WorldWideScience

Sample records for mice single-dose vaccination

  1. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage.

    Science.gov (United States)

    Shan, Chao; Muruato, Antonio E; Jagger, Brett W; Richner, Justin; Nunes, Bruno T D; Medeiros, Daniele B A; Xie, Xuping; Nunes, Jannyce G C; Morabito, Kaitlyn M; Kong, Wing-Pui; Pierson, Theodore C; Barrett, Alan D; Weaver, Scott C; Rossi, Shannan L; Vasconcelos, Pedro F C; Graham, Barney S; Diamond, Michael S; Shi, Pei-Yong

    2017-09-22

    Zika virus infection during pregnancy can cause congenital abnormities or fetal demise. The persistence of Zika virus in the male reproductive system poses a risk of sexual transmission. Here we demonstrate that live-attenuated Zika virus vaccine candidates containing deletions in the 3' untranslated region of the Zika virus genome (ZIKV-3'UTR-LAV) prevent viral transmission during pregnancy and testis damage in mice, as well as infection of nonhuman primates. After a single-dose vaccination, pregnant mice challenged with Zika virus at embryonic day 6 and evaluated at embryonic day 13 show markedly diminished levels of viral RNA in maternal, placental, and fetal tissues. Vaccinated male mice challenged with Zika virus were protected against testis infection, injury, and oligospermia. A single immunization of rhesus macaques elicited a rapid and robust antibody response, conferring complete protection upon challenge. Furthermore, the ZIKV-3'UTR-LAV vaccine candidates have a desirable safety profile. These results suggest that further development of ZIKV-3'UTR-LAV is warranted for humans.Zika virus infection can result in congenital disorders and cause disease in adults, and there is currently no approved vaccine. Here Shan et al. show that a single dose of a live-attenuated Zika vaccine prevents infection, testis damage and transmission to the fetus during pregnancy in different animal models.

  2. Vaxchora: A Single-Dose Oral Cholera Vaccine.

    Science.gov (United States)

    Cabrera, Adriana; Lepage, Jayne E; Sullivan, Karyn M; Seed, Sheila M

    2017-07-01

    To review trials evaluating the efficacy and safety of Vaxchora, a reformulated, single-dose, oral, lyophilized Vibrio cholerae CVD 103-HgR vaccine for the prevention of travel-related cholera caused by V cholerae serogroup O1. A literature search was conducted using MEDLINE (1946 to January week 3, 2017) and EMBASE (1996 to 2017 week 3). Keywords included oral cholera vaccine, single-dose, Vaxchora, and CVD 103-HgR. Limits included human, clinical trials published in English since 2010. ClinicalTrials.gov was used as a source for unpublished data. Additional data sources were obtained through bibliographic review of selected articles. Studies that addressed the safety and efficacy of Vaxchora, the reformulated, single-dose oral CVD 103-HgR cholera vaccine, were selected for analysis. Approval of Vaxchora, was based on efficacy of the vaccine in human trials demonstrating 90.3% protection among those challenged with V cholerae 10 days after vaccination and in immunogenicity studies with 90% systemic vibriocidal antibody conversion at 6 months after a single-dose of vaccine. Tolerability was acceptable, with the most common adverse effects reported to be fatigue, headache, and abdominal pain. Vaxchora is the only FDA-approved, single-dose oral vaccine for the prevention of cholera caused by V cholerae serogroup O1 in adult travelers from the United States going to cholera-affected areas. Safety and efficacy has not been established in children, immunocompromised persons, and pregnant or breastfeeding women or those living in cholera-endemic areas.

  3. Implementation research: reactive mass vaccination with single-dose oral cholera vaccine, Zambia.

    Science.gov (United States)

    Poncin, Marc; Zulu, Gideon; Voute, Caroline; Ferreras, Eva; Muleya, Clara Mbwili; Malama, Kennedy; Pezzoli, Lorenzo; Mufunda, Jacob; Robert, Hugues; Uzzeni, Florent; Luquero, Francisco J; Chizema, Elizabeth; Ciglenecki, Iza

    2018-02-01

    To describe the implementation and feasibility of an innovative mass vaccination strategy - based on single-dose oral cholera vaccine - to curb a cholera epidemic in a large urban setting. In April 2016, in the early stages of a cholera outbreak in Lusaka, Zambia, the health ministry collaborated with Médecins Sans Frontières and the World Health Organization in organizing a mass vaccination campaign, based on single-dose oral cholera vaccine. Over a period of 17 days, partners mobilized 1700 health ministry staff and community volunteers for community sensitization, social mobilization and vaccination activities in 10 townships. On each day, doses of vaccine were delivered to vaccination sites and administrative coverage was estimated. Overall, vaccination teams administered 424 100 doses of vaccine to an estimated target population of 578 043, resulting in an estimated administrative coverage of 73.4%. After the campaign, few cholera cases were reported and there was no evidence of the disease spreading within the vaccinated areas. The total cost of the campaign - 2.31 United States dollars (US$) per dose - included the relatively low cost of local delivery - US$ 0.41 per dose. We found that an early and large-scale targeted reactive campaign using a single-dose oral vaccine, organized in response to a cholera epidemic within a large city, to be feasible and appeared effective. While cholera vaccines remain in short supply, the maximization of the number of vaccines in response to a cholera epidemic, by the use of just one dose per member of an at-risk community, should be considered.

  4. Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine

    Science.gov (United States)

    Peng, Shiwen; Lyford-Pike, Sofia; Akpeng, Belinda; Wu, Annie; Hung, Chien-Fu; Hannaman, Drew; Saunders, John R.; Wu, T.-C.

    2012-01-01

    Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic anti-tumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells. PMID:23011589

  5. MVA-based H5N1 vaccine affords cross-clade protection in mice against influenza A/H5N1 viruses at low doses and after single immunization.

    Directory of Open Access Journals (Sweden)

    Joost H C M Kreijtz

    Full Text Available Human infections with highly pathogenic avian influenza viruses of the H5N1 subtype, frequently reported since 2003, result in high morbidity and mortality. It is feared that these viruses become pandemic, therefore the development of safe and effective vaccines is desirable. MVA-based H5N1 vaccines already proved to be effective when two immunizations with high doses were used. Dose-sparing strategies would increase the number of people that can be vaccinated when the amount of vaccine preparations that can be produced is limited. Furthermore, protective immunity is induced ideally after a single immunization. Therefore the minimal requirements for induction of protective immunity with a MVA-based H5N1 vaccine were assessed in mice. To this end, mice were vaccinated once or twice with descending doses of a recombinant MVA expressing the HA gene of influenza virus A/Vietnam/1194/04. The protective efficacy was determined after challenge infection with the homologous clade 1 virus and a heterologous virus derived from clade 2.1, A/Indonesia/5/05 by assessing weight loss, virus replication and histopathological changes. It was concluded that MVA-based vaccines allowed significant dose-sparing and afford cross-clade protection, also after a single immunization, which are favorable properties for an H5N1 vaccine candidate.

  6. A single dose of a DNA vaccine encoding apa coencapsulated with 6,6'-trehalose dimycolate in microspheres confers long-term protection against tuberculosis in Mycobacterium bovis BCG-primed mice.

    Science.gov (United States)

    Carlétti, Dyego; Morais da Fonseca, Denise; Gembre, Ana Flávia; Masson, Ana Paula; Weijenborg Campos, Lívia; Leite, Luciana C C; Rodrigues Pires, Andréa; Lannes-Vieira, Joseli; Lopes Silva, Célio; Bonato, Vânia Luiza Deperon; Horn, Cynthia

    2013-08-01

    Mycobacterium bovis BCG prime DNA (Mycobacterium tuberculosis genes)-booster vaccinations have been shown to induce greater protection against tuberculosis (TB) than BCG alone. This heterologous prime-boost strategy is perhaps the most realistic vaccination for the future of TB infection control, especially in countries where TB is endemic. Moreover, a prime-boost regimen using biodegradable microspheres seems to be a promising immunization to stimulate a long-lasting immune response. The alanine proline antigen (Apa) is a highly immunogenic glycoprotein secreted by M. tuberculosis. This study investigated the immune protection of Apa DNA vaccine against intratracheal M. tuberculosis challenge in mice on the basis of a heterologous prime-boost regimen. BALB/c mice were subcutaneously primed with BCG and intramuscularly boosted with a single dose of plasmid carrying apa and 6,6'-trehalose dimycolate (TDM) adjuvant, coencapsulated in microspheres (BCG-APA), and were evaluated 30 and 70 days after challenge. This prime-boost strategy (BCG-APA) resulted in a significant reduction in the bacterial load in the lungs, thus leading to better preservation of the lung parenchyma, 70 days postinfection compared to BCG vaccinated mice. The profound effect of this heterologous prime-boost regimen in the experimental model supports its development as a feasible strategy for prevention of TB.

  7. Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies.

    Science.gov (United States)

    Kreimer, Aimée R; Herrero, Rolando; Sampson, Joshua N; Porras, Carolina; Lowy, Douglas R; Schiller, John T; Schiffman, Mark; Rodriguez, Ana Cecilia; Chanock, Stephen; Jimenez, Silvia; Schussler, John; Gail, Mitchell H; Safaeian, Mahboobeh; Kemp, Troy J; Cortes, Bernal; Pinto, Ligia A; Hildesheim, Allan; Gonzalez, Paula

    2018-01-20

    The Costa Rica Vaccine Trial (CVT), a phase III randomized clinical trial, provided the initial data that one dose of the HPV vaccine could provide durable protection against HPV infection. Although the study design was to administer all participants three doses of HPV or control vaccine, 20% of women did not receive the three-dose regimens, mostly due to involuntary reasons unrelated to vaccination. In 2011, we reported that a single dose of the bivalent HPV vaccine could be as efficacious as three doses of the vaccine using the endpoint of persistent HPV infection accumulated over the first four years of the trial; findings independently confirmed in the GSK-sponsored PATRICIA trial. Antibody levels after one dose, although lower than levels elicited by three doses, were 9-times higher than levels elicited by natural infection. Importantly, levels remained essentially constant over at least seven years, suggesting that the observed protection provided by a single dose might be durable. Much work has been done to assure these non-randomized findings are valid. Yet, the group of recipients who received one dose of the bivalent HPV vaccine in the CVT and PATRICIA trials was small and not randomly selected nor blinded to the number of doses received. The next phase of research is to conduct a formal randomized, controlled trial to evaluate the protection afforded by a single dose of HPV vaccine. Complementary studies are in progress to bridge our findings to other populations, and to further document the long-term durability of antibody response following a single dose. Published by Elsevier Ltd.

  8. Is a single dose of meningococcal serogroup C conjugate vaccine sufficient for protection? experience from the Netherlands

    Directory of Open Access Journals (Sweden)

    Kaaijk Patricia

    2012-02-01

    Full Text Available Abstract Background The first meningococcal serogroup C (MenC conjugate vaccine was licensed in 1999 and introduced in the United Kingdom. Countries that have implemented the MenC vaccine since then in their national immunisation programmes use different schedules. Nevertheless, all involved countries seem to experience substantial declines in the incidence of MenC disease. Discussion Since 2001, the MenC conjugate vaccine has been implemented in the Netherlands by offering a single dose to all children aged 14 months. Prior to the introduction of the vaccine into the national immunisation programme, a catch-up vaccination campaign was initiated in which a single dose of the MenC conjugate vaccine was offered to all children aged from 14 months up to and including 18 years. Since then, there has been no report of any case of MenC disease among immunocompetent vaccinees. Administration of a single dose of MenC conjugate vaccine after infancy could be beneficial considering the already complex immunisation schedules with large numbers of vaccinations in the first year of life. The present paper deals with the advantages and critical aspects of a single dose of the MenC conjugate vaccine. Summary A single dose of MenC conjugate vaccine at the age of 14 months in combination with a catch up vaccine campaign appeared to be a successful strategy to prevent MenC disease in the Netherlands, thereby confirming that a single dose of the vaccine could sufficiently protect against disease. Nevertheless, this approach can only be justified in countries with a relatively low incidence of serogroup C meningococcal disease in the first year of life. Furthermore, a good surveillance programme is recommended for timely detection of vaccine breakthroughs and outbreaks among non-vaccinees, since long-term protection after a single dose in the second year of life cannot currently be guaranteed.

  9. Single-dose monomeric HA subunit vaccine generates full protection from influenza challenge

    CSIR Research Space (South Africa)

    Mallajosyula, JK

    2014-03-01

    Full Text Available 50% survival, or 100% survival with adjuvant, compared with 10% survival after vaccination with a commercially available H 1 N 1 vaccine. TMV-HA is an effective dose-sparing influenza vaccine, using a single-step process to rapidly generate large...

  10. Conventional influenza vaccines influence the performance of a universal influenza vaccine in mice.

    Science.gov (United States)

    Rowell, Janelle; Lo, Chia-Yun; Price, Graeme E; Misplon, Julia A; Epstein, Suzanne L; Garcia, Mayra

    2018-02-08

    Universal influenza vaccines are designed to protect against diverse strains of influenza virus. Preclinical testing of new vaccine candidates is usually done in naïve animals, despite intended use in the human population with its varied immune history including responses to previous vaccinations. As an approach more relevant to human use, we tested a candidate universal influenza vaccine in mice with a history of conventional vaccination. Female BALB/c mice were given two intramuscular doses of inactivated influenza vaccine (IIV) or diphtheria and tetanus toxoids vaccine (DT), one month apart. Another group was given two intranasal doses of live attenuated influenza virus (LAIV). One month after the second dose, mice were given the universal influenza vaccine: recombinant adenoviruses expressing influenza A nucleoprotein (A/NP) and matrix 2 (M2) (A/NP + M2-rAd). Immune responses to universal vaccine antigens A/NP and M2 were assessed by ELISA and interferon-γ ELISPOT. Protection was tested by challenge with mouse-adapted A/FM/1/47 (H1N1) and monitoring for weight loss and survival. Universal vaccine performance was enhanced, inhibited or unaffected by particular prior vaccinations. Mice given Afluria IIV and LAIV had greater antibody and T-cell response to A/NP than mice without prior vaccination, providing examples of enhanced A/NP + M2-rAd performance. Though Fluvirin IIV partially inhibited, the universal vaccine still provided considerable protection unlike conventional vaccination. Fluzone IIV and DT had no effect on A/NP + M2-rAd performance. Thus our results demonstrate that universal vaccine candidate A/NP + M2-rAd was at least partially effective in mice with diverse prior histories. However, the degree of protection and nature of the immune responses may be affected by a history of conventional vaccination and suggests that performance in humans would be influenced by immune history. Published by Elsevier Ltd.

  11. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Directory of Open Access Journals (Sweden)

    Anne Derbise

    Full Text Available No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably.The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50 caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50. Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1- Y. pestis.VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single

  12. Complete Protection against Pneumonic and Bubonic Plague after a Single Oral Vaccination.

    Science.gov (United States)

    Derbise, Anne; Hanada, Yuri; Khalifé, Manal; Carniel, Elisabeth; Demeure, Christian E

    2015-01-01

    No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably. The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1-Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis. VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral

  13. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  14. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  15. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study.

    Science.gov (United States)

    Sankaranarayanan, Rengaswamy; Joshi, Smita; Muwonge, Richard; Esmy, Pulikottil Okkuru; Basu, Partha; Prabhu, Priya; Bhatla, Neerja; Nene, Bhagwan M; Shaw, Janmesh; Poli, Usha Rani Reddy; Verma, Yogesh; Zomawia, Eric; Pimple, Sharmila; Tommasino, Massimo; Pawlita, Michael; Gheit, Tarik; Waterboer, Tim; Sehr, Peter; Pillai, Madhavan Radhakrishna

    2018-03-15

    Human papillomavirus (HPV) vaccination is a major strategy for preventing cervical and other ano-genital cancers. Worldwide HPV vaccination introduction and coverage will be facilitated if a single dose of vaccine is as effective as two or three doses or demonstrates significant protective effect compared to 'no vaccination'. In a multi-centre cluster randomized trial of two vs three doses of quadrivalent HPV vaccination (Gardasil™) in India, suspension of the vaccination due to events unrelated to the study led to per protocol and partial vaccination of unmarried 10-18 year old girls leading to four study groups, two by design and two by default. They were followed up for the primary outcomes of immunogenicity in terms of L1 genotype-specific binding antibody titres, neutralising antibody titres, and antibody avidity for the vaccine-targeted HPV types and HPV infections. Analysis was per actual number of vaccine doses received. This study is registered with ISRCTN, number ISRCTN98283094; and with ClinicalTrials.gov, number NCT00923702. Of the 17,729 vaccinated girls, 4348 (25%) received three doses on days 1, 60, 180 or later, 4979 (28%) received two doses on days 1 and 180 or later, 3452 (19%) received two doses on days 1 and 60, and 4950 (28%) received one dose. One dose recipients demonstrated a robust and sustained immune response against HPV 16 and 18, albeit inferior to that of 3- or 2-doses and the antibody levels were stable over a 4 year period. The frequencies of cumulative incident and persistent HPV 16 and 18 infections up to 7 years of follow-up were similar and uniformly low in all the vaccinated study groups; the frequency of HPV 16 and 18 infections were significantly higher in unvaccinated age-matched control women than among vaccine recipients. The frequency of vaccine non-targeted HPV types was similar in the vaccinated groups but higher in the unvaccinated control women. Our results indicate that a single dose of quadrivalent HPV

  16. Neighborhood-targeted and case-triggered use of a single dose of oral cholera vaccine in an urban setting: Feasibility and vaccine coverage.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Muller, Vincent; Llosa, Augusto E; Uzzeni, Florent; Luquero, Francisco J; Ciglenecki, Iza; Azman, Andrew S

    2017-06-01

    In June 2015, a cholera outbreak was declared in Juba, South Sudan. In addition to standard outbreak control measures, oral cholera vaccine (OCV) was proposed. As sufficient doses to cover the at-risk population were unavailable, a campaign using half the standard dosing regimen (one-dose) targeted high-risk neighborhoods and groups including neighbors of suspected cases. Here we report the operational details of this first public health use of a single-dose regimen of OCV and illustrate the feasibility of conducting highly targeted vaccination campaigns in an urban area. Neighborhoods of the city were prioritized for vaccination based on cumulative attack rates, active transmission and local knowledge of known cholera risk factors. OCV was offered to all persons older than 12 months at 20 fixed sites and to select groups, including neighbors of cholera cases after the main campaign ('case-triggered' interventions), through mobile teams. Vaccination coverage was estimated by multi-stage surveys using spatial sampling techniques. 162,377 individuals received a single-dose of OCV in the targeted neighborhoods. In these neighborhoods vaccine coverage was 68.8% (95% Confidence Interval (CI), 64.0-73.7) and was highest among children ages 5-14 years (90.0%, 95% CI 85.7-94.3), with adult men being less likely to be vaccinated than adult women (Relative Risk 0.81, 95% CI: 0.68-0.96). In the case-triggered interventions, each lasting 1-2 days, coverage varied (range: 30-87%) with an average of 51.0% (95% CI 41.7-60.3). Vaccine supply constraints and the complex realities where cholera outbreaks occur may warrant the use of flexible alternative vaccination strategies, including highly-targeted vaccination campaigns and single-dose regimens. We showed that such campaigns are feasible. Additional work is needed to understand how and when to use different strategies to best protect populations against epidemic cholera.

  17. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  18. Adapting to the global shortage of cholera vaccines: targeted single dose cholera vaccine in response to an outbreak in South Sudan.

    Science.gov (United States)

    Parker, Lucy A; Rumunu, John; Jamet, Christine; Kenyi, Yona; Lino, Richard Laku; Wamala, Joseph F; Mpairwe, Allan M; Ciglenecki, Iza; Luquero, Francisco J; Azman, Andrew S; Cabrol, Jean-Clement

    2017-04-01

    Shortages of vaccines for epidemic diseases, such as cholera, meningitis, and yellow fever, have become common over the past decade, hampering efforts to control outbreaks through mass reactive vaccination campaigns. Additionally, various epidemiological, political, and logistical challenges, which are poorly documented in the literature, often lead to delays in reactive campaigns, ultimately reducing the effect of vaccination. In June 2015, a cholera outbreak occurred in Juba, South Sudan, and because of the global shortage of oral cholera vaccine, authorities were unable to secure sufficient doses to vaccinate the entire at-risk population-approximately 1 million people. In this Personal View, we document the first public health use of a reduced, single-dose regimen of oral cholera vaccine, and show the details of the decision-making process and timeline. We also make recommendations to help improve reactive vaccination campaigns against cholera, and discuss the importance of new and flexible context-specific dose regimens and vaccination strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immunogenicity of a Psoralen-Inactivated Dengue Virus Type 1 Vaccine Candidate in Mice

    Science.gov (United States)

    2010-02-01

    United States Naval Medical Research Center Detachment, Lima, Peru , 1 and United States Naval Medical Research Center, Silver Spring, Maryland2 R...and 28. The mice in group B mice received 10-ng vaccine doses on study clays 0, 14, and 28. The mice in group C received 10-ng vaccine doses on

  20. A single-dose antihelminthic treatment does not influence immunogenicity of a meningococcal and a cholera vaccine in Gabonese school children.

    Science.gov (United States)

    Brückner, Sina; Agnandji, Selidji Todagbe; Elias, Johannes; Berberich, Stefan; Bache, Emmanuel; Fernandes, José; Loembe, Marguerite Massinga; Hass, Johanna; Lell, Bertrand; Mordmüller, Benjamin; Adegnika, Ayola Akim; Kremsner, Peter; Esen, Meral

    2016-10-17

    We recently described the effect of a single-dose antihelminthic treatment on vaccine immunogenicity to a seasonal influenza vaccine. Here we report the effect of antihelminthics on the immunogenicity of a meningococcal vaccine and a cholera vaccine in primary school children living in Lambaréné, Gabon. Since infection with helminths remains a major public health problem and the influence on cognitive and physical development as well as the immunomodulatory effects are well established, we investigated if a single-dose antihelminthic treatment prior to immunization positively influences antibody titers and vaccine-specific memory B-cells. In this placebo-controlled, double-blind trial the effect of a single-dose antihelminthic treatment prior to immunization with a meningococcal as well as with a cholera vaccine was investigated. Anti-meningococcal antibodies were assessed by serum bactericidal assay, cholera vaccine-specific antibody titers by Enzyme-linked Immunosorbent Assay (ELISA) at baseline (Day 0; vaccination), four weeks (Day 28) and 12weeks (Day 84) following vaccination. Meningococcal and cholera vaccine-specific memory B-cells were measured at Day 0 and 84 by vaccine-specific Enzyme-linked Immunospot (ELISpot) assay. The helminth burden of the participants was assessed four weeks before vaccination (Day -28) and at Day 84 by the Merthiolate-Iodine-Formaldehyde technique. Out of 280 screened school children, 96 received a meningococcal vaccine and 89 a cholera vaccine following allocation to either the single-dose antihelminthic treatment group or the placebo group. Bactericidal antibody titers increased following immunization with the meningococcal vaccine at Day 28 and Day 84 in 68 participants for serogroup A, and in 80 participants for serogroup C. The cholera vaccine titers increased in all participants with a peak at Day 28. The number of memory B-cells increased following vaccination compared to baseline. There was no statistically significant

  1. Comparison of immune persistence among inactivated and live attenuated hepatitis a vaccines 2 years after a single dose

    Science.gov (United States)

    Zhang, Xiaoshu; An, Jing; Tu, Aixia; Liang, Xuefeng; Cui, Fuqiang; Zheng, Hui; Tang, Yu; Liu, Jianfeng; Wang, Xuxia; Zhang, Ningjing; Li, Hui

    2016-01-01

    ABSTRACT Objective: Compare immune persistence from one dose of each of 3 different hepatitis A vaccines when given to school-age children: a domestic, live attenuated hepatitis A vaccine (H2 vaccine); a domestic inactivated hepatitis A vaccine (Healive®); and an imported, inactivated hepatitis A vaccine (Havrix®),.Methods: School-age children were randomized into 1 of 4 groups to receive a single dose of a vaccine: H2 vaccine, Healive®, Havrix®, or hepatitis B vaccine [control]. Serum samples were collected 12 and 24 months after vaccination for measurement of anti-HAV IgG using microparticle enzyme immunoassay. Seropositivity was defined as ≥ 20 mUI/ml. We compared groups on seropositivity and geometric mean concentration (GMC). Results: Seropositive rates for the H2, Healive®, Havrix®, and control groups were 64%, 94.4%, 73%, and 1.0%, respectively, 12-months post-vaccination; and 63%, 95.6%, 72%, and 1.0%, respectively 24-months post-vaccination. Seropositivity was greater for Healive® than for H2 and Havrix® at 12 months (p-values a single dose of inactivated hepatitis A vaccine and live attenuated hepatitis A vaccine. PMID:27494260

  2. Assessment of coverage levels of single dose measles vaccine

    International Nuclear Information System (INIS)

    Tariq, P.

    2003-01-01

    Objective: To study the consequences of low coverage levels of a single dose of measles vaccine. Results: mean age observed in measles cases was 2 years and 8 months with a range from 3 months to 8 years. Maximum number of cases reported were <1 year of age (n=22,32%). Fifty percent of cases were seen among vaccinated children. Seventy-five percent (n=51) had history of contact with a measles case. Pneumonia was the commonest complication followed by acute gastroenteritis, encephalitis, febrile convulsions, oral ulcers, oral thrush, eye changes of vitamin-A deficiency and pulmonary tuberculosis (T.B.) in descending order of frequency. Fifty four cases were successfully treated for complications of measles and discharged. Nine cases left against medical advice. Five patients died all of them had encephalitis either alone (n=1) or in combination with pneumonia and acute gastroenteritis (n=4). Conclusion: There is a dire need to increase the immunization coverage to reduce the rate of vaccine failure and achieve effective control of measles.(author)

  3. Successful comeback of the single-dose live oral cholera vaccine CVD 103-HgR.

    Science.gov (United States)

    Herzog, Christian

    2016-01-01

    Effective and easy to administer cholera vaccines are in need more than ever, for at risk populations and travellers alike. In many parts of the world cholera is still endemic, causing outbreaks and constituting repeatedly serious public health problems. The oral live cholera vaccine CVD 103-HgR (Orochol, Mutachol), the first genetically modified organism (GMO) used as vaccine, was in its time (launched 1993, Switzerland) the ideal cholera vaccine: single-dose, protective efficacy of 80-100% against moderate to severe cholera, acting within 8 days and exhibiting excellent safety, indiscernible from placebo. However, there were strong headwinds: In the 1990s the indication for cholera vaccines was generally downplayed by experts and in 1997 the European Commission called for a moratorium of GMOs which blocked the registration in the European Union. Thus, demand for this vaccine remained low and in 2003 it was taken off the market for economic reasons. After a decade in obscurity it (Vaxchora) has resurfaced again, now produced in the U.S. and equipped with a U.S. FDA license (June 10, 2016). What had happened? This commentary gives a critical account of an almost unbelievable string of misadventures, emerging adverse circumstances and man-made failures which nearly killed this single-dose live oral cholera vaccine. The good news is that patience and persistence lead to success in the end, allowing good science to prevail for the benefit of those in need. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Interaction between single-dose Mycoplasma hyopneumoniae and porcine reproductive and respiratory syndrome virus vaccines on dually infected pigs.

    Science.gov (United States)

    Park, Su-Jin; Seo, Hwi Won; Park, Changhoon; Chae, Chanhee

    2014-06-01

    The objective of this study was to determine the effects of Mycoplasma hyopneumoniae and/or porcine reproductive and respiratory syndrome virus (PRRSV) vaccination on dually infected pigs. In total, 72 pigs were randomly divided into nine groups (eight pigs per group), as follows: five vaccinated and challenged groups, three non-vaccinated and challenged groups, and a negative control group. Single-dose vaccination against M. hyopneumoniae alone decreased the levels of PRRSV viremia and PRRSV-induced pulmonary lesions, whereas single-dose vaccination against PRRSV alone did not decrease nasal shedding of M. hyopneumoniae and mycoplasma-induced pulmonary lesions in the dually infected pigs. The M. hyopneumoniae challenge impaired the protective cell-mediated immunity induced by the PRRSV vaccine, whereas the PRRSV challenge did not impair the protective cell-mediated immunity induced by the M. hyopneumoniae vaccine. The present study provides swine practitioners and producers with efficient vaccination regimes; vaccination against M. hyopneumoniae is the first step in protecting pigs against co-infection with M. hyopneumoniae and PRRSV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Safety, immunogencity, and efficacy of a cold-adapted A/Ann Arbor/6/60 (H2N2) vaccine in mice and ferrets

    International Nuclear Information System (INIS)

    Chen, Grace L.; Lamirande, Elaine W.; Jin Hong; Kemble, George; Subbarao, Kanta

    2010-01-01

    We studied the attenuation, immunogenicity and efficacy of the cold-adapted A/Ann Arbor/6/60 (AA ca) (H2N2) virus in mice and ferrets to evaluate its use in the event of an H2 influenza pandemic. The AA ca virus was restricted in replication in the respiratory tract of mice and ferrets. In mice, 2 doses of vaccine elicited a > 4-fold rise in hemagglutination-inhibition (HAI) titer and resulted in complete inhibition of viral replication following lethal homologous wild-type virus challenge. In ferrets, a single dose of the vaccine elicited a > 4-fold rise in HAI titer and conferred complete protection against homologous wild-type virus challenge in the upper respiratory tract. In both mice and ferrets, the AA ca virus provided significant protection from challenge with heterologous H2 virus challenge in the respiratory tract. The AA ca vaccine is safe, immunogenic, and efficacious against homologous and heterologous challenge in mice and ferrets, supporting the evaluation of this vaccine in clinical trials.

  6. Booster vaccination with safe, modified, live-attenuated mutants of Brucella abortus strain RB51 vaccine confers protective immunity against virulent strains of B. abortus and Brucella canis in BALB/c mice.

    Science.gov (United States)

    Truong, Quang Lam; Cho, Youngjae; Kim, Kiju; Park, Bo-Kyoung; Hahn, Tae-Wook

    2015-11-01

    Brucella abortus attenuated strain RB51 vaccine (RB51) is widely used in prevention of bovine brucellosis. Although vaccination with this strain has been shown to be effective in conferring protection against bovine brucellosis, RB51 has several drawbacks, including residual virulence for animals and humans. Therefore, a safe and efficacious vaccine is needed to overcome these disadvantages. In this study, we constructed several gene deletion mutants (ΔcydC, ΔcydD and ΔpurD single mutants, and ΔcydCΔcydD and ΔcydCΔpurD double mutants) of RB51 with the aim of increasing the safety of the possible use of these mutants as vaccine candidates. The RB51ΔcydC, RB51ΔcydD, RB51ΔpurD, RB51ΔcydCΔcydD and RB51ΔcydCΔpurD mutants exhibited significant attenuation of virulence when assayed in murine macrophages in vitro or in BALB/c mice. A single intraperitoneal immunization with RB51ΔcydC, RB51ΔcydD, RB51ΔcydCΔcydD or RB51ΔcydCΔpurD mutants was rapidly cleared from mice within 3 weeks, whereas the RB51ΔpurD mutant and RB51 were detectable in spleens until 4 and 7 weeks, respectively. Vaccination with a single dose of RB51 mutants induced lower protective immunity in mice than did parental RB51. However, a booster dose of these mutants provided significant levels of protection in mice against challenge with either the virulent homologous B. abortus strain 2308 or the heterologous Brucella canis strain 26. In addition, these mutants were found to induce a mixed but T-helper-1-biased humoral and cellular immune response in immunized mice. These data suggest that immunization with a booster dose of attenuated RB51 mutants provides an attractive strategy to protect against either bovine or canine brucellosis.

  7. Development of a novel, single-cycle replicable rift valley Fever vaccine.

    Directory of Open Access Journals (Sweden)

    Shin Murakami

    2014-03-01

    Full Text Available Rift Valley fever virus (RVFV (genus Phlebovirus, family Bunyaviridae is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12, which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.

  8. Cold-adapted influenza and recombinant adenovirus vaccines induce cross-protective immunity against pH1N1 challenge in mice.

    Directory of Open Access Journals (Sweden)

    Mark R Soboleski

    Full Text Available The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1 highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus.BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca influenza viruses from 1977 or recombinant adenoviruses (rAd expressing 1934 nucleoprotein (NP and consensus matrix 2 (M2 (NP+M2-rAd. Antibodies against the M2 ectodomain (M2e were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus.Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic.

  9. A single intranasal administration of virus-like particle vaccine induces an efficient protection for mice against human respiratory syncytial virus.

    Science.gov (United States)

    Jiao, Yue-Ying; Fu, Yuan-Hui; Yan, Yi-Fei; Hua, Ying; Ma, Yao; Zhang, Xiu-Juan; Song, Jing-Dong; Peng, Xiang-Lei; Huang, Jiaqiang; Hong, Tao; He, Jin-Sheng

    2017-08-01

    Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8 + T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production. Copyright © 2017. Published by Elsevier B.V.

  10. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    Science.gov (United States)

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pvaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (PVaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (Pvaccination (Pvaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (Pvaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Determinants of antibody persistence across doses and continents after single-dose rVSV-ZEBOV vaccination for Ebola virus disease: an observational cohort study.

    Science.gov (United States)

    Huttner, Angela; Agnandji, Selidji Todagbe; Combescure, Christophe; Fernandes, José F; Bache, Emmanuel Bache; Kabwende, Lumeka; Ndungu, Francis Maina; Brosnahan, Jessica; Monath, Thomas P; Lemaître, Barbara; Grillet, Stéphane; Botto, Miriam; Engler, Olivier; Portmann, Jasmine; Siegrist, Denise; Bejon, Philip; Silvera, Peter; Kremsner, Peter; Siegrist, Claire-Anne

    2018-04-04

    The recombinant vesicular stomatitis virus (rVSV) vaccine expressing the Zaire Ebola virus (ZEBOV) glycoprotein is efficacious in the weeks following single-dose injection, but duration of immunity is unknown. We aimed to assess antibody persistence at 1 and 2 years in volunteers who received single-dose rVSV-ZEBOV in three previous trials. In this observational cohort study, we prospectively followed-up participants from the African and European phase 1 rVSV-ZEBOV trials, who were vaccinated once in 2014-15 with 300 000 (low dose) or 10-50 million (high dose) plaque-forming units (pfu) of rVSV-ZEBOV vaccine to assess ZEBOV glycoprotein (IgG) antibody persistence. The primary outcome was ZEBOV glycoprotein-specific IgG geometric mean concentrations (GMCs) measured yearly by ELISA compared with 1 month (ie, 28 days) after immunisation. We report GMCs up to 2 years (Geneva, Switzerland, including neutralising antibodies up to 6 months) and 1 year (Lambaréné, Gabon; Kilifi, Kenya) after vaccination and factors associated with higher antibody persistence beyond 6 months, according to multivariable analyses. Trials and the observational study were registered at ClinicalTrials.gov (Geneva: NCT02287480 and NCT02933931; Kilifi: NCT02296983) and the Pan-African Clinical Trials Registry (Lambaréné PACTR201411000919191). Of 217 vaccinees from the original studies (102 from the Geneva study, 75 from the Lambaréné study, and 40 from the Kilifi study), 197 returned and provided samples at 1 year (95 from the Geneva study, 63 from the Lambaréné, and 39 from the Kilifi study) and 90 at 2 years (all from the Geneva study). In the Geneva group, 44 (100%) of 44 participants who had been given a high dose (ie, 10-50 million pfu) of vaccine and who were seropositive at day 28 remained seropositive at 2 years, whereas 33 (89%) of 37 who had been given the low dose (ie, 300 000 pfu) remained seropositive for 2 years (p=0·042). In participants who had received a high dose

  12. Single-dose Live Oral Cholera Vaccine CVD 103-HgR Protects Against Human Experimental Infection With Vibrio cholerae O1 El Tor.

    Science.gov (United States)

    Chen, Wilbur H; Cohen, Mitchell B; Kirkpatrick, Beth D; Brady, Rebecca C; Galloway, David; Gurwith, Marc; Hall, Robert H; Kessler, Robert A; Lock, Michael; Haney, Douglas; Lyon, Caroline E; Pasetti, Marcela F; Simon, Jakub K; Szabo, Flora; Tennant, Sharon; Levine, Myron M

    2016-06-01

    No licensed cholera vaccine is presently available in the United States. Cholera vaccines available in other countries require 2 spaced doses. A single-dose cholera vaccine that can rapidly protect short-notice travelers to high-risk areas and help control explosive outbreaks where logistics render 2-dose immunization regimens impractical would be a major advance.PXVX0200, based on live attenuated Vibrio cholerae O1 classical Inaba vaccine strain CVD 103-HgR, elicits seroconversion of vibriocidal antibodies (a correlate of protection) within 10 days of a single oral dose. We investigated the protection conferred by this vaccine in a human cholera challenge model. Consenting healthy adult volunteers, 18-45 years old, were randomly allocated 1:1 to receive 1 oral dose of vaccine (approximately 5 × 10(8) colony-forming units [CFU]) or placebo in double-blind fashion. Volunteers ingested approximately 1 × 10(5) CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961 10 days or 3 months after vaccination and were observed on an inpatient research ward for stool output measurement and management of hydration. The vaccine was well tolerated, with no difference in adverse event frequency among 95 vaccinees vs 102 placebo recipients. The primary endpoint, moderate (≥3.0 L) to severe (≥5.0 L) diarrheal purge, occurred in 39 of 66 (59.1%) placebo controls but only 2 of 35 (5.7%) vaccinees at 10 days (vaccine efficacy, 90.3%; P < .0001) and 4 of 33 (12.1%) vaccinees at 3 months (vaccine efficacy, 79.5%; P < .0001). The significant vaccine efficacy documented 10 days and 3 months after 1 oral dose of PXVX0200 supports further development as a single-dose cholera vaccine. NCT01895855. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  13. Live, Attenuated Influenza A H5N1 Candidate Vaccines Provide Broad Cross-Protection in Mice and Ferrets

    Science.gov (United States)

    Mills, Kimberly L; Jin, Hong; Duke, Greg; Lu, Bin; Luke, Catherine J; Murphy, Brian; Swayne, David E; Kemble, George; Subbarao, Kanta

    2006-01-01

    Background Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic. Methods and Findings Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA) and a wild-type (wt) N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca) influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2), were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 106 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3) that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses. Conclusions The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans. PMID:16968127

  14. Live, attenuated influenza A H5N1 candidate vaccines provide broad cross-protection in mice and ferrets.

    Directory of Open Access Journals (Sweden)

    Amorsolo L Suguitan

    2006-09-01

    Full Text Available Recent outbreaks of highly pathogenic influenza A H5N1 viruses in humans and avian species that began in Asia and have spread to other continents underscore an urgent need to develop vaccines that would protect the human population in the event of a pandemic.Live, attenuated candidate vaccines possessing genes encoding a modified H5 hemagglutinin (HA and a wild-type (wt N1 neuraminidase from influenza A H5N1 viruses isolated in Hong Kong and Vietnam in 1997, 2003, and 2004, and remaining gene segments derived from the cold-adapted (ca influenza A vaccine donor strain, influenza A/Ann Arbor/6/60 ca (H2N2, were generated by reverse genetics. The H5N1 ca vaccine viruses required trypsin for efficient growth in vitro, as predicted by the modification engineered in the gene encoding the HA, and possessed the temperature-sensitive and attenuation phenotypes specified by the internal protein genes of the ca vaccine donor strain. More importantly, the candidate vaccines were immunogenic in mice. Four weeks after receiving a single dose of 10(6 50% tissue culture infectious doses of intranasally administered vaccines, mice were fully protected from lethality following challenge with homologous and antigenically distinct heterologous wt H5N1 viruses from different genetic sublineages (clades 1, 2, and 3 that were isolated in Asia between 1997 and 2005. Four weeks after receiving two doses of the vaccines, mice and ferrets were fully protected against pulmonary replication of homologous and heterologous wt H5N1 viruses.The promising findings in these preclinical studies of safety, immunogenicity, and efficacy of the H5N1 ca vaccines against antigenically diverse H5N1 vaccines provide support for their careful evaluation in Phase 1 clinical trials in humans.

  15. Single oral dose toxicity test of platycodin d, a saponin from platycodin radix in mice.

    Science.gov (United States)

    Lee, Won-Ho; Gam, Cheol-Ou; Ku, Sae-Kwang; Choi, Seong-Hun

    2011-12-01

    The object of this study was to evaluate the single oral dose toxicity of platycodin D, a saponin from the root of Platycodon grandiflorum in male and female mice. Platycodin D was administered to female and male mice as an oral dose of 2000, 1000, 500, 250 and 125 mg/kg (body wt.). Animals were monitored for the mortality and changes in body weight, clinical signs and gross observation during 14 days after treatment, upon necropsy, organ weight and histopathology of 14 principle organs were examined. As the results, no platycodin D treatment related mortalities, clinical signs, changes on the body and organ weights, gross and histopathological observations against 14 principle organs were detected up to 2000 mg/kg in both female and male mice. Therefore, LD50 (50% lethal dose) and approximate LD of playtcodin D after single oral treatment in female and male mice were considered over 2000 mg/kg - the limited dosages recommended by KFDA Guidelines [2009-116, 2009], respectively.

  16. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...... mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice...

  17. Single Dose of Consensus Hemagglutinin-Based Virus-Like Particles Vaccine Protects Chickens against Divergent H5 Subtype Influenza Viruses

    Directory of Open Access Journals (Sweden)

    Peipei Wu

    2017-11-01

    Full Text Available The H5 subtype highly pathogenic avian influenza (HPAI virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA was constructed and expressed in virus-like particles (rHA VLPs in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5 was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.

  18. Use of the mice passive protection test to evaluate the humoral response in goats vaccinated with Sterne 34F2 live spore vaccine.

    Science.gov (United States)

    Phaswana, P H; Ndumnego, O C; Koehler, S M; Beyer, W; Crafford, J E; van Heerden, H

    2017-09-07

    The Sterne live spore vaccine (34F2) is the most widely used veterinary vaccine against anthrax in animals. Antibody responses to several antigens of Bacillus anthracis have been described with a large focus on those against protective antigen (PA). The focus of this study was to evaluate the protective humoral immune response induced by the live spore anthrax vaccine in goats. Boer goats vaccinated twice (week 0 and week 12) with the Sterne live spore vaccine and naive goats were used to monitor the anti-PA and toxin neutralizing antibodies at week 4 and week 17 (after the second vaccine dose) post vaccination. A/J mice were passively immunized with different dilutions of sera from immune and naive goats and then challenged with spores of B. anthracis strain 34F2 to determine the protective capacity of the goat sera. The goat anti-PA ELISA titres indicated significant sero-conversion at week 17 after the second doses of vaccine (p = 0.009). Mice receiving undiluted sera from goats given two doses of vaccine (twice immunized) showed the highest protection (86%) with only 20% of mice receiving 1:1000 diluted sera surviving lethal challenge. The in vitro toxin neutralization assay (TNA) titres correlated to protection of passively immunized A/J mice against lethal infection with the vaccine strain Sterne 34F2 spores using immune goat sera up to a 1:10 dilution (r s  ≥ 0.522, p = 0.046). This study suggests that the passive mouse protection model could be potentially used to evaluate the protective immune response in livestock animals vaccinated with the current live vaccine and new vaccines.

  19. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep.

    Science.gov (United States)

    van Rijn, Piet A; Daus, Franz J; Maris-Veldhuis, Mieke A; Feenstra, Femke; van Gennip, René G P

    2017-01-05

    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled Infectious Single Animal (DISA) vaccines based on live-attenuated BTV without expression of dispensable non-structural NS3/NS3a protein. DISA vaccines are non-pathogenic replicating vaccines, do not cause viremia, enable DIVA and are highly protective. NS3/NS3a protein is involved in virus release, cytopathogenic effect and suppression of Interferon-I induction, suggesting that the vaccination route can be of importance. A standardized dose of DISA vaccine for serotype 8 has successfully been tested by subcutaneous vaccination. We show that 10 and 100times dilutions of this previously tested dose did not reduce the VP7 humoral response. Further, the vaccination route of DISA vaccine strongly determined the induction of VP7 directed antibodies (Abs). Intravenous vaccination induced high and prolonged humoral response but is not practical in field situations. VP7 seroconversion was stronger by intramuscular vaccination than by subcutaneous vaccination. For both vaccination routes and for two different DISA vaccine backbones, IgM Abs were rapidly induced but declined after 14days post vaccination (dpv), whereas the IgG response was slower. Interestingly, intramuscular vaccination resulted in an initial peak followed by a decline up to 21dpv and then increased again. This second increase is a steady and continuous increase of IgG Abs. These results indicate that intramuscular vaccination is the optimal route. The protective dose of DISA vaccine has not been determined yet, but it is expected to be significantly lower than of currently used BT vaccines. Therefore, in addition to the advantages of improved safety and DIVA compatibility, the novel DISA vaccines will be cost

  20. Cold-Adapted Influenza and Recombinant Adenovirus Vaccines Induce Cross-Protective Immunity against pH1N1 Challenge in Mice

    Science.gov (United States)

    Soboleski, Mark R.; Gabbard, Jon D.; Price, Graeme E.; Misplon, Julia A.; Lo, Chia-Yun; Perez, Daniel R.; Ye, Jianqiang; Tompkins, S. Mark; Epstein, Suzanne L.

    2011-01-01

    Background The rapid spread of the 2009 H1N1 pandemic influenza virus (pH1N1) highlighted problems associated with relying on strain-matched vaccines. A lengthy process of strain identification, manufacture, and testing is required for current strain-matched vaccines and delays vaccine availability. Vaccines inducing immunity to conserved viral proteins could be manufactured and tested in advance and provide cross-protection against novel influenza viruses until strain-matched vaccines became available. Here we test two prototype vaccines for cross-protection against the recent pandemic virus. Methodology/Principal Findings BALB/c and C57BL/6 mice were intranasally immunized with a single dose of cold-adapted (ca) influenza viruses from 1977 or recombinant adenoviruses (rAd) expressing 1934 nucleoprotein (NP) and consensus matrix 2 (M2) (NP+M2-rAd). Antibodies against the M2 ectodomain (M2e) were seen in NP+M2-rAd immunized BALB/c but not C57BL/6 mice, and cross-reacted with pH1N1 M2e. The ca-immunized mice did not develop antibodies against M2e. Despite sequence differences between vaccine and challenge virus NP and M2e epitopes, extensive cross-reactivity of lung T cells with pH1N1 peptides was detected following immunization. Both ca and NP+M2-rAd immunization protected BALB/c and C57BL/6 mice against challenge with a mouse-adapted pH1N1 virus. Conclusion/Significance Cross-protective vaccines such as NP+M2-rAd and ca virus are effective against pH1N1 challenge within 3 weeks of immunization. Protection was not dependent on recognition of the highly variable external viral proteins and could be achieved with a single vaccine dose. The rAd vaccine was superior to the ca vaccine by certain measures, justifying continued investigation of this experimental vaccine even though ca vaccine is already available. This study highlights the potential for cross-protective vaccines as a public health option early in an influenza pandemic. PMID:21789196

  1. A Randomised Trial Evaluating the Safety and Immunogenicity of the Novel Single Oral Dose Typhoid Vaccine M01ZH09 in Healthy Vietnamese Children

    NARCIS (Netherlands)

    Tran, T.H.; Nguyen, T.D.; Nguyen, T.T.; Ninh, T.T.V.; Tran, N.B.C.; Nguyen, V.M.H.; Tran, T.T.N.; Cao, T.T.; Pham, V.M.; Nguyen, T.C.B.; Tran, T.D.H.; Pham, V.T.; To, S.D.; Campbell, J.I.; Stockwell, E.; Schultsz, C.; Simmons, C.P.; Glover, C.; Lam, W.; Marques, F.; May, J.P.; Upton, A.; Budhram, R.; Dougan, G.; Farrar, J.; Nguyen, V.V.C.; Dolecek, C.

    2010-01-01

    Background: The emergence of drug resistant typhoid fever is a major public health problem, especially in Asia. An oral single dose typhoid vaccine would have major advantages. M01ZH09 is a live oral single dose candidate typhoid vaccine containing Salmonella enterica serovar Typhi (Ty2 aroC(-)

  2. A randomised trial evaluating the safety and immunogenicity of the novel single oral dose typhoid vaccine M01ZH09 in healthy Vietnamese children

    NARCIS (Netherlands)

    Tran, Tinh Hien; Nguyen, Thi Dung; Nguyen, Thanh Truong; Ninh, Thi Thanh Van; Tran, Nguyen Bich Chau; Nguyen, Van Minh Hoang; Tran, Thi Thu Nga; Cao, Thu Thuy; Pham, Van Minh; Nguyen, Thi Cam Binh; Tran, Thi Diem Ha; Pham, Van Toi; To, Song Diep; Campbell, James I.; Stockwell, Elaine; Schultsz, Constance; Simmons, Cameron P.; Glover, Clare; Lam, Winnie; Marques, Filipe; May, James P.; Upton, Anthony; Budhram, Ronald; Dougan, Gordon; Farrar, Jeremy; Nguyen, Van Vinh Chau; Dolecek, Christiane

    2010-01-01

    The emergence of drug resistant typhoid fever is a major public health problem, especially in Asia. An oral single dose typhoid vaccine would have major advantages. M01ZH09 is a live oral single dose candidate typhoid vaccine containing Salmonella enterica serovar Typhi (Ty2 aroC(-)ssaV(-)) ZH9 with

  3. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Development of a single-dose recombinant CAMP factor entrapping poly(lactide-co-glycolide) microspheres-based vaccine against Streptococcus agalactiae.

    Science.gov (United States)

    Liu, Gang; Yin, Jinhua; Barkema, Herman W; Chen, Liben; Shahid, Muhammad; Szenci, Otto; De Buck, Jeroen; Kastelic, John P; Han, Bo

    2017-03-01

    Streptococcus agalactiae is an important contagious bovine mastitis pathogen. Although it is well controlled and even eradicated in most Northern European and North American dairy herds, the prevalence of this pathogen remains very high in China. However, research on development of a vaccine against S. agalactiae mastitis is scarce. The aims of the present study were to: (1) develop a single-dose vaccine against S. agalactiae based on poly(lactic-co-glycolic acid) (PLGA) microspheres (MS) encapsulated CAMP factor, a conserved virulent protein encoded by S. agalactiae's cfb gene; and (2) evaluate its immunogenicity and protective efficacy in a mouse model. The cfb gene was cloned and expressed in a recombinant Escherichia coli strain Trans1-T1. The CAMP factor was tested to determine a safe dose range and then encapsulated in MS of PLGA (50:50) to assess its release pattern in vitro and immune reaction in vivo. Furthermore, a mouse model and a histopathological assay were developed to evaluate bacterial burden and vaccine efficacy. In the low dosage range (S. agalactiae challenge. Additionally, no pathological lesions were detected in the vaccinated group. Therefore, PLGA-CAMP conferred protective efficacy against S. agalactiae in our mouse model, indicating its potential as a vaccine against S. agalactiae mastitis. Furthermore, the slow-release kinetics of PLGA MS warranted optimism for development of a single-dose vaccine. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  5. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study

    Science.gov (United States)

    Azman, Andrew S.; Luquero, Francisco J.; Ciglenecki, Iza; Grais, Rebecca F.; Sack, David A.; Lessler, Justin

    2015-01-01

    Background In 2013, a stockpile of oral cholera vaccine (OCV) was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both. Methods and Findings Using mathematical models we determined the minimum relative single-dose efficacy (MRSE) at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%–56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%). This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%–88%) for two doses and 44% (95% CI −27% to 76%) for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%–88%), which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943–86,205) cases in Zimbabwe, 78,317 (95% PI 57,435–100,150) in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490–3,170) cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture

  6. The Impact of a One-Dose versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A Modeling Study.

    Directory of Open Access Journals (Sweden)

    Andrew S Azman

    2015-08-01

    Full Text Available In 2013, a stockpile of oral cholera vaccine (OCV was created for use in outbreak response, but vaccine availability remains severely limited. Innovative strategies are needed to maximize the health impact and minimize the logistical barriers to using available vaccine. Here we ask under what conditions the use of one dose rather than the internationally licensed two-dose protocol may do both.Using mathematical models we determined the minimum relative single-dose efficacy (MRSE at which single-dose reactive campaigns are expected to be as or more effective than two-dose campaigns with the same amount of vaccine. Average one- and two-dose OCV effectiveness was estimated from published literature and compared to the MRSE. Results were applied to recent outbreaks in Haiti, Zimbabwe, and Guinea using stochastic simulations to illustrate the potential impact of one- and two-dose campaigns. At the start of an epidemic, a single dose must be 35%-56% as efficacious as two doses to avert the same number of cases with a fixed amount of vaccine (i.e., MRSE between 35% and 56%. This threshold decreases as vaccination is delayed. Short-term OCV effectiveness is estimated to be 77% (95% CI 57%-88% for two doses and 44% (95% CI -27% to 76% for one dose. This results in a one-dose relative efficacy estimate of 57% (interquartile range 13%-88%, which is above conservative MRSE estimates. Using our best estimates of one- and two-dose efficacy, we projected that a single-dose reactive campaign could have prevented 70,584 (95% prediction interval [PI] 55,943-86,205 cases in Zimbabwe, 78,317 (95% PI 57,435-100,150 in Port-au-Prince, Haiti, and 2,826 (95% PI 2,490-3,170 cases in Conakry, Guinea: 1.1 to 1.2 times as many as a two-dose campaign. While extensive sensitivity analyses were performed, our projections of cases averted in past epidemics are based on severely limited single-dose efficacy data and may not fully capture uncertainty due to imperfect

  7. Sustained Antibody Responses 6 Years Following 1, 2, or 3 Doses of Quadrivalent Human Papillomavirus (HPV) Vaccine in Adolescent Fijian Girls, and Subsequent Responses to a Single Dose of Bivalent HPV Vaccine: A Prospective Cohort Study.

    Science.gov (United States)

    Toh, Zheng Quan; Russell, Fiona M; Reyburn, Rita; Fong, James; Tuivaga, Evelyn; Ratu, Tupou; Nguyen, Cattram D; Devi, Rachel; Kama, Mike; Matanitobua, Silivia; Tabrizi, Sepehr N; Garland, Suzanne M; Sinha, Rohit; Frazer, Ian; Tikoduadua, Lisi; Kado, Joseph; Rafai, Eric; Mulholland, Edward K; Licciardi, Paul V

    2017-04-01

    The duration of antibody response following reduced human papillomavirus (HPV) vaccine doses has not been determined. We compared the antibody responses in girls previously vaccinated with zero, 1, 2, or 3 doses of quadrivalent HPV vaccine (4vHPV; Gardasil, Merck) 6 years previously. A prospective cohort study was undertaken in 200 Fijian girls 15-19 years of age. Approximately equal numbers of girls from 2 main ethnic groups (Fijians of Indian descent [FID] and Indigenous Fijians [iTaukei]) in Fiji were recruited for each dosage groups. Blood was drawn before and 28 days following a single dose of bivalent HPV vaccine (2vHPV; Cervarix, GlaxoSmithKline). We measured neutralizing antibodies (NAb) against HPV-6, -11, -16, and -18 using the pseudovirion-based neutralization assay. After 6 years (before a dose of 2vHPV was given), the geometric mean NAb titers for all 4 HPV types were not statistically different between 2-dose (2D) and 3-dose (3D) recipients: HPV-6 (3D: 2216 [95% confidence interval {CI},1695-2896]; 2D: 1476 [95% CI, 1019-2137]; P = .07), HPV-11 (3D: 4431 [95% CI, 3396-5783]; 2D: 2951 [95% CI, 1984-4390]; P = .09), HPV-16 (3D: 3373 [95% CI, 2511-4530]; 2D: 3275 [95% CI, 2452-4373]; P = .89); HPV-18 (3D: 628 [95% CI: 445-888]; 2D: 606 [95% CI, 462-862]; P = .89), and were higher in FID than iTaukei girls. Although 1-dose recipients had significantly lower NAb titers than 2-/3-dose recipients, their NAb titers were 5- to 30-fold higher than unvaccinated girls. Post-2vHPV NAb titers against HPV-16 and -18 were not statistically different between girls who received 1, 2, or 3 doses of 4vHPV previously. Two doses of 4vHPV provide similar NAb titers as 3 doses for 6 years, although the clinical significance is unknown. A single dose of 4vHPV elicits antibodies that persisted for at least 6 years, and induced immune memory, suggesting possible protection against HPV vaccine types after a single dose of 4vHPV. © The Author 2016. Published by Oxford University

  8. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis.

    Science.gov (United States)

    Billeskov, Rolf; Lindenstrøm, Thomas; Woodworth, Joshua; Vilaplana, Cristina; Cardona, Pere-Joan; Cassidy, Joseph P; Mortensen, Rasmus; Agger, Else Marie; Andersen, Peter

    2017-01-01

    Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world's population with latent Mtb infection (LTBI), and 5-10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660) TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  9. A nonproliferating parvovirus vaccine vector elicits sustained, protective humoral immunity following a single intravenous or intranasal inoculation.

    Science.gov (United States)

    Palmer, Gene A; Brogdon, Jennifer L; Constant, Stephanie L; Tattersall, Peter

    2004-02-01

    An ideal vaccine delivery system would elicit persistent protection following a single administration, preferably by a noninvasive route, and be safe even in the face of immunosuppression, either inherited or acquired, of the recipient. We have exploited the unique life cycle of the autonomous parvoviruses to develop a nonproliferating vaccine platform that appears to both induce priming and continually boost a protective immune response following a single inoculation. A crippled parvovirus vector was constructed, based on a chimera between minute virus of mice (MVM) and LuIII, which expresses Borrelia burgdorferi outer surface protein A (OspA) instead of its coat protein. The vector was packaged into an MVM lymphotropic capsid and inoculated into naive C3H/HeNcr mice. Vaccination with a single vector dose, either intravenously or intranasally, elicited high-titer anti-OspA-specific antibody that provided protection from live spirochete challenge and was sustained over the lifetime of the animal. Both humoral and cell-mediated Th(1) immunity was induced, as shown by anti-OspA immunoglobulin G2a antibody and preferential gamma interferon production by OspA-specific CD4(+) T cells.

  10. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8+ T cell responses in mice

    Science.gov (United States)

    Zhou, Weibin; Moguche, Albanus; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-01-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration “cold chain”. Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8+ T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8+ T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. PMID:24275478

  11. Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice.

    Science.gov (United States)

    Ulrich, Ricky L; Amemiya, Kei; Waag, David M; Roy, Chad J; DeShazer, David

    2005-03-14

    Burkholderia mallei is an obligate mammalian pathogen that causes the zoonotic disease glanders. Two live attenuated B. mallei strains, a capsule mutant and a branched-chain amino acid auxotroph, were evaluated for use as vaccines against aerosol-initiated glanders in mice. Animals were aerogenically vaccinated and serum samples were obtained before aerosol challenge with a high-dose (>300 times the LD50) of B. mallei ATCC 23344. Mice vaccinated with the capsule mutant developed a Th2-like Ig subclass antibody response and none survived beyond 5 days. In comparison, the auxotrophic mutant elicited a Th1-like Ig subclass antibody response and 25% of the animals survived for 1 month postchallenge. After a low-dose (5 times the LD50) aerosol challenge, the survival rates of auxotroph-vaccinated and unvaccinated animals were 50 and 0%, respectively. Thus, live attenuated strains that promote a Th1-like Ig response may serve as promising vaccine candidates against aerosol infection with B. mallei.

  12. High Antigen Dose Is Detrimental to Post-Exposure Vaccine Protection against Tuberculosis

    Directory of Open Access Journals (Sweden)

    Rolf Billeskov

    2018-01-01

    Full Text Available Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis (TB, causes 1.8M deaths annually. The current vaccine, BCG, has failed to eradicate TB leaving 25% of the world’s population with latent Mtb infection (LTBI, and 5–10% of these people will reactivate and develop active TB. An efficient therapeutic vaccine targeting LTBI could have an enormous impact on global TB incidence, and could be an important aid in fighting multidrug resistance, which is increasing globally. Here we show in a mouse model using the H56 (Ag85B-ESAT-6-Rv2660 TB vaccine candidate that post-exposure, but not preventive, vaccine protection requires low vaccine antigen doses for optimal protection. Loss of protection from high dose post-exposure vaccination was not associated with a loss of overall vaccine response magnitude, but rather with greater differentiation and lower functional avidity of vaccine-specific CD4 T cells. High vaccine antigen dose also led to a decreased ability of vaccine-specific CD4 T cells to home into the Mtb-infected lung parenchyma, a recently discovered important feature of T cell protection in mice. These results underscore the importance of T cell quality rather than magnitude in TB-vaccine protection, and the significant role that antigen dosing plays in vaccine-mediated protection.

  13. Rejection of large HPV-16 expressing tumors in aged mice by a single immunization of VacciMax® encapsulated CTL/T helper peptides

    Directory of Open Access Journals (Sweden)

    MacDonald Lisa

    2007-06-01

    Full Text Available Abstract The incidence of cancer increases significantly in later life, yet few pre-clinical studies of cancer immunotherapy use mice of advanced age. A novel vaccine delivery platform (VacciMax®,VM is described that encapsulates antigens and adjuvants in multilamellar liposomes in a water-in-oil emulsion. The therapeutic potential of VM-based vaccines administered as a single dose was tested in HLA-A2 transgenic mice of advanced age (48–58 weeks old bearing large palpable TC1/A2 tumors. The VM-based vaccines contained one or more peptides having human CTL epitopes derived from HPV 16 E6 and E7. VM formulations contained a single peptide, a mixture of four peptides or the same four peptides linked together in a single long peptide. All VM formulations contained PADRE and CpG as adjuvants and ISA51 as the hydrophobic component of the water-in-oil emulsion. VM-formulated vaccines containing the four peptides as a mixture or linked together in one long peptide eradicated 19-day old established tumors within 21 days of immunization. Peptide-specific cytotoxic cellular responses were confirmed by ELISPOT and intracellular staining for IFN-γ producing CD8+ T cells. Mice rendered tumor-free by vaccination were re-challenged in the opposite flank with 10 million HLF-16 tumor cells, another HLA-A2/E6/E7 expressing tumor cell line. None of these mice developed tumors following the re-challenge. In summary, this report describes a VM-formulated therapeutic vaccine with the following unprecedented outcome: a eradication of large tumors (> 700 mm3 b in mice of advanced age c in less than three weeks post-immunization d following a single vaccination.

  14. Effects of a single high dose of 55Fe in mice

    International Nuclear Information System (INIS)

    Laissue, J.A.; Burlington, H.; Cronkite, E.P.; Heldman, B.; Reincke, U.

    1979-01-01

    High doses of 55 Fe induced cytocide in maturing erythroid cells, due to the short-range deposition of decay energy. Organ damage at the time of death was evaluated in a group of 45 female mice of the C 57 BL/6 J strain given a single i.v. injection of 2,800 μCi, 1,400 μCi or 700 μCi of 55 FeCl 3 when 10 to 14 weeks old. A corresponding amount of cold iron was given to control animals by the same route. Radioiron-treated mice died spontaneously, or were killed when moribund. Mice given 2,800 μCi died after a median survival time of 27 days with severe depletion of hemopoietic cells in bone marrow and spleen, marked atrophy of lymphoid tissues and mild liver damage. After 1,400 μCi or 700 μCi, the median survival time was 117 and 439, respectively. In contrast, median survival was 847 days in control animals allowed to survive. In the two lower 55 Fe-dose groups, there was a dose-dependent pancytopenia. Atrophy of lymphoid tissues was moderate, and signs of liver damage slight. The degree of organ hemosiderosis in experimental and control animals was slight to moderate. Organ damage associated with deposition of cold iron was not apparent in tissue sections. Morphological signs of damage to non-hemopoietic organs such as the liver were not conspicuous. Direct radiation damage, primarily to the erythroid series, and competition for stem cells between the heavily depleted erythroid and the other hemopoietic cell lines must be considered among the possible factors leading to pancytopenia. Out of 14 55 Fe-treated mice who survived longer than 300 days developed tumors of hemopoietic and lymphoid tissues, or osteosarcomas. (orig./MG) [de

  15. Hepatitis A vaccine. A new convenient single-dose schedule with booster when long-term immunization is warranted

    DEFF Research Database (Denmark)

    Victor, J; Knudsen, J D; Nielsen, L P

    1994-01-01

    A total of 162 anti-HAV-negative healthy adults were immunized with a single high dose (1440 ELISA units = 1 ml) of inactivated hepatitis A vaccine and a booster was given at month 6. Antibodies were measured after modification of a commercial ELISA kit, enabling quantification of titres down to 6...

  16. Just-in-time vaccines: Biomineralized calcium phosphate core-immunogen shell nanoparticles induce long-lasting CD8(+) T cell responses in mice.

    Science.gov (United States)

    Zhou, Weibin; Moguche, Albanus O; Chiu, David; Murali-Krishna, Kaja; Baneyx, François

    2014-04-01

    Distributed and on-demand vaccine production could be game-changing for infectious disease treatment in the developing world by providing new therapeutic opportunities and breaking the refrigeration "cold chain". Here, we show that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize a biocompatible adjuvant in a single step. The resulting 50 nm calcium phosphate core-immunogen shell particles are comparable to soluble protein in inducing ovalbumin-specific antibody response and class switch recombination in mice. However, single dose vaccination with nanoparticles leads to higher expansion of ovalbumin-specific CD8(+) T cells upon challenge with an influenza virus bearing the ovalbumin-derived SIINFEKL peptide, and these cells produce high levels of IFN-γ. Furthermore, mice exhibit a robust antigen-specific CD8(+) T cell recall response when challenged with virus 8 months post-immunization. These results underscore the promise of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. This paper reports that a fusion protein between a calcium phosphate binding domain and the model antigen ovalbumin can mineralize into a biocompatible adjuvant in a single step, enabling distributed and on-demand vaccine production and eliminating the need for refrigeration of vaccines. The findings highlight the possibility of immunogen-controlled adjuvant mineralization for just-in-time manufacturing of effective T cell vaccines. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Cyclosporine promotes the induction of thymic lymphomas in C57BL/6 mice initiated by a single dose of γ-radiation

    International Nuclear Information System (INIS)

    Yabu, Koji; Warty, V.S.; Gorelik, E.; Shinozuka, Hisashi

    1991-01-01

    We previously demonstrated that a single dose of γ-radiation (350 rads) was able to induce thymic lymphomas in C57BL mice when followed by promoting treatment with oral cyclosporine (CsA), a non-genotoxic immunosuppressant. We have now tested the efficacy of various doses of γ-radiation as an initiator of CsA promotion of the induction of thymic lymphomas in male C57BL mice. The effects of oral CsA on the splenic natural killer (NK) cell activity of non-irradiated and irradiated (400 rads, 1X) mice were tested by the standard 51 Cr release assays against YAC-1 cells. The cumulative incidence of thymic lymphomas induced by a single dose of γ-radiation at 100, 200, 400 and 600 rads were 10, 25, 63 and 75% respectively, after 42 weeks of CsA promotion. The splenic NK cell activity in non-irradiated mice given CsA for 4 weeks was twice as high as that in the control mice. CsA inhibited poly I:C-induced augmentation of the splenic NK cell activity. In mice given a single dose (400 rads) of γ-radiation and CsA for 4 weeks, a similar but reduced enhancement of the splenic NK cell activity as seen in non-irradiated mice was observed. These results indicate that the efficacy of CsA promotion in the induction of thymic lymphomas is dependent on the initiating doses of γ-radiation, and that CsA enhances host splenic NK cell activity during the early stage of tumor promotion. (author)

  18. A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates.

    Science.gov (United States)

    Sha, Jian; Kirtley, Michelle L; Klages, Curtis; Erova, Tatiana E; Telepnev, Maxim; Ponnusamy, Duraisamy; Fitts, Eric C; Baze, Wallace B; Sivasubramani, Satheesh K; Lawrence, William S; Patrikeev, Igor; Peel, Jennifer E; Andersson, Jourdan A; Kozlova, Elena V; Tiner, Bethany L; Peterson, Johnny W; McWilliams, David; Patel, Snehal; Rothe, Eric; Motin, Vladimir L; Chopra, Ashok K

    2016-07-01

    Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice

    International Nuclear Information System (INIS)

    Ware, J.H.; Rusek, A.; Sanzari, J.; Avery, S.; Sayers, C.; Krigsfeld, G.; Nuth, M.; Wan, X.S.; Kennedy, A.R.

    2010-01-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  20. Effects of proton radiation dose, dose rate and dose fractionation on hematopoietic cells in mice.

    Science.gov (United States)

    Ware, J H; Sanzari, J; Avery, S; Sayers, C; Krigsfeld, G; Nuth, M; Wan, X S; Rusek, A; Kennedy, A R

    2010-09-01

    The present study evaluated the acute effects of radiation dose, dose rate and fractionation as well as the energy of protons in hematopoietic cells of irradiated mice. The mice were irradiated with a single dose of 51.24 MeV protons at a dose of 2 Gy and a dose rate of 0.05-0.07 Gy/min or 1 GeV protons at doses of 0.1, 0.2, 0.5, 1, 1.5 and 2 Gy delivered in a single dose at dose rates of 0.05 or 0.5 Gy/min or in five daily dose fractions at a dose rate of 0.05 Gy/min. Sham-irradiated animals were used as controls. The results demonstrate a dose-dependent loss of white blood cells (WBCs) and lymphocytes by up to 61% and 72%, respectively, in mice irradiated with protons at doses up to 2 Gy. The results also demonstrate that the dose rate, fractionation pattern and energy of the proton radiation did not have significant effects on WBC and lymphocyte counts in the irradiated animals. These results suggest that the acute effects of proton radiation on WBC and lymphocyte counts are determined mainly by the radiation dose, with very little contribution from the dose rate (over the range of dose rates evaluated), fractionation and energy of the protons.

  1. Design and statistical considerations for studies evaluating the efficacy of a single dose of the human papillomavirus (HPV) vaccine.

    Science.gov (United States)

    Sampson, Joshua N; Hildesheim, Allan; Herrero, Rolando; Gonzalez, Paula; Kreimer, Aimee R; Gail, Mitchell H

    2018-05-01

    Cervical cancer is a leading cause of cancer mortality in women worldwide. Human papillomavirus (HPV) types 16 and 18 cause about 70% of all cervical cancers. Clinical trials have demonstrated that three doses of either commercially available HPV vaccine, Cervarix ® or Gardasil ®, prevent most new HPV 16/18 infections and associated precancerous lesions. Based on evidence of immunological non-inferiority, 2-dose regimens have been licensed for adolescents in the United States, European Union, and elsewhere. However, if a single dose were effective, vaccine costs would be reduced substantially and the logistics of vaccination would be greatly simplified, enabling vaccination programs in developing countries. The National Cancer Institute (NCI) and the Agencia Costarricense de Investigaciones Biomédicas (ACIB) are conducting, with support from the Bill & Melinda Gates Foundation and the International Agency for Research on Cancer (IARC), a large 24,000 girl study to evaluate the efficacy of a 1-dose regimen. The first component of the study is a four-year non-inferiority trial comparing 1- to 2-dose regimens of the two licensed vaccines. The second component is an observational study that estimates the vaccine efficacy (VE) of each regimen by comparing the HPV infection rates in the trial arms to those in a contemporaneous survey group of unvaccinated girls. In this paper, we describe the design and statistical analysis for this study. We explain the advantage of defining non-inferiority on the absolute risk scale when the expected event rate is near 0 and, given this definition, suggest an approach to account for missing clinic visits. We then describe the problem of estimating VE in the absence of a randomized placebo arm and offer our solution. Copyright © 2018. Published by Elsevier Inc.

  2. Long-Term Single-Dose Efficacy of a Vesicular Stomatitis Virus-Based Andes Virus Vaccine in Syrian Hamsters

    Directory of Open Access Journals (Sweden)

    Joseph Prescott

    2014-01-01

    Full Text Available Andes virus (ANDV is highly pathogenic in humans and is the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in South America. Case-fatality rates are as high as 50% and there are no approved vaccines or specific therapies for infection. Our laboratory has recently developed a replication-competent recombinant vesicular stomatitis virus (VSV-based vaccine that expressed the glycoproteins of Andes virus in place of the native VSV glycoprotein (G. This vaccine is highly efficacious in the Syrian hamster model of HCPS when given 28 days before challenge with ANDV, or when given around the time of challenge (peri-exposure, and even protects when administered post-exposure. Herein, we sought to test the durability of the immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination (p = 0.025, but animals were not significantly protected following 1 year of vaccination (p = 0.090. The decrease in protection correlated with a reduction of measurable neutralizing antibody responses, and suggests that a more robust vaccination schedule might be required to provide long-term immunity.

  3. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  4. Radioprotective effects in mice by a single dose of subcutaneous administration of cobaltous chloride post γ-rays irradiation with a sublethal dose

    International Nuclear Information System (INIS)

    Izumo, Yoshiro; Ogata, Hiromitsu

    1993-01-01

    Radioprotective effects were investigated in mice which received subcutaneously a single dose of each inorganic metal: Co, Cu, Rb, Sr, Mo and W 24 hours post irradiation of 60 Co γ-rays with a sublethal dose. The effects were observed in mice injected with Co at an optimum dosage of 20 mg/kg·body weight. Then to elucidate mechanisms of the effects, mice were injected with Co containing the radioactive tracer ( 60 Co) following the radiation exposure, measured elimination of the radioactivity for 7 days, then sacrificed and divided to some tissues and organs. The radioactivity in whole body during this period resulted in a markedly higher retention than that for mice injected with [ 60 Co] alone, as well as liver in the organs. These higher retentions appeared to be related to the radioprotective effects. (author)

  5. Gamma-Irradiated Mannheimia (Pasteurella) Haemolytica Identified by rRNA Gene Sequencing as a Potential Vaccine in Mice

    International Nuclear Information System (INIS)

    Araby, E.

