WorldWideScience

Sample records for mice show normal

  1. Hearts of dystonia musculorum mice display normal morphological and histological features but show signs of cardiac stress.

    Directory of Open Access Journals (Sweden)

    Justin G Boyer

    2010-03-01

    Full Text Available Dystonin is a giant cytoskeletal protein belonging to the plakin protein family and is believed to crosslink the major filament systems in contractile cells. Previous work has demonstrated skeletal muscle defects in dystonin-deficient dystonia musculorum (dt mice. In this study, we show that the dystonin muscle isoform is localized at the Z-disc, the H zone, the sarcolemma and intercalated discs in cardiac tissue. Based on this localization pattern, we tested whether dystonin-deficiency leads to structural defects in cardiac muscle. Desmin intermediate filament, microfilament, and microtubule subcellular organization appeared normal in dt hearts. Nevertheless, increased transcript levels of atrial natriuretic factor (ANF, 66% beta-myosin heavy chain (beta-MHC, 95% and decreased levels of sarcoplasmic reticulum calcium pump isoform 2A (SERCA2a, 26%, all signs of cardiac muscle stress, were noted in dt hearts. Hearts from two-week old dt mice were assessed for the presence of morphological and histological alterations. Heart to body weight ratios as well as left ventricular wall thickness and left chamber volume measurements were similar between dt and wild-type control mice. Hearts from dt mice also displayed no signs of fibrosis or calcification. Taken together, our data provide new insights into the intricate structure of the sarcomere by situating dystonin in cardiac muscle fibers and suggest that dystonin does not significantly influence the structural organization of cardiac muscle fibers during early postnatal development.

  2. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie

    2016-04-21

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  3. Glutamate Cysteine Ligase—Modulatory Subunit Knockout Mouse Shows Normal Insulin Sensitivity but Reduced Liver Glycogen Storage

    KAUST Repository

    Lavoie, Suzie; Steullet, Pascal; Kulak, Anita; Preitner, Frederic; Do, Kim Q.; Magistretti, Pierre J.

    2016-01-01

    Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

  4. Bex1 knock out mice show altered skeletal muscle regeneration

    International Nuclear Information System (INIS)

    Koo, Jae Hyung; Smiley, Mark A.; Lovering, Richard M.; Margolis, Frank L.

    2007-01-01

    Bex1 and Calmodulin (CaM) are upregulated during skeletal muscle regeneration. We confirm this finding and demonstrate the novel finding that they interact in a calcium-dependent manner. To study the role of Bex1 and its interaction with CaM in skeletal muscle regeneration, we generated Bex1 knock out (Bex1-KO) mice. These mice appeared to develop normally and are fertile, but displayed a functional deficit in exercise performance compared to wild type (WT) mice. After intramuscular injection of cardiotoxin, which causes extensive and reproducible myotrauma followed by recovery, regenerating muscles of Bex1-KO mice exhibited elevated and prolonged cell proliferation, as well as delayed cell differentiation, compared to WT mice. Thus, our results provide the first evidence that Bex1-KO mice show altered muscle regeneration, and allow us to propose that the interaction of Bex1 with Ca 2+ /CaM may be involved in skeletal muscle regeneration

  5. Study of trace element metabolism in normal and cancerous mice using multitracer technique

    International Nuclear Information System (INIS)

    Wang Xiao; Kong Fuquan; Zhao Kui; Zhang Xiang; Qin Zhi

    2008-01-01

    A radioactive multitracer solution of the 24 elements, e.g. Be, Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Mo, Nb, To, Ru, Ag and In, was obtained from the nuclear reaction of 25 MeV/u 40 Ar + Se with a series of chemical process. The multitracer solution was orally administered to normal and muscular turnout-bearing mice of male Balb/c mice. Urine and faeces samples of mice were collected. The two group mice were saerificed after 96 h. The uptake of 17 elements, Na, Rb, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Tc, Ru, Ag and In, were simultaneously detected in normal mice while 15 elements, Na, Rb, Ga, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Tc, Ru, Ag and In, were simultaneously detected in tumour-bearing mice. Our results indicate that the majority of the detected elements were distributed in liver, kidney, pelt, turnout while a small fraction of the biotrace elements were distributed in heart and spleen. (tumour-bearing mice) in the two groups of mice. The higher concentrations of Fe, Na, Mn were detected in heart or kidney of normal mice. Na, Mn, Fe and Co showed better absorption in most tissues in the normal mice, except for Na and Mn in heart. (authors)

  6. Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice.

    Science.gov (United States)

    Schultz, C J; Blanchette-Mackie, E J; Scow, R O

    2000-02-01

    Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.

  7. The normal acid-base status of mice.

    Science.gov (United States)

    Iversen, Nina K; Malte, Hans; Baatrup, Erik; Wang, Tobias

    2012-03-15

    Rodent models are commonly used for various physiological studies including acid-base regulation. Despite the widespread use of especially genetic modified mice, little attention have been made to characterise the normal acid-base status in these animals in order to reveal proper control values. Furthermore, several studies report blood gas values obtained in anaesthetised animals. We, therefore, decided to characterise blood CO(2) binding characteristic of mouse blood in vitro and to characterise normal acid-base status in conscious BALBc mice. In vitro CO(2) dissociation curves, performed on whole blood equilibrated to various PCO₂ levels in rotating tonometers, revealed a typical mammalian pK' (pK'=7.816-0.234 × pH (r=0.34)) and a non-bicarbonate buffer capacity (16.1 ± 2.6 slyke). To measure arterial acid-base status, small blood samples were taken from undisturbed mice with indwelling catheters in the carotid artery. In these animals, pH was 7.391 ± 0.026, plasma [HCO(3)(-)] 18.4 ± 0.83 mM, PCO₂ 30.3 ± 2.1 mm Hg and lactate concentration 4.6 ± 0.7 mM. Our study, therefore, shows that mice have an arterial pH that resembles other mammals, although arterial PCO₂ tends to be lower than in larger mammals. However, pH from arterial blood sampled from mice anaesthetised with isoflurane was significantly lower (pH 7.239 ± 0.021), while plasma [HCO(3)(-)] was 18.5 ± 1.4 mM, PCO₂ 41.9 ± 2.9 mm Hg and lactate concentration 4.48 ± 0.67 mM. Furthermore, we measured metabolism and ventilation (V(E)) in order to determine the ventilation requirements (VE/VO₂) to answer whether small mammals tend to hyperventilate. We recommend, therefore, that studies on acid-base regulation in mice should be based on samples taken for indwelling catheters rather than cardiac puncture of terminally anaesthetised mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  9. Protein Degradation in Normal and Beige (Chediak-Higashi) Mice

    Science.gov (United States)

    Lyons, Robert T.; Pitot, Henry C.

    1978-01-01

    The beige mouse, C57BL/6 (bg/bg), is an animal model for the Chediak-Higashi syndrome in man, a disease characterized morphologically by giant lysosomes in most cell types. Half-lives for the turnover of [14C]bicarbonate-labeled total soluble liver protein were determined in normal and beige mice. No significant differences were observed between the normal and mutant strain for both rapidly and slowly turning-over classes of proteins. Glucagon treatment during the time-course of protein degradation had similar effects on both normal and mutant strains and led to the conclusion that the rate of turnover of endogenous intracellular protein in the beige mouse liver does not differ from normal. The rates of uptake and degradation of an exogenous protein were determined in normal and beige mice by intravenously injecting 125I-bovine serum albumin and following, in peripheral blood, the loss with time of phosphotungstic acid-insoluble bovine serum albumin and the parallel appearance of phosphotungstic acid-soluble (degraded) material. No significant differences were observed between beige and normal mice in the uptake by liver lysosomes of 125I-bovine serum albumin (t½ = 3.9 and 2.8 h, respectively). However, it was found that lysosomes from livers of beige mice released phosphotungstic acid-soluble radioactivity at a rate significantly slower than normal (t½ = 6.8 and 3.1 h, respectively). This defect in beige mice could be corrected by chronic administration of carbamyl choline (t½ = 3.5 h), a cholinergic agonist which raises intracellular cyclic GMP levels. However, no significant differences between normal and beige mice were observed either in the ability of soluble extracts of liver and kidney to bind [3H]cyclic GMP in vitro or in the basal levels of cyclic AMP in both tissues. The relevance of these observations to the presumed biochemical defect underlying the Chediak-Higashi syndrome is discussed. PMID:202611

  10. Diffraction enhanced imaging of normal and arthritic mice feet

    International Nuclear Information System (INIS)

    Crittell, Suzanne; Cheung, K.C.; Hall, Chris; Ibison, Mark; Nolan, Paul; Page, Robert; Scraggs, David; Wilkinson, Steve

    2007-01-01

    The aim of this experiment was to produce X-ray images of mice feet using the diffraction-enhanced imaging (DEI) system at the UK Synchrotron Radiation Source (SRS) at Daresbury. There were two broad types of mice feet samples studied: normal and arthritic. The two types of samples were imaged using several views and compared in order to determine whether it would be possible to detect the early morphological changes linked with this form of arthritis. We found that the DEI images produced were indeed of sufficient quality to show the presence of some osteoarthritic changes

  11. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    Science.gov (United States)

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy.

    Science.gov (United States)

    Mader, Jessica R; Resch, Zachary T; McLean, Gary R; Mikkelsen, Jakob H; Oxvig, Claus; Marler, Ronald J; Conover, Cheryl A

    2013-10-01

    We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.

  13. Body surface area prediction in normal, hypermuscular, and obese mice.

    Science.gov (United States)

    Cheung, Michael C; Spalding, Paul B; Gutierrez, Juan C; Balkan, Wayne; Namias, Nicholas; Koniaris, Leonidas G; Zimmers, Teresa A

    2009-05-15

    Accurate determination of body surface area (BSA) in experimental animals is essential for modeling effects of burn injury or drug metabolism. Two-dimensional surface area is related to three-dimensional body volume, which in turn can be estimated from body mass. The Meeh equation relates body surface area to the two-thirds power of body mass, through a constant, k, which must be determined empirically by species and size. We found older values of k overestimated BSA in certain mice; thus we determined empirically k for various strains of normal, obese, and hypermuscular mice. BSA was computed from digitally scanned pelts and nonlinear regression analysis was used to determine the best-fit k. The empirically determined k for C57BL/6J mice of 9.82 was not significantly different from other inbred and outbred mouse strains of normal body composition. However, mean k of the nearly spheroid, obese lepr(db/db) mice (k = 8.29) was significantly lower than for normals, as were values for dumbbell-shaped, hypermuscular mice with either targeted deletion of the myostatin gene (Mstn) (k = 8.48) or with skeletal muscle specific expression of a dominant negative myostatin receptor (Acvr2b) (k = 8.80). Hypermuscular and obese mice differ substantially from normals in shape and density, resulting in considerably altered k values. This suggests Meeh constants should be determined empirically for animals of altered body composition. Use of these new, improved Meeh constants will allow greater accuracy in experimental models of burn injury and pharmacokinetics.

  14. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    Science.gov (United States)

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Ratio of organs to blood of mercury during its uptake by normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Ogata, M.; Aikoh, H.

    1987-01-01

    The brain/blood, liver/blood, and heart/blood ratios of acatalasemic mice after intraperitoneal injection of labelled metallic mercury or after exposure to labelled metallic mercury vapor were significantly higher than those of normal mice. These ratios of normal or acatalasemic mice after injection with metallic mercury or exposure to metallic mercury vapor were significantly higher than those of normal and acatalasemic mice injected with mercuric ion. The amount of metallic mercury exhaled from acatalasemic mice injected with metallic mercury was greater than that from normal mice, indicating that the level of metallic mercury in blood of the former was higher than that of the latter. Actually, metallic mercury in the blood of acatalasemic mice injected with metallic mercury is higher than that in the blood of normal mice, suggesting that metallic mercury is easily transferred from blood to brain, liver, kidney, and heart

  16. Preparation of 177Lu-DTPA-BIS-BIOTIN and biodistribution evaluation in normal mice

    International Nuclear Information System (INIS)

    Deng Xinrong; Luo Zhifu; Du Jin

    2010-01-01

    The labeling method for 177 Lu-DTPA-BIS-BIOTIN was established, and the biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice was carried out as well. Under the optimal experimental condition (DTPA-BIS-BIOTIN 25 μg, pH=4.5 reacting at 80 degree C for 20 min), the labeling yield of 177 Lu-DTPA-BIS-BIOTIN is more than 99.0%. 177 Lu-DTPA-BIS-BIOTIN shows pretty good in vitro stability. The biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice shows a rapid blood clearance. The uptake of 177 Lu-DTPA-BIS-BIOTIN is mainly accumulated in liver, spleen and kidney. 177 Lu-DTPA-BIS-BIOTIN is excreted by kidney. The results provide the basis for further study on 177 Lu-DTPA-BIS-BIOTIN used in pretargeted radioimage and radiotherapy of cancer. (authors)

  17. Kinetics of small lymphocytes in normal and nude mice after splenectomy

    DEFF Research Database (Denmark)

    Hougen, H P; Hansen, F; Jensen, E K

    1977-01-01

    Autoradiography and various quantitations on lymphoid tissues have been used to evaluate the kinetics of small lymphocytes in normal (+/nu or +/+) and congenitally athymic nude (nu/nu) NMRI mice 1 month after splenectomy or sham-splenectomy. The results indicate that splenectomy causes depressed...... thymic activity and diminished numbers of T lymphocytes in peripheral lymphoid tissues. The total number of cells in these tissues as well as the blast cell activity, were within normal limits. Bone marrow lymphocyte numbers and kinetics as well as blood lymphocyte levels in splenectomized and sham......-splenectomized normal animals were comparable. Blood lymphocyte numbers were at normal levels in splenectomized nude mice, in spite of reduced numbers of bone marrow and thoracic duct lymphocytes. It is suggested that increased number of newly-formed lymphocytes, found in lymph nodes and blood of splenectomized mice...

