wt) sucrose in the drinking water or fed a high-safflower oil diet (60 en%) for 11 weeks. As a control, mice were fed a high-starch diet with drinking water. Fish oil (10 en%) was either supplemented or not. Mice supplemented with sucrose or fed safflower oil showed a 1.7-fold or 2.2-fold increased liver triglyceride content, respectively, compared with that of control mice. Fish oil completely prevented sucrose-induced fatty liver, whereas it exacerbated safflower oil-induced fatty liver. Sucrose increased SREBP-1c and target gene messenger RNAs (mRNAs), and fish oil completely inhibited these increases. In experiment II, mice were fed a high-safflower oil or a high-butter diet, with or without fish oil supplementation. Fish oil exacerbated safflower oil-induced fatty liver but did not affect butter-induced fatty liver. Fish oil increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma) and target CD36 mRNA in safflower oil-fed mice. These increases were not observed in sucrose-supplemented or butter-fed mice. The effects of dietary fish oil on fatty liver differ according to the cause of fatty liver; fish oil prevents sucrose-induced fatty liver but exacerbates safflower oil-induced fatty liver. The exacerbation of fatty liver may be due, at least in part, to increased expression of liver PPARgamma.

  12. Whey protein reduces early life weight gain in mice fed a high-fat diet

    DEFF Research Database (Denmark)

    Tranberg, Britt; Hellgren, Lars; Lykkesfeldt, Jens

    2013-01-01

    An increasing number of studies indicate that dairy products, including whey protein, alleviate several disorders of the metabolic syndrome. Here, we investigated the effects of whey protein isolate (whey) in mice fed a high-fat diet hypothesising that the metabolic effects of whey would...... be associated with changes in the gut microbiota composition. Five-week-old male C57BL/6 mice were fed a high-fat diet ad libitum for 14 weeks with the protein source being either whey or casein. Faeces were collected at week 0, 7, and 13 and the fecal microbiota was analysed by denaturing gradient gel...... reduced weight gain in young C57BL/6 mice fed a high-fat diet compared to casein. Although the effect on weight gain ceased, whey alleviated glucose intolerance, improved insulin sensitivity and reduced plasma cholesterol. These findings could not be explained by changes in food intake or gut microbiota...

  13. A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice.

    Science.gov (United States)

    Fokidis, H Bobby; Yieng Chin, Mei; Ho, Victor W; Adomat, Hans H; Soma, Kiran K; Fazli, Ladan; Nip, Ka Mun; Cox, Michael; Krystal, Gerald; Zoubeidi, Amina; Tomlinson Guns, Emma S

    2015-06-01

    Dietary factors continue to preside as dominant influences in prostate cancer prevalence and progression-free survival following primary treatment. We investigated the influence of a low carbohydrate diet, compared to a typical Western diet, on prostate cancer (PCa) tumor growth in vivo. LNCaP xenograft tumor growth was studied in both intact and castrated mice, representing a more advanced castration resistant PCa (CRPC). No differences in LNCaP tumor progression (total tumor volume) with diet was observed for intact mice (P = 0.471) however, castrated mice on the Low Carb diet saw a statistically significant reduction in tumor growth rate compared with Western diet fed mice (P = 0.017). No correlation with serum PSA was observed. Steroid profiles, alongside serum cholesterol and cholesteryl ester levels, were significantly altered by both diet and castration. Specifically, DHT concentration with the Low Carb diet was 58% that of the CRPC-bearing mice on the Western diet. Enzymes in the steroidogenesis pathway were directly impacted and tumors isolated from intact mice on the Low Carb diet had higher AKR1C3 protein levels and lower HSD17B2 protein levels than intact mice on the Western diet (ARK1C3: P = 0.074; HSD17B2: P = 0.091, with α = 0.1). In contrast, CRPC tumors from mice on Low Carb diets had higher concentrations of both HSD17B2 (P = 0.016) and SRD5A1 (P = 0.058 with α = 0.1) enzymes. There was no correlation between tumor growth in castrated mice for Low Carb diet versus Western diet and (a) serum insulin (b) GH serum levels (c) insulin receptor (IR) or (d) IGF-1R in tumor tissue. Intact mice fed Western diet had higher serum insulin which was associated with significantly higher blood glucose and tumor tissue IR. We conclude that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumors. The observed effects of diet on cholesterol and steroid regulation impact tumor tissue DHT specifically and are

  14. Lipid metabolism and body composition in Gclm(-/-) mice

    Energy Technology Data Exchange (ETDEWEB)

    Kendig, Eric L. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Chen, Ying [Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, CO 80045 (United States); Krishan, Mansi; Johansson, Elisabet; Schneider, Scott N. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Genter, Mary Beth; Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Shertzer, Howard G., E-mail: shertzhg@ucmail.uc.edu [Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States); Center for Environmental Genetics, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267 (United States)

    2011-12-15

    In humans and experimental animals, high fat diets (HFD) are associated with risk factors for metabolic diseases, such as excessive weight gain and adiposity, insulin resistance and fatty liver. Mice lacking the glutamate-cysteine ligase modifier subunit gene (Gclm(-/-)) and deficient in glutathione (GSH), are resistant to HFD-mediated weight gain. Herein, we evaluated Gclm-associated regulation of energy metabolism, oxidative stress, and glucose and lipid homeostasis. C57BL/6J Gclm(-/-) mice and littermate wild-type (WT) controls received a normal diet or an HFD for 11 weeks. HFD-fed Gclm(-/-) mice did not display a decreased respiratory quotient, suggesting that they are unable to process lipid for metabolism. Although dietary energy consumption and intestinal lipid absorption were unchanged in Gclm(-/-) mice, feeding these mice an HFD did not produce excess body weight nor fat storage. Gclm(-/-) mice displayed higher basal metabolic rates resulting from higher activities of liver mitochondrial NADH-CoQ oxidoreductase, thus elevating respiration. Although Gclm(-/-) mice exhibited strong systemic and hepatic oxidative stress responses, HFD did not promote glucose intolerance or insulin resistance. Furthermore, HFD-fed Gclm(-/-) mice did not develop fatty liver, likely resulting from very low expression levels of genes encoding lipid metabolizing enzymes. We conclude that Gclm is involved in the regulation of basal metabolic rate and the metabolism of dietary lipid. Although Gclm(-/-) mice display a strong oxidative stress response, they are protected from HFD-induced excessive weight gain and adipose deposition, insulin resistance and steatosis. -- Highlights: Black-Right-Pointing-Pointer A high fat diet does not produce body weight and fat gain in Gclm(-/-) mice. Black-Right-Pointing-Pointer A high fat diet does not induce steatosis or insulin resistance in Gclm(-/-) mice. Black-Right-Pointing-Pointer Gclm(-/-) mice have high basal metabolism and mitochondrial

  15. Scaphoid Stress Fracture in High-Level Gymnast: A Case Report

    Directory of Open Access Journals (Sweden)

    J. C. Nakamoto

    2011-01-01

    Full Text Available We present the case of an 18-year-old high-level gymnast who sustained a stress fracture of the scaphoid associated with a distal radial epiphysiolysis. Clinical evaluation demonstrated decreased range of motion of the affected wrist and insidious pain on the snuffbox and tenderness on the distal radial physis. He was submitted to surgical treatment with scaphoid percutaneous fixation and radial styloid process in situ fixation. Clinical features improved, and he got back to competition 6 months after surgery without symptoms and with complete range of motion.

  16. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  17. Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice

    Directory of Open Access Journals (Sweden)

    Greenfeder Scott

    2011-03-01

    Full Text Available Abstract Background Obesity and inflammation are highly integrated processes in the pathogenesis of insulin resistance, diabetes, dyslipidemia, and non-alcoholic fatty liver disease. Molecular mechanisms underlying inflammatory events during high fat diet-induced obesity are poorly defined in mouse models of obesity. This work investigated gene activation signals integral to the temporal development of obesity. Methods Gene expression analysis in multiple organs from obese mice was done with Taqman Low Density Array (TLDA using a panel of 92 genes representing cell markers, cytokines, chemokines, metabolic, and activation genes. Mice were monitored for systemic changes characteristic of the disease, including hyperinsulinemia, body weight, and liver enzymes. Liver steatosis and fibrosis as well as cellular infiltrates in liver and adipose tissues were analyzed by histology and immunohistochemistry. Results Obese C57BL/6 mice were fed with high fat and cholesterol diet (HFC for 6, 16 and 26 weeks. Here we report that the mRNA levels of macrophage and inflammation associated genes were strongly upregulated at different time points in adipose tissues (6-16 weeks and liver (16-26 weeks, after the start of HFC feeding. CD11b+ and CD11c+ macrophages highly infiltrated HFC liver at 16 and 26 weeks. We found clear evidence that signals for IL-1β, IL1RN, TNF-α and TGFβ-1 are present in both adipose and liver tissues and that these are linked to the development of inflammation and insulin resistance in the HFC-fed mice. Conclusions Macrophage infiltration accompanied by severe inflammation and metabolic changes occurred in both adipose and liver tissues with a temporal shift in these signals depending upon the duration of HFC feeding. The evidences of gene expression profile, elevated serum alanine aminotransferase, and histological data support a progression towards nonalcoholic fatty liver disease and steatohepatitis in these HFC-fed mice within the

  18. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore

    2009-08-01

    We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.