    2014-01-01

    Pneumonic pasteurellosis is a significant disease in beef production medicine. The most information suggests that this disease is a $700 million dollar per year economic burden in bovine food animal production. The current study was designed to assess the immune efficacy of whole cell killed of M. haemolytica strain from satisfactory cases (infected lung from sheep). The efficacy of gamma- irradiated M. haemolytica vaccine (GIV) was evaluated in mice in comparison to the classical aqueous formalized (AFV) one. The bacteria under study were cultivation on blood agar, purification and genetically identified. Then the bacterial cells were exposed to different doses of gamma radiation (2- 20 kGy) with 2 kGy intervals and the dose response curve of the survivors was plotted and 20 kGy was selected as the dose for the preparation of the vaccine. A total of 30 male mice (two weeks – old) were used for the further experimental investigations. Animals were divided into three equal groups each of 10 animals. The first group (group A) was given GIV . The second group (group B) received AFV. The third group (group C) was injected with sterile saline solution and represents the control. Animals were vaccinated via intraperitoneal (i.p) injection with 1x10 8 CFU per treated mouse. After vaccination, the immuno response was determined by cellular surface antigens-reactive antibodies using a modified protein- electrophoresis procedure. Antibody-antigen hybrids was visualized at molecular weight more than 225 KDa in samples represented M. haemolytica antibodies group (A, B) against both bacterial samples (M. haemolytica and Pasteurella multocida ) , while non-treated bacterial cells in which cells incubated with serum of mice group (C) revealed no hybridization reaction, this results verify that, there is shared cellular surface antigens among the two Pasteurella species. Also, the bacterial distribution with (LD 50 ) 2x10 7 CFU of a live M. heamolytica into vaccinated and non-vaccinated

  6. Novel Insect-Specific Eilat Virus-Based Chimeric Vaccine Candidates Provide Durable, Mono- and Multivalent, Single-Dose Protection against Lethal Alphavirus Challenge.

    Science.gov (United States)

    Erasmus, Jesse H; Seymour, Robert L; Kaelber, Jason T; Kim, Dal Y; Leal, Grace; Sherman, Michael B; Frolov, Ilya; Chiu, Wah; Weaver, Scott C; Nasar, Farooq

    2018-02-15

    Most alphaviruses are mosquito borne and exhibit a broad host range, infecting many different vertebrates, including birds, rodents, equids, humans, and nonhuman primates. Recently, a host-restricted, mosquito-borne alphavirus, Eilat virus (EILV), was described with an inability to infect vertebrate cells based on defective attachment and/or entry, as well as a lack of genomic RNA replication. We investigated the utilization of EILV recombinant technology as a vaccine platform against eastern (EEEV) and Venezuelan equine encephalitis viruses (VEEV), two important pathogens of humans and domesticated animals. EILV chimeras containing structural proteins of EEEV or VEEV were engineered and successfully rescued in Aedes albopictus cells. Cryo-electron microscopy reconstructions at 8 and 11 Å of EILV/VEEV and EILV/EEEV, respectively, showed virion and glycoprotein spike structures similar to those of VEEV-TC83 and other alphaviruses. The chimeras were unable to replicate in vertebrate cell lines or in brains of newborn mice when injected intracranially. Histopathologic examinations of the brain tissues showed no evidence of pathological lesions and were indistinguishable from those of mock-infected animals. A single-dose immunization of either monovalent or multivalent EILV chimera(s) generated neutralizing antibody responses and protected animals against lethal challenge 70 days later. Lastly, a single dose of monovalent EILV chimeras generated protective responses as early as day 1 postvaccination and partial or complete protection by day 6. These data demonstrate the safety, immunogenicity, and efficacy of novel insect-specific EILV-based chimeras as potential EEEV and VEEV vaccines. IMPORTANCE Mostly in the last decade, insect-specific viruses have been discovered in several arbovirus families. However, most of these viruses are not well studied and largely have been ignored. We explored the use of the mosquito-specific alphavirus EILV as an alphavirus vaccine

  7. Yellow Fever Vaccine Booster Doses: Recommendations of the Advisory Committee on Immunization Practices, 2015.

    Science.gov (United States)

    Staples, J Erin; Bocchini, Joseph A; Rubin, Lorry; Fischer, Marc

    2015-06-19

    On February 26, 2015, the Advisory Committee on Immunization Practices (ACIP) voted that a single primary dose of yellow fever vaccine provides long-lasting protection and is adequate for most travelers. ACIP also approved recommendations for at-risk laboratory personnel and certain travelers to receive additional doses of yellow fever vaccine (Box). The ACIP Japanese Encephalitis and Yellow Fever Vaccines Workgroup evaluated published and unpublished data on yellow fever vaccine immunogenicity and safety. The evidence for benefits and risks associated with yellow fever vaccine booster doses was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. This report summarizes the evidence considered by ACIP and provides the updated recommendations for yellow fever vaccine booster doses.

  8. Comparison of 2 commercial single-dose Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines on pigs dually infected with M. hyopneumoniae and PRRSV.

    Science.gov (United States)

    Park, Changhoon; Kang, Ikjae; Seo, Hwi Won; Jeong, Jiwoon; Choi, Kyuhyung; Chae, Chanhee

    2016-04-01

    The objective of this study was to compare the efficacy of 2 different commercial Mycoplasma hyopneumoniae vaccines and porcine reproductive and respiratory syndrome virus (PRRSV) vaccines in regard to growth performance, microbiological and immunological analyses, and pathological observation from wean to finish (175 d of age). Pigs were administered M. hyopneumoniae and PRRSV vaccines at 7 and 21 d of age, respectively, or both at 21 d old and then challenged with both M. hyopneumoniae and PRRSV at 49 d old. Significant (P hyopneumoniae, M. hyopneumoniae-specific interferon-γ secreting cells, and macroscopic and microscopic lung lesions. Induction of interleukin-10 following PRRSV vaccination does not interfere with the immune responses induced by M. hyopneumoniae vaccine. The present study demonstrated that the single-dose vaccination regimen for M. hyopneumoniae and PRRSV vaccine is efficacious for controlling coinfection with M. hyopneumoniae and PRRSV based on clinical, microbiological, immunological, and pathological evaluation.

  9. Seroprevalence of influenza A H1N1 and seroconversion of mothers and infants induced by a single dose of monovalent vaccine.

    Science.gov (United States)

    Chao, Anne; Huang, Yhu-Chering; Chang, Yao-Lung; Wang, Tzu-Hao; Chang, Shuenn-Dyh; Wu, Ting-Shu; Wu, Tsu-Lan; Chao, An-Shine

    2013-09-01

    To determine the prevalence of preexisting antibodies against the pandemic 2009 Influenza A (H1N1) virus in pregnant women and to evaluate the seroprotection of the mothers and infants by a single injection of monovalent vaccine during the pandemic. Seropositivity rate of H1N1 among the nonvaccinated were compared with the vaccinated women. A single dose of vaccine, either nonadjuvanted AdimFlu-S or MF59-adjuvanted vaccine, was injected to the voluntarily vaccinated group. Maternal and cord blood sera were collected to evaluate the antibody response of the H1N1 virus. Seropositivity was defined as a hemagglutination inhibition titer to H1N1 (A/Taiwan/126/09) ≥ 1:40. A total of 210 healthy, singleton, pregnant women were enrolled between January 2010 and May 2010. Seropositivity (≥ 1:40) of maternal hemagglutination inhibition was significantly higher in the vaccinated group (78%) than the nonvaccinated group (9.5%); 41.6% (20/48) of seropositive titers were >1:80. In nine vaccinated cases resulting in negative serum titers (75% could be achieved in the paired maternal and cord serum samples by a single injection of monovalent H1N1 vaccine. Copyright © 2013. Published by Elsevier B.V.

  10. Single visit rabies pre-exposure priming induces a robust anamnestic antibody response after simulated post-exposure vaccination: results of a dose-finding study.

    Science.gov (United States)

    Jonker, Emile F F; Visser, Leonardus G

    2017-09-01

    The current standard 3-dose intramuscular rabies PrEP schedule suffers from a number of disadvantages that severely limit accessibility and availability. The cost of is often prohibitive, it requires 3 visits to the clinic, and there are regular vaccine shortages. Volunteers ( N  = 30) were randomly assigned to 4 study arms: 1 standard dose intramuscular (IM) dose of PVRV (purified Vero cell rabies vaccine, Verorab), and 1/5th, 2/5th or 3/5th- fractional intradermal (ID) dose of PVRV in a single visit. All subjects received a simulated rabies post-exposure prophylaxis (D0, D3) 1 year later. Rabies virus neutralizing antibodies (RVNA) were determined by virus neutralization microtest (FAVN) on D0, D7, D28, Y1 and Y1 + D7. 28 out of 30 subjects (93%) seroconverted 1 month after primary vaccination; 1 subject in the 1-dose IM arm and 1 in the 1/5th-fractional dose ID arm did not. After 1 year, 22 out of 30 subjects (73%) no longer had RVNA above 0.5 IU/ml, with no discernible difference between study groups. After 1 year, all 30 subjects mounted a booster response within 7 days after simulated PEP, with the highest titers found in the single dose IM group ( P  rabies vaccine was sufficient to induce an adequate anamnestic antibody response to rabies PEP in all subjects 1 year later, even in those in whom the RVNA threshold of 0.5 IU/ml was not reached after priming. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  11. A pandemic influenza H1N1 live vaccine based on modified vaccinia Ankara is highly immunogenic and protects mice in active and passive immunizations.

    Directory of Open Access Journals (Sweden)

    Annett Hessel

    Full Text Available BACKGROUND: The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model. METHODOLOGY/PRINCIPAL FINDINGS: For this purpose, the hemagglutinin (HA and neuraminidase (NA genes of the influenza A/California/07/2009 (H1N1 strain (CA/07 were inserted into the replication-deficient modified vaccinia Ankara (MVA virus--a safe poxviral live vector--resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-gamma-secreting (IFN-gamma CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus. CONCLUSIONS/SIGNIFICANCE: The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for

  12. Schistosoma mansoni: vaccination of mice with 10-krad-irradiated, cryopreserved schistosomules

    International Nuclear Information System (INIS)

    Lewis, F.A.; Stirewalt, M.A.; Leef, J.L.

    1984-01-01

    Protection against a Schistosoma mansoni cercarial challenge was evaluated in mice immunized with a vaccine composed of 10-krad-irradiated, cryopreserved schistosomules. The level of resistance induced in C57B1/6 or NMRI (CV) mice increased with the number of schistosomules injected. Up to 83% reduction in challenge worm burden was achieved when 5000 schistosomules were injected per mouse. Intramuscular injection of the vaccine was superior to subcutaneous. Multiple immunizations, up to 3 at 4-week intervals, did not increase the resistance induced by a single immunization. A high level of protection developed in as little as 2 weeks and was maintained through at least 12 weeks postimmunization. The vaccine irradiated with 10 krad from either a 60-cobalt or 137-cesium source induced equivalent levels of resistance, and no differences were found in the immunogenicity of vaccines comprised of organisms irradiated as cercariae or as 1- to 3-hr-old schistosomules. These findings are basic to the development of a cryopreserved, live vaccine against schistosomiasis of humans or domestic animals

  13. Protection of C57BL/10 mice by vaccination with association of purified proteins from Leishmania (Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    MORA Ana Mariela

    1999-01-01

    Full Text Available In the past few years, induction of protective immunity to cutaneous leishmaniasis has been attempted by many researchers using a variety of antigenic preparations, such as living promastigotes or promastigote extracts, partially purified, or defined proteins. In this study, eleven proteins from Leishmania (Leishmania amazonensis (LLa with estimated molecular mass ranging from 97 to 13.5kDa were isolated by polyacrylamide gel electrophoresis and electro-elution. The proteins were associated as vaccine in different preparations with gp63 and BCG (Bacilli Calmette-Guérin. The antigenicity of these vaccines was measured by their ability to induce the production of IFN-g by lymphocyte from subjects vaccinated with Leishvacinâ . The immunogenicity was evaluated in vaccinated mice. C57BL/10 mice were vaccinated with three doses of each vaccine consisting of 30 mg of each protein at 15 days interval. One hundred mg of live BCG was only used in the first dose. Seven days after the last dose, they received a first challenge infection with 105 infective promastigotes and four months later, a second challenge was done. Two months after the second challenge, 42.86% of protection was obtained in the group of mice vaccinated with association of proteins of gp63+46+22kDa, gp63+13.5+25+42kDa, gp63+46+42kDa, gp63+66kDa, and gp63+97kDa; 57.14% of protection was demonstrated with gp63+46+97+13.5kDa, gp63+46+97kDa, gp63+46+33kDa, and 71.43% protection for gp63 plus all proteins. The vaccine of gp63+46+40kDa that did not protect the mice, despite the good specific stimulation of lymphocytes (LSI = 7.60 and 10.77UI/ml of IFN-g production. When crude extract of L. (L. amazonensis was used with BCG a 57.14% of protection was found after the first challenge and 28.57% after the second, the same result was observed for gp63. The data obtained with the vaccines can suggest that the future vaccine probably have to contain, except the 40kDa, a cocktail of proteins that

  14. Effectiveness of BCG vaccination to aged mice

    Directory of Open Access Journals (Sweden)

    Ito Tsukasa

    2010-09-01

    Full Text Available Abstract Background The tuberculosis (TB still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice. Results The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old were comparable to those of young mice (4- to 6-week-old. The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice. Conclusion These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.

  15. A single cidofovir treatment rescues animals at progressive stages of lethal orthopoxvirus disease

    Directory of Open Access Journals (Sweden)

    Israely Tomer

    2012-06-01

    Full Text Available Abstract Background In an event of a smallpox outbreak in humans, the window for efficacious treatment by vaccination with vaccinia viruses (VACV is believed to be limited to the first few days post-exposure (p.e.. We recently demonstrated in a mouse model for human smallpox, that active immunization 2–3 days p.e. with either VACV-Lister or modified VACV Ankara (MVA vaccines, can rescue animals from lethal challenge of ectromelia virus (ECTV, the causative agent of mousepox. The present study was carried out in order to determine whether a single dose of the anti-viral cidofovir (CDV, administered at different times and doses p.e. either alone or in conjunction with active vaccination, can rescue ECTV infected mice. Methods Animals were infected intranasally with ECTV, treated on different days with various single CDV doses and monitored for morbidity, mortality and humoral response. In addition, in order to determine the influence of CDV on the immune response following vaccination, both the "clinical take”, IFN-gamma and IgG Ab levels in the serum were evaluated as well as the ability of the mice to withstand a lethal challenge of ECTV. Finally the efficacy of a combined treatment regime of CDV and vaccination p.e. was determined. Results A single p.e. CDV treatment is sufficient for protection depending on the initiation time and dose (2.5 – 100 mg/kg of treatment. Solid protection was achieved by a low dose (5 mg/kg CDV treatment even if given at day 6 p.e., approximately 4 days before death of the control infected untreated mice (mean time to death (MTTD 10.2. At the same time point complete protection was achieved by single treatment with higher doses of CDV (25 or 100 mg/kg. Irrespective of treatment dose, all surviving animals developed a protective immune response even when the CDV treatment was initiated one day p.e.. After seven days post treatment with the highest dose (100 mg/kg, virus was still detected in some

  16. Oral Modeling of an Adenovirus-Based Quadrivalent Influenza Vaccine in Ferrets and Mice.

    Science.gov (United States)

    Scallan, Ciaran D; Lindbloom, Jonathan D; Tucker, Sean N

    2016-06-01

    Oral vaccines delivered as tablets offer a number of advantages over traditional parenteral-based vaccines including the ease of delivery, lack of needles, no need for trained medical personnel, and the ability to formulate into temperature-stable tablets. We have been evaluating an oral vaccine platform based on recombinant adenoviral vectors for the purpose of creating a prophylactic vaccine to prevent influenza, and have demonstrated vaccine efficacy in animal models and substantial immunogenicity in humans. These studies have evaluated monovalent vaccines to date. To protect against the major circulating A and B influenza strains, a multivalent influenza vaccine will be required. In this study, the immunogenicity of orally delivered monovalent, bivalent, trivalent, and quadrivalent vaccines was tested in ferrets and mice. The various vaccine combinations were tested by blending monovalent recombinant adenovirus vaccines, each expressing hemagglutinin from a single strain. Human tablet delivery was modeled in animals by oral gavage in mice and by endoscopic delivery in ferrets. We demonstrated minimal interference between the various vaccine vectors when used in combination and that the oral quadrivalent vaccine compared favorably to an approved trivalent inactivated vaccine. The quadrivalent vaccine presented here produced immune responses that we predict should be capable of providing protection against multiple influenza strains, and the platform should have applications to other multivalent vaccines. Vaxart, Inc.

  17. Vaccine vial stopper performance for fractional dose delivery of vaccines.

    Science.gov (United States)

    Jarrahian, Courtney; Myers, Daniel; Creelman, Ben; Saxon, Eugene; Zehrung, Darin

    2017-07-03

    Shortages of vaccines such as inactivated poliovirus and yellow fever vaccines have been addressed by administering reduced-or fractional-doses, as recommended by the World Health Organization Strategic Advisory Group of Experts on Immunization, to expand population coverage in countries at risk. We evaluated 3 kinds of vaccine vial stoppers to assess their performance after increased piercing from repeated withdrawal of doses needed when using fractional doses (0.1 mL) from presentations intended for full-dose (0.5 mL) delivery. Self-sealing capacity and fragmentation of the stopper were assessed via modified versions of international standard protocols. All stoppers maintained self-sealing capacity after 100 punctures. The damage to stoppers measured as the fragmentation rate was within the target of ≤ 10% of punctures resulting in a fragment after as many as 50 punctures. We concluded that stopper failure is not likely to be a concern if existing vaccine vials containing up to 10 regular doses are used up to 50 times for fractional dose delivery.

  18. Use of a booster dose of capsular group C meningococcal glycoconjugate vaccine to demonstrate immunologic memory in children primed with one or two vaccine doses in infancy.

    Science.gov (United States)

    Pace, David; Khatami, Ameneh; Attard-Montalto, Simon; Voysey, Merryn; Finn, Adam; Faust, Saul N; Heath, Paul T; Borrow, Ray; Snape, Matthew D; Pollard, Andrew J

    2016-12-07

    Use of a polysaccharide vaccine challenge to demonstrate immunologic memory after priming with capsular group C meningococcal conjugate vaccines (MenCC) risks induction of immunologic hyporesponsiveness. For this reason, MenCC vaccines are now used as probes of immunologic memory, however, no studies have demonstrated their ability to distinguish primed from unprimed children. This study was part of a randomised controlled trial investigating the immunogenicity of a booster dose of the combined Haemophilus influenzae type b and MenC-tetanus toxoid vaccine (Hib-MenC-TT) in infants receiving reduced dose MenCC vaccine priming schedules (one MenC-CRM/MenC-TT or two MenC-CRM vaccine doses) compared with an unprimed group. Antibody kinetics were studied in a subset of 269 children by measuring changes in the MenC serum bactericidal antibody, using rabbit complement, (MenC rSBA) titres and MenC specific IgG memory B-cells before and at 6 and 28days following the 12month booster vaccination. At 6days after the 12monthMenCC vaccine, the rise in MenC rSBA titres and MenC specific IgG memory B-cells of the primed groups were significantly higher than the infant MenCC naïve group. Participants primed with one MenC-TT dose had the highest increase in MenC rSBA titres compared with all other groups. The MenC rSBA titres at the 28th compared with the 6th day after boosting was significantly higher in those primed with a single MenC-TT/MenC-CRM vaccine in infancy compared with those who were not primed or who were primed with two doses of the MenC-CRM vaccine. Immunologic memory can be demonstrated by a MenCC booster vaccination but is affected by the type and number of MenCC doses used for infant priming. The MenC rSBA responses can be used to demonstrate successful immunologic priming. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    International Nuclear Information System (INIS)

    Garg, Ravendra; Theaker, Michael; Martinez, Elisa C.; Drunen Littel-van den Hurk, Sylvia van

    2016-01-01

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  20. A single intranasal immunization with a subunit vaccine formulation induces higher mucosal IgA production than live respiratory syncytial virus

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Ravendra [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Theaker, Michael [Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Martinez, Elisa C. [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, Canada SK S7N 5E3 (Canada); Drunen Littel-van den Hurk, Sylvia van, E-mail: sylvia.vandenhurk@usask.ca [VIDO-InterVac, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada); Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E3 (Canada)

    2016-12-15

    Respiratory syncytial virus (RSV) causes serious respiratory illness in infants and elderly. RSV infection induces short-lived immunity, which leaves people prone to re-infection. In contrast, the RSV fusion (F) protein formulated with a novel adjuvant (∆F/TriAdj) elicits long term protective immunity. A comparison of RSV-immunized mice to mice vaccinated with a single dose of ∆F/TriAdj showed no difference in IgG1 and IgG2a production; however, local IgA secreting memory B cell development and B cell IgA production were significantly lower in RSV vaccinated mice than in ∆F/TriAdj-immunized mice. This indicates a potential reason as to why long-term immunity is not induced by RSV infection. The comparison also revealed that germinal center lymphocyte populations were higher in ∆F/TriAdj-vaccinated mice. Furthermore, ∆F/TriAdj induced higher gene expression of activation-induced cytidine deaminase (AID), as well as IL-6, IL-21, TGF-β cytokines, which are key players in IgA class switch recombination, ultimately leading to a sustained long-term memory response. - Highlights: •Immune responses to adjuvanted RSV F protein, ∆F/TriAdj, and RSV were compared. •∆F/TriAdj stimulates more local IgA production than RSV. •∆F/TriAdj induces more local IgA secreting memory B cells than RSV. •Germinal center lymphocyte populations are higher in ∆F/TriAdj-vaccinated mice. •∆F/TriAdj induces higher gene expression of AID, IL-6, IL-21, and TGF-β than RSV.

  1. An antivector vaccine protects against a lethal vector-borne pathogen.

    Directory of Open Access Journals (Sweden)

    Milan Labuda

    2006-04-01

    Full Text Available Vaccines that target blood-feeding disease vectors, such as mosquitoes and ticks, have the potential to protect against the many diseases caused by vector-borne pathogens. We tested the ability of an anti-tick vaccine derived from a tick cement protein (64TRP of Rhipicephalus appendiculatus to protect mice against tick-borne encephalitis virus (TBEV transmitted by infected Ixodes ricinus ticks. The vaccine has a "dual action" in immunized animals: when infested with ticks, the inflammatory and immune responses first disrupt the skin feeding site, resulting in impaired blood feeding, and then specific anti-64TRP antibodies cross-react with midgut antigenic epitopes, causing rupture of the tick midgut and death of engorged ticks. Three parameters were measured: "transmission," number of uninfected nymphal ticks that became infected when cofeeding with an infected adult female tick; "support," number of mice supporting virus transmission from the infected tick to cofeeding uninfected nymphs; and "survival," number of mice that survived infection by tick bite and subsequent challenge by intraperitoneal inoculation of a lethal dose of TBEV. We show that one dose of the 64TRP vaccine protects mice against lethal challenge by infected ticks; control animals developed a fatal viral encephalitis. The protective effect of the 64TRP vaccine was comparable to that of a single dose of a commercial TBEV vaccine, while the transmission-blocking effect of 64TRP was better than that of the antiviral vaccine in reducing the number of animals supporting virus transmission. By contrast, the commercial antitick vaccine (TickGARD that targets only the tick's midgut showed transmission-blocking activity but was not protective. The 64TRP vaccine demonstrates the potential to control vector-borne disease by interfering with pathogen transmission, apparently by mediating a local cutaneous inflammatory immune response at the tick-feeding site.

  2. Microneedle Vaccination Elicits Superior Protection and Antibody Response over Intranasal Vaccination against Swine-Origin Influenza A (H1N1 in Mice.

    Directory of Open Access Journals (Sweden)

    Ju-Hyung Shin

    Full Text Available Influenza is one of the critical infectious diseases globally and vaccination has been considered as the best way to prevent. In this study, immunogenicity and protection efficacy between intranasal (IN and microneedle (MN vaccination was compared using inactivated swine-origin influenza A/H1N1 virus vaccine. Mice were vaccinated by MN or IN administration with 1 μg of inactivated H1N1 virus vaccine. Antigen-specific antibody responses and hemagglutination-inhibition (HI titers were measured in all immunized sera after immunization. Five weeks after an immunization, a lethal challenge was performed to evaluate the protective efficacy. Furthermore, mice were vaccinated by IN administration with higher dosages (> 1 μg, analyzed in the same manner, and compared with 1 μg-vaccine-coated MN. Significantly higher antigen-specific antibody responses and HI titer were measured in sera in MN group than those in IN group. While 100% protection, slight weight loss, and reduced viral replication were observed in MN group, 0% survival rate were observed in IN group. As vaccine dose for IN vaccination increased, MN-immunized sera showed much higher antigen-specific antibody responses and HI titer than other IN groups. In addition, protective immunity of 1 μg-MN group was similar to those of 20- and 40 μg-IN groups. We conclude that MN vaccination showed more potential immune response and protection than IN vaccination at the same vaccine dosage.

  3. Inactivated yellow fever 17D vaccine: development and nonclinical safety, immunogenicity and protective activity.

    Science.gov (United States)

    Monath, Thomas P; Lee, Cynthia K; Julander, Justin G; Brown, Alicja; Beasley, David W; Watts, Douglas M; Hayman, Edward; Guertin, Patrick; Makowiecki, Joseph; Crowell, Joseph; Levesque, Philip; Bowick, Gavin C; Morin, Merribeth; Fowler, Elizabeth; Trent, Dennis W

    2010-05-14

    In the last 10 years new concerns have arisen about safety of the live, attenuated yellow fever (YF) 17D vaccine, in particular viscerotropic adverse events, which have a case-fatality rate of 64%. A non-replicating cell culture-based vaccine would not cause these adverse events, and potentially could be used in persons with precautions or contraindications to use of the live vaccine, including age 60 years, egg allergy, immune suppression, and pregnancy. We developed a whole virion vaccine from the 17D strain inactivated with beta-propiolactone, and adsorbed to aluminum hydroxide. The inactivated vaccine was highly immunogenic in mice, hamsters, and cynomolgus macaques. After a single dose in hamsters and macaques, neutralizing antibody titers were similar to those elicited by the live 17D vaccine (YF-VAX, Sanofi Pasteur). After two doses of inactivated vaccine, neutralizing antibody titers in hamsters were significantly higher than after a single dose of YF-VAX [geometric mean titer (GMT) 20,480 vs. 1940, respectively (Pvaccine or a single dose of YF-VAX were fully protected against hepatitis, viremia, weight loss and death after challenge with YF virus (Jimenez strain). A clinical trial of the inactivated vaccine (XRX-001) has been initiated. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Low-Dose Radiation Exposure and Atherosclerosis in ApoE(-/-) Mice

    NARCIS (Netherlands)

    Mitchel, R. E. J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M. P.; Gola, A.; Hildebrandt, G.; Priest, N. D.; Whitman, S. C.

    The hypothesis that single low-dose exposures (0.025-0.5 Gy) to low-LET radiation given at either high (about 150 mGy/min) or low (1 mGy/min) dose rate would promote aortic atherosclerosis was tested in female C57BL/6J mice genetically predisposed to this disease (ApoE(-/-)). Mice were exposed

  5. Response of booster dose of cuban recombinant hepatitis-B vaccine in nonresponder and hyporesponder children

    International Nuclear Information System (INIS)

    Dahifar, H.; Mousavi, F.; Ghorbani, A.

    2007-01-01

    Acute hepatitis B infection can debilitate a patient for weeks and occasionally has a fatal outcome, while chronic infection is a major threat to the individual. To assess response of nonresponder and hyporesponder children to booster dose of Cuban recombinant hepatitis B vaccine. An interventional, descriptive study has been conducted on children who had been immunized with Cuban recombinant Hepatitis B vaccine and their antibody titers were <10mIU/ml (nonresponder) and 10-100mIU/ml (hyporesponder) administered booster dose of the same vaccine in their Deltoid muscles. The response of 141 children with the mean age of 1.9 years to booster dose of vaccine were 94.3% and 100% vaccines with the first and second booster dose of vaccination respectively. The anti-HBs titer in nonresponders and hyporesponders were 468+-346 and 783+-346mIU/ml respectively with significant differences between two groups (P=0.001). This study demonstrate moderately increase antibody production in the majority of vaccines with single supplementary vaccine. (author)

  6. Effectiveness of one dose of oral cholera vaccine in response to an outbreak: a case-cohort study.

    Science.gov (United States)

    Azman, Andrew S; Parker, Lucy A; Rumunu, John; Tadesse, Fisseha; Grandesso, Francesco; Deng, Lul L; Lino, Richard Laku; Bior, Bior K; Lasuba, Michael; Page, Anne-Laure; Ontweka, Lameck; Llosa, Augusto E; Cohuet, Sandra; Pezzoli, Lorenzo; Sodjinou, Dossou Vincent; Abubakar, Abdinasir; Debes, Amanda K; Mpairwe, Allan M; Wamala, Joseph F; Jamet, Christine; Lessler, Justin; Sack, David A; Quilici, Marie-Laure; Ciglenecki, Iza; Luquero, Francisco J

    2016-11-01

    Oral cholera vaccines represent a new effective tool to fight cholera and are licensed as two-dose regimens with 2-4 weeks between doses. Evidence from previous studies suggests that a single dose of oral cholera vaccine might provide substantial direct protection against cholera. During a cholera outbreak in May, 2015, in Juba, South Sudan, the Ministry of Health, Médecins Sans Frontières, and partners engaged in the first field deployment of a single dose of oral cholera vaccine to enhance the outbreak response. We did a vaccine effectiveness study in conjunction with this large public health intervention. We did a case-cohort study, combining information on the vaccination status and disease outcomes from a random cohort recruited from throughout the city of Juba with that from all the cases detected. Eligible cases were those aged 1 year or older on the first day of the vaccination campaign who sought care for diarrhoea at all three cholera treatment centres and seven rehydration posts throughout Juba. Confirmed cases were suspected cases who tested positive to PCR for Vibrio cholerae O1. We estimated the short-term protection (direct and indirect) conferred by one dose of cholera vaccine (Shanchol, Shantha Biotechnics, Hyderabad, India). Between Aug 9, 2015, and Sept 29, 2015, we enrolled 87 individuals with suspected cholera, and an 898-person cohort from throughout Juba. Of the 87 individuals with suspected cholera, 34 were classified as cholera positive, 52 as cholera negative, and one had indeterminate results. Of the 858 cohort members who completed a follow-up visit, none developed clinical cholera during follow-up. The unadjusted single-dose vaccine effectiveness was 80·2% (95% CI 61·5-100·0) and after adjusting for potential confounders was 87·3% (70·2-100·0). One dose of Shanchol was effective in preventing medically attended cholera in this study. These results support the use of a single-dose strategy in outbreaks in similar epidemiological

  7. Ultra-low dose of Mycobacterium tuberculosis aerosol creates partial infection in mice.

    Science.gov (United States)

    Saini, Divey; Hopkins, Gregory W; Seay, Sarah A; Chen, Ching-Ju; Perley, Casey C; Click, Eva M; Frothingham, Richard

    2012-03-01

    A murine low dose (LD) aerosol model is commonly used to test tuberculosis vaccines. Doses of 50-400 CFU (24h lung CFU) infect 100% of exposed mice. The LD model measures progression from infection to disease based on organ CFU at defined time points. To mimic natural exposure, we exposed mice to an ultra-low dose (ULD) aerosol. We estimated the presented dose by sampling the aerosol. Female C57BL/6 mice were exposed to Mycobacterium tuberculosis H37Rv aerosol at 1.0, 1.1, 1.6, 5.4, and 11 CFU presented dose, infecting 27%, 36%, 36%, 100%, and 95% of mice, respectively. These data are compatible with a stochastic infection event (Poisson distribution, weighted R(2)=0.97) or with a dose-response relationship (sigmoid distribution, weighted R(2)=0.97). Based on the later assumption, the ID50 was 1.6CFU presented dose (95% confidence interval, 1.2-2.1). We compared organ CFU after ULD and LD aerosols (5.4 vs. 395CFU presented dose). Lung burden was 30-fold lower in the ULD model at 4 weeks (3.4 vs. 4.8 logs, pLD aerosols had greater within-group CFU variability. Exposure to ULD aerosols leads to infection in a subset of mice, and to persistently low organ CFU. The ULD aerosol model may resemble human pulmonary tuberculosis more closely than the standard LD model, and may be used to identify host or bacterial factors that modulate the initial infection event. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. An experimental Toxoplasma gondii dose response challenge model to study therapeutic or vaccine efficacy in cats.

    Directory of Open Access Journals (Sweden)

    Jan B W J Cornelissen

    Full Text Available High numbers of Toxoplasma gondii oocysts in the environment are a risk factor to humans. The environmental contamination might be reduced by vaccinating the definitive host, cats. An experimental challenge model is necessary to quantitatively assess the efficacy of a vaccine or drug treatment. Previous studies have indicated that bradyzoites are highly infectious for cats. To infect cats, tissue cysts were isolated from the brains of mice infected with oocysts of T. gondii M4 strain, and bradyzoites were released by pepsin digestion. Free bradyzoites were counted and graded doses (1000, 100, 50, 10, and 250 intact tissue cysts were inoculated orally into three cats each. Oocysts shed by these five groups of cats were collected from faeces by flotation techniques, counted microscopically and estimated by real time PCR. Additionally, the number of T. gondii in heart, tongue and brains were estimated, and serology for anti T. gondii antibodies was performed. A Beta-Poisson dose-response model was used to estimate the infectivity of single bradyzoites and linear regression was used to determine the relation between inoculated dose and numbers of oocyst shed. We found that real time PCR was more sensitive than microscopic detection of oocysts, and oocysts were detected by PCR in faeces of cats fed 10 bradyzoites but by microscopic examination. Real time PCR may only detect fragments of T. gondii DNA without the presence of oocysts in low doses. Prevalence of tissue cysts of T. gondii in tongue, heart and brains, and anti T. gondii antibody concentrations were all found to depend on the inoculated bradyzoite dose. The combination of the experimental challenge model and the dose response analysis provides a suitable reference for quantifying the potential reduction in human health risk due to a treatment of domestic cats by vaccination or by therapeutic drug application.

  9. Development of a chimeric Zika vaccine using a licensed live-attenuated flavivirus vaccine as backbone.

    Science.gov (United States)

    Li, Xiao-Feng; Dong, Hao-Long; Wang, Hong-Jiang; Huang, Xing-Yao; Qiu, Ye-Feng; Ji, Xue; Ye, Qing; Li, Chunfeng; Liu, Yang; Deng, Yong-Qiang; Jiang, Tao; Cheng, Gong; Zhang, Fu-Chun; Davidson, Andrew D; Song, Ya-Jun; Shi, Pei-Yong; Qin, Cheng-Feng

    2018-02-14

    The global spread of Zika virus (ZIKV) and its unexpected association with congenital defects necessitates the rapid development of a safe and effective vaccine. Here we report the development and characterization of a recombinant chimeric ZIKV vaccine candidate (termed ChinZIKV) that expresses the prM-E proteins of ZIKV using the licensed Japanese encephalitis live-attenuated vaccine SA14-14-2 as the genetic backbone. ChinZIKV retains its replication activity and genetic stability in vitro, while exhibiting an attenuation phenotype in multiple animal models. Remarkably, immunization of mice and rhesus macaques with a single dose of ChinZIKV elicits robust and long-lasting immune responses, and confers complete protection against ZIKV challenge. Significantly, female mice immunized with ChinZIKV are protected against placental and fetal damage upon ZIKV challenge during pregnancy. Overall, our study provides an alternative vaccine platform in response to the ZIKV emergency, and the safety, immunogenicity, and protection profiles of ChinZIKV warrant further clinical development.

  10. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis.

    Science.gov (United States)

    Joseph, S K; Ramaswamy, K

    2013-07-18

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and protein or protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-protein) and 48% (BmHAT protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Single multivalent vaccination boosted by trickle larval infection confers protection against experimental lymphatic filariasis

    Science.gov (United States)

    Joseph, SK; Ramaswamy, K

    2013-01-01

    The multivalent vaccine BmHAT, consisting of the Brugia malayi infective larval (L3) antigens heat shock protein12.6 (HSP12.6), abundant larval transcript-2 (ALT-2) and tetraspanin large extra cellular loop (TSP-LEL), was shown to be protective in rodent models from our laboratory. We hypothesize that since these antigens were identified using protective antibodies from immune endemic normal individuals, the multivalent vaccine can be augmented by natural L3 infections providing protection to the vaccinated host. This hypothesis was tested using single dose of DNA and Protein or Protein alone of the BmHAT vaccination in gerbils followed by live trickle L3 infection as booster dose. Vaccine-induced protection in gerbils was determined by worm establishment, micropore chamber assay and by antibody dependant cell cytotoxicity (ADCC) assay. Results were compared with the traditional prime-boost vaccination regimen. Gerbils vaccinated with BmHAT and boosted with L3 trickle infection were protected 51% (BmHAT DNA-Protein) and 48% (BmHAT Protein) respectively. BmHAT vaccination plus L3 trickle booster generated significant titer of antigen-specific IgG antibodies comparable to the traditional prime boost vaccination approach. BmHAT vaccination plus L3 trickle booster also generated antigen-specific cells in the spleen of vaccinated animals and these cells secreted predominantly IFN-γ and IL-4 in response to the vaccine antigens. These studies thus show that single dose of BmHAT multivalent vaccination followed by L3 trickle booster infection can confer significant protection against lymphatic filariasis. PMID:23735679

  12. Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice.

    Science.gov (United States)

    Qu, Daofeng; Han, Jianzhong; Du, Aifang

    2013-07-01

    The high incidence and severe damage caused by Toxoplasma gondii infection clearly indicates the need for the development of a vaccine. In this study, we evaluated the immune responses and protection against toxoplasmosis by immunizing ICR mice with a multiantigenic DNA vaccine. To develop the multiantigenic vaccine, two T. gondii antigens, MIC3 and ROP18, selected on the basis of previous studies were chosen. ICR mice were immunized subcutaneously with PBS, empty pcDNA3.1 vector, pMIC3, pROP18, and pROP18-MIC3, respectively. The results of lymphocyte proliferation assay, cytokine, and antibody determinations showed that mice immunized with pROP18-MIC3 elicited stronger humoral and Th1-type cellular immune responses than those immunized with single-gene plasmids, empty plasmid, or phosphate-buffered saline. After a lethal challenge with the highly virulent T. gondii RH strain, a prolonged survival time in pROP18-MIC3-immunized mice was observed in comparison to control groups. Our study indicates that the introduction of multiantigenic DNA vaccine is more powerful and efficient than single-gene vaccine, and deserves further evaluation and development.

  13. Single shot of 17D vaccine may not confer life-long protection against yellow fever.

    Science.gov (United States)

    Vasconcelos, Pedro Fc

    2018-02-01

    The yellow fever (YF) vaccine has been used since the 1930s to prevent YF, which is a severe infectious disease caused by the yellow fever virus (YFV), and mainly transmitted by Culicidae mosquitoes from the genera Aedes and Haemagogus . Until 2013, the World Health Organization (WHO) recommended the administration of a vaccine dose every ten years. A new recommendation of a single vaccine dose to confer life-long protection against YFV infection has since been established. Recent evidence published elsewhere suggests that at least a second dose is needed to fully protect against YF disease. Here, we discuss the feasibility of administering multiple doses, the necessity for a new and modern vaccine, and recommend that the WHO conveys a meeting to discuss YFV vaccination strategies for people living in or travelling to endemic areas.

  14. Recombinant raccoon pox vaccine protects mice against lethal plague

    Science.gov (United States)

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  15. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  16. Low dose radiation exposure and atherosclerosis in ApoE-/- mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Hasu, M.; Bugden, M.; Wyatt, H.; Little, M.; Hildebrandt, G.; Priest, N.D.; Whitman, S.C.

    2010-01-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  17. Rational design of a live attenuated dengue vaccine: 2'-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques.

    Directory of Open Access Journals (Sweden)

    Roland Züst

    Full Text Available Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2'-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2'-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2'-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the host's innate immune response.

  18. Fractional-Dose Inactivated Poliovirus Vaccine Campaign - Sindh Province, Pakistan, 2016.

    Science.gov (United States)

    Pervaiz, Aslam; Mbaeyi, Chukwuma; Baig, Mirza Amir; Burman, Ashley; Ahmed, Jamal A; Akter, Sharifa; Jatoi, Fayaz A; Mahamud, Abdirahman; Asghar, Rana Jawad; Azam, Naila; Shah, Muhammad Nadeem; Laghari, Mumtaz Ali; Soomro, Kamaluddin; Wadood, Mufti Zubair; Ehrhardt, Derek; Safdar, Rana M; Farag, Noha

    2017-12-01

    Following the declaration of eradication of wild poliovirus (WPV) type 2 in September 2015, trivalent oral poliovirus vaccine (tOPV) was withdrawn globally to reduce the risk for type 2 vaccine-derived poliovirus (VDPV2) transmission; all countries implemented a synchronized switch to bivalent OPV (type 1 and 3) in April 2016 (1,2). Any isolation of VDPV2 after the switch is to be treated as a potential public health emergency and might indicate the need for supplementary immunization activities (3,4). On August 9, 2016, VDPV2 was isolated from a sewage sample taken from an environmental surveillance site in Hyderabad, Sindh province, Pakistan. Possible vaccination activities in response to VDPV2 isolation include the use of injectable inactivated polio vaccine (IPV), which poses no risk for vaccine-derived poliovirus transmission. Fractional-dose, intradermal IPV (fIPV), one fifth of the standard intramuscular dose, has been developed to more efficiently manage limited IPV supplies. fIPV has been shown in some studies to be noninferior to full-dose IPV (5,6) and was used successfully in response to a similar detection of a single VDPV2 isolate from sewage in India (7). Injectable fIPV was used for response activities in Hyderabad and three neighboring districts. This report describes the findings of an assessment of preparatory activities and subsequent implementation of the fIPV campaign. Despite achieving high coverage (>80%), several operational challenges were noted. The lessons learned from this campaign could help to guide the planning and implementation of future fIPV vaccination activities.

  19. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine

    2004-01-01

    the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...

  20. Single Oral Dose Toxicity Test of Blue Honeysuckle Concentrate in Mice

    Science.gov (United States)

    Park, Sang-In; Choi, Seung-Hoon; Song, Chang-Hyun; Park, Soo-Jin; Shin, Yong-Kook; Han, Chang-Hyun; Lee, Young Joon; Ku, Sae-Kwang

    2015-01-01

    The objective of this study was to obtain single oral dose toxicity information for concentrated and lyophilized powder of blue honeysuckle (Lonicera caerulea L., Caprifoliaceae; BHcL) in female and male ICR mice to aid in the process of developing natural origin medicinal ingredients or foods following proximate analysis and phytochemical profile measurement. The proximate analysis revealed that BHcL had an energy value of 3.80 kcal/g and contained 0.93 g/g of carbohydrate, 0.41 g/g of sugar, 0.02 g/g of protein, and 0.20 mg/g of sodium. BHcL did not contain lipids, including saturated lipids, trans fats, or cholesterols. Further, BHcL contained 4.54% of betaine, 210.63 mg/g of total phenols, 159.30 mg/g of total flavonoids, and 133.57 mg/g of total anthocyanins. Following administration of a single oral BHcL treatment, there were no treatment-related mortalities, changes in body weight (bw) or organ weight, clinical signs, necropsy or histopathological findings up to 2,000 mg/kg bw, the limited dosage for rodents of both sexes. We concluded that BHcL is a practically non-toxic material in toxicity potency. PMID:25874034

  1. Vaccination of adult and newborn mice of a resistant strain (C57BL/6J) against challenge with leukemias induced by Moloney murine leukemia virus

    International Nuclear Information System (INIS)

    Reif, A.E.

    1985-01-01

    Adult or newborn C57BL/6J mice were immunized with isogenic Moloney strain MuLV-induced leukemia cells irradiated with 10,000 rads or treated with low concentrations of formalin. Groups of immunized and control mice were challenged with a range of doses of viable leukemia cells, and tumor deaths were recorded for 90 days after challenge. Then, the doses of challenge cells which produced 50% tumor deaths were calculated for immunized and control mice. The logarithm of their ratio quantified the degree of protection provided by immunization. For adult C57BL/6J mice, a single immunization with MuLV-induced leukemia cells was not effective; either cells plus Bacillus Calmette-Guerin or Corynebacterium parvum, or else two immunizations with irradiated leukemia cells were needed to produce statistically significant increases in the values of the doses of challenge cells which produced 50% tumor deaths. Cross-protection was obtained by immunization with other isogenic MuLV-induced leukemias, but not by immunization with isogenic carcinogen-induced tumors or with an isogenic spontaneous leukemia. For newborn mice, a single injection of irradiated leukemia cells provided 1.3 to 1.5 logs of protection, and admixture of B. Calmette-Guerin or C. parvum increased this protection to 2.4 to 2.7 logs. Since irradiated and frozen-thawed MuLV-induced leukemia cells contained viable MuLV, leukemia cells treated with 0.5 or 1.0% formalin were tested as an alternative. A single injection of formalin-treated isogenic leukemia cells admixed with C. parvum provided between 1.7 and 2.8 logs of protection. These results demonstrate that a single vaccination of newborn animals against a highly antigenic virally induced leukemia produces strong protection against a subsequent challenge with viable leukemia cells

  2. Role of Immunomodulators in Tumor Regression in Mice Exposed to Fractionated Low Dose of Gamma Radiation

    International Nuclear Information System (INIS)

    Rokaya Elsayed Maaroaf Elsayed

    2015-01-01

    Immunotherapy is one of the most promising approaches of cancer treatment. The present study was designed to examine the role of irradiated tumor cell lysate vaccine, IFNα-2b and low dose of gamma irradiation as immunomodulators either alone or combined in tumor regression. Ehrlich ascite carcinoma (EAC) cells and 9 groups of female mice were used. Mice were immunized intramuscularly by tumor cell lysate vaccine one time/week for 3 weeks in the right thigh of mice. After two weeks from last immunization, all mice were challenged with normal viable EAC cells at count of 2.5 ×10 6 /mouse in the opposite left thigh for Ehrlich carcinoma (EC) production. Mice were subcutaneously injected with 10.000 units of IFNα-2b 3 times/week for 4 weeks and others were exposed to fractionated dose of γ- radiation (0.5 Gy/day x 4, day after day). Tumor size, serum tumor markers (TNF-α and CEA), tumor DNA fragmentation and Caspase-3 were evaluated. Oxidative stress (MDA and NO) markers and antioxidants (GSH, GPX and SOD) were determined in spleen and tumor tissues. Histopathological examinations, apoptosis and necrosis in spleen and tumor tissues were also examined. The results revealed significant inhibition in tumor size throughout the observation period either for treatments with vaccine or IFNα-2b either alone or combined with γ-irradiation. DNA fragmentation and Caspase-3 enzyme activities were significantly elevated in immunized mice as compared with EC group along with diminished tumor size while, tumor markers were significantly decreased. MDA and NO were significantly increased in tumor tissue.while, tumor GSH content, GPX and SOD activities were significantly decreased. Combined treatments of female mice bearing EC with IFN-α-2b, tumor cell lysate vaccine and low dose of γ-radiation cause a highly significant decrease in serum TNF-α and CEA levels, increase in Cas-3 activity, no DNA fragmentation, significant increase in MDA, decrease in SOD activity and decreased

  3. Persistence of Meningococcal Antibodies and Response to a Third Dose After a Two-dose Vaccination Series with Investigational MenABCWY Vaccine Formulations in Adolescents.

    Science.gov (United States)

    Saez-Llorens, Xavier; Aguilera Vaca, Diana Catalina; Abarca, Katia; Maho, Emmanuelle; Han, Linda; Smolenov, Igor; Dull, Peter

    2015-10-01

    In a primary study, healthy adolescents received 2 doses (months 0/2) of 1 of the 4 investigational meningococcal ABCWY vaccine formulations, containing components of licensed quadrivalent glycoconjugate vaccine MenACWY-CRM, combined with different amounts of recombinant proteins (rMenB) and outer membrane vesicles (OMV) from a licensed serogroup B vaccine, or 2 doses of rMenB alone or 1 dose of MenACWY-CRM then a placebo. This phase 2 extension study evaluated antibody persistence up to 10 months after the 2-dose series and the immunogenicity and safety of a third dose (month 6). Immune responses against serogroups ACWY and serogroup B test strains were measured by serum bactericidal assay with human complement. At month 12, antibody persistence against serogroups ACWY in all 2-dose MenABCWY groups was at least comparable with the 1-dose MenACWY-CRM group. Bactericidal antibodies against most serogroup B test strains declined by month 6, then plateaued over the subsequent 6 months, with overall higher antibody persistence associated with OMV-containing formulations. A third MenABCWY vaccine dose induced robust immune responses against vaccine antigens, although antibody levels 6 months later were comparable with those observed 5 months after the 2-dose series. All investigational MenABCWY vaccines were well tolerated. Two or three doses of investigational MenABCWY vaccines elicited immune responses against serogroups ACWY that were at least comparable with those after 1 dose of MenACWY-CRM. After either vaccination series, investigational MenABCWY vaccine formulations containing OMV had the highest immunogenicity against most serogroup B test strains. No safety concerns were identified in this study.

  4. Skin immunization by microneedle patch overcomes statin-induced suppression of immune responses to influenza vaccine.

    Science.gov (United States)

    Vassilieva, Elena V; Wang, Shelly; Li, Song; Prausnitz, Mark R; Compans, Richard W

    2017-12-19

    Recent studies indicated that in elderly individuals, statin therapy is associated with a reduced response to influenza vaccination. The present study was designed to determine effects on the immune response to influenza vaccination induced by statin administration in a mouse model, and investigate potential approaches to improve the outcome of vaccination on the background of statin therapy. We fed middle aged BALB/c mice a high fat "western" diet (WD) alone or supplemented with atorvastatin (AT) for 14 weeks, and control mice were fed with the regular rodent diet. Mice were immunized with a single dose of subunit A/Brisbane/59/07 (H1N1) vaccine, either systemically or with dissolving microneedle patches (MNPs). We observed that a greater age-dependent decline in the hemagglutinin inhibition titers occurred in systemically-immunized mice than in MNP- immunized mice. AT dampened the antibody response in the animals vaccinated by either route of vaccine delivery. However, the MNP-vaccinated AT-treated animals had ~20 times higher total antibody levels to the influenza vaccine than the systemically vaccinated group one month postvaccination. We propose that microneedle vaccination against influenza provides an approach to ameliorate the immunosuppressive effect of statin therapy observed with systemic immunization.

  5. Comparative Assessment of a Single Dose and a 2-dose Vaccination Series of a Quadrivalent Meningococcal CRM-conjugate Vaccine (MenACWY-CRM) in Children 2-10 Years of Age.

    Science.gov (United States)

    Johnston, William; Essink, Brandon; Kirstein, Judith; Forleo-Neto, Eduardo; Percell, Sandra; Han, Linda; Keshavan, Pavitra; Smolenov, Igor

    2016-01-01

    We compared the immunogenicity, safety and 1-year antibody persistence of a single-dose and a 2-dose series of a licensed meningococcal ACWY-CRM conjugate vaccine (MenACWY-CRM) in 2- to 10-year-old children. In this phase III, multicenter, observer-blind study, children aged 2-5 years (n = 359) and 6-10 years (n = 356) were randomized 1:1 to receive 2 doses of MenACWY-CRM (ACWY2) or 1 dose of placebo followed by 1 dose of MenACWY-CRM (ACWY1), 2 months apart. Immunogenicity was measured using serum bactericidal activity with human complement (hSBA). Primary outcomes were to assess the immunologic noninferiority and superiority of ACWY2 versus ACWY1. One-month after the second dose, the hSBA seroresponse in ACWY2 was noninferior to ACWY1 for all 4 serogroups, in both age cohorts, and was superior for serogroups C and Y in the 2- to 5-year-old age cohort and for serogroup Y in the 6- to 10-year-old age cohort. Overall, 90%-99% of subjects in ACWY2 and 65%-96% in ACWY1 had hSBA titers ≥ 8; geometric mean titers were 1.8- to 6.4-fold higher in ACWY2 than ACWY1 across serogroups. At 1 year postvaccination, geometric mean titers declined, and the differences between ACWY2 and ACWY1 remained significant for serogroups A and C in the 2- to 5-year-old age cohort and for serogroups C and Y in the 6- to 10-year-old age cohort. The safety profile of MenACWY-CRM was similar in both groups. The single dose and 2-dose MenACWY-CRM series were immunogenic and well tolerated. Although antibody responses were greater after 2 doses, especially in the 2- to 5-year-old age cohort, this difference was less pronounced at 1 year postvaccination.

  6. The adjuvanticity of ophiopogon polysaccharide liposome against an inactivated porcine parvovirus vaccine in mice.

    Science.gov (United States)

    Fan, Yunpeng; Ma, Xia; Hou, Weifeng; Guo, Chao; Zhang, Jing; Zhang, Weimin; Ma, Lin; Song, Xiaoping

    2016-01-01

    In this study, the adjuvant activity of ophiopogon polysaccharide liposome (OPL) was investigated. The effects of OPL on the splenic lymphocyte proliferation of mice were measured in vitro. The results showed that OPL could significantly promote lymphocyte proliferation singly or synergistically with PHA and LPS and that the effect was better than ophiopogon polysaccharide (OP) at most of concentrations. The adjuvant activities of OPL, OP and mineral oil were compared in BALB/c mice inoculated with inactivated PPV in vivo. The results showed that OPL could significantly enhance lymphocyte proliferation, increase the proportion of CD4(+) and CD8(+) T cells, improve the HI antibody titre and specific IgG response, and promote the production of cytokines, and the efficacy of OPL was significantly better than that of OP. In addition, OPL significantly improved the cellular immune response compared with oil adjuvant. These results suggested that OPL possess superior adjuvanticity and that a medium dose had the best efficacy. Therefore, OPL can be used as an effective immune adjuvant for an inactivated PPV vaccine. Copyright © 2015. Published by Elsevier B.V.

  7. Assessment of vaccination with schistosomules attenuated by using different doses of γ-radiation on experimental schistosomiasis mansoni

    International Nuclear Information System (INIS)

    Mohamed, E.N.H.

    2009-01-01

    Current strategies for the control of schistosomiasis are based primarily on chemotherapy but successful vaccination against infection has been also demonstrated in several host parasite models.The present study was designed to asses the immunogenic effects of the vaccination with autogenic targets in the form of schistosomula attenuated by different doses of γ-radiation (15, 20, 25 kilo rad) in mice challenged with S. mansoni cercariae as regard parasitological, histological, biochemical and immunological aspects.

  8. Radioprotective effect of RSP-CM on mice irradiated with different doses

    International Nuclear Information System (INIS)

    Zhang Xia; Yang Rujun; Zhang Xin; Yang Yunfang; Jin Zhijun; Xiang Yingsong

    2000-01-01

    Objective: To investigate the radioprotective effects of cytokines on hematopoietic impairment of irradiated mice. Methods: Using RSP-CM and LP3-CM respectively originated GM-CSF and G-CSF to treat ICR mice irradiated with different doses of 60 Co γ-rays. The 30-day survival rate of mice, the mean survival days of dead mice were determined and the numbers of peripheral white blood cells and BMC of part of the mice were counted. At the same time, GM clonogenic activity of BM was assayed. Results:RSP-CM could effectively raise 30-day survival rate of mice irradiated with 7.5 Gy. However, LP3-CM had no obvious effect. Judging from the comparative survival ratio, only the RSP-CM treated group showed protective effect on the 8.0 Gy -irradiated mice. The 8.5 Gy-irradiated mice all died within 30 days, indicating that GM-CSF had weak effect on higher dose-irradiated mice. Conclusion: GM-CSF can stimulate the hematopoietic system of irradiated mice, and has dose-effect and time-effect relations. M-CSF used singly has no obvious effect

  9. Low dose radiation exposure and atherosclerosis in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, R.E.J. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Hasu, M. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada); Bugden, M.; Wyatt, H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Little, M. [Imperial Coll., Faculty of Medicine, St. Marys Campus, London (United Kingdom); Hildebrandt, G. [Univ. Hospital, Dept. of Radiotherapy, Rostock (Germany); Priest, N.D. [Atomic Energy of Canada Limited, Chalk River, ON (Canada); Whitman, S.C. [Univ. of Ottawa, Department of Pathology and Lab. Medicine, and Cellular and Molecular Medicine, Ottawa, ON (Canada); Univ. of Ottawa Heart Inst., Vascular Biology Group, Ottawa, ON (Canada)

    2010-07-01

    The hypothesis that single low dose exposures (0.025-0.5 Gy) to low LET radiation, given at either high (240 mGy/min) or low (1 mGy/min) dose rate, would promote aortic atherosclerosis was tested in female C57BI/6 mice genetically predisposed to this disease (ApoE-/-). Mice were exposed either at early stage disease (2 months of age) and examined 3 or 6 months later, or at late stage disease (8 months of age) and examined 2 or 4 months later. Compared to unexposed controls, all doses given at low or high dose rate at early stage disease had significant inhibitory effects on lesion growth and, at 25 or 50 mGy, on lesion frequency. No dose given at low dose rate had any effect on total serum cholesterol, but this was elevated by every dose given at high dose rate. Exposures at low dose rate had no effect on the percentage of lesion lipids contained within macrophages, and, at either high or low dose rate, had no significant effect on lesion severity. Exposure at late stage disease, to any dose at high dose rate, had no significant effect on lesion frequency, but at low dose rate some doses produced a small transient increase in this frequency. Exposure to low doses at low, but not high dose rate, significantly, but transiently reduced average lesion size, and at either dose rate transiently reduced lesion severity. Exposure to any dose at low dose rate (but not high dose rate) resulted in large and persistent decreases in serum cholesterol. These data indicate that a single low dose exposure, depending on dose and dose rate, generally protects against various measures of atherosclerosis in genetically susceptible mice. This result contrasts with the known, generally detrimental effects of high doses on this disease in the same mice, suggesting that a linear extrapolation of risk from high doses is not appropriate. (author)

  10. Potent immunity to low doses of influenza vaccine by probabilistic guided micro-targeted skin delivery in a mouse model.

    Directory of Open Access Journals (Sweden)

    Germain J P Fernando

    Full Text Available BACKGROUND: Over 14 million people die each year from infectious diseases despite extensive vaccine use [1]. The needle and syringe--first invented in 1853--is still the primary delivery device, injecting liquid vaccine into muscle. Vaccines could be far more effective if they were precisely delivered into the narrow layer just beneath the skin surface that contains a much higher density of potent antigen-presenting cells (APCs essential to generate a protective immune response. We hypothesized that successful vaccination could be achieved this way with far lower antigen doses than required by the needle and syringe. METHODOLOGY/PRINCIPAL FINDINGS: To meet this objective, using a probability-based theoretical analysis for targeting skin APCs, we designed the Nanopatch, which contains an array of densely packed projections (21025/cm(2 invisible to the human eye (110 microm in length, tapering to tips with a sharpness of <1000 nm, that are dry-coated with vaccine and applied to the skin for two minutes. Here we show that the Nanopatches deliver a seasonal influenza vaccine (Fluvax 2008 to directly contact thousands of APCs, in excellent agreement with theoretical prediction. By physically targeting vaccine directly to these cells we induced protective levels of functional antibody responses in mice and also protection against an influenza virus challenge that are comparable to the vaccine delivered intramuscularly with the needle and syringe--but with less than 1/100(th of the delivered antigen. CONCLUSIONS/SIGNIFICANCE: Our results represent a marked improvement--an order of magnitude greater than reported by others--for injected doses administered by other delivery methods, without reliance on an added adjuvant, and with only a single vaccination. This study provides a proven mathematical/engineering delivery device template for extension into human studies--and we speculate that successful translation of these findings into humans could

  11. A single subconvulsant dose of domoic acid at mid-gestation does not cause temporal lobe epilepsy in mice.

    Science.gov (United States)

    Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S

    2018-05-01

    -control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. A live attenuated cold-adapted influenza A H7N3 virus vaccine provides protection against homologous and heterologous H7 viruses in mice and ferrets

    International Nuclear Information System (INIS)

    Joseph, Tomy; McAuliffe, Josephine; Lu, Bin; Vogel, Leatrice; Swayne, David; Jin, Hong; Kemble, George; Subbarao, Kanta

    2008-01-01

    The appearance of human infections caused by avian influenza A H7 subtype viruses underscores their pandemic potential and the need to develop vaccines to protect humans from viruses of this subtype. A live attenuated H7N3 virus vaccine was generated by reverse genetics using the HA and NA genes of a low pathogenicity A/chicken/BC/CN-6/04 (H7N3) virus and the six internal protein genes of the cold-adapted A/Ann Arbor/6/60 ca (H2N2) virus. The reassortant H7N3 BC 04 ca vaccine virus was temperature sensitive and showed attenuation in mice and ferrets. Intranasal immunization with one dose of the vaccine protected mice and ferrets when challenged with homologous and heterologous H7 viruses. The reassortant H7N3 BC 04 ca vaccine virus showed comparable levels of attenuation, immunogenicity and efficacy in mice and ferret models. The safety, immunogenicity, and efficacy of this vaccine in mice and ferrets support the evaluation of this vaccine in clinical trials

  13. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  14. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  15. Can a Compact Pre-Filled Auto-Disable Injection System (cPAD) Save Costs for DTP-HepB-Hib Vaccine as Compared with Single-Dose (SDV) and Multi-Dose Vials (MDV)? Evidence from Cambodia, Ghana, and Peru.

    Science.gov (United States)

    Nogier, Cyril; Hanlon, Patrick; Wiedenmayer, Karin; Maire, Nicolas

    2015-03-01

    A compact pre-filled auto-disable injection (cPAD) presentation is being developed for the fully liquid pentavalent DTP-HepB-Hib vaccine. A cost analysis (CA) to compare this presentation with the presently used single-dose vial (SDV) and multi-dose vial (MDV) was conducted in Cambodia, Ghana, and Peru. The CA included the development of an excel-based costing model and considered the costs of vaccine, safe injection equipment, procurement, storage, transport and distribution, vaccine administration by health staff, medical waste management, start-up activities, as well as coverage, birth cohort, vaccine, and safe injection equipment wastage rates. The outcome was the change in cost per pentavalent fully immunized child (PFIC) for a switch to cPAD. Field visits to health facilities, and interviews with key informants from immunization services and regulatory authorities, were conducted to collect data and to test the costing model in country context. Cost data were also obtained from manufacturers, published price lists, and author estimates. A sensitivity analysis (SA) was conducted to explore possible variations in values of data collected. Based on vaccine price trends estimated for 2016, cPAD is less costly in Ghana [incremental cost per PFIC: $US-0.59 (-6.46 %)] than the current presentation (ten-dose MDV) and in Peru (SDV): $US-0.89 (-7.14 %). In Cambodia, cPAD is more costly than SDV: $US+0.33 (+3.90 %). The most significant cost item per PFIC is the vaccine (reflecting wastage rates) in all presentations. The dominance of the vaccine price per dose and, to a lesser extent, the wastage rates in the incremental cost per PFIC show potential to simplify future analyses. Other relevant considerations at country level for a change of presentation include the potential for improved safety with cPAD, planned introduction of other vaccines, environmental and safety issues, and financial sustainability.

  16. Cost-effectiveness of HPV vaccination regime: comparing twice versus thrice vaccinations dose regime among adolescent girls in Malaysia.

    Science.gov (United States)

    Aljunid, Syed; Maimaiti, Namaitijiang; Nur, Amrizal M; Noor, Mohd Rushdan Md; Wan Puteh, Sharifa Ezat

    2016-01-23

    The HPV vaccine was introduced to Malaysian national immunization programme in 2010. The current implementation age of HPV vaccination in Malaysian is at the age of 13 years school girls, given according to a 3 doses protocol which may complicate implementation and compliance. Aim of the study is to determine the cost-effectiveness of HPV vaccination regime comparing twice versus thrice HPV vaccinations dose regime among adolescent girls in Malaysia. A Markov cohort model reflecting the natural history of HPV infection accounting for oncogenic and low-risk HPV was adapted for 13 year old Malaysian girls cohort (n = 274,050). Transition probabilities, utilities values, epidemiological and cost data were sourced from published literature and local data. Vaccine effectiveness was based on overall efficacy reported from 3-doses clinical trials, with the assumption that the 2-doses is non-inferior to the 3-doses allowing overall efficacy to be inferred from the 3-doses immunogenicity data. Price parity and life-long protection were assumed. The payer perspective was adopted, with appropriate discounting for costs (3 %) and outcomes (3 %). One way sensitivity analysis was conducted. The sensitivity analysis on cost of vaccine, vaccine coverage and discount rate with a 2-doses protocol was performed. The 3-doses and 2-doses regimes showed same number of Cervical Cancers averted (361 cases); QALYs saved at 7,732,266. However, the lifetime protection under the 2-doses regime, showed a significant cost-savings of RM 36, 722,700 compared to the 3-doses scheme. The MOH Malaysia could vaccinate 137,025 more girls in this country using saving 2-doses regime vaccination programme. The model predicted that 2-doses HPV vaccination schemes can avoid additional 180 Cervical Cancers and 63 deaths compare to 3-doses. A 2-doses HPV vaccination scheme may enable Malaysian women to be protected at a lower cost than that achievable under a 3-doses scheme, while avoiding the same number of

  17. Intradermal inactivated poliovirus vaccine: a preclinical dose-finding study.

    Science.gov (United States)

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2015-05-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  19. Immunogenicity and efficacy of a chimpanzee adenovirus-vectored Rift Valley fever vaccine in mice.

    Science.gov (United States)

    Warimwe, George M; Lorenzo, Gema; Lopez-Gil, Elena; Reyes-Sandoval, Arturo; Cottingham, Matthew G; Spencer, Alexandra J; Collins, Katharine A; Dicks, Matthew D J; Milicic, Anita; Lall, Amar; Furze, Julie; Turner, Alison V; Hill, Adrian V S; Brun, Alejandro; Gilbert, Sarah C

    2013-12-05

    Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.

  20. Fractional dosing of yellow fever vaccine to extend supply: a modelling study.

    Science.gov (United States)

    Wu, Joseph T; Peak, Corey M; Leung, Gabriel M; Lipsitch, Marc

    2016-12-10

    The ongoing yellow fever epidemic in Angola strains the global vaccine supply, prompting WHO to adopt dose sparing for its vaccination campaign in Kinshasa, Democratic Republic of the Congo, in July-August, 2016. Although a 5-fold fractional-dose vaccine is similar to standard-dose vaccine in safety and immunogenicity, efficacy is untested. There is an urgent need to ensure the robustness of fractional-dose vaccination by elucidation of the conditions under which dose fractionation would reduce transmission. We estimate the effective reproductive number for yellow fever in Angola using disease natural history and case report data. With simple mathematical models of yellow fever transmission, we calculate the infection attack rate (the proportion of population infected over the course of an epidemic) with various levels of transmissibility and 5-fold fractional-dose vaccine efficacy for two vaccination scenarios, ie, random vaccination in a hypothetical population that is completely susceptible, and the Kinshasa vaccination campaign in July-August, 2016, with different age cutoff for fractional-dose vaccines. We estimate the effective reproductive number early in the Angola outbreak was between 5·2 and 7·1. If vaccine action is all-or-nothing (ie, a proportion of vaccine recipients receive complete protection [VE] and the remainder receive no protection), n-fold fractionation can greatly reduce infection attack rate as long as VE exceeds 1/n. This benefit threshold becomes more stringent if vaccine action is leaky (ie, the susceptibility of each vaccine recipient is reduced by a factor that is equal to the vaccine efficacy). The age cutoff for fractional-dose vaccines chosen by WHO for the Kinshasa vaccination campaign (2 years) provides the largest reduction in infection attack rate if the efficacy of 5-fold fractional-dose vaccines exceeds 20%. Dose fractionation is an effective strategy for reduction of the infection attack rate that would be robust with a

  1. Comparison of two dose and three dose human papillomavirus vaccine schedules: cost effectiveness analysis based on transmission model.

    Science.gov (United States)

    Jit, Mark; Brisson, Marc; Laprise, Jean-François; Choi, Yoon Hong

    2015-01-06

    To investigate the incremental cost effectiveness of two dose human papillomavirus vaccination and of additionally giving a third dose. Cost effectiveness study based on a transmission dynamic model of human papillomavirus vaccination. Two dose schedules for bivalent or quadrivalent human papillomavirus vaccines were assumed to provide 10, 20, or 30 years' vaccine type protection and cross protection or lifelong vaccine type protection without cross protection. Three dose schedules were assumed to give lifelong vaccine type and cross protection. United Kingdom. Males and females aged 12-74 years. No, two, or three doses of human papillomavirus vaccine given routinely to 12 year old girls, with an initial catch-up campaign to 18 years. Costs (from the healthcare provider's perspective), health related utilities, and incremental cost effectiveness ratios. Giving at least two doses of vaccine seems to be highly cost effective across the entire range of scenarios considered at the quadrivalent vaccine list price of £86.50 (€109.23; $136.00) per dose. If two doses give only 10 years' protection but adding a third dose extends this to lifetime protection, then the third dose also seems to be cost effective at £86.50 per dose (median incremental cost effectiveness ratio £17,000, interquartile range £11,700-£25,800). If two doses protect for more than 20 years, then the third dose will have to be priced substantially lower (median threshold price £31, interquartile range £28-£35) to be cost effective. Results are similar for a bivalent vaccine priced at £80.50 per dose and when the same scenarios are explored by parameterising a Canadian model (HPV-ADVISE) with economic data from the United Kingdom. Two dose human papillomavirus vaccine schedules are likely to be the most cost effective option provided protection lasts for at least 20 years. As the precise duration of two dose schedules may not be known for decades, cohorts given two doses should be closely

  2. Addition of αGal HyperAcute™ technology to recombinant avian influenza vaccines induces strong low-dose antibody responses.

    Directory of Open Access Journals (Sweden)

    Wenlan Alex Chen

    Full Text Available Highly pathogenic avian influenza represents a severe public health threat. Over the last decade, the demand for highly efficacious vaccines against avian influenza viruses has grown, especially after the 2013 H7N9 outbreak in China that resulted in over 600 human cases with over 200 deaths. Currently, there are several H5N1 and H7N9 influenza vaccines in clinical trials, all of which employ traditional oil-in-water adjuvants due to the poor immunogenicity of avian influenza virus antigens. In this study, we developed potent recombinant avian influenza vaccine candidates using HyperAcute™ Technology, which takes advantage of naturally-acquired anti-αGal immunity in humans. We successfully generated αGal-positive recombinant protein and virus-like particle vaccine candidates of H5N1 and H7N9 influenza strains using either biological or our novel CarboLink chemical αGal modification techniques. Strikingly, two doses of 100 ng αGal-modified vaccine, with no traditional adjuvant, was able to induce a much stronger humoral response in αGT BALB/c knockout mice (the only experimental system readily available for testing αGal in vivo than unmodified vaccines even at 10-fold higher dose (1000 ng/dose. Our data strongly suggest that αGal modification significantly enhances the humoral immunogenicity of the recombinant influenza vaccine candidates. Use of αGal HyperAcute™ technology allows significant dose-sparing while retaining desired immunogenicity. Our success in the development of highly potent H5N1 and H7N9 vaccine candidates demonstrated the potential of αGal HyperAcute™ technology for the development of vaccines against other infectious diseases.

  3. Live attenuated S. Typhimurium vaccine with improved safety in immuno-compromised mice.

    Directory of Open Access Journals (Sweden)

    Balamurugan Periaswamy

    Full Text Available Live attenuated vaccines are of great value for preventing infectious diseases. They represent a delicate compromise between sufficient colonization-mediated adaptive immunity and minimizing the risk for infection by the vaccine strain itself. Immune defects can predispose to vaccine strain infections. It has remained unclear whether vaccine safety could be improved via mutations attenuating a vaccine in immune-deficient individuals without compromising the vaccine's performance in the normal host. We have addressed this hypothesis using a mouse model for Salmonella diarrhea and a live attenuated Salmonella Typhimurium strain (ssaV. Vaccination with this strain elicited protective immunity in wild type mice, but a fatal systemic infection in immune-deficient cybb(-/-nos2(-/- animals lacking NADPH oxidase and inducible NO synthase. In cybb(-/-nos2(-/- mice, we analyzed the attenuation of 35 ssaV strains carrying one additional mutation each. One strain, Z234 (ssaV SL1344_3093, was >1000-fold attenuated in cybb(-/-nos2(-/- mice and ≈100 fold attenuated in tnfr1(-/- animals. However, in wt mice, Z234 was as efficient as ssaV with respect to host colonization and the elicitation of a protective, O-antigen specific mucosal secretory IgA (sIgA response. These data suggest that it is possible to engineer live attenuated vaccines which are specifically attenuated in immuno-compromised hosts. This might help to improve vaccine safety.

  4. Fractional Dosing of Yellow Fever Vaccine to Extend Supply: A Modeling Study

    Science.gov (United States)

    Peak, Corey M.; Leung, Gabriel M.