  18. Obese Neuronal PPARγ Knockout Mice Are Leptin Sensitive but Show Impaired Glucose Tolerance and Fertility.

    Science.gov (United States)

    Fernandez, Marina O; Sharma, Shweta; Kim, Sun; Rickert, Emily; Hsueh, Katherine; Hwang, Vicky; Olefsky, Jerrold M; Webster, Nicholas J G

    2017-01-01

    The peroxisome-proliferator activated receptor γ (PPARγ) is expressed in the hypothalamus in areas involved in energy homeostasis and glucose metabolism. In this study, we created a deletion of PPARγ brain-knockout (BKO) in mature neurons in female mice to investigate its involvement in metabolism and reproduction. We observed that there was no difference in age at puberty onset between female BKOs and littermate controls, but the BKOs gave smaller litters when mated and fewer oocytes when ovulated. The female BKO mice had regular cycles but showed an increase in the number of cycles with prolonged estrus. The mice also had increased luteinizing hormone (LH) levels during the LH surge and histological examination showed hemorrhagic corpora lutea. The mice were challenged with a 60% high-fat diet (HFD). Metabolically, the female BKO mice showed normal body weight, glucose and insulin tolerance, and leptin levels but were protected from obesity-induced leptin resistance. The neuronal knockout also prevented the reduction in estrous cycles due to the HFD. Examination of ovarian histology showed a decrease in the number of primary and secondary follicles in both genotypes due to the HFD, but the BKO ovaries showed an increase in the number of hemorrhagic follicles. In summary, our results show that neuronal PPARγ is required for optimal female fertility but is also involved in the adverse effects of diet-induced obesity by creating leptin resistance potentially through induction of the repressor Socs3. Copyright © 2017 by the Endocrine Society.

  19. Pharmacokinetics and tissue distribution of five active ingredients of Eucommiae cortex in normal and ovariectomized mice by UHPLC-MS/MS.

    Science.gov (United States)

    An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao

    2016-09-01

    1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.

  20. Inhibiting effect of plasma from normal and tumour bearing mice on the mitotic rate of regenerating liver.

    Science.gov (United States)

    Echave Llanos, J M; Moreno, F R; Badrán, A F

    1986-01-01

    Plasma from normal mice and from mice bearing the ES2 transplantable malignant tumour was injected intraperitoneally at a dose of 0.01 ml/g body weight in partially hepatectomized mice. Control animals were injected with a solution of sodium citrate in saline. The recipients were killed at the first (14:00 hours/48 h). These times are the time of day and the number of h after partial hepatectomy and second (14:00 hours/72 h) peak times after partial hepatectomy. The number of colchicine metaphases per 1000 nuclei was determined for hepatocytes and litoral cells. A different effect was obtained with plasma from tumour-bearing compared with normal mice. Plasma from both sources when injected 26 h after partial hepatectomy (16:00 hours/26 h) inhibited the mitotic activity of hepatocytes at the next peak of regenerative activity (14:00 hours/48 h). The plasma from tumour-bearing mice also inhibited the peak on the following day (14:00 hours/72 h), whereas plasma from normal mice had no inhibitory effect and, indeed, a compensatory wave was observed at this time. Furthermore, plasma from tumour-bearing mice also showed an inhibitory effect at the first peak (14:00 hours/48 h) when injected at the time of partial hepatectomy (14:00 hours/00 h) or at 22 h before partial hepatectomy (16:00 hours/-22 h) whereas the injection of plasma from normal mice at these times had no inhibitory effect. In the litoral cells the injection of plasma from tumour-bearing mice made 22 h before hepatectomy (16:00 hours/-22 h) led to a stimulation of mitotic activity which was controlled at 14:00 hours/48 h.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  2. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  3. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  5. Core temperature rhythms in normal and tumor-bearing mice.

    Science.gov (United States)

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  6. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  7. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice.

    Science.gov (United States)

    Wang, Cong; Chen, Zhongqin; Pan, Yuxiang; Gao, Xudong; Chen, Haixia

    2017-10-01

    Polysaccharides are important bioactive ingredients from Inonotus obliquus. This study aimed to synthesize and characterize a novel I. obliquus polysaccharides-chromium (III) complex (UIOPC) and investigate the anti-diabetic effects in streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) mice and sub-acute toxicity in normal mice. The molecular weight of UIOPC was about 11.5 × 10 4  Da with the chromium content was 13.01% and the chromium was linked with polysaccharides through coordination bond. After treatment of UIOPC for four weeks, the body weight, fasting blood glucose (FBG) levels, plasma insulin levels of the diabetic mice were significantly reduced when compared with those of the diabetic mice (p < 0.05). The results on serum profiles and antioxidant enzymes activities revealed that UIOPC had a positive effect on hypoglycemic and antioxidant ability. Histopathology results showed that UIOPC could effectively alleviate the STZ-lesioned tissues in diabetic mice. Furthermore, high dose administration of UIOPC had no obviously influence on serum profiles levels and antioxidant ability of the normal mice and the organ tissues maintained organized and integrity in the sub-acute toxicity study. These results suggested that UIOPC might be a good candidate for the functional food or pharmaceuticals in the treatment of T2DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  9. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  10. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  11. Effect of hormone treatment on spontaneous and radiation-induced chromosomal breakage in normal and dwarf mice

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Buul-Offers, S. van

    1982-01-01

    Treatment of dwarf mice with growth hormone, insulin and testosterone had no effect on the spontaneous frequencies of micronuclei (MN) in bone-marrow cells, whereas thyroxine decreased these frequencies. The induction of MN by X-rays and mitomycin C was significantly lower in dwarf mice than in normal mice. Treatment with thyroxine plus growth hormone restored normal radiosensitivity in dwarfs. (orig.)

  12. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1 show modestly enhanced alcohol preference and consumption.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6% but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg, morphine (10 mg/kg, and cocaine (10 mg/kg, demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.

  13. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    Science.gov (United States)

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  14. Bone marrow cellularity in normal and polycythemic mice estimated by DNA incorporation of /sup 3/H-TdR

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, L.H.; Ledney, G.D.

    1982-07-01

    Nucleated bone marrow cell numbers in normal and polycythemic mice were determined using /sup 3/H-thymidine (/sup 3/H-TdR). The cellularities were estimated by extrapolating the exponential disappearance of labeled cells after a single injection of /sup 3/H-TdR to the time of injection. Dermestid beetles (Anthrenus piceus) were used to prepare tissue-free skeletons labeled with /sup 3/H-TdR. The correlation between tritium activity in bone marrow DNA and tritium derived from the combusted skeleton was determined. The total skeletal cellularity determined by isotope dilution analysis in both normal and polycythemic mice was 2.6 x 10(8) cells/mouse or 17.6 x 10(9) cells/kg body weight. Although the red cell component of the marrow was reduced in the polycythemic mouse, the total numbers of nucleated cells in both types of animals were similar. The differential distribution of cells in the polycythemic animal showed a twofold increase in granulocytic cells, which may explain the identical nucleated cell count in normal and in polycythemic mice.

  15. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    Science.gov (United States)

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P tissue (P tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  16. Lyplal1 is dispensable for normal fat deposition in mice

    Directory of Open Access Journals (Sweden)

    Rachel A. Watson

    2017-12-01

    Full Text Available Genome-wide association studies (GWAS have detected association between variants in or near the Lysophospholipase-like 1 (LYPLAL1 locus and metabolic traits, including central obesity, fatty liver and waist-to-hip ratio. LYPLAL1 is also known to be upregulated in the adipose tissue of obese patients. However, the physiological role of LYPLAL1 is not understood. To investigate the function of Lyplal1 in vivo we investigated the phenotype of the Lyplal1tm1a(KOMPWtsi homozygous mouse. Body composition was unaltered in Lyplal1 knockout mice as assessed by dual-energy X-ray absorptiometry (DEXA scanning, both on normal chow and on a high-fat diet. Adipose tissue distribution between visceral and subcutaneous fat depots was unaltered, with no change in adipocyte cell size. The response to both insulin and glucose dosing was normal in Lyplal1tm1a(KOMPWtsi homozygous mice, with normal fasting blood glucose concentrations. RNAseq analysis of liver, muscle and adipose tissue confirmed that Lyplal1 expression was ablated with minimal additional changes in gene expression. These results suggest that Lyplal1 is dispensable for normal mouse metabolic physiology and that despite having been maintained through evolution Lyplal1 is not an essential gene, suggesting possible functional redundancy. Further studies will be required to clarify its physiological role.

  17. Mice expressing a “hyper-sensitive” form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption

    Science.gov (United States)

    Gonek, Maciej; Zee, Michael L.; Farnsworth, Jill C.; Amin, Randa A.; Andrews, Mary-Jeanette; Davis, Brian J.; Mackie, Ken; Morgan, Daniel J.

    2017-01-01

    We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a “hyper-sensitive” form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model. PMID:28426670

  18. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  19. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    Science.gov (United States)

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  20. Pumilio2-deficient mice show a predisposition for epilepsy

    Directory of Open Access Journals (Sweden)

    Philipp Follwaczny

    2017-11-01

    Full Text Available Epilepsy is a neurological disease that is caused by abnormal hypersynchronous activities of neuronal ensembles leading to recurrent and spontaneous seizures in human patients. Enhanced neuronal excitability and a high level of synchrony between neurons seem to trigger these spontaneous seizures. The molecular mechanisms, however, regarding the development of neuronal hyperexcitability and maintenance of epilepsy are still poorly understood. Here, we show that pumilio RNA-binding family member 2 (Pumilio2; Pum2 plays a role in the regulation of excitability in hippocampal neurons of weaned and 5-month-old male mice. Almost complete deficiency of Pum2 in adult Pum2 gene-trap mice (Pum2 GT causes misregulation of genes involved in neuronal excitability control. Interestingly, this finding is accompanied by the development of spontaneous epileptic seizures in Pum2 GT mice. Furthermore, we detect an age-dependent increase in Scn1a (Nav1.1 and Scn8a (Nav1.6 mRNA levels together with a decrease in Scn2a (Nav1.2 transcript levels in weaned Pum2 GT that is absent in older mice. Moreover, field recordings of CA1 pyramidal neurons show a tendency towards a reduced paired-pulse inhibition after stimulation of the Schaffer-collateral-commissural pathway in Pum2 GT mice, indicating a predisposition to the development of spontaneous seizures at later stages. With the onset of spontaneous seizures at the age of 5 months, we detect increased protein levels of Nav1.1 and Nav1.2 as well as decreased protein levels of Nav1.6 in those mice. In addition, GABA receptor subunit alpha-2 (Gabra2 mRNA levels are increased in weaned and adult mice. Furthermore, we observe an enhanced GABRA2 protein level in the dendritic field of the CA1 subregion in the Pum2 GT hippocampus. We conclude that altered expression levels of known epileptic risk factors such as Nav1.1, Nav1.2, Nav1.6 and GABRA2 result in enhanced seizure susceptibility and manifestation of epilepsy in the

  1. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    Science.gov (United States)

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  2. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    Science.gov (United States)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  3. Preparation, distribution, stability and tumor imaging properties of [62Zn] Bleomycin complex in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Fateh, B.; Ghergherehchi, M.; Karimian, A.; Matloobi, M.; Moradkhani, S.; Kamalidehghan, M.; Tabeie, F.

    2003-01-01

    Backgrounds: Bleomycin (BLM) has been labeled with radioisotopes and widely used in therapy and diagnosis. In this study BLM was labeled with [ 62 Zn] zinc chloride for oncologic PET studies. Materials and methods: The complex was obtained at the P H=2 normal saline at 90 d eg C in 60 min. Radio-TLC showed on overall radiochemical yield of 95-97% (radiochemical purity>97%). Stability of complex was checked in vitro in mice and human plasma/urine. Results: Preliminary in vitro studies performed to determined complex stability and distribution of [ 62 Zn] BLM in normal and fibrosarcoma tumors in mice according to bio-distribution/imaging studies. Conclusion: [ 62 Zn] BLM can be used in PET oncology studies due to its suitable physico-chemical propertied as a diagnostic complex behavior in higher animals

  4. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury

    Directory of Open Access Journals (Sweden)

    Jens-Uwe Werner

    2018-01-01

    Full Text Available Injury and obesity are two major health burdens affecting millions of people worldwide. Obesity is recognized as a state of chronic inflammation accompanied by various co-morbidities like T2D or cardiovascular diseases. There is increasing evidence that obesity impairs muscle regeneration, which is mainly due to chronic inflammation and to excessive accumulation of lipids in adipose and non-adipose tissue. To compare fatty acid profiles and changes in gene expression at different time points after muscle injury, we used an established drop tower-based model with a defined force input to damage the extensor iliotibialis anticus on the left hind limb of female C57BL/6J mice of normal weight and obese mice. Although most changes in fatty acid content in muscle tissue are diet related, levels of eicosaenoic (normal weight and DHG-linolenic acid (obese in the phospholipid and docosahexaenoic acid (normal weight in the triglyceride fraction are altered after injury. Furthermore, changes in gene transcription were detected in 3829 genes in muscles of normal weight mice, whereas only 287 genes were altered in muscles of obese mice after trauma. Alterations were found within several pathways, among them notch-signaling, insulin-signaling, sonic hedgehog-signaling, apoptosis related pathways, fat metabolism related cholesterol homeostasis, fatty acid biosynthetic process, fatty acid elongation, and acyl-CoA metabolic process. We could show that genes involved in fat metabolism are affected 3 days after trauma induction mostly in normal weight but not in obese mice. The strongest effects were observed in normal weight mice for Alox5ap, the activating protein for leukotriene synthesis, and Apobec1, an enzyme substantial for LDL synthesis. In summary, we show that obesity changes the fat content of skeletal muscle and generally shows a negative impact upon blunt muscle injury on various cellular processes, among them fatty acid related metabolism, notch

  6. [Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice].

    Science.gov (United States)

    Monroy-Gómez, Jeison; Torres-Fernández, Orlando

    2013-01-01

    Rabies is a fatal infectious disease of the nervous system; however, the knowledge about the pathogenic neural mechanisms in rabies is scarce. In addition, there are few studies of rabies pathology of the spinal cord. To study the distribution of calcium binding proteins calbindin and parvalbumin and assessing the effect of rabies virus infection on their expression in the spinal cord of mice. MATERIALES Y METHODS: Mice were inoculated with rabies virus, by intracerebral or intramuscular route. The spinal cord was extracted to perform some crosscuts which were treated by immunohistochemistry with monoclonal antibodies to reveal the presence of the two proteins in normal and rabies infected mice. We did qualitative and quantitative analyses of the immunoreactivity of the two proteins. Calbindin and parvalbumin showed differential distribution in Rexed laminae. Rabies infection produced a decrease in the expression of calbindin. On the contrary, the infection caused an increased expression of parvalbumin. The effect of rabies infection on the two proteins expression was similar when comparing both routes of inoculation. The differential effect of rabies virus infection on the expression of calbindin and parvalbumin in the spinal cord of mice was similar to that previously reported for brain areas. This result suggests uniformity in the response to rabies infection throughout the central nervous system. This is an important contribution to the understanding of the pathogenesis of rabies.