  19. Effects of tritiated water ingestion on mice: II. Damage at cellular vis-a-vis subcellular level monitored up to four generations

    International Nuclear Information System (INIS)

    Srivastava, P.N.; Sharan, R.N.; Pozzi, L.

    1983-01-01

    Damage at cellular level is measured using colony forming units in spleen (CFU-S) technique while that at subcellular level by DNA unwinding technique. The damage is monitored up to four generations in Swiss albino mice. The results show drastically reduced colony forming ability in mice bone marrow cells (BMC). On plotting survival fractions (percent of control) for BMC against generations of mice, the plateau is found around 50% survival. The role of DNA in colony forming ability of BMC is tested. The results indicate that, at least, initial impairment of colony ability is not DNA dependent but related to some other factor(s)

  20. Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice.

    Science.gov (United States)

    Ha, Byung Geun; Shin, Eun Ji; Park, Jung-Eun; Shon, Yun Hee

    2013-10-29

    In this study, we investigated the effects of balanced deep-sea water (BDSW) on hyperglycemia and glucose intolerance in high-fat diet (HFD)-induced diabetic C57BL/6J mice. BDSW was prepared by mixing deep-sea water (DSW) mineral extracts and desalinated water to give a final hardness of 500-2000. Mice given an HFD with BDSW showed lowered fasting plasma glucose levels compared to HFD-fed mice. Oral and intraperitoneal glucose tolerance tests showed that BDSW improves impaired glucose tolerance in HFD-fed mice. Histopathological evaluation of the pancreas showed that BDSW recovers the size of the pancreatic islets of Langerhans, and increases the secretion of insulin and glucagon in HFD-fed mice. Quantitative reverse transcription polymerase chain reaction results revealed that the expression of hepatic genes involved in glucogenesis, glycogenolysis and glucose oxidation were suppressed, while those in glucose uptake, β-oxidation, and glucose oxidation in muscle were increased in mice fed HFD with BDSW. BDSW increased AMP-dependent kinase (AMPK) phosphorylation in 3T3-L1 pre- and mature adipocytes and improved impaired AMPK phosphorylation in the muscles and livers of HFD-induced diabetic mice. BDSW stimulated phosphoinositol-3-kinase and AMPK pathway-mediated glucose uptake in 3T3-L1 adipocytes. Taken together, these results suggest that BDSW has potential as an anti-diabetic agent, given its ability to suppress hyperglycemia and improve glucose intolerance by increasing glucose uptake.

  1. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  2. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercaria- I. analysis of antibody and T-lymphocyte responses in mouse strains developing differing levels of immunity

    International Nuclear Information System (INIS)

    James, S.L.; Labine, M.; Sher, A.

    1981-01-01

    The kinetics of cellular and humoral responses directed against schistosomula were examined in mice of three inbred strains which demonstrate differences in the degree of resistance induced by immunization with irradiated cercariae. T-Cell reactivity was observed during the first 4 weeks after vaccination but declined to control levels thereafter. Anti-schistosomulum antibody was first detected 2 weeks after vaccination, peaked by 6 weeks, and persisted as late as 15 weeks. In sera obtained at 6 weeks, antibody activity was detected in affinity chromatography-purified fractions containing IgM, IgA, IgG 1 , IgG 2 /sub a/, and IgG 3 immunoglobulins. In general, the cellular and humoral responses observed in C57Bl/6J mice, which consistently developed a high level of immunity after vaccination, were not significantly different from those observed in C3H/HeJ or CBA/J mice, which achieved only low to moderate levels of immunity. Thus, although antibody production appears to correlate more closely than T lymphocyte responsiveness with the typical long-term resistance pattern observed in this model, the absence of striking differences in parasite-specific antibody levels between mice of these different strains suggests that additional mechanisms may be involved in the development of immunity after vaccination

  3. Challenges to achievement of metal sustainability in our high-tech society.

    Science.gov (United States)

    Izatt, Reed M; Izatt, Steven R; Bruening, Ronald L; Izatt, Neil E; Moyer, Bruce A

    2014-04-21

    Achievement of sustainability in metal life cycles from mining of virgin ore to consumer and industrial devices to end-of-life products requires greatly increased recycling rates and improved processing of metals using conventional and green chemistry technologies. Electronic and other high-tech products containing precious, toxic, and specialty metals usually have short lifetimes and low recycling rates. Products containing these metals generally are incinerated, discarded as waste in landfills, or dismantled in informal recycling using crude and environmentally irresponsible procedures. Low recycling rates of metals coupled with increasing demand for high-tech products containing them necessitate increased mining with attendant environmental, health, energy, water, and carbon-footprint consequences. In this tutorial review, challenges to achieving metal sustainability, including projected use of urban mining, in present high-tech society are presented; health, environmental, and economic incentives for various government, industry, and public stakeholders to improve metal sustainability are discussed; a case for technical improvements, including use of molecular recognition, in selective metal separation technology, especially for metal recovery from dilute feed stocks is given; and global consequences of continuing on the present path are examined.

  4. Novel method for high-throughput phenotyping of sleep in mice.

    Science.gov (United States)

    Pack, Allan I; Galante, Raymond J; Maislin, Greg; Cater, Jacqueline; Metaxas, Dimitris; Lu, Shan; Zhang, Lin; Von Smith, Randy; Kay, Timothy; Lian, Jie; Svenson, Karen; Peters, Luanne L

    2007-01-17

    Assessment of sleep in mice currently requires initial implantation of chronic electrodes for assessment of electroencephalogram (EEG) and electromyogram (EMG) followed by time to recover from surgery. Hence, it is not ideal for high-throughput screening. To address this deficiency, a method of assessment of sleep and wakefulness in mice has been developed based on assessment of activity/inactivity either by digital video analysis or by breaking infrared beams in the mouse cage. It is based on the algorithm that any episode of continuous inactivity of > or =40 s is predicted to be sleep. The method gives excellent agreement in C57BL/6J male mice with simultaneous assessment of sleep by EEG/EMG recording. The average agreement over 8,640 10-s epochs in 24 h is 92% (n = 7 mice) with agreement in individual mice being 88-94%. Average EEG/EMG determined sleep per 2-h interval across the day was 59.4 min. The estimated mean difference (bias) per 2-h interval between inactivity-defined sleep and EEG/EMG-defined sleep was only 1.0 min (95% confidence interval for mean bias -0.06 to +2.6 min). The standard deviation of differences (precision) was 7.5 min per 2-h interval with 95% limits of agreement ranging from -13.7 to +15.7 min. Although bias significantly varied by time of day (P = 0.0007), the magnitude of time-of-day differences was not large (average bias during lights on and lights off was +5.0 and -3.0 min per 2-h interval, respectively). This method has applications in chemical mutagenesis and for studies of molecular changes in brain with sleep/wakefulness.

  5. Corticosterone levels and behavioral changes induced by simultaneous exposure to chronic social stress and enriched environments in NMRI male mice.

    Science.gov (United States)

    Mesa-Gresa, Patricia; Ramos-Campos, Marta; Redolat, Rosa

    2016-05-01

    Environmental enrichment (EE) is an experimental model which is believed to counteract some of the effects induced by stressors, although few studies have exposed rodents simultaneously to EE and stress. Our aim was to compare the short- and long-term effects of different housing conditions in mice submitted to chronic stress. 128 NMRI male mice arrived at our laboratory on postnatal day (PND) 21. During Phase I (PND 28), animals were randomly assigned to four experimental conditions: 1) EE+STRESS: mice housed in EE and submitted to social stress (n=32); 2) EE+NO STRESS: mice housed in EE without stress (n=32); 3) SE+STRESS: mice maintained in standard conditions (SE) and submitted to social stress (n=32); and 4) SE+NO STRESS (n=32). At the end of Phase I (PND 77), one cohort of 32 animals was used for behavioral assessment whereas another cohort of 32 was sacrificed for corticosterone analysis. Results indicated that EE animals showed less body weight, higher water and food intake, diminished anxiety response and decreased motor and exploratory behavior than SE mice. Mice exposed to stress gained less body weight, showed higher food and fluid intake and displayed decreased exploratory behavior than non-stressed mice. Furthermore, EE+STRESS group displayed significantly higher corticosterone levels than EE+NO STRESS group whereas EE+NO STRESS group showed lower levels than SE+NO STRESS. On PND 83, Phase II of the study began. Animals (n=96) were assigned to two different housing conditions: EE (n=48) and SE (n=48). On PND 112, corticosterone analysis (n=32) and behavioral study (n=64) were done. The factor "Housing Phase II" reached statistical significance. Results indicated that EE animals showed lower body weight and higher fluid intake than SE group, as well as decreased anxiety. No clear effects on motor and exploratory behavior or learning were observed. When long-term effects were analyzed, results indicated that "Initial Housing" condition was significant