    2016-01-01

    Background The ongoing yellow fever (YF) epidemic in Angola strains the global vaccine supply, prompting WHO to adopt dose sparing for its vaccination campaign in Kinshasa in July–August 2016. Although a 5-fold fractional-dose vaccine is similar to standard-dose vaccine in safety and immunogenicity, efficacy is untested. There is an urgent need to ensure the robustness of fractional-dose vaccination by elucidating the conditions under which dose fractionation would reduce transmission. Methods We estimate the effective reproductive number for YF in Angola using disease natural history and case report data. With simple mathematical models of YF transmission, we calculate the infection attack rate (IAR, the proportion of population infected over the course of an epidemic) under varying levels of transmissibility and five-fold fractional-dose vaccine efficacy for two vaccination scenarios: (i) random vaccination in a hypothetical population that is completely susceptible; (ii) the Kinshasa vaccination campaign in July–August 2016 with different age cutoff for fractional-dose vaccines. Findings We estimate the effective reproductive number early in the Angola outbreak was between 5·2 and 7·1. If vaccine action is all-or-nothing (i.e. a proportion VE of vaccinees receives complete and the remainder receive no protection), n-fold fractionation can dramatically reduce IAR as long as efficacy VE exceeds 1/n. This benefit threshold becomes more stringent if vaccine action is leaky (i.e. the susceptibility of each vaccinee is reduced by a factor that is equal to the vaccine efficacy VE). The age cutoff for fractional-dose vaccines chosen by the WHO for the Kinshasa vaccination campaign (namely, 2 years) provides the largest reduction in IAR if the efficacy of five-fold fractional-dose vaccines exceeds 20%. Interpretation Dose fractionation is a very effective strategy for reducing infection attack rate that would be robust with a large margin for error in case

  5. Persistence of immunity from 1 year of age after one or two doses of hepatitis A vaccine given to children in Argentina

    Directory of Open Access Journals (Sweden)

    Espul C

    2012-08-01

    Full Text Available Carlos Espul,1 Laura Benedetti,2 Héctor Cuello,3 Guy Houillon,4 Anvar Rasuli41Programa de Lucha Contra las Hepatitis Virales, Ministerio de Salud/Hospital Central de Mendoza, 2Programa Provincial de Inmunizaciones, Ministerio de Salud, 3Laboratorio de Virología, Hospital Central de Mendoza, Mendoza, Argentina; 4Sanofi Pasteur, Lyon, FranceBackground: This study was done to determine the immunogenicity of a single dose of hepatitis A vaccine in children, providing needed clinical data on the flexibility of booster administration.Methods: Participants had received one dose of inactivated hepatitis A vaccine (Avaxim™ 80 U Pediatric at 12–23 months of age or two doses of the same vaccine at 12 and 18 months of age prior to enrolment. Anti-hepatitis A antibody concentrations were measured at the first, second, and third year after vaccination. Suspected cases of hepatitis A in participant families were assessed and family socioeconomic data were collected.Results: A series of 546 participants were enrolled. Of 467 (85.5% participants completing 3 years of follow-up, 365 had received a single vaccine dose and 94 had received two vaccine doses. Seropositivity (anti-HAV ≥ 10 mIU/mL at 3 years was 99.7% after one dose and 100% after two doses. At one year, geometric mean concentrations were higher after two doses (1433.9 mIU/mL, 95% confidence interval [CI] 1108–1855 than one (209.7 mIU/mL, 95% CI 190.6–230.6. Geometric mean concentrations decreased in both groups during the study, but remained well above 10 mIU/mL through the third year. The geometric mean of 3-year to one-year anti-hepatitis A concentration ratios was 0.74 (95% CI 0.70–0.79 following one dose and 0.57 (95% CI 0.47–0.70 following two doses. The greatest decrease in geometric mean concentrations occurred during the third year, ie, 21.2% in the one-dose group and 40.8% in the two-dose group. Six participants became seronegative during follow-up and responded strongly to a

  6. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  7. Potency of whole virus particle and split virion vaccines using dissolving microneedle against challenges of H1N1 and H5N1 influenza viruses in mice.

    Science.gov (United States)

    Nakatsukasa, Akihiro; Kuruma, Koji; Okamatsu, Masatoshi; Hiono, Takahiro; Suzuki, Mizuho; Matsuno, Keita; Kida, Hiroshi; Oyamada, Takayoshi; Sakoda, Yoshihiro

    2017-05-15

    Transdermal vaccination using a microneedle (MN) confers enhanced immunity compared with subcutaneous (SC) vaccination. Here we developed a novel dissolving MN patch for the influenza vaccine. The potencies of split virion and whole virus particle (WVP) vaccines prepared from A/Puerto Rico/8/1934 (H1N1) and A/duck/Hokkaido/Vac-3/2007 (H5N1), respectively, were evaluated. MN vaccination induced higher neutralizing antibody responses than SC vaccination in mice. Moreover, MN vaccination with a lower dose of antigens conferred protective immunity against lethal challenges of influenza viruses than SC vaccination in mice. These results suggest that the WVP vaccines administered using MN are an effective combination for influenza vaccine to be further validated in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transgenic Parasites Stably Expressing Full-Length Plasmodium falciparum Circumsporozoite Protein as a Model for Vaccine Down-Selection in Mice Using Sterile Protection as an Endpoint

    Science.gov (United States)

    Porter, Michael D.; Nicki, Jennifer; Pool, Christopher D.; DeBot, Margot; Illam, Ratish M.; Brando, Clara; Bozick, Brooke; De La Vega, Patricia; Angra, Divya; Spaccapelo, Roberta; Crisanti, Andrea; Murphy, Jittawadee R.; Bennett, Jason W.; Schwenk, Robert J.; Ockenhouse, Christian F.

    2013-01-01

    Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations. PMID:23536694

  9. Immunogenicity and safety of combined adsorbed low-dose diphtheria, tetanus and inactivated poliovirus vaccine (REVAXIS®) versus combined diphtheria, tetanus and inactivated poliovirus vaccine (DT Polio®) given as a booster dose at 6 years of age

    Science.gov (United States)

    Gajdos, Vincent; Soubeyrand, Benoit; Vidor, Emmanuel; Richard, Patrick; Boyer, Julie; Sadorge, Christine

    2011-01-01

    This randomized, comparative, phase-IIIb study conducted in France aimed to demonstrate whether seroprotection against diphtheria, tetanus and poliomyelitis 1 month after a single dose of REVAXIS (low-dose diphtheria) is non-inferior to seroprotection 1 month after a single dose of DT Polio (standard-dose diphtheria), both vaccines being given as a second booster to healthy children at 6 years of age. Children were randomly assigned to receive a single intramuscular dose of REVAXIS or DT Polio. Primary endpoints were the 1-month post-booster seroprotection rates for diphtheria, tetanus and poliovirus type-1, -2 and -3 antigens. Secondary endpoints were immunogenicity and safety observations. Of 788 children screened, 760 were randomized: REVAXIS group, 384 children; DT Polio group, 376 children. No relevant difference in demographic characteristics at baseline was observed between REVAXIS and DT Polio groups. Noninferiority of REVAXIS compared with DT Polio for seroprotection was demonstrated against diphtheria (respectively 98.6% and 99.3%), tetanus (respectively 99.6% and 100%) and poliovirus antigens (100% for each types in both groups). No allergic reactions to REVAXIS were reported. A benefit/risk ratio in favor of REVAXIS was suggested by the trend towards a better tolerability of REVAXIS compared with DT Polio regarding the rate of severe solicited injection-site reactions. The results support the use of REVAXIS as a booster at 6 years of age in infants who previously received a three-dose primary series within the first 6 months of life and a first booster including diphtheria, tetanus and poliovirus vaccine(s) given before 2 years of age. PMID:21441781

  10. Pre-clinical efficacy and safety of experimental vaccines based on non-replicating vaccinia vectors against yellow fever.

    Directory of Open Access Journals (Sweden)

    Birgit Schäfer

    Full Text Available BACKGROUND: Currently existing yellow fever (YF vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D. Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. METHODOLOGY/PRINCIPAL FINDINGS: A gene encoding the precursor of the membrane and envelope (prME protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 10(5 TCID(50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. CONCLUSIONS/SIGNIFICANCE: The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice.

  11. Pre-Clinical Efficacy and Safety of Experimental Vaccines Based on Non-Replicating Vaccinia Vectors against Yellow Fever

    Science.gov (United States)

    Schäfer, Birgit; Holzer, Georg W.; Joachimsthaler, Alexandra; Coulibaly, Sogue; Schwendinger, Michael; Crowe, Brian A.; Kreil, Thomas R.; Barrett, P. Noel; Falkner, Falko G.

    2011-01-01

    Background Currently existing yellow fever (YF) vaccines are based on the live attenuated yellow fever virus 17D strain (YFV-17D). Although, a good safety profile was historically attributed to the 17D vaccine, serious adverse events have been reported, making the development of a safer, more modern vaccine desirable. Methodology/Principal Findings A gene encoding the precursor of the membrane and envelope (prME) protein of the YFV-17D strain was inserted into the non-replicating modified vaccinia virus Ankara and into the D4R-defective vaccinia virus. Candidate vaccines based on the recombinant vaccinia viruses were assessed for immunogenicity and protection in a mouse model and compared to the commercial YFV-17D vaccine. The recombinant live vaccines induced γ-interferon-secreting CD4- and functionally active CD8-T cells, and conferred full protection against lethal challenge already after a single low immunization dose of 105 TCID50. Surprisingly, pre-existing immunity against wild-type vaccinia virus did not negatively influence protection. Unlike the classical 17D vaccine, the vaccinia virus-based vaccines did not cause mortality following intracerebral administration in mice, demonstrating better safety profiles. Conclusions/Significance The non-replicating recombinant YF candidate live vaccines induced a broad immune response after single dose administration, were effective even in the presence of a pre-existing immunity against vaccinia virus and demonstrated an excellent safety profile in mice. PMID:21931732

  12. Effect of cyclophosphamide on the course of Candida albicans infection in normal and vaccinated mice

    International Nuclear Information System (INIS)

    Japoni, A.; Alborzi, A.; Farshad, S.; Hayati, M.; Dehyadegari, Mohammad A.; Mehrabani, D.

    2006-01-01

    To evaluate the immunomodulating effect of cyclophosphamide (Cy) on the course of Candida albicans (C. albicans). We performed this study in the Shiraz Medical School, Shiraz, Iran during April to November 2003. Five groups of 10 mice (vaccinated group) were immunized by 5 equal injections of 2x105, 2.5x105 and 3x105 of the organism intraperitoneally. Then, the group received Cy on day zero and was challenged with lethal doses of C. albicans (7.74x105 colony forming unit) on days zero, one, 3, 6 and 12 post-Cy injection. Another 5 equal groups of 10 mice (non-vaccinated group) received Cy on day zero and similar to vaccinated ones were challenged with lethal doses of the organism too. The control groups received just Cy on day zero and were sacrificed on days zero, one, 3, 6 and 12 days post-Cy injection. We performed the hemogram and the spleen and studied the renal tissues microscopically and macroscopically. In vaccinated group, we observed an increase in survival time and in spleen and renal weights were visible while in non-vaccinated ones, a significant decrease was also observed on days one and 3 and an increased on days 6 and 12 post-Cy injection. We observed atrophy and necrosis in the spleen while inflammation and necrosis were also observed in the kidneys on days one and 3. We noticed a significant hyperplasia in the white pulp on days 6 and 12 post-Cy injection. We conclude that hyperplasia in the white pulp of spleen and the increase in peripheral polymorphonuclears due to selective effects of Cy could effectively protect the animal against C. albicans infection. (author)

  13. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV).

    Science.gov (United States)

    Jarrahian, Courtney; Rein-Weston, Annie; Saxon, Gene; Creelman, Ben; Kachmarik, Greg; Anand, Abhijeet; Zehrung, Darin

    2017-03-27

    Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall

  14. Schistosoma mansoni: radiation dose and morphologic integrity of schistosomules as factors for an effective cryopreserved live vaccine

    International Nuclear Information System (INIS)

    Lewis, F.A.; Stirewalt, M.; Leef, J.L.

    1984-01-01

    The effectiveness of a cryopreserved, irradiated schistosomule vaccine against an homologous Schistosoma mansoni cercarial challenge was tested in C57B1/6 mice. Highly significant levels of protection developed consistently when mice were immunized with the vaccine irradiated at 10-20 Krad, i.e., doses below that considered optimal for irradiated cercariae (50 Krad). Cryopreserved schistosomules irradiated at 10 or 20 Krad induced greater levels of protection than did schistosomules irradiated at 2, 5, 30, or 50 Krad. Protective immunity developed as early as 3 weeks post-immunization. When immunizing inocula were injected at various times post-thaw, or when schistosomule subpopulations of normal-appearing, damaged or dead organisms were injected, those populations which had appeared to sustain the least degree of damage were those most capable of stimulating protective immunity. These findings highlight the hazards of extrapolating conditions considered standard for an irradiated cercarial vaccine to one in which cryopreservation, for storage of the schistosomules, is an added stress

  15. Duration of protection against hepatitis A for the current two-dose vaccine compared to a three-dose vaccine schedule in children

    Science.gov (United States)

    Raczniak, Gregory A.; Thomas, Timothy K.; Bulkow, Lisa R.; Negus, Susan E.; Zanis, Carolyn L.; Bruce, Michael G.; Spradling, Philip R.; Teshale, Eyasu H.; McMahon, Brian J.

    2015-01-01

    Background Hepatitis A is mostly a self-limiting disease but causes substantial economic burden. Consequently, United States Advisory Committee for Immunization Practices recommends inactivated hepatitis A vaccination for all children beginning at age 1 year and for high risk adults. The hepatitis A vaccine is highly effective but the duration of protection is unknown. Methods We examined the proportion of children with protective hepatitis A antibody levels (anti-HAV ≥20 mIU/mL) as well as the geometric mean concentration (GMC) of anti-HAV in a cross sectional convenience sample of individuals aged 12–24 years, who had been vaccinated with a two-dose schedule in childhood, with the initial dose at least 5 years ago. We compared a subset of data from persons vaccinated with two-doses (720 EL.U.) at age 3–6 years with a demographically similar prospective cohort that received a three-dose (360 EL.U.) schedule and have been followed for 17 years. Results No significant differences were observed when comparing GMC between the two cohorts at 10 (P = 0.467), 12 (P = 0.496), and 14 (P = 0.175) years post-immunization. For the three-dose cohort, protective antibody levels remain for 17 years and have leveled-off over the past 7 years. Conclusion The two- and three-dose schedules provide similar protection >14 years after vaccination, indicating a booster dose is not needed at this time. Plateauing anti-HAV GMC levels suggest protective antibody levels may persist long-term. PMID:23470239

  16. The impact of assumptions regarding vaccine-induced immunity on the public health and cost-effectiveness of hepatitis A vaccination: Is one dose sufficient?

    Science.gov (United States)

    Curran, Desmond; de Ridder, Marc; Van Effelterre, Thierry

    2016-01-01

    ABSTRACT Hepatitis A vaccination stimulates memory cells to produce an anamnestic response. In this study, we used a mathematical model to examine how long-term immune memory might convey additional protection against clinical/icteric infections. Dynamic and decision models were used to estimate the expected number of cases, and the costs and quality-adjusted life-years (QALYs), respectively. Several scenarios were explored by assuming: (1) varying duration of vaccine-induced immune memory, (2) and/or varying levels of vaccine-induced immune memory protection (IMP), (3) and/or varying levels of infectiousness in vaccinated individuals with IMP. The base case analysis assumed a time horizon of 25 y (2012 – 2036), with additional analyses over 50 and 75 y. The analyses were conducted in the Mexican public health system perspective. In the base case that assumed no vaccine-induced IMP, the 2-dose hepatitis A vaccination strategy was cost-effective compared with the 1-dose strategy over the 3 time horizons. However, it was not cost-effective if we assumed additional IMP durations of at least 10 y in the 25-y horizon. In the 50- and 75-y horizons, the 2-dose strategy was always cost-effective, except when 100% reduction in the probability of icteric Infections, 75% reduction in infectiousness, and mean durations of IMP of at least 50 y were assumed. This analysis indicates that routine vaccination of toddlers against hepatitis A virus would be cost-effective in Mexico using a single-dose vaccination strategy. However, the cost-effectiveness of a second dose depends on the assumptions of additional protection by IMP and the time horizon over which the analysis is performed. PMID:27428611

  17. Low doses of flagellin-L2 multimer vaccines protect against challenge with diverse papillomavirus genotypes.

    Science.gov (United States)

    Kalnin, Kirill; Tibbitts, Timothy; Yan, Yanhua; Stegalkina, Svetlana; Shen, Lihua; Costa, Victor; Sabharwal, Robert; Anderson, Stephen F; Day, Patricia M; Christensen, Neil; Schiller, John T; Jagu, Subhashini; Roden, Richard B S; Almond, Jeffrey; Kleanthous, Harold

    2014-06-12

    Genetically modified bacterial flagellin (Fla), a Toll-like receptor-5 (TLR5) ligand, was evaluated as a fusion partner for human papillomavirus (HPV) L2-based immunogens in two animal challenge models; either cutaneous inoculation of rabbits with HPV 'quasivirions' containing cottontail rabbit papillomavirus (CRPV) genomes that induce warts, or intra-vaginal inoculation of mice with HPV 'pseudovirions' encapsidating a luciferase reporter plasmid and measurement of bioluminescence to determine infectivity. An Escherichia coli production system was developed for flagellin-L2 (Fla-L2) fusions containing either monomeric HPV-16 L2 a.a. 11(×11-200) or oligomeric L2 comprising a fusion of the a.a. 11-88 peptides of five (Fla∼5×11-88) or eight (Fla∼8×11-88) genital HPV types. Immunogenicity and bioactivity of Fla-L2 constructs were assessed using an in vitro neutralization and cell-based TLR-5 binding assay, respectively. Efficacy was evaluated following active immunization of rabbits or mice administered 3 intramuscular doses of Fla-L2 recombinants without exogenous adjuvant, followed by challenge. In addition, passive immunization studies of naïve rabbits with serial dilutions of pooled immune sera were used to determine End-Point Protection Titers (EPPT) for each formulation against a broader spectrum of HPV quasivirions. Efficacy was assessed for up to 10 weeks on the basis of wart volume induced following challenge and results compared to licensed L1-VLP vaccines (Gardasil and Cervarix). Following active immunization at doses as low as 1 μg, Fla-L2 fusions afforded complete protection against infection (mice) and disease (rabbits) following either homologous or heterologous HPV challenge. Passive immunization with anti-L2 immune sera discriminated between the different vaccine candidates under evaluation, demonstrated the protective role of antibody and suggested the superiority of this oligomeric L2-TLR5 agonist fusion approach compared to L1-based

  18. Dose-Related Differences in Effectiveness of Human Papillomavirus Vaccination Against Genital Warts

    DEFF Research Database (Denmark)

    Blomberg, Maria; Dehlendorff, Christian; Sand, Carsten

    2015-01-01

    BACKGROUND: Reducing the number of doses in the human papillomavirus (HPV) vaccination regimen from 3 to 2 could increase coverage rates. In this cohort study, we assessed the risk of genital warts (GWs) according to timing and number of doses of quadrivalent HPV vaccine. METHODS: From population......-based registries, we identified all girls in Denmark born during 1985-1999, for whom information on HPV vaccinations was retrieved. The cohort was followed for GW occurrence during 2006-2012. Incidence rate ratios (IRRs) were calculated by Poisson regression to determine differences in GW rates by number...... of vaccine doses. RESULTS: Of the 550,690 girls in the cohort, 361 734 had been vaccinated. Of these, 25.9% had been vaccinated twice and 58.8% 3 times. The risk of GWs decreased significantly with each additional dose of vaccine. For girls who received 2 doses, extension of the interval between doses...

  19. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    Science.gov (United States)

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  20. Preclinical evaluation of multi antigenic HCV DNA vaccine for the prevention of Hepatitis C virus infection.

    Science.gov (United States)

    Lee, Hyojin; Jeong, Moonsup; Oh, Jooyeon; Cho, Youngran; Shen, Xuefei; Stone, John; Yan, Jian; Rothkopf, Zachary; Khan, Amir S; Cho, Byung Mun; Park, Young K; Weiner, David B; Son, Woo-Chan; Maslow, Joel N

    2017-03-07

    Direct-acting antiviral treatment for hepatitis C virus (HCV) infection is costly and does not protect from re-infection. For human and chimpanzees, recovery from acute HCV infection correlates with host CD4+ and CD8+ T cell responses. DNA plasmids targeting the HCV non-structural antigens NS3, NS4, and NS5, were previously reported to induce robust and sustained T cell responses in mice and primates. These plasmids were combined with a plasmid encoding cytokine IL-28B, together named as VGX-6150. The dose-dependent T cell response and safety of VGX-6150 administered intramuscularly and followed by electroporation was assessed in mice. Immune responses plateaued at 20 μg/dose with IL-28B demonstrating significant immunoadjuvant activity. Mice administered VGX-6150 at 40, 400, and 800 μg given either as a single injection or as 14 injections given bi-weekly over 26 weeks showed no vaccine related changes in any clinical parameter compared to placebo recipients. There was no evidence of VGX-6150 accumulation at the injection site or in any organ 1 month following the 14 th vaccination. Based on these studies, the approximate lethal dose (ALD) exceeds 800 μg/dose and the NOAEL was 800 μg/dose in mouse. In conclusion, VGX-6150 appears safe and a promising preventive vaccine candidate for HCV infection.

  1. Therapy of established B16-F10 melanoma tumors by a single vaccination of CTL/T helper peptides in VacciMax®

    Directory of Open Access Journals (Sweden)

    Korets-Smith Ella

    2007-04-01

    Full Text Available Abstract Background Melanoma tumors are known to express antigens that usually induce weak immune responses of short duration. Expression of both tumor-associated antigens p53 and TRP2 by melanoma cells raises the possibility of simultaneously targeting more than one antigen in a therapeutic vaccine. In this report, we show that VacciMax® (VM, a novel liposome-based vaccine delivery platform, can increase the immunogenicity of melanoma associated antigens, resulting in tumor elimination. Methods C57BL/6 mice bearing B16-F10 melanoma tumors were vaccinated subcutaneously 6 days post tumor implantation with a mixture of synthetic peptides (modified p53: 232–240, TRP-2: 181–188 and PADRE and CpG. Tumor growth was monitored and antigen-specific splenocyte responses were assayed by ELISPOT. Results Vaccine formulated in VM increased the number of both TRP2- and p53-specific IFN-γ producing splenocytes following a single vaccination. Vaccine formulated without VM resulted only in enhanced IFN-γ producing splenocytes to one CTL epitopes (TRP2:180–188, suggesting that VM overcomes antigen dominance and enhances immunogenicity of multiple epitopes. Vaccination of mice bearing 6-day old B16-F10 tumors with both TRP2 and p53-peptides formulated in VM successfully eradicated tumors in all mice. A control vaccine which contained all ingredients except liposomes resulted in eradication of tumors in no more than 20% of mice. Conclusion A single administration of VM is capable of inducing an effective CTL response to multiple tumor-associated antigens. The responses generated were able to reject 6-day old B16-F10 tumors.

  2. Immunogenicity and safety of a single dose of a CRM-conjugated meningococcal ACWY vaccine in children and adolescents aged 2-18 years in Taiwan: results of an open label study.

    Science.gov (United States)

    Huang, Li-Min; Chiu, Nan-Chang; Yeh, Shu-Jen; Bhusal, Chiranjiwi; Arora, Ashwani Kumar

    2014-09-08

    MenACWY-CRM (Menveo®, Novartis Vaccines, Siena, Italy) is a quadrivalent meningococcal conjugate vaccine developed to help prevent invasive meningococcal disease caused by Neisseria meningitidis serogroups A, C, W, and Y. It is approved within the European Union in persons >2 years of age and in persons from 2 months to 55 years of age in the United States, among other countries. Little is known about the immunogenicity and safety of this vaccine in Taiwanese children >2 years and adolescents. This study assessed the immunogenicity and safety of a single injection of MenACWY-CRM vaccine in Taiwanese subjects aged 2-18 years old. In this phase III, multicentre, open-label study 341 subjects received one dose of MenACWY-CRM. Immunogenicity measures were rates of seroresponse (defined as the proportion of subjects with a postvaccination hSBA ≥1:8 if the prevaccination (baseline) titre was CRM vaccination at Day 29 for the serogroups A, C, W, and Y were 83%, 93%, 50%, and 65%, respectively. At Day 29 the percentages of subjects with hSBA ≥1:8 against all four serogroups A, C, W and Y were: 83%, 96%, 96% and 82%, respectively. GMTs against all serogroups rose by ≥7-fold from baseline to Day 29. The vaccine was well tolerated. A single dose of MenACWY-CRM demonstrated a robust immune response, and an acceptable safety profile in Taiwanese children and adolescents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Radiation-resistant acquired immunity of vaccinated mice to Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Dixon, B.; Wilson, R.A.

    1987-01-01

    Vaccination of mice with attenuated cercariae of Schistosoma mansoni induces specific acquired resistance to challenge infection. This resistance is immunologically-mediated, possibly via a delayed-type hypersensitivity. Studies of parasite migration have shown that the protective mechanism operates most effectively in the lungs of vaccinated mice. We have probed the mechanism by exposing mice to 500 rads of gamma radiation before challenge infection. Our results show that the effector mechanism operative against challenge larvae is resistant to radiation. In contrast, classical immune responses are markedly suppressed by the same treatment. While leukocyte populations in the blood fall dramatically after irradiation, numbers of cells recoverable by bronchoalveolar lavage are unaffected. We suggest that vaccination with attenuated cercariae establishes populations of sensitized cells in the lungs which trigger the mechanism of resistance when challenge schistosomula migrate through pulmonary capillary beds. Although the cells may be partially disabled by irradiation, they remain responsive to worm antigens and thereby capable of initiating the elimination mechanism. This hypothesis would explain the radiation resistance of vaccine-induced immunity to S. mansoni

  4. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  5. A new single-dose bivalent vaccine of porcine circovirus type 2 and Mycoplasma hyopneumoniae elicits protective immunity and improves growth performance under field conditions.

    Science.gov (United States)

    Jeong, Jiwoon; Park, Changhoon; Choi, Kyuhyung; Chae, Chanhee

    2016-01-15

    The efficacy of the new single-dose bivalent vaccine of porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae was evaluated under field conditions for registration as recommended by the Republic of Korea's Animal, Plant & Fisheries Quarantine & Inspection Agency. Three farms were selected based on their history of co-infection with PCV2 and M. hyopneumoniae. On each farm, a total of 80 3-week-old pigs were randomly allocated to one of two treatment groups: (i) vaccinated (n=40) and (ii) unvaccinated (n=40) animals at 3 weeks of age. Protection by the bivalent vaccine helped increase the market weight by 6.2 kg/pig (106.2 kg in vaccinated group vs. 100 kg in unvaccinated group; Phyopneumoniae-specific IFN-γ-SC. Vaccinated animals displayed a reduced PCV2 load in the blood and M. hyopneumoniae load in nasal swabs compared to unvaccinated animals. Vaccination of pigs against PCV2 and M. hyopneumoniae effectively reduced the lung and lymphoid lesion scores compared to unvaccinated animals in all 3 farms. The new bivalent vaccine is very efficacious in controlling PCV2 and M. hyopneumoniae infection based on clinical, immunological, virological, and pathological evaluations under field conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mouse single oral dose toxicity test of bupleuri radix aqueous extracts.

    Science.gov (United States)

    Kim, Kyung-Hu; Gam, Cheol-Ou; Choi, Seong-Hun; Ku, Sae-Kwang

    2012-03-01

    The aim of this study was to evaluate the single oral dose toxicity of Bupleuri Radix (BR) aqueous extracts, it has been traditionally used as anti-inflammatory agent, in male and female mice. BR extracts (yield = 16.52%) was administered to female and male ICR mice as an oral dose of 2,000, 1,000 and 500 mg/kg (body weight) according to the recommendation of Korea Food and Drug Administration (KFDA) Guidelines. Animals were monitored for the mortality and changes in body weight, clinical signs and gross observation during 14 days after dosing, upon necropsy; organ weight and histopathology of 14 principal organs were examined. As the results, no BR extracts treatment related mortalities, clinical signs, changes on the body and organ weights, gross and histopathological observations against 14 principal organs were detected up to 2,000 mg/kg in both female and male mice, except for soft feces and related body weight decrease detected in male mice treated with 2,000 mg/kg. Therefore, LD50 (50% lethal dose) and approximate LD of BR aqueous extracts after single oral treatment in female and male mice were considered over 2000 mg/kg, respectively. Although it was also observed that the possibilities of digestive disorders, like soft feces when administered over 2,000 mg/kg of BR extracts in the present study, these possibilities of digestive disorders can be disregard in clinical use because they are transient in the highest dosages male only.

  7. A study on mice exposure dose for low-dose gamma-irradiation using glass dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sung Jin; Kim, Hyo Jin; Kim, Hyun; Jeong, Dong Hyeok; Son, Tae Gen; Kim, Jung Ki; Yang, Kwang Mo; Kang, Yeong Rok [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Nam, Sang Hee [Dept. of Biomedical Engineering, Inje University, Gimhae (Korea, Republic of)

    2015-12-15

    The low dose radiation is done for a long period, thus researchers have to know the exact dose distribution for the irradiated mouse. This research has been conducted in order to find out methods in transmitting an exact dose to mouse in a mouse irradiation experiment carried out using {sup 137}C{sub s} irradiation equipment installed in the DIRAMS (Dongnam Institution of Radiological and Medical Sciences) research center. We developed a single mouse housing cage and shelf with adjustable geometric factors such as distance and angle from collimator. The measurement of irradiated dose showed a maximal 42% difference of absorbed dose from the desired dose in the conventional irradiation system, whereas only 6% difference of the absorbed dose was measured in the self-developed mouse apartment system. In addition, multi mice housing showed much difference of the absorbed dose in between head and body, compared to single mouse housing in the conventional irradiation system. This research may allow further research about biological effect assessment for the low dose irradiation using the self-developed mouse apartment to provide more exact doses which it tries to transmit, and to have more reliability for the biological analysis results.

  8. Immunogenicity and safety of high-dose trivalent inactivated influenza vaccine compared to standard-dose vaccine in children and young adults with cancer or HIV infection.

    Science.gov (United States)

    Hakim, Hana; Allison, Kim J; Van de Velde, Lee-Ann; Tang, Li; Sun, Yilun; Flynn, Patricia M; McCullers, Jonathan A

    2016-06-08

    Approaches to improve the immune response of immunocompromised patients to influenza vaccination are needed. Children and young adults (3-21 years) with cancer or HIV infection were randomized to receive 2 doses of high-dose (HD) trivalent influenza vaccine (TIV) or of standard-dose (SD) TIV. Hemagglutination inhibition (HAI) antibody titers were measured against H1, H3, and B antigens after each dose and 9 months later. Seroconversion was defined as ≥4-fold rise in HAI titer comparing pre- and post-vaccine sera. Seroprotection was defined as a post-vaccine HAI titer ≥1:40. Reactogenicity events (RE) were solicited using a structured questionnaire 7 and 14 days after each dose of vaccine, and adverse events by medical record review for 21 days after each dose of vaccine. Eighty-five participants were enrolled in the study; 27 with leukemia, 17 with solid tumor (ST), and 41 with HIV. Recipients of HD TIV had significantly greater fold increase in HAI titers to B antigen in leukemia group and to H1 antigen in ST group compared to SD TIV recipients. This increase was not documented in HIV group. There were no differences in seroconversion or seroprotection between HD TIV and SD TIV in all groups. There was no difference in the percentage of solicited RE in recipients of HD TIV (54% after dose 1 and 38% after dose 2) compared to SD TIV (40% after dose 1 and 20% after dose 2, p=0.27 and 0.09 after dose 1 and 2, respectively). HD TIV was more immunogenic than SD TIV in children and young adults with leukemia or ST, but not with HIV. HD TIV was safe and well-tolerated in children and young adults with leukemia, ST, or HIV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Potential Impact of Accelerating the Primary Dose of Rotavirus Vaccine in Infants

    OpenAIRE

    Halvorson, Elizabeth E.; Peters, Timothy R.; Snively, Beverly M.; Poehling, Katherine A.

    2012-01-01

    We estimated the potential impact of administering the first dose of rotavirus vaccine at 6 weeks (42 days of life) instead of 2 months of age, which is permissible for all U.S. vaccines recommended at 2 months of age, on rotavirus hospitalization rates. We used published data for hospitalization rates, vaccine coverage, and vaccine efficacy after one dose and assumed a two-week delay in seroconversion after vaccine administration in the United States. Administering the first dose of rotaviru...

  10. Intradermal Inactivated Poliovirus Vaccine: A Preclinical Dose-Finding Study

    OpenAIRE

    Kouiavskaia, Diana; Mirochnitchenko, Olga; Dragunsky, Eugenia; Kochba, Efrat; Levin, Yotam; Troy, Stephanie; Chumakov, Konstantin

    2014-01-01

    Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial...

  11. An assessment of mumps vaccine effectiveness by dose during an outbreak in Canada.

    Science.gov (United States)

    Deeks, Shelley L; Lim, Gillian H; Simpson, Mary Anne; Gagné, Louise; Gubbay, Jonathan; Kristjanson, Erik; Fung, Cecilia; Crowcroft, Natasha S

    2011-06-14

    This investigation was done to assess vaccine effectiveness of one and two doses of the measles, mumps and rubella (MMR) vaccine during an outbreak of mumps in Ontario. The level of coverage required to reach herd immunity and interrupt community transmission of mumps was also estimated. Information on confirmed cases of mumps was retrieved from Ontario's integrated Public Health Information System. Cases that occurred between Sept. 1, 2009, and June 10, 2010, were included. Selected health units supplied coverage data from the Ontario Immunization Record Information System. Vaccine effectiveness by dose was calculated using the screening method. The basic reproductive number (R(0)) represents the average number of new infections per case in a fully susceptible population, and R(0) values of between 4 and 10 were considered for varying levels of vaccine effectiveness. A total of 134 confirmed cases of mumps were identified. Information on receipt of MMR vaccine was available for 114 (85.1%) cases, of whom 63 (55.3%) reported having received only one dose of vaccine; 32 (28.1%) reported having received two doses. Vaccine effectiveness of one dose of the MMR vaccine ranged from 49.2% to 81.6%, whereas vaccine effectiveness of two doses ranged from 66.3% to 88.0%. If we assume vaccine effectiveness of 85% for two doses of the vaccine, vaccine coverage of 88.2% and 98.0% would be needed to interrupt community transmission of mumps if the corresponding reproductive values were four and six. Our estimates of vaccine effectiveness of one and two doses of mumps-containing vaccine were consistent with the estimates that have been reported in other outbreaks. Outbreaks occurring in Ontario and elsewhere serve as a warning against complacency over vaccination programs.

  12. Long-term evaluation of mucosal and systemic immunity and protection conferred by different polio booster vaccines.

    Science.gov (United States)

    Xiao, Yuhong; Daniell, Henry

    2017-09-25

    Oral polio vaccine (OPV) and Inactivated Polio Vaccine (IPV) have distinct advantages and limitations. IPV does not provide mucosal immunity and introduction of IPV to mitigate consequences of circulating vaccine-derived polio virus from OPV has very limited effect on transmission and OPV campaigns are essential for interrupting wild polio virus transmission, even in developed countries with a high coverage of IPV and protected sewer systems. The problem is magnified in many countries with limited resources. Requirement of refrigeration for storage and transportation for both IPV and OPV is also a major challenge in developing countries. Therefore, we present here long-term studies on comparison of a plant-based booster vaccine, which is free of virus and cold chain with IPV boosters and provide data on mucosal and systemic immunity and protection conferred by neutralizing antibodies. Mice were primed subcutaneously with IPV and boosted orally with lyophilized plant cells containing 1μg or 25μg polio viral protein 1 (VP1), once a month for three months or a single booster one year after the first prime. Our results show that VP1-IgG1 titers in single or double dose IPV dropped to background levels after one year of immunization. This decrease correlated with >50% reduction in seropositivity in double dose and <10% seropositivity in single dose IPV against serotype 1. Single dose IPV offered no or minimal protection against serotype 1 and 2 but conferred protection against serotype 3. VP1-IgA titers were negligible in IPV single or double dose vaccinated mice. VP1 antigen with two plant-derived adjuvants induced significantly high level and long lasting VP1-IgG1, IgA and neutralizing antibody titers (average 4.3-6.8 log2 titers). Plant boosters with VP1 and plant derived adjuvants maintained the same level titers from 29 to 400days and conferred the same level of protection against all three serotypes throughout the duration of this study. Even during period, when

  13. An immune stimulating complex (iscom) subunit rabies vaccine protects dogs and mice against street rabies challenge.

    NARCIS (Netherlands)

    M. Fekadu; J.H. Schaddock; J. Ekströ m; A.D.M.E. Osterhaus (Albert); D.W. Sanderlin; B. Sundquist; B. Morein (Bror)

    1992-01-01

    textabstractDogs and mice were immunized with either a rabies glycoprotein subunit vaccine incorporated into an immune stimulating complex (ISCOM) or a commercial human diploid cell vaccine (HDCV) prepared from a Pitman Moore (PM) rabies vaccine strain. Pre-exposure vaccination of mice with two

  14. IMMUNE RESPONSES OF GOATS (SHAMI BREED TO VACCINATION WITH A FULL, REDUCED AND CONJUNCTIVAL DOSE OF BRUCEVAC (BRUCELLA MELITENSIS REV.1 VACCINE

    Directory of Open Access Journals (Sweden)

    F. ALDOMY, M. ALKHAWALDEH1 AND I. B. YOUNIS

    2009-10-01

    Full Text Available Three groups of Shami goats were randomly vaccinated with Brucevac (Rev. 1 vaccine. Group 1 was vaccinated subcutaneously with a full dose (1.54 x 109 organisms. Group 2 was vaccinated conjunctively with one eye drop (5.2 x 108 organisms, while Group 3 was injected subcutaneously with a reduced dose (7.1 x 105 organisms of vaccine. Blood samples were collected before vaccination, two, four, eight, 15 and 24 weeks post vaccination. All samples were tested through CFT, ELISA, SAT and Rose Bengal plate test. All serological tests used detected a higher percentage of vaccinated female kids with a full dose than they did in other groups vaccinated with a reduced dose or with a conjunctival dose of Rev.1 vaccine. The overall results suggested that 100% of animals vaccinated with a conjunctival dose became positive to CFT at two, four, eight and 15 weeks post vaccination, and then the percentage of seropositive animals declined and became 20% at 24 weeks post inoculation. The conjunctival route of vaccination significantly reduced the intensity and duration of the post vaccination serological response, which makes the use of this vaccine compatible with brucellosis programmes, even when these are based on a test-and–slaughter policy. The overall results showed that Shami goats responded to Rev.1 vaccine in the expected way. The majority of animals were seropositive to the CFT by two weeks after vaccination with higher numbers of seropositive animals in the kids group vaccinated with a full dose of Rev.1 vaccine.

  15. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice.

    Science.gov (United States)

    Wang, Fei; Chen, Quanjiao; Li, Shuntang; Zhang, Chenyao; Li, Shanshan; Liu, Min; Mei, Kun; Li, Chunhua; Ma, Lixin; Yu, Xiaolan

    2017-06-01

    Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Immuno-efficacy of DNA vaccines encoding PLP1 and ROP18 against experimental Toxoplasma gondii infection in mice.

    Science.gov (United States)

    Chen, Yajun; Yu, Miao; Hemandez, J A; Li, Jiexi; Yuan, Zi-Guo; Yan, Haikuo

    2018-05-01

    We constructed a new plasmid pIRESneo/ROP18/PLP1 that was injected intramuscularly into Kunming mice to evaluate its immune efficacy. The immunized mice exhibited significantly increased serum IgG2a levels, lymphocyte counts and Th1-type cytokine (IL-2, IL-12 and IFN-γ) levels. Moreover, the immunized mice exhibited longer survival times (44.7 ± 2.1 days for ROP18/PLP1 and 47.2 ± 2.9 days for ROP18/PLP1 + IL-18) and lower brain cyst burden (68.9% for ROP18/PLP1 and 72.4% for ROP18/PLP1 + IL-18) than control mice after T. gondii challenge. Our results demonstrate that the multiple-gene DNA vaccine including both ROP18 and PLP1 elicits greater protection against T. gondii challenge and stronger immunogenicity than single-gene vaccines. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  18. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    Science.gov (United States)

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  19. A clinically applicable adjuvant for an atherosclerosis vaccine in mice.

    Science.gov (United States)

    Kobiyama, Kouji; Vassallo, Melanie; Mitzi, Jessica; Winkels, Holger; Pei, Hong; Kimura, Takayuki; Miller, Jacqueline; Wolf, Dennis; Ley, Klaus

    2018-06-22

    Vaccination with MHC-II-restricted peptides from Apolipoprotein B (ApoB) with complete and incomplete Freund's adjuvant (CFA/IFA) is known to protect mice from atherosclerosis. This vaccination induces antigen-specific IgG1 and IgG2c antibody responses and a robust CD4 T cell response in lymph nodes. However, CFA/IFA cannot be used in humans. To find a clinically applicable adjuvant, we tested the effect of vaccinating Apoe-deficient mice with ApoB peptide P6 (TGAYSNASSTESASY). In a broad screening experiment, Addavax, a squalene oil similar to MF59, was the only adjuvant that showed similar efficacy as CFA/IFA. This was confirmed in a confirmation experiment for both the aortic arch and whole aorta analyzed by en face analysis after atherosclerotic lesion staining. Mechanistically, restimulated peritoneal cells from mice immunized with P6 in Addavax released significant amounts of IL-10. Unlike P6 in CFA/IFA, vaccination with P6 in Addavax did not induce any detectable IgG1 or IgG2c antibodies to P6. These data suggest that squalene-based adjuvants such as MF59 are good candidate adjuvants for developing a clinically effective atherosclerosis vaccine. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. A single immunization with a recombinant canine adenovirus expressing the rabies virus G protein confers protective immunity against rabies in mice

    International Nuclear Information System (INIS)

    Li Jianwei; Faber, Milosz; Papaneri, Amy; Faber, Marie-Luise; McGettigan, James P.; Schnell, Matthias J.; Dietzschold, Bernhard

    2006-01-01

    Rabies vaccines based on live attenuated rabies viruses or recombinant pox viruses expressing the rabies virus (RV) glycoprotein (G) hold the greatest promise of safety and efficacy, particularly for oral immunization of wildlife. However, while these vaccines induce protective immunity in foxes, they are less effective in other animals, and safety concerns have been raised for some of these vaccines. Because canine adenovirus 2 (CAV2) is licensed for use as a live vaccine for dogs and has an excellent efficacy and safety record, we used this virus as an expression vector for the RVG. The recombinant CAV2-RV G produces virus titers similar to those produced by wild-type CAV2, indicating that the RVG gene does not affect virus replication. Comparison of RVG expressed by CAV2-RV G with that of vaccinia-RV G recombinant virus (V-RG) revealed similar amounts of RV G on the cell surface. A single intramuscular or intranasal immunization of mice with CAV2-RVG induced protective immunity in a dose-dependent manner, with no clinical signs or discomfort from the virus infection regardless of the route of administration or the amount of virus

  1. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  2. Mass vaccination with a two-dose oral cholera vaccine in a long-standing refugee camp, Thailand.

    Science.gov (United States)

    Phares, Christina R; Date, Kashmira; Travers, Philippe; Déglise, Carole; Wongjindanon, Nuttapong; Ortega, Luis; Bhuket, Ponchanok Rattanadilok Na

    2016-01-02

    During 2005-2012, surveillance in Maela refugee camp, Thailand, identified four cholera outbreaks, with rates up to 10.7 cases per 1000 refugees. In 2013, the Thailand Ministry of Public Health sponsored a two-dose oral cholera vaccine (OCV) campaign for the approximately 46,000 refugees living in Maela. We enumerated the target population (refugees living in Maela who are ≥1 year old and not pregnant) in a census three months before the campaign and issued barcoded OCV cards to each individual. We conducted the campaign using a fixed-post strategy during two eight-day rounds plus one two-day round for persons who had missed their second dose and recorded vaccine status for each individual. To identify factors associated with no vaccination (versus at least one dose) and those associated with adverse events following immunization (AEFI), we used separate marginal log-binomial regression models with robust variance estimates to account for household clustering. A total of 63,057 OCV doses were administered to a target population of 43,485 refugees. An estimated 35,399 (81%) refugees received at least one dose and 27,658 (64%) received two doses. A total of 993 additional doses (1.5%) were wasted including 297 that were spat out. Only 0.05% of refugees, mostly children, could not be vaccinated due to repeated spitting. Characteristics associated with no vaccination (versus at least one dose) included age ≥15 years (versus 1-14 years), Karen ethnicity (versus any other ethnicity) and, only among adults 15-64 years old, male sex. Passive surveillance identified 84 refugees who experienced 108 AEFI including three serious but coincidental events. The most frequent AEFI were nausea (49%), dizziness (38%), and fever (30%). Overall, AEFI were more prevalent among young children and older adults. Our results suggest that mass vaccination in refugee camps with a two-dose OCV is readily achievable and AEFI are few. Published by Elsevier Ltd.

  3. Development of Cytomegalovirus-Based Vaccines Against Melanoma

    Science.gov (United States)

    2016-10-01

    Efficacy will be examined in mice by vaccination at 7, 14, and 21 days after tumor induction through monitoring tumor incidence, size, survival...intradermal B16 solid tumor model. Mice were inoculated with B16F10 and 3 days later were vaccinated with MCMVgp100KGP. For one experiment, mice were...We are now comparing the efficacy of this new vaccine to other single epitope virus vectors. Q6. can you please also clarify the AIMS of the SPARK

  4. Phase I trial of RV3-BB rotavirus vaccine: a human neonatal rotavirus vaccine.

    Science.gov (United States)

    Danchin, M; Kirkwood, C D; Lee, K J; Bishop, R F; Watts, E; Justice, F A; Clifford, V; Cowley, D; Buttery, J P; Bines, J E

    2013-05-28

    RV3 is a human neonatal rotavirus strain (G3P[6]) that has been associated with asymptomatic neonatal infection and replicates well in the infant gut. RV3-BB rotavirus vaccine has been developed as a rotavirus vaccine candidate for administration at birth. A single-centre, double-blind, randomised placebo-controlled Phase I study evaluated the safety and tolerability of a single oral dose of the second generation RV3-BB rotavirus vaccine (8.3×10(6)FFU/mL) in 20 adults, 20 children and 20 infants (10 vaccine and 10 placebo per age cohort). Vaccine take was defined as seroconversion (a 3-fold increase in serum anti-rotavirus IgA or serum neutralising antibody (SNA) from baseline at day 28 post-dose) or evidence of RV3-BB viral replication in the faeces by RT-PCR analysis 3-6 days post-vaccination. RV3-BB presence was confirmed by sequence analysis. The RV3-BB vaccine was well tolerated in all participants, with no pattern of adverse events shown to be associated with the study vaccine. In the infant cohort, vaccine take was demonstrated in 8/9 infants following a single dose of vaccine compared with 2/7 placebo recipients. In the infant vaccine group, 5/9 infants exhibited either IgA or SNA seroconversion and 7/9 infants had evidence of RV3-BB replication on days 3-6, compared with 2/7 infants who seroconverted and 0/10 infants with evidence of replication in the placebo group. Two infants in the placebo group had serological evidence of a rotavirus infection within the 28-day study period: one demonstrated an IgA and the other an SNA response, with wild-type virus replication detected in another infant. A single dose of RV3-BB rotavirus vaccine was well tolerated in adults, children and infants. Most infants (8/9) who received RV3-BB demonstrated vaccine take following a single dose. These data support progression of RV3-BB to Phase II immunogenicity and efficacy trials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice

    Directory of Open Access Journals (Sweden)

    Michael H. Norris

    2018-01-01

    Full Text Available Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90% up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection.

  6. Evidence that radio-sensitive cells are central to skin-phase protective immunity in CBA/Ca mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni as well as in naive mice protected with vaccine serum

    International Nuclear Information System (INIS)

    Delgado, V.S.; McLaren, D.J.

    1990-01-01

    Naive CBA/Ca mice and CBA/ca mice vaccinated 4 weeks previously with radiation-attenuated cercariae of Schistosoma mansoni were subjected to 550 rad of whole body (gamma) irradiation and then challenged 3 days later with normal cercariae. The perfusion recovery data showed that this procedure reduced the primary worm burden in naive mice by 22% and the challence worm burden in vaccinated mice by 82%. Irradiation also ablated the peripheral blood leucocytes of both mouse groups by 90-100% at the time of challenge. Histological data revealed that such treatment caused a dramatic change in number, size and leucocyte composition of cutaneous inflammatory skin reactions that characterize challenged vacccinated mice and are known to entrap invading larvae; cutaneous eosinophils were preferentially abolished by this treatment. Polyvaccine mouse serum that conferred protection passively upon naive recipient mice, failed to protect naive/irradiated mice when administered by the same protocol. Distraction of macrophages by treatment of mice with silica did not affect the establishment of a primary worm burden and reduced the protection exhibited by vaccinated mice by only 16%. These data indicade that radio-sensitive cells are important to both innate and specific acquired resistance in this mouse model and that macrophages contribute only marginally to the expression of vaccine immunity. (author)

  7. Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses.

    Directory of Open Access Journals (Sweden)

    Callie E Bounds

    Full Text Available DNA vaccination of transchromosomal bovines (TcBs with DNA vaccines expressing the codon-optimized (co glycoprotein (GP genes of Ebola virus (EBOV and Sudan virus (SUDV produce fully human polyclonal antibodies (pAbs that recognize both viruses and demonstrate robust neutralizing activity. Each TcB was vaccinated by intramuscular electroporation (IM-EP a total of four times and at each administration received 10 mg of the EBOV-GPco DNA vaccine and 10 mg of the SUDV-GPco DNA vaccine at two sites on the left and right sides, respectively. After two vaccinations, robust antibody responses (titers > 1000 were detected by ELISA against whole irradiated EBOV or SUDV and recombinant EBOV-GP or SUDV-GP (rGP antigens, with higher titers observed for the rGP antigens. Strong, virus neutralizing antibody responses (titers >1000 were detected after three vaccinations when measured by vesicular stomatitis virus-based pseudovirion neutralization assay (PsVNA. Maximal neutralizing antibody responses were identified by traditional plaque reduction neutralization tests (PRNT after four vaccinations. Neutralizing activity of human immunoglobulins (IgG purified from TcB plasma collected after three vaccinations and injected intraperitoneally (IP into mice at a 100 mg/kg dose was detected in the serum by PsVNA up to 14 days after administration. Passive transfer by IP injection of the purified IgG (100 mg/kg to groups of BALB/c mice one day after IP challenge with mouse adapted (ma EBOV resulted in 80% protection while all mice treated with non-specific pAbs succumbed. Similarly, interferon receptor 1 knockout (IFNAR(-/- mice receiving the purified IgG (100 mg/kg by IP injection one day after IP challenge with wild type SUDV resulted in 89% survival. These results are the first to demonstrate that filovirus GP DNA vaccines administered to TcBs by IM-EP can elicit neutralizing antibodies that provide post-exposure protection. Additionally, these data describe

  8. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  9. Non-Replicating Adenovirus-Vectored Anthrax Vaccine

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Zhang, J.; Jex, E.; Tang, D. C.

    2007-01-01

    As bioterrorism is emerging as a national threat, it is urgent to develop a new generation of anthrax vaccines that can be rapidly produced and mass administered in an emergency setting. We have demonstrated that protective immunity against anthrax spores could be elicited in mice by intranasal administration of a non-replicating human adenovirus serotype 5 (Ad5)-derived vector encoding Bacillus anthracis protective antigen (PA) in a single-dose regimen. The potency of an Ad5 vector encoding PA was remarkably enhanced by codon optimization of the PA gene to match the tRNA pool found in human cells. This nasal vaccine can be mass-administered by non-medical personnel during a bioterrorist attack. In addition, replication-competent adenovirus (RCA)-free Ad5-vectored anthrax vaccines can be mass produced in PER.C6 cells in serum-free wave bioreactors and purified by column chromatography to meet a surge in demand. The non-replicating nature of this new generation of anthrax vaccine ensures an excellent safety profile for vaccines and the environment.(author)

  10. Transdermal influenza immunization with vaccine-coated microneedle arrays.

    Directory of Open Access Journals (Sweden)

    Dimitrios G Koutsonanos

    Full Text Available Influenza is a contagious disease caused by a pathogenic virus, with outbreaks all over the world and thousands of hospitalizations and deaths every year. Due to virus antigenic drift and short-lived immune responses, annual vaccination is required. However, vaccine coverage is incomplete, and improvement in immunization is needed. The objective of this study is to investigate a novel method for transdermal delivery using metal microneedle arrays (MN coated with inactivated influenza virus to determine whether this route is a simpler and safer approach than the conventional immunization, capable to induce robust immune responses and confer protection against lethal virus challenge.Inactivated A/Aichi/2/68 (H3N2 influenza virus was coated on metal microneedle arrays and applied to mice as a vaccine in the caudal dorsal skin area. Substantial antibody titers with hemagglutination inhibition activity were detected in sera collected two and four weeks after a single vaccine dose. Challenge studies in mice with 5 x LD(50 of mouse adapted Aichi virus demonstrated complete protection. Microneedle vaccination induced a broad spectrum of immune responses including CD4+ and CD8+ responses in the spleen and draining lymph node, a high frequency of antigen-secreting cells in the lung and induction of virus-specific memory B-cells. In addition, the use of MN showed a dose-sparing effect and a strong Th2 bias when compared to an intramuscular (IM reference immunization.The present results show that delivery of inactivated influenza virus through the skin using metal microneedle arrays induced strong humoral and cellular immune responses capable of conferring protection against virus challenge as efficiently as intramuscular immunization, which is the standard vaccination route. In view of the convenience of delivery and the potential for self-administration, vaccine-coated metal microneedles may provide a novel and highly effective immunization method.

  11. Hormesis of specific IgG antibody to rabies virus in serum of mice irradiated with low dose γ-rays

    International Nuclear Information System (INIS)

    Liu Qingjie; Chen Deqing

    1998-01-01

    Objective: To explore the effect of low dose ionizing radiation on specific antibody in mouse serum. Methods: Kunming strain male mice, weighing 18-22 g, aged 6-8 weeks, were immunized intraperitoneally with rabies vaccine after exposure to cobalt-60 γ-rays. The specific IgG antibody against rabies virus in mouse serum was measured. Results: (1) The serum levels of specific IgG in mice irradiated with 5-30 cGy γ-rays were significantly elevated in comparison with those in control mice (P<0.01), the optimum stimulating dose being 10 cGy. (2) Exposure to 10 cGy caused significant enhancement and earlier emergence of the peak level of specific IgG in serum. (3) The hormesis of specific IgG to rabies virus induced by 10 cGy γ-rays could last one week at least. Conclusion: Low dose ionizing radiation can enhance the level of specific antibody in mouse serum, and this effect can last for one week at least

  12. Immunogenicity of aluminum-adsorbed hepatitis A vaccine (Havrix®) administered as a third dose after primary doses of Japanese aluminum-free hepatitis A vaccine (Aimmugen®) for Japanese travelers to endemic countries.

    Science.gov (United States)

    Fukushima, Shinji; Kiyohara, Tomoko; Ishii, Koji; Nakano, Takashi; Hamada, Atsuo

    2017-11-07

    Hepatitis A vaccination is recommended for travelers to endemic countries. Several inactivated aluminum-adsorbed hepatitis A vaccines are available worldwide, but only one licensed hepatitis A vaccine is available in Japan. This vaccine is a lyophilized inactivated aluminum-free hepatitis A vaccine (Aimmugen®). The standard schedule of Aimmugen® is three doses (at 0, 2-4 weeks, and 6 months). Japanese people will go abroad after receiving 2 doses of Aimmugen®. Some long-term travelers will receive the third dose of hepatitis A vaccine at their destination, at 6-24 months after 2 doses of Aimmugen®. Aimmugen® is not available in countries other than Japan. They receive inactivated aluminum-adsorbed hepatitis A vaccine instead of a third dose of Aimmugen®. This study was undertaken to determine whether the booster vaccination with an aluminum-adsorbed hepatitis A vaccine is effective following two doses of Aimmugen®. Subjects were healthy Japanese adults aged 20 years or older who had received two doses of Aimmugen®. Subjects received a booster dose of Havrix®1440 intramuscularly as the third dose. Serology samples for hepatitis A virus antibody titers were taken 4-6 weeks later. Anti-hepatitis A virus antibody titers were measured by an inhibition enzyme-linked immunosorbent assay. Subjects were 20 healthy Japanese adults, 6 men and 14 women. The mean age ± standard deviation was 37.2 ± 13.3. The seroprotection rate (SPR, anti-hepatitis A virus antibody titer ≥10 mIU/mL) was 85% at enrollment, and increased to 100% after vaccination with Havrix®. The geometric mean anti-hepatitis A virus antibody titer increased from 39.8 mIU/mL to 2938.2 mIU/mL. The three scheduled doses consisting of two doses of Aimmugen® plus a third dose with Havrix® is more immunogenic than using only two doses of Aimmugen®. The vaccination with Havrix® could be allowed to be used instead of a third dose of Aimmugen®. (UMIN000009351). Copyright © 2017 Elsevier Ltd. All

  13. Subunit Vaccine Preparation of Bovine Rotavirus and Its Efficacy in Mice.

    Science.gov (United States)

    Suocheng, Wei; Tuanjie, Che; Changjun, Song; Fengling, Tian; Zhongren, Ma

    2015-09-01

    Rotaviruses (RV) are important viral diarrheal agents in calves. Vaccination is an optimum measure to prevent bovine rotaviruses (BRV) infection. However, little research on BRV VP7 vaccine has been done and currently there is no BRV vaccine. To prepare a subunit vaccine of BRV and investigate its efficacy. Total RNA was extracted from MA104 cells infected with bovine rotavirus (BRV) strain GSB01. BRV VP7 gene was amplified using real time fluorescence quantitative PCR (qPCR). The pEASY-T3-VP7 plasmid was digested using HindⅢ and BamHI restriction endonucleases, then recombined into the prokaryotic expression vector pET32a. The pET32a-VP7 and pET32a-VP7-LTB (heat-labile enterotoxin B subunit) were transformed into BL21 (DE3) competent cells of Escherichia coli, respectively, and induced with IPTG, then analyzed using SDS-PAGE. Sixty mice were randomly divided into three groups (n=20). Group A mice was used as His-tag control and mice in group B and C were inoculated with pET32a-VP7 and pET32a-VP7-LTB, respectively. VP7 IgG antibody titers and protection efficiency of pET32a-VP7-LTB were further determined in neonatal mice challenged with GSB01 BRV strain. SDS-PAGE analysis showed that the pET32a-VP7 was highly expressed in the BL21 (DE3) cells. PET32a-VP7 and pET32a-VP7-LTB protein could promote VP7 IgG antibody titer(8.33×103 vs. 17.26×103)in mice. Immunization protection ratios of pET32a-VP7 and pET32a-VP7-LTB proteins in the neonatal mice were 86.4% and 91.7%, respectively. The fusion protein of pET32a-VP7-LTB had excellent immunogenicity and protected mice from BRV infection. Our findings can be used for further developing of a high-efficiency subunit vaccine of BRV.

  14. Persistence of bactericidal antibodies following early infant vaccination with a serogroup B meningococcal vaccine and immunogenicity of a preschool booster dose.

    Science.gov (United States)

    Snape, Matthew D; Saroey, Praveen; John, Tessa M; Robinson, Hannah; Kelly, Sarah; Gossger, Nicoletta; Yu, Ly-Mee; Wang, Huajun; Toneatto, Daniela; Dull, Peter M; Pollard, Andrew J

    2013-10-15

    The multicomponent serogroup B meningococcal (4CMenB) vaccine was recently licensed for use in Europe. There are currently no data on the persistence of bactericidal antibodies induced by use of this vaccine in infants. Our objective was to evaluate serogroup B-specific bactericidal antibodies in children aged 40-44 months previously vaccinated at 2, 4, 6 and 12 months of age. Participants given 4 doses of 4CMenB as infants received a fifth dose of the vaccine at 40-44 months of age. Age-matched participants who were MenB vaccine-naive received 4CMenB and formed the control group. We evaluated human complement serum bactericidal activity (hSBA) titres at baseline and 1 month after each dose of 4CMenB. Before a booster dose at enrolment, 41%-76% of 17 participants previously vaccinated with 4CMenB in infancy had hSBA titres of 4 or greater against 4 reference strains. Before vaccination in the control group (n = 40) these proportions were similar for strains 44/76-SL (63%) and M10713 (68%) but low for strains NZ98/254 (0%) and 5/99 (3%). A booster dose in the 4CMenB-primed participants generated greater increases in hSBA titres than in controls. As has been observed with other meningococcal vaccines, bactericidal antibodies waned after vaccination with 4CMenB administered according to an approved infant vaccination schedule of 2, 4, 6 and 12 months of age, but there was an anamnestic response to a booster dose at 40-44 months of age. If 4CMenB were introduced into routine vaccination schedules, assessment of the need for a booster dose would require data on the impact of these declining titres on vaccine effectiveness. ClinicalTrials.gov, no. NCT01027351.

  15. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Directory of Open Access Journals (Sweden)

    Camila Figueiredo Pinzan

    Full Text Available Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6 or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6 to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  16. Vaccination with Recombinant Microneme Proteins Confers Protection against Experimental Toxoplasmosis in Mice.

    Science.gov (United States)

    Pinzan, Camila Figueiredo; Sardinha-Silva, Aline; Almeida, Fausto; Lai, Livia; Lopes, Carla Duque; Lourenço, Elaine Vicente; Panunto-Castelo, Ademilson; Matthews, Stephen; Roque-Barreira, Maria Cristina

    2015-01-01

    Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.

  17. Toward the development of a one-dose classical swine fever subunit vaccine: antigen titration, immunity onset, and duration of immunity

    Science.gov (United States)

    Madera, Rachel F.; Wang, Lihua; Gong, Wenjie; Burakova, Yulia; Buist, Sterling; Nietfeld, Jerome; Henningson, Jamie; Cino-Ozuna, Ada G.; Tu, Changchun

    2018-01-01

    Highly contagious classical swine fever (CSF) remains a major trade and health problem in the pig industry, resulting in large economic losses worldwide. In CSF-endemic countries, attenuated CSF virus (CSFV) vaccines have been routinely used to control the disease. However, eradication of CSFV in a geographical area would require permanent reduction to zero presence of the virus. It is therefore of paramount importance to develop a safe, potent, and non-infectious CSF vaccine. We have previously reported on a cost-effective CSF E2 subunit vaccine, KNB-E2, which can protect against CSF symptoms in a single dose containing 75 µg of recombinant CSFV glycoprotein E2. In this study, we report on a series of animal studies undertaken to elucidate further the efficacy of KNB-E2. We found that pigs vaccinated with a single KNB-E2 dose containing 25 µg of recombinant CSFV glycoprotein E2 were protected from clinical symptoms of CSF. In addition, KNB-E2-mediated reduction of CSF symptoms was observed at two weeks post-vaccination and the vaccinated pigs continued to exhibit reduced CSF clinical signs when virus challenged at two months and four months post-vaccination. These results suggest that KNB-E2 effectively reduces CSF clinical signs, indicating the potential of this vaccine for safely minimizing CSF-related losses. PMID:29510474

  18. Single-cycle adenovirus vectors in the current vaccine landscape.

    Science.gov (United States)

    Barry, Michael

    2018-02-01

    Traditional inactivated and protein vaccines generate strong antibodies, but struggle to generate T cell responses. Attenuated pathogen vaccines generate both, but risk causing the disease they aim to prevent. Newer gene-based vaccines drive both responses and avoid the risk of infection. While these replication-defective (RD) vaccines work well in small animals, they can be weak in humans because they do not replicate antigen genes like more potent replication-competent (RC) vaccines. RC vaccines generate substantially stronger immune responses, but also risk causing their own infections. To circumvent these problems, we developed single-cycle adenovirus (SC-Ad) vectors that amplify vaccine genes, but that avoid the risk of infection. This review will discuss these vectors and their prospects for use as vaccines. Areas covered: This review provides a background of different types of vaccines. The benefits of gene-based vaccines and their ability to replicate antigen genes are described. Adenovirus vectors are discussed and compared to other vaccine types. Replication-defective, single-cycle, and replication-competent Ad vaccines are compared. Expert commentary: The potential utility of these vaccines are discussed when used against infectious diseases and as cancer vaccines. We propose a move away from replication-defective vaccines towards more robust replication-competent or single-cycle vaccines.

  19. Vaccination evokes gender-dependent protection against tularemia infection in C57BL/6Tac mice.

    Science.gov (United States)

    Sunagar, Raju; Kumar, Sudeep; Franz, Brian J; Gosselin, Edmund J

    2016-06-17

    Francisella tularensis (Ft) is a Category A biothreat agent for which there currently is no FDA-approved vaccine. Thus, there is a substantial effort underway to develop an effective tularemia vaccine. While it is well established that gender can significantly impact susceptibility to primary infection, the impact of gender on vaccine efficacy is not well established. Thus, development of a successful vaccine against tularemia will require an understanding of the impact gender has on vaccine-induced protection against this organism. In this study, a role for gender in vaccine-induced protection following Ft challenge is identified for the first time. In the present study, mucosal vaccination with inactivated Ft (iFt) LVS elicited gender-based protection in C57BL/6Tac mice against respiratory challenge with Ft LVS. Specifically, vaccinated male mice were more susceptible to subsequent Ft LVS challenge. This increased susceptibility in male mice correlated with increased bacterial burden, increased tissue inflammation, and increased proinflammatory cytokine production late in post-challenge infection. In contrast, improved survival of iFt-vaccinated female mice correlated with reduced bacterial burden and enhanced levels of Ft-specific Abs in serum and broncho-alveolar lavage (BAL) fluid post-challenge. Furthermore, vaccination with a live attenuated vaccine consisting of an Ft LVS superoxide dismutase (SodB) mutant, which has proven efficacious against the highly virulent Ft SchuS4 strain, demonstrated similar gender bias in protection post-Ft SchuS4 challenge. Of particular significance is the fact that these are the first studies to demonstrate that gender differences impact disease outcome in the case of lethal respiratory tularemia following mucosal vaccination. In addition, these studies further emphasize the fact that gender differences must be a serious consideration in any future tularemia vaccine development studies. Copyright © 2016 Elsevier Ltd. All

  20. Effect of single-dose x irradiation on the growth curves of a human malignant melanoma transplanted into nude mice

    International Nuclear Information System (INIS)

    Spang-Thomsen, M.; Visfeldt, J.; Nielsen, A.

    1981-01-01

    A human malignant melanoma transplanted into nude mice was exposed to single-dose x irradiation. Experimental growth data described mathematically according to a transformed Gompertz function were used to determine the effect of irradiation on growth delay, growth rate, and tumor shrinkage. The radiation-induced changes in the histology of the tumors were also described. The results showed that irradiation induced a dose-dependent growth delay; this parameter was therefore found suitable for the assessment of relative therapeutic effect. The treatment also induced a dose-dependent reduction in growth rate during regrowth. As a result of this effect on growth rate, extrapolation of tumor shrinkage to the time of treatment became directly misleading as a measure of the effect of the treatment. From this it can be deduced that in therapeutic studies where treatment induces nonparallel posttherapeutic growth curves, growth delay for various tumors and therapies cannot be compared directly. The transformed Gompertz function proved to be extremely well suited for evaluating these conditions

  1. Quadrivalent meningococcal (MenACWY-TT) conjugate vaccine or a fourth dose of H. influenzae-N. meningitidis C/Y conjugate vaccine (HibMenCY-TT) is immunogenic in toddlers who previously received three doses of HibMenCY-TT in infancy.

    Science.gov (United States)

    Leonardi, Michael; Latiolais, Thomas; Sarpong, Kwabena; Simon, Michael; Twiggs, Jerry; Lei, Paul; Rinderknecht, Stephen; Blatter, Mark; Bianco, Veronique; Baine, Yaela; Friedland, Leonard R; Miller, Jacqueline M

    2015-02-11

    Immunogenicity and safety of a single dose of MenACWY-TT or a fourth dose of HibMenCY-TT were evaluated in the second year of life in HibMenCY-TT-primed toddlers. Healthy infants were randomized (5:1) and primed at 2, 4 and 6 months of age with HibMenCY-TT and diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliovirus (DTaP-HBV-IPV) vaccine; or Hib-TT and DTaP-HBV-IPV (control). Recipients of HibMenCY-TT+DTaP-HBV-IPV were re-randomized (2:2:1) to receive MenACWY-TT at 12-15 months and DTaP at 15-18 months; MenACWY-TT co-administered with DTaP at 15-18 months; or HibMenCY-TT at 12-15 months and DTaP at 15-18 months. Controls received DTaP only at 15-18 months due to Hib conjugate vaccine shortage. Serum bactericidal activity using human complement (hSBA) and safety were assessed one month after meningococcal vaccination. After vaccination with MenACWY-TT at 12-15 months or MenACWY-TT+DTaP at 15-18 months, all subjects previously primed for serogroups C/Y had hSBA ≥1:8 for these serogroups. At least 96.1% also had hSBA ≥1:8 for serogroups A/W. All subjects in the HibMenCY-TT group had hSBA ≥1:8 for serogroups C/Y. All pre-defined statistical criteria for meningococcal immunogenicity were satisfied. All vaccination regimens had acceptable safety profiles. Children primed with three doses of HibMenCY-TT who then received a single dose of MenACWY-TT or a fourth dose of HibMenCY-TT had robust increases in hSBA titers for serogroups C/Y. These data provide support that MenACWY-TT, given with or without the fourth scheduled dose of DTaP could be administered as an alternative to a fourth dose of HibMenCY-TT in the second year of life. This study (110870/110871) is registered at www.clinicaltrials.gov NCT00614614. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Absorbed dose to mice in prolonged irradiation by low-dose rate ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, Akihiro [National Inst. of Radiological Sciences, Chiba (Japan); Saitou, Mikio; Kudo, Iwao [and others

    2000-07-01

    In this paper, the dose absorbed by mice was evaluated as a preliminary study of the late effects of prolonged continuous irradiation of mice with low-dose rate ionizing radiation. Eight-week-old male and female SPF C3H/HeN mice in three irradiation rooms were exposed to irradiation at 8000, 400, and 20 mGy, respectively, using a {sup 137}Cs {gamma}-source. Nine racks were arranged in a circle approximately 2.5 m from the source in each room, and 10 cages were arranged on the 4 shelves of each rack. Dose distributions, such as in air at the source level, in the three rooms were estimated by using ionization chambers, and the absorbed dose distributions in the room and relative dose distributions in the cages in relation to the distance of the cage center were examined. The mean abdomen doses of the mice measured by TLD were compared with the absorbed doses in the cages. The absorbed dose distributions showed not only inverse-inverse-square-law behavior with distance from the source, but geometric symmetry in every room. The inherent scattering and absorption in each room are responsible for such behavior and asymmetry. Comparison of relative dose distributions revealed cage positions that are not suitable for experiments with high precision doses, but all positions can be used for prolonged continuous irradiation experiments if the position of the cages is rotated regularly. The mean abdomen doses of the mice were similar in each cage. The mean abdomen doses of the mice and the absorbed doses in a cage were almost the same in all cages. Except for errors concerning the positions of the racks and cages, the uncertainties in the exposure doses were estimated to be about {+-}12% for 8000 mGy group, 17% for 400 mGy group, and 35% for 20 mGy group. (K.H.)

  3. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Science.gov (United States)

    Richardson, Jason S; Yao, Michel K; Tran, Kaylie N; Croyle, Maria A; Strong, James E; Feldmann, Heinz; Kobinger, Gary P

    2009-01-01

    The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP). The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP) and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP). Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the previous generation adenovirus-based Ebola vaccine. Understanding and improving the

  4. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine.

    Directory of Open Access Journals (Sweden)

    Jason S Richardson

    Full Text Available BACKGROUND: The Ebola virus is transmitted by direct contact with bodily fluids of infected individuals, eliciting death rates as high as 90% among infected humans. Currently, replication defective adenovirus-based Ebola vaccine is being studied in a phase I clinical trial. Another Ebola vaccine, based on an attenuated vesicular stomatitis virus has shown efficacy in post-exposure treatment of nonhuman primates to Ebola infection. In this report, we modified the common recombinant adenovirus serotype 5-based Ebola vaccine expressing the wild-type ZEBOV glycoprotein sequence from a CMV promoter (Ad-CMVZGP. The immune response elicited by this improved expression cassette vector (Ad-CAGoptZGP and its ability to afford protection against lethal ZEBOV challenge in mice was compared to the standard Ad-CMVZGP vector. METHODOLOGY/PRINCIPAL FINDINGS: Ad-CMVZGP was previously shown to protect mice, guinea pigs and nonhuman primates from an otherwise lethal challenge of Zaire ebolavirus. The antigenic expression cassette of this vector was improved through codon optimization, inclusion of a consensus Kozak sequence and reconfiguration of a CAG promoter (Ad-CAGoptZGP. Expression of GP from Ad-CAGoptZGP was substantially higher than from Ad-CMVZGP. Ad-CAGoptZGP significantly improved T and B cell responses at doses 10 to 100-fold lower than that needed with Ad-CMVZGP. Additionally, Ad-CAGoptZGP afforded full protections in mice against lethal challenge at a dose 100 times lower than the dose required for Ad-CMVZGP. Finally, Ad-CAGoptZGP induced full protection to mice when given 30 minutes post-challenge. CONCLUSIONS/SIGNIFICANCE: We describe an improved adenovirus-based Ebola vaccine capable of affording post-exposure protection against lethal challenge in mice. The molecular modifications of the new improved vaccine also translated in the induction of significantly enhanced immune responses and complete protection at a dose 100 times lower than with the

  5. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  6. Comparison of 2-Dose and 3-Dose 9-Valent Human Papillomavirus Vaccine Schedules in the United States: A Cost-effectiveness Analysis.