  7. BDNF-Deficient Mice Show Reduced Psychosis-Related Behaviors Following Chronic Methamphetamine.

    Science.gov (United States)

    Manning, Elizabeth E; Halberstadt, Adam L; van den Buuse, Maarten

    2016-04-01

    One of the most devastating consequences of methamphetamine abuse is increased risk of psychosis. Brain-derived neurotrophic factor has been implicated in both psychosis and neuronal responses to methamphetamine. We therefore examined persistent psychosis-like behavioral effects of methamphetamine in brain-derived neurotrophic factor heterozygous mice. Mice were chronically treated with methamphetamine from 6 to 9 weeks of age, and locomotor hyperactivity to an acute D-amphetamine challenge was tested in photocell cages after a 2-week withdrawal period. Methamphetamine-treated wild-type mice, but not brain-derived neurotrophic factor heterozygous mice, showed locomotor sensitization to acute 3mg/kg D-amphetamine. Qualitative analysis of exploration revealed tolerance to D-amphetamine effects on entropy in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice, but not wild-type mice. Chronic methamphetamine exposure induces contrasting profiles of behavioral changes in wild-type and brain-derived neurotrophic factor heterozygous mice, with attenuation of behaviors relevant to psychosis in methamphetamine-treated brain-derived neurotrophic factor heterozygous mice. This suggests that brain-derived neurotrophic factor signalling changes may contribute to development of psychosis in methamphetamine users. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  8. Effects of recombinant human interleukin-8 (rhIL-8) on the bone marrow cells of normal BALB/c mice

    International Nuclear Information System (INIS)

    Liu Yulong; Zhou Jianying; Wang Guoquan; Dai Hong; Duan Yingying; Guo Xiaokui

    2001-01-01

    Objective: To observe the colony formation ability of recombinant human interleukin-8 (rhIL-8) on bone marrow cells (BMCs) of normal mice in vivo. Methods: By means of cells culture and flow cytometry (FCM), the colony-stimulating activity of rhIL-8 on BMCs of normal mice was studied. Results: The experimental studies in vivo demonstrated that rhIL-8 could not changed the counts of CFU-GM and distribution of cell cycle in BMCs. Conclusion: rhIL-8 has no colony-stimulating activity to BMCs of normal mice

  9. Characteristics and function of bone marrow stromal adherent cells in normal and irradiated mice and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Changyu, Zheng; Ji, Liu; Xiaoying, Bi

    1986-04-01

    It has been shown from cytochemical and other characteristic studies of bone marrow stromal cells in CFU-F that there are seven types of stromal cells in the stromal adherent cell layer of normal and irradiated C/sub 57/ mice whereas there are only six types in guinea pigs. On the other hand, a radioresistant cell subtype appears in adherent layer after irradiation of both C/sub 57/ mice and guinea pig since the supernatant of cultured CFU-F of the normal and irradiated C/sub 57/ mice can stimulate production of CFU-Gm. It is justifiable that the bone marrow stromal adherent cells of the C/sub 57/ mice could produce CSF.

  10. Palatal shelf epithelium: a morphologic and histochemical study in X-irradiated and normal mice

    International Nuclear Information System (INIS)

    Gartner, L.P.; Hiatt, J.L.; Provenza, D.V.

    1978-01-01

    The palatal shelf epithelium of normal and irradiated mice was examined morphologically and histochemically, utilizing the periodic acid-Schiff (PAS) technique for the demonstration of the basement membrane and the Nitro BT method for succinate dehydrogenase activity in order to demonstrate the metabolic competence of its cells. The 'programmed cell death theory' was not supported by the present investigation, since the cells of the medial ridge epithelium retained their structural and metabolic integrity even subsequent to the formation of cell nests. Additionally, the medial ridge epithelium of mice with radiation-induced cleft palates demonstrated normal structural and metabolic integrity long past the prospective time of fusion. (author)

  11. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  12. Arachidonic acid metabolites in normal and autoimmune mice do not influence lymphocyte-high endothelial venule interactions.

    Science.gov (United States)

    Manolios, N; Bakiera, B; Geczy, C L; Schrieber, L

    1991-02-01

    In peripheral lymphoid organs the number of lymphocytes and the proportion of functional lymphocyte subsets are regulated by multiple factors including the control of lymphocyte migration by selective lymphocyte-high endothelial venule (HEV) interactions. In this study, prostaglandin E2 (PGE2) levels from normal and autoimmune mouse lymph node cells were measured. The contribution of eicosanoids to lymphocyte-HEV interactions in normal (CBA/T6) and autoimmune (MRL/n) mice was examined. There was no association between PGE2 production in normal or autoimmune mice and the age of onset of disease activity in the latter strains. Arachidonic acid metabolites, in particular PGE2 and leukotriene B4 (LTB4), did not have any effects on lymphocyte-HEV binding. Likewise, lymphocytes treated in vivo and/or in vitro with arachidonic acid metabolite inhibitors (acetyl salicylic acid, indomethacin, BW755C) did not alter lymphocyte-HEV binding interactions in both normal and autoimmune mice. No clinical significance could be attributed to lymph node PGE2 production and the age of onset of autoimmune disease. In summary, these findings cast doubt on the role of arachidonic acid metabolites in lymphocyte-HEV binding interactions.

  13. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  14. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  15. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum.

    Science.gov (United States)

    Allen, Jeremy P; Hathway, Gareth J; Clarke, Neil J; Jowett, Mike I; Topps, Stephanie; Kendrick, Keith M; Humphrey, Patrick P A; Wilkinson, Lawrence S; Emson, Piers C

    2003-05-01

    The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.

  16. 2-deoxyglucose tissue levels and insulin levels following tolazamide dosing in normal and obese mice

    International Nuclear Information System (INIS)

    Skillman, C.A.; Fletcher, H.P.

    1986-01-01

    The effect of tolazamide (TZ), a sulfonylurea, on 14 C-2-deoxyglucose ( 14 C-2DG) tissue distribution and insulin levels of normal and obese mice was investigated using an in vivo physiological method. Acute doses of TZ (50 mg/kg ip) increased 14 C-2DG levels in gastrocnemius muscle and retroperitoneal fat and produced a transient elevation of insulin which most likely accounts for the increased 14 C-2DG levels in muscle and fat. The results demonstrate that the in vivo 14 C-2DG method produced results consistent with known actions of sulfonylureas on in vitro hexose assimilation in muscle and fat. Subchronic treatment (7 days) with TZ 50 mg/kg ip twice daily did not result in increased insulin-stimulated 14 C-2DG tissue levels in normal mice when compared to saline treated controls. However, insulin levels were lower in mice treated subchronically with TZ compared to saline controls suggesting an enhancement of insulin action. Viable yellow obese mice represent a model of maturity onset obesity presenting with insulin resistance. The insulin resistance of this obese strain appears to reside in the fat tissue as assessed by comparing 14 C-2DG tissue levels of obese mice with lean littermate controls. Subchronic TZ treatment had no effect on 14 C-2DG uptake in fat or muscle tissue of viable yellow obese mice and did not alter their plasma insulin levels. It appears that genetically obese viable mice may be resistant to subchronic treatment with TZ. (author)

  17. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  18. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  19. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  20. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain of function mutations

    DEFF Research Database (Denmark)

    Galan-Diez, Marta; Isa, Adiba; Ponzetti, Marco

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation...... of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM...

  1. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  2. Uptake of elemental mercury and activity of catalase in rat, hamster, guinea-pig, normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1982-01-01

    Uptake of elemental mercury after inhalation (3.5 mg/m 3 ) and the activity of catalase in brain, liver, kidney and blood were investigated in rat, hamster, guinea-pig, and normal and acatalasemic mice. The uptake of mercury in the species investigated varied considerably, being highest in the two strains of mice, followed by rat and hamster, and lowest in the guinea-pig. The uptake seemed to be more dependent on pulmonary ventilation than on the activity of catalase. The two strains of mice were exposed to a wide range of mercury concentrations in air (0.002-3.5 mg/m 3 ). The content of mercury in brain, liver and kidney was linearly dependent on the mercury concentration in the air, whereas in blood this relationship was exponential. At the lower concentraions of mercury in the inhaled air, the mercury level in blood was significantly lower, and in kidney higher in the acatalasemic mice compared to the normal ones. In acatalasemic mice the mercury content in the liver has higher at all concentrations investigated, whereas in brain no difference between the two strains was found. (author)

  3. The research on biodistribution of 131I-iodosennoside A in normal mice and to evaluate myocardial activity

    International Nuclear Information System (INIS)

    Wang Junhu; Yin Zhiqi; Jiang Cuihua; Jiang Xiao; Li Yue; Zhang Jian; Sun Ziping; Ni Yicheng

    2013-01-01

    Purpose: The objective of this project is to evaluate biodistribution of [ 131 I]-Iodosennoside A in normal mice and explore the feasibility on the diagnosis of myocardial infarction. Methods: Iodogen method was used to radioiodinate sennoside A with 131 I. [ 131 I] Iodosennoside A was intravenously injected into mice. Three groups of mice were killed at 4 h, 24 h and 48 h post injection respectively and the radioactive uptake in major organs were calculated. Rats were subjected to left anterior descending (LAD) coronary artery ligation to induce acute myocardial infarction. Rat models of myocardial infarction were intravenously injected [ 131 I] iodosennoside A. 24 h after injection of [ 131 I] iodosennoside A, the regional distribution of radioiodinated sennoside A was determined by radioactivity counting technique. 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and autoradiography were per- formed with 2 mm thick sections of hearts for postmortem verifications. Results: The study showed high uptake of [ 131 I] iodosennoside A in kidneys and fast blood clearance. At 24 h post injection, radioactivity concentration in infarcted myocardium was over 11.9 times higher than in normal myocardium. Preferential uptake of the [ 131 I] iodosennoside A in necrotic tissue was confirmed by perfect match of images from TTC staining and autoradiography. Conclusion: The result proved that [ 131 I] iodosennoside A has myocardial necrosis affinity and may serve as a marker on the diagnosis of myocardial infarction. (authors)

  4. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  5. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  6. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Liaocheng People’s Hospital of Shandong University, Liaocheng, Shandong 252000 (China); Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Huili [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lei, Zhenmin [Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Chen, Xiaoqing [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Gao, Fei; Dong, Mei [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Li, Rongda [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Ling, E-mail: qzlinl@163.com [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China)

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  7. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    International Nuclear Information System (INIS)

    Wang, Yuehai; Lu, Huixia; Huang, Ziyang; Lin, Huili; Lei, Zhenmin; Chen, Xiaoqing; Tang, Mengxiong; Gao, Fei; Dong, Mei; Li, Rongda; Lin, Ling

    2014-01-01

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE −/− and Fas −/− mice. • The spleen weights and glomerular areas were similar in ApoE −/− and Fas −/− mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE −/− and Fas −/− mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE −/− mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE −/− ) mice is a classic model of atherosclerosis. We have found that ApoE −/− mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE −/− mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE −/− , Fas −/− and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas −/− mice, a model of systemic lupus erythematosus (SLE), ApoE −/− mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE −/− mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE −/− mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

  8. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer’s Disease and Affects Mice with Normal Aging

    Directory of Open Access Journals (Sweden)

    Raquel Baeta-Corral

    2018-02-01

    Full Text Available Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer’s disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD. The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg counterparts with normal aging. Animals were treated (water or caffeine in drinking water from adulthood (6 months of age until middle-aged (13 months of age, that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical

  9. Synthesis and kinetics of [18F]4'-fluoroantipyrine in normal mice

    International Nuclear Information System (INIS)

    Robbins, P.J.; Fortman, D.L.; Scholz, K.L.; Fusaro, G.A.; Sodd, V.J.

    1978-01-01

    Antipyrine labeled with radioiodine has proven useful for studying the symmetry of human brain perfusion by gamma-camera techniques. The feasibility of preparing F-18-labeled antipyrine for eventual use with a positron camera was investigated. The preparation of [ 18 F] 4'-fluoroantipyrine and its distribution in normal mice were used to evaluate this potential. 4'-Fluoroantipyrine was prepared in 7 to 20% chemical yield by the pyrolysis of the 4'-diazonium fluoroborate salt of antipyrine. This Schiemann salt was prepared by a five-step synthesis from 1-(4'-nitrophenyl)-3-methyl-5-chloro-pyrazole. Fluorine-18 labeling of the diazonium fluoroborate salt by exchange with aqueous F-18 and pyrolysis of the dried labeled salt produced [ 18 F] 4'-fluoroantipyrine with specific activities of 0.83 to 2.7 μCi/mg. The incorporated F-18 activity ranged from 0.53 to 1.9%. The labeling procedure took about 3 hr. The labeled antipyrine was administered by tail vein to fasting female Swiss-Cox mice. Distribution of F-18 at 12, 30, 60, and 120 sec, and 10 min, after injection showed that radioactivity persisted in the brain up to 120 sec at a level greater than that of the skin and the bone. (Skin and bone samples were chosen as representative of activities in the scalp and skull surrounding the brain.) Thus, perfusion imaging of the CNS should be possible when greater quantities of high-specific-activity F-18-labeled antipyrine becomes available

  10. Catalase induction in normal and tumorigenic mice using x-rays, clofibrate, ethanol, or hydrogen peroxide

    International Nuclear Information System (INIS)

    Alexander, L.; Oberley, L.

    1985-01-01

    The authors studied catalase induction in normal male Swiss mice as well as in male mice harboring H-6 hepatomas. The induction patterns many suggest reasons why tumor cells have lower catalase activity than normal cells. X-rays, hydrogen peroxide, ethanol, and clofibrate were used as inducing agents. X-rays interact with tissue and cause free radical formation. This results in an increase in hydrogen peroxide concentration, which ought to induce catalase. Oral administration of hydrogen peroxide should induce catalase similarly. Ethanol can be a substrate for catalase, forming acetalehyde; and as such may induce catalase. Ethanol can also restore inactive catalase compound II to useful catalase. Clofibrate is a hypolipidemic agent which induces catalase, most likely because of its ability to accelerate lipid breakdown, which raises peroxide concentration

  11. Hypoglycemic effect of methanolic extract of Musa paradisiaca (Musaceae) green fruits in normal and diabetic mice.

    Science.gov (United States)

    Ojewole, J A O; Adewunmi, C O

    2003-01-01

    Diabetes mellitus is a debilitating hormonal disorder in which strict glycemic control and prevention of associated complications are of crucial importance. This study was designed to evaluate the hypoglycemic effect of methanolic extract of mature, green fruits of Musa paradisiaca (MEMP) in normal (normoglycemic) and streptozotocin (STZ)-treated, diabetic (hyperglycemic) mice, using chlorpropamide as the reference antidiabetic agent. MEMP (100-800 mg/kg p.o.) induced significant, dose-related (p < 0.05-0.001) reductions in the blood glucose concentrations of both normal and diabetic mice. Chlorpropamide (250 mg/kg p.o.) also produced significant (p < 0.01-0.001) reductions in the blood glucose concentrations of normal and diabetic mice. The results of this experimental study indicate that, in the mammalian model used, MEMP possesses hypoglycemic activity. Although the precise mechanism of the hypoglycemic action of MEMP is still unclear and will have to await further studies, it could be due, at least in part, to stimulation of insulin production and subsequent glucose utilization. Nevertheless, the findings of this experimental animal study indicate that MEMP possesses hypoglycemic activity, and thus lends credence to the suggested folkloric use of the plant in the management and/or control of adult-onset, type-2 diabetic mellitus among the Yoruba-speaking people of South-Western Nigeria.