  6. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  7. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  8. Approaches to defining deltaic sustainability in the 21st century

    Science.gov (United States)

    Day, John W.; Agboola, Julius; Chen, Zhongyuan; D'Elia, Christopher; Forbes, Donald L.; Giosan, Liviu; Kemp, Paul; Kuenzer, Claudia; Lane, Robert R.; Ramachandran, Ramesh; Syvitski, James; Yañez-Arancibia, Alejandro

    2016-12-01

    Deltas are among the most productive and economically important of global ecosystems but unfortunately they are also among the most threatened by human activities. Here we discuss deltas and human impact, several approaches to defining deltaic sustainability and present a ranking of sustainability. Delta sustainability must be considered within the context of global biophysical and socioeconomic constraints that include thermodynamic limitations, scale and embeddedness, and constraints at the level of the biosphere/geosphere. The development, functioning, and sustainability of deltas are the result of external and internal inputs of energy and materials, such as sediments and nutrients, that include delta lobe development, channel switching, crevasse formation, river floods, storms and associated waves and storm surges, and tides and other ocean currents. Modern deltas developed over the past several thousand years with relatively stable global mean sea level, predictable material inputs from drainage basins and the sea, and as extremely open systems. Human activity has changed these conditions to make deltas less sustainable, in that they are unable to persist through time structurally or functionally. Deltaic sustainability can be considered from geomorphic, ecological, and economic perspectives, with functional processes at these three levels being highly interactive. Changes in this functioning can lead to either enhanced or diminished sustainability, but most changes have been detrimental. There is a growing understanding that the trajectories of global environmental change and cost of energy will make achieving delta sustainability more challenging and limit options for management. Several delta types are identified in terms of sustainability including those in arid regions, those with high and low energy-intensive management systems, deltas below sea level, tropical deltas, and Arctic deltas. Representative deltas are ranked on a sustainability range

  9. House dust mite allergen causes certain features of steroid resistant asthma in high fat fed obese mice.

    Science.gov (United States)

    Singh, Vijay Pal; Mabalirajan, Ulaganathan; Pratap, Kunal; Bahal, Devika; Maheswari, Deepanshu; Gheware, Atish; Bajaj, Aabha; Panda, Lipsa; Jaiswal, Ashish; Ram, Arjun; Agrawal, Anurag

    2018-02-01

    Obesity is a high risk factor for diseases such as cardiovascular, metabolic syndrome and asthma. Obese-asthma is another emerging phenotype in asthma which is typically refractive to steroid treatment due to its non-classical features such as non-eosinophilic cellular inflammation. The overall increased morbidity, mortality and economical burden in asthma is mainly due to steroid resistant asthma. In the present study, we used high fat diet induced obese mice which when sensitized with house dust mite (HDM) showed steroid resistant features. While the steroid, dexamethasone (DEX), treatment to high fat fed naïve mice could not reduce the airway hyperresponsiveness (AHR) induced by high fat, DEX treatment to high fat fed allergic mice could not reduce the HDM allergen induced airway remodeling features though it reduced airway inflammation. Further, these HDM induced high fat fed mice with or without DEX treatment had shown the increased activity and expression of arginase as well as the inducible nitric oxide synthase (iNOS) expression. However, DEX treatment had reduced the expressions of high iNOS and arginase I in control chow diet fed mice. Thus, we speculate that the steroid resistance seen in human obese asthmatics could be stemming from altered NO metabolism and its induced airway remodeling and with further investigations, it would encourage new treatments specific to obese-asthma phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. High-glycemic index carbohydrates abrogate the antiobesity effect of fish oil in mice

    DEFF Research Database (Denmark)

    Hao, Qin; Lillefosse, Haldis Haukås; Fjære, Even

    2012-01-01

    Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high-fat d...... metabolic effects of fish oil by demonstrating that high-GI carbohydrates attenuate the antiobesity effects of fish oil.......Fish oil rich in n-3 polyunsaturated fatty acids is known to attenuate diet-induced obesity and adipose tissue inflammation in rodents. Here we aimed to investigate whether different carbohydrate sources modulated the antiobesity effects of fish oil. By feeding C57BL/6J mice isocaloric high...

  11. Exploring biophysical potential and sustainability of wheat cultivation in Uruguay at the national level

    NARCIS (Netherlands)

    Mantel, S.; Engelen, van V.W.P.; Molfino, J.H.; Resink, J.W.

    2000-01-01

    A methodology is presented that explores soil survey information at the national level (1:1 M), generating sustainability indicators for wheat cultivation in Uruguay. Potential yields were calculated for simplified crop production situations under several constraints, such as limitation of water

  12. Sustainable urban development and the multi-level transition perspective

    DEFF Research Database (Denmark)

    Næss, Petter; Vogel, Nina

    2012-01-01

    This article discusses some challenges and possible adaptations of transition theory as a framework for analyzing the prospects for environmentally more sustainable development of urban land use and transport infrastructure. Rather than depending first and foremost on niche innovations......, a transition toward sustainable urban development is a matter of changing the composition of existing multisegmented land use and transportation regimes. Those well-experienced forms of built environment and transport infrastructure that are in line with sustainability objectives should be strengthened while...... those that are not should be actively constrained and reduced. Urban development in a Danish provincial city is used as a case to illustrate some of the points made in the theoretical part of the article. Due to the wide gap between present conditions and those required to realize a sustainable urban...

  13. The Resin from Protium heptaphyllum Prevents High-Fat Diet-Induced Obesity in Mice: Scientific Evidence and Potential Mechanisms

    Directory of Open Access Journals (Sweden)

    Karine Maria Martins Bezerra Carvalho

    2015-01-01

    Full Text Available Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism and to have beneficial effects on metabolic disorders. The present study investigated the antiobesity properties of resin from Protium heptaphyllum (RPH and the possible mechanisms in mice fed a high-fat diet (HFD for 15 weeks. Mice treated with RPH showed decreases in body weight, net energy intake, abdominal fat accumulation, plasma glucose, amylase, lipase, triglycerides, and total cholesterol relative to their respective controls, which were RPH unfed. Additionally, RPH treatment, while significantly elevating the plasma level of ghrelin hormone, decreased the levels of insulin, leptin, and resistin. Besides, HFD-induced increases in plasma levels of proinflammatory mediators TNF-α, IL-6, and MCP-1 were significantly lowered by RPH. Furthermore, in vitro studies revealed that RPH could significantly inhibit the lipid accumulation in 3T3-L1 adipocytes (measured by Oil-Red O staining at concentrations up to 50 μg/mL. These findings suggest that the antiobese potential of RPH is largely due to its modulatory effects on various hormonal and enzymatic secretions related to fat and carbohydrate metabolism and to the regulation of obesity-associated inflammation.

  14. The Water Footprint as an indicator of environmental sustainability in water use at the river basin level.

    Science.gov (United States)

    Pellicer-Martínez, Francisco; Martínez-Paz, José Miguel

    2016-11-15

    One of the main challenges in water management is to determine how the current water use can condition its availability to future generations and hence its sustainability. This study proposes the use of the Water Footprint (WF) indicator to assess the environmental sustainability in water resources management at the river basin level. The current study presents the methodology developed and applies it to a case study. The WF is a relatively new indicator that measures the total volume of freshwater that is used as a production factor. Its application is ever growing in the evaluation of water use in production processes. The calculation of the WF involves water resources (blue), precipitation stored in the soil (green) and pollution (grey). It provides a comprehensive assessment of the environmental sustainability of water use in a river basin. The methodology is based upon the simulation of the anthropised water cycle, which is conducted by combining a hydrological model and a decision support system. The methodology allows the assessment of the environmental sustainability of water management at different levels, and/or ex-ante analysis of how the decisions made in water planning process affect sustainability. The sustainability study was carried out in the Segura River Basin (SRB) in South-eastern Spain. The SRB is among the most complex basins in Europe, given its special peculiarities: competition for the use, overexploitation of aquifers, pollution, alternative sources, among others. The results indicate that blue water use is not sustainable due to the generalised overexploitation of aquifers. They also reveal that surface water pollution, which is not sustainable, is mainly caused by phosphate concentrations. The assessment of future scenarios reveals that these problems will worsen if no additional measures are implemented, and therefore the water management in the SRB is environmentally unsustainable in both the short- and medium-term. Copyright © 2016

  15. Economic sustainability, water security and multi-level governance of local water schemes in Nepal

    Directory of Open Access Journals (Sweden)

    Emma Hakala

    2017-07-01

    Full Text Available This article explores the role of multi-level governance and power structures in local water security through a case study of the Nawalparasi district in Nepal. It focuses on economic sustainability as a measure to address water security, placing this thematic in the context of a complicated power structure consisting of local, district and national administration as well as external development cooperation actors. The study aims to find out whether efforts to improve the economic sustainability of water schemes have contributed to water security at the local level. In addition, it will consider the interactions between water security, power structures and local equality and justice. The research builds upon survey data from the Nepalese districts of Nawalparasi and Palpa, and a case study based on interviews and observation in Nawalparasi. The survey was performed in water schemes built within a Finnish development cooperation programme spanning from 1990 to 2004, allowing a consideration of the long-term sustainability of water management projects. This adds a crucial external influence into the intra-state power structures shaping water management in Nepal. The article thus provides an alternative perspective to cross-regional water security through a discussion combining transnational involvement with national and local points of view.