    Science.gov (United States)

    Laprise, Jean-François; Markowitz, Lauri E; Chesson, Harrell W; Drolet, Mélanie; Brisson, Marc

    2016-09-01

    A recent clinical trial using the 9-valent human papillomavirus virus (HPV) vaccine has shown that antibody responses after 2 doses are noninferior to those after 3 doses, suggesting that 2 and 3 doses may have comparable vaccine efficacy. We used an individual-based transmission-dynamic model to compare the population-level effectiveness and cost-effectiveness of 2- and 3-dose schedules of 9-valent HPV vaccine in the United States. Our model predicts that if 2 doses of 9-valent vaccine protect for ≥20 years, the additional benefits of a 3-dose schedule are small as compared to those of 2-dose schedules, and 2-dose schedules are likely much more cost-efficient than 3-dose schedules. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  7. RBE/absorbed dose relationship of d(50)-Be neutrons determined for early intestinal tolerance in mice

    International Nuclear Information System (INIS)

    Gueulette, J.; Wambersie, A.

    1978-01-01

    RBE/absorbed dose relationship of d(50)-Be neutrons (ref.: 60 Co) was determined using intestinal tolerance in mice (LD50) after single and fractionated irradiation. RBE is 1.8 for a single fraction (about 1000 rad 60 Co dose); it increases when decreasing dose and reaches the plateau value of 2.8 for a 60 Co dose of about 200 rad. This RBE value is used for the clinical applications with the cyclotron 'Cyclone' at Louvain-la-Neuve [fr

  8. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Seyyed Mahmoud, E-mail: smebrahimi@shirazu.ac.ir [Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 14155-3651,Tehran (Iran, Islamic Republic of); Research Center of Virus and Vaccine, Baqiyatallah University of Medical Science, P.O.Box 14155-3651, Tehran (Iran, Islamic Republic of); Dabaghian, Mehran [Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, P.O. Box 14155-6453, Tehran (Iran, Islamic Republic of); Tebianian, Majid [Department of Biotechnology, Razi Vaccine and Serum Research Institute (RVSRI), P.O. Box 31975/148, Karaj, Tehran (Iran, Islamic Republic of); Zabeh Jazi, Mohammad Hossein [Department of Pathobiology, University of Tehran, Faculty of Veterinary Medicine, P.O. Box 14155-6453, Tehran (Iran, Islamic Republic of)

    2012-08-15

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.

  9. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    International Nuclear Information System (INIS)

    Ebrahimi, Seyyed Mahmoud; Dabaghian, Mehran; Tebianian, Majid; Zabeh Jazi, Mohammad Hossein

    2012-01-01

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2 (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS–PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0–33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.

  10. Low-dose priming before vaccination with the phase I chloroform-methanol residue vaccine against Q fever enhances humoral and cellular immune responses to Coxiella burnetii.

    Science.gov (United States)

    Waag, David M; England, Marilyn J; Bolt, Christopher R; Williams, Jim C

    2008-10-01

    Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 microg, followed by a booster dose of 30 microg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection.

  11. Single-dose vaccines save livestock and livelihoods in Sub-Saharan ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    South Africa's industry accounts for approximately 49% of agricultural gross domestic product, with an average annual turnover of US$13 billion. Vaccines for healthier livestock Vaccination is a critical tool to help reduce the number of livestock losses to viral infections. This project builds on the Canadian International Food ...

  12. Photodynamic therapy-generated vaccines prevent tumor recurrence after radiotherapy

    International Nuclear Information System (INIS)

    Korbelik, M.; Sun, J.

    2003-01-01

    Photodynamic therapy (PDT), an established clinical modality for a variety of malignant and non-malignant diseases, inflicts photoreactive drug-mediated oxidative stress that prompts the engagement of host inflammatory and immune responses which contribute to the therapy outcome. Recently, it has become evident that in vitro PDT-treated tumor cells or their lysates can be utilized as an effective vaccine against established tumors of the same origin. The mechanism underlying the vaccine action appears to be based on eliciting immune recognition of the tumor and developing an efficient immune response even against poorly immunogenic tumors. This study examined whether PDT-generated vaccines can be effectively combined with radiotherapy. Subcutaneous SCCVII tumors (squamous cell carcinomas) growing in syngeneic C3H/HeN mice were treated by radiotherapy (60 Gy x-ray dose). PDT-vaccine treatment, done by peritumoral injection of in vitro PDT-treated SCCVII cells (20 million/mouse), was performed either immediately after radiotherapy or ten days later. The mice were then observed for tumor regression/recurrence. The tumors treated with radiotherapy alone shrunk and became impalpable for a brief period after which they all recurred. In contrast, vaccination performed at 10 days post radiotherapy delayed tumor recurrence and prevented it in one of six mice. Even better results were obtained with mice vaccinated immediately after radiotherapy, with mice showing not only a delayed tumor recurrence but also no sign of tumor in 50% of mice. The PDT-vaccine treatment without radiotherapy produced in this trial a significant tumor growth retardation but no complete regressions. These results indicate that PDT-generated vaccines can ensure immune rejection of cancer once the lesion size is reduced by radiotherapy. Even without obtaining a systemic immunity for the elimination of disseminated malignant deposits, these findings suggest that PDT-vaccines can improve local control

  13. Non-ablative fractional laser in conjunction with microneedle arrays for improved cutaneous vaccination

    Science.gov (United States)

    Wang, Ji; Li, Bo; Wu, Mei X.

    2015-03-01

    Skin is more potent than the muscle for vaccination, but it is not a common site for immunization to date owing, in part, to a relatively high rate of pains and skin irritation and difficulty of administration. Here, we show effective and lesion free cutaneous vaccination by a combination of a biodegradable microneedle array (MNs) and an FDA-approved nonablative fractional laser (NAFL). Delivering a vaccine into many micropores, instead of a single "big" pore in the skin, effectively segregated vaccine-induced inflammation into many microzones and resulted in quick resolution of the inflammation, provided that distances between any two micropores were far enough. When the inoculation site was treated by NAFL prior to insertion of the MNs comprised of PR8 model influenza vaccine, the mice displayed vigorous antigen-uptake, giving rise to strong, Th1-biased immunity. The mice were protected from a challenge of homologous influenza virus at a high dose as well as heterologous H1N1 and H3N2 viruses. The adjuvant effect of NAFL was ascribed primarily to activation of the dsDNA sensing pathway by dsDNA released from laser-damaged skin cells. Thus, mice deficient in the dsDNA sensing pathway, but not toll like receptor (TLR) or inflammasome pathways, showed poor response to NAFL. Importantly, both mice and swine exhibited strong, protective immunity, but no overt skin reactions with this approach, in sharp contrast to intradermal injections that caused severe, overt skin reactions. The effective lesion-free transcutaneous vaccination merits further clinical studies.

  14. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  15. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  16. Induction of Protective Immune Responses against Schistosomiasis Haematobium in Hamsters and Mice Using Cysteine Peptidase-Based Vaccine

    Directory of Open Access Journals (Sweden)

    Hatem A M Tallima

    2015-03-01

    Full Text Available One of the major lessons we learned from the radiation-attenuated cercariae (RA vaccine studies is that protective immunity against schistosomiasis is dependent on the induction of T helper (Th1/Th2-related immune responses. Since most schistosome larval and adult-worm-derived molecules used for vaccination uniformly induce a polarized Th1 response, it was essential to include a type 2 immune responses-inducing molecule, such as cysteine peptidases, in the vaccine formula. Here we demonstrate that a single subcutaneous injection of Syrian hamsters with 200 microg active papain 1 h before percutaneous exposure to 150 cercariae of Schistosoma haematobium led to highly significant (P 50% in worm burden and worm egg counts in intestine. Immunization of hamsters with 20 microg recombinant glyceraldehyde 3-phosphate dehydrogenase (rSG3PDH and 20 ug 2-cys peroxiredoxin-derived peptide in a multiple antigen peptide construct (PRX MAP together with papain (20 microg/hamster as adjuvant led to considerable (64% protection against challenge S. haematobium infection, similar to the levels reported with irradiated cercariae. Cysteine peptidases-based vaccination was also effective in protecting outbred mice against a percutaneous challenge infection with S. haematobium cercariae. In two experiments, a mixture of Schistosoma mansoni cathepsin B1 (SmCB1 and Fasciola hepatica cathepsin L1 (FhCL1 led to highly significant (P < 0.005 reduction of 70% in challenge S. haematobium worm burden and 60% reduction in liver egg counts. Mice vaccinated with SmCB1/FhCL1/ rSG3PDH mixture and challenged with S. haematobium cercariae three weeks after the second immunization displayed highly significant (P < 0.005 reduction of 72% in challenge worm burden and no eggs in liver of 8-10 mice/group, as compared to unimmunized mice, associated with production of a mixture of type 1 and type 2-related cytokines and antibody responses.

  17. Systematic literature review comparing rapid 3-dose administration of the GSK tick-borne encephalitis vaccine with other primary immunization schedules.

    Science.gov (United States)

    Galgani, Ilaria; Bunge, Eveline M; Hendriks, Lisa; Schludermann, Christopher; Marano, Cinzia; De Moerlooze, Laurence

    2017-09-01

    Tick-borne encephalitis (TBE), which is endemic across large regions of Europe and Asia, is most effectively prevented through vaccination. Three-dose primary TBE vaccination schedules are either rapid (0,7,21-days) or conventional (0,28-84-days, 9-12-months). The second dose can also be administered at 14 days for faster priming and sero-protection). Areas covered: We used a three-step selection process to identify 21 publications comparing the immunogenicity and/or safety of different schedules. Expert commentary: Priming with two or three TBE vaccine doses was highly immunogenic. After conventional priming (0-28 days), 95% adults and ≥95% children had neutralization test (NT) titers ≥10 at 14 days post-dose-2 compared with 92% adults and 99% children at 21 days post-dose-3 (rapid schedule). Most subjects retained NT titers ≥10 at day 300. A single booster dose induced a strong immune response in all subjects irrespective of primary vaccination schedule or elapsed time since priming. GMT peaked at 42 days post-dose-1 (i.e., 21 days post-dose 3 [rapid-schedule], or 14-28 days post-dose-2 [conventional-schedule]), and declined thereafter. Adverse events were generally rare and declined with increasing doses. In the absence of data to recommend one particular schedule, the regimen choice will remain at the physician's discretion, based on patient constraints and availability.

  18. Effects of Mirazid Treatment and Vaccination with Irradiated Cercariae in Experimentally Schistosoma mansoni Infected Mice

    International Nuclear Information System (INIS)

    Fayad, M.E.; Moawad, M.A.; Abd El-Fattah, N.Se.

    2006-01-01

    Schistosomiasis Tops all the endemic parasitic diseases particularly in Egypt. This study was performed on 4 groups of mice, each group formed of 25 mice. Group 1 (control group) infected with Schistosoma mansoni cercariae, group 2 (vaccinated group) vaccinated with irradiated cercariae, group 3 (treated group) infected with living cercariae of Schistosoma mansoni, then treated with Mirazid in the day post infection and group 4 (vaccinated and treated group) vaccinated with irradiated cercariae of Schistosoma mansoni then challenged and treated with Mirazid in the day post infection. By comparing the results of group 4 (vaccinated and treated group) with respective control there was a highly significant difference in all parameters. The worm burden reduction was 100 % and the percentage reduction of the eggs in the liver was 96.6 % and in the intestine was 89.76 %. Also, there were marked reduction in the size and number of granulomas with preservation of the liver architecture and absence of areas of degeneration and necrosis. So, this study shown that resistance to schistosomiasis can be consistently induced in mice by combining drug therapy with vaccination

  19. A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice.

    Directory of Open Access Journals (Sweden)

    Md Abu Sayeed

    Full Text Available Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP component of lipopolysaccharide (LPS.Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc. We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg, vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1, effect of an adjuvant, and route of immunization.Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg. We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model.We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.

  20. Low-Dose Priming before Vaccination with the Phase I Chloroform-Methanol Residue Vaccine against Q Fever Enhances Humoral and Cellular Immune Responses to Coxiella burnetii▿

    Science.gov (United States)

    Waag, David M.; England, Marilyn J.; Bolt, Christopher R.; Williams, Jim C.

    2008-01-01

    Although the phase I Coxiella burnetii cellular vaccine is completely efficacious in humans, adverse local and systemic reactions may develop if immune individuals are inadvertently vaccinated. The phase I chloroform-methanol residue (CMRI) vaccine was developed as a potentially safer alternative. Human volunteers with no evidence of previous exposure to C. burnetii received a subcutaneous vaccination with the CMRI vaccine in phase I studies under protocol IND 3516 to evaluate the safety and immunogenicity of the vaccine. This clinical trial tested escalating doses of the CMRI vaccine, ranging from 0.3 to 60 μg, followed by a booster dose of 30 μg, in a placebo-controlled study. Although priming doses of the CMRI vaccine did not induce a specific antibody detectable by enzyme-linked immunosorbent assay, booster vaccination stimulated the production of significant levels of anti-C. burnetii antibody. Peripheral blood cells (PBCs) of vaccinees responded to C. burnetii cellular antigen in vitro in a vaccine dose-dependent manner. After the booster dose, PBCs were activated by recall antigen in vitro, regardless of the priming dose. These findings suggest that vaccination with the CMRI vaccine can effectively prime the immune system to mount significant anamnestic responses after infection. PMID:18701647

  1. Age-dependent decrease of anti-HBs titers and effect of booster doses using 2 different vaccines in Palestinian children vaccinated in early childhood

    Science.gov (United States)

    Qawasmi, Mohammad; Samuh, Monjed; Glebe, Dieter; Gerlich, Wolfram H; Azzeh, Maysa

    2015-01-01

    Immunization against hepatitis B virus (HBV) has proven to be highly effective and led to significant reduction of new infections worldwide. However, protective immunity measured by anti-HBs titers may decrease to critical levels in the years after basal immunization, particularly in case of exposure to HBV variants different from the vaccine strain. We tested 400 Palestinian children between one and 19 years of age for their anti-HBs titer, challenged the immune memory of those with low or absent anti-HBs with 2 types of hepatitis B vaccines and determined thereafter the anti-HBs titer. At the age of one, 92.2% of the children presented with protective anti-HBs titers (≥10 mIU/ml) with the majority having ≥100 mIU/ml. Protective immunity was still high at ages 2 (87.5%) and 4 (95%), declining by age 5 and 6 (from 69.2% to 66.7%) and down to an average of 39.8% between the ages of 7 and 19. 160 children with a nonprotective or low immune response challenged with either the yeast-derived Engerix-B or the mammalian cell-derived preS1-containing Sci-B-Vac vaccine showed an anamnestic immune response. 92.4% and 85.9% of the children challenged with one dose Sci-B-Vac and Engerix-B presented with anti-HBs titers >100 mIU/ml respectively. Our results reveal that vaccine-induced protective anti-HBs titers against HBV decrease rapidly beyond the age of 6 in Palestinian children, but can be strongly enhanced with a single booster vaccine dose, independent of brand and antigen composition. Our data suggest that a booster vaccine dose against HBV during school years may be useful. PMID:25996579

  2. High-level immunogenicity is achieved vaccine with adjuvanted pandemic H1N1(2009) and improved with booster dosing in a randomized trial of HIV-infected adults.

    Science.gov (United States)

    Cooper, Curtis; Klein, Marina; Walmsley, Sharon; Haase, David; MacKinnon-Cameron, Donna; Marty, Kimberley; Li, Yan; Smith, Bruce; Halperin, Scott; Law, Barb; Scheifele, David

    2012-01-01

    More severe influenza disease and poor vaccine immunogenicity in HIV-infected patients necessitate improved immunization strategies to maximize vaccine efficacy. A phase III, randomized trial was conducted at 4 Canadian sites. Two dosing strategies (standard dose vs standard dose plus booster on day 21) were assessed in HIV patients aged 20 to 59 years during the H1N1(2009) pandemic. A single antigen, inactivated split adjuvanted (AS03(A)) influenza vaccine (Arepanrix) was utilized. Serum hemagglutination inhibition (HAI) titres were assessed at days 21 and 42 and at month 6. 150 participants received at least one injection. Baseline parameters were similar between groups: 83% male, 85% on HAART, median CD4 = 519 cells/mm(3), 84% with HIV RNA < 50 copies/mL. At day 21, seroprotection (HAI ≥1:40) was achieved in 80% (95% CI, 70-89) of participants. Seroconversion occurred in 74% (63-85). Seroprotection and seroconversion were further improved in those randomized to booster dosing: day 42, 94% (85-98) versus 73% (60-83) (P < .01) and 86% (75-93) versus 66% (5-77) (P = .01). Seroprotec-tion was retained in 40% (28-54) of recipients at month 6 with trends toward greater retention of immunity in booster recipients. High-level immunogenicity was achieved with a single dose of this adjuvanted vaccine. Immunogenicity was further improved with booster dosing. Use of this adjuvanted vaccine and booster represent an important approach to increasing immunogenicity in this vaccine hypo-responsive population.

  3. Effective plague vaccination via oral delivery of plant cells expressing F1-V antigens in chloroplasts.

    Science.gov (United States)

    Arlen, Philip A; Singleton, Michael; Adamovicz, Jeffrey J; Ding, Yi; Davoodi-Semiromi, Abdolreza; Daniell, Henry

    2008-08-01

    The chloroplast bioreactor is an alternative to fermentation-based systems for production of vaccine antigens and biopharmaceuticals. We report here expression of the plague F1-V fusion antigen in chloroplasts. Site-specific transgene integration and homoplasmy were confirmed by PCR and Southern blotting. Mature leaves showed the highest level of transgene expression on the third day of continuous illumination, with a maximum level of 14.8% of the total soluble protein. Swiss Webster mice were primed with adjuvant-containing subcutaneous (s.c.) doses of F1-V and then boosted with either adjuvanted s.c. doses (s.c. F1-V mice) or unadjuvanted oral doses (oral F1-V mice). Oral F1-V mice had higher prechallenge serum immunoglobulin G1 (IgG1) titers than s.c. F1-V mice. The corresponding serum levels of antigen-specific IgG2a and IgA were 2 and 3 orders of magnitude lower, respectively. After vaccination, mice were exposed to an inhaled dose of 1.02 x 10(6) CFU of aerosolized Yersinia pestis CO92 (50% lethal dose, 6.8 x 10(4) CFU). All control animals died within 3 days. F1-V given s.c. (with adjuvant) protected 33% of the immunized mice, while 88% of the oral F1-V mice survived aerosolized Y. pestis challenge. A comparison of splenic Y. pestis CFU counts showed that there was a 7- to 10-log reduction in the mean bacterial burden in survivors. Taken together, these data indicate that oral booster doses effectively elicit protective immune responses in vivo. In addition, this is the first report of a plant-derived oral vaccine that protected animals from live Y. pestis challenge, bringing the likelihood of lower-cost vaccines closer to reality.

  4. Booster dose after 10 years is recommended following 17DD-YF primary vaccination.

    Science.gov (United States)

    Campi-Azevedo, Ana Carolina; Costa-Pereira, Christiane; Antonelli, Lis R; Fonseca, Cristina T; Teixeira-Carvalho, Andréa; Villela-Rezende, Gabriela; Santos, Raiany A; Batista, Maurício A; Campos, Fernanda M; Pacheco-Porto, Luiza; Melo Júnior, Otoni A; Hossell, Débora M S H; Coelho-dos-Reis, Jordana G; Peruhype-Magalhães, Vanessa; Costa-Silva, Matheus F; de Oliveira, Jaquelline G; Farias, Roberto H; Noronha, Tatiana G; Lemos, Jandira A; von Doellinger, Vanessa dos R; Simões, Marisol; de Souza, Mirian M; Malaquias, Luiz C; Persi, Harold R; Pereira, Jorge M; Martins, José A; Dornelas-Ribeiro, Marcos; Vinhas, Aline de A; Alves, Tatiane R; Maia, Maria de L; Freire, Marcos da S; Martins, Reinaldo de M; Homma, Akira; Romano, Alessandro P M; Domingues, Carla M; Tauil, Pedro L; Vasconcelos, Pedro F; Rios, Maria; Caldas, Iramaya R; Camacho, Luiz A; Martins-Filho, Olindo Assis

    2016-01-01

    A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α(+) and IFN-γ(+) produced by CD4(+) and CD8(+) T-cells along with increasing levels of IL-10(+)CD4(+)T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8(+) memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.

  5. Active immunizations with peptide-DC vaccines and passive transfer with antibodies protect neutropenic mice against disseminated candidiasis.

    Science.gov (United States)

    Xin, Hong

    2016-01-04

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Active Immunizations with Peptide-DC Vaccines and Passive Transfer with Antibodies Protect Neutropenic Mice against Disseminated Candidiasis

    Science.gov (United States)

    Xin, Hong

    2015-01-01

    We previously report that peptide-pulsed dendritic cell (DC) vaccination, which targeting two peptides (Fba and Met6) expressed on the cell surface of Candida albicans, can induce high degree of protection against disseminated candidiasis in immunocompetent mice. Passive transfer of immune sera from the peptide immunized mice or peptide-related monoclonal antibodies demonstrated that protection was medicated by peptide-specific antibodies. In this study the efficacy of active and passive immunization against disseminated candidiasis was tested in mice with cyclophosphamide-induced neutropenia. Peptide-DC vaccines were given to mice prior to induction of neutropenia. We show active immunization with either Fba or Met6 peptide-DC vaccine significantly improved the survival and reduced the fungal burden of disseminated candidiasis in those immunocompromised mice. Importantly, we show that administration of two protective monoclonal antibodies also protect neutropenic mice against the disease, implying possibility of developing a successful passive immunotherapy strategy to treat the disease and protect against disseminated candidiasis. The results of this study are crucial as they address the fundamental questions as to whether the synthetic peptide vaccine induced immunity protects the host during a neutropenic episode. We anticipate that this peptide-vaccine study will serve as the foundation of future investigations into new peptide vaccines comprised of cell surface peptides from other medically important Candida species, as well as other fungi. PMID:26620842

  7. Economic evaluation of vaccination programme of mumps vaccine to the birth cohort in Japan.

    Science.gov (United States)

    Hoshi, Shu-ling; Kondo, Masahide; Okubo, Ichiro

    2014-07-16

    The most common preventative measure against mumps is vaccination with mumps vaccine. In most parts of the world, mumps vaccine is routinely delivered through live attenuated Measles-Mumps-Rubella (MMR) vaccine. In Japan, receiving mumps vaccine is voluntary and vaccine uptake rate is less than 30%. The introduction of mumps vaccine into routine vaccination schedule has become one of the current topics in health policy and has raised the need to evaluate efficient ways in protecting children from mumps-related diseases in Japan. We conducted a cost-effectiveness analysis with Markov model and calculated incremental cost effectiveness ratios (ICERs) of 11 different programmes; a single-dose programme at 12-16 months and 10 two-dose programmes with second dose uptakes at ages 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11. Our base-case analyse set the cost per shot at ¥6951 (US$72; 1US$=96.8). Results show that single-dose programme dominates status quo. On the other hand, ICERs of all 10 two-dose programmes are under ¥6,300,000 (US$65,082) per QALY from payer's perspective while it ranged from cost-saving to <¥7,000,000 (US$72,314) per QALY from societal perspective. By adopting WHO's classification that an intervention is cost-effective if ICER (in QALY) is between one and three times of GDP as a criterion, either of the vaccination programme is concluded as cost-effective from payer's or societal perspectives. Likewise, to uptake second dose at 3-5 years old is more favourable than an uptake at any other age because of lower incremental cost-effectiveness ratios. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice.

    Directory of Open Access Journals (Sweden)

    Tracy S P Heng

    Full Text Available Recent evidence suggests that the decline in resistance to viral infections with age occurs predominantly as a result of a gradual loss of naïve antigen-specific T cells. As such, restoration of the naïve T cell repertoire to levels seen in young healthy adults may improve defence against infection in the aged. We have previously shown that sex steroid ablation (SSA rejuvenates the ageing thymus and increases thymic export of naïve T cells, but it remains unclear whether T cell responses are improved. Using mouse models of clinically relevant diseases, we now demonstrate that SSA increases the number of naïve T cells able to respond to antigen, thereby enhancing effector responses in aged mice. Specifically, aged mice exhibit a delay in clearing influenza A virus, which correlates with diminished specific cytotoxic activity. This is due to a decreased magnitude of response and not an intrinsic defect in effector T cell function. Upon SSA, aged mice exhibit increased T cell responsiveness that restores efficient viral clearance. We further demonstrate that SSA decreases the incidence of an inducible tumour in aged mice and can potentially increase their responsiveness to a low-dose human papillomavirus vaccine in clearing pre-formed tumours. As thymectomy abrogates the increase in T cell numbers and responsiveness following SSA, we propose that the T cell effects of SSA are dependent on thymic reactivation and subsequent replenishment of the peripheral T cell pool with newly emigrated naïve T cells. These findings have important implications for strategies to improve protection from infection and responsiveness to vaccination in the aged.

  10. Primary and booster vaccination with DTPw-HB/Hib pentavalent vaccine in Costa Rican children who had received a birth dose of hepatitis B vaccine

    Directory of Open Access Journals (Sweden)

    Idis Faingezicht

    2002-10-01

    Full Text Available Objective. The DTPw-HB/Hib pentavalent combination vaccine has been developed following recommendations of the World Health Organization for the introduction of hepatitis B (HB and Haemophilus influenzae type b (Hib vaccines into routine childhood vaccination programs. The objectives of this study were to: 1 analyze the immunogenicity and the reactogenicity of the DTPw-HB/Hib pentavalent combination vaccine in comparison to separate injections of DTPw-HB and Hib vaccines as primary vaccination in a group of children who had received a dose of HB vaccine at birth and 2 in the second year of life to assess the antibody persistence as well as the response to a DTPw-HB/Hib or DTPw/Hib booster. Methods. In the first part of the study (primary-vaccination stage, conducted in 1998-1999, we analyzed the immunogenicity and reactogenicity of the DTPw-HB/Hib combination vaccine in comparison to separate injections of DTPw-HB and Hib vaccines as primary vaccination at 2, 4, and 6 months of age in 207 Costa Rican children who had received a dose of HB vaccine at birth. Later, in the booster-vaccination stage of the study, in 1999-2000, in a subset of the children (69 toddlers, now 15-18 months old, antibody persistence was measured, and response to a DTPw-HB/Hib or DTPw/Hib booster was also assessed. Results. In both primary-vaccination groups, at least 97.5% of the infants reached protective levels of antibodies (seropositivity against the antigens employed in the vaccines. The DTPw-HB/Hib pentavalent combination vaccine did not result in more local reactions than did the DTPw-HB vaccine alone, and, in terms of general reactions, there was no clinically significant difference between the combination or separate injections, and with the pentavalent vaccine having the benefit of needing one less injection. Nine months after the third dose of the primary-vaccination course, antibody persistence was similar in both groups, with over 93% of children still having

  11. Reduced lung lesions in pigs challenged 25 weeks after the administration of a single dose of Mycoplasma hyopneumoniae vaccine at approximately 1 week of age.

    Science.gov (United States)

    Reynolds, S C; St Aubin, L B; Sabbadini, L G; Kula, J; Vogelaar, J; Runnels, P; Peters, A R

    2009-09-01

    Two independent studies assessed the duration of immunity of an inactivated adjuvanted Mycoplasma hyopneumoniae vaccine against mycoplasmal pneumonia in seronegative (study A, n=52) and seropositive (study B, n=52) pigs. The pigs were allocated randomly to treatment and were then injected with a single dose of either the vaccine or a placebo at approximately 1 week of age. Twenty-five weeks after treatment administration, the pigs were challenged with a virulent strain (LI 36, Strain 232) of M. hyopneumoniae and the extent of lung lesions consistent with mycoplasmal pneumonia was assessed 4 weeks later. In study A, the geometric mean lung lesion score (expressed as least squares mean percentages of lung lesions) was significantly (P=0.0001) lower in vaccinated (0.3%, n=20) than in control pigs (5.9%, n=24) seronegative to M. hyopneumoniae at enrolment; similarly, in study B, the extent of lung lesions was significantly reduced (P=0.0385) in seropositive vaccinated pigs (2.0%, n=22) compared to controls (4.5%, n=26). At the end of the investigation period, 4 weeks after challenge, mean antibody sample-to-positive (S/P) ratios were significantly higher both in seronegative (P=0.0012) and seropositive (P=0.0001) vaccinated pigs (mean values=0.77 and 0.81, respectively) than in controls (mean values=0.51 and 0.38, respectively).

  12. WHO position on the use of fractional doses - June 2017, addendum to vaccines and vaccination against yellow fever WHO: Position paper - June 2013.

    Science.gov (United States)

    World Health Organization

    2017-10-13

    This article presents the World Health Organization's (WHO) recommendations on the use of fractional doses of yellow fever vaccines excerpted from the "Yellow fever vaccine: WHO position on the use of fractional doses - June 2017, Addendum to Vaccines and vaccination against yellow fever WHO: Position Paper - June 2013″, published in the Weekly Epidemiological Record [1,2]. This addendum to the 2013 position paper pertains specifically to use of fractional dose YF (fYF) vaccination (fractional dose yellow fever vaccination refers to administration of a reduced volume of vaccine dose, which has been reconstituted as usual per manufacturer recommendations) in the context of YF vaccine supply shortages beyond the capacity of the global stockpile. The current WHO position on the use of yellow fever (YF) vaccine is set out in the 2013 WHO position paper on vaccines and vaccination against YF and those recommendations are unchanged. Footnotes to this paper provide a number of core references including references to grading tables that assess the quality of the scientific evidence, and to the evidence-to-recommendation table. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. Recommendations on the use of Yellow Fever vaccines were discussed by SAGE in October 2016; evidence presented at these meetings can be accessed at: www.who.int/immunization/sage/meetings/2016/October/presentations_background_docs/en/. Copyright © 2017. Published by Elsevier Ltd.

  13. Allergenicity, immunogenicity and dose-relationship of three intact allergen vaccines and four allergoid vaccines for subcutaneous grass pollen immunotherapy.

    Science.gov (United States)

    Henmar, H; Lund, G; Lund, L; Petersen, A; Würtzen, P A

    2008-09-01

    Different vaccines containing intact allergens or chemically modified allergoids as active ingredients are commercially available for specific immunotherapy. Allergoids are claimed to have decreased allergenicity without loss of immunogenicity and this is stated to allow administration of high allergoid doses. We compared the allergenicity and immunogenicity of four commercially available chemically modified grass pollen allergoid products with three commercially available intact grass pollen allergen vaccines. The allergenicity was investigated with immunoglobulin (Ig)E-inhibition and basophil activation assays. Human T cell proliferation and specific IgG-titres following mouse immunizations were used to address immunogenicity. Furthermore, intact allergen vaccines with different contents of active ingredients were selected to study the influence of the allergen dose. In general, a lower allergenicity for allergen vaccines was clearly linked to a reduced immunogenicity. Compared with the vaccine with the highest amount of intact allergen, the allergoids caused reduced basophil activation as well as diminished immunogenicity demonstrated by reduced T cell activation and/or reduced induction of murine grass-specific IgG antibodies. Interestingly, intact allergen vaccines with lower content of active ingredient exhibited similarly reduced allergenicity, while immunogenicity was still higher or equal to that of allergoids. The low allergenicity observed for some allergoids was inherently linked to a significantly lower immunogenic response questioning the rationale behind the chemical modification into allergoids. In addition, the linkage between allergenicity, immunogenicity and dose found for intact allergen vaccines and the immunogen as well as allergenic immune responses observed for allergoids suggest that the modified allergen vaccines do not contain high doses of immunologically active ingredients.

  14. Vaccine potential of recombinant cathepsinL1G against Fasciola gigantica in mice.

    Science.gov (United States)

    Changklungmoa, Narin; Phoinok, Natthacha; Yencham, Chonthicha; Sobhon, Prasert; Kueakhai, Pornanan

    2016-08-15

    In this study, we characterized and investigated the vaccine potential of FgCatL1G against Fasciola gigantica infection in mice. Recombinant mature FgCatL1G (rmFgCatL1G) was expressed in Escherichia coli BL21. The vaccination was performed in Imprinting Control Region (ICR) mice (n=10) by subcutaneous injection with 50μg of rmFgCatL1G combined with Freund's adjuvant. Two weeks after the second boost, mice were infected with 15 metacercariae by the oral route. The percents of protection of rmFgCatL1G vaccine were estimated to be 56.5% and 58.3% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. Antibodies in the immune sera of vaccinated mice were shown by immunoblot to react with the native FgCatL1s in the extract of all stages of parasites and rmFgCatL1H, recombinant pro - FgCatL1 (rpFgCatL1). By immunohistochemistry, the immune sera also reacted with FgCatL1s in the caecal epithelial cells of the parasites. The levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, were also increased with IgG1 predominating. The levels of serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in rmFgCatL1G-immunized group showed no significant difference from the control groups, but pathological lesions of livers in rmFgCatL1G-immunized group showed significant decrease when compared to the control groups. This study indicates that rmFgCatL1G has a vaccine potential against F. gigantica in mice, and this potential will be tested in larger livestock animals. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  16. Factors influencing completion of multi-dose vaccine schedules in adolescents: a systematic review

    Directory of Open Access Journals (Sweden)

    K. E. Gallagher

    2016-02-01

    Full Text Available Abstract Background Completion of multiple dose vaccine schedules is crucial to ensure a protective immune response, and maximise vaccine cost-effectiveness. While barriers and facilitators to vaccine uptake have recently been reviewed, there is no comprehensive review of factors influencing subsequent adherence or completion, which is key to achieving vaccine effectiveness. This study identifies and summarises the literature on factors affecting completion of multi-dose vaccine schedules by adolescents. Methods Ten online databases and four websites were searched (February 2014. Studies with analysis of factors predicting completion of multi-dose vaccines were included. Study participants within 9–19 years of age were included in the review. The defined outcome was completion of the vaccine series within 1 year among those who received the first dose. Results Overall, 6159 abstracts were screened, and 502 full texts were reviewed. Sixty one studies were eligible for this review. All except two were set in high-income countries. Included studies evaluated human papillomavirus vaccine, hepatitis A, hepatitis B, and varicella vaccines. Reported vaccine completion rates, among those who initiated vaccination, ranged from 27 % to over 90 %. Minority racial or ethnic groups and inadequate health insurance coverage were risk factors for low completion, irrespective of initiation rates. Parental healthcare seeking behaviour was positively associated with completion. Vaccine delivery in schools was associated with higher completion than delivery in the community or health facilities. Gender, prior healthcare use and socio-economic status rarely remained significant risks or protective factors in multivariate analysis. Conclusions Almost all studies investigating factors affecting completion have been carried out in developed countries and investigate a limited range of variables. Increased understanding of barriers to completion in adolescents will

  17. Tissue distribution and elimination of BDE 47 in mice following a single oral dose

    Energy Technology Data Exchange (ETDEWEB)

    Staskal, D. [Curriculum in Toxicology, Chapel Hill, NC (United States); Diliberto, J.; DeVito, M.; Birnbaum, L. [US EPA, ORD, NHEERL, ETD, RTP (United States)

    2004-09-15

    2,2',4,4'-Tetrabromodiphenyl ether (BDE 47) is a polybrominated diphenyl ether (PBDE) congener which is part of a class of brominated flame retardants (BFRs) commonly used in a variety of highly flammable consumer goods. Concern for the effects of PBDEs has increased significantly in recent years as their presence has been detected in environmental samples and in human tissues at steadily increasing concentrations. Despite its small contribution to the PBDE global production and usage, BDE 47 is the major congener found in environmental samples and human tissue. Limited toxicology studies suggest that BDE 47 is a developmental neurotoxicant and an endocrine disruptor however, several data gaps exist and must be investigated in order to evaluate the human health risk of BDE 47. This study investigated basic toxicokinetic properties of BDE 47 in female C57BL/6J mice. Here we report the effect of time on the absorption, distribution, and excretion following a single, oral dose of 14C-labeled BDE 47. Animals were administered 1.0mg BDE 47/kg bw, a dose chosen based on previous studies. Distribution and elimination were monitored at several time points ranging from 1 hour to 21 days following exposure. Data from these basic toxicokinetic studies will be applied to studies investigating the toxicokinetics of BDE 47 in a developmental model as well as in the development of a physiologically-based pharmacokinetic (PBPK) model.

  18. Glassy-state stabilization of a dominant negative inhibitor anthrax vaccine containing aluminum hydroxide and glycopyranoside lipid A adjuvants.

    Science.gov (United States)

    Hassett, Kimberly J; Vance, David J; Jain, Nishant K; Sahni, Neha; Rabia, Lilia A; Cousins, Megan C; Joshi, Sangeeta; Volkin, David B; Middaugh, C Russell; Mantis, Nicholas J; Carpenter, John F; Randolph, Theodore W

    2015-02-01

    During transport and storage, vaccines may be exposed to temperatures outside of the range recommended for storage, potentially causing efficacy losses. To better understand and prevent such losses, dominant negative inhibitor (DNI), a recombinant protein antigen for a candidate vaccine against anthrax, was formulated as a liquid and as a glassy lyophilized powder with the adjuvants aluminum hydroxide and glycopyranoside lipid A (GLA). Freeze-thawing of the liquid vaccine caused the adjuvants to aggregate and decreased its immunogenicity in mice. Immunogenicity of liquid vaccines also decreased when stored at 40°C for 8 weeks, as measured by decreases in neutralizing antibody titers in vaccinated mice. Concomitant with efficacy losses at elevated temperatures, changes in DNI structure were detected by fluorescence spectroscopy and increased deamidation was observed by capillary isoelectric focusing (cIEF) after only 1 week of storage of the liquid formulation at 40°C. In contrast, upon lyophilization, no additional deamidation after 4 weeks at 40°C and no detectable changes in DNI structure or reduction in immunogenicity after 16 weeks at 40°C were observed. Vaccines containing aluminum hydroxide and GLA elicited higher immune responses than vaccines adjuvanted with only aluminum hydroxide, with more mice responding to a single dose. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Randomized Trial of 2 Versus 1 Dose of Measles Vaccine

    DEFF Research Database (Denmark)

    Brønd, Marie; Martins, Cesario L; Byberg, Stine

    2018-01-01

    Background: Two doses of measles vaccine (MV) might reduce the nonmeasles mortality rate more than 1 dose of MV does. The effect of 2 versus 1 dose on morbidity has not been examined. Within a randomized trial of the effect of 2 doses versus 1 dose of MV on mortality in Guinea-Bissau, we investig...

  20. Evaluation of Protection against Schistosoma mansoni Infection in Mice Vaccinated with Irradiated Cercariae

    International Nuclear Information System (INIS)

    Amin, M.M.

    2009-01-01

    The Present study was designed to evaluate the biological changes in mice vaccinated with irradiated Schistosoma mansoni cercariae (40 krad) in comparison with infected non-vaccinated group. The degree of resistance was assessed by parasitological, biochemical, immunological, histopathological as well as scanning electron microscopy studies. The results of the present study revealed a significant reduction in worm burden and ova count in both liver and intestine of the immunized group. In addition, a moderate amelioration was recorded in the liver functions; gamma glutamyltransferase (gamma-GT), alkaline phosphatase (ALP), alanine and aspartate transaminase (ALT and AST). Assessment of tissue nuclear factor-a (TNF-a) and Interleukin -10 (IL-IO) in sera of the experimental groups showed significant protection changes. Histopathological examination of vaccinated mice livers showed protection against parasite maturation and liver damage after challenged as compared to mice infected only without vaccination. Also, scanning electron microscopy of whole worm revealed severe degree of surface tegumental disruption and intensive stunted of the worms as well as loss of the dorsal tegumental spines, On the other hand, there were severe deformations in both the anterior and ventral suckers as a result of the immunization

  1. Serological response of pigs to a standard and increased dose of foot-and-mouth disease vaccine

    International Nuclear Information System (INIS)

    Sims, L.D.; Dyrting, K.C.; Wong, K.W.

    2000-01-01

    Two randomly allocated age-matched groups of 17 conventionally reared pigs derived from vaccinated sows were vaccinated at 10 and 14 weeks of age with a commercially available foot-and-mouth disease vaccine, using either a 1 mL dose or a 3 mL dose. A control group of four pigs was left unvaccinated. Pigs were monitored at regular intervals from birth to 26 weeks of age for antibodies to FMD Type O virus using a liquid phase blocking ELISA. At 12 weeks post vaccination, significantly more pigs vaccinated twice with 3 mL of vaccine had developed antibodies against Type O foot-and-mouth disease virus (at an ELISA titre of 90 or greater) than those vaccinated twice with 1 mL of vaccine (chi-squared test, p = 0.006). Overall, the response to vaccination was poor in both groups of pigs. Four weeks after the first dose of vaccine only four pigs had detectable antibody against the virus. Twelve weeks after the second dose of vaccine only 60% of pigs given the 3 mL dose and 15% of pigs given the 1 mL dose had ELISA titres of 90 or greater. Maternal antibody is considered to have played a role in this poor response, as it was present in 27 of the 34 vaccinated pigs at the time of first vaccination. Two pigs in the unvaccinated control group developed a low level antibody response (antibody titre <90). Infection with field virus was considered a highly unlikely cause of this. These results show, that under field conditions using a widely adopted protocol not all pigs vaccinated develop antibody to foot-and-mouth disease. This, in part, may explain why vaccination programmes against this disease in Hong Kong seem to have a limited impact. The results also suggest, that an increased dose of vaccine has a positive effect on the humoral immune response against FMD virus and may improve protection against this disease. Timing of vaccination needs to be re-evaluated to reduce the impact of maternally derived antibodies. (author)

  2. Intradermal Administration of Fractional Doses of Inactivated Poliovirus Vaccine: A Dose-Sparing Option for Polio Immunization.

    Science.gov (United States)

    Okayasu, Hiromasa; Sein, Carolyn; Chang Blanc, Diana; Gonzalez, Alejandro Ramirez; Zehrung, Darin; Jarrahian, Courtney; Macklin, Grace; Sutter, Roland W

    2017-07-01

    A fractional dose of inactivated poliovirus vaccine (fIPV) administered by the intradermal route delivers one fifth of the full vaccine dose administered by the intramuscular route and offers a potential dose-sparing strategy to stretch the limited global IPV supply while further improving population immunity. Multiple studies have assessed immunogenicity of intradermal fIPV compared with the full intramuscular dose and demonstrated encouraging results. Novel intradermal devices, including intradermal adapters and disposable-syringe jet injectors, have also been developed and evaluated as alternatives to traditional Bacillus Calmette-Guérin needles and syringes for the administration of fIPV. Initial experience in India, Pakistan, and Sri Lanka suggests that it is operationally feasible to implement fIPV vaccination on a large scale. Given the available scientific data and operational feasibility shown in early-adopter countries, countries are encouraged to consider introducing a fIPV strategy into their routine immunization and supplementary immunization activities. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  3. Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine.

    Science.gov (United States)

    Lai, Zengzu; Schreiber, John R

    2011-05-01

    Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.

  4. Response to booster doses of hepatitis B vaccine among young adults who had received neonatal vaccination.

    Directory of Open Access Journals (Sweden)

    Paul K S Chan

    Full Text Available Newborns who have received hepatitis B immunization in 1980s are now young adults joining healthcare disciplines. The need for booster, pre- and post-booster checks becomes a practical question.The aim of this study is to refine the HBV vaccination policy for newly admitted students in the future.A prospective study on medical and nursing school entrants to evaluate hepatitis B serostatus and the response to booster doses among young adults.Among 212 students, 17-23-year-old, born after adoption of neonatal immunization, 2 (0.9% were HBsAg positive, 40 (18.9% were anti-HBs positive. At 1 month after a single-dose booster for anti-HBs-negative students, 14.5% had anti-HBs 100 mIU/mL, respectively. The anti-HBs levels were significantly higher for females than males (mean [SD]: 431 [418] vs. 246 [339] mIU/mL, P = 0.047. At 2-4 month after the third booster dose, 97.1% had anti-HBs >100 mIU/mL and 2.9% had 10-100 mIU/mL.Pre-booster check is still worthwhile to identify carriers among newly recruited healthcare workers born after adoption of neonatal immunization. A 3-dose booster, rather than a single dose, is required for the majority to achieve an anti-HBs level >100 mIU/mL, as memory immunity has declined in a substantial proportion of individuals. Cost-effectiveness of post-booster check for anti-HBs is low and should be further evaluated based on contextual specific utilization of results.

  5. Effectiveness of Brucella abortus Strain 19 single calfhood vaccination in elk (Cervus elaphus)

    Science.gov (United States)

    Roffe, Thomas J.; Jones, Lee C.; Coffin, Kenneth; Sweeney, Steven J.; Williams, Beth; Quist, Charlotte

    2002-01-01

    Brucellosis in Greater Yellowstone Area (GYA) bison and elk has been a source of controversy and focus of the Greater Yellowstone Interagency Brucellosis Committee (GYIBC) for years. Brucellosis has been eradicated from cattle in the 3 states of Wyoming, Montana, and Idaho and all three states currently are classified as “brucellosis free” with regard to livestock. Yet free-ranging elk that attend feedgrounds in the GYA, and bison in Yellowstone and Grand Teton National Parks, still have high seroprevalence to the disease and are viewed as a threat to the state-federal cooperative national brucellosis eradication program. Recently, cattle in eastern Idaho were found infected with brucellosis and transmission was apparently from fed elk. The GYIBC, formed of state and federal agencies involved in wildlife and livestock management in the 3 states, has committed to eventual elimination of the disease from wildlife. Management tools to control or eliminate the disease are limited; however, wildlife vaccination is one of the methods currently employed. Effective wildlife vaccination depends on dose efficacy, deliverability, and safety to non-targeted species. We commenced a single-dose efficacy study of vaccine Brucella abortus strain 19 (S19) in elk in 1999.

  6. Ameliorative effects of low dose/low dose-rate irradiation on reactive oxygen species-related diseases model mice

    International Nuclear Information System (INIS)

    Nomura, Takaharu

    2008-01-01

    Living organisms have developed complex biological system which protects themselves against environmental radiation, and irradiation with proper dose, dose-rate and irradiation time can stimulate their biological responses against oxidative stress evoked by the irradiation. Because reactive oxygen species are involved in various human diseases, non-toxic low dose/low dose-rate radiation can be utilized for the amelioration of such diseases. In this study, we used mouse experimental models for fatty liver, nephritis, diabetes, and ageing to elucidate the ameliorative effect of low dose/low dose-rate radiation in relation to endogenous antioxidant activity. Single irradiation at 0.5 Gy ameliorates carbon tetrachloride-induced fatty liver. The irradiation increases hepatic anti-oxidative system involving glutathione and glutathione peroxidase, suggesting that endogenous radical scavenger is essential for the ameliorative effect of low dose radiation on carbon tetrachloride-induced fatty liver. Single irradiation at 0.5 Gy ameliorates ferric nitrilotriacetate-induced nephritis. The irradiation increases catalase and decreases superoxide dismutase in kidney. The result suggests that low dose radiation reduced generation of hydroxide radical generation by reducing cellular hydroperoxide level. Single irradiation at 0.5 Gy at 12 week of age ameliorates incidence of type I diabetes in non-obese diabetic (NOD) mice through the suppression of inflammatory activity of splenocytes, and resultant apoptosis of β-cells in pancreas. The irradiation activities of superoxide dismutase and catalase, which coordinately diminish intracellular reactive oxygen species. Continuous irradiation at 0.70 mGy/hr from 10 week of age elongates life span, and suppresses alopecia in type II diabetesmice. The irradiation improved glucose clearance without affecting insulin-resistance, and increased pancreatic catalase activity. The results suggest that continuous low dose-rate irradiation protect

  7. Influence of vaccination with Bordetella pertussis cells on haemopoiesis in sublethally irradiated mice and their radiation lethality

    International Nuclear Information System (INIS)

    Kwiek, S.; Bitny-Szlachto, S.

    1978-01-01

    Post-irradiation lethality of CFW mice has turned out to be enhanced by vaccination with Bordetella pertussis cells 10 min., 48 hrs. prior or 48 hrs. after the exposure to X-rays. The sensitization factor was found to be 1.23, as it revealed by decrease of radiation LD 50 . Granulopoiesis and erythropoiesis proved to be stimulated by vaccination, in mice irradiated with 200 or 400 R but not in those after 600 R. Direct radiosensitivity of CFU was not altered by vaccination, but the subsequent loss of bone marrow stem cells was enhanced in vaccinated mice. On the other hand, endocolonization of spleens with bone marrow stem cells has turned out to be highly enhanced by the vaccine, resulting in confluent growth of colonies. This effect of the vaccine was not abolished by hydroxyurea given 15 min. or 1 hr. after vaccination. Enhanced post-irradiation lethality is considered to result from fall of the bone marrow stem cell pool below the level indispensable to ensure the post-irradiation recovery of the haemopoietic system. (author)

  8. Budget constraint and vaccine dosing: A mathematical modelling exercise

    NARCIS (Netherlands)

    Standaert, Baudouin A.; Curran, Desmond; Postma, Maarten J.

    2014-01-01

    Background: Increasing the number of vaccine doses may potentially improve overall efficacy. Decision-makers need information about choosing the most efficient dose schedule to maximise the total health gain of a population when operating under a constrained budget. The objective of this study is to

  9. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Matthias Tenbusch

    Full Text Available BACKGROUND: Targeting antigens encoded by DNA vaccines to dendritic cells (DCs in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE: The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.

  10. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Directory of Open Access Journals (Sweden)

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  11. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Science.gov (United States)

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  12. Lack of effect of a booster dose of influenza vaccine in hemodialysis patients.

    Science.gov (United States)

    Tanzi, Elisabetta; Amendola, Antonella; Pariani, Elena; Zappa, Alessandra; Colzani, Daniela; Logias, Franco; Perego, Angelo; Zanetti, Alessandro R

    2007-08-01

    To assess whether the administration of a booster dose of influenza vaccine may enhance immune response in hemodialysis patients, 58 subjects were given two doses of the 2003/2004 season influenza vaccine, 1 month apart. "European Agency for the Evaluation of Medicinal Products" (EMEA) criteria were fully met in terms of percentage of response and of mean-fold increase of hemagglutination inhibiting (HI) antibody titer, but not in terms of seroprotection rates (HI antibody titers > or =1:40). The second vaccine administration did not result in additional increase in seroprotection rate or in geometric mean titers. Protective immune response against the epidemic A/H3N2 Fujian-like strain, antigenically distant from that included in the vaccine (A/Panama/2007/99) was observed in 94.7% of vaccinees protected against the A/H3N2 vaccine strain 1 month after immunization. No adverse reactions were reported during follow-up. The study findings suggest that immune response to influenza vaccination may be suboptimal in hemodialysis patients and that the administration of an additional second dose of vaccine does not improve the humoral response.

  13. Dose rate effectiveness in radiation-induced teratogenesis in mice

    International Nuclear Information System (INIS)

    Kato, F.; Ootsuyama, A.; Norimura, T.

    2000-01-01

    To investigate the role of p53 gene in tissue repair of teratogenic injury, we compared incidence of radiation-induced malformations in homozygous p53(-/-) mice, heterozygous p53(+/-) mice and wild-type p53(+/+) mice. After X-irradiation with 2 Gy at high dose rate on 9.5 days of gestation, p53(-/-) mice showed higher incidences of anomalies and higher resistance to prenatal deaths than p53(+/+) mice. This reciprocal relationship of radiosensitivity to anomalies and deaths supports the notion that embryos or fetuses have a p53-dependent 'guardian' that aborts cells bearing radiation-induced teratogenic DNA damage. In fact, after X-irradiation, the number of apoptotic cells was greatly increased in p53(+/+) fetuses but not in p53(-/-) fetuses. The same dose of γ-ray exposure at low dose rate on 9.5-10.5 day of gestation produced significant reduction of radiation-induced malformation in p53(+/+) and p53(+/-) mice, remained teratogenic for p53(-/-) mice. These results suggest that complete elimination of teratogenic damage from irradiated tissues requires the concerted cooperation of two mechanisms; proficient DNA repair and the p53-dependent apoptotic tissue repair. When concerted DNA repair and apoptosis functions efficiently, there is a threshold dose-rate for radiation-induced malformations. (author)

  14. Vaccine-mediated immune responses to experimental pulmonary Cryptococcus gattii infection in mice.

    Directory of Open Access Journals (Sweden)

    Ashok K Chaturvedi

    Full Text Available Cryptococcus gattii is a fungal pathogen that can cause life-threatening respiratory and disseminated infections in immune-competent and immune-suppressed individuals. Currently, there are no standardized vaccines against cryptococcosis in humans, underlying an urgent need for effective therapies and/or vaccines. In this study, we evaluated the efficacy of intranasal immunization with C. gattii cell wall associated (CW and/or cytoplasmic (CP protein preparations to induce protection against experimental pulmonary C. gattii infection in mice. BALB/c mice immunized with C. gattii CW and/or CP protein preparations exhibited a significant reduction in pulmonary fungal burden and prolonged survival following pulmonary challenge with C. gattii. Protection was associated with significantly increased pro-inflammatory and Th1-type cytokine recall responses, in vitro and increased C. gattii-specific antibody production in immunized mice challenged with C. gattii. A number of immunodominant proteins were identified following immunoblot analysis of C. gattii CW and CP protein preparations using sera from immunized mice. Immunization with a combined CW and CP protein preparation resulted in an early increase in pulmonary T cell infiltrates following challenge with C. gattii. Overall, our studies show that C. gattii CW and CP protein preparations contain antigens that may be included in a subunit vaccine to induce prolonged protection against pulmonary C. gattii infection.

  15. Long-term protective immunity from an influenza virus-like particle vaccine administered with a microneedle patch.

    Science.gov (United States)

    Quan, Fu-Shi; Kim, Yeu-Chun; Song, Jae-Min; Hwang, Hye Suk; Compans, Richard W; Prausnitz, Mark R; Kang, Sang-Moo

    2013-09-01

    Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.

  16. Dosing-time contributes to chronotoxicity of clofarabine in mice via means other than pharmacokinetics

    Directory of Open Access Journals (Sweden)

    Jia-Jie Luan

    2016-05-01

    Full Text Available To evaluate the time- and dose-dependent toxicity of clofarabine in mice and to further define the chronotherapy strategy of it in leukemia, we compared the mortality rates, LD50s, biochemical parameters, histological changes and organ indexes of mice treated with clofarabine at various doses and time points. Plasma clofarabine levels and pharmacokinetic parameters were monitored continuously for up to 8 hours after the single intravenous administration of 20 mg/kg at 12:00 noon and 12:00 midnight by high performance liquid chromatography (HPLC-UV method. Clofarabine toxicity in all groups fluctuated in accordance with circadian rhythms in vivo. The toxicity of clofarabine in mice in the rest phase was more severe than the active one, indicated by more severe liver damage, immunodepression, higher mortality rate, and lower LD50. No significant pharmacokinetic parameter changes were observed between the night and daytime treatment groups. These findings suggest the dosing-time dependent toxicity of clofarabine synchronizes with the circadian rhythm of mice, which might provide new therapeutic strategies in further clinical application.

  17. Single dose toxicity and biodistribution studies of [18F] fluorocholine

    International Nuclear Information System (INIS)

    Campos, Danielle C.; Santos, Priscilla F.; Silveira, Marina B.; Ferreira, Soraya Z.; Malamut, Carlos; Silva, Juliana B. da; Souza, Cristina M.; Campos, Liliane C.; Ferreira, Enio; Araujo, Marina R.; Cassali, Geovanni D.

    2013-01-01

    [ 18 F]Fluorocholine ( 18 FCH) is a valuable tool for non-invasive diagnosis using positron emission tomography (PET). This radiotracer has been proven to be highly effective in detecting recurrences and staging prostate cancer, diagnoses brain, breast, and esophageal tumors and also hepatocellular carcinoma. The higher uptake of fluorocholine by malignant tumors results from increased choline kinase activity due to accelerated cell multiplication and membrane formation. According to the Brazilian Health Surveillance Agency (ANVISA), radiopharmaceuticals have to be registered before commercialization. The aim of this work was to evaluate single dose toxicity and biodistribution of 18 FCH in mice, since preclinical safety studies are required for register. Experimental procedures were approved by the Ethics Committee on Animal Use (CEUA-IPEN/SP). Single dose toxicity and biodistribution studies were conducted in Swiss mice. No signs of toxicity were observed during clinical trial. No changes in the parameters which were examined, such as: body weight, food consumption, clinical pathology parameters or lesions microscopic were noted. Biodistribution results indicated high physiological tracer uptake in kidney, liver and heart 30 min after injection. Lower activities were recorded in other organs/tissues: pancreas, intestine, spleen, bone, bladder, muscle, brain and blood. Initial preclinical investigations showed no toxic effects of 18 FCH at investigated doses and a biodistribution profile very similar to other reports in literature. This information is essential to support future human trials. (author)

  18. Vaccine potential of recombinant saposin-like protein 2 against Fasciolosis gigantica in mice.

    Science.gov (United States)

    Kueakhai, Pornanan; Changklungmoa, Narin; Riengrojpitak, Suda; Chaichanasak, Pannigan; Meemon, Krai; Chaithirayanon, Kulathida; Chantree, Pathanin; Sansri, Veerawat; Itagaki, Tadashi; Sobhon, Prasert

    2013-11-12

    Saposin-like protein 2 (SAP-2) is a protein that adult of Fasciola spp. use to lyse plasma membrane of red blood cells, so that their contents can be digested by proteases for the parasites' nutrients. Thus SAP-2 is a plausible target for vaccination against these parasites. Recombinant Fasciola gigantica saposin-like protein 2 (rFgSAP-2) was expressed in Escherichia coli BL21 (DE3). A vaccination was performed in ICR mice (n=10) by subcutaneous injection with 50μg of rFgSAP-2 combined with Freund's adjuvant. At 2 weeks after the second boost, mice were infected with 30 F. gigantica metacercariae by oral route. The percentages of protection of rFgSAP-2 vaccine against F. gigantica were estimated to be 76.4-78.5% when compared with non vaccinated-infected and adjuvant-infected controls, respectively. The antibodies in immune sera of vaccinated mice were shown by immuno-blotting to react with native FgSAP-2 in the extract of 2- and 4-week-old juvenile parasites. By determining the levels of IgG1 and IgG2a in the immune sera, which are indicative of Th2 and Th1 immune responses, it was found that both Th1 and Th2 humoral immune response were significantly increased in rFgSAP-2 immunized group compared with the control groups, with higher levels of Th2 (IgG1) than Th1 (IgG2a). The levels of serum aspartate aminotransferase (AST) and alanine transaminase (ALT) in rFgSAP-2-immunized group showed no significant difference from those of the non-immunized and infected group, indicating that early juvenile parasites induced liver parenchyma damage, even though the numbers of worm recoveries were significantly different. This study indicates that rFgSAP-2 has a high potential as a vaccine candidate against F. gigantica in mice, and this potential will be tested in larger economic animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Synthetic Long Peptide Influenza Vaccine Containing Conserved T and B Cell Epitopes Reduces Viral Load in Lungs of Mice and Ferrets.

    Directory of Open Access Journals (Sweden)

    S K Rosendahl Huber

    Full Text Available Currently licensed influenza vaccines mainly induce antibodies against highly variable epitopes. Due to antigenic drift, protection is subtype or strain-specific and regular vaccine updates are required. In case of antigenic shifts, which have caused several pandemics in the past, completely new vaccines need to be developed. We set out to develop a vaccine that provides protection against a broad range of influenza viruses. Therefore, highly conserved parts of the influenza A virus (IAV were selected of which we constructed antibody and T cell inducing peptide-based vaccines. The B epitope vaccine consists of the highly conserved HA2 fusion peptide and M2e peptide coupled to a CD4 helper epitope. The T epitope vaccine comprises 25 overlapping synthetic long peptides of 26-34 amino acids, thereby avoiding restriction for a certain MHC haplotype. These peptides are derived from nucleoprotein (NP, polymerase basic protein 1 (PB1 and matrix protein 1 (M1. C57BL/6 mice, BALB/c mice, and ferrets were vaccinated with the B epitopes, 25 SLP or a combination of both. Vaccine-specific antibodies were detected in sera of mice and ferrets and vaccine-specific cellular responses were measured in mice. Following challenge, both mice and ferrets showed a reduction of virus titers in the lungs in response to vaccination. Summarizing, a peptide-based vaccine directed against conserved parts of influenza virus containing B and T cell epitopes shows promising results for further development. Such a vaccine may reduce disease burden and virus transmission during pandemic outbreaks.

  20. Global inhibition of DC priming capacity in the spleen of self-antigen vaccinated mice requires IL-10

    Directory of Open Access Journals (Sweden)

    Douglas Matthew Marvel

    2014-02-01

    Full Text Available DC in the spleen are highly activated following intravenous vaccination with a foreign antigen, promoting expansion of effector T cells, but remain phenotypically and functionally immature after vaccination with a self-antigen. Up-regulation or suppression of expression of a cohort of pancreatic enzymes 24-72 hours post-vaccination can be used as a biomarker of stimulatory versus toleragenic DC, respectively. Here we show, using MUC1 transgenic mice (MUC1.Tg and a vaccine based on the MUC1 peptide which these mice perceive as a self-antigen, that the difference in enzyme expression that predicts whether DC will promote immune response or immune tolerance, is seen as early as 4-8 hours following vaccination. We also identify early production of IL-10 as a predominant factor that both correlates with this early time point and controls DC function. Pre-treating mice with an antibody against the IL-10 receptor (IL-10R prior to vaccination results in DC that up-regulate CD40, CD80, and CD86 and promote stronger IFNγ+ T cell responses. This study suggests that transient inhibition of IL-10 prior to vaccination could improve responses to cancer vaccines that utilize self-tumor antigens.

  1. Demonstration of 1-year duration of immunity for attenuated Bordetella bronchiseptica vaccines in dogs.

    Science.gov (United States)

    Lehar, Craig; Jayappa, Huchappa; Erskine, Jason; Brown, Alicia; Sweeney, Diane; Wassmoen, Terri

    2008-01-01

    Three groups of healthy dogs with low antibody titers to Bordetella bronchiseptica (Bb), canine parainfluenza virus (CPI), and canine adenovirus type 2 (CAV-2) were used in this study. One group was vaccinated with a single dose of monovalent attenuated Bb vaccine and one group with a trivalent vaccine containing attenuated Bb, CPI, and CAV-2; dogs were vaccinated intranasally with a single dose of the respective vaccines. The third group served as unvaccinated controls. All vaccinated dogs subsequently developed serum antibody titers to Bb that persisted for at least 1 year. Following Bb challenge 1 year after vaccination, all vaccinated dogs, regardless of group, showed significantly fewer clinical signs and shed significantly fewer challenge organisms than unvaccinated controls. These results demonstrate that intranasal administration of a single dose of monovalent attenuated Bb vaccine or trivalent vaccine containing attenuated Bb, CPI, and CAV-2 provides 1 year of protection against Bb.

  2. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  3. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  4. Vaccination with Replication Deficient Adenovectors Encoding YF-17D Antigens Induces Long-Lasting Protection from Severe Yellow Fever Virus Infection in Mice.

    Science.gov (United States)

    Bassi, Maria R; Larsen, Mads A B; Kongsgaard, Michael; Rasmussen, Michael; Buus, Søren; Stryhn, Anette; Thomsen, Allan R; Christensen, Jan P

    2016-02-01

    The live attenuated yellow fever vaccine (YF-17D) has been successfully used for more than 70 years. It is generally considered a safe vaccine, however, recent reports of serious adverse events following vaccination have raised concerns and led to suggestions that even safer YF vaccines should be developed. Replication deficient adenoviruses (Ad) have been widely evaluated as recombinant vectors, particularly in the context of prophylactic vaccination against viral infections in which induction of CD8+ T-cell mediated immunity is crucial, but potent antibody responses may also be elicited using these vectors. In this study, we present two adenobased vectors targeting non-structural and structural YF antigens and characterize their immunological properties. We report that a single immunization with an Ad-vector encoding the non-structural protein 3 from YF-17D could elicit a strong CD8+ T-cell response, which afforded a high degree of protection from subsequent intracranial challenge of vaccinated mice. However, full protection was only observed using a vector encoding the structural proteins from YF-17D. This vector elicited virus-specific CD8+ T cells as well as neutralizing antibodies, and both components were shown to be important for protection thus mimicking the situation recently uncovered in YF-17D vaccinated mice. Considering that Ad-vectors are very safe, easy to produce and highly immunogenic in humans, our data indicate that a replication deficient adenovector-based YF vaccine may represent a safe and efficient alternative to the classical live attenuated YF vaccine and should be further tested.

  5. Mannan-Abeta28 conjugate prevents Abeta-plaque deposition, but increases microhemorrhages in the brains of vaccinated Tg2576 (APPsw mice

    Directory of Open Access Journals (Sweden)

    Karapetyan Adrine

    2008-09-01

    Full Text Available Abstract Background New pre-clinical trials in AD mouse models may help to develop novel immunogen-adjuvant configurations with the potential to avoid the adverse responses that occurred during the clinical trials with AN-1792 vaccine formulation. Recently, we have pursued an alternative immunization strategy that replaces QS21 the Th1 type adjuvant used in the AN-1792 clinical trial with a molecular adjuvant, mannan that can promote a Th2-polarized immune response through interactions with mannose-binding and CD35/CD21 receptors of the innate immune system. Previously we established that immunization of wild-type mice with mannan-Aβ28 conjugate promoted Th2-mediated humoral and cellular immune responses. In the current study, we tested the efficacy of this vaccine configuration in amyloid precursor protein (APP transgenic mice (Tg2576. Methods Mannan was purified, activated and chemically conjugated to Aβ28 peptide. Humoral immune responses induced by the immunization of mice with mannan-Aβ28 conjugate were analyzed using a standard ELISA. Aβ42 and Aβ40 amyloid burden, cerebral amyloid angiopathy (CAA, astrocytosis, and microgliosis in the brain of immunized and control mice were detected using immunohistochemistry. Additionally, cored plaques and cerebral vascular microhemorrhages in the brains of vaccinated mice were detected by standard histochemistry. Results Immunizations with low doses of mannan-Aβ28 induced potent and long-lasting anti-Aβ humoral responses in Tg2576 mice. Even 11 months after the last injection, the immunized mice were still producing low levels of anti-Aβ antibodies, predominantly of the IgG1 isotype, indicative of a Th2 immune response. Vaccination with mannan-Aβ28 prevented Aβ plaque deposition, but unexpectedly increased the level of microhemorrhages in the brains of aged immunized mice compared to two groups of control animals of the same age either injected with molecular adjuvant fused with an irrelevant

  6. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  7. Vaccines for preventing typhoid fever.

    Science.gov (United States)

    Milligan, Rachael; Paul, Mical; Richardson, Marty; Neuberger, Ami

    2018-05-31

    )A three-dose schedule of Ty21a vaccine probably prevents around half of typhoid cases during the first three years after vaccination (cumulative efficacy 2.5 to 3 years: 50%, 95% CI 35% to 61%, 4 trials, 235,239 participants, moderate-certainty evidence). These data include patients aged 3 to 44 years.Compared with placebo, this vaccine probably does not cause more vomiting, diarrhoea, nausea or abdominal pain (2 trials, 2066 participants; moderate-certainty evidence), headache, or rash (1 trial, 1190 participants; moderate-certainty evidence); however, fever (2 trials, 2066 participants; moderate-certainty evidence) is probably more common following vaccination.Vi polysaccharide vaccine (injection, one dose)A single dose of Vi polysaccharide vaccine prevents around two-thirds of typhoid cases in the first year after vaccination (year 1: 69%, 95% CI 63% to 74%; 3 trials, 99,979 participants; high-certainty evidence). In year 2, trial results were more variable, with the vaccine probably preventing between 45% and 69% of typhoid cases (year 2: 59%, 95% CI 45% to 69%; 4 trials, 194,969 participants; moderate-certainty evidence). These data included participants aged 2 to 55 years of age.The three-year cumulative efficacy of the vaccine may be around 55% (95% CI 30% to 70%; 11,384 participants, 1 trial; low-certainty evidence). These data came from a single trial conducted in South Africa in the 1980s in participants aged 5 to 15 years.Compared with placebo, this vaccine probably did not increase the incidence of fever (3 trials, 132,261 participants; moderate-certainty evidence) or erythema (3 trials, 132,261 participants; low-certainty evidence); however, swelling (3 trials, 1767 participants; moderate-certainty evidence) and pain at the injection site (1 trial, 667 participants; moderate-certainty evidence) were more common in the vaccine group.Vi-rEPA vaccine (two doses)Administration of two doses of the Vi-rEPA vaccine probably prevents between 50% and 96% of typhoid

  8. Residual toxicity in hematopoietic cells following a single dose of methylnitrosourea

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, T.; Cronkite, E.P.; Commerford, S.L.; Carsten, A.L.

    1984-01-01

    The residual injury to the proliferation capability of hemopoietic stem cells (CFU-S) which results from their exposure to leukemogenic agents was evaluated in mice given a single leukemogenic dose of methol nitrosourea. Bone marrow cellularity, splenic weight, number of CFU-S and the proportion of cycling to noncycling CFU-S were measured in an effort to detect acute and residual injury to the CFU-S from mice given MNU 21 and 3 days earlier. Marrow cells were also transferred into lethally irradiated mice to observe the self-renewal capability of the CFU-S in the recipient spleen and bone marrow. The results of these measurements show that the CFU-S in marrow from mice given 50 mg/kg of MNU 21 days earlier still have a defective ability for self-renewal, although the total cellularity, number of CFU-S and proportion of cycling and noncycling CFU-S in the donor have returned to the normal range. The relationship of this self-renewal defect to the development of leukemia after this leukemogenic dose of MNU is not known. 21 references, 9 figures, 3 tables.

  9. Development and evaluation of chitosan microspheres for tetanus, diphtheria and divalent vaccines: a comparative study of subcutaneous and intranasal administration in mice.

    Science.gov (United States)

    Hashem, Fahima M; Fahmy, Sahar A; El-Sayed, Aly M; Al-Sawahli, Majid M

    2013-01-01

    There is a need to use the new technologies to induce immunity with minimum number of vaccination sessions to ensure compliance with reducing cost. To develop single shot vaccines of tetanus, diphtheria and divalent toxoids microsphere's formulations and to induce their immune response after intranasal and subcutaneous administration in mice. The microspheres were prepared using different concentrations of chitosan. Microsphere's morphology, particle size analysis, encapsulation efficiency and antigen integrity were performed and the best formulations were selected for in vitro and in vivo testing in mice. The developed microspheres have a yield percent of 70.3-91.5%. In vitro release of antigens indicated that tetanus release was increased up to 75 and 81% post T5 and TD5 formulations respectively, whereas diphtheria cumulative release increased up to 74 and 69% post D3 and TD5, respectively. Antibody levels produced were lower than that obtained from alum adsorbed vaccine but higher than the minimum level required to induce immunogenicity (>0.01 IU/mL). The subcutaneous route of administration was superior over the intranasal route in producing higher antibody levels. Chitosan microspheres were developed successfully and prove that chitosan represents a good candidate for vaccines delivery.

  10. Multiparameter telemetry as a sensitive screening method to detect vaccine reactogenicity in mice.

    Directory of Open Access Journals (Sweden)

    Margarete Arras

    Full Text Available Refined vaccines and adjuvants are urgently needed to advance immunization against global infectious challenges such as HIV, hepatitis C, tuberculosis and malaria. Large-scale screening efforts are ongoing to identify adjuvants with improved efficacy profiles. Reactogenicity often represents a major hurdle to the clinical use of new substances. Yet, irrespective of its importance, this parameter has remained difficult to screen for, owing to a lack of sensitive small animal models with a capacity for high throughput testing. Here we report that continuous telemetric measurements of heart rate, heart rate variability, body core temperature and locomotor activity in laboratory mice readily unmasked systemic side-effects of vaccination, which went undetected by conventional observational assessment and clinical scoring. Even minor aberrations in homeostasis were readily detected, ranging from sympathetic activation over transient pyrogenic effects to reduced physical activity and apathy. Results in real-time combined with the potential of scalability and partial automation in the industrial context suggest multiparameter telemetry in laboratory mice as a first-line screen for vaccine reactogenicity. This may accelerate vaccine discovery in general and may further the success of vaccines in combating infectious disease and cancer.

  11. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  12. Potentiation of a p53-SLP vaccine by cyclophosphamide in ovarian cancer : A single-arm phase II study

    NARCIS (Netherlands)

    Vermeij, Renee; Leffers, Ninke; Hoogeboom, Baukje-Nynke; Hamming, Ineke L. E.; Wolf, Rinze; Reyners, Anna K. L.; Molmans, Barbara H. W.; Hollema, Harry; Bart, Joost; Drijfhout, Jan W.; Oostendorp, Jaap; van der Zee, Ate G. J.; Melief, Cornelis J.; van der Burg, Sjoerd H.; Daemen, Toos; Nijman, Hans W.