  12. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    Science.gov (United States)

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models.

  13. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    Science.gov (United States)

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  14. Mercury uptake in vivo by normal and acatalasemic mice exposed to metallic mercury vapor (203Hg degrees) and injected with metallic mercury or mercuric chloride (203HgCl2)

    International Nuclear Information System (INIS)

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Meguro, T.; Aikoh, H.

    1985-01-01

    Levels of mercury in the brain and liver of acatalasemic mice immediately following exposure to metallic mercury vapor or injection of metallic mercury were higher than those found in normal mice. Acatalasemic mice had decreased levels of mercury in the blood and kidneys when the levels were compared with those of normal mice, which indicated that catalase plays a role in oxidizing and taking up mercury. Thus, the brain/blood or liver/blood ratio of mercury concentration in acatalasemic mice was significantly higher than that of normal mice. These results suggest that metallic mercury in the blood easily passed through the blood-brain or blood-liver barrier. The levels of mercury distribution to the kidneys of normal and acatalasemic mice, 1 hr after injection of mercuric chloride solution, were higher than that of normal and acatalasemic mice, respectively, 1 hr after injection of metallic mercury

  15. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  16. Socially dominant mice in C57BL6 background show increased social motivation.

    Science.gov (United States)

    Kunkel, Thaddeus; Wang, Hongbing

    2018-01-15

    A series of behavioral tests measuring social dominance, social motivation, and non-social motivation are examined in adult male C57BL6 mice. By using the well-known tube dominance test to determine social dominance and rank, we find that, in the absence of competition for resource and mating, group-housed mouse cage-mates display stable and mostly linear and transitive social hierarchies. Mice with top and bottom social ranks are subjected to a three-chamber social interaction test to measure social motivation. The top ranked mice spend more time interacting with a stranger mouse than the bottom ranked mice, suggesting that social dominance may positively influence social motivation. When subjected to a novel environment, mice with different social ranks show similar locomotion and exploring activity in the open field test, suggesting no detectable difference in certain aspects of non-social motivation. These results demonstrate a behavioral correlation between social dominance and social motivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Transgenic Mice Overexpressing Vitamin D Receptor (VDR) Show Anti-Inflammatory Effects in Lung Tissues.

    Science.gov (United States)

    Ishii, Masaki; Yamaguchi, Yasuhiro; Isumi, Kyoko; Ogawa, Sumito; Akishita, Masahiro

    2017-12-01

    Vitamin D insufficiency is increasingly recognized as a prevalent problem worldwide, especially in patients with a chronic lung disease. Chronic obstructive pulmonary disease (COPD) is a type of chronic inflammatory lung disease. Previous clinical studies have shown that COPD leads to low vitamin D levels, which further increase the severity of COPD. Vitamin D homeostasis represents one of the most important factors that potentially determine the severity of COPD. Nonetheless, the mechanisms underlying the anti-inflammatory effects of vitamin D receptor (VDR) in lung tissues are still unclear. To investigate the anti-inflammatory effects of VDR, we generated transgenic mice that show lung-specific VDR overexpression under the control of the surfactant protein C promoter (TG mice). The TG mice were used to study the expression patterns of proinflammatory cytokines using real-time polymerase chain reaction and immunohistochemistry. The TG mice had lower levels of T helper 1 (Th1)-related cytokines than wild-type (WT) mice did. No significant differences in the expression of Th2 cytokines were observed between TG and WT mice. This study is the first to achieve lung-specific overexpression of VDR in TG mice: an interesting animal model useful for studying the relation between airway cell inflammation and vitamin D signaling. VDR expression is an important factor that influences anti-inflammatory responses in lung tissues. Our results show the crucial role of VDR in anti-inflammatory effects in lungs; these data are potentially useful for the treatment or prevention of COPD.

  18. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice

    International Nuclear Information System (INIS)

    Swailem, Fayez M.; Krishnamurthy, Gerbail T.; Srivastava, Suresh C.; Aguirre, Maria L.; Ellerson, Dawn L.; Walsh, T. Kent; Simpson, Laura

    1998-01-01

    Organ and tissue uptake and retention of Sn-117m(4+)DTPA were studied in a human subject treated for metastatic bone pain, and the results were compared with the biodistribution studies in five normal mice. The explanted organs from a patient who received a therapy dose of 18.6 mCi (688.2 MBq) Sn-117m(4+)DTPA and who died 47 days later were imaged with a γ-camera, and tissue samples were counted and also autoradiographed. Bone, muscle, liver, fat, lungs, kidneys, spleen, heart and pancreas tissue samples were assayed in a well counter for radioactivity. Regions of interest were drawn over bone and major organs to calculate and quantify clearance times using three in vivo Sn-117m(4+)DTPA whole-body scintigrams acquired at 1, 24 and 168 h after injection. Five normal mice injected with the same batch of Sn-117m(4+)DTPA as used for the human subject were sacrificed at 24 h, and tissue samples were collected and assayed for radioactivity for comparison with the human data. For the human subject, whole-body retention at 47 days postinjection was 81% of the injected dose, and the rest (19%) was excreted in urine. Of the whole-body retained activity at 47 days, 82.4% was in bone, 7.8% in the muscle and 1.5% in the liver, and the rest was distributed among other tissues. γ-Ray scintigrams and electron autoradiographs of coronal slices of the thoracolumbar vertebral body showed heterogenous metastatic involvement with normal bone between metastatic lesions. There was nonuniform distribution of radioactivity even within a single vertebral body, indicating normal bone between metastatic lesions. Lesion-to-nonlesion ratios ranged from 3 to 5. However, the osteoid-to-marrow cavity deposition ratio, from the microautoradiographs, was 11:1. The peak uptake in the human bone was seen at 137 h with no biological clearance. Soft tissues showed peak uptake at 1 h and exhibited three compartmental clearance components. Whole-body retention in normal mice was 38.7% of the injected

  19. A Girl with Idiopathic Epilepsy Showing Forced Normalization after Levetiracetam Administration.

    Science.gov (United States)

    Kawakami, Yasuhiko; Okazaki, Tetsuya; Takase, Masato; Fujino, Osamu; Itoh, Yasuhiko

    2015-01-01

    Forced normalization has been reported in association with almost all anti-epileptic drugs. We report on a 9-year-old girl with idiopathic epilepsy who showed forced normalization after administration of levetiracetam (LEV). She initially presented with generalized tonic-clonic seizures when she was 4 years old. Diffuse sharp and slow wave complexes (SWCs) were observed on electroencephalography (EEG). We prescribed sodium valproate (VPA) and benzodiazepines, but the seizures and EEG findings worsened gradually. Although subsequent administration of LEV stopped the seizures, the patient became subject to episodes of rage and violent behavior. Forced normalization was confirmed by the disappearance of SWCs on EEG. We reduced the dose of LEV and tried in various ways to resolve the situation, but finally we had to abandon LEV. To the best of our knowledge, this is the first report of a patient with idiopathic epilepsy but without disabilities in everyday life showing forced normalization associated with LEV administration.

  20. Markers of Alzheimer’s Disease in Primary Visual Cortex in Normal Aging in Mice

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernández-Zimbrón

    2017-01-01

    Full Text Available Aging is the principal risk factor for the development of Alzheimer’s disease (AD. The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42 and abnormal hyperphosphorylation of Tau (p-Tau protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP, and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging.

  1. Brain mitochondria from DJ-1 knockout mice show increased respiration-dependent hydrogen peroxide consumption

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    2014-01-01

    Full Text Available Mutations in the DJ-1 gene have been shown to cause a rare autosomal-recessive genetic form of Parkinson’s disease (PD. The function of DJ-1 and its role in PD development has been linked to multiple pathways, however its exact role in the development of PD has remained elusive. It is thought that DJ-1 may play a role in regulating reactive oxygen species (ROS formation and overall oxidative stress in cells through directly scavenging ROS itself, or through the regulation of ROS scavenging systems such as glutathione (GSH or thioredoxin (Trx or ROS producing complexes such as complex I of the electron transport chain. Previous work in this laboratory has demonstrated that isolated brain mitochondria consume H2O2 predominantly by the Trx/Thioredoxin Reductase (TrxR/Peroxiredoxin (Prx system in a respiration dependent manner (Drechsel et al., Journal of Biological Chemistry, 2010. Therefore we wanted to determine if mitochondrial H2O2 consumption was altered in brains from DJ-1 deficient mice (DJ-1−/−. Surprisingly, DJ-1−/− mice showed an increase in mitochondrial respiration-dependent H2O2 consumption compared to controls. To determine the basis of the increased H2O2 consumption in DJ1−/− mice, the activities of Trx, Thioredoxin Reductase (TrxR, GSH, glutathione disulfide (GSSG and glutathione reductase (GR were measured. Compared to control mice, brains from DJ-1−/− mice showed an increase in (1 mitochondrial Trx activity, (2 GSH and GSSG levels and (3 mitochondrial glutaredoxin (GRX activity. Brains from DJ-1−/− mice showed a decrease in mitochondrial GR activity compared to controls. The increase in the enzymatic activities of mitochondrial Trx and total GSH levels may account for the increased H2O2 consumption observed in the brain mitochondria in DJ-1−/− mice perhaps as an adaptive response to chronic DJ-1 deficiency.

  2. Chronic Giardia muris infection in anti-IgM-treated mice. I. Analysis of immunoglobulin and parasite-specific antibody in normal and immunoglobulin-deficient animals.

    Science.gov (United States)

    Snider, D P; Gordon, J; McDermott, M R; Underdown, B J

    1985-06-01

    To investigate the role of B cells and antibody in the immune response of mice to the murine intestinal parasite Giardia muris, we used mice treated from birth with rabbit anti-IgM antisera (aIgM). Such mice developed in serum and in gut secretions extreme Ig deficiency (IgM, IgA, and IgG) relative to control animals. The aIgM-treated mice showed no anti-G. muris antibody in serum or in gut wash material. Infections of G. muris in these mice were chronic, with a high load of parasite present in the small bowel, as reflected by prolonged cyst excretion (greater than 11 wk) and high trophozoite counts. In contrast, normal, untreated mice or NRS-treated animals developed anti-parasite IgA and IgG antibody in serum, demonstrated IgA antibody against the parasite in gut washings, and expelled the parasite within 9 wk. These effects of aIgM treatment on the murine response to primary infection with G. muris were demonstrated in two strains of mice: BALB/c and (C57BL/6 X C3H/He) F1. It was also observed that the response to G. muris infection in untreated animals was characterized by higher than normal total secretion of IgA into the gut and a concomitant increase in the serum polymeric IgA level. Mice treated with aIgM had a marked decrease of both monomeric and polymeric IgA in serum, and little detectable IgA in the intestinal lumen. These experiments provide the first demonstration that anti-IgM treatment suppresses a specific intestinal antibody response to antigen, and provide evidence that B cells and antibody play a role in the development of an effective response to a primary infection with G. muris in mice.

  3. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  4. Genome-wide expression analysis comparing hypertrophic changes in normal and dysferlinopathy mice

    Directory of Open Access Journals (Sweden)

    Yun-Sil Lee

    2015-12-01

    Full Text Available Because myostatin normally limits skeletal muscle growth, there are extensive efforts to develop myostatin inhibitors for clinical use. One potential concern is that in muscle degenerative diseases, inducing hypertrophy may increase stress on dystrophic fibers. Our study shows that blocking this pathway in dysferlin deficient mice results in early improvement in histopathology but ultimately accelerates muscle degeneration. Hence, benefits of this approach should be weighed against these potential detrimental effects. Here, we present detailed experimental methods and analysis for the gene expression profiling described in our recently published study in Human Molecular Genetics (Lee et al., 2015. Our data sets have been deposited in the Gene Expression Omnibus (GEO database (GSE62945 and are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62945. Our data provide a resource for exploring molecular mechanisms that are related to hypertrophy-induced, accelerated muscular degeneration in dysferlinopathy.

  5. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    Science.gov (United States)

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  6. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  7. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  8. Nav 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity

    Directory of Open Access Journals (Sweden)

    Wood John N

    2006-02-01

    Full Text Available Abstract Background The voltage gated sodium channel Nav 1.8 has a highly restricted expression pattern to predominantly nociceptive peripheral sensory neurones. Behaviourally Nav 1.8-null mice show an increased acute pain threshold to noxious mechanical pressure and also deficits in inflammatory and visceral, but not neuropathic pain. Here we have made in vivo electrophysiology recordings of dorsal horn neurones in intact anaesthetised Nav 1.8-null mice, in response to a wide range of stimuli to further the understanding of the functional roles of Nav 1.8 in pain transmission from the periphery to the spinal cord. Results Nav 1.8-null mice showed marked deficits in the coding by dorsal horn neurones to mechanical, but not thermal, -evoked responses over the non-noxious and noxious range compared to littermate controls. Additionally, responses evoked to other stimulus modalities were also significantly reduced in Nav 1.8-null mice where the reduction observed to pinch > brush. The occurrence of ongoing spontaneous neuronal activity was significantly less in mice lacking Nav 1.8 compared to control. No difference was observed between groups in the evoked activity to electrical activity of the peripheral receptive field. Conclusion This study demonstrates that deletion of the sodium channel Nav 1.8 results in stimulus-dependent deficits in the dorsal horn neuronal coding to mechanical, but not thermal stimuli applied to the neuronal peripheral receptive field. This implies that Nav 1.8 is either responsible for, or associated with proteins involved in mechanosensation.

  9. Cerebellar nuclei neurons show only small excitatory responses to optogenetic olivary stimulation in transgenic mice: in vivo and in vitro studies

    Directory of Open Access Journals (Sweden)

    Huo eLu

    2016-03-01

    Full Text Available To study the olivary input to the cerebellar nuclei (CN we used optogenetic stimulation in transgenic mice expressing channelrhodopsin-2 (ChR2 in olivary neurons. We obtained in vivo extracellular Purkinje cell (PC and CN recordings in anesthetized mice while stimulating the contralateral inferior olive (IO with a blue laser (single pulse, 10 - 50 ms duration. Peri-stimulus histograms were constructed to show the spike rate changes after optical stimulation. Among 29 CN neurons recorded, 15 showed a decrease in spike rate of variable strength and duration, and only 1 showed a transient spiking response. These results suggest that direct olivary input to CN neurons is usually overridden by stronger Purkinje cell inhibition triggered by climbing fiber responses. To further investigate the direct input from the climbing fiber collaterals we also conducted whole cell recordings in brain slices, where we used local stimulation with blue light. Due to the expression of ChR2 in Purkinje cell axons as well as the IO in our transgenic line, strong inhibitory responses could be readily triggered with optical stimulation (13 of 15 neurons. After blocking this inhibition with GABAzine, only in 5 of 13 CN neurons weak excitatory responses were revealed. Therefore our in vitro results support the in vivo findings that the excitatory input to CN neurons from climbing fiber collaterals in adult mice is masked by the inhibition under normal conditions.