  16. Niacin increases adiponectin and decreases adipose tissue inflammation in high fat diet-fed mice.

    Directory of Open Access Journals (Sweden)

    Desiree Wanders

    Full Text Available To determine the effects of niacin on adiponectin and markers of adipose tissue inflammation in a mouse model of obesity.Male C57BL/6 mice were placed on a control or high-fat diet (HFD and were maintained on such diets for the duration of the study. After 6 weeks on the control or high fat diets, vehicle or niacin treatments were initiated and maintained for 5 weeks. Identical studies were conducted concurrently in HCA2 (-/- (niacin receptor(-/- mice.Niacin increased serum concentrations of the anti-inflammatory adipokine, adiponectin by 21% in HFD-fed wild-type mice, but had no effect on lean wild-type or lean or HFD-fed HCA2 (-/- mice. Niacin increased adiponectin gene and protein expression in the HFD-fed wild-type mice only. The increases in adiponectin serum concentrations, gene and protein expression occurred independently of changes in expression of PPARγ C/EBPα or SREBP-1c (key transcription factors known to positively regulate adiponectin gene transcription in the adipose tissue. Further, niacin had no effect on adipose tissue expression of ERp44, Ero1-Lα, or DsbA-L (key ER chaperones involved in adiponectin production and secretion. However, niacin treatment attenuated HFD-induced increases in adipose tissue gene expression of MCP-1 and IL-1β in the wild-type HFD-fed mice. Niacin also reduced the expression of the pro-inflammatory M1 macrophage marker CD11c in HFD-fed wild-type mice.Niacin treatment attenuates obesity-induced adipose tissue inflammation through increased adiponectin and anti-inflammatory cytokine expression and reduced pro-inflammatory cytokine expression in a niacin receptor-dependent manner.

  17. Low and high dose rate heavy ion radiation-induced intestinal and colonic tumorigenesis in APC1638N/+ mice

    Science.gov (United States)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Fornace, Albert J.; Datta, Kamal

    2017-05-01

    Ionizing radiation (IR) is a recognized risk factor for colorectal cancer (CRC) and astronauts undertaking long duration space missions are expected to receive IR doses in excess of permissible limits with implications for colorectal carcinogenesis. Exposure to IR in outer space occurs at low doses and dose rates, and energetic heavy ions due to their high linear energy transfer (high-LET) characteristics remain a major concern for CRC risk in astronauts. Previously, we have demonstrated that intestinal tumorigenesis in a mouse model (APC1638N/+) of human colorectal cancer was significantly higher after exposure to high dose rate energetic heavy ions relative to low-LET γ radiation. The purpose of the current study was to compare intestinal tumorigenesis in APC1638N/+ mice after exposure to energetic heavy ions at high (50 cGy/min) and relatively low (0.33 cGy/min) dose rate. Male and female mice (6-8 weeks old) were exposed to either 10 or 50 cGy of 28Si (energy: 300 MeV/n; LET: 70 keV/μm) or 56Fe (energy: 1000 MeV/n; LET: 148 keV/μm) ions at NASA Space Radiation Laboratory in Brookhaven National Laboratory. Mice (n = 20 mice/group) were euthanized and intestinal and colon tumor frequency and size were counted 150 days after radiation exposure. Intestinal tumorigenesis in male mice exposed to 56Fe was similar for high and low dose rate exposures. Although male mice showed a decreasing trend at low dose rate relative to high dose rate exposures, the differences in tumor frequency between the two types of exposures were not statistically significant after 28Si radiation. In female mice, intestinal tumor frequency was similar for both radiation type and dose rates tested. In both male and female mice intestinal tumor size was not different after high and low dose rate radiation exposures. Colon tumor frequency in male and female mice after high and low dose rate energetic heavy ions was also not significantly different. In conclusion, intestinal and colonic tumor

  18. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet

    Directory of Open Access Journals (Sweden)

    Daofeng Qu

    Full Text Available ABSTRACT The objective of this study was to analyze the antioxidant activities of chitooligosaccharides (COS both in vitro and in high-fat diet (HFD-mouse model. In antioxidant assays in HFD-mouse model, mice were administered with normal diet, HFD, or HFD with 0.5% COS for six weeks. The administration of HFD with 0.5% COS resulted in significant increase in the activity of superoxide dismutase, catalase, and glutathione peroxidase in stomach, liver, and serum of mice as compared with the HFD-fed group, which means that COS may have certain antioxidant activity and can restore the activity of the enzymes affected by the HFD. Through morphological measurements of the small intestinal mucosa, mice fed HFD showed decreased villus height compared with other groups. On the other hand, HFD with 0.5% COS group showed similar ratio of villus height to depth compared with control mice, indicating that intestinal integrity was improved when COS was added. Chitooligosaccharides have potent antioxidant activity that can protect mice from oxidative stress.

  19. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    Science.gov (United States)

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  20. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  1. The Intra- or Extracellular Redox State Was Not Affected by a High vs. Low Glycemic Response Diet in Mice

    Science.gov (United States)

    Kleckner, Amber S.; Wong, Siu; Corkey, Barbara E.

    2015-01-01

    A low glycemic response (LGR) vs. high glycemic response (HGR) diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity) at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate) or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state. PMID:26030878

  2. The Intra- or Extracellular Redox State Was Not Affected by a High vs. Low Glycemic Response Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Amber S Kleckner

    Full Text Available A low glycemic response (LGR vs. high glycemic response (HGR diet helps curtail the development of obesity and diabetes, though the mechanisms are unknown. We hypothesized that consumption of a HGR vs. a LGR diet would lead to a more oxidized circulating redox state and predicted that a HGR diet would increase fat accumulation, reduce insulin sensitivity, and impair metabolic acclimation to a high fat diet in a mouse model. Hence, male C57BL/6 mice consumed a HGR or LGR diet for 16 weeks and a subset of the mice subsequently consumed a high fat diet for 4 weeks. We found that body mass increased at a faster rate for those consuming the HGR diet. Percent body fat was greater and percent lean mass was lesser in the HGR group starting at 12 weeks. However, the groups did not differ in terms of glucose tolerance at week 14 and metabolic parameters (respiratory exchange ratio, heat production, activity at weeks 4 or 15. Moreover, mice on either diet did not show differences in metabolic acclimation to the high fat leg of the study. At the termination of the study, the groups did not differ in terms of redox pairs (lactate/pyruvate and β-hydroxybutyrate/acetoacetate or thioredoxin reductase activity in blood. Also, total and oxidized glutathione levels and lipid peroxidation were similar in blood and liver. Correlations between baseline measures, longitudinal parameters, environmental conditions, and terminal metrics revealed that individual mice have innate propensities to metabolic regulation that may be difficult to perturb with diet alone; for example, starting mass correlated negatively with energy expenditure 4 weeks into the study and total hepatic glutathione at the end of the study. In conclusion, these data suggest that the mechanism by which HGR carbohydrates contributes to obesity is not via prolonged oxidation of the circulating redox state.

  3. Effects of Enzymatically Synthesized Glycogen and Exercise on Abdominal Fat Accumulation in High-Fat Diet-Fed Mice.

    Science.gov (United States)

    Tamura, Shohei; Honda, Kazuhisa; Morinaga, Ryoji; Saneyasu, Takaoki; Kamisoyama, Hiroshi

    2017-01-01

    The combination of diet and exercise is the first choice for the treatment of obesity and metabolic syndrome. We previously reported that enzymatically synthesized glycogen (ESG) suppresses abdominal fat accumulation in obese rats. However, the effect of the combination of ESG and exercise on abdominal fat accumulation has not yet been investigated. Our goal in this study was therefore to evaluate the effects of dietary ESG and its combination with exercise on abdominal fat accumulation in high-fat diet (HFD)-fed mice. Male ICR mice were assigned to four groups: HFD, HFD containing 20% ESG, HFD with exercise, HFD containing 20% ESG with exercise. Treadmill exercise was performed for 3 wk (25 m/min, 30 min/d, 3 d/wk) after 5-d adaption to running at that speed. Both ESG and exercise significantly reduced the weights of abdominal adipose tissues. In addition, the combination of ESG and exercise significantly suppressed abdominal fat accumulation, suggesting that ESG and exercise showed an additive effect. Exercise significantly increased the mRNA levels of lipid metabolism-related genes such as lipoprotein lipase, peroxisome proliferator-activated receptor delta; factor-delta (PPARδ), carnitin palmitoyltransferase b, adipose triglyceride lipase (ATGL), and uncoupling protein-3 in the gastrocnemius muscle. On the other hand, dietary ESG significantly decreased the mRNA levels of PPARδ and ATGL in the gastrocnemius muscle. These results suggest that the combined treatment of ESG and exercise effectively suppresses abdominal fat accumulation in HFD-fed mice by different mechanisms.