    2012-01-01

    The purpose of the current phase II single-arm clinical trial was to evaluate whether pretreatment with low-dose cyclophosphamide improves immunogenicity of a p53-synthetic long peptide (SLP) vaccine in patients with recurrent ovarian cancer. Patients with ovarian cancer with elevated serum levels

  13. Environmental exposure to low-doses of ionizing radiation. Effects on early nephrotoxicity in mice.

    Science.gov (United States)

    Bellés, Montserrat; Gonzalo, Sergio; Serra, Noemí; Esplugas, Roser; Arenas, Meritxell; Domingo, José Luis; Linares, Victoria

    2017-07-01

    Nuclear accidents of tremendous magnitude, such as those of Chernobyl (1986) and Fukushima (2011), mean that individuals living in the contaminated areas are potentially exposed to ionizing radiation (IR). However, the dose-response relationship for effects of low doses of radiation is not still established. The present study was aimed at investigating in mice the early effects of low-dose internal radiation exposure on the kidney. Adult male (C57BL/6J) mice were divided into three groups. Two groups received a single subcutaneous (s.c.) doses of cesium ( 137 Cs) with activities of 4000 and 8000Bq/kg bw. A third group (control group) received a single s.c. injection of 0.9% saline. To evaluate acute and subacute effects, mice (one-half of each group) were euthanized at 72h and 10 days post-exposure to 137 Cs, respectively. Urine samples were collected for biochemical analysis, including the measurement of F2-isoprostane (F2-IsoP) and kidney injury molecule-1 (KIM-1) levels. Moreover, the concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a sensitive marker of oxidative DNA damage, were measured in renal tissue. Urinary excretion of total protein significantly increased at 72h in mice exposed to Cs4000. Uric acid and lactate dehydrogenase (LDH) decreased significantly at both times post-exposure in animals exposed to Cs8000. After 72h and 10d of exposure to Cs4000, a significant increase in the γ-glutamil transferase (GGT) and N-acetyl-β-D-glucosaminidase (NAG) activities was observed. In turn, F2-IsoP levels increased -mainly in the Cs4000 group- at 72h post-exposure. Following irradiation ( 137 Cs), the highest level of KIM-1 was corresponded to the Cs4000 group at 72h. Likewise, the main DNA damage was detected in mice exposed to Cs4000, mainly at 10d after irradiation. The alterations observed in several biomarkers suggest an immediate renal damage following exposure to low doses of IR (given as 137 Cs). Further investigations are required to clarify the

  14. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses

    Directory of Open Access Journals (Sweden)

    Chan Chris CS

    2010-01-01

    Full Text Available Abstract Background A growing concern has raised regarding the pandemic potential of the highly pathogenic avian influenza (HPAI H5N1 viruses. Consequently, there is an urgent need to develop an effective and safe vaccine against the divergent H5N1 influenza viruses. In the present study, we designed a tetra-branched multiple antigenic peptide (MAP-based vaccine, designated M2e-MAP, which contains the sequence overlapping the highly conserved extracellular domain of matrix protein 2 (M2e of a HPAI H5N1 virus, and investigated its immune responses and cross-protection against different clades of H5N1 viruses. Results Our results showed that M2e-MAP vaccine induced strong M2e-specific IgG antibody responses following 3-dose immunization of mice with M2e-MAP in the presence of Freunds' or aluminium (alum adjuvant. M2e-MAP vaccination limited viral replication and attenuated histopathological damage in the challenged mouse lungs. The M2e-MAP-based vaccine protected immunized mice against both clade1: VN/1194 and clade2.3.4: SZ/406H H5N1 virus challenge, being able to counteract weight lost and elevate survival rate following lethal challenge of H5N1 viruses. Conclusions These results suggest that M2e-MAP presenting M2e of H5N1 virus has a great potential to be developed into an effective subunit vaccine for the prevention of infection by a broad spectrum of HPAI H5N1 viruses.

  15. Safety, immunogenicity and dose ranging of a new Vi-CRM₁₉₇ conjugate vaccine against typhoid fever: randomized clinical testing in healthy adults.

    Science.gov (United States)

    van Damme, Pierre; Kafeja, Froukje; Anemona, Alessandra; Basile, Venere; Hilbert, Anne Katrin; De Coster, Ilse; Rondini, Simona; Micoli, Francesca; Qasim Khan, Rana M; Marchetti, Elisa; Di Cioccio, Vito; Saul, Allan; Martin, Laura B; Podda, Audino

    2011-01-01

    Typhoid fever causes more than 21 million cases of disease and 200,000 deaths yearly worldwide, with more than 90% of the disease burden being reported from Asia. Epidemiological data show high disease incidence in young children and suggest that immunization programs should target children below two years of age: this is not possible with available vaccines. The Novartis Vaccines Institute for Global Health developed a conjugate vaccine (Vi-CRM₁₉₇) for infant vaccination concomitantly with EPI vaccines, either starting at 6 weeks with DTP or at 9 months with measles vaccine. We report the results from a Phase 1 and a Phase 2 dose ranging trial with Vi-CRM₁₉₇ in European adults. Following randomized blinded comparison of single vaccination with either Vi-CRM₁₉₇ or licensed polysaccharide vaccines (both containing 25·0 µg of Vi antigen), a randomised observer blinded dose ranging trial was performed in the same center to compare three concentrations of Vi-CRM₁₉₇ (1·25 µg, 5·0 µg and 12·5 µg of Vi antigen) with the polysaccharide vaccine. All vaccines were well tolerated. Compared to the polysaccharide vaccine, Vi-CRM₁₉₇ induced a higher incidence of mild to moderate short lasting local pain. All Vi-CRM₁₉₇ formulations induced higher Vi antibody levels compared to licensed control, with clear dose response relationship. Vi-CRM₁₉₇ did not elicit safety concerns, was highly immunogenic and is therefore suitable for further clinical testing in endemic populations of South Asia. ClinicalTrials.gov NCT01123941 NCT01193907.

  16. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Assessment of mumps-containing vaccine effectiveness during an outbreak: Importance to introduce the 2-dose schedule for China.

    Science.gov (United States)

    Ma, Chao; Liu, Yan; Tang, Jihai; Jia, Haimei; Qin, Wei; Su, Ying; Wang, Huaqing; Hao, Lixin

    2018-01-29

    China has used 3 different mumps-containing vaccines (MuCV) since 1990: monovalent mumps vaccine, measles-mumps (MM) vaccine, and measles-mumps-rubella (MMR) vaccine, and one dose MuCV (using MMR at 18 months) has been included in the EPI since 2007. MuCV effectiveness has been of concern following large-scale mumps outbreaks. In 2015, an outbreak of mumps occurred in a primary school, which allow us assess vaccine effectiveness of different MuCVs. All children in the school were studied as a retrospective cohort. Vaccination histories and case information were obtained from vaccination records and clinic/hospital logs. Parental questionnaires were used to confirm students' illnesses and calculate attack rate (AR). VE was assessed using the formula, VE = (AR in unvaccinated students- AR in the vaccinated students) / (AR in unvaccinated students). VEs of different type of MuCV were compared. In total, 283 students were identified as clinical mumps among the 2370 students, and 1908 students were included for MuCV VE assessment. 213 (including 21 [8.9%] patients) were 2-dose MuCV recipients (AR: 9.9%), 1165 (including 123 [51.9%] patients) were 1-dose recipients (AR: 10.6%), and 530 (including 93 [39.2%] patients) were unvaccinated (AR: 17.5%). VE was 44% for 2 doses and 40% for one dose. For one-MuCV-dose students, estimated mumps VE was 63% for vaccinated within 3 years (between vaccination and this outbreak); 50% for vaccinated within 3 to 5 years; and 34% for vaccinated more than 5 years. Comparing VE by vaccine type and 5-year interval since vaccination, VE for MMR was 60%, which was consistently higher than VE for monovalent mumps vaccine (22%) and MM (2%). This outbreak was associated with low and declining 1-dose MuCV effectiveness. China's immunization program should evaluate the potential of a 2-dose MMR schedule to adequately control mumps.

  18. EVALUATION OF OIL BASED AVIAN INFLUENZA VACCINE (H5NI PREPARED WITH DIFFERENT CONCENTRATIONS OF ADJUVANT

    Directory of Open Access Journals (Sweden)

    M. IQBAL, M. NISAR, ANWARUL-HAQ, S. NOOR AND Z. J. GILL

    2008-12-01

    Full Text Available Bird flu vaccine from H5N1 strain of avian influenza virus was prepared with two concentrations of adjuvant (Montanide ISA 70MVG. Two vaccines (I and II were prepared containing 50 and 60% Montanide, respectively. Immune response of both the vaccines as single, as well as booster, dose was evaluated in layer birds through haemagglutination inhibition test. Single dose of both vaccines showed poor immune response, while booster dose gave better response with both the vaccines. However, the vaccine prepared with 60% Montanide provided better immune response compared with the vaccine containing 50% montanide.

  19. Dose response and efficacy of a live, attenuated human rotavirus vaccine in Mexican infants.

    Science.gov (United States)

    Ruiz-Palacios, Guillermo M; Guerrero, M Lourdes; Bautista-Márquez, Aurora; Ortega-Gallegos, Hilda; Tuz-Dzib, Fernando; Reyes-González, Leticia; Rosales-Pedraza, Gustavo; Martínez-López, Julia; Castañón-Acosta, Erika; Cervantes, Yolanda; Costa-Clemens, SueAnn; DeVos, Beatrice

    2007-08-01

    Immunization against rotavirus has been proposed as the most cost-effective intervention to reduce the disease burden associated with this infection worldwide. The objective of this study was to determine the dose response, immunogenicity, and efficacy of 2 doses of an oral, attenuated monovalent G1[P8] human rotavirus vaccine in children from the same setting in Mexico, where the natural protection against rotavirus infection was studied. From June 2001 through May 2003, 405 healthy infants were randomly assigned to 1 of 3 vaccine groups (virus concentrations 10(4.7), 10(5.2), and 10(5.8) infectious units) and to a placebo group and were monitored to the age of 2 years. The vaccine/placebo was administered concurrently with diphtheria-tetanus toxoid-pertussis/hepatitis B/Haemophilus influenzae type b vaccine at 2 and 4 months of age. After the administration of the first vaccine/placebo dose, weekly home visits to collect information regarding infant health were conducted. Stool samples were collected during each gastroenteritis episode and tested for rotavirus antigen and serotype. The vaccine was well tolerated and induced a greater rate of seroconversion than observed in infants who received placebo. For the pooled vaccine groups, efficacy after 2 oral doses was 80% and 95% against any and severe rotavirus gastroenteritis, respectively. Efficacy was 100% against severe rotavirus gastroenteritis and 70% against severe gastroenteritis of any cause with the vaccine at the highest virus concentration (10(5.8) infectious units). The predominant infecting rotavirus serotype in this cohort was wild-type G1 (85%). Adverse events, including fever, irritability, loss of appetite, cough, diarrhea, and vomiting, were similar among vaccinees and placebo recipients. This new oral, live, attenuated human rotavirus vaccine was safe, immunogenic, and highly efficacious in preventing any and, more importantly, severe rotavirus gastroenteritis in healthy infants. This vaccine

  20. N-Acetyl Cysteine does not prevent liver toxicity from chronic low dose plus sub-acute high dose paracetamol exposure in young or old mice

    Science.gov (United States)

    Kane, Alice-Elizabeth; Huizer-Pajkos, Aniko; Mach, John; McKenzie, Catriona; Mitchell, Sarah-Jayne; de Cabo, Rafael; Jones, Brett; Cogger, Victoria; Le Couteur, David G; Hilmer, Sarah-Nicole

    2016-01-01

    Paracetamol is an analgesic commonly used by people of all ages, which is well documented to cause severe hepatotoxicity with acute over-exposures. The risk of hepatotoxicity from non-acute paracetamol exposures is less extensively studied, and this is the exposure most common in older adults. Evidence on the effectiveness of N-acetyl cysteine (NAC) for non-acute paracetamol exposures, in any age group, is lacking. This study aimed to examine the effect of long-term exposure to therapeutic doses of paracetamol and sub-acute paracetamol over-exposure, in young and old mice, and to investigate whether NAC was effective at preventing paracetamol hepatotoxicity induced by these exposures. Young and old male C57BL/6 mice were fed a paracetamol-containing (1.33g/kg food) or control diet for 6 weeks. Mice were then dosed orally 8 times over 3 days with additional paracetamol (250mg/kg) or saline, followed by either one or two doses of oral NAC (1200mg/kg) or saline. Chronic low-dose paracetamol exposure did not cause hepatotoxicity in young or old mice, measured by serum alanine aminotransferase (ALT) elevation, and confirmed by histology and a DNA fragmentation assay. Sub-acute paracetamol exposure caused significant hepatotoxicity in young and old mice, measured by biochemistry (ALT) and histology. Neither a single nor double dose of NAC protected against this toxicity from sub-acute paracetamol in young or old mice. This finding has important clinical implications for treating toxicity due to different paracetamol exposure types in patients of all ages, and implies a need to develop new treatments for sub-acute paracetamol toxicity. PMID:26821200

  1. Intramuscular Immunization of Mice with the Live-Attenuated Herpes Simplex Virus 1 Vaccine Strain VC2 Expressing Equine Herpesvirus 1 (EHV-1) Glycoprotein D Generates Anti-EHV-1 Immune Responses in Mice.

    Science.gov (United States)

    Liu, Shiliang A; Stanfield, Brent A; Chouljenko, Vladimir N; Naidu, Shan; Langohr, Ingeborg; Del Piero, Fabio; Ferracone, Jacqueline; Roy, Alma A; Kousoulas, Konstantin G

    2017-06-15

    Vaccination remains the best option to combat equine herpesvirus 1 (EHV-1) infection, and several different strategies of vaccination have been investigated and developed over the past few decades. Herein, we report that the live-attenuated herpes simplex virus 1 (HSV-1) VC2 vaccine strain, which has been shown to be unable to enter into neurons and establish latency in mice, can be utilized as a vector for the heterologous expression of EHV-1 glycoprotein D (gD) and that the intramuscular immunization of mice results in strong antiviral humoral and cellular immune responses. The VC2-EHV-1-gD recombinant virus was constructed by inserting an EHV-1 gD expression cassette under the control of the cytomegalovirus immediate early promoter into the VC2 vector in place of the HSV-1 thymidine kinase (UL23) gene. The vaccines were introduced into mice through intramuscular injection. Vaccination with both the VC2-EHV-1-gD vaccine and the commercially available vaccine Vetera EHV XP 1/4 (Vetera; Boehringer Ingelheim Vetmedica) resulted in the production of neutralizing antibodies, the levels of which were significantly higher in comparison to those in VC2- and mock-vaccinated animals ( P < 0.01 or P < 0.001). Analysis of EHV-1-reactive IgG subtypes demonstrated that vaccination with the VC2-EHV-1-gD vaccine stimulated robust IgG1 and IgG2a antibodies after three vaccinations ( P < 0.001). Interestingly, Vetera-vaccinated mice produced significantly higher levels of IgM than mice in the other groups before and after challenge ( P < 0.01 or P < 0.05). Vaccination with VC2-EHV-1-gD stimulated strong cellular immune responses, characterized by the upregulation of both interferon- and tumor necrosis factor-positive CD4 + T cells and CD8 + T cells. Overall, the data suggest that the HSV-1 VC2 vaccine strain may be used as a viral vector for the vaccination of horses as well as, potentially, for the vaccination of other economically important animals. IMPORTANCE A novel virus

  2. Heterologous Two-Dose Vaccination with Simian Adenovirus and Poxvirus Vectors Elicits Long-Lasting Cellular Immunity to Influenza Virus A in Healthy Adults

    Directory of Open Access Journals (Sweden)

    L. Coughlan

    2018-03-01

    Full Text Available Background: T-cell responses against highly conserved influenza antigens have been previously associated with protection. However, these immune responses are poorly maintained following recovery from influenza infection and are not boosted by inactivated influenza vaccines. We have previously demonstrated the safety and immunogenicity of two viral vectored vaccines, modified vaccinia virus Ankara (MVA and the chimpanzee adenovirus ChAdOx1 expressing conserved influenza virus antigens, nucleoprotein (NP and matrix protein-1 (M1. We now report on the safety and long-term immunogenicity of multiple combination regimes of these vaccines in young and older adults. Methods: We conducted a Phase I open-label, randomized, multi-center study in 49 subjects aged 18–46 years and 24 subjects aged 50 years or over. Following vaccination, adverse events were recorded and the kinetics of the T cell response determined at multiple time points for up to 18 months. Findings: Both vaccines were well tolerated. A two dose heterologous vaccination regimen significantly increased the magnitude of pre-existing T-cell responses to NP and M1 after both doses in young and older adults. The fold-increase and peak immune responses after a single MVA-NP + M1 vaccination was significantly higher compared to ChAdOx1 NP + M1. In a mixed regression model, T-cell responses over 18 months were significantly higher following the two dose vaccination regimen of MVA/ChAdOx1 NP + M1. Interpretation: A two dose heterologous vaccination regimen of MVA/ChAdOx1 NP + M1 was safe and immunogenic in young and older adults, offering a promising vaccination strategy for inducing long-term broadly cross-reactive protection against influenza A. Funding Source: Medical Research Council UK, NIHR BMRC Oxford. Keywords: Influenza, T-cell responses, Influenza vaccines, Viral vectors, Adults, Older adults

  3. Effect of vaccine dose on the safety and immunogenicity of a candidate TB vaccine, MVA85A, in BCG vaccinated UK adults.

    Science.gov (United States)

    Pathan, Ansar A; Minassian, Angela M; Sander, Clare R; Rowland, Rosalind; Porter, David W; Poulton, Ian D; Hill, Adrian V S; Fletcher, Helen A; McShane, Helen

    2012-08-17

    A non-randomised, open-label, Phase I safety and immunogenicity dose-finding study to assess the safety and immunogenicity of the candidate TB vaccine Modified Vaccinia virus Ankara expressing Antigen 85A (MVA85A) from Mycobacterium tuberculosis (MTB) in healthy adult volunteers previously vaccinated with BCG. Healthy BCG-vaccinated volunteers were vaccinated with either 1×10(7) or 1×10(8)PFU of MVA85A. All adverse events were documented and antigen specific T cell responses were measured using an ex vivo IFN-γ ELISPOT assay. Safety and immunogenicity were compared between the 2 dose groups and with a previous trial in which a dose of 5×10(7)PFU MVA85A had been administered. There were no serious adverse events recorded following administration of either 1×10(7) or 1×10(8)PFU of MVA85A. Systemic adverse events were more frequently reported following administration of 1×10(8)PFU of MVA85A when compared to either 5×10(7) or 1×10(7)PFU of MVA85A but were mild or moderate in severity and resolved completely within 7 days of immunisation. Antigen specific T cell responses as measured by the IFN-γ ELISPOT were significantly higher following immunisation in adults receiving 1×10(8)PFU compared to the 5×10(7) and 1×10(7) doses. Additionally, a broader range of Ag85A epitopes are detected following 1×10(8)PFU of MVA85A. A higher dose of 1×10(8)PFU of MVA85A is well-tolerated, increases the frequency of IFN-γ secreting T cells detected following immunisation and broadens the range of Ag85A epitopes detected. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Bioassay in BALB/c mice exposed to low dose rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Km, Sung Dae; Gong, Eun Ji; Bae, Min Ji; Yang, Kwang Mo; Kim, Joong Sun [Dongnam Institute of Radiological and Medical Sciences, Suwon (Korea, Republic of)

    2012-09-15

    The present study was performed to investigate the toxicity of low-dose-rate irradiation in BALB/c mice. Twenty mice of each sex were randomly assigned to four groups of five mice each and were exposed to 0 (sham), 0.02, 0.2, or 2 Gy, equivalents to low-dose-rate irradiation to 3.49 mGy{center_dot}h{sup -1}. Urine, blood, and blood biochemistry were analyzed, and organ weight was measured. The low-dose-rate irradiation did not induce any toxicologically significant changes in mortality, clinical signs, body weight, food and water consumption, urinalysis, and serum biochemistry. However, the weights of reproductive organs including the testis, ovary, and uterus decreased in a dose-dependent manner. Irradiation at 2 Gy significantly decreased the testis, ovary, and uterus weights, but did not change the weights of other organs. There were no adverse effects on hematology in any irradiated group and only the number of neutrophils increased dose dependently. The low-dose-rate irradiation exposure did not cause adverse effects in mice at dose levels of 2 Gy or less, but the reproductive systems of male and female mice showed toxic effects.

  5. Safety and Immunogenicity of Full-Dose Trivalent Inactivated Influenza Vaccine (TIV) Compared With Half-Dose TIV Administered to Children 6 Through 35 Months of Age.

    Science.gov (United States)

    Halasa, Natasha B; Gerber, Michael A; Berry, Andrea A; Anderson, Edwin L; Winokur, Patricia; Keyserling, Harry; Eckard, Allison Ross; Hill, Heather; Wolff, Mark C; McNeal, Monica M; Edwards, Kathryn M; Bernstein, David I

    2015-09-01

    Children 6 through 35 months of age are recommended to receive half the dose of influenza vaccine compared with older children and adults. This was a 6-site, randomized 2:1, double-blind study comparing full-dose (0.5 mL) trivalent inactivated influenza vaccine (TIV) with half-dose (0.25 mL) TIV in children 6 through 35 months of age. Children previously immunized with influenza vaccine (primed cohort) received 1 dose, and those with no previous influenza immunizations (naive cohort) received 2 doses of TIV. Local and systemic adverse events were recorded. Sera were collected before immunization and 1 month after last dose of TIV. Hemagglutination inhibition antibody testing was performed. Of the 243 subjects enrolled (32 primed, 211 naive), data for 232 were available for complete analysis. No significant differences in local or systemic reactions were observed. Few significant differences in immunogenicity to the 3 vaccine antigens were noted. The immune response to H1N1 was significantly higher in the full-dose group among primed subjects. In the naive cohort, the geometric mean titer for all 3 antigens after 2 doses of TIV were significantly higher in the 12 through 35 months compared with the 6 through 11 months age group. Our study confirms the safety of full-dose TIV given to children 6 through 35 months of age. An increase in antibody responses after full- versus half-dose TIV was not observed, except for H1N1 in the primed group. Larger studies are needed to clarify the potential for improved immunogenicity with higher vaccine doses. Recommending the same dose could simplify the production, storage, and administration of influenza vaccines.

  6. Nasal delivery of an adenovirus-based vaccine bypasses pre-existing immunity to the vaccine carrier and improves the immune response in mice.

    Directory of Open Access Journals (Sweden)

    Maria A Croyle

    Full Text Available Pre-existing immunity to human adenovirus serotype 5 (Ad5 is common in the general population. Bypassing pre-existing immunity could maximize Ad5 vaccine efficacy. Vaccination by the intramuscular (I.M., nasal (I.N. or oral (P.O. route with Ad5 expressing Ebola Zaire glycoprotein (Ad5-ZGP fully protected naïve mice against lethal challenge with Ebola. In the presence of pre-existing immunity, only mice vaccinated I.N. survived. The frequency of IFN-gamma+ CD8+ T cells was reduced by 80% and by 15% in animals vaccinated by the I.M. and P.O. routes respectively. Neutralizing antibodies could not be detected in serum from either treatment group. Pre-existing immunity did not compromise the frequency of IFN-gamma+ CD8+ T cells (3.9+/-1% naïve vs. 3.6+/-1% pre-existing immunity, PEI nor anti-Ebola neutralizing antibody (NAB, 40+/-10 reciprocal dilution, both groups. The number of INF-gamma+ CD8+ cells detected in bronchioalveolar lavage fluid (BAL after I.N. immunization was not compromised by pre-existing immunity to Ad5 (146+/-14, naïve vs. 120+/-16 SFC/million MNCs, PEI. However, pre-existing immunity reduced NAB levels in BAL by approximately 25% in this group. To improve the immune response after oral vaccination, the Ad5-based vaccine was PEGylated. Mice given the modified vaccine did not survive challenge and had reduced levels of IFN-gamma+ CD8+ T cells 10 days after administration (0.3+/-0.3% PEG vs. 1.7+/-0.5% unmodified. PEGylation did increase NAB levels 2-fold. These results provide some insight about the degree of T and B cell mediated immunity necessary for protection against Ebola virus and suggest that modification of the virus capsid can influence the type of immune response elicited by an Ad5-based vaccine.

  7. Cost-effectiveness of hepatitis A vaccination in Indonesia

    Science.gov (United States)

    Suwantika, Auliya A; Beutels, Philippe; Postma, Maarten J

    2014-01-01

    Objective This study aims to assess the cost-effectiveness of hepatitis A immunization in Indonesia, including an explicit comparison between one-dose and two-dose vaccines. Methods An age-structured cohort model based on a decision tree was developed for the 2012 Indonesia birth cohort. Using the model, we made a comparison on the use of two-dose and one-dose vaccines. The model involved a 70-year time horizon with 1-month cycles for children less than 2 years old and annually thereafter. Monte Carlo simulations were used to examine the economic acceptability and affordability of the hepatitis A vaccination. Results Vaccination would save US$ 3 795 148 and US$ 2 892 920 from the societal perspective, for the two-dose and one-dose vaccine schedules, respectively, in the context of hepatitis A treatment. It also would save 8917 and 6614 discounted quality-adjusted-life-years (QALYs), respectively. With the vaccine price of US$ 3.21 per dose, the implementation of single dose vaccine would yield an incremental cost-effectiveness ratio (ICER) of US$ 4933 per QALY gained versus no vaccination, whereas the two-dose versus one-dose schedule would cost US$ 14 568 per QALY gained. Considering the 2012 gross-domestic-product (GDP) per capita in Indonesia of US$ 3557, the results indicate that hepatitis A vaccination would be a cost-effective intervention, both for the two-dose and one-dose vaccine schedules in isolation, but two-dose vaccination would no longer be cost-effective if one-dose vaccination is a feasible option. Vaccination would be 100% affordable at budgets of US$ 71 408 000 and US$ 37 690 000 for the implementation of the two-dose and one-dose vaccine schedules, respectively. Conclusions The implementation of hepatitis A vaccination in Indonesia would be a cost-effective health intervention under the market vaccine price. Given the budget limitations, the use of a one-dose-vaccine schedule would be more realistic to be applied than a two-dose

  8. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary glands injured by single-dose or fractionated irradiation.

    Science.gov (United States)

    Fang, Dongdong; Shang, Sixia; Liu, Younan; Bakkar, Mohammed; Sumita, Yoshinori; Seuntjens, Jan; Tran, Simon D

    2018-02-01

    Injections of bone marrow (BM) cell extract, known as 'BM soup', were previously reported to mitigate ionizing radiation (IR) injury to salivary glands (SGs). However, the optimal starting time and frequency to maintain BM soup therapeutic efficacy remains unknown. This study tested the optimal starting time and frequency of BM soup injections in mice radiated with either a single dose or a fractionated dose. First, BM soup treatment was started at 1, 3 or 7 weeks post-IR; positive (non-IR) and negative (IR) control mice received injections of saline (vehicle control). Second, BM soup-treated mice received injections at different frequencies (1, 2, 3 and 5 weekly injections). Third, a 'fractionated-dose radiation' model to injure mouse SGs was developed (5 Gy × 5 days) and compared with the single high dose radiation model. All mice (n = 65) were followed for 16 weeks post-IR. The results showed that starting injections of BM soup between 1 and 3 weeks mitigated the effect of IR-induced injury to SGs and improved the restoration of salivary function. Although the therapeutic effect of BM soup lessens after 8 weeks, it can be sustained by increasing the frequency of weekly injections. Moreover, both single-dose and fractionated-dose radiation models are efficient and comparable in inducing SG injury and BM soup treatments are effective in restoring salivary function in both radiation models. In conclusion, starting injections of BM soup within 3 weeks post-radiation, with 5 weekly injections, maintains 90-100% of saliva flow in radiated mice. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs.

    Science.gov (United States)

    Fairbrother, John Morris; Nadeau, Éric; Bélanger, Louise; Tremblay, Cindy-Love; Tremblay, Danielle; Brunelle, Mélanie; Wolf, Regina; Hellmann, Klaus; Hidalgo, Álvaro

    2017-01-05

    Enterotoxigenic Escherichia coli strains expressing F4 (K88) fimbriae (F4-ETEC) are one of the most important causes of post-weaning diarrhea (PWD) in pigs. F4, a major antigen, plays an important role in the early steps of the infection. Herein, the efficacy of a live oral vaccine consisting of a non-pathogenic E. coli strain expressing F4 for protection of pigs against PWD was evaluated. Three blinded, placebo-controlled, block design, parallel-group confirmatory experiments were conducted, using an F4-ETEC PWD challenge model, each with a different vaccination-challenge interval (3, 7, and 21days). The pigs were vaccinated via the drinking water with a single dose of the Coliprotec® F4 vaccine one day post-weaning. Efficacy was assessed by evaluating diarrhea, clinical observations, intestinal fluid accumulation, weight gain, intestinal colonization and fecal shedding of F4-ETEC. The immune response was evaluated by measuring serum and intestinal F4-specific antibodies. The administration of the vaccine resulted in a significant reduction of the incidence of moderate to severe diarrhea, ileal colonization by F4-ETEC, and fecal shedding of F4-ETEC after the heterologous challenge at 7 and 21days post-vaccination. The 7-day onset of protection was associated with an increase of serum anti-F4 IgM whereas the 21-day duration of protection was associated with an increase of both serum anti-F4 IgM and IgA. Significant correlations between levels of serum and intestinal secretory anti-F4 antibodies were detected. Maternally derived F4-specific serum antibodies did not interfere with the vaccine efficacy. The evaluation of protection following a challenge three days after vaccination showed a reduction of the severity and the duration of diarrhea and of fecal shedding of F4-ETEC. The 7-day onset and the 21-day duration of protection induced by Coliprotec® F4 vaccine administered once in drinking water to pigs of at least 18days of age were confirmed by protection

  10. Safety, immunogenicity and dose ranging of a new Vi-CRM₁₉₇ conjugate vaccine against typhoid fever: randomized clinical testing in healthy adults.

    Directory of Open Access Journals (Sweden)

    Pierre van Damme

    Full Text Available Typhoid fever causes more than 21 million cases of disease and 200,000 deaths yearly worldwide, with more than 90% of the disease burden being reported from Asia. Epidemiological data show high disease incidence in young children and suggest that immunization programs should target children below two years of age: this is not possible with available vaccines. The Novartis Vaccines Institute for Global Health developed a conjugate vaccine (Vi-CRM₁₉₇ for infant vaccination concomitantly with EPI vaccines, either starting at 6 weeks with DTP or at 9 months with measles vaccine. We report the results from a Phase 1 and a Phase 2 dose ranging trial with Vi-CRM₁₉₇ in European adults.Following randomized blinded comparison of single vaccination with either Vi-CRM₁₉₇ or licensed polysaccharide vaccines (both containing 25·0 µg of Vi antigen, a randomised observer blinded dose ranging trial was performed in the same center to compare three concentrations of Vi-CRM₁₉₇ (1·25 µg, 5·0 µg and 12·5 µg of Vi antigen with the polysaccharide vaccine.All vaccines were well tolerated. Compared to the polysaccharide vaccine, Vi-CRM₁₉₇ induced a higher incidence of mild to moderate short lasting local pain. All Vi-CRM₁₉₇ formulations induced higher Vi antibody levels compared to licensed control, with clear dose response relationship.Vi-CRM₁₉₇ did not elicit safety concerns, was highly immunogenic and is therefore suitable for further clinical testing in endemic populations of South Asia.ClinicalTrials.gov NCT01123941 NCT01193907.

  11. A boosting skin vaccination with dissolving microneedle patch encapsulating M2e vaccine broadens the protective efficacy of conventional influenza vaccines.

    Science.gov (United States)

    Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong

    2017-09-10

    The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A single dose of live-attenuated 638 Vibrio cholerae oral vaccine is safe and immunogenic in adult volunteers in Mozambique

    Directory of Open Access Journals (Sweden)

    Hilda María García

    2011-12-01

    Full Text Available A placebo-controlled randomized, double-blind, clinical trial was carried out to assess the safety, reactogenicity, and immunogenicity of the lyophilized vaccine candidate against cholera derived from the live attenuated 638 Vibrio cholerae O1 El Tor Ogawa strain. One hundred and twenty presumably healthy female and male adult volunteers aged between 18 and 50 years were included. They were from Maputo, Mozambique a cholera endemic area, where, in addition, human immunodeficiency virus (HIV seroprevalence is from 20 to 30%. A dose of 2 x 10 9 colony forming units (CFU was given to 80 subjects and other 40 received only vaccine lyoprotectors as a placebo control. Out-patient follow-up of adverse events was carried out during the following 30 days after vaccination. The immune response was evaluated by the estimation of seroconversion rate and the geometric mean titer (GMT of vibriocidal antibodies in the sera from volunteers that was collected previously, and at days 14 and 21 after immunization. No serious adverse events were reported. The adverse events found in the vaccine group were similar to those of the placebo groups. They were independent from the detection of antibodies against HIV-1, HIV-2, hepatitis (H A; HC and hepatitis B surface antigen. The presence of helminthes did not modify the incidence of adverse events. The 638 vaccine strain was isolated in 37 (46.25% vaccinated volunteer's feces. The peak of the GMT of vibriocidal antibodies in the vaccine group was 9056 versus 39 in the placebo group at 14 days with a total seroconversion of 97.4% at 21 days. The 638 vaccine candidate is safe and immunogenic in a cholera endemic region.

  13. Threshold dose to developing central nerve system of rats and mice from prenatal exposure to tritiated water

    International Nuclear Information System (INIS)

    Zhou Xiangyan; Wang Bing; Gao Weimin; Lu Huimin

    1999-01-01

    Objective: To study the threshold dose to the developing central nerve system of rats and mice from prenatal exposure to tritiated water. methods: Pregnant adult C 57 BL/6J strain mice and Wistar strain rats were irradiated with beta-rays from HTO by a single intraperitoneal injection on the 12.5 th and 13 th days of gestation. The activities of HTO were 24.09, 48.18 and 144.54 ( x 10 4 Bq/g bw), respectively. Fifty-six parameters including postnatal growth, neutro-behavior, pathology of brain, neuropeptide contents, changes of hippocampal neurons, Ca 2+ conductance of hippocampal neurons etc were used to test the teratogenic threshold dose the lowest dose was different from that of the control). Results: Of the observed 56 parameters of rats and mice 80.4% indicated that the threshold doses for prenatal HTO exposure ranged from 0.030 Gy to 0.092 Gy, and the other 19.6% showed the threshold doses from 0.093 to 0.300 Gy. Conclusions: There exists threshold dose from the low level tritiated water irradiation of the developing central nerve system

  14. A forecast of typhoid conjugate vaccine introduction and demand in typhoid endemic low- and middle-income countries to support vaccine introduction policy and decisions.

    Science.gov (United States)

    Mogasale, Vittal; Ramani, Enusa; Park, Il Yeon; Lee, Jung Seok

    2017-09-02

    A Typhoid Conjugate Vaccine (TCV) is expected to acquire WHO prequalification soon, which will pave the way for its use in many low- and middle-income countries where typhoid fever is endemic. Thus it is critical to forecast future vaccine demand to ensure supply meets demand, and to facilitate vaccine policy and introduction planning. We forecasted introduction dates for countries based on specific criteria and estimated vaccine demand by year for defined vaccination strategies in 2 scenarios: rapid vaccine introduction and slow vaccine introduction. In the rapid introduction scenario, we forecasted 17 countries and India introducing TCV in the first 5 y of the vaccine's availability while in the slow introduction scenario we forecasted 4 countries and India introducing TCV in the same time period. If the vaccine is targeting infants in high-risk populations as a routine single dose, the vaccine demand peaks around 40 million doses per year under the rapid introduction scenario. Similarly, if the vaccine is targeting infants in the general population as a routine single dose, the vaccine demand increases to 160 million doses per year under the rapid introduction scenario. The demand forecast projected here is an upper bound estimate of vaccine demand, where actual demand depends on various factors such as country priorities, actual vaccine introduction, vaccination strategies, Gavi financing, costs, and overall product profile. Considering the potential role of TCV in typhoid control globally; manufacturers, policymakers, donors and financing bodies should work together to ensure vaccine access through sufficient production capacity, early WHO prequalification of the vaccine, continued Gavi financing and supportive policy.

  15. Economic and clinical evaluation of a catch-up dose of 13-valent pneumococcal conjugate vaccine in children already immunized with three doses of the 7-valent vaccine in Italy.

    Science.gov (United States)

    Boccalini, Sara; Azzari, Chiara; Resti, Massimo; Valleriani, Claudia; Cortimiglia, Martina; Tiscione, Emilia; Bechini, Angela; Bonanni, Paolo

    2011-11-28

    A new 13-valent conjugated polysaccharide vaccine (PCV13) against Streptococcus pneumoniae infections, which replaced the 7-valent vaccine (PCV7) in the regional immunization programmes for newborns and children who started but not completed the 3 doses schedule of PCV7, is available in Italy since 2010. The opportunity of administering a further dose of PCV13 to children under 5 years of age who had already completed their vaccination with PCV7, with the aim of extending the serotype coverage, triggered an animated scientific debate. The purpose of this study was to perform a clinical/economic evaluation of the administration of a dose of PCV13, in a catch-up programme, for children under 5 years of age, who had already received 3 doses of PCV7. A mathematical model of the clinical/economic impact of the adoption of 4 catch-up strategies with PCV13 (children up to 24, 36, 48 and 60 months old) was set up, with a vaccination coverage of 80%, versus immunization with 3 doses of PCV7 without the catch-up programme. The time span covered by the simulation was 5.5 years. The following clinical outcomes of infection were evaluated: hospitalised meningitis/sepsis, hospitalised bacteraemic pneumonias (complicated and uncomplicated), hospitalised non-bacteraemic pneumonias, and non-hospitalised pneumonias. The administration of one dose of PCV13 to children up to 60 months of age significantly reduces the number of cases of pneumococcal diseases (especially, non-hospitalised pneumonias, 80% of all events prevented, and hospitalised cases of non-bacteraemic pneumococcal pneumonias, 15% of all events prevented) and, subsequently, the relative cost for medical treatment. This results in savings for medical costs amounting to more than 1,000,000 Euros when vaccinating children under 24 months of age (up to almost 3 million Euros for children up to 60 months). More than half of those savings are attributable to avoided hospitalised cases of non-bacteraemic pneumococcal

  16. In vivo99mTc-HYNIC-annexin V imaging of early tumor apoptosis in mice after single dose irradiation

    Directory of Open Access Journals (Sweden)

    He Yong-bo

    2009-10-01

    Full Text Available Abstract Background Apoptosis is a major mode of hematological tumor death after radiation. Early detection of apoptosis may be beneficial for cancer adaptive treatment. 99mTc-HYNIC-annexinV has been reported as a promising agent for in vivo apoptosis imaging. The purpose of this study is to evaluate the feasibility of in vivo99mTc-HYNIC-annexinV imaging of radiation- induced apoptosis, and to investigate its correlation with radiosensitivity. Methods Ten days after inoculation of tumor cells in the right upper limbs, the mice were randomly divided into two groups. The imaging group (4 mice each level, 4 dose levels was injected with 4-8 MBq 99mTc-HYNIC-annexinV 24 hours after irradiation and imaged 1 hr post-injection, and the mice were sacrificed immediately after imaging for biodistribution analysis of annexin V. The observation group (4 mice each level, 2 dose levels was only observed for tumor regression post-radiation. The number of apoptotic cells in a tumor was estimated with TUNEL assay. Results The 99mTc-HYNIC-annexin V uptake in E14 lymphoma significantly increased as the radiation dose escalated from 0 to 8 Gy, and significantly correlated with the number of TUNEL-positive cells (r = 0.892, P Conclusion 99mTc-HYNIC-annexinV in vivo imaging is a feasible method to detect early radiation-induced apoptosis in different tumors, and might be predictive for radiation sensitivity.

  17. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  18. [Safety and immunogenicity of a 7-valent pneumococcal conjugate vaccine (Prevenar) booster dose in healthy Chinese toddlers].

    Science.gov (United States)

    Li, Rong-cheng; Li, Feng-xiang; Li, Yan-ping

    2009-06-01

    To evaluate the safety and immunogenicity of the booster dose of 7 valent pneumococcal conjugate vaccine (PCV7) to the healthy Chinese toddlers who had received 3 primary doses. Four hundred and eighty-eight Chinese toddlers received a booster dose of PCV7 at age of 12-15 months following a primary series of the vaccine given at ages 3, 4, 5 months separately with Diphtheria Tetanus Acellular Pertussis Combined Vaccine (DTaP) in Group 1 or concurrently with DTaP in Group 2. Following the booster dose immunization, each subject was followed up for 30 days to observe the safety of the vaccine. Blood samples were taken from a subset of subjects prior and post 30 days the booster dose immunization to evaluate immunogenicity. A high proportion of subjects in Group 1 (89%) and Group 2 (91%) remained afebrile after the booster dose. Local reactions to the PCV7 booster dose were generally mild. For each serotype, the rise in GMC (post-/pre-vaccination) showed a statistically significant difference (P<0.0001) between both groups. PCV7 administered as a booster dose is generally safe, well tolerate, and immunogenic in healthy Chinese toddlers.

  19. Limiting values for the RBE of fission neutrons at low doses for life shortening in mice

    International Nuclear Information System (INIS)

    Storer, J.B.; Mitchell, T.J.

    1984-01-01

    The authors have analyzed recently published data on the effects of low doses of fission neutrons on the mean survival times of mice. The analysis for single-dose exposures was confined to doses of 20 rad or less, while for fractionated exposures only total doses of 80 rad or less were considered. They fitted the data to the frequently used power function model: life shortening = βD/sup γ/, where D is the radiation dose. They show that, at low doses per fraction, either the effects are not additive or the dose-effect curve for single exposures cannot show a greater negative curvature than about the 0.9 power of dose. Analysis of the data for γ rays showed that an exponent of 1.0 gave an acceptable fit. They conclude that at neutron doses of 20 rad or less the RBE for life shortening is constant and ranges from 13 to 22 depending on mouse strain and sex

  20. Mumps-containing vaccine effectiveness during outbreaks in two schools in Guangdong, China, 2012

    Directory of Open Access Journals (Sweden)

    Su Qi-ru

    2012-12-01

    Full Text Available Introduction: Mumps-containing vaccine was licensed in the 1990s in China with a single dose administered routinely to children aged 18–24 months since 2008. However, an increase in reported mumps cases during the period 2009 to 2012 casts doubt on the effectiveness of a single-dose mumps vaccination. In March 2012, large numbers of mumps cases in a day-care centre and primary school in Guangdong Province were investigated to estimate the effectiveness of mumps-containing vaccine.Methods: A mumps case was defined as a case with acute onset of unilateral or bilateral swelling of the parotid gland or other salivary glands. Clinical data were collected among students and staff members in the two schools from 6 February to 3 June 2012. Vaccination history was obtained from immunization certificates. Vaccine effectiveness (VE was calculated among children in classes that had more than two mumps cases.Results: The cohort included 369 children from seven classes, four from the day-care centre and three from the primary school. Vaccination certificates available for 347 children showed immunization coverage of 82% (285/347. The overall attack rate was 14.6% (54/369; the VE for a single dose of mumps vaccine was 65% (95% confidence interval [CI]: 19%–85% when given within three years and 15% (95% CI: -2%–52% when given three to six years before the outbreak. For two doses of vaccine the VE was 53% (95% CI: -15–80%.Discussion: A single dose of mumps-containing vaccine was not effective to prevent these outbreaks among preschool and schoolchildren. A second dose of mumps-containing vaccine to four to five-year-old children should be considered in China.

  1. [Imiquimod combined with dendritic cell vaccine decreases Treg proportion and enhances anti-tumor responses in mice bearing melanoma].

    Science.gov (United States)

    Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei

    2017-02-01

    Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.

  2. Age at first dose of measles vaccination in Ethiopia | Berhane | East ...

    African Journals Online (AJOL)

    Background: Although measles vaccination is recommended to be given at nine months of age in Ethiopia and in most of sub-Saharan Africa, no information is available about the age at which children actually receive their first dose of measles vaccine. This has important implications in terms of preventing infection and ...

  3. Antimalarial iron chelator, FBS0701, shows asexual and gametocyte Plasmodium falciparum activity and single oral dose cure in a murine malaria model.

    Directory of Open Access Journals (Sweden)

    Patricia Ferrer

    Full Text Available Iron chelators for the treatment of malaria have proven therapeutic activity in vitro and in vivo in both humans and mice, but their clinical use is limited by the unsuitable absorption and pharmacokinetic properties of the few available iron chelators. FBS0701, (S3"-(HO-desazadesferrithiocin-polyether [DADFT-PE], is an oral iron chelator currently in Phase 2 human studies for the treatment of transfusional iron overload. The drug has very favorable absorption and pharmacokinetic properties allowing for once-daily use to deplete circulating free iron with human plasma concentrations in the high µM range. Here we show that FBS0701 has inhibition concentration 50% (IC(50 of 6 µM for Plasmodium falciparum in contrast to the IC(50 for deferiprone and deferoxamine at 15 and 30 µM respectively. In combination, FBS0701 interfered with artemisinin parasite inhibition and was additive with chloroquine or quinine parasite inhibition. FBS0701 killed early stage P. falciparum gametocytes. In the P. berghei Thompson suppression test, a single dose of 100 mg/kg reduced day three parasitemia and prolonged survival, but did not cure mice. Treatment with a single oral dose of 100 mg/kg one day after infection with 10 million lethal P. yoelii 17XL cured all the mice. Pretreatment of mice with a single oral dose of FBS0701 seven days or one day before resulted in the cure of some mice. Plasma exposures and other pharmacokinetics parameters in mice of the 100 mg/kg dose are similar to a 3 mg/kg dose in humans. In conclusion, FBS0701 demonstrates a single oral dose cure of the lethal P. yoelii model. Significantly, this effect persists after the chelator has cleared from plasma. FBS0701 was demonstrated to remove labile iron from erythrocytes as well as enter erythrocytes to chelate iron. FBS0701 may find clinically utility as monotherapy, a malarial prophylactic or, more likely, in combination with other antimalarials.

  4. Successful administration of measles-rubella-mumps vaccine by graded challenge in a case with anaphylaxis after prior vaccination.

    Science.gov (United States)

    Tuncel, Tuba; Sancakli, Ozlem; Ozdogru, Ece

    2017-04-01

    Egg allergy is one of the most common food allergies during childhood along with cow's milk allergy. The measles-mumpsrubella (MMR) vaccine is included in the pediatric immunization schedule and contains egg protein. The currently accepted opinion is that the MMR vaccination should be done in a single dose under medical observation in patients with egg allergy. Although it is reported that the MMR vaccine is safe for that patients, there are some patients who developed anaphylaxis. Generally, the development of anaphylaxis after the previous vaccination is reported as a contraindication. We present a successful administration of MMR vaccine by gradually increased doses for a patient who developed anaphylaxis after the previous vaccination. Sociedad Argentina de Pediatría.

  5. A safe vaccine (DV-STM-07 against Salmonella infection prevents abortion and confers protective immunity to the pregnant and new born mice.

    Directory of Open Access Journals (Sweden)

    Vidya Devi Negi

    Full Text Available Pregnancy is a transient immuno-compromised condition which has evolved to avoid the immune rejection of the fetus by the maternal immune system. The altered immune response of the pregnant female leads to increased susceptibility to invading pathogens, resulting in abortion and congenital defects of the fetus and a subnormal response to vaccination. Active vaccination during pregnancy may lead to abortion induced by heightened cell mediated immune response. In this study, we have administered the highly attenuated vaccine strain DeltapmrG-HM-D (DV-STM-07 in female mice before the onset of pregnancy and followed the immune reaction against challenge with virulent S. Typhimurium in pregnant mice. Here we demonstrate that DV-STM-07 vaccine gives protection against Salmonella in pregnant mice and also prevents Salmonella induced abortion. This protection is conferred by directing the immune response towards Th2 activation and Th1 suppression. The low Th1 response prevents abortion. The use of live attenuated vaccine just before pregnancy carries the risk of transmission to the fetus. We have shown that this vaccine is safe as the vaccine strain is quickly eliminated from the mother and is not transmitted to the fetus. This vaccine also confers immunity to the new born mice of vaccinated mothers. Since there is no evidence of the vaccine candidate reaching the new born mice, we hypothesize that it may be due to trans-colostral transfer of protective anti-Salmonella antibodies. These results suggest that our vaccine DV-STM-07 can be very useful in preventing abortion in the pregnant individuals and confer immunity to the new born. Since there are no such vaccine candidates which can be given to the new born and to the pregnant women, this vaccine holds a very bright future to combat Salmonella induced pregnancy loss.

  6. Pulmonary leukocytic responses are linked to the acquired immunity of mice vaccinated with irradiated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Aitken, R.; Coulson, P.S.; Wilson, R.A.

    1988-01-01

    Pulmonary cellular responses in C57BL/6 mice exposed to Schistosoma mansoni have been investigated by sampling cells from the respiratory airways with bronchoalveolar lavage. Mice exposed to cercariae attenuated with 20 krad gamma-radiation developed stronger and more persistent pulmonary leukocytic responses than animals exposed to equal numbers of normal parasites. Although vaccination with irradiated cercariae also stimulated T cell responses of greater magnitude and duration than normal infection, the lymphocytic infiltrate elicited by each regimen did not differ substantially in its composition, 5 wk after exposure. Studies with cercariae attenuated by different treatments established that a link exists between the recruitment of leukocytes to the lungs of vaccinated mice and resistance to reinfection. There was a strong association between pulmonary leukocytic responses and the elimination of challenge infections by vaccinated mice. Animals exposed to irradiated cercariae of S. mansoni were resistant to homologous challenge infection but were not protected against Schistosoma margrebowiei. Homologous challenge of vaccinated mice stimulated anamnestic leukocytic and T lymphocytic responses in the lungs, 2 wk postinfection, but exposure of immunized animals to the heterologous species failed to trigger an expansion in these populations of cells. Our studies indicate that pulmonary leukocytes and T lymphocytes are intimately involved in the mechanism of vaccine-induced resistance to S. mansoni. It remains unclear whether these populations of cells initiate protective inflammatory reactions against challenge parasites in the lungs, or accumulate in response to the activation of the protective mechanism by other means

  7. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults.

    Directory of Open Access Journals (Sweden)

    Wilfredo R Matias

    2016-06-01

    Full Text Available The bivalent whole-cell (BivWC oral cholera vaccine (Shanchol is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC responses following vaccination.We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14. We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21. Peripheral blood mononuclear cells (PBMCs were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs and Inaba (9.5 cells per million PBMCs OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001, but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety.Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area.

  8. Development of an inactivated candidate vaccine against Chandipura virus (Rhabdoviridae: Vesiculovirus).

    Science.gov (United States)

    Jadi, R S; Sudeep, A B; Barde, P V; Arankalle, V A; Mishra, A C

    2011-06-20

    A Vero cell based vaccine candidate against Chandipura (CHP) virus (Rhabdoviridae: Vesiculovirus), was developed and evaluated for immunogenicity in mice. Virus was purified by ultracentrifugation on 30% glycerol cushion followed by differential centrifugation on 10-60% sucrose gradient and inactivated with β-propio lactone at a concentration of 1:3500. The inactivated product was blended with aluminium phosphate (3%) and immunized 4-week-old Swiss albino mice. Neutralizing antibodies in the range of 1:10 to 160 and 1:80 to 1:320 was detected with 85% and 100% sero-conversion after 2nd and 3rd dose, respectively. All the immunized mice with antibody titer above 1:20 survived live virus challenge. The vaccine candidate has potential to be an efficient vaccine against CHP virus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. A purified inactivated Japanese encephalitis virus vaccine made in Vero cells.

    Science.gov (United States)

    Srivastava, A K; Putnak, J R; Lee, S H; Hong, S P; Moon, S B; Barvir, D A; Zhao, B; Olson, R A; Kim, S O; Yoo, W D; Towle, A C; Vaughn, D W; Innis, B L; Eckels, K H

    2001-08-14

    A second generation, purified, inactivated vaccine (PIV) against Japanese encephalitis (JE) virus was produced and tested in mice where it was found to be highly immunogenic and protective. The JE-PIV was made from an attenuated strain of JE virus propagated in certified Vero cells, purified, and inactivated with formalin. Its manufacture followed current GMP guidelines for the production of biologicals. The manufacturing process was efficient in generating a high yield of virus, essentially free of contaminating host cell proteins and nucleic acids. The PIV was formulated with aluminum hydroxide and administered to mice by subcutaneous inoculation. Vaccinated animals developed high-titered JE virus neutralizing antibodies in a dose dependent fashion after two injections. The vaccine protected mice against morbidity and mortality after challenge with live, virulent, JE virus. Compared with the existing licensed mouse brain-derived vaccine, JE-Vax, the Vero cell-derived JE-PIV was more immunogenic and as effective as preventing encephalitis in mice. The JE-PIV is currently being tested for safety and immunogenicity in volunteers.

  10. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  11. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Karthik Mallilankaraman

    2011-01-01

    Full Text Available Chikungunya virus (CHIKV is an emerging mosquito-borne alphavirus indigenous to tropical Africa and Asia. Acute illness is characterized by fever, arthralgias, conjunctivitis, rash, and sometimes arthritis. Relatively little is known about the antigenic targets for immunity, and no licensed vaccines or therapeutics are currently available for the pathogen. While the Aedes aegypti mosquito is its primary vector, recent evidence suggests that other carriers can transmit CHIKV thus raising concerns about its spread outside of natural endemic areas to new countries including the U.S. and Europe. Considering the potential for pandemic spread, understanding the development of immunity is paramount to the development of effective counter measures against CHIKV. In this study, we isolated a new CHIKV virus from an acutely infected human patient and developed a defined viral challenge stock in mice that allowed us to study viral pathogenesis and develop a viral neutralization assay. We then constructed a synthetic DNA vaccine delivered by in vivo electroporation (EP that expresses a component of the CHIKV envelope glycoprotein and used this model to evaluate its efficacy. Vaccination induced robust antigen-specific cellular and humoral immune responses, which individually were capable of providing protection against CHIKV challenge in mice. Furthermore, vaccine studies in rhesus macaques demonstrated induction of nAb responses, which mimicked those induced in convalescent human patient sera. These data suggest a protective role for nAb against CHIKV disease and support further study of envelope-based CHIKV DNA vaccines.

  12. Effect of single lithium doses on haemopoiesis regeneration after radiation exposure in mice

    International Nuclear Information System (INIS)

    Krajewski, K.

    1988-01-01

    The reported experiment failed to demonstrate any effect of single doses of lithium carbonate on haemopoiesis regeneration in experimental haematological syndrome of acute radiation sickness. The effects of gamma radiation on blood formation are shown. 3 figs., 6 refs. (author)

  13. Short communication. Enhancement of the immune responses to vaccination against foot-and-mouth disease in mice by oral administration of Quillaja saponaria-A and extracts of Cochinchina momordica seed

    Directory of Open Access Journals (Sweden)

    C. W. Xiao

    2013-02-01

    Full Text Available This study was designed to evaluate the effects of oral administration of extracts from Cochinchina momordica seed (ECMS or Quillaja saponaria-A (Quil-A on the immune responses in mice immunized with foot and mouth disease virus (FMDV-serotype O vaccine. Forty-two imprinting control region (ICR mice were randomly divided into seven groups of 6 animals in each group, and a dose of 400 μg of Quil-A or ECMS was orally administered for 1,, 2 or 3 days. After that, the animals were subcutaneously immunized twice with FMD vaccine at 3-week intervals and blood samples were collected 2-weeks after boosting for measurement of FMDV-specific IgG and its subclasses. Spleens were collected for lymphocytes proliferation assay. Results indicated that serum FMDV-specific IgG and the IgG subclass responses were significantly enhanced in mice orally administered ECMS or Quil-A when compared with the control group (p<0.05. Lymphocytes proliferation response to FMD vaccine was significantly enhanced by ECMS compared with the control (p<0.05. This study illustrates that ECMS induced immunomodulatory effects and performed better than Quil-A.

  14. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain.

    Science.gov (United States)

    Thibodeaux, Brett A; Garbino, Nina C; Liss, Nathan M; Piper, Joseph; Blair, Carol D; Roehrig, John T

    2012-05-02

    Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne pathogen that requires wild-type (wt), virulent strains to be handled at biosafety level (BSL) 3, with HEPA-filtration of room air exhaust (BSL3+). YFV is found in tropical regions of Africa and South America and causes severe hepatic disease and death in humans. Despite the availability of effective vaccines (17D-204 or 17DD), YFV is still responsible for an estimated 200,000 cases of illness and 30,000 deaths annually. Besides vaccination, there are no other prophylactic or therapeutic strategies approved for use in human YF. Current small animal models of YF require either intra-cranial inoculation of YF vaccine to establish infection, or use of wt strains (e.g., Asibi) in order to achieve pathology. We have developed and characterized a BSL2, adult mouse peripheral challenge model for YFV infection in mice lacking receptors for interferons α, β, and γ (strain AG129). Intraperitoneal challenge of AG129 mice with 17D-204 is a uniformly lethal in a dose-dependent manner, and 17D-204-infected AG129 mice exhibit high viral titers in both brain and liver suggesting this infection is both neurotropic and viscerotropic. Furthermore the use of a mouse model permitted the construction of a 59-biomarker multi-analyte profile (MAP) using samples of brain, liver, and serum taken at multiple time points over the course of infection. This MAP serves as a baseline for evaluating novel therapeutics and their effect on disease progression. Changes (4-fold or greater) in serum and tissue levels of pro- and anti-inflammatory mediators as well as other factors associated with tissue damage were noted in AG129 mice infected with 17D-204 as compared to mock-infected control animals. Published by Elsevier Ltd.

  15. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    Science.gov (United States)

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  16. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    Science.gov (United States)

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  17. A radioattenuated Leishmania major vaccine markedly increases the resistance of CBA mice to subsequent infection with Leishmania mexicana mexicana

    International Nuclear Information System (INIS)

    Alexander, J.

    1982-01-01

    Vaccinating CBA mice with radioattenuated Leishmania major amastigotes but not with radioattenuated L. mexicana amastigotes rendered them highly resistant to subsequent infection with L. m. mexicana. Unvaccinated CBA mice were highly susceptible to infection with L. m. mexicana producing rapidly growing non-ulcerating cutaneous lesions. Two manifestations of resistance were induced in vaccinated animals depending on the timing of the challenge infection: no lesions appeared at the site of subcutaneous challenge in animals vaccinated four or more weeks previously, while lesions grew rapidly but ulcerated and healed in animals vaccinated less than 3 weeks beforehand. L. major amastigotes were found to be markedly more resistant to γ irradiation than L. m.mexicana amastigotes both as measured by their ability to infect susceptible strains of mice and to transform and multiply as promastigotes in NNN medium. (author)

  18. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants.

    Directory of Open Access Journals (Sweden)

    Damon Deming

    2006-12-01

    Full Text Available In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV was identified as the etiological agent of severe acute respiratory syndrome, a disease characterized by severe pneumonia that sometimes results in death. SARS-CoV is a zoonotic virus that crossed the species barrier, most likely originating from bats or from other species including civets, raccoon dogs, domestic cats, swine, and rodents. A SARS-CoV vaccine should confer long-term protection, especially in vulnerable senescent populations, against both the 2003 epidemic strains and zoonotic strains that may yet emerge from animal reservoirs. We report the comprehensive investigation of SARS vaccine efficacy in young and senescent mice following homologous and heterologous challenge.Using Venezuelan equine encephalitis virus replicon particles (VRP expressing the 2003 epidemic Urbani SARS-CoV strain spike (S glycoprotein (VRP-S or the nucleocapsid (N protein from the same strain (VRP-N, we demonstrate that VRP-S, but not VRP-N vaccines provide complete short- and long-term protection against homologous strain challenge in young and senescent mice. To test VRP vaccine efficacy against a heterologous SARS-CoV, we used phylogenetic analyses, synthetic biology, and reverse genetics to construct a chimeric virus (icGDO3-S encoding a synthetic S glycoprotein gene of the most genetically divergent human strain, GDO3, which clusters among the zoonotic SARS-CoV. icGD03-S replicated efficiently in human airway epithelial cells and in the lungs of young and senescent mice, and was highly resistant to neutralization with antisera directed against the Urbani strain. Although VRP-S vaccines provided complete short-term protection against heterologous icGD03-S challenge in young mice, only limited protection was seen in vaccinated senescent animals. VRP-N vaccines not only failed to protect from homologous or heterologous challenge, but resulted in enhanced immunopathology with eosinophilic

  19. A meta-analysis of experimental studies of attenuated Schistosoma mansoni vaccines in the mouse model

    Directory of Open Access Journals (Sweden)

    Mizuho eFukushige

    2015-02-01

    Full Text Available Schistosomiasis is a water-borne, parasitic disease of major public health importance. There has been considerable effort for several decades towards the development of a vaccine against the disease. Numerous mouse experimental studies using attenuated Schistosoma mansoni parasites for vaccination have been published since the 1960s. However, to date, there has been no systematic review or meta-analysis of these data. The aim of this study is to identify measurable experimental conditions that affect the level of protection against re-infection with S. mansoni in mice vaccinated with radiation attenuated cercariae. Following a systematic review, a total of 755 observations were extracted from 105 articles (published 1963-2007 meeting the searching criteria. Random effects meta-regression models were used to identify the influential predictors.Three predictors were found to have statistically significant effects on the level of protection from vaccination: increasing numbers of immunizing parasites had a positive effect on fraction of protection whereas increasing radiation dose and time to challenge infection had negative effects. Models showed that the irradiated cercariae vaccine has the potential to achieve protection as high as 78% with a single dose vaccination. This declines slowly over time but remains high for at least 8 months after the last immunization. These findings provide insights into the optimal delivery of attenuated parasite vaccination and into the nature and development of protective vaccine induced immunity against schistosomiasis which may inform the formulation of human vaccines and the predicted duration of protection and thus frequency of booster vaccines.

  20. A heterologous prime-boost Ebola virus vaccine regimen induces durable neutralizing antibody response and prevents Ebola virus-like particle entry in mice.

    Science.gov (United States)

    Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong

    2017-09-01

    Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Single dose toxicity and biodistribution studies of [{sup 18}F] fluorocholine

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Danielle C.; Santos, Priscilla F., E-mail: dcc@cdtn.br [Universidade Federal de Minas Gereais (INCT-MM/UFMG), Belo Horizonte, MG (Brazil). Faculdade de Medicina. Instituto Nacional de Ciencia e Tecnologia de Medicina Molecular; Silveira, Marina B.; Ferreira, Soraya Z.; Malamut, Carlos; Silva, Juliana B. da, E-mail: radiofarmacoscdtn@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Unidade de Pesquisa e Producao de Radiofarmacos; Souza, Cristina M.; Campos, Liliane C.; Ferreira, Enio; Araujo, Marina R.; Cassali, Geovanni D., E-mail: cassalig@icb.ufmg.br [Universidade Federal de Minas Gerais (LPC/UFMG), Belo Horizonte, MG (Brazil). Lab. de Patologia Comparada

    2013-07-01

    [{sup 18}F]Fluorocholine ({sup 18}FCH) is a valuable tool for non-invasive diagnosis using positron emission tomography (PET). This radiotracer has been proven to be highly effective in detecting recurrences and staging prostate cancer, diagnoses brain, breast, and esophageal tumors and also hepatocellular carcinoma. The higher uptake of fluorocholine by malignant tumors results from increased choline kinase activity due to accelerated cell multiplication and membrane formation. According to the Brazilian Health Surveillance Agency (ANVISA), radiopharmaceuticals have to be registered before commercialization. The aim of this work was to evaluate single dose toxicity and biodistribution of {sup 18}FCH in mice, since preclinical safety studies are required for register. Experimental procedures were approved by the Ethics Committee on Animal Use (CEUA-IPEN/SP). Single dose toxicity and biodistribution studies were conducted in Swiss mice. No signs of toxicity were observed during clinical trial. No changes in the parameters which were examined, such as: body weight, food consumption, clinical pathology parameters or lesions microscopic were noted. Biodistribution results indicated high physiological tracer uptake in kidney, liver and heart 30 min after injection. Lower activities were recorded in other organs/tissues: pancreas, intestine, spleen, bone, bladder, muscle, brain and blood. Initial preclinical investigations showed no toxic effects of {sup 18}FCH at investigated doses and a biodistribution profile very similar to other reports in literature. This information is essential to support future human trials. (author)

  2. Monoclonal Idiotope Vaccine against Streptococcus pneumoniae Infection

    Science.gov (United States)

    McNamara, Mary K.; Ward, Ronald E.; Kohler, Heinz

    1984-12-01

    A monoclonal anti-idiotope antibody coupled to a carrier protein was used to immunize BALB/c mice against a lethal Streptococcus pneumoniae infection. Vaccinated mice developed a high titer of antibody to phosphorylcholine, which is known to protect against infection with Streptococcus pneumoniae. Measurement of the median lethal dose of the bacteria indicated that anti-idiotope immunization significantly increased the resistance of BALB/c mice to the bacterial challenge. Antibody to an idiotope can thus be used as an antigen substitute for the induction of protective immunity.

  3. A Modified Bacillus Calmette-Guérin (BCG Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence

    Directory of Open Access Journals (Sweden)

    Douglas S. Kernodle

    2013-01-01

    Full Text Available Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.

  4. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection

    Science.gov (United States)

    Terryn, Sanne; Francart, Aurélie; Rommelaere, Heidi; Stortelers, Catelijne; Van Gucht, Steven

    2016-01-01

    Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP. PMID:27483431

  5. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection.

    Directory of Open Access Journals (Sweden)

    Sanne Terryn

    2016-08-01

    Full Text Available Post-exposure prophylaxis (PEP against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days and decreased mortality (60% versus 19% survival rate, when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP.

  6. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    Science.gov (United States)

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  7. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  8. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  9. [Immunization with Bifidobacterium bifidum-vectored OprI vaccine of Pseudomonas aeruginosa enhances inhibitory effect on P. aeruginosa in mice].

    Science.gov (United States)

    Liu, Xiao; Li, Wengui

    2017-08-01

    Objective To study the pulmonary bacterial loads, splenocyte proliferation, distributions of T cell subsets and cell apoptosis in mice immunized with Bifidobacterium bifidum-vectored OprI (Bb-OprI) vaccine of Pseudomonas aeruginosa and challenged with P. aeruginosa PA01 strain. Methods BALB/c mice were immunized with 5×10 9 CFUs of vaccine by intragastric administration, 3 times a week for 3 weeks, and challenged intranasally with 5×10 6 CFUs of PA01 strain at the fourth week after the first immunization. At the second week after the challenge, all mice were sacrificed to separate their lungs and spleens, and the pulmonary bacterial loads were counted. The proliferation of the splenocytes was determined by MTT assay. The splenic CD4 + , CD8 + T cell subsets and the apoptotic rate of splenocytes were detected by flow cytometry. Results The number of pulmonary bacterial colonies in the mice immunized with the vaccine and challenged with PA01 strain decreased, while the proliferation of splenocytes and the proportion of CD4 + T cells markedly increased, and the apoptosis of splenocytes was notably reduced. Conclusion The intragastric vaccination of recombinant Bb-OprI vaccine can increase the proportion of CD4 + T cells and enhance the inhibitory effect on P. aeruginosa.

  10. Immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine in infants: a comparative, observer-blind, randomised, controlled trial.

    Science.gov (United States)

    Sáez-Llorens, Xavier; Clemens, Ralf; Leroux-Roels, Geert; Jimeno, José; Clemens, Sue Ann Costa; Weldon, William C; Oberste, M Steven; Molina, Natanael; Bandyopadhyay, Ananda S

    2016-03-01

    Following the proposed worldwide switch from trivalent oral poliovirus vaccine (tOPV) to bivalent types 1 and 3 OPV (bOPV) in 2016, inactivated poliovirus vaccine (IPV) will be the only source of protection against poliovirus type 2. With most countries opting for one dose of IPV in routine immunisation schedules during this transition because of cost and manufacturing constraints, optimisation of protection against all poliovirus types will be a priority of the global eradication programme. We assessed the immunogenicity and safety of a novel monovalent high-dose inactivated poliovirus type 2 vaccine (mIPV2HD) in infants. This observer-blind, comparative, randomised controlled trial was done in a single centre in Panama. We enrolled healthy infants who had not received any previous vaccination against poliovirus. Infants were randomly assigned (1:1) by computer-generated randomisation sequence to receive a single dose of either mIPV2HD or standard trivalent IPV given concurrently with a third dose of bOPV at 14 weeks of age. At 18 weeks, all infants were challenged with one dose of monovalent type 2 OPV (mOPV2). Primary endpoints were seroconversion and median antibody titres to type 2 poliovirus 4 weeks after vaccination with mIPV2HD or IPV; and safety (as determined by the proportion and nature of serious adverse events and important medical events for 8 weeks after vaccination). The primary immunogenicity analyses included all participants for whom a post-vaccination blood sample was available. All randomised participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02111135. Between April 14 and May 9, 2014, 233 children were enrolled and randomly assigned to receive mIPV2HD (117 infants) or IPV (116 infants). 4 weeks after vaccination with mIPV2HD or IPV, seroconversion to poliovirus type 2 was recorded in 107 (93·0%, 95% CI 86·8-96·9) of 115 infants in the mIPV2HD group compared with 86 (74·8%, 65·8

  11. A New Approach to a Lyme Disease Vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Livey, I.; Dunn, J.; O' Rourke, M.; Traweger, A.; Savidis-Dacho, H.; Crowe, B. A.; Barrett, P. N.; Yang, X.; Luft, B. J.

    2011-02-01

    A single recombinant outer surface protein A (OspA) antigen designed to contain protective elements from 2 different OspA serotypes (1 and 2) is able to induce antibody responses that protect mice against infection with either Borrelia burgdorferi sensu stricto (OspA serotype-1) or Borrelia afzelii (OspA serotype-2). Protection against infection with B burgdorferi ss strain ZS7 was demonstrated in a needle-challenge model. Protection against B. afzelii species was shown in a tick-challenge model using feral ticks. In both models, as little as .03 {micro}g of antigen, when administered in a 2-dose immunization schedule with aluminum hydroxide as adjuvant, was sufficient to provide complete protection against the species targeted. This proof of principle study proves that knowledge of protective epitopes can be used for the rational design of effective, genetically modified vaccines requiring fewer OspA antigens and suggests that this approach may facilitate the development of an OspA vaccine for global use.

  12. A review of immunogenicity and tolerability of live attenuated Hepatitis A vaccine in children

    Science.gov (United States)

    Rao, Sameer; Mao, J. S.; Motlekar, Salman; Fangcheng, Zhuang; Kadhe, Ganesh

    2016-01-01

    ABSTRACT Changing epidemiology of Hepatitis A virus (HAV) has led to an increased susceptibility of adolescents and adults to the infection. Vaccination can remarkably reduce the incidence and associated morbidity of HAV infection. This review is focused on the safety and efficacy of H2 strain derived live attenuated Hepatitis A vaccine. We found the vaccine to be highly immunogenic with minimal or negligible safety issues. Moreover, a single dose of live attenuated vaccine persists a long term immune response and can be a preferred option for developing countries. In 2014, Indian Academy of Paediatrics (IAP) also updated their recommendations for H2 vaccine as a single dose as against the previous 2 dose schedule. A focused approach to include the vaccine in national immunization program should be explored. PMID:27532370

  13. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  14. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors.

    Science.gov (United States)

    Heimberger, Amy B; Crotty, Laura E; Archer, Gary E; Hess, Kenneth R; Wikstrand, Carol J; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2003-09-15

    The epidermal growth factor receptor (EGFR) is often amplified and structurally rearranged in malignant gliomas and other tumors such as breast and lung, with the most common mutation being EGFRvIII. In the study described here, we tested in mouse models a vaccine consisting of a peptide encompassing the tumor-specific mutated segment of EGFRvIII (PEP-3) conjugated to keyhole limpet hemocyanin [KLH (PEP-3-KLH)]. C57BL/6J or C3H mice were vaccinated with PEP-3-KLH and subsequently challenged either s.c. or intracerebrally with a syngeneic melanoma cell line stably transfected with a murine homologue of EGFRvIII. Control mice were vaccinated with KLH. To test its effect on established tumors, C3H mice were also challenged intracerebrally and subsequently vaccinated with PEP-3-KLH. S.c. tumors developed in all of the C57BL/6J mice vaccinated with KLH in Freund's adjuvant, and there were no long-term survivors. Palpable tumors never developed in 70% of the PEP-3-KLH-vaccinated mice. In the C57BL/6J mice receiving the PEP-3-KLH vaccine, the tumors that did develop were significantly smaller than those in the control group (P PEP-3-KLH vaccination did not result in significant cytotoxic responses in standard cytotoxicity assays; however, antibody titers against PEP-3 were enhanced. The passive transfer of sera from the immunized mice to nonimmunized mice protected 31% of the mice from tumor development (P PEP-3-KLH-vaccinated mice. Peptide vaccination was also sufficiently potent to have marked efficacy against intracerebral tumors, resulting in a >173% increase in median survival time, with 80% of the C3H mice achieving long-term survival (P = 0.014). In addition, C3H mice with established intracerebral tumor that received a single treatment of PEP-3-KLH showed a 26% increase in median survival time, with 40% long-term survival (P = 0.007). Vaccination with an EGFRvIII-specific peptide is efficacious against both s.c. and established intracerebral tumors. The

  15. Mexico introduces pentavalent vaccine.

    Science.gov (United States)

    1999-08-01

    Combination vaccines have been introduced in Mexico. The national immunization program has incorporated the measles-mumps-rubella (MMR) vaccines in 1998, and the pentavalent vaccine in 1999. The two categories of antigen composition in combination vaccines are: 1) multiple different antigenic types of a single pathogen, such as the 23 valent pneumococcal polysaccharide vaccine, and 2) antigens from different pathogens causing different diseases, such as the DPT and MMR vaccines. Pentavalent vaccines are included in the second category. The vaccine protects against diphtheria, tetanus, pertussis, hepatitis B, and other diseases produced by Haemophilus influenzae type b (Hib). Combined diphtheria, tetanus, pertussis, hepatitis B, and Haemophilus influenza type b (DTP-HB/Hib) vaccine has been distributed to 87% of Mexican children under 1 year of age. Over 800,000 doses of pentavalent vaccine have been administered.