  10. A 201-MHz Normal Conducting RF Cavity for the International MICE Experiment

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.J.; Virostek, Steve; Zisman, Michael S.; Rimmer, Robert

    2008-01-01

    MICE is a demonstration experiment for the ionization cooling of muon beams. Eight RF cavities are proposed to be used in the MICE cooling channel. These cavities will be operated in a strong magnetic field; therefore, they must be normal conducting. The cavity design and construction are based on the successful experience and techniques developed for a 201-MHz prototype cavity for the US MUCOOL program. Taking advantage of a muon beamΛ s penetration property, the cavity employs a pair of curved thin beryllium windows to terminate conventional beam irises and achieve higher cavity shunt impedance. The cavity resembles a round, closed pillbox cavity. Two half-shells spun from copper sheets are joined by e-beam welding to form the cavity body. There are four ports on the cavity equator for RF couplers, vacuum pumping and field probes. The ports are formed by means of an extruding technique.

  11. Clinical dosing regimen of selinexor maintains normal immune homeostasis and T cell effector function in mice: implications for combination with immunotherapy

    Science.gov (United States)

    Tyler, Paul M.; Servos, Mariah M.; de Vries, Romy C.; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K.

    2017-01-01

    Selinexor (KPT-330) is a first in class nuclear transport inhibitor currently in clinical trials as an anti-cancer agent. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T cell development and function. We determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 5 day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. PMID:28148714

  12. Synthesis and biodistribution of 2-[123I]iodomelatonin in normal mice

    International Nuclear Information System (INIS)

    Al-Jammaz, I.; Al-Otaibi, B.; Aboul-Enein, H.; Amartey, J.K.

    2006-01-01

    Melatonin demands that this hormone and its receptors be well understood. With this aim in mind, synthetic melatonin was radioiodinated with no-carrier-added (n.c.a.) sodium iodide-123 using in situ generated peracetic acid as oxidizing agent for electrophilic iodination at room temperature. The radiochemical yield was typically greater than 80% after 20 min reaction time especially when relatively small amounts of activities were used (10 mCi). Biological evaluation was performed in normal mice. The distribution of the tracer did not reveal any specificity during the time frame studied. There was no significant retention in the whole brain

  13. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  14. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  15. Hematopoietic stem cell function in motheaten mice

    International Nuclear Information System (INIS)

    Shultz, L.D.; Bailey, C.L.; Coman, D.R.

    1983-01-01

    Mice homozygous for the autosomal recessive mutation ''motheaten'' have normal numbers of multipotential hematopoietic stem cells in the bone marrow and spleen as determined by spleen colony assay. Histologic examination shows no qualitative abnormality in morphology of stem cell colonies in recipients of bone marrow or spleen cells from motheaten mice. Despite the apparently normal ontogeny, distribution, and differentiative capacity of CFU stem cells, bone marrow and spleen cells from motheaten mice fail to save congenic +/+ lethally gamma-irradiated hosts. This impaired lifesparing capacity is not due to defective self-renewal but appears to be due in part to pulmonary hemorrhage from alveolar capillaries in the gamma-irradiated hosts. Treatment of motheaten mice with 500 R gamma-irradiation followed by reconstitution with normal bone marrow cells increases the lifespan of this mutant to 10 months of age. The early onset of pneumonitis and subsequent short lifespan of motheaten mice is determined at the level of progenitor cells in the bone marrow

  16. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy.

    Science.gov (United States)

    Tyler, Paul M; Servos, Mariah M; de Vries, Romy C; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K

    2017-03-01

    Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ + , granzyme B + cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACR See related article by Farren et al., p. 417 . ©2017 American Association for Cancer Research.

  17. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  18. Experimental transmission of M. leprae into the testes of mice born from 60Co-irradiated pregnant mice

    International Nuclear Information System (INIS)

    Sushida, Kiyo; Tanemura, Mutsuko

    1979-01-01

    R 1 -mice, which were born from pregnant mice (R-P) irradiated with 60 CO 300 R were inoculated with leprosy bacilli into the testis. Recently, the author reported that the skin homograft survival duration in 60 CO-irradiated mice (R-P) was shown to be longer than the duration in the R 1 -F mice. The acid-fast bacilli, the so-called globi, were often found at the inoculated site of R-P mice, but not in the R 1 -F mice. The R 1 -F females bred with normal males and the R 2 -F females bred with normal males were both irradiated with 60 CO 300 R, and the R 2 -F male offspring from this R 1 -F and the R 3 -F male offspring from this R 2 -F showed the same increase in sensitivity to leprosy bacilli as the R-P generation. Acid-fast bacilli (globi, +G) were also found in the testes of the R 2 -F and R 3 -F males. IR-F mice which had received 131 I-Na 100 μci injections and also 60 CO 300 R irradiations during their fetus-term, showed few increase in sensitivity to infection of leprosy bacilli. (author)

  19. ASCT2 (SLC1A5-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production

    Directory of Open Access Journals (Sweden)

    Etienne Masle-Farquhar

    2017-05-01

    Full Text Available SLC1A5 (solute carrier family 1, member 5 is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5’s primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.

  20. Carcinogenic and antitumor effects of aminotriazole on acatalasemic and normal catalase mice

    International Nuclear Information System (INIS)

    Feinstein, R.N.; Fry, R.J.M.; Staffeidt, E.F.

    1978-01-01

    Dietary 3-amino-1H-1,2,4-triazole (AT), although carcinogenic when administered alone, was an antitumor agent when combined with certain other carcinogenic stimuli. The carcinogenic effect was prominent in the livers of C3H mice; thyroid tumors were less common because they required a longer period of development, and the life-span of the animal was shortened by the AT diet. The antitumor effects of AT included: delay in appearance of mammary tumors, striking reduction in γ-radiation-induced lymphomas, and sharp reduction in neutron radiation-induced harderian gland and ovarian tumors. On an AT diet, the inbred C3H acatalasemic mouse substrain developed more liver tumors, starting earlier, than did the C3H normal catalase substrain. We suggest that our findings pointed to a possible relevance of catalase and H 2 O 2 in carcinogenesis. The most probable mechanism for the increased incidence of liver tumors in AT-treated acatalasemic mice was the diminished rate of degradation of endogenous H 2 O 2

  1. Synthesis and biodistribution of 2-[{sup 123}I]iodomelatonin in normal mice

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jammaz, I. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)]. E-mail: jammaz@kfshrc.edu.sa; Al-Otaibi, B. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Aboul-Enein, H. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Amartey, J.K. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)

    2006-01-01

    Melatonin demands that this hormone and its receptors be well understood. With this aim in mind, synthetic melatonin was radioiodinated with no-carrier-added (n.c.a.) sodium iodide-123 using in situ generated peracetic acid as oxidizing agent for electrophilic iodination at room temperature. The radiochemical yield was typically greater than 80% after 20 min reaction time especially when relatively small amounts of activities were used (10 mCi). Biological evaluation was performed in normal mice. The distribution of the tracer did not reveal any specificity during the time frame studied. There was no significant retention in the whole brain.

  2. Raman spectroscopy analysis of differences in composition of spent culture media of in vitro cultured preimplantation embryos isolated from normal and fat mice dams.

    Science.gov (United States)

    Fabian, Dušan; Kačmarová, Martina; Kubandová, Janka; Čikoš, Štefan; Koppel, Juraj

    2016-06-01

    The aim of the present study was to compare overall patterns of metabolic activity of in vitro cultured preimplantation embryos isolated from normal and fat mice dams by means of non-invasive profiling of spent culture media using Raman spectroscopy. To produce females with two different types of body condition (normal and fat), a previously established two-generation model was used, based on overfeeding of experimental mice during prenatal and early postnatal development. Embryos were isolated from spontaneously ovulating and naturally fertilized dams at the 2-cell stage of development and cultured to the blastocyst stage in synthetic oviductal medium KSOMaa. Embryos from fat mice (displaying significantly elevated body weight and fat) showed similar developmental capabilities in vitro as embryos isolated from normal control dams (displaying physiological body weight and fat). The results show that alterations in the composition of culture medium caused by the presence of developing mouse preimplantation embryos can be detected using Raman spectroscopy. Metabolic activity of embryos was reflected in evident changes in numerous band intensities in the 1620-1690cm(-1) (amide I) region and in the 1020-1140cm(-1) region of the Raman spectrum for KSOMaa. Moreover, multivariate analysis of spectral data proved that the composition of proteins and other organic compounds in spent samples obtained after the culture of embryos isolated from fat dams was different from that in spent samples obtained after the culture of embryos from control dams. This study demonstrates that metabolic activity of cultured preimplantation embryos might depend on the body condition of their donors. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. SOD1 aggregation in ALS mice shows simplistic test tube behavior.

    Science.gov (United States)

    Lang, Lisa; Zetterström, Per; Brännström, Thomas; Marklund, Stefan L; Danielsson, Jens; Oliveberg, Mikael

    2015-08-11

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  4. PrP0\\0 mice show behavioral abnormalities that suggest PrPC has a role in maintaining the cytoskeleton.

    Science.gov (United States)

    Background/Introduction. PrPC is highly conserved among mammals, but its natural function is unclear. Prnp ablated mice (PrP0/0) appear to develop normally and are able to reproduce. These observations seem to indicate that the gene is not essential for viability, in spite of it being highly conse...

  5. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    Full Text Available Angiotensin-converting enzyme (ACE regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS. Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  6. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Science.gov (United States)

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  7. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Zhu PL

    2015-02-01

    Full Text Available Pei-Li Zhu,1 Si-Yuan Pan,1 Shu-Feng Zhou,2 Yi Zhang,1 Xiao-Yan Wang,1 Nan Sun,1 Zhu-Sheng Chu,1 Zhi-Ling Yu,3 Kam-Ming Ko41Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China; 4Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People’s Republic of ChinaBackground: Currently, combined therapy using herbs and synthetic drugs has become a feasible therapeutic intervention against some diseases. The purpose of this study was to assess the effects of supplementation with fenofibrate (FF, a chemical drug used for the treatment of hyperlipidemia, and the aqueous extract of Schisandrae Fructus (SF, a Chinese herb pulp (AqSF-P or an SF-related synthetic analog, bicyclol (BY, on serum/hepatic lipid levels and liver status in normal and hypercholesterolemic (HCL mice.Methods: Male mice obtained from the Institute of Cancer Research (ICR were fed on a normal diet (ND or high cholesterol/bile salt (0.5%/0.15%, w/w diet (HCBD containing FF (0.03% or 0.1%, w/w with or without AqSF-P (0.3%-9.0%, based on crude herbal material, w/w or BY (0.025%, w/w for 10 days. Then serum lipid levels and alanine aminotransferase (ALT activity, as well as hepatic triglyceride (TG, total cholesterol (TC, and glucose levels, were measured.Results: Oral supplementation with FF significantly reduced serum and hepatic TG, TC, and hepatic glucose levels (approximately 79% in mice fed with ND or HCBD. FF supplementation combined with AqSF-P or BY increased FF-induced reduction in hepatic TC and TG contents in ND-fed mice (up to 67% and in HCBD-fed mice (up to 54%, when compared with FF supplementation alone. Hepatic glucose-lowering effect of FF was

  8. UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice.

    Science.gov (United States)

    Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan

    2015-10-10

    A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice

    Directory of Open Access Journals (Sweden)

    Jong-il Park

    2016-02-01

    Full Text Available The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs and normal colonic fibroblasts (NCFs and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.

  10. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    Science.gov (United States)

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Tritiated thymidine incorporation and the development of an interstitial lesion in the bronchiolar-alveolar regions of the lungs of normal and complement deficient mice after inhalation of chrysotile asbestos

    International Nuclear Information System (INIS)

    McGavran, P.D.; Butterick, C.J.; Brody, A.R.

    1989-01-01

    Inhaled asbestos causes the proliferation of bronchiolar-alveolar epithelial and interstitial cells in rats and mice 19 to 72 hours after a single 5-hour exposure. This condition is associated with rapid macrophage accumulation and development of an interstitial fibrotic lesion at alveolar duct bifurcations. In an attempt to define the mechanisms mediating asbestos-induced cell proliferation and fibrogenesis, we studied mice exposed to chrysotile asbestos for five hours. The mice were normal and a congenic strain (B10.D2/oSn), deficient in the fifth component of complement (C5-). We knew that the latter exhibit a depressed asbestos-induced macrophage response and wanted to learn whether the depressed response correlated with measurements of cell proliferation and progression of an interstitial lesion. Sections of first alveolar duct bifurcations were prepared for light microscopic autoradiography and ultrastructural morphometry at varying times after animal exposure to asbestos. In sham-exposed C5+ and C5- animals, less than 1% of epithelial and interstitial cells of the terminal bronchioles and alveolar ducts incorporated tritiated thymidine (3H-TdR) at any time after exposure to asbestos. Between 19 and 72 hours after exposure, epithelial and interstitial cells in both strains of mice exhibited significantly increased levels of 3H-TdR incorporation. The response decreased by eight days postexposure, and 3H-TdR incorporation was normal one month after exposure. Similarly, morphometry showed that both the C5+ and C5- asbestos-exposed mice exhibited significant increases in the volume density of epithelial and interstitial cells 48 hours after exposure. However, one month after exposure, the normal C5+ asbestos-exposed mice developed a fibrotic lesion, whereas the C5- asbestos-exposed animals were no different from sham-exposed C5- controls

  12. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice

    NARCIS (Netherlands)

    Jurk, Diana; Wilson, Caroline; Passos, Joao F.; Oakley, Fiona; Correia-Melo, Clara; Greaves, Laura; Saretzki, Gabriele; Fox, Chris; Lawless, Conor; Anderson, Rhys; Hewitt, Graeme; Pender, Sylvia L. F.; Fullard, Nicola; Nelson, Glyn; Mann, Jelena; van de Sluis, Bart; Mann, Derek A.; von Zglinicki, Thomas

    Chronic inflammation is associated with normal and pathological ageing. Here we show that chronic, progressive low-grade inflammation induced by knockout of the nfkb1 subunit of the transcription factor NF-kappa B induces premature ageing in mice. We also show that these mice have reduced

  13. Dosimetric Studies in Normal Mice of 177Lu-DOTA-SP and 177Lu-DOTA-His2-MG

    International Nuclear Information System (INIS)

    Puerta Yepes, N.; Rojo, A.M.; Lopez Bularte, A.C.; Nevares, N.; Zapata, M.; Perez, J.H.; Crudo, J.