  4. Impact of nutrient excess and endothelial nitric oxide synthase on the plasma metabolite profile in mice

    Directory of Open Access Journals (Sweden)

    Brian E Sansbury

    2014-11-01

    Full Text Available An increase in calorie consumption is associated with the recent rise in obesity prevalence. However, our current understanding of the effects of nutrient excess on major metabolic pathways appears insufficient to develop safe and effective metabolic interventions to prevent obesity. Hence, we sought to identify systemic metabolic changes caused by nutrient excess and to determine how endothelial nitric oxide synthase (eNOS—which has anti-obesogenic properties—affects systemic metabolism by measuring plasma metabolites. Wild-type (WT and eNOS transgenic (eNOS-TG mice were placed on low fat or high fat diets for six weeks, and plasma metabolites were measured using an unbiased metabolomic approach. High fat feeding in WT mice led to significant increases in fat mass, which was associated with significantly lower plasma levels of 1,5-anhydroglucitol, lysophospholipids, 3-dehydrocarnitine, and bile acids, as well as branched chain amino acids (BCAAs and their metabolites. Plasma levels of several lipids including sphingomyelins, stearoylcarnitine, dihomo-linoleate and metabolites associated with oxidative stress were increased by high fat diet. In comparison with low fat-fed WT mice, eNOS-TG mice showed lower levels of several free fatty acids, but in contrast, the levels of bile acids, amino acids, and BCAA catabolites were increased. When placed on a high fat diet, eNOS overexpressing mice showed remarkably higher levels of plasma bile acids and elevated levels of plasma BCAAs and their catabolites compared with WT mice. Treatment with GW4064, an inhibitor of bile acid synthesis, decreased plasma bile acid levels but was not sufficient to reverse the anti-obesogenic effects of eNOS overexpression. These findings reveal unique metabolic changes in response to high fat diet and eNOS overexpression and suggest that the anti-obesity effects of eNOS are likely independent of changes in the bile acid pool.

  5. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  6. Different responsiveness to a high-fat/cholesterol diet in two inbred mice and underlying genetic factors: a whole genome microarray analysis

    Directory of Open Access Journals (Sweden)

    Jin Gang

    2009-10-01

    Full Text Available Abstract Background To investigate different responses to a high-fat/cholesterol diet and uncover their underlying genetic factors between C57BL/6J (B6 and DBA/2J (D2 inbred mice. Methods B6 and D2 mice were fed a high-fat/cholesterol diet for a series of time-points. Serum and bile lipid profiles, bile acid yields, hepatic apoptosis, gallstones and atherosclerosis formation were measured. Furthermore, a whole genome microarray was performed to screen hepatic genes expression profile. Quantitative real-time PCR, western blot and TUNEL assay were conducted to validate microarray data. Results After fed the high-fat/cholesterol diet, serum and bile total cholesterol, serum cholesterol esters, HDL cholesterol and Non-HDL cholesterol levels were altered in B6 but not significantly changed in D2; meanwhile, biliary bile acid was decreased in B6 but increased in D2. At the same time, hepatic apoptosis, gallstones and atherosclerotic lesions occurred in B6 but not in D2. The hepatic microarray analysis revealed distinctly different genes expression patterns between B6 and D2 mice. Their functional pathway groups included lipid metabolism, oxidative stress, immune/inflammation response and apoptosis. Quantitative real time PCR, TUNEL assay and western-blot results were consistent with microarray analysis. Conclusion Different genes expression patterns between B6 and D2 mice might provide a genetic basis for their distinctive responses to a high-fat/cholesterol diet, and give us an opportunity to identify novel pharmaceutical targets in related diseases in the future.

  7. Deficits in spatial learning and memory in adult mice following acute, low or moderate levels of prenatal ethanol exposure during gastrulation or neurulation.

    Science.gov (United States)

    Schambra, Uta B; Lewis, C Nicole; Harrison, Theresa A

    2017-07-01

    Debate continues on the merits of strictly limiting alcohol consumption during all of pregnancy, and whether "safe" consumption levels and/or times exist. Only a relatively few experimental studies have been conducted that limit the timing of exposure to specific events during development and the exposure level to one that might model sporadic, incidental drinking during pregnancy. In the present study, the effects of two acute gavage exposures to low and moderate levels of ethanol (peak blood ethanol concentrations (BEC) of 104 and 177mg/dl, respectively) either during gastrulation on gestational day (GD) 7 (at GD7:0h and GD7:4h) or during neurulation on GD8 (at GD8:6h and GD8:10h) on the spatial learning and memory abilities of adult mice in the radial arm maze (RAM) were examined. Mice were selected from a prenatal ethanol exposure (PAE) cohort that had been tested as neonates for their sensorimotor development (Schambra et al., 2015) and as juveniles and young adults for open field activity levels and emotionality (Schambra et al., 2016). Mice exposed on either of the two gestational days to acute, low or moderate levels of ethanol were deficient in overall performance in the RAM in adulthood. Importantly, mice in ethanol exposed groups took longer to reach criterion in the RAM, and many mice in these groups failed to do so after 48 trials when testing was terminated. Exposure to a low level of ethanol on either GD7 or GD8, or a moderate level on GD7, resulted in significant impairment in spatial reference (long-term) memory, while only mice exposed on GD7 to the low level of ethanol were significantly impaired in spatial working (short-term) memory. Mice exposed to the low ethanol level on either day had significantly shorter response latencies, which may reflect impairment of processes related to response inhibition or executive attention in these mice. For all measures, distributions of individual scores revealed a relatively small subset of mice in each PAE

  8. MHz-level self-sustained pulsation in polymer microspheres on a chip

    Directory of Open Access Journals (Sweden)

    Zhou-Chen Luo

    2014-12-01

    Full Text Available We observe MHz-level periodic self-sustained pulsation (SSP in the transmission spectrum of a polydimethylsiloxane (PDMS spherical microcavity on a silicon chip, under a fixed-frequency continuous laser excitation. The SSP results from the strong competition between the thermo-optic and thermal expansion effects of PDMS within the cavity mode volume. The experimental results show good agreement with the theoretical prediction by considering the modification of the thermal expansion coefficient and the temperature distribution within the mode volume.

  9. Impact of repeated exposure on toxicity of perchloroethylene in Swiss Webster mice

    International Nuclear Information System (INIS)

    Philip, Binu K.; Mumtaz, Moiz M.; Latendresse, John R.; Mehendale, Harihara M.

    2007-01-01

    The aim was to study the subchronic toxicity of perchloroethylene (Perc) by measuring injury and repair in liver and kidney in relation to disposition of Perc and its major metabolites. Male SW mice (25-29 g) were given three dose levels of Perc (150, 500, and 1000 mg/kg day) via aqueous gavage for 30 days. Tissue injury was measured during the dosing regimen (0, 1, 7, 14, and 30 days) and over a time course of 24-96 h after the last dose (30 days). Perc produced significant liver injury (ALT) after single day exposure to all three doses. Liver injury was mild to moderate and regressed following repeated exposure for 30 days. Subchronic Perc exposure induced neither kidney injury nor dysfunction during the entire time course as evidenced by normal renal histology and BUN. TCA was the major metabolite detected in blood, liver, and kidney. Traces of DCA were also detected in blood at initial time points after single day exposure. With single day exposure, metabolism of Perc to TCA was saturated with all three doses. AUC/dose ratio for TCA was significantly decreased with a concomitant increase in AUC/dose of Perc levels in liver and kidney after 30 days as compared to 1 day exposures, indicating inhibition of metabolism upon repeated exposure to Perc. Hepatic CYP2E1 expression and activity were unchanged indicating that CYP2E1 is not the critical enzyme inhibited. Hepatic CYP4A expression, measured as a marker of peroxisome proliferation was increased transiently only on day 7 with the high dose, but was unchanged at later time points. Liver tissue repair peaked at 7 days, with all three doses and was sustained after medium and high dose exposure for 14 days. These data indicate that subchronic Perc exposure via aqueous gavage does not induce nephrotoxicity and sustained hepatotoxicity suggesting adaptive hepatic repair mechanisms. Enzymes other than CYP2E1, involved in the metabolism of Perc may play a critical role in the metabolism of Perc upon subchronic exposure

  10. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice.