  16. Efficacy of single dose of a bivalent vaccine containing inactivated Newcastle disease virus and reassortant highly pathogenic avian influenza H5N1 virus against lethal HPAI and NDV infection in chickens.

    Directory of Open Access Journals (Sweden)

    Dong-Hun Lee

    Full Text Available Highly pathogenic avian influenza (HPAI and Newcastle disease (ND are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6:2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1 virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.

  17. Successful adjuvant-free vaccination of BALB/c mice with mutated amyloid β peptides

    Directory of Open Access Journals (Sweden)

    Wahi Monika M

    2008-02-01

    Full Text Available Abstract Background A recent human clinical trial of an Alzheimer's disease (AD vaccine using amyloid beta (Aβ 1–42 plus QS-21 adjuvant produced some positive results, but was halted due to meningoencephalitis in some participants. The development of a vaccine with mutant Aβ peptides that avoids the use of an adjuvant may result in an effective and safer human vaccine. Results All peptides tested showed high antibody responses, were long-lasting, and demonstrated good memory response. Epitope mapping indicated that peptide mutation did not lead to epitope switching. Mutant peptides induced different inflammation responses as evidenced by cytokine profiles. Ig isotyping indicated that adjuvant-free vaccination with peptides drove an adequate Th2 response. All anti-sera from vaccinated mice cross-reacted with human Aβ in APP/PS1 transgenic mouse brain tissue. Conclusion Our study demonstrated that an adjuvant-free vaccine with different Aβ peptides can be an effective and safe vaccination approach against AD. This study represents the first report of adjuvant-free vaccines utilizing Aβ peptides carrying diverse mutations in the T-cell epitope. These largely positive results provide encouragement for the future of the development of human vaccinations for AD.

  18. IgA attenuates anaphylaxis and subsequent immune responses in mice: possible application of IgA to vaccines.

    Science.gov (United States)

    Yamaki, Kouya; Nakashima, Takayuki; Miyatake, Kenji; Ishibashi, Yuki; Ito, Ayaka; Kuranishi, Ayu; Taguchi, Akihito; Morioka, Ayumi; Yamamoto, Midori; Yoshino, Shin

    2014-01-01

    Administration of the influenza vaccination to patients with an egg allergy is major health concern. Contaminating egg antigens occasionally induce severe anaphylactic shock in these patients following administration of the vaccination; therefore, the development of a safer vaccination is needed. In the present study, we investigated whether a mixture of four newly and previously generated anti-ovalbumin (OVA) IgA monoclonal antibodies (mAbs) could inhibit both anaphylactic shock upon a subcutaneous OVA challenge and subsequent further sensitization against OVA in passively anti-OVA IgE-sensitized mice and actively sensitized mice with an injection of OVA. The prevention of anaphylaxis by anti-OVA IgA mAbs was suggested to be mediated through the inhibition of OVA binding to allergenic antibodies such as anti-OVA IgE on mast cells and deceleration of the rate of OVA penetration from the injected site into the systemic circulation. Anti-OVA IgA mAbs inhibited further sensitization against OVA in mice actively sensitized with OVA, but did not affect sensitization against the unrelated antigen, phosphorylcholine-keyhole limpet hemocyanin co-injected with OVA. Our findings indicate that adding the anti-egg antigen IgA to the influenza vaccine should reduce not only the risk of inducing anaphylactic shock, but also undesired further sensitization against egg antigens following the vaccination without affecting the intended beneficial effect of the vaccine, namely the upregulation of immune responses to influenza viruses.

  19. An inactivated yellow fever 17DD vaccine cultivated in Vero cell cultures.

    Science.gov (United States)

    Pereira, Renata C; Silva, Andrea N M R; Souza, Marta Cristina O; Silva, Marlon V; Neves, Patrícia P C C; Silva, Andrea A M V; Matos, Denise D C S; Herrera, Miguel A O; Yamamura, Anna M Y; Freire, Marcos S; Gaspar, Luciane P; Caride, Elena

    2015-08-20

    Yellow fever is an acute infectious disease caused by prototype virus of the genus Flavivirus. It is endemic in Africa and South America where it represents a serious public health problem causing epidemics of hemorrhagic fever with mortality rates ranging from 20% to 50%. There is no available antiviral therapy and vaccination is the primary method of disease control. Although the attenuated vaccines for yellow fever show safety and efficacy it became necessary to develop a new yellow fever vaccine due to the occurrence of rare serious adverse events, which include visceral and neurotropic diseases. The new inactivated vaccine should be safer and effective as the existing attenuated one. In the present study, the immunogenicity of an inactivated 17DD vaccine in C57BL/6 mice was evaluated. The yellow fever virus was produced by cultivation of Vero cells in bioreactors, inactivated with β-propiolactone, and adsorbed to aluminum hydroxide (alum). Mice were inoculated with inactivated 17DD vaccine containing alum adjuvant and followed by intracerebral challenge with 17DD virus. The results showed that animals receiving 3 doses of the inactivated vaccine (2 μg/dose) with alum adjuvant had neutralizing antibody titers above the cut-off of PRNT50 (Plaque Reduction Neutralization Test). In addition, animals immunized with inactivated vaccine showed survival rate of 100% after the challenge as well as animals immunized with commercial attenuated 17DD vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The stimulatory effect of single-dose pre-irradiation administration of indomethacin and diclofenac on haemopoietic recovery in the spleen of gamma-irradiated mice

    International Nuclear Information System (INIS)

    Kozubik, A.; Pospisil, M.; Netikova, J.

    1989-01-01

    The aim of the work was to examine the effect of the single-dose pre-irradiation administration of non-steroid anti-inflammatory drugs, i.e. indomethacin (0.15 mg/mouse) and diclofenac (0.6 mg/mouse) on the recovery of haemopoiesis in the spleen of whole-body irradiated male mice (CBA x C57BL/10)F 1 . It was shown that the administation of these substances 1-24 h prior to sublethal irradiation stimulates the recovery of the proliferation activity of the spleen and the formation of endogenous spleen colonies. These results can be explained as the inhibitory effect of the substances administered on biosynthesis of prostaglandins. (author)

  1. Duration of post-vaccination immunity to yellow fever in volunteers eight years after a dose-response study.

    Science.gov (United States)

    de Menezes Martins, Reinaldo; Maia, Maria de Lourdes S; de Lima, Sheila Maria Barbosa; de Noronha, Tatiana Guimarães; Xavier, Janaina Reis; Camacho, Luiz Antonio Bastos; de Albuquerque, Elizabeth Maciel; Farias, Roberto Henrique Guedes; da Matta de Castro, Thalita; Homma, Akira

    2018-06-27

    In 2009, Bio-Manguinhos conducted a dose-response study with the yellow fever vaccine, administering the vaccine in the usual mean dose of 27,476 IU (full dose, reference) and in tapered doses (10,447 IU, 3013 IU, 587 IU, 158 IU, and 31 IU) by the usual subcutaneous route and usual volume (0.5 mL). Tapered doses were obtained by dilution in the manufacturer's laboratory, and the test batches presented industrial quality. Doses down to 587 IU showed similar immunogenicity to the full dose (27,476, reference), while the 158 IU and 31 IU doses displayed lower immunogenicity. Seropositivity was maintained at 10 months, except in the group that received the 31 IU dose. The current study aims to determine whether yellow fever seropositivity was maintained eight years after YF vaccination in non-revaccinated individuals. According to the current study's results, seropositivity was maintained in 85% of 318 participants and was similar across groups. The findings support the use of the yellow fever vaccine in fractional doses during outbreaks, but each fractional dose should have at least 587 IU. This study also supports the minimum dose required by WHO, 1000 IU. Clinicaltrials.gov NCT 03338231. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Gamma-irradiated influenza A virus provides adjuvant activity to a co-administered poorly immunogenic SFV vaccine in mice.

    Directory of Open Access Journals (Sweden)

    Rachelle eBabb

    2014-06-01

    Full Text Available Many currently available inactivated vaccines require 'adjuvants' to maximise the protective immune responses generated against the antigens of interest. Recent studies in mice with gamma-irradiated influenza A virus (γ-FLU have shown its superior efficacy compared to other forms of inactivated FLU vaccines and its ability to induce both potent type-I interferon (IFN-I responses and the IFN-I associated partial lymphocyte activation. Commonly, IFN-I responses induced by adjuvants, combined in vaccine preparations, have been shown to effectively enhance the immunogenicity of the antigens of interest. Therefore, we investigated the potential adjuvant activity of γ-FLU and the possible effect on antibody responses against co-administrated antigens, using gamma-irradiated Semliki Forest Virus (γ-SFV as the experimental vaccine in mice. Our data show that co-vaccination with γ-FLU and γ-SFV resulted in enhanced SFV-specific antibody responses in terms of increased titres by 6 fold and greater neutralisation efficacy, when compared to vaccination with γ-SFV alone. This study provides promising evidence related to the possible use of γ-FLU as an adjuvant to poorly immunogenic vaccines without compromising the vaccine efficacy of γ-FLU.

  3. Development of a Multivalent Subunit Vaccine against Tularemia Using Tobacco Mosaic Virus (TMV Based Delivery System.

    Directory of Open Access Journals (Sweden)

    Sukalyani Banik

    Full Text Available Francisella tularensis is a facultative intracellular pathogen, and is the causative agent of a fatal human disease known as tularemia. F. tularensis is classified as a Category A Biothreat agent by the CDC based on its use in bioweapon programs by several countries in the past and its potential to be used as an agent of bioterrorism. No licensed vaccine is currently available for prevention of tularemia. In this study, we used a novel approach for development of a multivalent subunit vaccine against tularemia by using an efficient tobacco mosaic virus (TMV based delivery platform. The multivalent subunit vaccine was formulated to contain a combination of F. tularensis protective antigens: OmpA-like protein (OmpA, chaperone protein DnaK and lipoprotein Tul4 from the highly virulent F. tularensis SchuS4 strain. Two different vaccine formulations and immunization schedules were used. The immunized mice were challenged with lethal (10xLD100 doses of F. tularensis LVS on day 28 of the primary immunization and observed daily for morbidity and mortality. Results from this study demonstrate that TMV can be used as a carrier for effective delivery of multiple F. tularensis antigens. TMV-conjugate vaccine formulations are safe and multiple doses can be administered without causing any adverse reactions in immunized mice. Immunization with TMV-conjugated F. tularensis proteins induced a strong humoral immune response and protected mice against respiratory challenges with very high doses of F. tularensis LVS. This study provides a proof-of-concept that TMV can serve as a suitable platform for simultaneous delivery of multiple protective antigens of F. tularensis. Refinement of vaccine formulations coupled with TMV-targeting strategies developed in this study will provide a platform for development of an effective tularemia subunit vaccine as well as a vaccination approach that may broadly be applicable to many other bacterial pathogens.

  4. Rift Valley fever virus MP-12 vaccine encoding Toscana virus NSs retains neuroinvasiveness in mice.

    Science.gov (United States)

    Indran, Sabarish V; Lihoradova, Olga A; Phoenix, Inaia; Lokugamage, Nandadeva; Kalveram, Birte; Head, Jennifer A; Tigabu, Bersabeh; Smith, Jennifer K; Zhang, Lihong; Juelich, Terry L; Gong, Bin; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-07-01

    Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-β gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.

  5. Compliance with birth dose of Hepatitis B vaccine in high endemic and hard to reach areas in the Colombian amazon: results from a vaccination survey.

    Science.gov (United States)

    Choconta-Piraquive, Luz Angela; De la Hoz-Restrepo, Fernando; Sarmiento-Limas, Carlos Arturo

    2016-07-21

    Hepatitis B vaccination was introduced into the Expanded Program of Immunization in Colombia in 1992, in response to WHO recommendations on hepatitis B immunization. Colombia is a low endemic country for Hepatitis B virus infection (HBV) but it has several high endemic areas like the Amazon basin where more than 70 % of adults had been infected. A cross- sectional study was carried out in three rural areas of the Colombian Amazon to evaluate compliance with the recommended schedule for hepatitis B vaccine in Colombian children (one monovalent dose given in the first 24 h after birth + 3 doses of a pentavalent containing Hepatitis B. (DPT + Hib + Hep B). A household survey was conducted in order to collect vaccination data from children aged from 6 months to studied, 79 % received a monovalent dose of hepatitis B vaccine, but only 30.7 % were vaccinated in the first 24 h after birth. This proportion did not increase by age or subsequent birth cohorts. Coverage with three doses of a DTP-Hib-HepB vaccine was 98 %, but most children did not receive them according to the recommended schedule. Being born in a health facility was the strongest predictor of receiving a timely birth dose. This study suggests that more focused strategies on improving compliance with hepatitis B birth dose should be implemented in rural areas of the Amazon, if elimination of perinatal transmission of HBV is to be achieved. Increasing the proportion of newborns delivered at health facilities should be one of the priorities to reach that goal.

  6. Trial of high-dose Edmonston-Zagreb measles vaccine in Guinea-Bissau

    DEFF Research Database (Denmark)

    Aaby, Peter; Jensen, T G; Hansen, H L

    1988-01-01

    In a randomised study of 558 children in an urban African community, the protective effect of the Edmonston-Zagreb (EZ) measles vaccine given in a dose of 40,000 plaque forming units from the age of 4 months was compared with the effects of a standard dose (6000 tissue culture infectious units...

  7. A novel chimeric protein composed of recombinant Mycoplasma hyopneumoniae antigens as a vaccine candidate evaluated in mice.

    Science.gov (United States)

    de Oliveira, Natasha Rodrigues; Jorge, Sérgio; Gomes, Charles Klazer; Rizzi, Caroline; Pacce, Violetta Dias; Collares, Thais Farias; Monte, Leonardo Garcia; Dellagostin, Odir Antônio

    2017-03-01

    Enzootic Pneumonia (EP) is caused by the Mycoplasma hyopneumoniae pathogenic bacteria, and it represents a significant respiratory disease that is responsible for major economic losses within the pig industry throughout the world. The bacterins that are currently commercially available have been proven to offer only partial protection against M. hyopneumoniae, and the development of more efficient vaccines is required. Several recombinant antigens have been evaluated via different immunization strategies and have been found to be highly immunogenic. This work describes the construction and immunological characterization of a multi-antigen chimera composed of four M. hyopneumoniae antigens: P97R1, P46, P95, and P42. Immunogenic regions of each antigen were selected and combined to encode a single polypeptide. The gene was cloned and expressed in Escherichia coli, and the chimeric protein was recognized by specific antibodies against each subunit, as well as by convalescent pig sera. The immunogenic properties of the chimera were then evaluated in a mice model through two recombinant vaccines that were formulated as follows: (1) purified chimeric protein plus adjuvant or (2) recombinant Escherichia coli bacterin. The immune response induced in BALB/c mice immunized with each formulation was characterized in terms of total IgG levels, IgG1, and IgG2a isotypes against each antigen present in the chimera. The results of the study indicated that novel chimeric protein is a potential candidate for the future development of a more effective vaccine against EP. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  9. First insights into the protective effects of a recombinant swinepox virus expressing truncated MRP of Streptococcus suis type 2 in mice.

    Science.gov (United States)

    Huang, Dongyan; Zhu, Haodan; Lin, Huixing; Xu, Jiarong; Lu, Chengping

    2012-01-01

    To explore the potential of the swinepox virus (SPV) as vector for Streptococcus suis vaccines, a vector system was developed for the construction of a recombinant SPV carrying bacterial genes. Using this system, a recombinant virus expressing truncated muramidase-released protein (MRP) of S. suis type 2 (SS2), designated rSPV-MRP, was produced and identified by PCR, western blotting and immunofluorescence assays. The rSPV-MRP was found to be only slightly attenuated in PK-15 cells, when compared with the wild-type virus. After immunization intramuscularly with rSPV-MRP, SS2 inactive vaccine (positive control), wild-type SPV (negative control) and PBS (blank control) respectively, all CD1 mice were challenged with a lethal dose or a sublethal dose of SS2 highly virulent strain ZY05719. While SS2 inactive vaccine protected all mice, immunization with rSPV-MRP resulted in 60% survival and protected mice against a lethal dose of the highly virulent SS2 strain, compared with the negative control (P MRP had a significantly reduced bacterial burden in all organs examined, compared to negative controls and blank controls (P MRP-vaccinated group were significantly higher (P MRP provided mice with protection from systemic SS2 infection. If SPV recombinants have the potential as S. suis vaccines for the use in pigs has to be evaluated in further studies.

  10. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax™ delta inulin adjuvant.

    Science.gov (United States)

    Gordon, David L; Sajkov, Dimitar; Honda-Okubo, Yoshikazu; Wilks, Samuel H; Aban, Malet; Barr, Ian G; Petrovsky, Nikolai

    2016-07-19

    Influenza vaccines are usually non-adjuvanted but addition of adjuvant may improve immunogenicity and permit dose-sparing, critical for vaccine supply in the event of an influenza pandemic. The aim of this first-in-man study was to determine the effect of delta inulin adjuvant on the safety and immunogenicity of a reduced dose seasonal influenza vaccine. Healthy male and female adults aged 18-65years were recruited to participate in a randomized controlled study to compare the safety, tolerability and immunogenicity of a reduced-dose 2007 Southern Hemisphere trivalent inactivated influenza vaccine formulated with Advax™ delta inulin adjuvant (LTIV+Adj) when compared to a full-dose of the standard TIV vaccine which does not contain an adjuvant. LTIV+Adj provided equivalent immunogenicity to standard TIV vaccine as assessed by hemagglutination inhibition (HI) assays against each vaccine strain as well as against a number of heterosubtypic strains. HI responses were sustained at 3months post-immunisation in both groups. Antibody landscapes against a large panel of H3N2 influenza viruses showed distinct age effects whereby subjects over 40years old had a bimodal baseline HI distribution pattern, with the highest HI titers against the very oldest H3N2 isolates and with a second HI peak against influenza isolates from the last 5-10years. By contrast, subjects >40years had a unimodal baseline HI distribution with peak recognition of H3N2 isolates from approximately 20years ago. The reduced dose TIV vaccine containing Advax adjuvant was well tolerated and no safety issues were identified. Hence, delta inulin may be a useful adjuvant for use in seasonal or pandemic influenza vaccines. Australia New Zealand Clinical Trial Registry: ACTRN12607000599471. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Late effects of chronic low dose-rate γ-rays irradiation on mice

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Sasagawa, Sumiko; Ichinohe, Kazuaki; Matsumoto, Tsuneya; Otsu, Hiroshi; Sato, Fumiaki

    2002-01-01

    To evaluate late biological effects of chronic low dose-rate radiation, we are conducting two experiments. Experiment 1 - Late effects of chronic low dose-rate g-rays irradiation on SPF mice, using life-span and pathological changes as parameters. Continuous irradiation with g-rays for 400 days was performed using 137 Cs γ-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8,000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until they died a natural death. As of 2002 March 31, 3,999 of the total 4,000 mice have died. Preliminary analyses of data show that 20 mGy/day suggested a shortened life span in both sexes. Partial results show that the most common lethal neoplasms in the pooled data of non-irradiated control and irradiated male mice, in order of frequency, were neoplasms of the lymphohematopoietic system, liver, and lung. In female mice, neoplasms of the lymphohematopoietic system, soft tissue, and endocrine system were common. Experiment 2 - Effects on the progeny of chronic low dose-rate g-ray irradiated SPF mice: pilot study, was started in 1999 and is currently in progress. (author)

  12. Recombinant Chimpanzee Adenovirus Vaccine AdC7-M/E Protects against Zika Virus Infection and Testis Damage.

    Science.gov (United States)

    Xu, Kun; Song, Yufeng; Dai, Lianpan; Zhang, Yongli; Lu, Xuancheng; Xie, Yijia; Zhang, Hangjie; Cheng, Tao; Wang, Qihui; Huang, Qingrui; Bi, Yuhai; Liu, William J; Liu, Wenjun; Li, Xiangdong; Qin, Chuan; Shi, Yi; Yan, Jinghua; Zhou, Dongming; Gao, George F

    2018-03-15

    The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control. IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M

  13. Low dose diagnostic radiation does not increase cancer risk in cancer prone mice

    Energy Technology Data Exchange (ETDEWEB)

    Boreham, D., E-mail: dboreham@nosm.ca [Northern Ontario School of Medicine, ON (Canada); Phan, N., E-mail: nghiphan13@yahoo.com [Univ. of Ottawa, Ottawa, ON (Canada); Lemon, J., E-mail: lemonja@mcmaster.ca [McMaster Univ., Hamilton, ON (Canada)

    2014-07-01

    The increased exposure of patients to low dose diagnostic ionizing radiation has created concern that these procedures will result in greater risk of carcinogenesis. However, there is substantial evidence that shows in many cases that low dose exposure has the opposite effect. We have investigated whether CT scans can modify mechanisms associated with carcinogenesis in cancer-prone mice. Cancer was induced in Trp53+/- mice with an acute high dose whole-body 4 Gy γ-radiation exposure. Four weeks following the cancer-inducing dose, weekly whole-body CT scans (10 mGy/scan, 75 kVp X-rays) were given for ten consecutive weeks adding an additional radiation burden of 0.1 Gy. Short-term biological responses and subsequent lifetime cancer risk were investigated. Five days following the last CT scan, there were no detectable differences in the spontaneous levels of DNA damage in blood cells (reticulocytes). In fact, CT scanned mice had significantly lower constitutive levels of oxidative DNA damage and cell death (apoptosis), compared to non-CT scanned mice. This shows that multiple low dose radiation exposures modified the radio response and indicates protective processes were induced in mice. In mice treated with the multiple CT scans following the high cancer-inducing 4 Gy dose, tumour latency was increased, significantly prolonging lifespan. We conclude that repeated CT scans can reduce the cancer risk of a prior high-dose radiation exposure, and delay the progression of specific types of radiation-induced cancers in Trp53+/-mice. This research shows for the first time that low dose exposure long after cancer initiation events alter risk and reduce cancer morbidity. Cancer induction following low doses does not follow a linear non-threshold model of risk and this model should not be used to extrapolate risk to humans following low dose exposure to ionizing radiation. (author)

  14. A cost-effectiveness analysis of typhoid fever vaccines in US military personnel.

    Science.gov (United States)

    Warren, T A; Finder, S F; Brier, K L; Ries, A J; Weber, M P; Miller, M R; Potyk, R P; Reeves, C S; Moran, E L; Tornow, J J

    1996-11-01

    Typhoid fever has been a problem for military personnel throughout history. A cost-effectiveness analysis of typhoid fever vaccines from the perspective of the US military was performed. Currently 3 vaccine preparations are available in the US: an oral live Type 21A whole cell vaccine; a single-dose parenteral, cell subunit vaccine; and a 2-dose parenteral heat-phenol killed, whole cell vaccine. This analysis assumed all vaccinees were US military personnel. Two pharmacoeconomic models were developed, one for personnel who have not yet been deployed, and the other for personnel who are deployed to an area endemic for typhoid fever. Drug acquisition, administration, adverse effect and lost work costs, as well as the costs associated with typhoid fever, were included in this analysis. Unique military issues, typhoid fever attack rates, vaccine efficacy, and compliance with each vaccine's dosage regimen were included in this analysis. A sensitivity analysis was performed to test the robustness of the models. Typhoid fever immunisation is not cost-effective for US military personnel unless they are considered imminently deployable or are deployed. The most cost-effective vaccine for US military personnel is the single-dose, cell subunit parenteral vaccine.

  15. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Live attenuated hepatitis A vaccines developed in China

    Science.gov (United States)

    Xu, Zhi-Yi; Wang, Xuan-Yi

    2014-01-01

    Two live, attenuated hepatitis A vaccines, H2 and LA-1 virus strains, were developed through serial passages of the viruses in cell cultures at 32 °C and 35 °C respectively. Both vaccines were safe and immunogenic, providing protection against clinical hepatitis A in 95% of the vaccinees, with a single dose by subcutaneous injection. The vaccine recipients were not protected from asymptomatic, subclinical hepatitis A virus (HAV) infection, which induced a similar antibody response as for unvaccinated subjects. A second dose caused anamnestic response and can be used for boosting. Oral immunization of human with H2 vaccine or of marmoset with LA-1 vaccine failed, and no evidence was found for person-to-person transmission of H2 strain or for marmoset-to-marmoset transmission of LA-1 strain by close contact. H2 strain was genetically stable when passaged in marmosets, humans or cell cultures at 37 °C; 3 consecutive passages of the virus in marmosets did not cause virulence mutation. The live vaccines offer the benefits of low cost, single dose injection, long- term protection, and increased duration of immunity through subclinical infection. Improved sanitation and administration of 150 million doses of the live vaccines to children had led to a 90% reduction in the annual national incidence rate of hepatitis A in China during the 16-year period, from 1991 to 2006. Hepatitis A (HA) immunization with both live and inactivated HA vaccines was implemented in the national routine childhood immunization program in 2008 and around 92% of the 16 million annual births received the affordable live, attenuated vaccines at 18 months of age. Near elimination of the disease was achieved in a county of China for 14 years following introduction of the H2 live vaccine into the Expanded Immunization Program (EPI) in 1992. PMID:24280971

  17. Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs.

    Science.gov (United States)

    Bernard, Marie-Clotilde; Barban, Véronique; Pradezynski, Fabrine; de Montfort, Aymeric; Ryall, Robert; Caillet, Catherine; Londono-Hayes, Patricia

    2015-01-01

    HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine.

  18. Immunogenicity, protective efficacy, and non-replicative status of the HSV-2 vaccine candidate HSV529 in mice and guinea pigs.

    Directory of Open Access Journals (Sweden)

    Marie-Clotilde Bernard

    Full Text Available HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29 has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529 derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a

  19. Effectiveness of one dose of mumps vaccine against clinically diagnosed mumps in Guangzhou, China, 2006-2012.

    Science.gov (United States)

    Fu, Chuanxi; Xu, Jianxiong; Cai, Yuanjun; He, Qing; Zhang, Chunhuan; Chen, Jian; Dong, Zhiqiang; Hu, Wensui; Wang, Hui; Zhu, Wei; Wang, Ming

    2013-12-01

    Although mumps-containing vaccines were introduced in China in 1990s, mumps continues to be a public health concern due to the lack of decline in reported mumps cases. To assess the mumps vaccine effectiveness (VE) in Guangzhou, China, we performed a 1:1 matched case-control study. Among children in Guangzhou aged 8 mo to 12 y during 2006 to 2012, we matched one healthy child to each child with clinically diagnosed mumps. Cases with clinically diagnosed mumps were identified from surveillance sites system and healthy controls were randomly sampled from the Children's Expanded Programmed Immunization Administrative Computerized System in Guangzhou. Conditional logistic regression was used to calculate VE. We analyzed the vaccination information for 1983 mumps case subjects and 1983 matched controls and found that the overall VE for 1 dose of mumps vaccine, irrespective of the manufacture, was 53.6% (95% confidence interval [CI], 41.0-63.5%) to children aged 8 mo to 12 y. This post-marketing mumps VE study found that immunization with one dose of the mumps vaccine confers partial protection against mumps disease. Evaluation of the VE for the current mumps vaccines, introduction of a second dose of mumps vaccine, and assessment of modifications to childhood immunization schedules is essential.

  20. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Science.gov (United States)

    Mendes, Érica Araújo; Fonseca, Flavio G; Casério, Bárbara M; Colina, Janaína P; Gazzinelli, Ricardo Tostes; Caetano, Braulia C

    2013-01-01

    The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1) of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector) is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination). Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1), to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  1. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1.

    Directory of Open Access Journals (Sweden)

    Érica Araújo Mendes

    Full Text Available The use of recombinant viral vectors expressing T. gondii antigens is a safe and efficient approach to induce immune response against the parasite and a valuable tool for vaccine development. We have previously protected mice from toxoplasmosis by immunizing the animals with an adenovirus expressing the protein SAG1 (AdSAG1 of T. gondii. We are now looking for ways to improve the vaccination strategy and enhance protection. One limitation of homologous vaccinations (sequential doses of the same vector is induction of anti-vector immune response that blocks cell transduction, restricts transgene expression and, consequently, compromises the overall outcome of vaccination. One way to avert the effects of anti-vector response is to use different viruses in prime and boost (heterologous vaccination. Bearing this in mind, we generated a modified Vaccinia Virus Ankara encoding SAG1 (MVASAG1, to be tested as boost agent after prime with AdSAG1. Although minor differences were observed in the magnitude of the anti-SAG1 immune response induced by each vaccination protocol, the heterologous immunization with AdSAG1 followed by MVASAG1 resulted in improved capacity to control brain cyst formation in a model of chronic toxoplasmosis in C57BL/6 mice.

  2. A single or multistage mycobacterium avium subsp. paratuberculosis subunit vaccine

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides one or more immunogenic polypeptides for use in a preventive or therapeutic vaccine against latent or active infection in a human or animal caused by a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Furthermore a single or multi-phase vaccine...... comprising the one or more immunogenic polypeptides is provided for administration for the prevention or treatment of infection with a Mycobacterium species, e.g. Mycobacterium avium subsp. paratuberculosis. Additionally, nucleic acid vaccines, capable of in vivo expression of the multi-phase vaccine...

  3. Adjuvant solution for pandemic influenza vaccine production.

    Science.gov (United States)

    Clegg, Christopher H; Roque, Richard; Van Hoeven, Neal; Perrone, Lucy; Baldwin, Susan L; Rininger, Joseph A; Bowen, Richard A; Reed, Steven G

    2012-10-23

    Extensive preparation is underway to mitigate the next pandemic influenza outbreak. New vaccine technologies intended to supplant egg-based production methods are being developed, with recombinant hemagglutinin (rHA) as the most advanced program for preventing seasonal and avian H5N1 Influenza. Increased efforts are being focused on adjuvants that can broaden vaccine immunogenicity against emerging viruses and maximize vaccine supply on a worldwide scale. Here, we test protection against avian flu by using H5N1-derived rHA and GLA-SE, a two-part adjuvant system containing glucopyranosyl lipid adjuvant (GLA), a formulated synthetic Toll-like receptor 4 agonist, and a stable emulsion (SE) of oil in water, which is similar to the best-in-class adjuvants being developed for pandemic flu. Notably, a single submicrogram dose of rH5 adjuvanted with GLA-SE protects mice and ferrets against a high titer challenge with H5N1 virus. GLA-SE, relative to emulsion alone, accelerated induction of the primary immune response and broadened its durability against heterosubtypic H5N1 virus challenge. Mechanistically, GLA-SE augments protection via induction of a Th1-mediated antibody response. Innate signaling pathways that amplify priming of Th1 CD4 T cells will likely improve vaccine performance against future outbreaks of lethal pandemic flu.

  4. 241Am distribution and retention in pregnant mice, in their offspring and in non-pregnant mice: comparison between continuous Am administration and single injection

    International Nuclear Information System (INIS)

    Huevel, R. Van Den; Vander Plaetse, F.; Leppens, H.; Schoeters, G.

    1992-01-01

    Pregnant BALB/c mice and age and sex matched nulliparous controls were contaminated with 241 Am (13 kBq per mouse). Five days after the termination of contamination, 241 Am incorporation was measured in the tissues of adults and in the liver an the femur of newborn and one-month-old mice. Pregnancy resulted in higher 241 Am concentrations in bone but lower concentrations in the liver of the mothers. Protracted administration of 241 Am compared to a single injection resulted in a lower concentration of 241 Am in the livers of pregnant mice, their nulliparous controls and from newborn mice. The higher 241 Am concentration in the femur at birth after protected exposure before 14 days of gestation compared to protracted exposure after 14 days of gestation could reflect the increased placental transfer of 241 Am with advancing gestational age. Radiation doses to the femur were estimated between 4 and 20 mGy. Haemopoietic changes were noticed at these dose levels in all groups until at least 6 months after birth. (author)

  5. Travelers' Health: Vaccine Recommendations for Infants and Children

    Science.gov (United States)

    ... should be taken ≥1 week before potential exposure. YELLOW FEVER VACCINE Yellow fever, a disease transmitted by mosquitoes, is endemic ... a new recommendation that a single dose of yellow fever vaccine provides long-lasting protection and is adequate for ...

  6. Nasopharyngeal Pneumococcal Colonization and Impact of a Single Dose of 13-Valent Pneumococcal Conjugate Vaccine in Indian Children With HIV and Their Unvaccinated Parents.

    Science.gov (United States)

    Arya, Bikas K; Bhattacharya, Sangeeta Das; Sutcliffe, Catherine G; Ganaie, Feroze; Bhaskar, Arun; Bhattacharyya, Subhasish; Niyogi, Swapan Kumar; Moss, William J; Panda, Samiran; Ravikumar, Kadahalli Lingegowda; Das, Ranjan Saurav; Mandal, Sutapa

    2018-05-01

    Human immunodeficiency virus (HIV) infection increases risk of invasive disease from Streptococcus pneumoniae. Pneumococcal conjugate vaccines (PCV) prevent invasive disease and acquisition of vaccine type (VT) pneumococcus in the nasopharynx. To look at the safety and impact of one dose of PCV13 on acquisition of VT pneumococcal carriage in Indian children with HIV. We conducted a cohort study in families of HIV-infected children (CLH) and families of HIV-uninfected children (HUC) in West Bengal. All children received one dose of PCV13. Nasopharyngeal swabs were collected from children and parents at baseline and 2 months after vaccination. One hundred and fifteen CLH and 47 HUC received one dose of PCV13. Fifty-eight percent of CLH were on antiretroviral therapy (ART), and the median nadir CD4 count was 287. There were no significant adverse events in either group. HUC had more VT colonization than CLH-55% versus 23% of all pneumococcal isolates. HIV infection doubled the risk of nonvaccine serotype colonization (P = 0.03). There was no difference in acquisition of VT isolates in CLH (4.4%) and HUC (4.5%) post-PCV13; however, older CLH (>5 years) had decreased clearance of VT strains. ART made no difference in pneumococcal colonization at baseline or after PCV13; however, CLH with higher nadir CD4 counts before starting ART were less likely to have VT colonization post-PCV13 (prevalence ratio, 0.2; 95% confidence interval: 0.1-0.5). While there was no difference in acquisition of VT nasopharyngeal carriage of pneumococcus in CLH and HUC after one dose of PCV13, earlier access to ART may impact response to PCV13 in CLH.

  7. Preclinical assessment of HIV vaccines and microbicides by repeated low-dose virus challenges.

    Directory of Open Access Journals (Sweden)

    Roland R Regoes

    2005-08-01

    Full Text Available Trials in macaque models play an essential role in the evaluation of biomedical interventions that aim to prevent HIV infection, such as vaccines, microbicides, and systemic chemoprophylaxis. These trials are usually conducted with very high virus challenge doses that result in infection with certainty. However, these high challenge doses do not realistically reflect the low probability of HIV transmission in humans, and thus may rule out preventive interventions that could protect against "real life" exposures. The belief that experiments involving realistically low challenge doses require large numbers of animals has so far prevented the development of alternatives to using high challenge doses.Using statistical power analysis, we investigate how many animals would be needed to conduct preclinical trials using low virus challenge doses. We show that experimental designs in which animals are repeatedly challenged with low doses do not require unfeasibly large numbers of animals to assess vaccine or microbicide success.Preclinical trials using repeated low-dose challenges represent a promising alternative approach to identify potential preventive interventions.

  8. Safety and immunogenicity of a novel quadrivalent meningococcal CRM-conjugate vaccine given concomitantly with routine vaccinations in infants.

    Science.gov (United States)

    Klein, Nicola P; Reisinger, Keith S; Johnston, William; Odrljin, Tatjana; Gill, Christopher J; Bedell, Lisa; Dull, Peter

    2012-01-01

    In phase II studies, MenACWY-CRM elicited robust immunologic responses in young infants. We now present results from our pivotal phase III infant immunogenicity/safety study. In this open-label phase III study, we randomized full-term 2-month-old infants to 4 doses of MenACWY-CRM coadministered with routine vaccines at 2, 4, 6, and 12 months of age or with routine vaccines alone. We monitored for local and systemic reactions and serious adverse events among all study participants and evaluated for sufficiency of the immune responses to MenACWY-CRM through serum bactericidal activity assay with human complement. Bactericidal antibodies were present in 94% to 100% of subjects against each of the serogroups in MenACWY-CRM after the 4-dose series and were 67% to 97% after the first 3 doses. Geometric mean titers were higher after the fourth dose of MenACWY-CRM compared with a single dose of MenACWY-CRM at 12 months of age for all serogroups (range of ratios, 4.5-38). Responses to 3 doses of routine vaccines coadministered with MenACWY-CRM were noninferior to routine vaccinations alone, except for small differences in pneumococcal serotype 6B responses after dose 3 but not dose 4 and pertactin after dose 3. Inclusion of MenACWY-CRM did not affect the safety or reactogenicity profiles of the routine infant vaccine series. A 4-dose series of MenACWY-CRM was highly immunogenic and well tolerated in young infants, and it can be coadministered with routine infant vaccines. Substantial immunity was conferred after the first 3 doses administered at 2, 4, and 6 months of age.

  9. Activity in mice of recombinant BCG-EgG1Y162 vaccine for Echinococcus granulosus infection.

    Science.gov (United States)

    Ma, Xiumin; Zhao, Hui; Zhang, Fengbo; Zhu, Yuejie; Peng, Shanshan; Ma, Haimei; Cao, Chunbao; Xin, Yan; Yimiti, Delixiati; Wen, Hao; Ding, Jianbing

    2016-01-01

    Cystic hydatid disease is a zoonotic parasitic disease caused by Echinococcus granulosus which is distributed worldwide. The disease is difficult to treat with surgery removal is the only cure treatment. In the high endemic areas, vaccination of humans is believed a way to protect communities from the disease. In this study we vaccinated BALB/c mice with rBCG-EgG1Y162, and then detected the level of IgG and IgE specifically against the recombinant protein by ELISA, rBCG-EgG1Y162 induced strong and specific cellular and humoral immune responses. In vitro study showed that rBCG-EgG1Y162 vaccine not only promote splenocytes proliferation but also active T cell. In addition, the rBCG-EgG1Y162 induced a protection in the mice against secondary infection of Echinococcus granulosus.

  10. Immune response after one or two doses of pandemic influenza A (H1N1) monovalent, AS03-adjuvanted vaccine in HIV infected adults

    DEFF Research Database (Denmark)

    Bybeck Nielsen, Allan; Nielsen, Henriette Schjønning; Nielsen, Lars

    2012-01-01

    INTRODUCTION: Continued research is needed to evaluate and improve the immunogenicity of influenza vaccines in HIV infected patients. We aimed to determine the antibody responses after one or two doses of the AS03-adjuvanted pandemic influenza A (H1N1) vaccine in HIV infected patients. METHOD......: Following the influenza season 2009/2010, 219 HIV infected patients were included and divided into three groups depending on whether they received none (n=60), one (n=31) or two (n=128) doses of pandemic influenza A (H1N1) vaccine. At inclusion, antibody titers for all patients were analyzed and compared...... to pre-pandemic antibody titers analyzed from serum samples in a local storage facility. RESULTS: 4-9 months after a single immunization, we found a seroprotection rate of 77.4% and seroconversion rate of 67.7%. After two immunizations the rates increased significantly to seroprotection rate of 97...

  11. [Optimization of the pertussis vaccine production process].

    Science.gov (United States)

    Germán Santiago, J; Zamora, N; de la Rosa, E; Alba Carrión, C; Padrón, P; Hernández, M; Betancourt, M; Moretti, N

    1995-01-01

    The production of Pertussis Vaccine was reevaluated at the Instituto Nacional de Higiene "Rafael Rangel" in order to optimise it in terms of vaccine yield, potency, specific toxicity and efficiency (cost per doses). Four different processes, using two culture media (Cohen-Wheeler and Fermentación Glutamato Prolina-1) and two types of bioreactors (25 L Fermentador Caracas and a 450 L industrial fermentor) were compared. Runs were started from freeze-dried strains (134 or 509) and continued until the obtention of the maximal yield. It was found that the combination Fermentación Glutamato Prolina-1/industrial fermentor, shortened the process to 40 hours while consistently yielding a vaccine of higher potency (7.91 +/- 2.56 IU/human dose) and lower specific toxicity in a mice bioassay. In addition, the physical aspect of the preparation was rather homogeneous and free of dark aggregates. Most importantly, the biomass yield more than doubled those of the Fermentador Caracas using the two different media and that in the industrial fermentor with the Cohen-Wheeler medium. Therefore, the cost per doses was substantially decreased.

  12. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  13. An Adjuvanted Herpes Simplex Virus 2 Subunit Vaccine Elicits a T Cell Response in Mice and Is an Effective Therapeutic Vaccine in Guinea Pigs

    Science.gov (United States)

    Skoberne, Mojca; Cardin, Rhonda; Lee, Alexander; Kazimirova, Ana; Zielinski, Veronica; Garvie, Danielle; Lundberg, Amy; Larson, Shane; Bravo, Fernando J.; Bernstein, David I.; Flechtner, Jessica B.

    2013-01-01

    Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2). In addition to eliciting humoral immune responses, CD4+ and CD8+ T cells characterized by the secretion of multiple cytokines and cytolytic antigen-specific T cell responses that were able to be recalled at least 44 days after the last immunization were induced in immunized mice. Furthermore, vaccination with either GEN-003 or GEN-003/MM-2 led to significant reductions in both the prevalence and severity of lesions in HSV-2-infected guinea pigs compared to those of phosphate-buffered saline (PBS) control-vaccinated animals. While vaccination with MM-2 adjuvant alone decreased recurrent disease symptoms compared to the PBS control group, the difference was not statistically significant. Importantly, the frequency of recurrent viral shedding was considerably reduced in GEN-003/MM-2-vaccinated animals but not in GEN-003- or MM-2-vaccinated animals. These findings suggest a possible role for immunotherapeutic GEN-003/MM-2 vaccination as a viable alternative to chronic antiviral drugs in the treatment and control of genital herpes disease. PMID:23365421

  14. Immunogenicity to poliovirus type 2 following two doses of fractional intradermal inactivated poliovirus vaccine: A novel dose sparing immunization schedule.

    Science.gov (United States)

    Anand, Abhijeet; Molodecky, Natalie A; Pallansch, Mark A; Sutter, Roland W

    2017-05-19

    The polio eradication endgame strategic plan calls for the sequential removal of Sabin poliovirus serotypes from the trivalent oral poliovirus vaccine (tOPV), starting with type 2, and the introduction of ≥1 dose of inactivated poliovirus vaccine (IPV), to maintain an immunity base against poliovirus type 2. The global removal of oral poliovirus type 2 was successfully implemented in May 2016. However, IPV supply constraints has prevented introduction in 21 countries and led to complete stock-out in >20 countries. We conducted a literature review and contacted corresponding authors of recent studies with fractional-dose IPV (fIPV), one-fifth of intramuscular dose administered intradermally, to conduct additional type 2 immunogenicity analyses of two fIPV doses compared with one full-dose IPV. Four studies were identified that assessed immunogenicity of two fIPV doses compared to one full-dose IPV. Two fractional doses are more immunogenic than 1 full-dose, with type 2 seroconversion rates improving between absolute 19-42% (median: 37%, pvaccine compared to one full-dose IPV. In response to the current IPV shortage, a schedule of two fIPV doses at ages 6 and 14weekshas been endorsed by technical oversight committees and has been introduced in some affected countries. Copyright © 2017. Published by Elsevier Ltd.

  15. The influence of mouse vaccination with endogenous retrovirus on the development of tumor incluced by γ-irradiation or 7,12-Dimethylbenz(a)anthrocene

    International Nuclear Information System (INIS)

    Mazurenko, N.P.; Yakovleva, L.S.; Shcherbak, N.P.; Pavlovskaya, A.I.; Zueva, Yu.N.

    1987-01-01

    Mouse vaccination with alive endogenous N-tropic virus OA-3 inhibited and decreased the development of the Rauscher leukemia in C57B1/6 mice (B-type) and SWR mice (N-type) as well as development 7,12-dimethyl benzanthracene (DMBA) induced tumours in mouse hybrides (neither N-, nor B-types). The effect of vaccination was DMBA- or MLV-P-dose-dependent. Vaccination with the same virus did not affect the incidence of γ-irradiaton-induced leukemia in CBA mice (N-type) and C57B1/6 mice while it increased twice the incidence of radiation leukemia in DBA mice (N-type). However, the incidence of thymomas lowered in radiaton leukemia-bearing vaccinated mice of all the 3 strains, which may result from inhibition of murine thymotropic endogenous virus reproduction. The data obtained indicate the participation of murine own endogenous viruses in DMBA- or γ-irradiation induced carcinogenesis

  16. Efficacy, immunogenicity, and safety of two doses of a tetravalent rotavirus vaccine RRV-TV in Ghana with the first dose administered during the neonatal period.

    Science.gov (United States)

    Armah, George E; Kapikian, Albert Z; Vesikari, Timo; Cunliffe, Nigel; Jacobson, Robert M; Burlington, D Bruce; Ruiz, Leonard P

    2013-08-01

    Oral rhesus/rhesus-human reassortant rotavirus tetravalent vaccine (RRV-TV) was licensed in 1998 but withdrawn in 1999 due to a rare association with intussusception, which occurred disproportionately in infants receiving their first dose at ≥90 days of age. This study examined RRV-TV for the prevention of rotavirus gastroenteritis (RV-GE) in Ghana, West Africa, with infants receiving the first dose during the neonatal period and the second before 60 days of age. In a double-blinded, randomized, placebo-controlled trial in Navrongo, Ghana, we recruited neonates to receive 2 doses of RRV-TV or placebo and followed them to age 12 months. In the intention-to-treat population of 998 infants, we measured a vaccine efficacy of 63.1% against RV-GE of any severity associated with any of the 4 serotypes represented in the vaccine and 60.7% against RV-GE associated with any rotavirus serotype. RRV-TV in a 2-dose schedule with the first dose during the neonatal period is efficacious in preventing RV-GE in rural Ghana. Neonatal dosing results in early protection and may be the optimum schedule to avoid or significantly reduce intussusception, now reported to be associated in international settings with the 2 most widely marketed, licensed, live virus, oral rotavirus vaccines.

  17. Vaccines and vaccination against yellow fever: WHO Position Paper, June 2013--recommendations.

    Science.gov (United States)

    2015-01-01

    This article presents the World Health Organizations (WHO) evidence and recommendations for the use of yellow fever (YF) vaccination from "Vaccines and vaccination against yellow fever: WHO Position Paper - June 2013" published in the Weekly Epidemiological Record. This position paper summarizes the WHO position on the use of YF vaccination, in particular that a single dose of YF vaccine is sufficient to confer sustained life-long protective immunity against YF disease. A booster dose is not necessary. The current document replaces the position paper on the use of yellow fever vaccines and vaccination published in 2003. Footnotes to this paper provide a number of core references. In accordance with its mandate to provide guidance to Member States on health policy matters, WHO issues a series of regularly updated position papers on vaccines and combinations of vaccines against diseases that have an international public health impact. These papers are concerned primarily with the use of vaccines in large-scale immunization programmes; they summarize essential background information on diseases and vaccines, and conclude with WHO's current position on the use of vaccines in the global context. This paper reflects the recommendations of WHO's Strategic Advisory Group of Experts (SAGE) on immunization. These recommendations were discussed by SAGE at its April 2013 meeting. Evidence presented at the meeting can be accessed at http://www.who.int/immunization/sage/previous/en/index.html. Copyright © 2014. Published by Elsevier Ltd.

  18. Immunological consequences of using three different clinical/laboratory techniques of emulsifying peptide-based vaccines in incomplete Freund's adjuvant

    Directory of Open Access Journals (Sweden)

    Kast W Martin

    2006-10-01

    Full Text Available Abstract Incomplete Freund's adjuvant (IFA serves as a carrier for water-in-oil emulsion (W/O vaccines. The stability of such emulsions greatly affects vaccine safety and efficacy since continued presence of antigen depots at lymphoid organs releasing low-level antigens is known to stimulate a potent immune response and high-level systemic release of antigens can lead to tolerance. W/O emulsions for the purpose of clinical and laboratory peptide-based vaccinations have been prepared using the techniques of syringe extrusion, vortex or high-speed homogenization. There is no consensus in the field over which technique would be best to use and no immunological data are available that compare the three techniques. In this study, we compared the immune responses induced by a peptide-based vaccine prepared using vortex, syringe-extrusion and homogenization. The vaccination led to tumor rejection by mice vaccinated with the peptide-based vaccine prepared using all three techniques. The immunological data from the in vivo cytotoxicity assay showed a trend for lower responses and a higher variability and greater range in the immune responses induced by a vaccine that was emulsified by the vortex or homogenizer techniques as compared to the syringe-extrusion technique. There were statistically significant lower numbers of IFNγ-secreting cells induced when the mice were vaccinated with a peptide-based vaccine emulsion prepared using the vortex compared to the syringe-extrusion technique. At a suboptimal vaccine dose, the mice vaccinated with a peptide-based vaccine emulsion prepared using the vortex technique had the largest tumors compared to the syringe-extrusion or the homogenizer technique. In the setting of a busy pharmacy that prepares peptide-based vaccine emulsions for clinical studies, the vortex technique can still be used but we urge investigators to take special care in their choice of mixing vessels for the vortex technique as that can

  19. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  20. Recombinant canine distemper virus serves as bivalent live vaccine against rabies and canine distemper.

    Science.gov (United States)

    Wang, Xijun; Feng, Na; Ge, Jinying; Shuai, Lei; Peng, Liyan; Gao, Yuwei; Yang, Songtao; Xia, Xianzhu; Bu, Zhigao

    2012-07-20

    Effective, safe, and affordable rabies vaccines are still being sought. Attenuated live vaccine has been widely used to protect carnivores from canine distemper. In this study, we generated a recombinant canine distemper virus (CDV) vaccine strain, rCDV-RVG, expressing the rabies virus glycoprotein (RVG) by using reverse genetics. The recombinant virus rCDV-RVG retained growth properties similar to those of vector CDV in Vero cell culture. Animal studies demonstrated that rCDV-RVG was safe in mice and dogs. Mice inoculated intracerebrally or intramuscularly with rCDV-RVG showed no apparent signs of disease and developed a strong rabies virus (RABV) neutralizing antibody response, which completely protected mice from challenge with a lethal dose of street virus. Canine studies showed that vaccination with rCDV-RVG induced strong and long-lasting virus neutralizing antibody responses to RABV and CDV. This is the first study demonstrating that recombinant CDV has the potential to serve as bivalent live vaccine against rabies and canine distemper in animals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Immunogenicity and safety of one dose of diphtheria, tetanus, acellular pertussis and poliomyelitis vaccine (Repevax®) followed by two doses of diphtheria, tetanus and poliomyelitis vaccine (Revaxis®) in adults aged ≥ 40 years not receiving a diphtheria- and tetanus-containing vaccination in the last 20 years.

    Science.gov (United States)

    Dominicus, Rolf; Galtier, Florence; Richard, Patrick; Baudin, Martine

    2014-06-30

    The immunogenicity and safety of one dose of Tdap-IPV (tetanus, diphtheria, acellular pertussis and inactivated poliomyelitis vaccine) and two doses of Td-IPV (tetanus, diphtheria and inactivated poliomyelitis vaccine) were assessed in adults who had not received a diphtheria- and tetanus-containing vaccine in the last 20 years. This open-label, multicentre study was conducted in adults aged ≥ 40 years with no diphtheria- and tetanus-containing vaccine in the last 20 years. Participants received one dose of Tdap-IPV followed by two doses of Td-IPV (0, 1, 6 month schedule). Primary immunogenicity objectives: to demonstrate acceptable seroprotection rates (percentage of participants with antibody titre above threshold) post-dose 3 for diphtheria (≥ 0.1IU/mL by seroneutralization assay [SNA]); tetanus (≥ 0.1IU/mL by enzyme-linked immunosorbent assay [ELISA]); and poliomyelitis (≥ 8 1/dil by SNA); and to evaluate the percentage of participants with an antibody concentration ≥ 5EU/mL (by ELISA) for pertussis antigens post-dose 1. Seroprotection rates were acceptable if the lower limit of the 95% confidence interval (CI) was >95%. Percentage of participants with basic clinical immunity against diphtheria (≥ 0.01IU/mL) was also assessed. Safety (adverse events [AEs] and serious AEs) was assessed after each dose. Overall, 336 participants were included (mean age: 60.2 years). Post-dose 3 seroprotection rates were: diphtheria, 94.6% (CI 91.5-96.8); tetanus and poliomyelitis, 100% (CI: 98.8-100). Percentage of participants with an antibody titre ≥ 5EU/mL against pertussis antigens was ≥ 95.8% for all five pertussis components. Basic clinical immunity against diphtheria was achieved in 100% (CI: 98.8-100) of participants. AEs were reported more frequently following vaccination with Tdap-IPV (post-dose 1: 65.3%) than with Td-IPV (post-dose 2: 48.3%; post-dose 3: 50.3%). This study highlights the benefits of using Tdap-IPV followed by two doses of Td-IPV in an

  2. An optimized formulation of a thermostable spray dried virus-like particles vaccine against human papillomavirus

    Science.gov (United States)

    Saboo, Sugandha; Tumban, Ebenezer; Peabody, Julianne; Wafula, Denis; Peabody, David S.; Chackerian, Bryce; Muttil, Pavan

    2016-01-01

    Existing vaccines against human papillomavirus (HPV) require continuous cold-chain storage. Previously, we developed a bacteriophage virus-like particle (VLP) based vaccine for Human Papillomavirus (HPV) infection, which elicits broadly neutralizing antibodies against diverse HPV types. Here, we formulated these VLPs into a thermostable dry powder using a multi-component excipient system and by optimizing the spray drying parameters using a half-factorial design approach. Dry powder VLPs were stable after spray drying and after long-term storage at elevated temperatures. Immunization of mice with a single dose of reconstituted dry powder VLPs that were stored at 37°C for more than a year elicited high anti-L2 IgG antibody titers. Spray dried thermostable, broadly protective L2 bacteriophage VLPs vaccine could be accessible to remote regions of the world (where ~84% of cervical cancer patients reside) by eliminating the cold-chain requirement during transportation and storage. PMID:27019231

  3. The use of the mouse chimera assay to detect early embryonic damage from male mice exposed to low-dose radiation

    International Nuclear Information System (INIS)

    Oudiz, D.; Warner, P.; Walsh, K.J.; Wiley, L.

    1990-01-01

    Mouse chimeras are in vitro aggregations of two 4-cell embryos and are used to detect subtle, nonlethal changes, which are expressed as a proliferative disadvantage in exposed embryos. One of the embryos is labeled with a viable dye (FITC) in order to determine the relative cellular contribution of each embryo when the chimera is dissociated 40 hours later. This proliferative disadvantage has been seen at doses which do not produce an effect on cell number when the embryos are cultured singly. Previously, the assay has detected a decrease in cellular proliferation in embryos from male mice exposed to a single dose of x-radiation as low as 0.05 Gy. In the current study, male mice were irradiated with a single dose of 0, 0.001, 0.01, or 0.05 Gy, and then serially mated for the next 8 weeks to unexposed females. Chimeras were constructed from control and treated embryos. Embryos from males treated with 0.05 Gy exhibited a significant decrease in cellular proliferation during weeks 6 and 7 post-irradiation. A similar decrease was seen in the males treated with 0.01 Gy. No reductions were observed from embryos cultured singly in any of the treatment groups

  4. Immunogenicity and efficacy in mice of an adenovirus-based bicistronic rotavirus vaccine expressing NSP4 and VP7.

    Science.gov (United States)

    Xie, Li; Yan, Min; Wang, Xiaonan; Ye, Jing; Mi, Kai; Yan, Shanshan; Niu, Xianglian; Li, Hongjun; Sun, Maosheng

    2015-12-02

    NSP4 and VP7 are important functional proteins of rotavirus. Proper combination of viral gene expression is favorable to improving the protection effect of subunit vaccine. In the present study, We evaluated the immunogenicity and efficacy of the bicistronic recombinant adenovirus (rAd-NSP4-VP7) and two single-gene expressing adenoviruses (rAd-NSP4, rAd-VP7). The three adenovirus vaccines were used to immunize mice by intramuscular or intranasal administration. The data showed significant increases in serum antibodies, T lymphocyte subpopulations proliferation, and cytokine secretions of splenocyte in all immunized groups. However, the serum IgA and neutralizing antibody levels of the rAd-NSP4-VP7 or rAd-VP7 groups were significantly higher than those of the rAd-NSP4, while the splenocyte numbers of IFN-γ secretion in the rAd-NSP4-VP7 or rAd-NSP4 groups was greater than that of the rAd-VP7. Furthermore, the efficacy evaluation in a suckling mice model indicated that only rAd-NSP4-VP7 conferred significant protection against rotavirus shedding challenge. These results suggest that the co-expression of NSP4 and VP7 in an adenovirus vector induce both humoral and cell-mediated immune responses efficiently, and provide potential efficacy for protection against rotavirus disease. It is possible to represent an efficacious subunits vaccine strategy for control of rotavirus infection and transmission. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Yellow fever vaccine: an effective vaccine for travelers.

    Science.gov (United States)

    Verma, Ramesh; Khanna, Pardeep; Chawla, Suraj

    2014-01-01

    Yellow fever (YF) is an acute viral communicable disease transmitted by an arbovirus of the Flavivirus genus. It is primarily a zoonotic disease, especially the monkeys. Worldwide, an estimated 200,000 cases of yellow fever occurred each year, and the case-fatality rate is ~15%. Forty-five endemic countries in Africa and Latin America, with a population of close to 1 billion, are at risk. Up to 50% of severely affected persons from YF die without treatment. During 2009, 55 cases and 18 deaths were reported from Brazil, Colombia, and Peru. Brazil reported the maximum number of cases and death, i.e., 42 cases with 11 deaths. From January 2010 to March 2011, outbreaks of YF were reported to the WHO by Cameroon, Democratic Republic of Congo, Cote d'Ivoire, Guinea, Sierra Leone, Senegal, and Uganda. Cases were also reported in three northern districts of Abim, Agago, and Kitugun near the border with South Sudan. YF usually causes fever, muscle pain with prominent backache, headache, shivers, loss of appetite, and nausea or vomiting. Most patients improve, and their symptoms disappear after 3 to 4 d. Half of the patients who enter the toxic phase die within 10-14 d, while the rest recover without significant organ damage. Vaccination has been the single most important measure for preventing YF. The 17D-204 YF vaccine is a freeze-dried, live attenuated, highly effective vaccine. It is available in single-dose or multi-dose vials and should be stored at 2-8 °C. It is reconstituted with normal saline and should be used within 1 h of reconstitution. The 0.5 mL dose is delivered subcutaneously. Revaccination is recommended every 10 y for people at continued risk of exposure to yellow fever virus (YFV). This vaccine is available worldwide. Travelers, especially to Africa or Latin America from Asia, must have a certificate documenting YF vaccination, which is required by certain countries for entry under the International Health Regulations (IHR) of the WHO.

  6. Two-dose strategies for human papillomavirus vaccination: how well do they need to protect?

    Science.gov (United States)

    Jit, Mark; Choi, Yoon Hong; Laprise, Jean-François; Boily, Marie-Claude; Drolet, Mélanie; Brisson, Marc

    2014-05-30

    Two-dose human papillomavirus (HPV) vaccine schedules may provide short-term protection but their long-term population impact is unknown. Two models of HPV transmission and associated cervical disease (squamous and glandular, neoplasia and cancer) were fitted to data from England and Canada on HPV epidemiology, sexual behaviour, cervical screening outcomes and cervical cancer incidence. Models suggest that at 40-80% coverage, if two-dose schedules protect vaccinees for 20 years, then the benefits of the third dose are small. If two doses protect for 10 years, then the third dose may prevent as many cancers as the first two. At 80% coverage, numbers needed to receive a third dose to prevent an additional cancer are 5900-110,000 (England), 3000-5100 (Canada) with 20 years two-dose protection, and 2000-5300 (England), 760-950 (Canada) with 10 years two-dose protection. Results enable decision makers to quantify risks associated with two-dose schedules despite remaining uncertainties in vaccine duration and cross-protection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  8. Bacterial derived proteoliposome for allergy vaccines.

    Science.gov (United States)

    Lastre, Miriam; Pérez, Oliver; Labrada, Alexis; Bidot, Igor; Pérez, Jorge; Bracho, Gustavo; del Campo, Judith; Pérez, Dainerys; Facenda, Elisa; Zayas, Caridad; Rodríguez, Claudio; Sierra, Gustavo

    2006-04-12

    One current approach in developing anti allergic vaccines is the use of potent adjuvants, capable of inducing Th1 or T regulatory cells. Proteoliposomes (PL) could be a suitable adjuvant. Purified Dermatophagoides siboney (Ds) allergens were mixed with PL and adsorbed into Al(OH)3 and evaluated in mice. The Th1/Th2 responses were measured at classes, subclasses, cytokines, and DTH levels. Anti Ds response was deviated to a Thl pattern, with the production of IgG2a and gamma1FN. A positive DTH response and a dramatic decrease of specific IgE and IL5 were not detected. The low dose was more effective than high dose. These results clearly support the potential use of PL as possible adjuvants for anti-allergic vaccines.

  9. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    Science.gov (United States)

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. sup 241 Am distribution and retention in pregnant mice, in their offspring and in non-pregnant mice: comparison between continuous Am administration and single injection

    Energy Technology Data Exchange (ETDEWEB)

    Huevel, R. Van Den; Vander Plaetse, F.; Leppens, H.; Schoeters, G. (Centre d' Etude de l' Energie Nucleaire, Mol (Belgium))

    1992-01-01

    Pregnant BALB/c mice and age and sex matched nulliparous controls were contaminated with {sup 241}Am (13 kBq per mouse). Five days after the termination of contamination, {sup 241}Am incorporation was measured in the tissues of adults and in the liver an the femur of newborn and one-month-old mice. Pregnancy resulted in higher {sup 241}Am concentrations in bone but lower concentrations in the liver of the mothers. Protracted administration of {sup 241}Am compared to a single injection resulted in a lower concentration of {sup 241}Am in the livers of pregnant mice, their nulliparous controls and from newborn mice. The higher {sup 241}Am concentration in the femur at birth after protected exposure before 14 days of gestation compared to protracted exposure after 14 days of gestation could reflect the increased placental transfer of {sup 241}Am with advancing gestational age. Radiation doses to the femur were estimated between 4 and 20 mGy. Haemopoietic changes were noticed at these dose levels in all groups until at least 6 months after birth. (author).

  11. Immune responses after fractional doses of inactivated poliovirus vaccine using newly developed intradermal jet injectors: a randomized controlled trial in Cuba.

    Science.gov (United States)

    Resik, Sonia; Tejeda, Alina; Mach, Ondrej; Fonseca, Magile; Diaz, Manuel; Alemany, Nilda; Garcia, Gloria; Hung, Lai Heng; Martinez, Yenisleydis; Sutter, Roland

    2015-01-03

    The World Health Organization recommends that, as part of the new polio endgame, a dose of inactivated poliovirus vaccine (IPV) be introduced by the end of 2015 in all countries using only oral poliovirus vaccine (OPV). Administration of fractional dose (1/5th of full dose) IPV (fIPV) intradermally may reduce costs, but its administration is cumbersome with BCG needle and syringe. We evaluated performance of two newly developed intradermal-only jet injectors and compared the immune response induced by fIPV with that induced by full-dose IPV. Children between 12 and 20 months of age, who had previously received two doses of OPV, were enrolled in Camaguey, Cuba. Subjects received a single dose of IPV (either full-dose IPV intramuscularly with needle and syringe or fIPV intradermally administered with one of two new injectors or with BCG needle or a conventional needle-free injector). Serum was tested for presence of poliovirus neutralizing antibodies on day 0 (pre-IPV) and on days 3, 7 and 21 (post-vaccination). Complete data were available from 74.2% (728/981) subjects. Baseline median antibody titers were 713, 284, and 113 for poliovirus types 1, 2, and 3, respectively. Seroprevalence at study end were similar across the intervention groups (≥ 94.8%). The immune response induced with one new injector was similar to BCG needle and to the conventional injector; and superior to the other new injector. fIPV induced significantly lower boosting response compared to full-dose IPV. No safety concerns were identified. One of the two new injectors demonstrated its ability to streamline intradermal fIPV administration, however, further investigations are needed to assess the potential contribution of fIPV in the polio endgame plan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Science.gov (United States)

    Cutler, Jim E; Corti, Miriam; Lambert, Patrick; Ferris, Michael; Xin, Hong

    2011-01-01

    Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the efficacy of vaccines

  13. Horizontal transmission of Candida albicans and evidence of a vaccine response in mice colonized with the fungus.

    Directory of Open Access Journals (Sweden)

    Jim E Cutler

    Full Text Available Disseminated candidiasis is the third leading nosocomial blood stream infection in the United States and is often fatal. We previously showed that disseminated candidiasis was preventable in normal mice by immunization with either a glycopeptide or a peptide synthetic vaccine, both of which were Candida albicans cell wall derived. A weakness of these studies is that, unlike humans, mice do not have a C. albicans GI flora and they lack Candida serum antibodies. We examined the influence of C. albicans GI tract colonization and serum antibodies on mouse vaccination responses to the peptide, Fba, derived from fructose bisphosphate aldolase which has cytosolic and cell wall distributions in the fungus. We evaluated the effect of live C. albicans in drinking water and antimicrobial agents on establishment of Candida colonization of the mouse GI tract. Body mass, C. albicans in feces, and fungal-specific serum antibodies were monitored longitudinally. Unexpectedly, C. albicans colonization occurred in mice that received only antibiotics in their drinking water, provided that the mice were housed in the same room as intentionally colonized mice. The fungal strain in unintentionally colonized mice appeared identical to the strain used for intentional GI-tract colonization. This is the first report of horizontal transmission and spontaneous C. albicans colonization in mice. Importantly, many Candida-colonized mice developed serum fungal-specific antibodies. Despite the GI-tract colonization and presence of serum antibodies, the animals made antibodies in response to the Fba immunogen. This mouse model has potential for elucidating C. albicans horizontal transmission and for exploring factors that induce host defense against disseminated candidiasis. Furthermore, a combined protracted GI-tract colonization with Candida and the possibility of serum antibody responses to the presence of the fungus makes this an attractive mouse model for testing the

  14. Multiple Roles of Myd88 in the Immune Response to the Plague F1-V Vaccine and in Protection against an Aerosol Challenge of Yersinia pestis CO92 in Mice

    Directory of Open Access Journals (Sweden)

    Jennifer L. Dankmeyer

    2014-01-01

    Full Text Available The current candidate vaccine against Yersinia pestis infection consists of two subunit proteins: the capsule protein or F1 protein and the low calcium response V protein or V-antigen. Little is known of the recognition of the vaccine by the host’s innate immune system and how it affects the acquired immune response to the vaccine. Thus, we vaccinated Toll-like receptor (Tlr 2, 4, and 2/4-double deficient, as well as signal adaptor protein Myd88-deficient mice. We found that Tlr4 and Myd88 appeared to be required for an optimal immune response to the F1-V vaccine but not Tlr2 when compared to wild-type mice. However, there was a difference between the requirement for Tlr4 and MyD88 in vaccinated animals. When F1-V vaccinated Tlr4 mutant (lipopolysaccharide tolerant and Myd88-deficient mice were challenged by aerosol with Y. pestis CO92, all but one Tlr4 mutant mice survived the challenge, but no vaccinated Myd88-deficient mice survived the challenge. Spleens from these latter nonsurviving mice showed that Y. pestis was not cleared from the infected mice. Our results suggest that MyD88 appears to be important for both an optimal immune response to F1-V and in protection against a lethal challenge of Y. pestis CO92 in F1-V vaccinated mice.

  15. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    Science.gov (United States)

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Evaluation of preclinical single and multiple dose toxicity and efficacy of 213 Bi-labeled plasminogen activator inhibitor 2 for breast and prostate cancer

    International Nuclear Information System (INIS)

    Rizvi, S.; Li, Y.; Allen, B.; Littlejohn, T.; Ranson, M.; Links, M.; Irving, D.; Andrews, J.

    2003-01-01

    The aim of the study was to evaluate the single and multiple dose toxicity (maximum tolerated dose or MTD) regimes for 213 Bi-labeled PAI2. Dose range of 2-8 mCi/kg was used for the single dose toxicity studies. It was found that end point (20% weight loss and/or distressed behaviour) was not reached for the highest dose either with single or multiple dose injections. For multiple dose toxicity studies, the dose levels ranged between 0.4 - 2 mCi/kg, and were administered daily for 5 days. The highest level tested (2mCi/kg/day x 5) was the maximum tolerated dose as 3/6 mice succumbed to the endpoints. However, histological examination of major organs showed no adverse morphological changes. From these toxicity studies, we concluded that either a dose of 1.6mCi/kg of 213 Bi-PAI2 per day for 5 days or a single injection of 8 mCi/kg can be administered without reaching the endpoints. These dose levels were used for efficacy trials. The efficacy studies were conducted to examine if the 1.6mCi/kgday x 5 multiple dose schedule (sub-maximum tolerated dose) showed efficacy against established and early stage human breast and prostate tumours in mice. Statistical analyses of the data indicate a significant tumour growth rate delay and increased time to reach tumour size endpoint for alpha-PAI2 treatment compared to control tumours, in both pre-tumour stage and established tumour models

  17. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    Science.gov (United States)

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-11-17

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  18. Effects of low dose rate irradiation on induction of myeloid leukemia in mice

    International Nuclear Information System (INIS)

    Furuse, Takeshi

    1999-01-01

    We investigated the induction of myeloid leukemia and other kinds of neoplasias in C3H male mice irradiated at several dose rate levels. We compared the incidence of neoplasias among these groups, obtained dose and dose rate effectiveness factors (DDREF) for myeloid leukemia. C3H/He male mice were exposed to whole body gamma-ray irradiation at 8 weeks of age. All mice were maintained for their entire life span and teh pathologically examined after their death. Radiation at a high dose-rate of 882 mGy/min (group H), a medium dose-rate of 95.6 mGy/min (group M), and low dose-rates of 0.298 mGy/min (group L-A), 0.067 mGy/min (group L-B) or 0.016 mGy/min (group L-C) were delivered from 137 Cs sources. The mice in group L were irradiated continuously for 22 hours daily up to total doses of 1, 2, 3, 4, 10 Gy over a period of 3 days to 200 days. As for the induction of neoplasias, myeloid leukemia developed significantly more frequently in irradiated groups than in unirradiated groups. The time distribution of mice dying from myeloid leukemia did not show a difference between groups H and L. The incidence of myeloid leukemia showed a greater increase in the high dose-rate groups than in the low and medium dose-rate groups in the dose range over 2 Gy, it also showed significant increases in the groups irradiated with 1 Gy of various dose rate, but the difference between these groups was not clear. These dose effect curves had their highest values on each curve at about 3 Gy. We obtained DDREF values of 2-3 by linear fittings for their dose response curves of dose ranges in which leukemia incidences were increasing. (author)

  19. Risk of Injection-Site Abscess among Infants Receiving a Preservative-Free, Two-Dose Vial Formulation of Pneumococcal Conjugate Vaccine in Kenya

    Science.gov (United States)

    Burton, Deron C.; Bigogo, Godfrey M.; Audi, Allan O.; Williamson, John; Munge, Kenneth; Wafula, Jackline; Ouma, Dominic; Khagayi, Sammy; Mugoya, Isaac; Mburu, James; Muema, Shadrack; Bauni, Evasius; Bwanaali, Tahreni; Feikin, Daniel R.; Ochieng, Peter M.; Mogeni, Ondari D.; Otieno, George A.; Olack, Beatrice; Kamau, Tatu; Van Dyke, Melissa K.; Chen, Robert; Farrington, Paddy; Montgomery, Joel M.; Breiman, Robert F.; Scott, J. Anthony G.; Laserson, Kayla F.