    2010-01-01

    DOTA-Substance-P (SP) and DOTA-minigastrin (His2-MG) labeled with 177 Lu could be used in peptide receptor radionuclide therapy (PRRT) for treatment of various tumour species. Biodistribution studies of both radiopharmaceuticals in normal mice were performed at different times. Absorbed doses in mouse organs were estimated and extrapolated to humans. Dosimetric calculations showed that kidneys received the highest dose, for both radiopharmaceuticals. The Maximum Tolerated Activity (MTA) of 177 Lu-DOTA-SP that can be administered without kidney toxicity are 414 and 422 MBq/kg for the standard adult man and woman, respectively. In the same way, the MTA of 177 Lu-DOTA-His2-MG are 488 and 518 MBq/kg for the standard adult man and woman, respectively. (authors)

  14. Effect of irradiation, cyclophosphamide, and etoposide (VP-16) on number of peripheral blood and peritoneal leukocytes in mice under normal conditions and during acute inflammatory reaction

    International Nuclear Information System (INIS)

    van't Wout, J.W.; Linde, I.; Leijh, P.C.; van Furth, R.

    1989-01-01

    In order to develop a suitable model for studying the role of granulocytes and monocytes in resistance against pathogenic microorganisms, we investigated the effect of irradiation and cytostatic treatment (cyclophosphamide and VP-16) on the number of both peripheral blood and peritoneal leukocytes in male Swiss mice. Irradiation and cyclophosphamide treatment severely decreased the number of both granulocytes and monocytes in peripheral blood, whereas VP-16 only lowered the number of blood monocytes to a significant degree and had little effect on the number of blood granulocytes or lymphocytes. When normal mice were injected intraperitoneally with newborn calf serum (NBCS) the number of peritoneal granulocytes rose about 100-fold within 6 h. In irradiated and cyclophosphamide-treated mice, this influx of granulocytes into the peritoneal cavity was virtually eliminated, as was the concomitant increase in the number of blood granulocytes; in VP-16-treated mice, on the other hand, the number of peripheral blood and peritoneal granulocytes increased to the same degree as in normal mice. An increase in the number of peripheral blood monocytes and peritoneal macrophages occurred 24-48 h after injection of NBCS in normal mice. This increase was significantly impaired by irradiation as well as by treatment with cyclophosphamide or VP-16

  15. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis

    Science.gov (United States)

    HajMohammadi, Sassan; Enjyoji, Keiichi; Princivalle, Marc; Christi, Patricia; Lech, Miroslav; Beeler, David; Rayburn, Helen; Schwartz, John J.; Barzegar, Samad; de Agostini, Ariane I.; Post, Mark J.; Rosenberg, Robert D.; Shworak, Nicholas W.

    2003-01-01

    Endothelial cell production of anticoagulant heparan sulfate (HSact) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HSact dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HSact was evaluated by generating Hs3st1–/– knockout mice. Hs3st1–/– animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HSact but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HSact predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1–/– and Hs3st1+/+ mice yielded indistinguishable occlusion times and comparable levels of thrombin•antithrombin complexes. Thus, Hs3st1–/– mice did not show an obvious procoagulant phenotype. Instead, Hs3st1–/– mice exhibited genetic background–specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HSact. Surprisingly, this bulk of HSact is not essential for normal hemostasis in mice. Instead, 3-OST-1–deficient mice exhibited unanticipated phenotypes suggesting that HSact or additional 3-OST-1–derived structures may serve alternate biologic roles. PMID:12671048

  16. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  17. The Forkhead Transcription Factor, FOXP3, Is Required for Normal Pituitary Gonadotropin Expression in Mice1

    Science.gov (United States)

    Jung, Deborah O.; Jasurda, Jake S.; Egashira, Noboru; Ellsworth, Buffy S.

    2012-01-01

    ABSTRACT The hypothalamic-pituitary-gonadal axis is central to normal reproductive function. This pathway begins with the release of gonadotropin-releasing hormone in systematic pulses by the hypothalamus. Gonadotropin-releasing hormone is bound by receptors on gonadotroph cells in the anterior pituitary gland and stimulates the synthesis and secretion of luteinizing hormone and, to some extent, follicle-stimulating hormone. Once stimulated by these glycoprotein hormones, the gonads begin gametogenesis and the synthesis of sex hormones. In humans, mutations of the forkhead transcription factor, FOXP3, lead to an autoimmune disorder known as immunodysregulation, polyendocrinopathy, and enteropathy, X-linked syndrome. Mice with a mutation in the Foxp3 gene have a similar autoimmune syndrome and are infertile. To understand why FOXP3 is required for reproductive function, we are investigating the reproductive phenotype of Foxp3 mutant mice (Foxp3sf/Y). Although the gonadotroph cells appear to be intact in Foxp3sf/Y mice, luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) expression are significantly decreased, demonstrating that these mice exhibit a hypogonadotropic hypogonadism. Hypothalamic expression of gonadotropin-releasing hormone is not significantly decreased in Foxp3sf/Y males. Treatment of Foxp3sf/Y males with a gonadotropin-releasing hormone receptor agonist does not rescue expression of Lhb or Fshb. Interestingly, we do not detect Foxp3 expression in the pituitary or hypothalamus, suggesting that the infertility seen in Foxp3sf/Y males is a secondary effect, possibly due to loss of FOXP3 in immune cells. Pituitary expression of glycoprotein hormone alpha (Cga) and prolactin (Prl) are significantly reduced in Foxp3sf/Y males, whereas the precursor for adrenocorticotropic hormone, pro-opiomelanocortin (Pomc), is increased. Human patients diagnosed with IPEX often exhibit thyroiditis due to destruction of the thyroid gland by

  18. Normal function of immunologic stem cells from aged mice

    International Nuclear Information System (INIS)

    Harrison, D.E.; Doubleday, J.W.

    1975-01-01

    Marrow or spleen grafts from aged donor mice produced antibody-forming cells as effectively as did grafts from younger controls in recipients tested 3 to 10 months after the transplantation. All recipients were lethally irradiated, and the T6 chromosome marker was used to demonstrate that they were populated by donor cell lines. Recipients of aged or younger control grafts gave similar responses when stimulated with varying doses of antigen and when tested at different times after the transplantation except in two cases. Recipients of aged spleen grafts gave significantly lower responses than younger controls for the first few weeks after the transplantation. If recipients had been thymectomized before lethal irradiation, aged cell lines (pooled marrow and spleen cells) gave only 37 percent of the responses of younger controls. Given sufficient time and intact young recipients, immunologic stem cell lines from old donors populated recipients with cells having normal immune responses. These results suggest that age-related immunologic defects are not intrinsically timed in the precursor cell lines that populate the immune system. (U.S.)

  19. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  20. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  1. Brain regional uptake of radioactive Sc, Mn, Zn, Se, Rb and Zr tracers into normal mice during aging

    International Nuclear Information System (INIS)

    Amano, R.; Enomoto, S.

    2001-01-01

    Radioactive multitracer technique was applied to study the brain regional uptake of trace elements by the normal mice during aging. The brain regional radioactivities of 46 Sc, 54 Mn, 65 Zn, 75 Se, 83 Rb and 88 Zr were measured 48 hours after intraperitoneal injection of a solution in normal mice aged 6 to 52 weeks to evaluate the brain regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, and pons and medulla) uptakes. The radioactive distributions of 46 Sc, 54 Mn and 88 Zr tracers were variable and region-specific in the brain, while those of 65 Zn, 75 Se and 83 Rb tracers were comparable among all regions of interest. The brain regional uptakes of all tracers slightly increased with age from 10 to 28 weeks, and then remained constant during aging after 28 weeks. These uptake variations may be involved in the functional degenerative process of the blood-brain barrier during aging. (author)

  2. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  3. Effect of acetylation on monoclonal antibody ZCE-025 Fab': Distribution in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Tarburton, J.P.; Halpern, S.E.; Hagan, P.L.; Sudora, E.; Chen, A.; Fridman, D.M.; Pfaff, A.E.

    1990-01-01

    Studies were performed to determine in vitro and in vivo effects of acetylation on Fab' fragments of ZCE-025, a monoclonal anti-CEA antibody. Isoelectric focusing revealed a drop in isoelectric point of 1.7 pI units following acetylation. Biodistribution studies of acetylated and nonacetylated [111In]Fab' were performed in normal BALB/c mice and in nude mice bearing the T-380 CEA-producing human colon tumor. The acetylated fragments remained in the vascular compartment longer and had significantly diminished renal uptake of 111In compared to controls. While acetylation itself effected a 50% drop in immunoreactivity, tumor uptake of the acetylated and nonacetylated 111In-labeled Fab' fragments was comparable, with the exception of one data point, through 72 h

  4. Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.

    Science.gov (United States)

    Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H

    1988-05-01

    Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.

  5. Incomplete development of the spleen and the deformity in the chimeras between asplenic mutant (Dominant hemimelia) and normal mice.

    Science.gov (United States)

    Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K

    1995-08-01

    The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.

  6. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    Science.gov (United States)

    Sugimoto, H; Ikeda, K; Kawakami, K

    2017-10-23

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  8. Acquisition of steady-state operant behavior in long-living Ames Dwarf mice.

    Science.gov (United States)

    Derenne, Adam; Brown-Borg, Holly; Feltman, Kathryn; Corbett, Grant; Lackman, Serena

    2011-10-24

    Ames dwarf mice have a Prop-1 mutation that has been identified with increased levels of IGF-I in the central nervous system, upregulation of neuroprotective systems, and increased lifespan. To elucidate the behavioral effects of the Prop-1 mutation, 8 Ames dwarf and 7 normal mice (all of whom were 8 months of age or younger) were compared on a differential-reinforcement-of-low-rate-of-responding schedule of reinforcement and a matching-to-sample task. On both tasks, nosepokes were reinforced with access to a saccharin solution. Comparisons were based on several measures of behavioral efficiency: pause durations, intertrial intervals, and numbers of responses. Ames dwarf mice were generally less efficient than normal mice. One possible cause of this outcome is that relatively young Ames dwarf mice show less cognitive development than age-matched normal mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder

    Science.gov (United States)

    Ahmed, Zaghloul

    2017-10-01

    Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.

  10. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    Science.gov (United States)

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  11. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  12. Oral candidosis by Candida albicans in normal and xerostomic mice Candidose oral por Candida albicans em camundongos normais e xerostômicos

    Directory of Open Access Journals (Sweden)

    Marilda Aparecida Gonçalves Totti

    2004-09-01

    Full Text Available The aim of this study was to analyze the effect of sialoadenectomy on the development of oral candidosis after one or four inoculations of Candida albicans. Initially, a suspension containing 10(8 cells/ml of C. albicans ATCC 36801 was prepared. Seventy-eight sialoadenectomized mice and a similar amount of mice with normal salivary flow received a single inoculation of C. albicans suspension. Another group with a similar number of mice received 4 inoculations. The control group consisted of 6 sialoadenectomized mice and 6 mice with normal salivary flow that were not inoculated with C. albicans. Candidosis development was studied histologically in the tongue of the animals 1, 2, 3, 5, and 8 days after inoculation and at 15-day intervals up to 165 days. According to the results obtained, it could be concluded that sialoadenectomy and a higher frequency of yeast inoculation influenced the presence and extension of candidosis lesions.O objetivo deste estudo foi analisar o efeito da sialoadenectomia sobre o desenvolvimento da candidose oral após uma ou quatro inoculações de Candida albicans. Inicialmente, uma suspensão contendo 10(8 células/ml de C. albicans ATCC 36801 foi preparada. Setenta e oito camundongos sialoadenectomizados e mesma quantidade de camundongos com fluxo salivar normal receberam uma única inoculação de suspensão de C. albicans. Outro grupo, com o mesmo número de camundongos, recebeu 4 inoculações. O grupo controle consistiu de 6 camundongos sialoadenectomizados e 6 com fluxo salivar normal que não foram inoculados com C. albicans. O desenvolvimento de candidose foi estudado histologicamente na língua dos animais em períodos de 1, 2, 3, 5 e 8 dias após a inoculação e em intervalos de 15 dias até 165 dias. De acordo com os resultados obtidos, conclui-se que a sialoadenectomia e uma maior freqüência de inoculação influenciaram na presença e extensão das lesões de candidose.

  13. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice.

    Science.gov (United States)

    Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah

    2018-03-16

    Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  14. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice

    Directory of Open Access Journals (Sweden)

    Kayla A. Quirin

    2018-03-01

    Full Text Available Recombinant adeno-associated virus (rAAV-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9 expressing GFP in a self-complementary (sc AAV vector under an EF1α promoter (scAAV.GFP following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg. Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  15. Ghrelin knockout mice show decreased voluntary alcohol consumption and reduced ethanol-induced conditioned place preference.

    Science.gov (United States)

    Bahi, Amine; Tolle, Virginie; Fehrentz, Jean-Alain; Brunel, Luc; Martinez, Jean; Tomasetto, Catherine-Laure; Karam, Sherif M

    2013-05-01

    Recent work suggests that stomach-derived hormone ghrelin receptor (GHS-R1A) antagonism may reduce motivational aspects of ethanol intake. In the current study we hypothesized that the endogenous GHS-R1A agonist ghrelin modulates alcohol reward mechanisms. For this purpose ethanol-induced conditioned place preference (CPP), ethanol-induced locomotor stimulation and voluntary ethanol consumption in a two-bottle choice drinking paradigm were examined under conditions where ghrelin and its receptor were blocked, either using ghrelin knockout (KO) mice or the specific ghrelin receptor (GHS-R1A) antagonist "JMV2959". We showed that ghrelin KO mice displayed lower ethanol-induced CPP than their wild-type (WT) littermates. Consistently, when injected during CPP-acquisition, JMV2959 reduced CPP-expression in C57BL/6 mice. In addition, ethanol-induced locomotor stimulation was lower in ghrelin KO mice. Moreover, GHS-R1A blockade, using JMV2959, reduced alcohol-stimulated locomotion only in WT but not in ghrelin KO mice. When alcohol consumption and preference were assessed using the two-bottle choice test, both genetic deletion of ghrelin and pharmacological antagonism of the GHS-R1A (JMV2959) reduced voluntary alcohol consumption and preference. Finally, JMV2959-induced reduction of alcohol intake was only observed in WT but not in ghrelin KO mice. Taken together, these results suggest that ghrelin neurotransmission is necessary for the stimulatory effect of ethanol to occur, whereas lack of ghrelin leads to changes that reduce the voluntary intake as well as conditioned reward by ethanol. Our findings reveal a major, novel role for ghrelin in mediating ethanol behavior, and add to growing evidence that ghrelin is a key mediator of the effects of multiple abused drugs. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mice with cancer-induced bone pain show a marked decline in day/night activity.