    Science.gov (United States)

    Kim, Misung; Na, Woori; Sohn, Cheongmin

    2013-09-01

    Several reports suggest that obesity is a risk factor for osteoporosis. Vitamin K plays an important role in improving bone metabolism. This study examined the effects of vitamin K1 and vitamin K2 supplementation on the biochemical markers of bone turnover and morphological microstructure of the bones by using an obese mouse model. Four-week-old C57BL/6J male mice were fed a 10% fat normal diet group or a 45% kcal high-fat diet group, with or without 200 mg/1000 g vitamin K1 (Normal diet + K1, high-fat diet + K1) and 200 mg/1000 g vitamin K2 (Normal diet + K2, high-fat diet + K2) for 12 weeks. Serum levels of osteocalcin were higher in the high-fat diet + K2 group than in the high-fat diet group. Serum OPG level of the high-fat diet group, high-fat diet + K1 group, and high-fat diet + K2 group was 2.31 ± 0.31 ng/ml, 2.35 ± 0.12 ng/ml, and 2.90 ± 0.11 ng/ml, respectively. Serum level of RANKL in the high-fat diet group was significantly higher than that in the high-fat diet + K1 group and high-fat diet + K2 group (p<0.05). Vitamin K supplementation seems to tend to prevent bone loss in high-fat diet induced obese state. These findings suggest that vitamin K supplementation reversed the high fat diet induced bone deterioration by modulating osteoblast and osteoclast activities and prevent bone loss in a high-fat diet-induced obese mice.

  11. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  12. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    Science.gov (United States)

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  13. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  14. Sustainable apple breedings needs sustainable marketing and management

    OpenAIRE

    Weber, M.

    2008-01-01

    Apple breeding programmes are currently in the middle of transition in terms of ownership and management. Until now most of them were funded by the public. Breeding took place by traditional methods since decades in a very sustainable way to develop better apple varieties. Today, increasing loss of national boundaries and globalisation, less interest by national bodies and institutions and rising cost levels for high tech breeding methods entire programmes are nowadays urged to...

  15. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  16. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice

    International Nuclear Information System (INIS)

    Kimura, Akihiko; Ishida, Yuko; Wada, Takashi; Yokoyama, Hitoshi; Mukaida, Naofumi; Kondo, Toshikazu

    2005-01-01

    To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs

  17. In situ depot comprising phase-change materials that can sustainably release a gasotransmitter H2S to treat diabetic wounds.

    Science.gov (United States)

    Lin, Wei-Chih; Huang, Chieh-Cheng; Lin, Shu-Jyuan; Li, Meng-Ju; Chang, Yen; Lin, Yu-Jung; Wan, Wei-Lin; Shih, Po-Chien; Sung, Hsing-Wen

    2017-11-01

    Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (H 2 S), which is an ephemeral gaseous molecule. Physiologically, H 2 S is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile H 2 S donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous H 2 S under physiological conditions. The sustained release of H 2 S promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of H 2 S for the treatment of diabetic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Can Education for Sustainable Development Change Entrepreneurship Education to Deliver a Sustainable Future?

    Science.gov (United States)

    Strachan, Glenn

    2018-01-01

    An objective of the European Union's Entrepreneurship 2020 Action Plan is to address high levels of youth unemployment in Europe by promoting entrepreneurship. Implementing entrepreneurship education in schools, colleges and universities is one of three strategic interventions proposed by the Action Plan. Sustainable entrepreneurship is a…

  19. High-fat diet-induced adiposity, adipose inflammation, hepatic steatosis and hyperinsulinemia in outbred CD-1 mice.

    Science.gov (United States)

    Gao, Mingming; Ma, Yongjie; Liu, Dexi

    2015-01-01

    High-fat diet (HFD) has been applied to a variety of inbred mouse strains to induce obesity and obesity related metabolic complications. In this study, we determined HFD induced development of metabolic disorders on outbred female CD-1 mice in a time dependent manner. Compared to mice on regular chow, HFD-fed CD-1 mice gradually gained more fat mass and consequently exhibited accelerated body weight gain, which was associated with adipocyte hypertrophy and up-regulated expression of adipose inflammatory chemokines and cytokines such as Mcp-1 and Tnf-α. Increased fat accumulation in white adipose tissue subsequently led to ectopic fat deposition in brown adipose tissue, giving rise to whitening of brown adipose tissue without altering plasma level of triglyceride. Ectopic fat deposition was also observed in the liver, which was associated with elevated expression of key genes involved in hepatic lipid sequestration, including Ppar-γ2, Cd36 and Mgat1. Notably, adipose chronic inflammation and ectopic lipid deposition in the liver and brown fat were accompanied by glucose intolerance and insulin resistance, which was correlated with hyperinsulinemia and pancreatic islet hypertrophy. Collectively, these results demonstrate sequentially the events that HFD induces physiological changes leading to metabolic disorders in an outbred mouse model more closely resembling heterogeneity of the human population.

  20. The Effect of Curry Leaves (Murayya Koenigii L. on Blood Glucose Levels In Alloxan Diabetic Mice (Mus Musculus

    Directory of Open Access Journals (Sweden)

    Fauziah Fauziah

    2014-07-01

    Full Text Available This study was conducted to determine the effect of ethanol extract of curry leaves (Murraya koenigii L. on blood glucose levels in alloxan diabetic mice (Mus musculus. The diabetic conditions were made by giving alloxan 75 mg/kg body weight (BW and the hypoglycemic effects of extract of curry leaves given with various doses.   This study used 24 male mice strain Balb/c in four groups of treatment with six replications, namely the negative control group, the ethanol extract of curry leaf tree 50% mL/10g body weight group, 70% mL/10g body weight group and 90% mL/10g body weight group. The treatment was given orally by using a gastric sonde for 14 days. Blood samples were taken through the sinus caudalis using a scissors. Blood glucose level was measured at 1st , the 8th and the 24th of treatment using blood glucose test strips and Nesco® Multicheck apparatus. Blood glucose data were analyzed by one way ANOVA (Analysis of Variants and followed by Tuckey test at significance level of 5%. The result showed that treatment of ethanol extract of curry leaves (Murraya koenigii at various doses significantly affected the decrease on blood glucose levels of mice (Mus musculus alloxan diabetic.

  1. Linkage disequilibrium in wild mice.

    Directory of Open Access Journals (Sweden)

    Cathy C Laurie

    2007-08-01

    Full Text Available Crosses between laboratory strains of mice provide a powerful way of detecting quantitative trait loci for complex traits related to human disease. Hundreds of these loci have been detected, but only a small number of the underlying causative genes have been identified. The main difficulty is the extensive linkage disequilibrium (LD in intercross progeny and the slow process of fine-scale mapping by traditional methods. Recently, new approaches have been introduced, such as association studies with inbred lines and multigenerational crosses. These approaches are very useful for interval reduction, but generally do not provide single-gene resolution because of strong LD extending over one to several megabases. Here, we investigate the genetic structure of a natural population of mice in Arizona to determine its suitability for fine-scale LD mapping and association studies. There are three main findings: (1 Arizona mice have a high level of genetic variation, which includes a large fraction of the sequence variation present in classical strains of laboratory mice; (2 they show clear evidence of local inbreeding but appear to lack stable population structure across the study area; and (3 LD decays with distance at a rate similar to human populations, which is considerably more rapid than in laboratory populations of mice. Strong associations in Arizona mice are limited primarily to markers less than 100 kb apart, which provides the possibility of fine-scale association mapping at the level of one or a few genes. Although other considerations, such as sample size requirements and marker discovery, are serious issues in the implementation of association studies, the genetic variation and LD results indicate that wild mice could provide a useful tool for identifying genes that cause variation in complex traits.

  2. Effect of Saffron on Metabolic Profile and Retina in Apolipoprotein E-Knockout Mice Fed a High-Fat Diet.

    Science.gov (United States)

    Doumouchtsis, Evangelos K; Tzani, Aspasia; Doulamis, Ilias P; Konstantopoulos, Panagiotis; Laskarina-Maria, Korou; Agrogiannis, Georgios; Agapitos, Emmanouil; Moschos, Marilita M; Kostakis, Alkiviadis; Perrea, Despina N

    2017-09-22

    Saffron is a spice that has been traditionally used as a regimen for a variety of diseases due to its potent antioxidant attributes. It is well documented that impaired systemic oxidative status is firmly associated with diverse adverse effects including retinal damage. The aim of this study was to investigate the role of saffron administration against the retinal damage in apoE -/- mice fed a high-fat diet, since they constitute a designated experimental model susceptible to oxidative stress. Twenty-one mice were allocated into three groups: Group A (control, n = 7 c57bl/6 mice) received standard chow diet; Group B (high-fat, n = 7 apoE -/- mice) received a high-fat diet; and Group C (high-fat and saffron, n = 7 apoE -/- mice) received a high-fat diet and saffron (25 mg/kg/d) through their drinking water. The duration of the study was 20 weeks. Lipidemic profile, glucose, C-reactive protein (CRP), and total oxidative capacity (PerOX) were measured in blood serum. Histological analysis of retina was also conducted. Administration of saffron resulted in enhanced glycemic control and preservation of retinal thickness when compared with apoE -/- mice fed a high-fat diet. The outcomes of the study suggest the potential protective role of saffron against retinal damage induced by oxidative stress. Nevertheless, verification of these results in humans is required before any definite conclusions can be drawn.