    2015-01-01

    There is a theoretical risk of adverse events following immunization with a preservative-free, 2-dose vial formulation of 10-valent-pneumococcal conjugate vaccine (PCV10). We set out to measure this risk. Four population-based surveillance sites in Kenya (total annual birth cohort of 11,500 infants) were used to conduct a 2-year post-introduction vaccine safety study of PCV10. Injection-site abscesses occurring within 7 days following vaccine administration were clinically diagnosed in all study sites (passive facility-based surveillance) and, also, detected by caregiver-reported symptoms of swelling plus discharge in two sites (active household-based surveillance). Abscess risk was expressed as the number of abscesses per 100,000 injections and was compared for the second vs first vial dose of PCV10 and for PCV10 vs pentavalent vaccine (comparator). A total of 58,288 PCV10 injections were recorded, including 24,054 and 19,702 identified as first and second vial doses, respectively (14,532 unknown vial dose). The risk ratio for abscess following injection with the second (41 per 100,000) vs first (33 per 100,000) vial dose of PCV10 was 1.22 (95% confidence interval [CI] 0.37–4.06). The comparator vaccine was changed from a 2-dose to 10-dose presentation midway through the study. The matched odds ratios for abscess following PCV10 were 1.00 (95% CI 0.12–8.56) and 0.27 (95% CI 0.14–0.54) when compared to the 2-dose and 10-dose pentavalent vaccine presentations, respectively. In Kenya immunization with PCV10 was not associated with an increased risk of injection site abscess, providing confidence that the vaccine may be safely used in Africa. The relatively higher risk of abscess following the 10-dose presentation of pentavalent vaccine merits further study. PMID:26509274

  20. Immunization of mice with gamma-irradiated intramuscularly injected schistosomula of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Bickle, Q.D.; Taylor, M.G.; Doenhoff, M.J.; Nelson, G.S.

    1979-01-01

    The parameters involved in the induction of resistance against Schistosoma mansoni by injection of irradiated, artificially transformed schistosomula were studied in mice. Single intramuscular injections of 500 schistosomula exposed to radiation doses in the range 2.3 to 160 krad. resulted in significant protection ( in the range 20 to 50% as assessed by reduced worm burdens) against a challenge infection administered at intervals from 3 to 24 weeks post-vaccination. However, schistosomular irradiated with 20 krad. consistently resulted in better protection than those exposed to either higher or lower radiation doses despite the persistence of stunted adults from the infections irradiated with 2.3 krad. Vaccination with 40 krad. schistosomula resulted in significant protection in terms of reduced worm and tissue egg burdens and increased survival following lethal challenge. Varying the number of irradiated schistosomula, the frequency and route of their administration, the site of challenge and the strain of host all failed to enhance the level of resistance. However, percutaneously applied, irradiated cercariae were found to be more effective in stimulating resistance (60%) than intramuscularly injected, irradiated schistosomula (40%). (author)

  1. Protein carriers of conjugate vaccines

    Science.gov (United States)

    Pichichero, Michael E

    2013-01-01

    The immunogenicity of polysaccharides as human vaccines was enhanced by coupling to protein carriers. Conjugation transformed the T cell-independent polysaccharide vaccines of the past to T cell-dependent antigenic vaccines that were much more immunogenic and launched a renaissance in vaccinology. This review discusses the conjugate vaccines for prevention of infections caused by Hemophilus influenzae type b, Streptococcus pneumoniae, and Neisseria meningitidis. Specifically, the characteristics of the proteins used in the construction of the vaccines including CRM, tetanus toxoid, diphtheria toxoid, Neisseria meningitidis outer membrane complex, and Hemophilus influenzae protein D are discussed. The studies that established differences among and key features of conjugate vaccines including immunologic memory induction, reduction of nasopharyngeal colonization and herd immunity, and antibody avidity and avidity maturation are presented. Studies of dose, schedule, response to boosters, of single protein carriers with single and multiple polysaccharides, of multiple protein carriers with multiple polysaccharides and conjugate vaccines administered concurrently with other vaccines are discussed along with undesirable consequences of conjugate vaccines. The clear benefits of conjugate vaccines in improving the protective responses of the immature immune systems of young infants and the senescent immune systems of the elderly have been made clear and opened the way to development of additional vaccines using this technology for future vaccine products. PMID:23955057

  2. Effectiveness of one dose of mumps vaccine against clinically diagnosed mumps in Guangzhou, China, 2006–2012

    Science.gov (United States)

    Fu, Chuanxi; Xu, Jianxiong; Cai, Yuanjun; He, Qing; Zhang, Chunhuan; Chen, Jian; Dong, Zhiqiang; Hu, Wensui; Wang, Hui; Zhu, Wei; Wang, Ming

    2013-01-01

    Although mumps-containing vaccines were introduced in China in 1990s, mumps continues to be a public health concern due to the lack of decline in reported mumps cases. To assess the mumps vaccine effectiveness (VE) in Guangzhou, China, we performed a 1:1 matched case-control study. Among children in Guangzhou aged 8 mo to 12 y during 2006 to 2012, we matched one healthy child to each child with clinically diagnosed mumps. Cases with clinically diagnosed mumps were identified from surveillance sites system and healthy controls were randomly sampled from the Children’s Expanded Programmed Immunization Administrative Computerized System in Guangzhou. Conditional logistic regression was used to calculate VE. We analyzed the vaccination information for 1983 mumps case subjects and 1983 matched controls and found that the overall VE for 1 dose of mumps vaccine, irrespective of the manufacture, was 53.6% (95% confidence interval [CI], 41.0–63.5%) to children aged 8 mo to 12 y. This post-marketing mumps VE study found that immunization with one dose of the mumps vaccine confers partial protection against mumps disease. Evaluation of the VE for the current mumps vaccines, introduction of a second dose of mumps vaccine, and assessment of modifications to childhood immunization schedules is essential. PMID:23955378

  3. Differential sensitivity of long-sleep and short-sleep mice to high doses of cocaine.

    Science.gov (United States)

    de Fiebre, C M; Ruth, J A; Collins, A C

    1989-12-01

    The cocaine sensitivity of male and female long-sleep (LS) and short-sleep (SS) mice, which have been selectively bred for differential ethanol-induced "sleep-time," was examined in a battery of behavioral and physiological tests. Differences between these two mouse lines were subtle and were seen primarily at high doses. At high doses, SS mice were more sensitive than LS mice, particularly to cocaine-induced hypothermia; however, significant hypothermia was not seen except at doses which were very near to the seizure threshold. During a 60-min test of locomotor activity, LS mice showed greater stimulation of Y-maze activity by 20 mg/kg cocaine than SS mice. Consistent with the finding of subtle differences in sensitivity to low doses of cocaine. LS and SS mice did not differ in sensitivity to cocaine inhibition of synaptosomal uptake of [3H]-dopamine, [3H]-norepinephrine or [3H]-5-hydroxytryptamine. However, consistent with the finding of differential sensitivity to high doses of cocaine, SS mice were more sensitive to the seizure-producing effects of the cocaine and lidocaine, a local anesthetic. It is hypothesized that the differential sensitivity of these mouse lines to high doses of cocaine is due to differential sensitivity to cocaine's actions on systems that regulate local anesthetic effects. Selective breeding for differential duration of alcohol-induced "sleep-time" may have resulted in differential ion channel structure or function in these mice.

  4. Safety and immunogenicity of a live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV®) in children.

    Science.gov (United States)

    Chokephaibulkit, K; Houillon, G; Feroldi, E; Bouckenooghe, A

    2016-01-01

    JE-CV (IMOJEV®, Sanofi Pasteur, France) is a live attenuated virus vaccine constructed by inserting coding sequences of the prM and E structural proteins of the Japanese encephalitis SA14-14-2 virus into the genome of yellow fever 17D virus. Primary immunization with JE-CV requires a single dose of the vaccine. This article reviews clinical trials of JE-CV in children aged up to 6 years conducted in countries across South-East Asia. Strong and persistent antibody responses were observed after single primary and booster doses, with 97% of children seroprotected up to five years after booster vaccination. Models of long-term antibody persistence predict a median duration of protection of approximately 30 years after a booster dose. The safety and reactogenicity profiles of JE-CV primary and booster doses are comparable to other widely used childhood vaccines.

  5. Photodynamic Vaccination of BALB/c Mice for Prophylaxis of Cutaneous Leishmaniasis Caused by Leishmania amazonensis

    Directory of Open Access Journals (Sweden)

    Sayonara M. Viana

    2018-02-01

    Full Text Available Background: Photosensitizers (PS, like porphyrins and phthalocyanines (PC are excitable by light to generate cytotoxic singlet oxygen and other reactive oxygen species in the presence of atmospheric O2. Photodynamic inactivation of Leishmania by this means renders them non-viable, but preserves their effective use as vaccines. Leishmania can be photo-inactivated after PS-sensitization by loading via their endocytic uptake of PC or endogenous induction of transgenic mutants with delta-aminolevulinate (ALA to accumulate cytosolic uroporphyrin I (URO. Here, PS-sensitization and photo-inactivation of Leishmaniaamazonensis was further examined in vitro and in vivo for vaccination against cutaneous leishmaniasis (CL.Methods and Results:Leishmania amazonensis promastigotes were photodynamically inactivated in vitro by PC-loading followed by exposure to red light (1–2 J/cm2 or ALA-induction of uroporphyrinogenic transfectants to accumulate cytosolic URO followed by longwave UV exposure. When applied individually, both strategies of photodynamic inactivation were found to significantly, albeit incompletely abolish the MTT reduction activities of the promastigotes, their uptake by mouse bone marrow-derived macrophages in vitro and their infectivity to mouse ear dermis in vivo. Inactivation of Leishmania to completion by using a combination of both strategies was thus used for the sake of safety as whole-cell vaccines for immunization of BALB/c mice. Different cutaneous sites were assessed for the efficacy of such photodynamic vaccination in vivo. Each site was inoculated first with in vitro doubly PS-sensitized promastigotes and then spot-illuminated with white light (50 J/cm2 for their photo-inactivation in situ. Only in ear dermis parasites were photo-inactivated beyond detection. Mice were thus immunized once in the ear and challenged 3 weeks later at the tail base with virulent L. amazonensis. Prophylaxis was noted in mice photodynamically

  6. Dose-effect relationships for fife shortening, tumorigenesis, and systemic injuries in mice irradiated with fission neutron or 60Co gamma radiation

    International Nuclear Information System (INIS)

    Ainsworth, E.J.; Fry, R.J.M.; Williamson, F.S.; Brennan, P.C.; Stearner, S.P.; Yang, V.V.; Crouse, D.A.; Rust, J.H.; Borak, T.B.

    1977-01-01

    The objective of this research is to provide additional data on life shortening, neoplastic and non-neoplastic diseases, and other systematic injuries necessary for the determination of dose-response relationships. The data are used to test existing predictive models and formulate new models which may assist with radiation risk assessment. Late somatic effects of fission neutrons from the JANUS reactor or from cobalt-60 gamma radiation are evaluated in young adult B6CF 1 mice that receive either a range of single doses or protracted doses at low dose rates; the protracted irradiation is administered over a 6-month period. After single doses of gamma radiation the relationship between radiation dose and percent life shortening appears linear whereas after single doses of fission spectrum neutrons a non-linear dose response is observed. These results suggest that estimates of radiation risk for fission spectrum neutrons should take into account the following: the curvilinearity of the neutron dose-response curve for life shortening, and the increased life shortening produced by neutron dose fractionation

  7. Optimization of a methamphetamine conjugate vaccine for antibody production in mice.

    Science.gov (United States)

    Stevens, Misty W; Gunnell, Melinda G; Tawney, Rachel; Owens, S Michael

    2016-06-01

    There are still no approved medications for treating patients who abuse methamphetamine. Active vaccines for treating abuse of nicotine and cocaine are in clinical studies, but have not proven effective seemingly due to inadequate anti-drug antibody production. The current studies aimed to optimize the composition, adjuvant and route of administration of a methamphetamine conjugate vaccine, ICKLH-SMO9, in mice with the goal of generating significantly higher antibody levels. A range of hapten epitope densities were compared, as were the adjuvants Alhydrogel and a new Toll-like receptor 4 (TLR4) agonist called GLA-SE. While methamphetamine hapten density did not strongly affect the antibody response, the adjuvant did. Glucopyranosyl lipid A in a stable oil-in-water emulsion (GLA-SE) produced much higher levels of antibody in response to immunization compared with Alhydrogel; immunization with GLA-SE also produced antibodies with higher affinities for methamphetamine. GLA-SE has been used in human studies of vaccines for influenza among others and like some other clinical TLR4 agonists, it is safe and elicits a strong immune response. GLA-SE adjuvanted vaccines are typically administered by intramuscular injection and this also proved effective in these mouse studies. Clinical studies of the ICKLH-SMO9 methamphetamine vaccine adjuvanted with GLA-SE have the potential for demonstrating efficacy by generating much higher levels of antibody than substance abuse vaccines that have unsuccessfully used aluminum-based adjuvants. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  9. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice.

    Science.gov (United States)

    Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong

    2012-07-27

    Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Vaccine hesitancy among parents of adolescents and its association with vaccine uptake.

    Science.gov (United States)

    Roberts, James R; Thompson, David; Rogacki, Brianna; Hale, Jessica J; Jacobson, Robert M; Opel, Douglas J; Darden, Paul M

    2015-03-30

    Addressing parental vaccine hesitancy may increase adolescent vaccination acceptance. However, no validated measure exists to identify parents hesitant toward adolescent vaccines. To determine if a modified version of the Parent Attitudes about Childhood Vaccines (PACV) survey, a previously validated tool to identify parental hesitancy toward vaccines in infants, predicts adolescent vaccine uptake at office visits. We modified the PACV for use in the adolescent setting and distributed it to a convenience sample of parents of adolescents aged 11 to 17 presenting for care at a diverse group of six pediatric practices in Oklahoma and South Carolina. We determined the vaccination status of the parents' adolescents for 3 vaccines (Tetanus-diphtheria-acellular pertussis [Tdap], meningococcal conjugate [MCV4], and human papillomavirus [HPV] vaccines). We used Fisher's exact tests to compare vaccination status with each survey item and with an overall general hesitancy scale that we constructed. We analyzed 363 surveys. At the time of the visit, vaccination coverage was 84% for Tdap, 73% for MCV, and 45% for any dose of HPV. Thirty-nine percent of parents expressed concern about vaccine efficacy and 41% expressed concern about side effects. Forty-five percent of parents disagreed with the statement that "teens can get all of the vaccines that are due at a single visit." Two individual items were associated with not receiving a dose of HPV vaccine that was due. The overall modified PACV score failed to predict adolescent vaccine uptake at an office visit. Several individual items were associated with vaccine uptake. The cumulative modified PACV, a general measure of vaccine hesitancy, was not associated with vaccination status despite illuminating parental hesitancy. We need to better understand vaccine-specific concerns for the adolescent population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A Perfect Storm: Increased Colonization and Failure of Vaccination Leads to Severe Secondary Bacterial Infection in Influenza Virus-Infected Obese Mice

    Directory of Open Access Journals (Sweden)

    Erik A. Karlsson

    2017-09-01

    Full Text Available Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae. Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.

  12. Effects of anti-cocaine vaccine and viral gene transfer of cocaine hydrolase in mice on cocaine toxicity including motor strength and liver damage.

    Science.gov (United States)

    Gao, Yang; Geng, Liyi; Orson, Frank; Kinsey, Berma; Kosten, Thomas R; Shen, Xiaoyun; Brimijoin, Stephen

    2013-03-25

    In developing an vivo drug-interception therapy to treat cocaine abuse and hinder relapse into drug seeking provoked by re-encounter with cocaine, two promising agents are: (1) a cocaine hydrolase enzyme (CocH) derived from human butyrylcholinesterase and delivered by gene transfer; (2) an anti-cocaine antibody elicited by vaccination. Recent behavioral experiments showed that antibody and enzyme work in a complementary fashion to reduce cocaine-stimulated locomotor activity in rats and mice. Our present goal was to test protection against liver damage and muscle weakness in mice challenged with massive doses of cocaine at or near the LD50 level (100-120 mg/kg, i.p.). We found that, when the interceptor proteins were combined at doses that were only modestly protective in isolation (enzyme, 1mg/kg; antibody, 8 mg/kg), they provided complete protection of liver tissue and motor function. When the enzyme levels were ~400-fold higher, after in vivo transduction by adeno-associated viral vector, similar protection was observed from CocH alone. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. An Archaeosome-Adjuvanted Vaccine and Checkpoint Inhibitor Therapy Combination Significantly Enhances Protection from Murine Melanoma

    Directory of Open Access Journals (Sweden)

    Felicity C. Stark

    2017-10-01

    Full Text Available Archaeosomes constitute archaeal lipid vesicle vaccine adjuvants that evoke a strong CD8+ T cell response to antigenic cargo. Therapeutic treatment of murine B16-ovalbumin (B16-OVA melanoma with archaeosome-OVA eliminates small subcutaneous solid tumors; however, they eventually resurge despite an increased frequency of circulating and tumor infiltrating OVA-CD8+ T cells. Herein, a number of different approaches were evaluated to improve responses, including dose number, interval, and the combination of vaccine with checkpoint inhibitors. Firstly, we found that tumor protection could not be enhanced by repetitive and/or delayed boosting to maximize the CD8+ T cell number and/or phenotype. The in vivo cytotoxicity of vaccine-induced OVA-CD8+ T cells was impaired in tumor-bearing mice. Additionally, tumor-infiltrating OVA-CD8+ T cells had an increased expression of programmed cell death protein-1 (PD-1 compared to other organ compartments, suggesting impaired function. Combination therapy of tumor-bearing mice with the vaccine archaeosome-OVA, and α-CTLA-4 administered concurrently as well as α-PD-1 and an α-PD-L1 antibody administered starting 9 days after tumor challenge given on a Q3Dx4 schedule (days 9, 12, 15 and 18, significantly enhanced survival. Following multi-combination therapy ~70% of mice had rapid tumor recession, with no detectable tumor mass after >80 days in comparison to a median survival of 17–22 days for untreated or experimental groups receiving single therapies. Overall, archaeosomes offer a powerful platform for delivering cancer antigens when used in combination with checkpoint inhibitor immunotherapies.

  14. The magnitude and kinetics of delayed-type hypersensitivity responses in mice vaccinated with irradiated cercariae of Schistoma mansoni

    International Nuclear Information System (INIS)

    Ratcliffe, E.C.; Wilson, R.A.

    1991-01-01

    A footpad assay was used to measure the DTH of mice to soluble worm antigens (SWAP), and to living day 7 lung schistosomula, following vaccination and challenge infections with Schistosoma mansoni. DTH to SWAP was first observed on day 10, and reached its maximum on day 17 post-vaccination. Treatment of mice with anti-CD4 antibody on the 3 days prior to footpad challenge completely abrogated this response. Reactivity to living parasites was of a slower order than that to SWAP; it also peaked earlier, on day 10 post-vaccination. By day 35, responsiveness to both sets of antigens had declined almost to control levels. There was no correlation between the level of DTH to living schistosomula, at any time, and the degree of resistance subsequently developed. Percutaneous challenge of vaccinated mice was followed by a resurgence of reactivity to SWAP. This secondary response occurred more rapidly than the primary response, peaking on day 7 post-challenge, and was of a similar magnitude. We were unable to detect a similar recall of DTH to living schistosomula, possibly because the assay was insufficiently sensitive. We conclude that the intensity and kinetics of DTH responsiveness are crucial features of the irradiated vaccine model, and suggest that further investigation of cell-mediated immune reaction, particularly those occuring in the lungs, is vital to a better understanding of events underlying the development and expression of immunity. (author)

  15. The evolutionary consequences of blood-stage vaccination on the rodent malaria Plasmodium chabaudi.

    Directory of Open Access Journals (Sweden)

    Victoria C Barclay

    Full Text Available Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.

  16. The nature and combination of subunits used in epitope-based Schistosoma japonicum vaccine formulations affect their efficacy

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2010-11-01

    Full Text Available Abstract Background Schistosomiasis remains a major public health problem in endemic countries and is caused by infections with any one of three primary schistosome species. Although there are no vaccines available to date, this strategy appears feasible since natural immunity develops in individuals suffering from repeated infection during a lifetime. Since vaccinations resulting in both Th1- and Th2-type responses have been shown to contribute to protective immunity, a vaccine formulation with the capacity for stimulating multiple arms of the immune response will likely be the most effective. Previously we developed partially protective, single Th- and B cell-epitope-based peptide-DNA dual vaccines (PDDV (T3-PDDV and B3-PDDV, respectively capable of eliciting immune responses against the Schistosoma japonicum 22.6 kDa tegument antigen (Sj22.6 and a 62 kDa fragment of myosin (Sj62, respectively. Results In this study, we developed PDDV cocktails containing multiple epitopes of S. japonicum from Sj22.6, Sj62 and Sj97 antigens by predicting cytotoxic, helper, and B-cell epitopes, and evaluated vaccine potential in vivo. Results showed that mice immunized with a single-epitope PDDV elicited either Tc, Th, or B cell responses, respectively, and mice immunized with either the T3- or B3- single-epitope PDDV formulation were partially protected against infection. However, mice immunized with a multicomponent (3 PDDV components formulation elicited variable immune responses that were less immunoprotective than single-epitope PDDV formulations. Conclusions Our data show that combining these different antigens did not result in a more effective vaccine formulation when compared to each component administered individually, and further suggest that immune interference resulting from immunizations with antigenically distinct vaccine targets may be an important consideration in the development of multicomponent vaccine preparations.

  17. The green vaccine: A global strategy to combat infectious and autoimmune diseases

    Science.gov (United States)

    Davoodi-Semiromi, Abdoreza; Samson, Nalapalli; Daniell, Henry

    2009-01-01

    Plant derived oral green vaccines eliminate expenses associated with fermenters, purification, cold storage/transportation and sterile delivery. Green vaccines are expressed via the plant nuclear or chloroplast genomes. Chloroplast expression has advantages of hyper-expression of therapeutic proteins (10,000 copies of trans-gene per cell), efficient oral delivery and transgene containment via maternal inheritance. To date, 23 vaccine antigens against 16 different bacterial, viral or protozoan pathogens have been expressed in chloroplasts. Mice subcutaneously immunized with the chloroplast derived anthrax protective antigen conferred 100% protection against lethal doses of the anthrax toxin. Oral immunization (ORV) of F1-V antigens without adjuvant conferred greater protection (88%) against 50-fold lethal dose of aerosolized plague (Yersinia pestis) than subcutaneous (SQV) immunization (33%). Oral immunization of malarial vaccine antigens fused to the cholera antigen (CTB-AMA1/CTB-Msp1) conferred prolonged immunity (50% life span), 100% protection against cholera toxin challenge and inhibited proliferation of the malarial parasite. Protection was correlated with antigen-specific titers of intestinal, serum IgA & IgG1 in ORV and only IgG1 in SQV mice, but no other immunoglobulin. High level expression in edible plant chloroplasts ideal for oral delivery and long-term immunity observed should facilitate development of low cost human vaccines for large populations, at times of outbreak. PMID:19430198

  18. Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus.

    Science.gov (United States)

    Molina, Andrea; Veramendi, Jon; Hervás-Stubbs, Sandra

    2005-11-25

    The 2L21 epitope of the VP2 protein from the canine parvovirus (CPV), fused to the cholera toxin B subunit (CTB-2L21), was expressed in transgenic tobacco chloroplasts. Mice and rabbits that received protein-enriched leaf extracts by parenteral route produced high titers of anti-2L21 antibodies able to recognize the VP2 protein. Rabbit sera were able to neutralize CPV in an in vitro infection assay with an efficacy similar to the anti-2L21 neutralizing monoclonal antibody 3C9. Anti-2L21 IgG and seric IgA antibodies were elicited when mice were gavaged with a suspension of pulverized tissues from CTB-2L21 transformed plants. Combined immunization (a single parenteral injection followed by oral boosters) shows that oral boosters help to maintain the anti-2L21 IgG response induced after a single injection, whereas parenteral administration of the antigen primes the subsequent oral boosters by promoting the induction of anti-2L21 seric IgA antibodies. Despite the induced humoral response, antibodies elicited by oral delivery did not show neutralizing capacity in the in vitro assay. The high yield of the fusion protein permits the preparation of a high number of vaccine doses from a single plant and makes feasible the oral vaccination using a small amount of crude plant material. However, a big effort has still to be done to enhance the protective efficacy of subunit vaccines by the oral route.

  19. Induction of neutralizing antibodies by a tobacco chloroplast-derived vaccine based on a B cell epitope from canine parvovirus

    International Nuclear Information System (INIS)

    Molina, Andrea; Veramendi, Jon; Hervas-Stubbs, Sandra

    2005-01-01

    The 2L21 epitope of the VP2 protein from the canine parvovirus (CPV), fused to the cholera toxin B subunit (CTB-2L21), was expressed in transgenic tobacco chloroplasts. Mice and rabbits that received protein-enriched leaf extracts by parenteral route produced high titers of anti-2L21 antibodies able to recognize the VP2 protein. Rabbit sera were able to neutralize CPV in an in vitro infection assay with an efficacy similar to the anti-2L21 neutralizing monoclonal antibody 3C9. Anti-2L21 IgG and seric IgA antibodies were elicited when mice were gavaged with a suspension of pulverized tissues from CTB-2L21 transformed plants. Combined immunization (a single parenteral injection followed by oral boosters) shows that oral boosters help to maintain the anti-2L21 IgG response induced after a single injection, whereas parenteral administration of the antigen primes the subsequent oral boosters by promoting the induction of anti-2L21 seric IgA antibodies. Despite the induced humoral response, antibodies elicited by oral delivery did not show neutralizing capacity in the in vitro assay. The high yield of the fusion protein permits the preparation of a high number of vaccine doses from a single plant and makes feasible the oral vaccination using a small amount of crude plant material. However, a big effort has still to be done to enhance the protective efficacy of subunit vaccines by the oral route

  20. Oral and Anal Vaccination Confers Full Protection against Enteric Redmouth Disease (ERM) in Rainbow Trout

    Science.gov (United States)

    Ohtani, Maki; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    The effect of oral vaccines against bacterial fish diseases has been a topic for debate for decades. Recently both M-like cells and dendritic cells have been discovered in the intestine of rainbow trout. It is therefore likely that antigens reaching the intestine can be taken up and thereby induce immunity in orally vaccinated fish. The objective of this project was to investigate whether oral and anal vaccination of rainbow trout induces protection against an experimental waterborne infection with the pathogenic enterobacteria Yersinia ruckeri O1 biotype 1 the causative agent of enteric redmouth disease (ERM). Rainbow trout were orally vaccinated with AquaVac ERM Oral (MERCK Animal Health) or an experimental vaccine bacterin of Y. ruckeri O1. Both vaccines were tested with and without a booster vaccination four months post the primary vaccination. Furthermore, two groups of positive controls were included, one group receiving the experimental oral vaccine in a 50 times higher dose, and the other group receiving a single dose administered anally in order to bypass the stomach. Each group was bath challenged with 6.3×108 CFU/ml Y. ruckeri, six months post the primary vaccination. The challenge induced significant mortality in all the infected groups except for the groups vaccinated anally with a single dose or orally with the high dose of bacterin. Both of these groups had 100% survival. These results show that a low dose of Y. ruckeri bacterin induces full protection when the bacterin is administered anally. Oral vaccination also induces full protection, however, at a dose 50 times higher than if the fish were to be vaccinated anally. This indicates that much of the orally fed antigen is digested in the stomach before it reaches the second segment of the intestine where it can be taken up as immunogenic antigens and presented to lymphocytes. PMID:24705460

  1. Single-cycle immunodeficiency viruses provide strategies for uncoupling in vivo expression levels from viral replicative capacity and for mimicking live-attenuated SIV vaccines

    International Nuclear Information System (INIS)

    Kuate, Seraphin; Stahl-Hennig, Christiane; Haaft, Peter ten; Heeney, Jonathan; Ueberla, Klaus

    2003-01-01

    To reduce the risks associated with live-attenuated immunodeficiency virus vaccines, single-cycle immunodeficiency viruses (SCIVs) were developed by primer complementation and production of the vaccine in the absence of vif in a vif-independent cell line. After a single intravenous injection of SCIVs into rhesus monkeys, peak viral RNA levels of 10 3 to 10 4 copies/ml plasma were observed, indicating efficient expression of SCIV in the vaccinee. After booster immunizations with SCIVs, SIV-specific humoral and cellular immune responses were observed. Although the vaccine doses used in this pilot study could not protect vaccinees from subsequent intravenous challenge with pathogenic SIVmac239, our results demonstrate that the novel SCIV approach allows us to uncouple in vivo expression levels from the viral replicative capacity facilitating the analysis of the relationship between viral expression levels or viral genes and immune responses induced by SIV

  2. Trivalent pneumococcal protein recombinant vaccine protects against lethal Streptococcus pneumoniae pneumonia and correlates with phagocytosis by neutrophils during early pathogenesis.

    Science.gov (United States)

    Xu, Qingfu; Surendran, Naveen; Verhoeven, David; Klapa, Jessica; Ochs, Martina; Pichichero, Michael E

    2015-02-18

    Due to the fact that current polysaccharide-based pneumococcal vaccines have limited serotype coverage, protein-based vaccine candidates have been sought for over a decade to replace or complement current vaccines. We previously reported that a trivalent Pneumococcal Protein recombinant Vaccine (PPrV), showed protection against pneumonia and sepsis in an infant murine model. Here we investigated immunological correlates of protection of PPrV in the same model. C57BL/6J infant mice were intramuscularly vaccinated at age 1-3 weeks with 3 doses of PPrV, containing pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and detoxified pneumolysin mutant PlyD1. 3-4 weeks after last vaccination, serum and lung antibody levels to PPrV components were measured, and mice were intranasally challenged with a lethal dose of Streptococcus pneumoniae (Spn) serotype 6A. Lung Spn bacterial burden, number of neutrophils and alveolar macrophages, phagocytosed Spn by granulocytes, and levels of cytokines and chemokines were determined at 6, 12, 24, and 48h after challenge. PPrV vaccination conferred 83% protection against Spn challenge. Vaccinated mice had significantly elevated serum and lung antibody levels to three PPrV components. In the first stage of pathogenesis of Spn induced pneumonia (6-24h after challenge), vaccinated mice had lower Spn bacterial lung burdens and more phagocytosed Spn in the granulocytes. PPrV vaccination led to lower levels of pro-inflammatory cytokines IL-6, IL-1β, and TFN-α, and other cytokines and chemokines (IL-12, IL-17, IFN-γ, MIP-1b, MIP-2 and KC, and G-CSF), presumably due to a lower lung bacterial burden. Trivalent PPrV vaccination results in increased serum and lung antibody levels to the vaccine components, a reduction in Spn induced lethality, enhanced early clearance of Spn in lungs due to more rapid and thorough phagocytosis of Spn by neutrophils, and correspondingly a reduction in lung inflammation

  3. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    Science.gov (United States)

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and

  5. Immunogenicity and safety of three aluminium hydroxide adjuvanted vaccines with reduced doses of inactivated polio vaccine (IPV-Al) compared with standard IPV in young infants in the Dominican Republic: a phase 2, non-inferiority, observer-blinded, randomised, and controlled dose investigation trial.

    Science.gov (United States)

    Rivera, Luis; Pedersen, Rasmus S; Peña, Lourdes; Olsen, Klaus J; Andreasen, Lars V; Kromann, Ingrid; Nielsen, Pernille I; Sørensen, Charlotte; Dietrich, Jes; Bandyopadhyay, Ananda S; Thierry-Carstensen, Birgit

    2017-07-01

    Cost and supply constraints are key challenges in the use of inactivated polio vaccine (IPV). Dose reduction through adsorption to aluminium hydroxide (Al) is a promising option, and establishing its effectiveness in the target population is a crucial milestone in developing IPV-Al. The aim of this clinical trial was to show the non-inferiority of three IPV-Al vaccines to standard IPV. In this phase 2, non-inferiority, observer-blinded, randomised, controlled, single-centre trial in the Dominican Republic, healthy infants aged 6 weeks, not previously polio vaccinated, were allocated after computer-generated randomisation by block-size of four, to receive one of four IPV formulations (three-times reduced dose [1/3 IPV-Al], five-times reduced dose [1/5 IPV-Al], ten-times reduced dose [1/10 IPV-Al], or IPV) intramuscularly in the thigh at 6, 10, and 14 weeks of age. The primary outcome was seroconversion for poliovirus types 1, 2, and 3 with titres more than or equal to four-fold higher than the estimated maternal antibody titre and more than or equal to 8 after three vaccinations. Non-inferiority was concluded if the lower two-sided 90% CI of the seroconversion rate difference between IPV-Al and IPV was greater than -10%. The safety analyses were based on the safety analysis set (randomly assigned participants who received at least one trial vaccination) and the immunogenicity analyses were based on the per-protocol population. This study is registered with ClinicalTrials.gov registration, number NCT02347423. Between Feb 2, 2015, and Sept 26, 2015, we recruited 824 infants. The per-protocol population included 820 infants; 205 were randomly assigned to receive 1/3 IPV-Al, 205 to receive 1/5 IPV-Al, 204 to receive 1/10 IPV-Al, and 206 to receive IPV. The proportion of individuals meeting the primary endpoint of seroconversion for poliovirus types 1, 2, and 3 was already high for the three IPV-Al vaccines after two vaccinations, but was higher after three vaccinations

  6. Analysis of the dose-sparing effect of adjuvanted Sabin-inactivated poliovirus vaccine (sIPV).

    Science.gov (United States)

    Li, Zhuofan; Ding, Wenting; Guo, Qi; Liu, Ze; Zhu, Zhe; Song, Shaohui; Li, Weidong; Liao, Guoyang

    2018-03-30

    Sabin-based inactivated poliovirus vaccine(sIPV) is gradually replacing live-attenuated oral polio vaccine(OPV). Sabin-inactivated poliovirus vaccine(sIPV) has played a vital role in reducing economic burden of poliomyelitis and maintaining appropriate antibody levels in the population. However, due to its high cost and limited manufacturing capacity, sIPV cannot reach its full potential for global poliovirus eradication in developing countries. Therefore, to address this situation, we designed this study to evaluate the dose-sparing effects of AS03, CpG oligodeoxynucleotides (CpG-ODN) and polyinosinic:polycytidylic acid (PolyI:C) admixed with sIPV in rats. Our results showed that a combination of 1/4-dose sIPV adjuvanted with AS03 or AS03 with BW006 provides a seroconversion rate similar to that of full-dose sIPV without adjuvant and that, this rate is 5-fold higher than that of 1/4-dose sIPV without adjuvant after the first immunization. The combination of AS03 or AS03 with BW006 as an adjuvant effectively reduced sIPV dose by at least 4-fold and induced both humoral and cellular immune responses. Therefore, our study revealed that the combination of AS03 or AS03 with BW006 is a promising adjuvant for sIPV development.

  7. Anti-tumor effect of low dose radiation in mice

    International Nuclear Information System (INIS)

    Fan Zhengping; Lu Jiaben; Zhu Bingchai

    1997-01-01

    The author reports the effects of the total body irradiation of low dose radiation (LDR) and/or the local irradiation of large dose on average tumor weights and tumor inhibitory rates in 170 mice inoculated S 180 sarcoma cell, and the influence of LDR on average longevity in 40 tumor-bearing animals. Results show (1) LDR in the range of 75∼250 mGy can inhibit tumor growth to some extent; (2) fractionated irradiation of 75 mGy and local irradiation of 10 Gy may produce a synergism in tumor growth inhibition; and (3)LDR may enhance average longevity in ascitic tumor-bearing mice

  8. Deliberate reduction of hemagglutinin and neuraminidase expression of influenza virus leads to an ultraprotective live vaccine in mice.

    Science.gov (United States)

    Yang, Chen; Skiena, Steven; Futcher, Bruce; Mueller, Steffen; Wimmer, Eckard

    2013-06-04

    A long-held dogma posits that strong presentation to the immune system of the dominant influenza virus glycoprotein antigens neuraminidase (NA) and hemagglutinin (HA) is paramount for inducing protective immunity against influenza virus infection. We have deliberately violated this dogma by constructing a recombinant influenza virus strain of A/PR8/34 (H1N1) in which expression of NA and HA genes was suppressed. We down-regulated NA and HA expression by recoding the respective genes with suboptimal codon pair bias, thereby introducing hundreds of nucleotide changes while preserving their codon use and protein sequence. The variants PR8-NA(Min), PR8-HA(Min), and PR8-(NA+HA)(Min) (Min, minimal expression) were used to assess the contribution of reduced glycoprotein expression to growth in tissue culture and pathogenesis in BALB/c mice. All three variants proliferated in Madin-Darby canine kidney cells to nearly the degree as WT PR8. In mice, however, they expressed explicit attenuation phenotypes, as revealed by their LD50 values: PR8, 32 plaque-forming units (PFU); HA(Min), 1.7 × 10(3) PFU; NA(Min), 2.4 × 10(5) PFU; (NA+HA)(Min), ≥3.16 × 10(6) PFU. Remarkably, (NA+HA)(Min) was attenuated >100,000-fold, with NA(Min) the major contributor to attenuation. In vaccinated mice (NA+HA)(Min) was highly effective in providing long-lasting protective immunity against lethal WT challenge at a median protective dose (PD50) of 2.4 PFU. Moreover, at a PD50 of only 147 or 237, (NA+HA)(Min) conferred protection against heterologous lethal challenges with two mouse-adapted H3N2 viruses. We conclude that the suppression of HA and NA is a unique strategy in live vaccine development.

  9. Adverse Events Post Smallpox-Vaccination: Insights from Tail Scarification Infection in Mice with Vaccinia virus

    Science.gov (United States)

    Mota, Bruno E. F.; Gallardo-Romero, Nadia; Trindade, Giliane; Keckler, M. Shannon; Karem, Kevin; Carroll, Darin; Campos, Marco A.; Vieira, Leda Q.; da Fonseca, Flávio G.; Ferreira, Paulo C. P.; Bonjardim, Cláudio A.; Damon, Inger K.; Kroon, Erna G.

    2011-01-01

    Adverse events upon smallpox vaccination with fully-replicative strains of Vaccinia virus (VACV) comprise an array of clinical manifestations that occur primarily in immunocompromised patients leading to significant host morbidity/mortality. The expansion of immune-suppressed populations and the possible release of Variola virus as a bioterrorist act have given rise to concerns over vaccination complications should more widespread vaccination be reinitiated. Our goal was to evaluate the components of the host immune system that are sufficient to prevent morbidity/mortality in a murine model of tail scarification, which mimics immunological and clinical features of smallpox vaccination in humans. Infection of C57BL/6 wild-type mice led to a strictly localized infection, with complete viral clearance by day 28 p.i. On the other hand, infection of T and B-cell deficient mice (Rag1 −/−) produced a severe disease, with uncontrolled viral replication at the inoculation site and dissemination to internal organs. Infection of B-cell deficient animals (µMT) produced no mortality. However, viral clearance in µMT animals was delayed compared to WT animals, with detectable viral titers in tail and internal organs late in infection. Treatment of Rag1 −/− with rabbit hyperimmune anti-vaccinia serum had a subtle effect on the morbidity/mortality of this strain, but it was effective in reduce viral titers in ovaries. Finally, NUDE athymic mice showed a similar outcome of infection as Rag1 −/−, and passive transfer of WT T cells to Rag1 −/− animals proved fully effective in preventing morbidity/mortality. These results strongly suggest that both T and B cells are important in the immune response to primary VACV infection in mice, and that T-cells are required to control the infection at the inoculation site and providing help for B-cells to produce antibodies, which help to prevent viral dissemination. These insights might prove helpful to better identify

  10. [Immunogenicity of attenuated Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae in mice].

    Science.gov (United States)

    Ma, Fengying; Zou, Haoyong; He, Qigai

    2011-09-01

    The study was carried out to construct and characterize Salmonella choleraesuis vaccine strain expressing immunogenic genes of Mycoplasma hyopneumoniae and to test its immunogenicity in mice. We made p36, p46, p65 and p97R1-Nrdf, the main immunogenic genes of Mycoplasma hyopneumoniae, to insert into the prokaryotic expression plasmid pYA3493. Then these recombinant plasmids and pYA3493 were electroporated into C500 asd-mutant, resulting in the recombinant Salmonella choleraesuis vaccine strains C36 (pYA-36), C46 (pYA-46), C65 (pYA-65), C97R1-Nrdf(pYA-97R1-Nrdf) and CpYA(pYA3493). We characterized these recombinant Salmonella choleraesuis vaccine strains and tested the immunogenicity in mice by intramuscular injection or orally immunized. The results of the immunogenicity in mice indicated that the group orally immunized with C36, C46, C65, C97R1-Nrdf showed significantly higher Mycoplasma pneumoniae antibody than both the group orally immunized with C36, C46, C65 and the group intramuscular injected with the Mycoplasma hyopneumoniae bacterin (M + PAC) (P Mycoplasma hyopneumoniae bacterin (M + PAC) (P 0.05). The highest level of IL-4 was found in the group orally immunized with C36, C46, C65; higher levels of IL-4 was observed in the group orally immunized with C36, C46, C65, C97R1-Nrdf than the group injected with the Mycoplasma hyopneumoniae bacterin (M + PAC); and the lowest IL-4 level was found in the group injected with C36, C46, C65. There were no significant differences among them (P > 0.05). The Mycoplasma pneumoniae antibody, IFN-gamma or IL-4 production of the each group was obviously higher than the control group (P Mycoplasma hyopneumoniae which has immunogenicity in mice especially by intramuscular injection could probably serve as a vaccine against mycoplasmal pneumonia of swine.

  11. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  12. Dose dependent transfer of 203lead to milk and tissue uptake in suckling offspring studied in rats and mice

    International Nuclear Information System (INIS)

    Palminger Hallen, I.; Oskarsson, A.

    1993-01-01

    The dose-dependent transfer of 203 Pb to milk and uptake in suckling rats and mice during a three-day nursing period was studied. On day 14 of lactation, the dams were administered a single intravenous dose of lead, labelled with 203 Pb, in four or five doses from 0.0005 to 2.0 mg Pb/kg b.wt. There was a linear relationship between Pb levels in plasma and milk of both species. The Pb milk: plasma ratios at 24 hr after administration were 119 and 89 in mice and rats, respectively. At 72 hr the Pb milk: plasma ratio had decreased to 72 in mice and 35 in rats. The tissue levels of lead in the suckling rats and mice were also linearly correlated with lead concentration in milk at 72 hr, showing that milk could be used as an indicator of lead exposure to the suckling offspring. It is concluded that lead is transported into rat and mouse milk to a very high extent and the excretion into milk is more efficient in mice than in rats. On the other hand, rat pups had higher lead levels in tissues than mice pups, which might be due to a higher bioavailability and/or a lower excretion of lead in rat pups. Thus, lead in breast milk could be used as a biological indicator of lead exposure in the mother as well as in the suckling offspring. (au) (38 refs.)

  13. [The reactogenicity of Heberbiovac-HB vaccine at different doses].

    Science.gov (United States)

    Díaz González, M; Navia Molina, O; Bravo González, J R; Pedroso Flaquet, P; Urbino López, A

    1995-01-01

    Reactogenicity was measured after applying the Heberbiovac-HB recombinant vaccine against hepatitis B virus to three groups of children aged 6-9 years. The vaccine was derived from yeast cells, administered at doses of 10, 5, and 2.5 g, with a schedule of 0, 1 and 6 months. The overall observed symptomatology was low (12.2%) in the three groups with 10.7%, 13.5%, and 12.3% for 10, 5, and 2.5 g, respectively. The predominant symptoms and signs were febricula (7.0%), local pain (3.1%), and erythema (1.2%). No significant differences were found when making a comparison between groups and sexes. An acceptable reactogenicity of the immunogen was confirmed, thus its use is recommended for the protection against hepatitis B virus.

  14. Effects of oral deoxynivalenol exposure on immune-related parameters in lymphoid organs and serum of mice vaccinated with porcine parvovirus vaccine.

    Science.gov (United States)

    Choi, Byung-Kook; Jeong, Sang-Hee; Cho, Joon-Hyung; Shin, Hyo-Sook; Son, Seong-Wan; Yeo, Young-Keun; Kang, Hwan-Goo

    2013-08-01

    Mice were exposed to deoxynivalenol (DON) via drinking water at a concentration of 2 mg/L for 36 days. On day 8 of treatment, inactivated porcine parvovirus vaccine (PPV) was injected intraperitoneally. The relative and absolute weight of the spleen was significantly decreased in the DON-treated group (DON). Antibody titers to parvovirus in serum were 47.9 ± 2.4 in the vaccination group (Vac), but 15.2 ± 6.5 in the group treated with DON and vaccine (DON + Vac). The IgA and IgG was not different in the DON, Vac an,d DON + Vac groups. IgM was significantly lower only in the DON + Vac group. However IgE was significantly increased in the Vac and DON + Vac group, but no change was observed between the Vac and DON + Vac groups. The concentrations of IL-2, IL-4, GM-CSF, MCP-1 and Rantes in serum, and IL-1α in mesenteric lymph node and MIP-1β in spleen were significantly increased by DON treatment compared to control. The concentrations of IL-2, IL-5, IL-6, IL-9, IL-12, IL-13 and Rantes in thymus, of IL-2 in spleen, and of IL-1α, IL-1β, IL-3, IL-5, IL-10, IL-17, G-CSF, GM-CSF and MCP-1 in mesenteric lymph nodes were significantly decreased in mice compared to those in the Vac group, while concentrations of IL-1α, IL-2, IL-9, IL-13,G-CSF, GM-CSF, IFN-γ, MCP-1, MIP-1α and TNF-α were significantly increased in serum compared to the Vac group. In conclusion, the results presented here indicate that exposure to DON at 2.0 mg/L via drinking water can disrupt the immune response in vaccinated mice by modulating cytokines and chemokines involved in their immune response to infectious disease.

  15. Immunization with a DNA vaccine encoding Toxoplasma gondii Superoxide dismutase (TgSOD) induces partial immune protection against acute toxoplasmosis in BALB/c mice.

    Science.gov (United States)

    Liu, Yuan; Cao, Aiping; Li, Yawen; Li, Xun; Cong, Hua; He, Shenyi; Zhou, Huaiyu

    2017-06-07

    Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects all warm-blooded animals including humans and causes toxoplasmosis. An effective vaccine could be an ideal choice for preventing and controlling toxoplasmosis. T. gondii Superoxide dismutase (TgSOD) might participate in affecting the intracellular growth of both bradyzoite and tachyzoite forms. In the present study, the TgSOD gene was used to construct a DNA vaccine (pEGFP-SOD). TgSOD gene was amplified and inserted into eukaryotic vector pEGFP-C1 and formed the DNA vaccine pEGFP-SOD. Then the BALB/c mice were immunized intramuscularly with the DNA vaccine and those injected with pEGFP-C1, PBS or nothing were treated as controls. Four weeks after the last immunization, all mouse groups followed by challenging intraperitoneally with tachyzoites of T. gondii ME49 strain. Results showed higher levels of total IgG, IgG2α in the sera and interferon gamma (IFN-γ) in the splenocytes from pEGFP-SOD inoculated mice than those unvaccinated, or inoculated with either empty plasmid vector or PBS. The proportions of CD4 + T cells and CD8 + T cells in the spleen from pEGFP-SOD inoculated mice were significantly (p < 0.05) increased compared to control groups. In addition, the survival time of mice immunized with pEGFP-SOD was significantly prolonged as compared to the controls (p < 0.05) although all the mice died. The present study revealed that the DNA vaccine triggered strong humoral and cellular immune responses, and aroused partial protective immunity against acute T. gondii infection in BALB/c mice. The collective data suggests the SOD may be a potential vaccine candidate for further development.

  16. The role of antibody affinity and titre in immunity to Schistosoma mansoni following vaccination with highly irradiated cercariae

    International Nuclear Information System (INIS)

    Vignali, D.A.A.; Devey, M.E.; Bickle, Q.D.; Taylor, M.G.

    1990-01-01

    Sera from rabbits and rats vaccinated with highly irradiated cercariae of Schistosoma mansoni (VRabS, VRatS) were found to be of substantially higher affinity than sera from CBA mice vaccinated four times (4 x CVMS), single sex sera (SSS) or chronic infection sera (CIS). In contrast, immunoprecipitation studies demonstrated that sera from vaccinated LA mice (LVMS) recognized 125 I-labelled schistosomular surface antigens more intensely than sera from vaccinated HA mice (HVMS). However, peritoneal macrophages from HA and LA mice in the presence of HVMS, LVMS or 4 x CVMS, and naive macrophages activated in vitro with interferon-gamma (IFN-γ)/lipopolysaccharide (LPS) mediated comparable levels of schistosomula killing in vitro. The experiments described here provide evidence that the titre of antibody rather than its affinity may be a more critical factor in the development of optimal immunity to S. mansoni. (author)

  17. Vaccination of mice using the West Nile virus E-protein in a DNA prime-protein boost strategy stimulates cell-mediated immunity and protects mice against a lethal challenge.

    Directory of Open Access Journals (Sweden)

    Marina De Filette

    Full Text Available West Nile virus (WNV is a mosquito-borne flavivirus that is endemic in Africa, the Middle East, Europe and the United States. There is currently no antiviral treatment or human vaccine available to treat or prevent WNV infection. DNA plasmid-based vaccines represent a new approach for controlling infectious diseases. In rodents, DNA vaccines have been shown to induce B cell and cytotoxic T cell responses and protect against a wide range of infections. In this study, we formulated a plasmid DNA vector expressing the ectodomain of the E-protein of WNV into nanoparticles by using linear polyethyleneimine (lPEI covalently bound to mannose and examined the potential of this vaccine to protect against lethal WNV infection in mice. Mice were immunized twice (prime--boost regime with the WNV DNA vaccine formulated with lPEI-mannose using different administration routes (intramuscular, intradermal and topical. In parallel a heterologous boost with purified recombinant WNV envelope (E protein was evaluated. While no significant E-protein specific humoral response was generated after DNA immunization, protein boosting of DNA-primed mice resulted in a marked increase in total neutralizing antibody titer. In addition, E-specific IL-4 T-cell immune responses were detected by ELISPOT after protein boost and CD8(+ specific IFN-γ expression was observed by flow cytometry. Challenge experiments using the heterologous immunization regime revealed protective immunity to homologous and virulent WNV infection.

  18. Vaccination with a Plasmodium chabaudi adami multivalent DNA vaccine cross-protects A/J mice against challenge with P. c. adami DK and virulent Plasmodium chabaudi chabaudi AS parasites.

    Science.gov (United States)

    Scorza, T; Grubb, K; Cambos, M; Santamaria, C; Tshikudi Malu, D; Spithill, T W

    2008-06-01

    A current goal of malaria vaccine research is the development of vaccines that will cross-protect against multiple strains of malaria. In the present study, the breadth of cross-reactivity induced by a 30K multivalent DNA vaccine has been evaluated in susceptible A/J mice (H-2a) against infection with the Plasmodium chabaudi adami DK strain and a virulent parasite subspecies, Plasmodium chabaudi chabaudi AS. Immunized A/J mice were significantly protected against infection with both P. c. adami DK (31-40% reduction in cumulative parasitemia) and P. c. chabaudi AS parasites, where a 30-39% reduction in cumulative parasitemia as well as enhanced survival was observed. The 30K vaccine-induced specific IFN-gamma production by splenocytes in response to native antigens from both P. c. chabaudi AS and P. c. adami DK. Specific antibodies reacting with surface antigens expressed on P. c. adami DS and P. c. chabaudi AS infected red blood cells, and with opsonizing properties, were detected. These results suggest that multivalent vaccines encoding conserved antigens can feasibly induce immune cross-reactivity that span Plasmodium strains and subspecies and can protect hosts of distinct major histocompatibility complex haplotypes.

  19. Low-Dose Radiation Activates Akt and Nrf2 in the Kidney of Diabetic Mice: A Potential Mechanism to Prevent Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Xiao Xing

    2012-01-01

    Full Text Available Repetitive exposure of diabetic mice to low-dose radiation (LDR at 25 mGy could significantly attenuate diabetes-induced renal inflammation, oxidative damage, remodeling, and dysfunction, for which, however, the underlying mechanism remained unknown. The present study explored the effects of LDR on the expression and function of Akt and Nrf2 in the kidney of diabetic mice. C57BL/6J mice were used to induce type 1 diabetes with multiple low-dose streptozotocin. Diabetic and age-matched control mice were irradiated with whole body X-rays at either single 25 mGy and 75 mGy or accumulated 75 mGy (25 mGy daily for 3 days and then sacrificed at 1–12 h for examining renal Akt phosphorylation and Nrf2 expression and function. We found that 75 mGy of X-rays can stimulate Akt signaling pathway and upregulate Nrf2 expression and function in diabetic kidneys; single exposure of 25 mGy did not, but three exposures to 25 mGy of X-rays could offer a similar effect as single exposure to 75 mGy on the stimulation of Akt phosphorylation and the upregulation of Nrf2 expression and transcription function. These results suggest that single 75 mGy or multiple 25 mGy of X-rays can stimulate Akt phosphorylation and upregulate Nrf2 expression and function, which may explain the prevention of LDR against the diabetic nephropathy mentioned above.

  20. Recombinant Parainfluenza Virus 5 Expressing Hemagglutinin of Influenza A Virus H5N1 Protected Mice against Lethal Highly Pathogenic Avian Influenza Virus H5N1 Challenge

    Science.gov (United States)

    Li, Zhuo; Mooney, Alaina J.; Gabbard, Jon D.; Gao, Xiudan; Xu, Pei; Place, Ryan J.; Hogan, Robert J.; Tompkins, S. Mark

    2013-01-01

    A safe and effective vaccine is the best way to prevent large-scale highly pathogenic avian influenza virus (HPAI) H5N1 outbreaks in the human population. The current FDA-approved H5N1 vaccine has serious limitations. A more efficacious H5N1 vaccine is urgently needed. Parainfluenza virus 5 (PIV5), a paramyxovirus, is not known to cause any illness in humans. PIV5 is an attractive vaccine vector. In our studies, a single dose of a live recombinant PIV5 expressing a hemagglutinin (HA) gene of H5N1 (rPIV5-H5) from the H5N1 subtype provided sterilizing immunity against lethal doses of HPAI H5N1 infection in mice. Furthermore, we have examined the effect of insertion of H5N1 HA at different locations within the PIV5 genome on the efficacy of a PIV5-based vaccine. Interestingly, insertion of H5N1 HA between the leader sequence, the de facto promoter of PIV5, and the first viral gene, nucleoprotein (NP), did not lead to a viable virus. Insertion of H5N1 HA between NP and the next gene, V/phosphorprotein (V/P), led to a virus that was defective in growth. We have found that insertion of H5N1 HA at the junction between the small hydrophobic (SH) gene and the hemagglutinin-neuraminidase (HN) gene gave the best immunity against HPAI H5N1 challenge: a dose as low as 1,000 PFU was sufficient to protect against lethal HPAI H5N1 challenge in mice. The work suggests that recombinant PIV5 expressing H5N1 HA has great potential as an HPAI H5N1 vaccine. PMID:23077314

  1. A rabies vaccine adjuvanted with saponins from leaves of the soap tree (Quillaja brasiliensis) induces specific immune responses and protects against lethal challenge.

    Science.gov (United States)

    Yendo, Anna Carolina A; de Costa, Fernanda; Cibulski, Samuel P; Teixeira, Thais F; Colling, Luana C; Mastrogiovanni, Mauricio; Soulé, Silvia; Roehe, Paulo M; Gosmann, Grace; Ferreira, Fernando A; Fett-Neto, Arthur G

    2016-04-29

    Quillaja brasiliensis (Quillajaceae) is a saponin producing species native from southern Brazil and Uruguay. Its saponins are remarkably similar to those of Q. saponaria, which provides most of the saponins used as immunoadjuvants in vaccines. The immunostimulating capacities of aqueous extract (AE) and purified saponin fraction (QB-90) obtained from leaves of Q. brasiliensis were favorably comparable to those of a commercial saponin-based adjuvant preparation (Quil-A) in experimental vaccines against bovine herpesvirus type 1 and 5, poliovirus and bovine viral diarrhea virus in mice model. Herein, the immunogenicity and protection efficacy of rabies vaccines adjuvanted with Q. brasiliensis AE and its saponin fractions were compared with vaccines adjuvanted with either commercial Quil-A or Alum. Mice were vaccinated with one or two doses (on days 0 and 14) of one of the different vaccines and serum levels of total IgG, IgG1 and IgG2a were quantified over time. A challenge experiment with a lethal dose of rabies virus was carried out with the formulations. Viral RNA detection in the brain of mice was performed by qPCR, and RNA copy-numbers were quantified using a standard curve of in vitro transcribed RNA. All Q. brasiliensis saponin-adjuvanted vaccines significantly enhanced levels of specific IgG isotypes when compared with the no adjuvant group (P ≤ 0.05). Overall, one or two doses of saponin-based vaccine were efficient to protect against the lethal rabies exposure. Both AE and saponin fractions from Q. brasiliensis leaves proved potent immunological adjuvants in vaccines against a lethal challenge with a major livestock pathogen, hence confirming their value as competitive or complementary sustainable alternatives to saponins of Q. saponaria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Genotoxic effects of high dose rate X-ray and low dose rate gamma radiation in ApcMin/+ mice.

    Science.gov (United States)

    Graupner, Anne; Eide, Dag M; Brede, Dag A; Ellender, Michele; Lindbo Hansen, Elisabeth; Oughton, Deborah H; Bouffler, Simon D; Brunborg, Gunnar; Olsen, Ann Karin

    2017-10-01

    Risk estimates for radiation-induced cancer in humans are based on epidemiological data largely drawn from the Japanese atomic bomb survivor studies, which received an acute high dose rate (HDR) ionising radiation. Limited knowledge exists about the effects of chronic low dose rate (LDR) exposure, particularly with respect to the application of the dose and dose rate effectiveness factor. As part of a study to investigate the development of colon cancer following chronic LDR vs. acute HDR radiation, this study presents the results of genotoxic effects in blood of exposed mice. CBAB6 F1 Apc +/+ (wild type) and Apc Min/+ mice were chronically exposed to estimated whole body absorbed doses of 1.7 or 3.2 Gy 60 Co-γ-rays at a LDR (2.2 mGy h -1 ) or acutely exposed to 2.6 Gy HDR X-rays (1.3 Gy min -1 ). Genotoxic endpoints assessed in blood included chromosomal damage (flow cytometry based micronuclei (MN) assay), mutation analyses (Pig-a gene mutation assay), and levels of DNA lesions (Comet assay, single-strand breaks (ssb), alkali labile sites (als), oxidized DNA bases). Ionising radiation (ca. 3 Gy) induced genotoxic effects dependent on the dose rate. Chromosomal aberrations (MN assay) increased 3- and 10-fold after chronic LDR and acute HDR, respectively. Phenotypic mutation frequencies as well as DNA lesions (ssb/als) were modulated after acute HDR but not after chronic LDR. The Apc Min/+ genotype did not influence the outcome in any of the investigated endpoints. The results herein will add to the scant data available on genotoxic effects following chronic LDR of ionising radiation. Environ. Mol. Mutagen. 58:560-569, 2017. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society. © 2017 The Authors Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.

  3. Multiagent vaccines vectored by Venezuelan equine encephalitis virus replicon elicits immune responses to Marburg virus and protection against anthrax and botulinum neurotoxin in mice.

    Science.gov (United States)

    Lee, John S; Groebner, Jennifer L; Hadjipanayis, Angela G; Negley, Diane L; Schmaljohn, Alan L; Welkos, Susan L; Smith, Leonard A; Smith, Jonathan F

    2006-11-17

    The development of multiagent vaccines offers the advantage of eliciting protection against multiple diseases with minimal inoculations over a shorter time span. We report here the results of using formulations of individual Venezuelan equine encephalitis (VEE) virus replicon-vectored vaccines against a bacterial disease, anthrax; a viral disease, Marburg fever; and against a toxin-mediated disease, botulism. The individual VEE replicon particles (VRP) expressed mature 83-kDa protective antigen (MAT-PA) from Bacillus anthracis, the glycoprotein (GP) from Marburg virus (MBGV), or the H(C) fragment from botulinum neurotoxin (BoNT H(C)). CBA/J mice inoculated with a mixture of VRP expressing BoNT H(C) serotype C (BoNT/C H(C)) and MAT-PA were 80% protected from a B. anthracis (Sterne strain) challenge and then 100% protected from a sequential BoNT/C challenge. Swiss mice inoculated with individual VRP or with mixtures of VRP vaccines expressing BoNT H(C) serotype A (BoNT/A H(C)), MAT-PA, and MBGV-GP produced antibody responses specific to the corresponding replicon-expressed protein. Combination of the different VRP vaccines did not diminish the antibody responses measured for Swiss mice inoculated with formulations of two or three VRP vaccines as compared to mice that received only one VRP vaccine. Swiss mice inoculated with VRP expressing BoNT/A H(C) alone or in combination with VRP expressing MAT-PA and MBGV GP, were completely protected from a BoNT/A challenge. These studies demonstrate the utility of combining individual VRP vaccines into multiagent formulations for eliciting protective immune responses to various types of diseases.

  4. Proteliposome-derived Cochleate as an immunomodulator for nasal vaccine.

    Science.gov (United States)

    Pérez, Oliver; Bracho, Gustavo; Lastre, Miriam; Zayas, Caridad; González, Domingo; Gil, Danay; del Campo, Judith; Acevedo, Reinaldo; Taboada, Carlos; Rodríguez, Tamara; Fajardo, María E; Sierra, Gustavo; Campa, Concepción; Mora, Nestor; Barberá, Ramón; Solís, Rosa L

    2006-04-12

    Proteoliposome (PL) has been recently used as a protective intramuscular (i.m.) anti-meningococcal BC vaccine. It induces a preferential Th 1 type of immune response. Nevertheless, mucosal protection is mainly mediated by IgA antibody response, which is not usually induced by i.m. vaccination route. IgA antibody production needs the stimulation of Th3 subpopulation, which is also related to the induction of small dose tolerance. We hypothesized that PL-derived Cochleate can induce a specific mucosal IgA and systemic IgG antibody responses. We could show that mice immunized with two or three intranasal doses of PL-derived Cochleate developed significantly increased levels of local anti PL IgA and systemic IgG antibody responses. Thus, our results suggest that PL-derived Cochleate can be used as a promising immunomodulator and delivery system for the development of mucosal, particularly nasal vaccines.

  5. H5N1 whole-virus vaccine induces neutralizing antibodies in humans which are protective in a mouse passive transfer model.

    Directory of Open Access Journals (Sweden)

    M Keith Howard

    Full Text Available BACKGROUND: Vero cell culture-derived whole-virus H5N1 vaccines have been extensively tested in clinical trials and consistently demonstrated to be safe and immunogenic; however, clinical efficacy is difficult to evaluate in the absence of wide-spread human disease. A lethal mouse model has been utilized which allows investigation of the protective efficacy of active vaccination or passive transfer of vaccine induced sera following lethal H5N1 challenge. METHODS: We used passive transfer of immune sera to investigate antibody-mediated protection elicited by a Vero cell-derived, non-adjuvanted inactivated whole-virus H5N1 vaccine. Mice were injected intravenously with H5N1 vaccine-induced rodent or human immune sera and subsequently challenged with a lethal dose of wild-type H5N1 virus. RESULTS: Passive transfer of H5N1 vaccine-induced mouse, guinea pig and human immune sera provided dose-dependent protection of recipient mice against lethal challenge with wild-type H5N1 virus. Protective dose fifty values for serum H5N1 neutralizing antibody titers were calculated to be ≤1∶11 for all immune sera, independently of source species. CONCLUSIONS: These data underpin the confidence that the Vero cell culture-derived, whole-virus H5N1 vaccine will be effective in a pandemic situation and support the use of neutralizing serum antibody titers as a correlate of protection for H5N1 vaccines.

  6. 17DD yellow fever vaccine: a double blind, randomized clinical trial of immunogenicity and safety on a dose-response study.

    Science.gov (United States)

    Martins, Reinaldo M; Maia, Maria de Lourdes S; Farias, Roberto Henrique G; Camacho, Luiz Antonio B; Freire, Marcos S; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C; Lima, Sheila Maria B; Nogueira, Rita Maria R; Sá, Gloria Regina S; Hokama, Darcy A; de Carvalho, Ricardo; Freire, Ricardo Aguiar V; Pereira Filho, Edson; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-04-01

    To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. INTERNATIONAL REGISTER: ISRCTN 38082350.

  7. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  8. Dengue vaccines: Are they safe for travelers?

    Science.gov (United States)

    Halstead, Scott B; Aguiar, Maira

    2016-01-01

    The four dengue viruses (DENV) circulate among nearly one-half of the world's population in tropical and semitropical countries imposing a huge morbidity burden on travelers. Sanofipasteur has developed a tetravalent live-attenuated vaccine, Dengvaxia, recently approved by the World Health Organization and licensed in four dengue-endemic countries. An additional two dengue vaccines, developed by the National Institute of Allergy and Infectious Diseases (NIAID), USA and Takeda, are entering phase III testing. Dengvaxia is composed of four yellow fever 17D-DENV chimeras, the NIAID vaccine contains three mutagenized DENV and one DENV2/4 chimera while the Takeda vaccine contains an attenuated DENV 2 and three DENV 2-DENV chimeras. Which of these vaccines might be useful in protecting travelers against dengue infections and disease? Dengvaxia requires three doses administered over the course of one year but in addition has safety signals suggesting that susceptible individuals should not be vaccinated. The NIAID vaccine is promising as a travel vaccine as a single dose fully protected susceptible adults against live dengue 2 virus challenge. The protective efficacy and safety of the Takeda vaccine remain to be demonstrated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag.

    Science.gov (United States)

    Garrod, Tamsin J; Gargett, Tessa; Yu, Wenbo; Major, Lee; Burrell, Christopher J; Wesselingh, Steven; Suhrbier, Andreas; Grubor-Bauk, Branka; Gowans, Eric J

    2014-11-04

    Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Notes from the Field: Injection Safety and Vaccine Administration Errors at an Employee Influenza Vaccination Clinic--New Jersey, 2015.

    Science.gov (United States)

    Taylor, Laura; Greeley, Rebecca; Dinitz-Sklar, Jill; Mazur, Nicole; Swanson, Jill; Wolicki, JoEllen; Perz, Joseph; Tan, Christina; Montana, Barbara

    2015-12-18

    On September 30, 2015, the New Jersey Department of Health (NJDOH) was notified by an out-of-state health services company that an experienced nurse had reused syringes for multiple persons earlier that day. This occurred at an employee influenza vaccination clinic on the premises of a New Jersey business that had contracted with the health services company to provide influenza vaccinations to its employees. The employees were to receive vaccine from manufacturer-prefilled, single-dose syringes. However, the nurse contracted by the health services company brought three multiple-dose vials of vaccine that were intended for another event. The nurse reported using two syringes she found among her supplies to administer vaccine to 67 employees of the New Jersey business. She reported wiping the syringes with alcohol and using a new needle for each of the 67 persons. One of the vaccine recipients witnessed and questioned the syringe reuse, and brought it to the attention of managers at the business who, in turn, reported the practice to the health services company contracted to provide the influenza vaccinations.

  11. Anti-Glycoprotein G Antibodies of Herpes Simplex Virus 2 Contribute to Complete Protection after Vaccination in Mice and Induce Antibody-Dependent Cellular Cytotoxicity and Complement-Mediated Cytolysis

    Directory of Open Access Journals (Sweden)

    Staffan Görander

    2014-11-01

    Full Text Available We investigated the role of antibodies against the mature portion of glycoprotein G (mgG-2 of herpes simplex virus 2 (HSV-2 in protective immunity after vaccination. Mice were immunized intramuscularly with mgG-2 and oligodeoxynucleotides containing two CpG motifs plus alum as adjuvant. All C57BL/6 mice survived and presented no genital or systemic disease. High levels of immunoglobulin G subclass 1 (IgG1 and IgG2 antibodies were detected and re-stimulated splenic CD4+ T cells proliferated and produced IFN-γ. None of the sera from immunized mice exhibited neutralization, while all sera exerted antibody-dependent cellular cytotoxicity (ADCC and complement-mediated cytolysis (ACMC activity. Passive transfer of anti-mgG-2 monoclonal antibodies, or immune serum, to naive C57BL/6 mice did not limit disease progression. Immunized B‑cell KO mice presented lower survival rate and higher vaginal viral titers, as compared with vaccinated B-cell KO mice after passive transfer of immune serum and vaccinated C57BL/6 mice. Sera from mice that were vaccinated subcutaneously and intranasally with mgG-2 presented significantly lower titers of IgG antibodies and lower ADCC and ACMC activity. We conclude that anti-mgG-2 antibodies were of importance to limit genital HSV‑2 infection. ADCC and ACMC activity are potentially important mechanisms in protective immunity, and could tentatively be evaluated in future animal vaccine studies and in clinical trials.

  12. Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine

    Science.gov (United States)

    Calzas, Cynthia; Shiao, Tze Chieh; Neubauer, Axel; Kempker, Jennifer; Roy, René; Gottschalk, Marcelo

    2016-01-01

    Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo. In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections. PMID:27113360

  13. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pTSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pTSA and TSA groups than LACK group after challenge (pTSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  14. Human Milk Oligosaccharide 2′-Fucosyllactose Improves Innate and Adaptive Immunity in an Influenza-Specific Murine Vaccination Model

    Directory of Open Access Journals (Sweden)

    Ling Xiao

    2018-03-01

    Full Text Available BackgroundHuman milk is uniquely suited to provide optimal nutrition and immune protection to infants. Human milk oligosaccharides are structural complex and diverse consisting of short chain and long chain oligosaccharides typically present in a 9:1 ratio. 2′-Fucosyllactose (2′FL is one of the most prominent short chain oligosaccharides and is associated with anti-infective capacity of human milk.AimTo determine the effect of 2′FL on vaccination responsiveness (both innate and adaptive in a murine influenza vaccination model and elucidate mechanisms involved.MethodsA dose range of 0.25–5% (w/w dietary 2′FL was provided to 6-week-old female C57Bl/6JOlaHsd mice 2 weeks prior primary and booster vaccination until the end of the experiment. Intradermal (i.d. challenge was performed to measure the vaccine-specific delayed-type hypersensitivity (DTH. Antigen-specific antibody levels in serum as well as immune cell populations within several organs were evaluated using ELISA and flow cytometry, respectively. In an ex vivo restimulation assay, spleen cells were cocultured with influenza-loaded bone marrow-derived dendritic cells (BMDCs to study the effects of 2′FL on vaccine-specific CD4+ and CD8+ T-cell proliferation and cytokine secretions. Furthermore, the direct immune regulatory effects of 2′FL were confirmed using in vitro BMDCs T-cell cocultures.ResultsDietary 2′FL significantly (p < 0.05 enhanced vaccine specific DTH responses accompanied by increased serum levels of vaccine-specific immunoglobulin (Ig G1 and IgG2a in a dose-dependent manner. Consistently, increased activation marker (CD27 expression on splenic B-cells was detected in mice receiving 2′FL as compared to control mice. Moreover, proliferation of vaccine-specific CD4+ and CD8+ T-cells, as well as interferon-γ production after ex vivo restimulation were significantly increased in spleen cells of mice receiving 2′FL as compared to control mice, which were

  15. The role of antibody affinity and titre in immunity to Schistosoma mansoni following vaccination with highly irradiated cercariae

    Energy Technology Data Exchange (ETDEWEB)

    Vignali, D.A.A.; Devey, M.E.; Bickle, Q.D.; Taylor, M.G. (London School of Hygiene and Tropical Medicine (UK))

    1990-02-01

    Sera from rabbits and rats vaccinated with highly irradiated cercariae of Schistosoma mansoni (VRabS, VRatS) were found to be of substantially higher affinity than sera from CBA mice vaccinated four times (4 x CVMS), single sex sera (SSS) or chronic infection sera (CIS). In contrast, immunoprecipitation studies demonstrated that sera from vaccinated LA mice (LVMS) recognized {sup 125}I-labelled schistosomular surface antigens more intensely than sera from vaccinated HA mice (HVMS). However, peritoneal macrophages from HA and LA mice in the presence of HVMS, LVMS or 4 x CVMS, and naive macrophages activated in vitro with interferon-gamma (IFN-{gamma})/lipopolysaccharide (LPS) mediated comparable levels of schistosomula killing in vitro. The experiments described here provide evidence that the titre of antibody rather than its affinity may be a more critical factor in the development of optimal immunity to S. mansoni. (author).

  16. Efficacy of single calfhood vaccination of elk with Brucella abortus strain 19

    Science.gov (United States)

    Roffe, T.J.; Jones, L.C.; Coffin, K.; Drew, M.L.; Sweeney, Steven J.; Hagius, S.D.; Elzer, P.H.; Davis, D.

    2004-01-01

    Brucellosis has been eradicated from cattle in the states of Wyoming, Montana, and Idaho, USA. However, free-ranging elk (Cervus elaphus) that use feedgrounds in the Greater Yellowstone Area (GYA) and bison (Bison bison) in Yellowstone and Grand Teton national parks still have high seroprevalence to the disease and have caused loss of brucellosis-free status in Wyoming. Management tools to control or eliminate the disease are limited; however, wildlife vaccination is among the methods currently used by wildlife managers in Wyoming. We conducted a controlled challenge study of single calfhood vaccination. Elk calves, caught in January and February of 1999 and 2000 and acclimated to captivity for 3 weeks, were randomly assigned to control or vaccinate groups. The vaccinate groups received Brucetta abortus vaccine strain 19 (S19) by hand-delivered intramuscular injection. Calves were raised to adulthood and bred at either 2.5 or 3.5 years of age for 2000 and 1999 captures, respectively. Eighty-nine (44 controls, 45 vaccinates) pregnant elk entered the challenge portion of the study. We challenged elk at mid-gestation with pathogenic B. abortus strain 2308 by intraconjunctival instillation. Abortion occurred in significantly more (P = 0.002) controls (42; 93%) than vaccinates (32; 71%), and vaccine protected 25% of the vaccinate group. We used Brucella culture of fetus/calf tissues to determine the efficacy of vaccination for preventing infection, and we found that the number of infected fetuses/calves did not differ between controls and vaccinates (P = 0.14). Based on these data, single calfhood vaccination with S19 has low efficacy, will likely have only little to moderate effect on Brucella prevalence in elk, and is unlikely to eradicate the disease in wildlife of the GYA.