    Science.gov (United States)

    Majuta, Lisa A; Guedon, Jean-Marc G; Mitchell, Stefanie A T; Kuskowski, Michael A; Mantyh, Patrick W

    2017-09-01

    Cancer-induced bone pain (CIBP) is the most common type of pain with cancer. In humans, this pain can be difficult to control and highly disabling. A major problem with CIBP in humans is that it increases on weight-bearing and/or movement of a tumor-bearing bone limiting the activity and functional status of the patient. Currently, there is less data concerning whether similar negative changes in activity occur in rodent models of CIBP. To determine whether there are marked changes in activity in a rodent model of CIBP and compare this to changes in skin hypersensitivity. Osteosarcoma cells were injected and confined to 1 femur of the adult male mouse. Every 7 days, spontaneous horizontal and vertical activities were assessed over a 20-hour day and night period using automated activity boxes. Mechanical hypersensitivity of the hind paw skin was assessed using von Frey testing. As the tumor cells grew within the femur, there was a significant decline in horizontal and vertical activity during the times of the day/night when the mice are normally most active. Mice also developed significant hypersensitivity in the skin of the hind paw in the tumor-bearing limb. Even when the tumor is confined to a single load-bearing bone, CIBP drives a significant loss of activity, which increases with disease progression. Understanding the mechanisms that drive this reduction in activity may allow the development of therapies that allow CIBP patients to better maintain their activity and functional status.

  17. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  18. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J.

    1997-01-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 μg/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  19. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  20. Impaired Sperm Maturation in Rnase9 Knockout Mice1

    Science.gov (United States)

    Westmuckett, Andrew D.; Nguyen, Edward B.; Herlea-Pana, Oana M.; Alvau, Antonio; Salicioni, Ana M.; Moore, Kevin L.

    2014-01-01

    ABSTRACT Ribonuclease, RNase A family, 9 (RNASE9) is a ribonuclease A superfamily member that is expressed only in the epididymis. It is a small, secreted polypeptide, it lacks ribonuclease activity, and its function(s) is unknown. However, epididymis-specific expression suggests a role in sperm maturation. We generated Rnase9−/− mice to study RNASE9 function in vivo. We confirm that RNASE9 expression is restricted to the epididymis. Within the epididymis, RNASE9 is first detected in midcaput, persists through the distal caput and corpus, and wanes in the cauda. Rnase9−/− mice are born at the expected Mendelian ratio, have normal postnatal growth and development, and have no outwardly apparent phenotype. Spermatogenesis is normal, and Rnase9-null sperm are morphologically normal. Rnase9−/− males have normal fertility in unrestricted mating trials, and fertilization rates in in vitro fertilization assays are indistinguishable from wild-type mice. Visual observations coupled with analyses of sperm velocities shortly after swim out from the corpus shows that motility of Rnase9-null sperm is significantly impaired. However, no differences between wild-type and Rnase9-null sperm are detected by computer-assisted sperm analysis 10–90 min after sperm isolation from the corpus or cauda. Assessment of capacitation-dependent signaling pathways in Rnase9-null sperm showed that, while levels of tyrosine phosphorylation of sperm proteins were normal, there was decreased phosphorylation of protein kinase A substrates upon capacitation compared to wild-type mice. In conclusion, RNASE9 is dispensable for fertility, but the absence of RNASE9 during epididymal transit results in impaired sperm maturation. PMID:24719258

  1. EXPERIMENTAL-INFECTION IN MICE WITH BACILLUS-LICHENIFORMIS

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, H.E.; Jensen, N.E.

    1995-01-01

    The pathogenicity of Bacillus licheniformis was assessed in normal and immunodepressed BALB/c mice. The animals were challenged intravenously with 4 x 10(7) colony forming units of B, licheniformis (ATCC 14580) and both normal and immunodepressed mice were susceptible. However, the infection...... was more severe in the immunosuppressed animals. In normal mice, lesions were restricted to the liver and kidneys, while lesions also occurred in other organs of immunodepressed mice. By crossed immunoelectrophoresis it was shown that antigens of B. licheniformis are potent immunogens, and the bacteria...

  2. Spatial delayed nonmatching-to-sample performances in long-living Ames dwarf mice.

    Science.gov (United States)

    Derenne, Adam; Brown-Borg, Holly M; Martner, Sarah; Wolff, Wendy; Frerking, Morgan

    2014-01-17

    Ames dwarf mice have an extended lifespan by comparison with normal mice. Behavioral testing has revealed that sometimes Ames dwarf mice also evince superior performances relative to normal mice, but in other cases they do not. In this experiment, Ames dwarf and normal mice were compared on a T-maze test and on a delayed nonmatching-to-sample variant of a T-maze test. On the simple T-maze, Ames dwarf and normal mice committed comparable numbers of errors. On the nonmatching-to-sample task, normal mice mastered the discrimination by the end of the experiment while Ames dwarf mice did not. The apparatus, distances traveled and session duration were equivalent between the two tasks. The poorer performances of Ames dwarf mice on the nonmatching-to-sample task suggests that Ames dwarf mice may not be as capable of learning relatively cognitively complex tasks as normal mice. © 2013.

  3. Cavin-3 knockout mice show that cavin-3 is not essential for caveolae formation, for maintenance of body composition, or for glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Libin Liu

    Full Text Available The cavins are a family of proteins associated with caveolae, cavin-1, -2 and -3 being widely expressed while cavin-4 is restricted to striated muscle. Deletion of cavin-1 results in phenotypes including metabolic changes consistent with adipocyte dysfunction, and caveolae are completely absent. Deletion of cavin-2 causes tissue-specific loss of caveolae. The consequences of cavin-3 deletion are less clear, as there are divergent data on the abundance of caveolae in cavin-3 null mice. Here we examine the consequences of cavin-3 deficiency in vivo by making cavin-3 knockout mice. We find that loss of cavin-3 has minimal or no effects on the levels of other caveolar proteins, does not appear to play a major role in formation of protein complexes important for caveolar morphogenesis, and has no significant effect on caveolae abundance. Cavin-3 null mice have the same body weight and fat mass as wild type animals at ages 8 through 30 weeks on both normal chow and high fat diets. Likewise, the two mouse strains exhibit identical glucose tolerance tests on both diets. Microarray analysis from adipose tissue shows that the changes in mRNA expression between cavin-3 null and wild type mouse are minimal. We conclude that cavin-3 is not absolutely required for making caveolae, and suggest that the mechanistic link between cavin-3 and metabolic regulation remains uncertain.

  4. Hesperetin-5,7,3'-O-triacetate suppresses airway hyperresponsiveness in ovalbumin-sensitized and challenged mice without reversing xylazine/ketamine-induced anesthesia in normal mice.

    Science.gov (United States)

    Yang, You-Lan; Chen, Chi-Li; Chen, Chi-Ming; Ko, Wun-Chang

    2017-05-30

    We recently reported that hesperetin-5,7,3'-O-triacetate (HTA) dually inhibited phosphodiesterase (PDE)3/4 with a therapeutic ratio of 20.8. The application and development of PDE4 inhibitors for treating asthma or COPD are limited by their side effects, such as nausea, vomiting and gastric hypersecretion. PDE4 inhibitors were reported to reverse xylazine/ketamine-induced anesthesia in rats and triggered vomiting in ferrets. Thus the reversing effect of HTA on xylazine/ketamine-induced anesthesia in mice was studied to assess emetic effect of HTA. The aim of this study was to prove the therapeutic effect of HTA without vomiting effect at an effective dose for treating COPD. Ten female BALB/c mice in each group were sensitized by ovalbumin (OVA) on days 0 and 14. On day 21, these mice were emphasized the sensitization by Freund's complete adjuvant. Mice were challenged by 1% OVA nebulization on days 28, 29, and 30. Airway hyperresponsiveness (AHR) was assessed on day 32 in each group, using the FlexiVent system to determine airway resistance (R L ) and lung dynamic compliance (C dyn ) in anesthetized ovalbumin (OVA)-sensitized and challenged mice. Each group was orally administered HTA (10 ~ 100 μmol/kg), roflumilast (1 and 5 mg/kg) or vehicles (controls) 2 h before and 6 and 24 h after OVA provocation. For comparison, sham-treated mice were challenged with saline instead of 1% OVA. The ability to reverse xylazine/ketamine-induced anesthesia by HTA or roflumilast for 3 h was determined in normal mice. We used roflumilast, a selective PDE4 inhibitor and bronchodilator for severe COPD approved by the US Food and Drug Administration, as a reference drug. In the results, HTA (100 μmol/kg, p.o.) or roflumilast (5 mg/kg, p.o.) significantly suppressed all R L values of MCh at 0.78 ~ 25 mg/mL and enhanced C dyn values of MCh at 3.125 ~ 25 mg/mL compared to OVA-sensitized and -challenged control mice. Orally administered 1, 3 or 10 mg/kg roflumilast

  5. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [(18)F]-Florbetaben PET Quantitation in Alzheimer's Model Mice.

    Science.gov (United States)

    Overhoff, Felix; Brendel, Matthias; Jaworska, Anna; Korzhova, Viktoria; Delker, Andreas; Probst, Federico; Focke, Carola; Gildehaus, Franz-Josef; Carlsen, Janette; Baumann, Karlheinz; Haass, Christian; Bartenstein, Peter; Herms, Jochen; Rominger, Axel

    2016-01-01

    Preclinical PET studies of β-amyloid (Aβ) accumulation are of growing importance, but comparisons between research sites require standardized and optimized methods for quantitation. Therefore, we aimed to evaluate systematically the (1) impact of an automated algorithm for spatial brain normalization, and (2) intensity scaling methods of different reference regions for Aβ-PET in a large dataset of transgenic mice. PS2APP mice in a 6 week longitudinal setting (N = 37) and another set of PS2APP mice at a histologically assessed narrow range of Aβ burden (N = 40) were investigated by [(18)F]-florbetaben PET. Manual spatial normalization by three readers at different training levels was performed prior to application of an automated brain spatial normalization and inter-reader agreement was assessed by Fleiss Kappa (κ). For this method the impact of templates at different pathology stages was investigated. Four different reference regions on brain uptake normalization were used to calculate frontal cortical standardized uptake value ratios (SUVRCTX∕REF), relative to raw SUVCTX. Results were compared on the basis of longitudinal stability (Cohen's d), and in reference to gold standard histopathological quantitation (Pearson's R). Application of an automated brain spatial normalization resulted in nearly perfect agreement (all κ≥0.99) between different readers, with constant or improved correlation with histology. Templates based on inappropriate pathology stage resulted in up to 2.9% systematic bias for SUVRCTX∕REF. All SUVRCTX∕REF methods performed better than SUVCTX both with regard to longitudinal stability (d≥1.21 vs. d = 0.23) and histological gold standard agreement (R≥0.66 vs. R≥0.31). Voxel-wise analysis suggested a physiologically implausible longitudinal decrease by global mean scaling. The hindbrain white matter reference (R mean = 0.75) was slightly superior to the brainstem (R mean = 0.74) and the cerebellum (R mean = 0.73). Automated

  6. Mice doubly-deficient in lysosomal hexosaminidase A and neuraminidase 4 show epileptic crises and rapid neuronal loss.

    Directory of Open Access Journals (Sweden)

    Volkan Seyrantepe

    2010-09-01

    Full Text Available Tay-Sachs disease is a severe lysosomal disorder caused by mutations in the HexA gene coding for the α-subunit of lysosomal β-hexosaminidase A, which converts G(M2 to G(M3 ganglioside. Hexa(-/- mice, depleted of β-hexosaminidase A, remain asymptomatic to 1 year of age, because they catabolise G(M2 ganglioside via a lysosomal sialidase into glycolipid G(A2, which is further processed by β-hexosaminidase B to lactosyl-ceramide, thereby bypassing the β-hexosaminidase A defect. Since this bypass is not effective in humans, infantile Tay-Sachs disease is fatal in the first years of life. Previously, we identified a novel ganglioside metabolizing sialidase, Neu4, abundantly expressed in mouse brain neurons. Now we demonstrate that mice with targeted disruption of both Neu4 and Hexa genes (Neu4(-/-;Hexa(-/- show epileptic seizures with 40% penetrance correlating with polyspike discharges on the cortical electrodes of the electroencephalogram. Single knockout Hexa(-/- or Neu4(-/- siblings do not show such symptoms. Further, double-knockout but not single-knockout mice have multiple degenerating neurons in the cortex and hippocampus and multiple layers of cortical neurons accumulating G(M2 ganglioside. Together, our data suggest that the Neu4 block exacerbates the disease in Hexa(-/- mice, indicating that Neu4 is a modifier gene in the mouse model of Tay-Sachs disease, reducing the disease severity through the metabolic bypass. However, while disease severity in the double mutant is increased, it is not profound suggesting that Neu4 is not the only sialidase contributing to the metabolic bypass in Hexa(-/- mice.

  7. Clearance of a monoclonal anti-DNA antibody following administration of DNA in normal and autoimmune mice

    International Nuclear Information System (INIS)

    Jones, F.S.; Pisetsky, D.S.; Kurlander, R.J.

    1986-01-01

    To study the assembly of DNA-anti-DNA complexes in vivo, we have measured the clearance from blood and organ localization of a murine IgG2a monoclonal anti-DNA antibody, called 6/0, following the infusion of DNA intravenously or intraperitoneally. Intraperitoneal DNA caused a profound acceleration of 6/0 anti-DNA clearance that was dose dependent and demonstrable after the infusion of as little as 1.9 microgram per gram of body weight of single-stranded DNA. The antibody was cleared primarily in the liver without increased deposition in the kidney. Intraperitoneal infusions of DNA also accelerated the clearance of 6/0 in autoimmune MRL-lpr/lpr mice. In contrast, intravenous DNA given in comparable doses caused only a slight increase in 6/0 antibody clearance; this accelerated clearance was seen only at low antigen doses and only during the first 10 min following DNA infusion. Using double-radiolabeling techniques, 6/0 and Cl.18, an IgG2ak myeloma protein without anti-DNA activity, were found to disappear from blood at a comparable rate in both B6D2 mice and MRL-lpr/lpr mice. These results suggest that the DNA-anti-DNA immune complexes can form in vivo but that this process is profoundly affected by the manner in which DNA enters the circulation. In addition, the results suggest that DNA-dependent clearance is not a major pathway for anti-DNA metabolism in normal or at least one strain of autoimmune mice

  8. Electromagnetic treatment to old Alzheimer's mice reverses β-amyloid deposition, modifies cerebral blood flow, and provides selected cognitive benefit.