  3. Infanticide: accounting for genetic variation in mice.

    Science.gov (United States)

    Svare, B; Kinsley, C H; Mann, M A; Broida, J

    1984-07-01

    Infanticide, the killing of young, is one of a number of sexually-dimorphic traits in mice that is dependent upon androgen stimulation during perinatal life and during adulthood. Genotype also influences infanticide in that males of some strains of mice (C57BL/6J) exhibit high levels of this behavior while males of other strains (DBA/2J) seldom kill young. The experiments conducted here show that strain differences in pup killing behavior exhibited by males are not related to postweaning social factors nor are they due to differences in perinatal, pubertal, or adult levels of circulating hormones. These results, in combination with those previously reported, suggest that strain differences in the tendency of mice to kill young may instead depend upon the interaction of genotypic features such as prenatal hormone titers and/or sensitivity to these hormones, as well as on extra organismic factors such as intrauterine position. A model for understanding the manner in which genes and hormones may interact to influence infanticide and other hormone dependent sexually-dimorphic behaviors in mice is presented.

  4. Continuous and high-level in vivo delivery of endostatin from recombinant cells encapsulated in TheraCyte immunoisolation devices.

    Science.gov (United States)

    Malavasi, N V; Rodrigues, D B; Chammas, R; Chura-Chambi, R M; Barbuto, J A M; Balduino, K; Nonogaki, S; Morganti, L

    2010-01-01

    Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.

  5. Behavioral in-effectiveness of high frequency electromagnetic field in mice.

    Science.gov (United States)

    Salunke, Balwant P; Umathe, Sudhir N; Chavan, Jagatpalsingh G

    2015-03-01

    The present investigation was carried out with an objective to study the influence of high frequency electromagnetic field (HF-EMF) on anxiety, obsessive compulsive disorder (OCD) and depression-like behavior. For exposure to HF-EMF, non-magnetic material was used to fabricate the housing. Mice were exposed to HF-EMF (2.45GHz), 60min/day for 7 or 30 or 60 or 90 or 120days. The exposure was carried out by switching-on inbuilt class-I BLUETOOTH device that operates on 2.45GHz frequency in file transfer mode at a peak density of 100mW. Mice were subjected to the assessment of anxiety, OCD and depression-like behavior for 7 or 30 or 60 or 90 or 120days of exposure. The anxiety-like behavior was assessed by elevated plus maze, open field test and social interaction test. OCD-like behavior was assessed by marble burying behavior, whereas depression-like behavior was assessed by forced swim test and tail suspension test. The present experiment demonstrates that up to 120days of exposure to HF-EMF does not produce anxiety, OCD and depression-like behavior in mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    Science.gov (United States)

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  7. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change

    Directory of Open Access Journals (Sweden)

    Moon Ho Do

    2018-06-01

    Full Text Available High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD or high-fructose (HFrD diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.

  8. Innovation Level of Sustainable Practices Adopted in Industrial Enterprises

    Directory of Open Access Journals (Sweden)

    Simone Sehnem

    2016-07-01

    Full Text Available This research aimed to identify the level of innovation of sustainable practices by industrial companies. This is a descriptive study that made use of a questionnaire answered by 50 industrial companies. The results show that environmental practices at full level by 68% of businesses are monitoring the risks and opportunities for the organization's activities due to climate change; 56% of companies surveyed are waste separation; followed by the realization of related health and safety training at work in 52% of cases surveyed; and 48% monitoring and recording of injuries, the injury rate, the rate of occupational diseases, lost days, absenteeism and number of work-related fatalities for all workers. Among the practices adopted not stand out incineration (burning mass (80% of companies surveyed; hiring indigenous and tribal employees (68%; composting (64% and use of surface water in the process. Therefore, the study contributed to the disclosure cleaner called production innovations and also pipe end technologies. Some social practices that signal a commitment of the organizations with human resources and the humanization and also economical focused on continuous improvement.

  9. Sustained high βN plasmas on EAST tokamak

    Science.gov (United States)

    Gao, Xiang; the EAST team

    2018-05-01

    Sustained high normalized beta (βN ∼ 1.9) plasmas with an ITER-like tungsten divertor have been achieved on EAST tokamak recently. The high power NBI heating system of 4.8 MW and the 4.6 GHz lower hybrid wave of 1 MW were developed and applied to produce edge and internal transport barriers in high βN discharges. The central flat q profile with q (ρ) ∼ 1 at ρ safety factor q95 = 4.7 is identified by the multi-channel far-infrared laser polarimeter and the EFIT code. The fraction of non-inductive current is about 40%. The relation between fishbone activity and ITB formation is observed and discussed.

  10. Toward a sustainable biorefinery using high-gravity technology

    DEFF Research Database (Denmark)

    Xiros, Charilaos; Janssen, Matty; Bystrom, Roberth

    2017-01-01

    The realization of process solutions for a sustainable bioeconomy depends on the efficient processing of biomass. High-gravity technology is one important alternative to realizing such solutions. The aims of this work were to expand the knowledge-base on lignocellulosic bioconversion processes...... at high solids content, to advance the current technologies for production of second-generation liquid biofuels, to evaluate the environmental impact of the proposed process by using life cycle assessment (LCA), and to develop and present a technically, economically, and environmentally sound process....... Biofuels, Bioproducts and Biorefining published by Society of Chemical Industry and John Wiley & Sons, Ltd....

  11. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    Science.gov (United States)

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  12. Ginsenoside Re Ameliorates Brain Insulin Resistance and Cognitive Dysfunction in High Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Kim, Jong Min; Park, Chang Hyeon; Park, Seon Kyeong; Seung, Tae Wan; Kang, Jin Yong; Ha, Jeong Su; Lee, Du Sang; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2017-04-05

    The ameliorating effects of ginsenoside Re (G Re) on high fat diet (HFD)-induced insulin resistance in C57BL/6 mice were investigated to assess its physiological function. In the results of behavioral tests, G Re improved cognitive dysfunction in diabetic mice using Y-maze, passive avoidance, and Morris water maze tests. G Re also significantly recovered hyperglycemia and fasting blood glucose level. In the results of serum analysis, G Re decreased triglyceride (TG), total cholesterol (TCHO), low-density lipoprotein cholesterol (LDLC), glutamic-oxaloacetic transaminase (GOT), and glutamic-pyruvic transaminase (GPT) and increased the ratio of high-density lipoprotein cholesterol (HDLC). G Re regulated acetylcholine (ACh), acetylcholinesterase (AChE), malondialdehyde (MDA), superoxide dismutase (SOD), and oxidized glutathione (GSH)/total GSH by regulating the c-Jun N-terminal protein kinase (JNK) pathway. These findings suggest that G Re could be used to improve HFD-induced insulin resistance condition by ameliorating hyperglycemia via protecting the cholinergic and antioxidant systems in the mouse brains.

  13. Characterisation of Atherogenic Effects of Low Carbohydrate, High Protein Diet (LCHP) in ApoE/LDLR-/- Mice.

    Science.gov (United States)

    Kostogrys, R B; Johann, C; Czyżyńska, I; Franczyk-Żarów, M; Drahun, A; Maślak, E; Jasztal, A; Gajda, M; Mateuszuk, Ł; Wrobel, T P; Baranska, M; Wybrańska, I; Jezkova, K; Nachtigal, P; Chlopicki, S

    2015-08-01

    Low Carbohydrate High Protein diet represents a popular strategy to achieve weight loss. The aim of this study was to characterize effects of low carbohydrate, high protein diet (LCHP) on atherosclerotic plaque development in brachiocephalic artery (BCA) in apoE/LDLR-/- mice and to elucidate mechanisms of proatherogenic effects of LCHP diet. Atherosclerosis plaques in brachiocephalic artery (BCA) as well as in aortic roots, lipoprotein profile, inflammation biomarkers, expression of SREBP-1 in the liver as well as mortality were analyzed in Control diet (AIN-93G) or LCHP (Low Carbohydrate High Protein) diet fed mice. Area of atherosclerotic plaques in aortic roots or BCA from LCHP diet fed mice was substantially increased as compared to mice fed control diet and was characterized by increased lipids and cholesterol contents (ORO staining, FT-IR analysis), increased macrophage infiltration (MOMA-2) and activity of MMPs (zymography). Pro-atherogenic phenotype of LCHP fed apoE/LDLR-/- mice was associated with increased plasma total cholesterol concentration, and in LDL and VLDL fractions, increased TG contents in VLDL, and a modest increase in plasma urea. LCHP diet increased SCD-1 index, activated SREBP-1 transcription factor in the liver and triggered acute phase response as evidence by an increased plasma concentration of haptoglobin, CRP or AGP. Finally, in long-term experiment survival of apoE/LDLR-/- mice fed LCHP diet was substantially reduced as compared to their counterparts fed control diet suggesting overall detrimental effects of LCHP diet on health. The pro-atherogenic effect of LCHP diet in apoE/LDLR-/- mice is associated with profound increase in LDL and VLDL cholesterol, VLDL triglicerides, liver SREBP-1 upregulation, and systemic inflammation.