  17. Protection against West Nile virus infection in mice after inoculation with type I interferon-inducing RNA transcripts.

    Directory of Open Access Journals (Sweden)

    Miguel Rodríguez-Pulido

    Full Text Available West Nile virus (WNV is a neurovirulent single stranded RNA mosquito-borne flavivirus, whose main natural hosts are birds, but it also infects humans and horses. Nowadays, no human vaccine is commercially available and clinical treatment is only supportive. Recently, it has been shown that RNA transcripts, mimicking structural domains in the non-coding regions (NCRs of the foot-and mouth disease virus (FMDV induce a potent IFN response and antiviral activity in transfected cultured cells, and also reduced mice susceptibility to FMDV. By using different transcripts combinations, administration schedules, and infecting routes and doses, we have demonstrated that these FMDV RNA transcripts protect suckling and adult mice against lethal challenge with WNV. The protective activity induced by the transcripts was systemic and dependent on the infection route and dose. These results confirm the antiviral potential of these synthetic RNAs for fighting viruses of different families relevant for human and animal health.

  18. Long-Term Safety and Immunogenicity of a Tetravalent Live-Attenuated Dengue Vaccine and Evaluation of a Booster Dose Administered to Healthy Thai Children.

    Science.gov (United States)

    Watanaveeradej, Veerachai; Simasathien, Sriluck; Mammen, Mammen P; Nisalak, Ananda; Tournay, Elodie; Kerdpanich, Phirangkul; Samakoses, Rudiwilai; Putnak, Robert J; Gibbons, Robert V; Yoon, In-Kyu; Jarman, Richard G; De La Barrera, Rafael; Moris, Philippe; Eckels, Kenneth H; Thomas, Stephen J; Innis, Bruce L

    2016-06-01

    We evaluated the safety and immunogenicity of two doses of a live-attenuated, tetravalent dengue virus vaccine (F17/Pre formulation) and a booster dose in a dengue endemic setting in two studies. Seven children (7- to 8-year-olds) were followed for 1 year after dose 2 and then given a booster dose (F17/Pre formulation), and followed for four more years (Child study). In the Infant study, 49 2-year-olds, vaccinated as infants, were followed for approximately 3.5 years after dose 2 and then given a booster dose (F17) and followed for one additional year. Two clinically notable events were observed, both in dengue vaccine recipients in the Infant study: 1 case of dengue approximately 2.7 years after dose 2 and 1 case of suspected dengue after booster vaccinations. The booster vaccinations had a favorable safety profile in terms of reactogenicity and adverse events reported during the 1-month follow-up periods. No vaccine-related serious adverse events were reported during the studies. Neutralizing antibodies against dengue viruses 1-4 waned during the 1-3 years before boosting, which elicited a short-lived booster response but did not provide a long-lived, multivalent antibody response in most subjects. Overall, this candidate vaccine did not elicit a durable humoral immune response. © The American Society of Tropical Medicine and Hygiene.

  19. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  20. Prevention of rotavirus gastroenteritis in infants and children: rotavirus vaccine safety, efficacy, and potential impact of vaccines

    Directory of Open Access Journals (Sweden)

    Aruna Chandran

    2010-07-01

    Full Text Available Aruna Chandran1, Sean Fitzwater1, Anjie Zhen2, Mathuram Santosham11Department of International Health, Division of Health Systems, 2Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USAAbstract: Rotavirus infection is the most common cause of severe gastroenteritis globally, with greater than 86% of deaths occurring in low-income and middle-income countries. There are two rotavirus vaccines currently licensed in the United States and prequalified by the World Health Organization. RV1 is a monovalent attenuated human rotavirus strain, given orally in two doses. RV5 is a pentavalent human-bovine reassortant rotavirus vaccine, given orally in three doses. A third rotavirus vaccine, LLV, is a lamb rotavirus strain given orally as a single dose, which is currently available only in China. RV1 and RV5 have been shown to be highly efficacious in developed countries, and initial results from trials in Africa and Asia are promising as well. At least three other vaccines are in development, which are being developed by manufacturers of developing countries. Further studies are needed to clarify issues including administration of oral rotavirus vaccines with breastfeeding and other oral vaccines, and alterations in dosing schedule. Using new data on global diarrheal burden, rotavirus is estimated to cause 390,000 deaths in children younger than 5 years. Should rotavirus vaccines be introduced in the routine immunization programs of all countries, a potential of 170,000 deaths could be prevented annually. The largest impact on mortality would be seen in low-income and middle-income countries, despite poor immunization coverage and lower efficacy. Therefore, international efforts are needed to ensure that rotavirus vaccines reach the populations with highest burden of rotavirus disease.Keywords: vaccination, mortality, rotavirus, gastroenteritis

  1. Immunogenicity of a reduced schedule of meningococcal group C conjugate vaccine given concomitantly with the Prevenar and Pediacel vaccines in healthy infants in the United Kingdom.

    Science.gov (United States)

    Southern, Jo; Borrow, Ray; Andrews, Nick; Morris, Rhonwen; Waight, Pauline; Hudson, Michael; Balmer, Paul; Findlow, Helen; Findlow, Jamie; Miller, Elizabeth

    2009-02-01

    This study investigated the use of two doses of three different meningococcal group C conjugate (MCC) vaccines when given for primary immunization with a seven-valent pneumococcal conjugate vaccine (PCV7) and Pediacel, a combination product containing five acellular pertussis components, diphtheria and tetanus toxoids, Haemophilus influenzae type b (Hib) conjugate, and inactivated-poliovirus vaccine. The immune response after a single dose of MCC is also presented. Infants were randomized to receive two doses of one of the MCC vaccines and PCV7 at 2 and 3 months or at 2 and 4 months of age. Meningococcal group C serum bactericidal antibody (SBA) geometric mean titers, Hib-polyribosylribitol phosphate (PRP) immunoglobulin G (IgG) geometric mean concentrations (GMCs), and diphtheria and tetanus antitoxin GMCs, together with the proportions of infants achieving putative protective levels, were determined. A total of 393 infants were recruited. Following the first dose of NeisVac-C (MCC conjugated to tetanus toxoid), 97% of infants achieved protective levels (SBA titer of >or=8), compared with 80% and 53%, respectively, for Menjugate and Meningitec (both of which are conjugated to CRM(197)). SBA responses to MCC vaccines were not significantly different when administered at 2 and 3 or 2 and 4 months of age. Following two doses of each MCC, 98 to 100% of infants achieved protective levels. Both PRP IgG and tetanus responses were significantly enhanced when Pediacel was coadministered with NeisVac-C. This study demonstrates that NeisVac-C and Menjugate generate good immunogenicity after the first dose at 2 months of age when coadministered with PCV7 and Pediacel and merit further investigation in single-dose priming strategies.

  2. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  3. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne, E-mail: bjarne.bogen@medisin.uio.no [Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo (Norway)

    2012-10-30

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id{sup +} tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id{sup +} single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id{sup +} fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id{sup +} tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id{sup +} scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  4. Long-term effect of oral immunization against influenza with a gamma-inactivated vaccine in mice

    International Nuclear Information System (INIS)

    Noack, K.; Tischner, H.; Pohl, W.D.; Braeuniger, S.; Nordheim, W.

    1986-01-01

    NMRI mice were immunized orally twice within 10 days with an influenza vaccine inactivated by gamma radiation. The immunization with a relatively low dosis led to the occurence of low specific antibody titer in the lung lavage fluid up to 6th month. Despite of the low titer, immunized mice were protected against aerogenic infection for about 6 months. Protection was demonstrated in comparison to non-immunized mice by a limited increase of cells in bronchoalveolar lavage, low virus titer in the lung and survival of most animals after a lethal aerosol challenge with the live virus. (author)

  5. Schistosoma mansoni: analysis of the humoral and cellular basis of resistance in guinea-pigs vaccinated with radiation-attenuated cercariae

    International Nuclear Information System (INIS)

    McLaren, D.J.; Delgado, V.S.; Gordon, J.R.; Rogers, M.V.

    1990-01-01

    This study addresses the humoral and cellular basis of specific acquired immunity in the guinea-pig irradiated vaccine model of schistosomiasis mansoni. Rodents vaccinated with 500 gamma-irradiated cercariae and then splenectomized 4. 5 weeks later showed a 33% reduction in resistance to challenge as compared to vaccinated animals or vaccinated/sham splenectomized controls. Serum harvested from once vaccinated individuals conferred modest levels of resistance upon naive recipients in some experiments, but transfer was not achieved consistently. Serum from vaccinated and thrice boosted rodents (Vbbb) routinely transferred about 45% immunity, however, provided it was given in 4 ml aliquots on day 9 post-challenge; Vbbb serum thus transferred 50% of donor immunity. Interestingly, multiple doses of this protective serum given on and either side of day 9 did not enhance the protection achieved with a single 4 ml aliquot. Neither peripheral lymph node cells nor splenocytes from the polyvaccinated serum donors were able to transfer resistance to recipient guinea-pigs and they failed to augment the protection achieved with Vbbb serum. Foot-pad testing revealed no correlation between delayed hypersensitivity responses and immunity to challenge in vaccinated guinea-pigs. Polyvaccine guinea-pig serum failed to protect mice and guinea-pigs could not be protected with polyvaccine rat serum. (author)

  6. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    Directory of Open Access Journals (Sweden)

    Charles A. Specht

    2017-11-01

    Full Text Available Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1 were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4 were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1 afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific.

  7. Safety and efficacy of reduced doses of Brucella melitensis strain Rev. 1 vaccine in pregnant Iranian fat-tailed ewes

    Directory of Open Access Journals (Sweden)

    Mohammad Ebrahimi

    2012-12-01

    Full Text Available Brucellosis is one of the most important zoonotic diseases and is a significant cause of abortion in animals. Brucella melitensis strain Rev. 1 is recommended as the most effective vaccine for small ruminants but the application of full doses in adult animals is restricted. This study was conducted to determine a proper reduced dose of vaccine which confers protection but which is not abortifacient in Iranian fat-tailed sheep. A total of 51 non-vaccinated pregnant ewes were divided into three main groups and several subgroups. Ewes in different groups were vaccinated at different stages of pregnancy and various subgroups were subcutaneously immunised with different quantities of the micro-organism (7.5 × 106, 106, 5 × 105. Ewes again became pregnant a year later and were challenged with the wild-type strain to evaluate the protection conferred. Results revealed that the proportion of vaccination-induced abortions was significantly higher in ewes immunised with 7.5 × 106 Rev. 1 organisms than in those which received 106 or 5 × 105 bacteria. While 80% of non-vaccinated ewes aborted after challenge, none of the vaccinated ewes aborted post-challenge. This study indicated that a reduced dose of Rev. 1 vaccine containing 106 or 5 × 105 live cells could be safely used to induce protection in Iranian fat-tailed sheep at various stages of pregnancy.

  8. Development of Protective Immunity against Inactivated Iranian Isolate of Foot-and-Mouth Disease Virus Type O/IRN/2007 Using Gamma Ray-Irradiated Vaccine on BALB/c Mice and Guinea Pigs.

    Science.gov (United States)

    Motamedi-Sedeh, Farahnaz; Soleimanjahi, Hoorieh; Jalilian, Amir Reza; Mahravani, Homayoon; Shafaee, Kamalodin; Sotoodeh, Masood; Taherkarami, Hamdolah; Jairani, Faramarz

    2015-01-01

    Foot-and-mouth disease virus (FMDV) causes a highly contagious disease in cloven-hoofed animals and is the most damaging disease of livestock worldwide, leading to great economic losses. The aim of this research was the inactivation of FMDV type O/IRN/1/2007 to produce a gamma ray-irradiated (GRI) vaccine in order to immunize mice and guinea pigs. In this research, the Iranian isolated FMDV type O/IRN/1/2007 was irradiated by gamma ray to prepare an inactivated whole virus antigen and formulated as a GRI vaccine with unaltered antigenic characteristics. Immune responses against this vaccine were evaluated on mice and guinea pigs. The comparison of the immune responses between the GRI vaccine and conventional vaccine did not show any significant difference in neutralizing antibody titer, memory spleen T lymphocytes or IFN-γ, IL-4, IL-2 and IL-10 concentrations (p > 0.05). In contrast, there were significant differences in all of the evaluated immune factors between the two vaccinated groups of mice and negative control mice (p GRI vaccines obtained were 6.28 and 7.07, respectively, which indicated the high potency of both vaccines. GRI vaccine is suitable for both routine vaccination and control of FMDV in emergency outbreaks.

  9. The administration of a single dose of a multivalent (DHPPiL4R) vaccine prevents clinical signs and mortality following virulent challenge with canine distemper virus, canine adenovirus or canine parvovirus

    OpenAIRE

    Stephen Wilson; Joanna Illambas; Elisabeth Siedek; Anne Thomas; Vickie King; Catrina Stirling; Edita Plevová; Jeremy Salt; Gordon Sture

    2014-01-01

    Four challenge studies following vaccination of dogs with a multivalent vaccine containing canine parvovirus (CPV-2b), adenovirus (CAV-1/-2) and distemper (CDV) are described. Six week old puppies received a single vaccination while non-vaccinated control dogs received water. In each respective trial, groups of dogs were challenged 21 days after vaccination with heterologous viral isolates. Clinical observations, rectal temperature measurements, and blood and swab samples for analysis were co...

  10. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    International Nuclear Information System (INIS)

    Xiang, Z.Q.; Greenberg, L.; Ertl, H.C.; Rupprecht, C.E.

    2014-01-01

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus

  11. Protection of non-human primates against rabies with an adenovirus recombinant vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Z.Q. [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Greenberg, L. [Centers for Disease Control and Prevention, Atlanta, GA (United States); Ertl, H.C., E-mail: ertl@wistar.upenn.edu [The Wistar Institute of Anatomy and Biology, Philadelphia, PA (United States); Rupprecht, C.E. [The Global Alliance for Rabies Control, Manhattan, KS (United States); Ross University School of Veterinary Medicine, Basseterre (Saint Kitts and Nevis)

    2014-02-15

    Rabies remains a major neglected global zoonosis. New vaccine strategies are needed for human rabies prophylaxis. A single intramuscular immunization with a moderate dose of an experimental chimpanzee adenovirus (Ad) vector serotype SAd-V24, also termed AdC68, expressing the rabies virus glycoprotein, resulted in sustained titers of rabies virus neutralizing antibodies and protection against a lethal rabies virus challenge infection in a non-human primate model. Taken together, these data demonstrate the safety, immunogenicity, and efficacy of the recombinant Ad-rabies vector for further consideration in human clinical trials. - Highlights: • Pre-exposure vaccination with vaccine based on a chimpanzee derived adenovirus protects against rabies. • Protection is sustained. • Protection is achieved with single low-dose of vaccine given intramuscularly. • Protection is not affected by pre-existing antibodies to common human serotypes of adenovirus.

  12. Immunogenicity and protective efficacy of yeast extracts containing rotavirus-like particles: a potential veterinary vaccine.

    Science.gov (United States)

    Rodríguez-Limas, William A; Pastor, Ana Ruth; Esquivel-Soto, Ernesto; Esquivel-Guadarrama, Fernando; Ramírez, Octavio T; Palomares, Laura A

    2014-05-19

    Rotavirus is the most common cause of severe diarrhea in many animal species of economic interest. A simple, safe and cost-effective vaccine is required for the control and prevention of rotavirus in animals. In this study, we evaluated the use of Saccharomyces cerevisiae extracts containing rotavirus-like particles (RLP) as a vaccine candidate in an adult mice model. Two doses of 1mg of yeast extract containing rotavirus proteins (between 0.3 and 3 μg) resulted in an immunological response capable of reducing the replication of rotavirus after infection. Viral shedding in all mice groups diminished in comparison with the control group when challenged with 100 50% diarrhea doses (DD50) of murine rotavirus strain EDIM. Interestingly, when immunizing intranasally protection against rotavirus infection was observed even when no increase in rotavirus-specific antibody titers was evident, suggesting that cellular responses were responsible of protection. Our results indicate that raw yeast extracts containing rotavirus proteins and RLP are a simple, cost-effective alternative for veterinary vaccines against rotavirus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Single-epitope DNA vaccination prevents exhaustion and facilitates a broad antiviral CD8+ T cell response during chronic viral infection

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Christensen, Jan Pravsgaard

    2004-01-01

    Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a ...... with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances....... of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral...... variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after...

  14. Assessment of different formulations of oral Mycobacterium bovis Bacille Calmette-Guérin (BCG) vaccine in rodent models for immunogenicity and protection against aerosol challenge with M. bovis.

    Science.gov (United States)

    Clark, Simon; Cross, Martin L; Smith, Alan; Court, Pinar; Vipond, Julia; Nadian, Allan; Hewinson, R Glyn; Batchelor, Hannah K; Perrie, Yvonne; Williams, Ann; Aldwell, Frank E; Chambers, Mark A

    2008-10-29

    Bovine tuberculosis (bTB) caused by infection with Mycobacterium bovis is causing considerable economic loss to farmers and Government in the United Kingdom as its incidence is increasing. Efforts to control bTB in the UK are hampered by the infection in Eurasian badgers (Meles meles) that represent a wildlife reservoir and source of recurrent M. bovis exposure to cattle. Vaccination of badgers with the human TB vaccine, M. bovis Bacille Calmette-Guérin (BCG), in oral bait represents a possible disease control tool and holds the best prospect for reaching badger populations over a wide geographical area. Using mouse and guinea pig models, we evaluated the immunogenicity and protective efficacy, respectively, of candidate badger oral vaccines based on formulation of BCG in lipid matrix, alginate beads, or a novel microcapsular hybrid of both lipid and alginate. Two different oral doses of BCG were evaluated in each formulation for their protective efficacy in guinea pigs, while a single dose was evaluated in mice. In mice, significant immune responses (based on lymphocyte proliferation and expression of IFN-gamma) were only seen with the lipid matrix and the lipid in alginate microcapsular formulation, corresponding to the isolation of viable BCG from alimentary tract lymph nodes. In guinea pigs, only BCG formulated in lipid matrix conferred protection to the spleen and lungs following aerosol route challenge with M. bovis. Protection was seen with delivery doses in the range 10(6)-10(7) CFU, although this was more consistent in the spleen at the higher dose. No protection in terms of organ CFU was seen with BCG administered in alginate beads or in lipid in alginate microcapsules, although 10(7) in the latter formulation conferred protection in terms of increasing body weight after challenge and a smaller lung to body weight ratio at necropsy. These results highlight the potential for lipid, rather than alginate, -based vaccine formulations as suitable delivery

  15. Green propolis phenolic compounds act as vaccine adjuvants, improving humoral and cellular responses in mice inoculated with inactivated vaccines

    Directory of Open Access Journals (Sweden)

    Geferson Fischer

    2010-11-01

    Full Text Available Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1. When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05 neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01. Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05. Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.

  16. Antibody response to vaccines for rhinotracheitis, caliciviral disease, panleukopenia, feline leukemia, and rabies in tigers (Panthera tigris) and lions (Panthera leo).

    Science.gov (United States)

    Risi, Emmanuel; Agoulon, Albert; Allaire, Franck; Le Dréan-Quénec'hdu, Sophie; Martin, Virginie; Mahl, Philippe

    2012-06-01

    This article presents the results of a study of captive tigers (Panthera tigris) and lions (Panthera leo) vaccinated with a recombinant vaccine against feline leukemia virus; an inactivated adjuvanted vaccine against rabies virus; and a multivalent modified live vaccine against feline herpesvirus, calicivirus, and panleukopenia virus. The aim of the study was to assess the immune response and safety of the vaccines and to compare the effects of the administration of single (1 ml) and double (2 ml) doses. The animals were separated into two groups and received either single or double doses of vaccines, followed by blood collection for serologic response for 400 days. No serious adverse event was observed, with the exception of abortion in one lioness, potentially caused by the incorrect use of the feline panleukopenia virus modified live vaccine. There was no significant difference between single and double doses for all vaccines. The recombinant vaccine against feline leukemia virus did not induce any serologic response. The vaccines against rabies and feline herpesvirus induced a significant immune response in the tigers and lions. The vaccine against calicivirus did not induce a significant increase in antibody titers in either tigers or lions. The vaccine against feline panleukopenia virus induced a significant immune response in tigers but not in lions. This report demonstrates the value of antibody titer determination after vaccination of nondomestic felids.

  17. Effect of dose on lead retention and distribution in suckling and adult female mice

    International Nuclear Information System (INIS)

    Keller, C.A.; Doherty, R.A.

    1980-01-01

    Single doses of lead (trace to 445 mg/kg) were administered per os to suckling and adult mice. Both groups exhibited dose-independent lead retention when doses of 4 to 445 mg/kg were administered. However, developmental differences in the fraction of initial dose (FID) retained were evident for all doses administered. A much larger FID was retained in both age groups following administration of carrier-free 203 Pb. The results are consistent with a mechanism of gastrointestinal lead absorption comprising two or more processes. Developmental differences were also observed in organ lead concentration relative to whole body concentration for kidneys, skull and brain 6 days following lead administration. Lead retentions (relative to whole body retention) in brain and in bone were linearly related to dose of lead administered in both suckling and adult age groups. Though uptake of lead into brain and into femur was observed to be directly related to dose over a wide range, relative blood lead concentrations were not linearly correlated with dose administered. The relationships between lead concentrations of blood and organ(s) were also shown to be nonlinear relative to dose. However, blood lead concentration was found to be a reliable indicator of kidney and liver lead concentrations following an acute lead exposure

  18. Comparison of the Immunogenicity of Various Booster Doses of Inactivated Polio Vaccine Delivered Intradermally Versus Intramuscularly to HIV-Infected Adults.

    Science.gov (United States)

    Troy, Stephanie B; Kouiavskaia, Diana; Siik, Julia; Kochba, Efrat; Beydoun, Hind; Mirochnitchenko, Olga; Levin, Yotam; Khardori, Nancy; Chumakov, Konstantin; Maldonado, Yvonne

    2015-06-15

    Inactivated polio vaccine (IPV) is necessary for global polio eradication because oral polio vaccine can rarely cause poliomyelitis as it mutates and may fail to provide adequate immunity in immunocompromised populations. However, IPV is unaffordable for many developing countries. Intradermal IPV shows promise as a means to decrease the effective dose and cost of IPV, but prior studies, all using 20% of the standard dose used in intramuscular IPV, resulted in inferior antibody titers. We randomly assigned 231 adults with well-controlled human immunodeficiency virus infection at a ratio of 2:2:2:1 to receive 40% of the standard dose of IPV intradermally, 20% of the standard dose intradermally, the full standard dose intramuscularly, or 40% of the standard dose intramuscularly. Intradermal vaccination was done using the NanoPass MicronJet600 microneedle device. Baseline immunity was 87%, 90%, and 66% against poliovirus serotypes 1, 2, and 3, respectively. After vaccination, antibody titers increased a median of 64-fold. Vaccine response to 40% of the standard dose administered intradermally was comparable to that of the standard dose of IPV administered intramuscularly and resulted in higher (although not significantly) antibody titers. Intradermal administration had higher a incidence of local side effects (redness and itching) but a similar incidence of systemic side effects and was preferred by study participants over intramuscular administration. A 60% reduction in the standard IPV dose without reduction in antibody titers is possible through intradermal administration. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Response of tumour necrosis factor alpha (TNF ) in blood and spleen mice that vaccinated with P.berghei radiation

    International Nuclear Information System (INIS)

    Darlina; Tur R; Teja K

    2015-01-01

    Tumor necrosis factor is a glycoprotein derived from helper T lymphocytes that play an important role in the body's response against malaria infection. However, TNF-α has double play that is on appropriate levels will provide protection and healing, while at excessive levels which may be a response to hyperparasitemia. Thus investigated the expression of TNF alpha secreted blood lymphocytes and spleen cells the mice that's infected with 1 x 10 7 P.berghei infectious or inactivated by radiation. Levels of TNF alpha serum and spleen cell culture medium was monitored on days 2, 7, 14 post infection. Monitoring of parasite growth every two days for 60 days. Determination of TNF alpha levels were measure using ELISA. The results showed parasitaemia mice infected with 175 Gy irradiated parasites have pre patent period of 16 days longer than the control (non-irradiated parasites) with low parasitaemia. TNF alpha concentration that secreted spleen cells of mice vaccinated higher than control mice. Concentration of TNF alpha that secreted blood lymphocyte of mice vaccinated lower than control mice. It was concluded that the secretion of TNF alpha by blood lymphocytes caused more pathogenic factors of the parasite, while the secretion of TNF alpha in spleen due to an immune response against the parasite. (author)

  20. Radioimmunotherapy for liver micrometastases in mice. Pharmacokinetics, dose estimation, and long-term effect

    International Nuclear Information System (INIS)

    Saga, Tsuneo; Sakahara, Harumi; Nakamoto, Yuji; Sato, Noriko; Zhao, Songji; Iida, Yasuhiko; Konishi, Junji; Kuroki, Masahide; Endo, Keigo

    1999-01-01

    The pharmacokinetics of a therapeutic dose of 131 I-labeled antibody and the absorbed dose in liver micrometastases of human colon cancer LS174T in female BALB/c nu/nu mice were investigated, along with the long-term therapeutic effect. Mice with liver micrometastases were given an intravenous injection of 131 I-labeled anti-carcinoembryonic antigen (CEA) antibody F33-104 (8.88 MBq/40 μg). The biodistribution of the antibody was determined 1, 2, 4, 6, and 10 days later. The absorbed dose was estimated for three hypothetical tumor diameters; 1,000, 500, and 300 μm. Autoradiography showed a homogeneous distribution of radioactivity in the micrometastases, and a high uptake was maintained until day 6 (24.0% injected dose (ID)/g on day 1 to 17.8% ID/g on day 6), but decreased thereafter. The absorbed doses in the 1,000-, 500-, and 300-μm tumors were calculated to be 19.1, 12.0, and 8.2 Gy, respectively. The intravenous injection of the 131 I-labeled antibody also showed a dose-dependent therapeutic effect (all mice of the nontreated group died, with a mean survival period of 4 weeks; 3 of the 8 mice that received 9.25 MBq survived up to 120 days with no sign of liver metastasis). These data give further evidence that micrometastasis is a good target of radioimmunotherapy, and that an absorbed dose of less than 20 Gy can effectively control small metastatic lesions. (author)

  1. Suppression of carcinogenesis in mice by adaptive responses to low dose rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kazuo; Iwasaki, Toshiyasu; Hoshi, Yuko; Nomura, Takaharu; Ina, Yasuhiro; Tanooka, Hiroshi [Central Research Institute of Electric Power Industry, Low Dose Radiation Research Center, Komae, Tokyo (Japan)

    2003-07-01

    Effects of prolonged low-dose-rate irradiation on the process of carcinogenesis were examined in mice treated with chemical carcinogen or irradiated with high doses of X-rays. Female ICR mice, 5 week-old, 35 in each group, were exposed to gamma-rays from a {sup 137}Cs source in the long-term low dose rate irradiation facility at CRIEPI. The dose rate was 2.6 mGy/hr (A), 0.96 mGy/hr (B), or 0.30 mGy/hr (C). Thirty-five days later, the mice were injected into the groin with 0.5 mg of methylcholanthrene (MC) dissolved in olive oil and irradiation was continued. Cumulative tumor incidences after 216 days following MC injection were 89% in group A, 76% in group B, and 94% in group C. That in non-irradiated control group was 94%. The difference in the tumor incidence between the control and position B was statistically significant, indicating the suppressive effect of the low dose rate irradiation on the process of MC-induced carcinogenesis with an optimum dose rate around 1 mGy/hr. In B6C3F1 mice, although the suppression of tumor incidence was not observed, there was a significant delay in tumor appearance in the irradiated mice between 100-150 days after MC injection. A group of 20 female C57BL/6N mice, 5 weeks old, were exposed to gamma-rays at 0.95 mGy/hr for 5 weeks. Then, they were exposed weekly to 1.8 Gy whole body X-irradiation (300 kVp) for consecutive 4 weeks to induce thymic lymphoma. Another group received only the fractionated irradiation. The first mouse died from thymic lymphoma appeared 89 days after the last irradiation in the group received only the fractionated irradiation, while 110 days in the group combined with the low dose rate irradiation. (author)

  2. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Directory of Open Access Journals (Sweden)

    Clement A Meseda

    Full Text Available The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification. The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1 elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that

  3. Percutaneous Vaccination as an Effective Method of Delivery of MVA and MVA-Vectored Vaccines.

    Science.gov (United States)

    Meseda, Clement A; Atukorale, Vajini; Kuhn, Jordan; Schmeisser, Falko; Weir, Jerry P

    2016-01-01

    The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA

  4. Does Nigeria need the birth dose of the hepatitis B vaccine?

    African Journals Online (AJOL)

    PROF. EZECHUKWU

    2013-11-26

    Nov 26, 2013 ... of health care workers on ensuring the timely receipt of the birth dose of HBV vaccine and health educa- tion of mothers and the community ... Sub Saharan Africa, the Pacific Islands and the Amazon basin. .... infection even though over 80% had received antenatal .... Ugbebor O, Aigbirior M, Osazuwa.

  5. Durability of immunity by hepatitis B vaccine in Japanese health care workers depends on primary response titers and durations.

    Directory of Open Access Journals (Sweden)

    Nori Yoshioka

    Full Text Available Health care workers (HCWs are frequently exposed to hepatitis B virus (HBV infection. The efficacy and safety of immunization with the hepatitis B (HB vaccine are well recognized, but the durability of immunity and need for booster doses in those with secondary vaccine response failure remains controversial.This was a retrospective cohort study performed at Osaka University Hospital, Japan. We examined antibodies against HB surface antigen (anti-HBs titers annually after immunization for previously non-immunized HCWs. Primary responders were categorized by their sero-positive durations as short responders (those whose anti-HBs titers declined to negative range within 3 years, and long responders (those who retained positive anti-HBs levels for 3 years and more. We re-immunized short responders with either single or 3-dose boosters, the long responders with a single booster when their titers dropped below protective levels, and examined their sero-protection rates over time thereafter.From 2001 to 2012, data of 264 HCWs with a median age of 25.3 were collected. The rate of anti-HBs positivity after primary vaccination were 93.0% after three doses (n = 229, 54.5% after two doses (n = 11, and 4.2% after a single dose (n = 24. Of 213 primary responders, the anti-HBs levels of 95 participants (44.6% fell below the protective levels, including 46 short responders and 49 long responders. HCWs with higher initial anti-HBs titers after primary vaccination had significantly longer durations of sero-positivity. For short responders, 3-dose booster vaccination induced a longer duration of anti-HBs positivity compared to a single-dose booster, whereas for long responders, a single-dose booster alone could induce prolonged anti-HBs positivity.Our preliminary data suggested that it may be useful to differentiate HB vaccine responders based on their primary response durations to maintain protective levels of anti-HBs efficiently. A randomized, prospective

  6. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  7. Impact and Cost-effectiveness of 3 Doses of 9-Valent Human Papillomavirus (HPV) Vaccine Among US Females Previously Vaccinated With 4-Valent HPV Vaccine.

    Science.gov (United States)

    Chesson, Harrell W; Laprise, Jean-François; Brisson, Marc; Markowitz, Lauri E

    2016-06-01

    We estimated the potential impact and cost-effectiveness of providing 3-doses of nonavalent human papillomavirus (HPV) vaccine (9vHPV) to females aged 13-18 years who had previously completed a series of quadrivalent HPV vaccine (4vHPV), a strategy we refer to as "additional 9vHPV vaccination." We used 2 distinct models: (1) the simplified model, which is among the most basic of the published dynamic HPV models, and (2) the US HPV-ADVISE model, a complex, stochastic, individual-based transmission-dynamic model. When assuming no 4vHPV cross-protection, the incremental cost per quality-adjusted life-year (QALY) gained by additional 9vHPV vaccination was $146 200 in the simplified model and $108 200 in the US HPV-ADVISE model ($191 800 when assuming 4vHPV cross-protection). In 1-way sensitivity analyses in the scenario of no 4vHPV cross-protection, the simplified model results ranged from $70 300 to $182 000, and the US HPV-ADVISE model results ranged from $97 600 to $118 900. The average cost per QALY gained by additional 9vHPV vaccination exceeded $100 000 in both models. However, the results varied considerably in sensitivity and uncertainty analyses. Additional 9vHPV vaccination is likely not as efficient as many other potential HPV vaccination strategies, such as increasing primary 9vHPV vaccine coverage. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine - Preliminary Report.

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma L; Kudchodkar, Sagar B; Zaidi, Faraz I; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Boyer, Jean; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Spruill, Susan E; Bagarazzi, Mark; Kobinger, Gary P; Weiner, David B; Maslow, Joel N

    2017-10-04

    Background Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. Methods In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. Results The median age of the participants was 38 years, and 60% were women; 78% were white, and 22% black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. Conclusions In this phase 1, open-label clinical

  9. Initial preclinical safety of non-replicating human endogenous retrovirus envelope protein-coated baculovirus vector-based vaccines against human papillomavirus.

    Science.gov (United States)

    Han, Su-Eun; Kim, Mi-Gyeong; Lee, Soondong; Cho, Hee-Jeong; Byun, Youngro; Kim, Sujeong; Kim, Young Bong; Choi, Yongseok; Oh, Yu-Kyoung

    2013-12-01

    Human endogenous retrovirus (HERV) envelope protein-coated, baculovirus vector-based HPV 16 L1 (AcHERV-HPV16L1) is a non-replicating recombinant baculoviral vaccine. Here, we report an initial evaluation of the preclinical safety of AcHERV-HPV16L1 vaccine. In an acute toxicity study, a single administration of AcHERV-HPV16L1 DNA vaccine given intramuscularly (i.m.) to mice at a dose of 1 × 10(8) plaque-forming units (PFU) did not cause significant changes in body weight compared with vehicle-treated controls. It did cause a brief increase in the weights of some organs on day 15 post-treatment, but by day 30, all organ weights were not significantly different from those in the vehicle-treated control group. No hematological changes were observed on day 30 post-treatment. In a range-finding toxicity study with three doses of 1 × 10(7) , 2 × 10(7) and 5 × 10(7) PFU once daily for 5 days, the group treated with 5 × 10(7) PFU showed a transient decrease in the body weights from day 5 to day 15 post-treatment, but recovery to the levels similar to those in the vehicle-treated control group by post-treatment day 20. Organ weights were slightly higher for lymph nodes, spleen, thymus and liver after repeated dosing with 5 × 10(7) PFU on day 15, but had normalized by day 30. Moreover, repeated administration of AcHERV-HPV16L1 did not induce myosin-specific autoantibody in serum, and did not cause immune complex deposition or tissue damage at injection sites. Taken together, these results provide preliminary evidence of the preclinical safety of AcHERV-based HPV16L1 DNA vaccines in mice. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Clinical and Immune Responses to Inactivated Influenza A(H1N1)pdm09 Vaccine in Children

    Science.gov (United States)

    Kotloff, Karen L.; Halasa, Natasha B.; Harrison, Christopher J.; Englund, Janet A.; Walter, Emmanuel B.; King, James C.; Creech, C. Buddy; Healy, Sara A.; Dolor, Rowena J.; Stephens, Ina; Edwards, Kathryn M.; Noah, Diana L.; Hill, Heather; Wolff, Mark

    2014-01-01

    Background As the influenza AH1N1 pandemic emerged in 2009, children were found to experience high morbidity and mortality and were prioritized for vaccination. This multicenter, randomized, double-blind, age-stratified trial assessed the safety and immunogenicity of inactivated influenza A(H1N1)pdm09 vaccine in healthy children aged 6 months to 17 years. Methods Children received two doses of approximately 15 μg or 30 μg hemagglutin antigen 21 days apart. Reactogenicity was assessed for 8 days after each dose, adverse events through day 42, and serious adverse events or new-onset chronic illnesses through day 201. Serum hemagglutination inhibition (HAI) titers were measured on days 0 (pre-vaccination), 8, 21, 29, and 42. Results A total of 583 children received the first dose and 571 received the second dose of vaccine. Vaccinations were generally well-tolerated and no related serious adverse events were observed. The 15 μg dosage elicited a seroprotective HAI (≥1:40) in 20%, 47%, and 93% of children in the 6-35 month, 3-9 year, and 10-17 year age strata 21 days after dose 1 and in 78%, 82%, and 98% of children 21 days after dose 2, respectively. The 30 μg vaccine dosage induced similar responses. Conclusions The inactivated influenza A(H1N1)pdm09 vaccine exhibited a favorable safety profile at both dosage levels. While a single 15 or 30 μg dose induced seroprotective antibody responses in most 10-17 year olds, younger children required 2 doses, even when receiving dosages 4-6 fold higher than recommended. Well-tolerated vaccines are needed that induce immunity after a single dose for use in young children during influenza pandemics. PMID:25222307

  11. A recombinant raccoon poxvirus vaccine expressing both Yersinia pestis F1 and truncated V antigens protects animals against lethal plague.

    Science.gov (United States)

    Rocke, Tonie E.; Kingstad-Bakke, B; Berlier, W; Osorio, J.E.

    2014-01-01

    In previous studies, we demonstrated in mice and prairie dogs that simultaneous administration of two recombinant raccoon poxviruses (rRCN) expressing Yersinia pestis antigens (F1 and V307-a truncated version of the V protein) provided superior protection against plague challenge compared to individual single antigen constructs. To reduce costs of vaccine production and facilitate implementation of a sylvatic plague vaccine (SPV) control program for prairie dogs, a dual antigen construct is more desirable. Here we report the construction and characterization of a novel RCN-vectored vaccine that simultaneously expresses both F1 and V307 antigens. This dual antigen vaccine provided similar levels of protection against plague in both mice and prairie dogs as compared to simultaneous administration of the two single antigen constructs and was also shown to protect mice against an F1 negative strain of Y. pestis.. The equivalent safety, immunogenicity and efficacy profile of the dual RCN-F1/V307 construct warrants further evaluation in field efficacy studies in sylvatic plague endemic areas.

  12. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa

    DEFF Research Database (Denmark)

    Theander, Thor Grundtvig; Lusingu, John Peter Andrea

    2015-01-01

    and a booster dose at month 20 (R3R group); three doses of RTS,S/AS01 and a dose of comparator vaccine at month 20 (R3C group); or a comparator vaccine at months 0, 1, 2, and 20 (C3C [control group]). Participants were followed up until Jan 31, 2014. Cases of clinical and severe malaria were captured through......, the vaccine has the potential to make a substantial contribution to malaria control when used in combination with other effective control measures, especially in areas of high transmission. FUNDING: GlaxoSmithKline Biologicals SA and the PATH Malaria Vaccine Initiative....

  13. Pathomorphology of spleen lymphocyte apoptosis in large dose 60Co γ-irradiated mice

    International Nuclear Information System (INIS)

    Gao Linlu; Cui Yufang; Yang Hong; Xia Guowei; Peng Ruiyun; Gao Yabing; Wang Dewen

    2000-01-01

    Objective: The aim of the authors was to investigate the pathomorphology changes of spleen lymphocyte apoptosis after 60 Co γ-irradiation. Methods: The mice were irradiated with 6, 9, 12, 15 and 20 Gy of 60 Co γ-rays. At different times after irradiation, the mice were sacrificed and the pathological changes of spleen lymphocyte were observed by light and transmission electron microscopies. Results: Spleen lymphocyte decreased evidently and the peak of apoptosis in spleen lymphocyte was dependent on radiation dose and the time after irradiation. Conclusion: After γ-irradiation with large doses, pathological changes of spleen lymphocyte apoptosis in mice can be divided into obviously different stages. The main causes of death of spleen lymphocytes are different in different dose groups

  14. Microneedle patches for vaccination in developing countries.

    Science.gov (United States)

    Arya, Jaya; Prausnitz, Mark R

    2016-10-28

    Millions of people die of infectious diseases each year, mostly in developing countries, which could largely be prevented by the use of vaccines. While immunization rates have risen since the introduction of the Expanded Program on Immunization (EPI), there remain major challenges to more effective vaccination in developing countries. As a possible solution, microneedle patches containing an array of micron-sized needles on an adhesive backing have been developed to be used for vaccine delivery to the skin. These microneedle patches can be easily and painlessly applied by pressing against the skin and, in some designs, do not leave behind sharps waste. The patches are single-dose, do not require reconstitution, are easy to administer, have reduced size to simplify storage, transportation and waste disposal, and offer the possibility of improved vaccine immunogenicity, dose sparing and thermostability. This review summarizes vaccination challenges in developing countries and discusses advantages that microneedle patches offer for vaccination to address these challenges. We conclude that microneedle patches offer a powerful new technology that can enable more effective vaccination in developing countries. Copyright © 2015. Published by Elsevier B.V.

  15. Multiserotype protection elicited by a combinatorial prime-boost vaccination strategy against bluetongue virus.

    Directory of Open Access Journals (Sweden)

    Eva Calvo-Pinilla

    Full Text Available Bluetongue virus (BTV belongs to the genus Orbivirus within the family Reoviridae. The development of vector-based vaccines expressing conserved protective antigens results in increased immune activation and could reduce the number of multiserotype vaccinations required, therefore providing a cost-effective product. Recent recombinant DNA technology has allowed the development of novel strategies to develop marker and safe vaccines against BTV. We have now engineered naked DNAs and recombinant modified vaccinia virus Ankara (rMVA expressing VP2, VP7 and NS1 proteins from BTV-4. IFNAR((-/- mice inoculated with DNA/rMVA-VP2,-VP7-NS1 in an heterologous prime boost vaccination strategy generated significant levels of antibodies specific of VP2, VP7, and NS1, including those with neutralizing activity against BTV-4. In addition, vaccination stimulated specific CD8(+ T cell responses against these three BTV proteins. Importantly, the vaccine combination expressing NS1, VP2 and VP7 proteins of BTV-4, elicited sterile protection against a lethal dose of homologous BTV-4 infection. Remarkably, the vaccine induced cross-protection against lethal doses of heterologous BTV-8 and BTV-1 suggesting that the DNA/rMVA-VP2,-VP7,-NS1 marker vaccine is a promising multiserotype vaccine against BTV.

  16. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neu in a murine mammary carcinoma model

    International Nuclear Information System (INIS)

    Eralp, Yesim; Wang, Xiaoyan; Wang, Jian-Ping; Maughan, Maureen F; Polo, John M; Lachman, Lawrence B

    2004-01-01

    The purpose of the present study was to determine whether cytotoxic chemotherapeutic agents administered prior to immunotherapy with gene vaccines could augment the efficacy of the vaccines. Mice were injected in the mammary fat pad with an aggressive breast tumor cell line that expresses HER2/neu. The mice were treated 3 days later with a noncurative dose of either doxorubicin or paclitaxel, and the following day with a gene vaccine to HER2/neu. Two more doses of vaccine were given 14 days apart. Two types of gene vaccines were tested: a plasmid vaccine encoding a self-replicating RNA (replicon) of Sindbis virus (SINCP), in which the viral structural proteins were replaced by the gene for neu; and a viral replicon particle derived from an attenuated strain of Venezuelan equine encephalitis virus, containing a replicon RNA in which the Venezuelan equine encephalitis virus structural proteins were replaced by the gene for neu. Neither vaccination alone nor chemotherapy alone significantly reduced the growth of the mammary carcinoma. In contrast, chemotherapy followed by vaccination reduced tumor growth by a small, but significant amount. Antigen-specific CD8 + T lymphocytes were induced by the combined treatment, indicating that the control of tumor growth was most probably due to an immunological mechanism. The results demonstrated that doxorubicin and paclitaxel, commonly used chemotherapeutic agents for the treatment of breast cancer, when used at immunomodulating doses augmented the antitumor efficacy of gene vaccines directed against HER2/neu. The combination of chemotherapeutic agents plus vaccine immunotherapy may induce a tumor-specific immune response that could be beneficial for the adjuvant treatment of patients with minimal residual disease. The regimen warrants further evaluation in a clinical setting

  17. Ubiquitinated proteins enriched from tumor cells by a ubiquitin binding protein Vx3(A7) as a potent cancer vaccine.

    Science.gov (United States)

    Aldarouish, Mohanad; Wang, Huzhan; Zhou, Meng; Hu, Hong-Ming; Wang, Li-Xin

    2015-04-16

    Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine. The ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis. We found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub

  18. A randomized study of the immunogenicity and safety of Japanese encephalitis chimeric virus vaccine (JE-CV) in comparison with SA14-14-2 vaccine in children in the Republic of Korea.

    Science.gov (United States)

    Kim, Dong Soo; Houillon, Guy; Jang, Gwang Cheon; Cha, Sung-Ho; Choi, Soo-Han; Lee, Jin; Kim, Hwang Min; Kim, Ji Hong; Kang, Jin Han; Kim, Jong-Hyun; Kim, Ki Hwan; Kim, Hee Soo; Bang, Joon; Naimi, Zulaikha; Bosch-Castells, Valérie; Boaz, Mark; Bouckenooghe, Alain

    2014-01-01

    A new live attenuated Japanese encephalitis chimeric virus vaccine (JE-CV) has been developed based on innovative technology to give protection against JE with an improved immunogenicity and safety profile. In this phase 3, observer-blind study, 274 children aged 12-24 months were randomized 1:1 to receive one dose of JE-CV (Group JE-CV) or the SA14-14-2 vaccine currently used to vaccinate against JE in the Republic of Korea (Group SA14-14-2). JE neutralizing antibody titers were assessed using PRNT50 before and 28 days after vaccination. The primary endpoint of non-inferiority of seroconversion rates on D28 was demonstrated in the Per Protocol analysis set as the difference between Group JE-CV and Group SA14-14-2 was 0.9 percentage points (95% confidence interval [CI]: -2.35; 4.68), which was above the required -10%. Seroconversion and seroprotection rates 28 days after administration of a single vaccine dose were 100% in Group JE-CV and 99.1% in Group SA14-14-2; all children except one (Group SA14-14-2) were seroprotected. Geometric mean titers (GMTs) increased in both groups from D0 to D28; GM of titer ratios were slightly higher in Group JE-CV (182 [95% CI: 131; 251]) than Group SA14-14-2 (116 [95% CI: 85.5, 157]). A single dose of JE-CV was well tolerated and no safety concerns were identified. In conclusion, a single dose of JE-CV or SA14-14-2 vaccine elicited a comparable immune response with a good safety profile. Results obtained in healthy Korean children aged 12-24 months vaccinated with JE-CV are consistent with those obtained in previous studies conducted with JE-CV in toddlers.

  19. Immunogenicity of fractional doses of tetravalent a/c/y/w135 meningococcal polysaccharide vaccine: results from a randomized non-inferiority controlled trial in Uganda.

    Directory of Open Access Journals (Sweden)

    Philippe J Guerin

    Full Text Available Neisseria meningitidis serogroup A is the main causative pathogen of meningitis epidemics in sub-Saharan Africa. In recent years, serogroup W135 has also been the cause of epidemics. Mass vaccination campaigns with polysaccharide vaccines are key elements in controlling these epidemics. Facing global vaccine shortage, we explored the use of fractional doses of a licensed A/C/Y/W135 polysaccharide meningococcal vaccine.We conducted a randomized, non-inferiority trial in 750 healthy volunteers 2-19 years old in Mbarara, Uganda, to compare the immune response of the full dose of the vaccine versus fractional doses (1/5 or 1/10. Safety and tolerability data were collected for all subjects during the 4 weeks following the injection. Pre- and post-vaccination sera were analyzed by measuring serum bactericidal activity (SBA with baby rabbit complement. A responder was defined as a subject with a > or =4-fold increase in SBA against a target strain from each serogroup and SBA titer > or =128. For serogroup W135, 94% and 97% of the vaccinees in the 1/5- and 1/10-dose arms, respectively, were responders, versus 94% in the full-dose arm; for serogroup A, 92% and 88% were responders, respectively, versus 95%. Non-inferiority was demonstrated between the full dose and both fractional doses in SBA seroresponse against serogroups W135 and Y, in total population analysis. Non-inferiority was shown between the full and 1/5 doses for serogroup A in the population non-immune prior to vaccination. Non-inferiority was not shown for any of the fractionate doses for serogroup C. Safety and tolerability data were favourable, as observed in other studies.While the advent of conjugate A vaccine is anticipated to largely contribute to control serogroup A outbreaks in Africa, the scale-up of its production will not cover the entire "Meningitis Belt" target population for at least the next 3 to 5 years. In view of the current shortage of meningococcal vaccines for Africa

  20. A Single 17D Yellow Fever Vaccination Provides Lifelong Immunity; Characterization of Yellow-Fever-Specific Neutralizing Antibody and T-Cell Responses after Vaccination

    NARCIS (Netherlands)

    Wieten, Rosanne W.; Jonker, Emile F. F.; van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.

    2016-01-01

    Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as

  1. High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization.

    Science.gov (United States)

    Shah, P K; Yano, J; Reyes, O; Chyu, K Y; Kaul, S; Bisgaier, C L; Drake, S; Cercek, B

    2001-06-26

    Repeated doses of recombinant apolipoprotein A-I(Milano) phospholipid complex (apoA-I(m)) reduce atherosclerosis and favorably change plaque composition in rabbits and mice. In this study, we tested whether a single high dose of recombinant apoA-I(m) could rapidly mobilize tissue cholesterol and reduce plaque lipid and macrophage content in apoE-deficient mice. High cholesterol-fed, 26-week-old apoE-deficient mice received a single intravenous injection of saline (n=16), 1080 mg/kg dipalmitoylphosphatidylcholine (DPPC; n=14), or 400 mg/kg of recombinant apoA-I(m) complexed with DPPC (1:2.7 weight ratio; n=18). Blood was sampled before and 1 and 48 hours after injection, and aortic root plaques were evaluated for lipid content and macrophage content after oil-red O and immunostaining, respectively. One hour after injection, the plasma cholesterol efflux-promoting capacity was nearly 2-fold higher in recombinant apoA-I(m)-treated mice compared with saline and DPPC-treated mice (P<0.01). Compared with baseline values, serum free cholesterol, an index of tissue cholesterol mobilization, increased 1.6-fold by 1 hour after recombinant apoA-I(m) injection, and it remained significantly elevated at 48 hours (P<0.01). Mice receiving recombinant apoA-I(m) had 40% to 50% lower lipid content (P<0.01) and 29% to 36% lower macrophage content (P<0.05) in their plaques compared with the saline- and DPPC-treated mice, respectively. A single high dose of recombinant apoA-I(m) rapidly mobilizes tissue cholesterol and reduces plaque lipid and macrophage content in apoE-deficient mice. These findings suggest that this strategy could rapidly change plaque composition toward a more stable phenotype.

  2. Action of 50 R X-ray doses on the breeding function of C3H strain mice - effect of splitting the dose, action of repeated irradiations on successive generations

    International Nuclear Information System (INIS)

    Alix, D.

    1965-01-01

    X-rays exposure effect was studied on C3H strain mice, at the standpoint of the effects produced on breeding function. The method used with this purpose was the following: single doses 20 - 30 - 40 and 50 R/dose, fractional doses: 50 R/total dose, divided in 2 - 5 - 10 or 25 irradiations distributed in one month duration. The offsprings were irradiated at the same doses than the parents, consanguinity being maintained. Statistical treatment of results was carried out, that led at the following conclusions: 1) Couples receiving single exposure of 50 R or two exposures of 25 R at one month interval give comparable results. Fractional doses do not involve the slightest diminution of X-rays effect. 2) 30 R exposure brings about a decrease in fertility, with an increase in abortions. Fertility of 20 R irradiated couples remains below controls. 3) After ten times 5 R and twenty-five 2 R, the number of abortions is the largest. Ovarian function is particularly sensitive to X-rays; one may think that twenty-five 2 R give injuries conditioning non-viability of conception products, smaller doses should produce mutations and yield births of altered genotype individuals. (author) [fr

  3. Use of gamma radiation in preparation of Salmonella vaccine

    International Nuclear Information System (INIS)

    Govekar, L.G.; Lewis, N.F.

    1976-01-01

    The conventional method for preparation of TAB vaccine involves the addition of 0.1% formaldehyde to 18 hr. old Salmonells cultures, and incubation of formaldehyde preparations for 3 days at 35 degC. This method is however time consuming and cumbersome. A simple method which has been developed irradiates Salmonella typhirium cultures at predetermined gamma radiation doses. Cell suspensions in phosphate buffer subjected to 0.3 -0.5 Mrad were found to be detoxified but retain their antigenic properties. These irradiated cell suspensions were found to immunize mice more effectively than the commercially available vaccine. (author)

  4. Studies on the antibody response of mice and humans after immunization with potential influenza virus A (H1N1) vaccines

    International Nuclear Information System (INIS)

    Poumbourios, P.; Jackson, D.C.; Oxford, J.S.

    1993-01-01

    The antibody response of mice and adult humans to immunization with subunit vaccines derived from a pair of antigenically distinct influenza A H1N1 viruses isolate in eggs was investigated. Although the haemagglutinin molecule of each virus differed by only three amino acid residues, highly specific antibody responses were elicited in mice as determined by haemagglutination inhibition and radioimmunoprecipitation assays. Results from competitive radioimmunoassays using monoclonal antibodies of known specificity and a study of the reactivity of mouse antisera with H1N1 field strains indicated that the marked differences in the antibody responses to the two vaccines was due to an amino acid substitution in the distal tip of the haemagglutinin molecule. In contrast, cross reactive antibody responses were elicited in humans presumably due to exposure to viruses related to the candidate vaccine prior to vaccination. Although immunogenic differences are apparent in this pair of antigenically distinct viruses in naive laboratory animals, these differences are not apparent following vaccination of humans that had prior exposure to related viruses. 21 refs., 5 tabs., 4 figs

  5. the developme ... ta .. \\~ production of typhoid fever vaccines toxicity ...

    African Journals Online (AJOL)

    BSN

    Sixty-six different types of ~"?hoid vaccines were prepared using three adjuvants and using both local and imported suams of Salmonella typhi and Salmonella paratyphi A, B, C. About 3,960 mice were used at the ;a:.e of 60 mice per vaccine. The mice were vaccinated intraperitonially with 0.5m1 of sen.le batch of vaccines.

  6. Responses of Juvenile Black-tailed Prairie Dogs ( Cynomys ludovicianus ) to a Commercially Produced Oral Plague Vaccine Delivered at Two Doses.

    Science.gov (United States)

    Cárdenas-Canales, Elsa M; Wolfe, Lisa L; Tripp, Daniel W; Rocke, Tonie E; Abbott, Rachel C; Miller, Michael W

    2017-10-01

    We confirmed safety and immunogenicity of mass-produced vaccine baits carrying an experimental, commercial-source plague vaccine (RCN-F1/V307) expressing Yersinia pestis V and F1 antigens. Forty-five juvenile black-tailed prairie dogs ( Cynomys ludovicianus ) were randomly divided into three treatment groups (n=15 animals/group). Animals in the first group received one standard-dose vaccine bait (5×10 7 plaque-forming units [pfu]; STD). The second group received a lower-dose bait (1×10 7 pfu; LOW). In the third group, five animals received two standard-dose baits and 10 were left untreated but in contact. Two vaccine-treated and one untreated prairie dogs died during the study, but laboratory analyses ruled out vaccine involvement. Overall, 17 of 33 (52%; 95% confidence interval for binomial proportion [bCI] 34-69%) prairie dogs receiving vaccine-laden bait showed a positive anti-V antibody response on at least one sampling occasion after bait consumption, and eight (24%; bCI 11-42%) showed sustained antibody responses. The STD and LOW groups did not differ (P≥0.78) in their proportions of overall or sustained antibody responses after vaccine bait consumption. Serum from one of the nine (11%; bCI 0.3-48%) surviving untreated, in-contact prairie dogs also had detectable antibody on one sampling occasion. We did not observe any adverse effects related to oral vaccination.

  7. A new intranasal influenza vaccine based on a novel polycationic lipid-ceramide carbamoyl-spermine (CCS). II. Studies in mice and ferrets and mechanism of adjuvanticity.

    Science.gov (United States)

    Even-Or, Orli; Joseph, Aviva; Itskovitz-Cooper, Noga; Samira, Sarit; Rochlin, Eli; Eliyahu, Hagit; Goldwaser, Itzik; Balasingam, Shobana; Mann, Alex J; Lambkin-Williams, Rob; Kedar, Eli; Barenholz, Yechezkel

    2011-03-16

    We recently showed that lipid assemblies comprised of a novel polycationic sphingolipid (ceramide carbamoyl-spermine, CCS) are an effective adjuvant/carrier when complexed with cholesterol (CCS/C) for influenza and other vaccines administered parenterally and intranasally (i.n.) in mice. Here we expand these studies to ferrets, an established model of influenza infection. We also address the question of why the CCS/C-based liposomal vaccine (also known as VaxiSome™) in mice is superior to vaccines based on liposomes of other lipid compositions (neutral, anionic or cationic). Ferrets immunized i.n. with CCS/C-influenza vaccine produced significantly higher hemagglutination inhibition (HI) antibody titers compared to ferrets immunized intramuscularly with the unadjuvanted influenza vaccine, indicating that the CCS/C-based vaccine is very immunogenic. Furthermore, the i.n. adjuvanted vaccine was shown to significantly reduce the severity of influenza virus infection in ferrets following homologous viral challenge as determined by weight loss, temperature rise and viral titer. No adverse reactions were observed. Pharmacokinetic and biodistribution studies following i.n. administration in mice of CCS/C-based vaccine showed that both the lipids and antigens are retained in the nose and lung for at least 24h, and it appears that this retention correlates with the superior immunogenicity elicited by the adjuvanted vaccine formulation. The CCS lipid also increases production of cytokines (mainly IFN gamma, IL-2 and IL-12) and co-stimulatory molecules' expression, which might further explain the robust adjuvantation of this liposome-based vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Budget impact of polio immunization strategy for India: introduction of one dose of inactivated poliomyelitis vaccine and reductions in supplemental polio immunization.

    Science.gov (United States)

    Khan, M M; Sharma, S; Tripathi, B; Alvarez, F P

    2017-01-01

    To conduct a budget impact analysis (BIA) of introducing the immunization recommendations of India Expert Advisory Group (IEAG) for the years 2015-2017. The recommendations include introduction of one inactivated poliomyelitis vaccine (IPV) dose in the regular child immunization programme along with reductions in oral polio vaccine (OPV) doses in supplemental programmes. This is a national level analysis of budget impact of new polio immunization recommendations. Since the states of India vary widely in terms of size, vaccine coverage and supplemental vaccine needs, the study estimated the budget impact for each of the states of India separately to derive the national level budget impact. Based on the recommendations of IEAG, the BIA assumes that all children in India will get an IPV dose at 14 weeks of age in addition to the OPV and DPT (or Pentavalent-3) doses. Cost of introducing the IPV dose was estimated by considering vaccine price and vaccine delivery and administration costs. The cost savings associated with the reduction in number of doses of OPV in supplemental immunization were also estimated. The analysis used India-specific or international cost parameters to estimate the budget impact. Introduction of one IPV dose will increase the cost of vaccines in the regular immunization programme from $20 million to $47 million. Since IEAG recommends lower intensity of supplemental OPV vaccination, polio vaccine cost of supplemental programme is expected to decline from $72 million to $53 million. Cost of administering polio vaccines will also decline from $124 million to $105 million mainly due to the significantly lower intensity of supplemental polio vaccination. The net effect of adopting IEAG's recommendations on polio immunization turns out to be cost saving for India, reducing total polio immunization cost by $6 million. Additional savings could be achieved if India adopts the new policy regarding the handling of multi-dose vials after opening

  9. Chimeric DNA Vaccines against ErbB2{sup +} Carcinomas: From Mice to Humans

    Energy Technology Data Exchange (ETDEWEB)

    Quaglino, Elena; Riccardo, Federica; Macagno, Marco; Bandini, Silvio; Cojoca, Rodica; Ercole, Elisabetta [Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin, 10126 Turin (Italy); Amici, Augusto [Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy); Cavallo, Federica, E-mail: federica.cavallo@unito.it [2 Department of Molecular Cellular and Animal Biology, University of Camerino, 62032 Camerino (Italy)

    2011-08-10

    DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2{sup +} carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.

  10. Using a Human Challenge Model of Infection to Measure Vaccine Efficacy: A Randomised, Controlled Trial Comparing the Typhoid Vaccines M01ZH09 with Placebo and Ty21a.

    Science.gov (United States)

    Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Waddington, Claire S; Zhou, Liqing; Peters, Anna; Haworth, Kathryn; Sie, Rebecca; Green, Christopher A; Jeppesen, Catherine A; Moore, Maria; Thompson, Ben A V; John, Tessa; Kingsley, Robert A; Yu, Ly-Mee; Voysey, Merryn; Hindle, Zoe; Lockhart, Stephen; Sztein, Marcelo B; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J

    2016-08-01

    Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge. We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2

  11. Immune response in pigs treated with therapeutic doses of enrofloxacin at the time of vaccination against Aujeszky's disease.

    Science.gov (United States)

    Pomorska-Mól, Małgorzata; Czyżewska-Dors, Ewelina; Kwit, Krzysztof; Rachubik, Jarosław; Lipowski, Andrzej; Pejsak, Zygmunt

    2015-06-01

    The effect of treatment with enrofloxacin was studied on the postvaccinal immune response in pigs. Forty pigs were used (control not vaccinated (C), control vaccinated (CV), vaccinated, received enrofloxacin (ENRO)). From day -1 to day 3 pigs from ENRO group received enrofloxacin at the recommended dose. Pigs from ENRO and CV groups were vaccinated twice against Aujeszky's disease virus (ADV). There was a significant delay in the production of humoral response of enrofloxacin dosed pigs when compared with CV group. Moreover, in ENRO group the significant decrease in IFN-γ production and significantly lower values of stimulation index after ADV restimulation was noted, as compared with CV group. The secretion of IL-6, IL-10 and TNF-α by PBMC after recall stimulation was also affected in ENRO group. The results indicate that enrofloxacin, in addition to its antimicrobial properties, possess significant immunomodulatory effects and may alter the immune response to vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Immunogenicity of a 2-dose priming and booster vaccination with the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine

    DEFF Research Database (Denmark)

    Silfverdal, Sven Arne; Høgh, Birthe; Bergsaker, Marianne Riise

    2009-01-01

    BACKGROUND: The immunogenicity of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine (PHiD-CV) was determined following a simplified 2-dose priming and the more commonly employed 3-dose priming both followed by a booster dose. METHODS: A total of 351 healthy....... RESULTS: Depending on the serotype, the percentages of subjects reaching the ELISA antibody threshold of 0.2 microg/mL were 92.8% to 98.0% following 2 primary doses and 96.1% to 100% following 3 primary doses except for serotype 6B (55.7% and 63.1%, respectively) and serotype 23F (69.3% and 77...

  13. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Masateru; Kawamuro, Yuki; Shiraki, Nobuaki [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Miki, Rika; Sakano, Daisuke [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); The Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Yoshida, Tetsu; Yasukawa, Takanori; Kume, Kazuhiko [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); Kume, Shoen, E-mail: skume@kumamoto-u.ac.jp [Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan); The Global COE Cell Fate Regulation Research and Education Unit, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto 860-0811 (Japan)

    2013-01-18

    Highlights: ► We monitored long-term beta cell regeneration in neonatal mice treated with low dose STZ. ► Low-dose STZ neonatal female mice recovered blood glucose in 150 days. ► Glucose intolerance of the STZ treated mice significantly improved in 150 days. -- Abstract: Administration of streptozotocin (STZ) induces destruction of β-cells and is widely used as an experimental animal model of type I diabetes. In neonatal rat, after low-doses of STZ-mediated destruction of β-cells, β-cells regeneration occurs and reversal of hyperglycemia was observed. However, in neonatal mice, β-cell regeneration seems to occur much slowly compared to that observed in the rat. Here, we described the time dependent quantitative changes in β-cell mass during a spontaneous slow recovery of diabetes induced in a low-dose STZ mice model. We then investigated the underlying mechanisms and analyzed the cell source for the recovery of β-cells. We showed here that postnatal day 7 (P7) female mice treated with 50 mg/kg STZ underwent the destruction of a large proportion of β-cells and developed hyperglycemia. The blood glucose increased gradually and reached a peak level at 500 mg/dl on day 35–50. This was followed by a spontaneous regeneration of β-cells. A reversal of non-fasting blood glucose to the control value was observed within 150 days. However, the mice still showed impaired glucose tolerance on day 150 and day 220, although a significant improvement was observed on day 150. Quantification of the β-cell mass revealed that the β-cell mass increased significantly between day 100 and day 150. On day 150 and day 220, the β-cell mass was approximately 23% and 48.5% of the control, respectively. Of the insulin-positive cells, 10% turned out to be PCNA-positive proliferating cells. Our results demonstrated that, β-cell duplication is one of the cell sources for β-cell regeneration.

  14. Recovery from diabetes in neonatal mice after a low-dose streptozotocin treatment

    International Nuclear Information System (INIS)

    Kataoka, Masateru; Kawamuro, Yuki; Shiraki, Nobuaki; Miki, Rika; Sakano, Daisuke; Yoshida, Tetsu; Yasukawa, Takanori; Kume, Kazuhiko; Kume, Shoen

    2013-01-01

    Highlights: ► We monitored long-term beta cell regeneration in neonatal mice treated with low dose STZ. ► Low-dose STZ neonatal female mice recovered blood glucose in 150 days. ► Glucose intolerance of the STZ treated mice significantly improved in 150 days. -- Abstract: Administration of streptozotocin (STZ) induces destruction of β-cells and is widely used as an experimental animal model of type I diabetes. In neonatal rat, after low-doses of STZ-mediated destruction of β-cells, β-cells regeneration occurs and reversal of hyperglycemia was observed. However, in neonatal mice, β-cell regeneration seems to occur much slowly compared to that observed in the rat. Here, we described the time dependent quantitative changes in β-cell mass during a spontaneous slow recovery of diabetes induced in a low-dose STZ mice model. We then investigated the underlying mechanisms and analyzed the cell source for the recovery of β-cells. We showed here that postnatal day 7 (P7) female mice treated with 50 mg/kg STZ underwent the destruction of a large proportion of β-cells and developed hyperglycemia. The blood glucose increased gradually and reached a peak level at 500 mg/dl on day 35–50. This was followed by a spontaneous regeneration of β-cells. A reversal of non-fasting blood glucose to the control value was observed within 150 days. However, the mice still showed impaired glucose tolerance on day 150 and day 220, although a significant improvement was observed on day 150. Quantification of the β-cell mass revealed that the β-cell mass increased significantly between day 100 and day 150. On day 150 and day 220, the β-cell mass was approximately 23% and 48.5% of the control, respectively. Of the insulin-positive cells, 10% turned out to be PCNA-positive proliferating cells. Our results demonstrated that, β-cell duplication is one of the cell sources for β-cell regeneration

  15. Bluetongue Disabled Infectious Single Animal (DISA) vaccine: Studies on the optimal route and dose in sheep

    NARCIS (Netherlands)

    Rijn, van P.A.; Daus, F.J.; Maris-Veldhuis, M.A.; Feenstra, Femke; Gennip, van H.G.P.

    2016-01-01

    Bluetongue (BT) is a disease of ruminants caused by bluetongue virus (BTV) transmitted by biting midges of the Culicoides genus. Outbreaks have been controlled successfully by vaccination, however, currently available BT vaccines have several shortcomings. Recently, we have developed BT Disabled

  16. An oral Mycobacterium bovis BCG vaccine for wildlife produced in the absence of animal-derived reagents.

    Science.gov (United States)

    Cross, Martin L; Lambeth, Matthew R; Aldwell, Frank E

    2009-09-01

    Cultures of Mycobacterium bovis BCG, comprising predominantly single-cell bacilli, were prepared in broth without animal-derived reagents. When formulated into a vegetable-derived lipid matrix, the vaccine was stable in vitro and was immunogenic in vivo upon feeding it to mice. This formulation could be useful for oral vaccination of wildlife against tuberculosis, where concern over transmissible prions may preclude the field use of vaccines containing animal products.

  17. NOD/scid IL-2Rgnull mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo

    Directory of Open Access Journals (Sweden)

    Spranger Stefani

    2012-02-01

    Full Text Available Abstract Background To date very few systems have been described for preclinical investigations of human cellular therapeutics in vivo. However, the ability to carry out comparisons of new cellular vaccines in vivo would be of substantial interest for design of clinical studies. Here we describe a humanized mouse model to assess the efficacy of various human dendritic cell (DC preparations. Two reconstitution regimes of NOD/scid IL2Rgnull (NSG mice with adult human peripheral blood mononuclear cells (PBMC were evaluated for engraftment using 4-week and 9-week schedules. This led to selection of a simple and rapid protocol for engraftment and vaccine evaluation that encompassed 4 weeks. Methods NSG recipients of human PBMC were engrafted over 14 days and then vaccinated twice with autologous DC via intravenous injection. Three DC vaccine formulations were compared that varied generation time in vitro (3 days versus 7 days and signals for maturation (with or without Toll-like receptor (TLR3 and TLR7/8 agonists using MART-1 as a surrogate antigen, by electroporating mature DC with in vitro transcribed RNA encoding full length protein. After two weekly vaccinations, the splenocyte populations containing human lymphocytes were recovered 7 days later and assessed for MART-1-specific immune responses using MHC-multimer-binding assays and functional assessment of specific killing of melanoma tumor cell lines. Results Human monocyte-derived DC generated in vitro in 3 days induced better MART-1-specific immune responses in the autologous donor T cells present in the humanized NSG mice. Moreover, consistent with our in vitro observations, vaccination using mature DC activated with TLR3 and TLR7/8 agonists resulted in enhanced immune responses in vivo. These findings led to a ranking of the DC vaccine effects in vivo that reflected the hierarchy previously found for these mature DC variations in vitro. Conclusions This humanized mouse model system enables

  18. Development of oral CTL vaccine using a CTP-integrated Sabin 1 poliovirus-based vector system.

    Science.gov (United States)

    Han, Seung-Soo; Lee, Jinjoo; Jung, Yideul; Kang, Myeong-Ho; Hong, Jung-Hyub; Cha, Min-Suk; Park, Yu-Jin; Lee, Ezra; Yoon, Cheol-Hee; Bae, Yong-Soo

    2015-09-11

    We developed a CTL vaccine vector by modification of the RPS-Vax system, a mucosal vaccine vector derived from a poliovirus Sabin 1 strain, and generated an oral CTL vaccine against HIV-1. A DNA fragment encoding a cytoplasmic transduction peptide (CTP) was integrated into the RPS-Vax system to generate RPS-CTP, a CTL vaccine vector. An HIV-1 p24 cDNA fragment was introduced into the RPS-CTP vector system and a recombinant poliovirus (rec-PV) named vRPS-CTP/p24 was produced. vRPS-CTP/p24 was genetically stable and efficiently induced Th1 immunity and p24-specific CTLs in immunized poliovirus receptor-transgenic (PVR-Tg) mice. In challenge experiments, PVR-Tg mice that were pre-immunized orally with vRPS-CTP/p24 were resistant to challenge with a lethal dose of p24-expressing recombinant vaccinia virus (rMVA-p24). These results suggested that the RPS-CTP vector system had potential for developing oral CTL vaccines against infectious diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice.

    Science.gov (United States)

    Brostoff, Terza; Pesavento, Patricia A; Barker, Christopher M; Kenney, Joan L; Dietrich, Elizabeth A; Duggal, Nisha K; Bosco-Lauth, Angela M; Brault, Aaron C

    2016-10-17

    West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority (∼75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3'-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93-100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development. Published by Elsevier Ltd.

  20. Intranasal Immunization Using Mannatide as a Novel Adjuvant for an Inactivated Influenza Vaccine and Its Adjuvant Effect Compared with MF59.

    Directory of Open Access Journals (Sweden)

    Shu-Ting Ren

    Full Text Available Intranasal vaccination is more potent than parenteral injection for the prevention of influenza. However, because the poor efficiency of antigen uptake across the nasal mucosa is a key issue, immunostimulatory adjuvants are essential for intranasal vaccines. The immunomodulator mannatide or polyactin (PA has been used for the clinical treatment of impaired immunity in China, but its adjuvant effect on an inactivated trivalent influenza vaccine (ITIV via intranasal vaccination is unclear. To explore the adjuvant effect of PA, an inactivated trivalent influenza virus with or without PA or MF59 was instilled intranasally once a week in BALB/c mice. Humoral immunity was assessed by both the ELISA and hemagglutination inhibition (HI methods using antigen-specific antibodies. Splenic lymphocyte proliferation and the IFN-γ level were measured to evaluate cell-mediated immunity. The post-vaccination serum HI antibody geometric mean titers (GMTs for the H1N1 and H3N2 strains, antigen-specific serum IgG and IgA GMTs, mucosal SIgA GMT, splenic lymphocyte proliferation, and IFN-γ were significantly increased in the high-dose PA-adjuvanted vaccine group. The seroconversion rate and the mucosal response for the H3N2 strain were significantly elevated after high-dose PA administration. These adjuvant effects of high-dose PA for the influenza vaccine were comparable with those of the MF59 adjuvant, and abnormal signs or pathological changes were not found in the evaluated organs. In conclusion, PA is a novel mucosal adjuvant for intranasal vaccination with the ITIV that has safe and effective mucosal adjuvanticity in mice and successfully induces both serum and mucosal antibody responses and a cell-mediated response.