  14. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    Science.gov (United States)

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  15. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. SPILANTHES ACMELLA AND PHYSICAL EXERCISE INCREASED TESTOSTERONE LEVELS AND OSTEOBLAST CELLS IN GLUCOCORTICOID-INDUCED OSTEOPOROSIS MALE MICE

    Directory of Open Access Journals (Sweden)

    Hening Laswati

    2015-08-01

    Full Text Available Background: Glucocorticoid-induced osteoporosis is leading cause of secondary osteoporosis by decreasing formation activity and increasing resorption activity. Spilanthes acmella, is one of Indonesia medicinal plants that contain of polyphenol and flavonoids. Previously in vitro study showed that buthanol and water fraction from this plant have increased alkaline phosphatase that known as marker of bone formation. The objective of this study to analyze the effect of Spilanthes acmella  and physical exercise in increasing testosterone and  osteoblast cells of femoral’s trabecular glucocorticoid-induced osteoporosis male mice. Method: This study using a posttest control group design, 36 male healthy mice (5 months old  were randomizely devided into 6 groups, there are : 1.Healthy control group (without induction dexamethaxone, 2.Osteoporosis groups (induction with dexamethaxone without treatment, 3.Positive control receive suspension alendronat, 4.70% Ethanol extract of Spilanthes acmella group, 5.Combination group of 70% extract ethanol of Spilanthes acmella and exercise, and 6.Exercise group  (walking using mice treadmill 10m/minute, 5-12 minutes 3 times a week. All of the intervention were given for 4 weeks. The serum levels of testosterone were determined using  immunoserology (ELISA and osteoblast cells were determined histomorphometry by light microscopy.  All statistical test were carried out using SPSS 23 and statistical significance was  set at p<0.05 for all analysis. The testosterone levels  between group were compared using Mann-Whitney test and osteoblast cells between group were compared with multiple comparison. Results: It showed that the alendronate group, combination group and the exercise group increasing testosterone level (p<0.05 from that osteoporotic group. There were also increasing osteoblast cells (p<0.05 in the alendronate group and combination group. There was no correlation between testosterone level and

  17. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice.

    Science.gov (United States)

    Kübeck, Raphaela; Bonet-Ripoll, Catalina; Hoffmann, Christina; Walker, Alesia; Müller, Veronika Maria; Schüppel, Valentina Luise; Lagkouvardos, Ilias; Scholz, Birgit; Engel, Karl-Heinz; Daniel, Hannelore; Schmitt-Kopplin, Philippe; Haller, Dirk; Clavel, Thomas; Klingenspor, Martin

    2016-12-01

    Gut microbiota may promote positive energy balance; however, germfree mice can be either resistant or susceptible to diet-induced obesity (DIO) depending on the type of dietary intervention. We here sought to identify the dietary constituents that determine the susceptibility to body fat accretion in germfree (GF) mice. GF and specific pathogen free (SPF) male C57BL/6N mice were fed high-fat diets either based on lard or palm oil for 4 wks. Mice were metabolically characterized at the end of the feeding trial. FT-ICR-MS and UPLC-TOF-MS were used for cecal as well as hepatic metabolite profiling and cecal bile acids quantification, respectively. Hepatic gene expression was examined by qRT-PCR and cecal gut microbiota of SPF mice was analyzed by high-throughput 16S rRNA gene sequencing. GF mice, but not SPF mice, were completely DIO resistant when fed a cholesterol-rich lard-based high-fat diet, whereas on a cholesterol-free palm oil-based high-fat diet, DIO was independent of gut microbiota. In GF lard-fed mice, DIO resistance was conveyed by increased energy expenditure, preferential carbohydrate oxidation, and increased fecal fat and energy excretion. Cecal metabolite profiling revealed a shift in bile acid and steroid metabolites in these lean mice, with a significant rise in 17β-estradiol, which is known to stimulate energy expenditure and interfere with bile acid metabolism. Decreased cecal bile acid levels were associated with decreased hepatic expression of genes involved in bile acid synthesis. These metabolic adaptations were largely attenuated in GF mice fed the palm-oil based high-fat diet. We propose that an interaction of gut microbiota and cholesterol metabolism is essential for fat accretion in normal SPF mice fed cholesterol-rich lard as the main dietary fat source. This is supported by a positive correlation between bile acid levels and specific bacteria of the order Clostridiales (phylum Firmicutes ) as a characteristic feature of normal SPF mice

  18. Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice.

    Science.gov (United States)

    Murtaza, Nida; Baboota, Ritesh K; Jagtap, Sneha; Singh, Dhirendra P; Khare, Pragyanshu; Sarma, Siddhartha M; Podili, Koteswaraiah; Alagesan, Subramanian; Chandra, T S; Bhutani, K K; Boparai, Ravneet K; Bishnoi, Mahendra; Kondepudi, Kanthi Kiran

    2014-11-14

    Several epidemiological studies have shown that the consumption of finger millet (FM) alleviates diabetes-related complications. In the present study, the effect of finger millet whole grain (FM-WG) and bran (FM-BR) supplementation was evaluated in high-fat diet-fed LACA mice for 12 weeks. Mice were divided into four groups: control group fed a normal diet (10 % fat as energy); a group fed a high-fat diet; a group fed the same high-fat diet supplemented with FM-BR; a group fed the same high-fat diet supplemented with FM-WG. The inclusion of FM-BR at 10 % (w/w) in a high-fat diet had more beneficial effects than that of FM-WG. FM-BR supplementation prevented body weight gain, improved lipid profile and anti-inflammatory status, alleviated oxidative stress, regulated the expression levels of several obesity-related genes, increased the abundance of beneficial gut bacteria (Lactobacillus, Bifidobacteria and Roseburia) and suppressed the abundance of Enterobacter in caecal contents (P≤ 0·05). In conclusion, FM-BR supplementation could be an effective strategy for preventing high-fat diet-induced changes and developing FM-BR-enriched functional foods.

  19. Zanthoxylum piperitum DC ethanol extract suppresses fat accumulation in adipocytes and high fat diet-induced obese mice by regulating adipogenesis.

    Science.gov (United States)

    Gwon, So Young; Ahn, Ji Yun; Kim, Tae Wan; Ha, Tae Youl

    2012-01-01

    This study was conducted to determine the anti-obesity effects of Zanthoxylum piperitum DC fruit ethanol extract (ZPE) in 3T3-L1 adipocytes and obese mice fed a high-fat diet. We evaluated the influence of the addition of ZPE to a high-fat diet on body weight, adipose tissue weight, serum and hepatic lipids in C57BL/6 mice. In addition, adipogenic gene expression was determined by Western blot and real-time reverse transcription-PCR analysis. We assessed the effect of ZPE on 3T3-L1 preadipocyte differentiation. ZPE reduced weight gain, white adipose tissue mass, and serum triglyceride and cholesterol levels (pZPE decreased lipid accumulation and PPARγ, C/EBPα, SREBP-1, and FAS protein and mRNA levels in the liver. ZPE inhibited in vitro adipocyte differentiation in a dose-dependent manner and significantly attenuated adipogenic transcription factors, such as PPARγ, C/EBPα, and SREBP-1 in 3T3L1 cells. These findings suggest that Z. piperitum DC exerts an anti-obesity effect by inhibiting adipogenesis through the downregulation of genes involved in the adipogenesis pathway.

  20. Maintenance Free and Sustainable High-Level Control in Cement and Mining Industry

    DEFF Research Database (Denmark)

    Hansen, Ole Fink

    2009-01-01

    High-level control systems have been utilized in the process industry for decades, and also in cement production their use is well established. In comparison to manual control their ability to increase production and quality of end product, while reducing energy consumption and emission, is well...... but nevertheless still require maintenance. For the 10% of the algorithm that is control related, the maintenance issue is to some extent addressed by research topics such as adaptive control, which aim at retuning the parameters of the algorithm to match the changing process. In this project however, it has been...... chosen to focus on the remaining 90% of the algorithm which still require manual modifications to cope with a changed process. Although this issue has gained limited attention from academia so far it is well recognized by the industry. In the process of maintaining an algorithm it has turned out...