    Directory of Open Access Journals (Sweden)

    Gary W Arendash

    Full Text Available Few studies have investigated physiologic and cognitive effects of "long-term" electromagnetic field (EMF exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25-1.05 W/kg by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21-27 month Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature during EMF "ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice and slight body hyperthermia during "ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF

  9. Hes1-deficient mice show precocious differentiation of Paneth cells in the small intestine

    International Nuclear Information System (INIS)

    Suzuki, Katsumasa; Fukui, Hirokazu; Kayahara, Takahisa; Sawada, Mitsutaka; Seno, Hiroshi; Hiai, Hiroshi; Kageyama, Ryoichiro; Okano, Hideyuki; Chiba, Tsutomu

    2005-01-01

    We have previously shown that Hes1 is expressed both in putative epithelial stem cells just above Paneth cells and in the crypt base columnar cells between Paneth cells, while Hes1 is completely absent in Paneth cells. This study was undertaken to clarify the role of Hes1 in Paneth cell differentiation, using Hes1-knockout (KO) newborn (P0) mice. Electron microscopy revealed premature appearance of distinct cells containing cytoplasmic granules in the intervillous region in Hes1-KO P0 mice, whereas those cells were absent in wild-type (WT) P0 mice. In Hes1-KO P0 mice, the gene expressions of cryptdins, exclusively present in Paneth cells, were all enhanced compared with WT P0 mice. Immunohistochemistry demonstrated increased number of both lysozyme-positive and cryptdin-4-positive cells in the small intestinal epithelium of Hes1-KO P0 mice as compared to WT P0 mice. Thus, Hes1 appears to have an inhibitory role in Paneth cell differentiation in the small intestine

  10. Zonulin transgenic mice show altered gut permeability and increased morbidity/mortality in the DSS colitis model.

    Science.gov (United States)

    Sturgeon, Craig; Lan, Jinggang; Fasano, Alessio

    2017-06-01

    Increased small intestinal permeability (IP) has been proposed to be an integral element, along with genetic makeup and environmental triggers, in the pathogenies of chronic inflammatory diseases (CIDs). We identified zonulin as a master regular of intercellular tight junctions linked to the development of several CIDs. We aim to study the role of zonulin-mediated IP in the pathogenesis of CIDs. Zonulin transgenic Hp2 mice (Ztm) were subjected to dextran sodium sulfate (DSS) treatment for 7 days, followed by 4-7 days' recovery and compared to C57Bl/6 (wild-type (WT)) mice. IP was measured in vivo and ex vivo, and weight, histology, and survival were monitored. To mechanistically link zonulin-dependent impairment of small intestinal barrier function with clinical outcome, Ztm were treated with the zonulin inhibitor AT1001 added to drinking water in addition to DSS. We observed increased morbidity (more pronounced weight loss and colitis) and mortality (40-70% compared with 0% in WT) at 11 days post-DSS treatment in Ztm compared with WT mice. Both in vivo and ex vivo measurements showed an increased IP at baseline in Ztm compared to WT mice, which was exacerbated by DSS treatment and was associated with upregulation of zonulin gene expression (fourfold in the duodenum, sixfold in the jejunum). Treatment with AT1001 prevented the DSS-induced increased IP both in vivo and ex vivo without changing zonulin gene expression and completely reverted morbidity and mortality in Ztm. Our data show that zonulin-dependent small intestinal barrier impairment is an early step leading to the break of tolerance with subsequent development of CIDs. © 2017 New York Academy of Sciences.

  11. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  12. Characteristics of macrophages in irradiation chimeras in mice reconstituted with allogeneic bone marrow cells

    International Nuclear Information System (INIS)

    Yasumizu, R.; Onoe, K.; Iwabuchi, K.; Ogasawara, M.; Fujita, M.; Okuyama, H.; Good, R.A.; Morikawa, K.

    1985-01-01

    Biological and immunological characteristics of the reticuloendothelial system of irradiation bone marrow chimeric mice and macrophages collected from various tissue sources of the mice were studied. The chimeras showed comparable activities in carbon clearance to those of normal donor or recipient mice. The macrophages from spleen, lymph node, bone marrow, peripheral blood, liver, peritoneal cavity, and lung were demonstrated to be of donor marrow origin. They showed almost the same enzyme activities and phagocytic capability of sheep erythrocytes (SRBC, E), SRBC sensitized with anti-SRBC IgG (EA), and SRBC sensitized with anti-SRBC IgM and coated with complement (EAC) as those of normal mice. Proportions of Fc receptor and complement receptor-positive cells are also in normal range. In addition, the antigen-presenting capability of the chimeric macrophages for in vitro primary antibody response to SRBC was intact. These observations suggest that the reticuloendothelial system and macrophages of allogeneic bone marrow chimeras where donor and recipient differ at the major histocompatibility complex have no defect so far as could be ascertained by the present study

  13. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    International Nuclear Information System (INIS)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-01-01

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN +/− mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN −/− mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN −/− mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN −/− mice were generated using TALEN technique. • TPRN −/− mice presented progressive hearing loss. • WT and TPRN −/− mice showed no difference in hair cell numbers. • TPRN −/− mice showed progressive degeneration of hair cell stereocilia.

  14. Curcumin Alleviates the Functional Gastrointestinal Disorders of Mice In Vivo.

    Science.gov (United States)

    Yu, Jing; Xu, Wen-Hua; Sun, Wei; Sun, Yi; Guo, Zhi-Li; Yu, Xiao-Ling

    2017-12-01

    Curcumin is a natural polyphenol extracted from the turmeric rhizome, which has a wide range of biological activities, but until now the effects of curcumin on the gastrointestinal peristalsis have not been fully understood. In vivo study, we observed the effects of curcumin on gastric emptying and intestinal propulsion rates of mice in normal state and in delayed state by atropine (ATR) or nitric oxide precursor L-arginine (L-Arg). An in vitro study explored the direct effects of curcumin on the intestinal contractility, but were studied through measuring spontaneous contraction of isolated jejunum of mice. Our results showed that intragastric administration of curcumin (200 mg/kg/day) for 10-20 days significantly improved gastric emptying and intestinal propulsion rates of mice delayed by ATR. Moreover, intragastric administration of curcumin (200 mg/kg/day) for 15 days also significantly improved mice gastric emptying and intestinal propulsion rates delayed by L-Arg. There was no significant effect on normal gastrointestinal propulsion of mice after intragastric administration of curcumin (200 mg/kg/day) for 1-20 days. When normal isolated jejunum of mice were incubated with curcumin in vitro, the amplitude of the spontaneous contractile waves of jejunum was reduced in a concentration-dependent manner. Moreover, curcumin reduced the amplitude of the contractile waves of jejunum in both contracted and relaxed state induced by acetylcholine or ATR individually. Taken together, our results suggest that curcumin has quite different effects on gastrointestinal peristalsis in vivo and in vitro. Moderate dose of curcumin by intragastric administration for more than 10 days can alleviate the functional gastrointestinal disorders of mice, but cannot affect normal gastrointestinal propulsion.

  15. Growth of SJL/J-derived transplantable reticulum cell sarcoma as related to its ability to induce T-cell proliferation in the host- III. Studies on thymectomized and congenitally athymic SJL mice

    International Nuclear Information System (INIS)

    Katz, I.R.; Chapman-Alexander, J.; Jacobson, E.B.; Lerman, S.P.; Thorbecke, G.J.

    1981-01-01

    When SJL mice are irradiated and reconstituted with syngeneic bone marrow (XBM) they support growth of transplantable reticulum cell sarcoma to approximately 60% of that in normal mice. The ability to support RCS growth gradually improves with time after irradiation and reaches 90% of normal by 8-12 weeks. However, if the mice are thymectomized 4 weeks prior to treatment (Tx-XBM) they initially show 50% which increases to only 65% of growth in normal mice after 12 weeks. The ability of lymphoid cells from these mice to proliferate in vitro in response to irradiated RCS cells is normal 4 weeks after treatment in XBM, but remains <10% of normal in Tx-XBM mice. Nude mice of SJL background also show greatly diminished RCS growth. It is concluded that T cells promote RCS growth in vivo possibly via their tendency to proliferate upon exposure to RCS

  16. The monoclonal antitoxin antibodies (actoxumab-bezlotoxumab treatment facilitates normalization of the gut microbiota of mice with Clostridium difficile infection

    Directory of Open Access Journals (Sweden)

    Mária Džunková

    2016-10-01

    Full Text Available Antibiotics have significant and long-lasting impacts on the intestinal microbiota and consequently reduce colonization resistance against Clostridium difficile infection (CDI. Standard therapy using antibiotics is associated with a high rate of disease recurrence, highlighting the need for novel treatment strategies that target toxins, the major virulence factors, rather than the organism itself. Human monoclonal antibodies MK-3415A (actoxumab-bezlotoxumab to C. difficile toxin A and toxin B, as an emerging non-antibiotic approach, significantly reduced the recurrence of CDI in animal models and human clinical trials. Although the main mechanism of protection is through direct neutralization of the toxins, the impact of MK-3415A on gut microbiota and its restoration has not been examined. Using a CDI murine model, we compared the bacterial diversity of the gut microbiome of mice under different treatments including MK-3415A, vancomycin or vancomycin combined with MK-3415A, sampled longitudinally. Here we showed that C. difficile infection resulted in the prevalence of Enterobacter species. 60% of mice in the vehicle group died after two days and their microbiome was almost exclusively formed by Enterobacter. MK-3415A treatment resulted in lower Enterobacter levels and restoration of Blautia, Akkermansia and Lactobacillus which were the core components of the original microbiota. Vancomycin treatment led to significantly lower survival rate than the combo treatment of MK-3415A and vancomycin. Vancomycin treatment decreased bacterial diversity with predominant Enterobacter and Akkermansia, while Staphylococcus expanded after vancomycin treatment was terminated. In contrast, mice treated by vancomycin combined with MK-3415A also experienced decreased bacterial diversity during vancomycin treatment. However, these animals were able to recover their initial Blautia and Lactobacillus proportions, even though episodes of Staphylococcus overgrowth were

  17. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  18. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice.

    Science.gov (United States)

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai

    2012-01-01

    The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.

  19. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  20. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  1. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  2. Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes.

    Science.gov (United States)

    Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P

    2003-08-01

    Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.

  3. Effects on normal tissues during radiosensitization of Dalton's Lymphoma by the DNA ligand Hoechst 33342 in Balb/c mice

    International Nuclear Information System (INIS)

    Kalra, Namita; Sampath, Swapna; Adhikari, J.S.; Dwarakanath, B.S.

    2014-01-01

    Hoechst 33342 is a bisbenzimidazole derivative with AT specific minor groove DNA binding ability. Scavenging of free radicals and stabilization of macromolecular structure resulting in reduced induction of DNA damage contributes to radioprotection afforded by the ligand. Their ability to inhibit topoisomerases I and II, which play important roles in damage response pathways including DNA repair has been shown to sensitize tumor cells in vitro and in vivo. Due to its mutagenic and clastogenic potentials, damage to vital normal tissues are a matter of concern in deploying the ligand as adjuvant in radiotherapy. Therefore, we investigated the effects of the ligand in Dalton's Lymphoma (DL) bearing Balb/c mice by studying the local tumor control and animal survival, besides damage to normal tissues like bone marrow, kidney and testis. Hoechst 33342 (10 mg/kg b wt) was administered (i.v.) 1 h before focal irradiation (10 Gy) of the tumor (∼ 500 mm 3 ) grown on the hind leg of the mice. Partial response with a growth delay of 16 days (3 x initial volume) was seen following irradiation, while a complete response (cure; tumor-free survival) was observed in 88% mice following the combined treatment (Hoechst 33342+radiation); ligand alone had no significant effect. Although the ligand induced marginal degree of chromosomal aberrations in the bone marrow, it did not enhance aberrations induced by radiation further. In testes, the proportions of diploid, haploid and hypo-haploid cells as well as resting primary spermatocytes (RPS) were not significantly altered by either. In kidney, Hoechst 33342 alone or in combination with radiation did not cause significant damage to the proximal tubules and glomeruli. These observations suggest that radiosensitization of tumor by the DNA ligand Hoechst 33342 may not be associated with enhanced toxicity to bone marrow as well as proximal normal tissues. (author)

  4. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    International Nuclear Information System (INIS)

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-01-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol

  5. An experimental analysis of the specificity of actively acquired tolerance in mice

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G.

    1963-08-15

    Tolerance to CBA skin was induced in C3H mice by neonatal injection of CBA spleen cells. When two months old, the C3H recipients were grafted with CBA skin. These skin grafts showed no signs of rejection during the observation time of three months, whereas CBA skins grafted onto C3H mice non injected at birth showed complete necrosis in 11.7 days. Normal C3H and C3H mice tolerant to CBA skin were injected with rat RBC and sacrificed 12 days later for serum titration of anti-rat RBC agglutinins. The agglutinin titer was the same in both groups. This indicates that the unresponsiveness of C3H mice to CBA skin was specific, for the tolerant mice were able to respond with normal vigor to antigens (rat RBC) unrelated to C3H and CBA. Whether this response was due to the host immune system or to the CBA spleen cells which may have colonized the C3H newborns was subsequently investigated. Spleen cells from tolerant C3H mice sensitized to rat RBC were injected into two groups of lethally irradiated recipients: C3H mice preimmunized against CBA and CBA mice preimmunized against C3H. Both groups were given rat RBC immediately after the spleen cell transfer from the tolerant mice and sacrified a week later for serum titration of anti-rat RBC agglutinins. These agglutinins, due to the secondary response of the transferred spleen cells, could be detected only in the group of C3H recipients preimmunized against CBA. This shows that anti-rat RBC agglutinins in tolerant mice were produced y the immune system of the C3H host. The theoretical implications of this finding are discussed. (auth)

  6. Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice

    DEFF Research Database (Denmark)

    Moser, C; Johansen, H K; Song, Z

    1997-01-01

    model of this infection was established in two strains of mice: C3H/HeN and BALB/c, generally known as Th1 and Th2 responders, respectively, which were challenged with alginate-embedded P. aeruginosa. Mortality was significantly lower in C3H/HeN compared to BALB/c mice (p ... was cleared more efficiently in C3H/HeN mice and significantly more C3H/HeN mice showed normal lung histopathology (p BALB/c mice (p ... from the two strains of mice, the interferon-(IFN-) gamma levels were higher, whereas IL-4 levels were lower in C3H/HeN mice than in BALB/c mice. The implications of these findings for CF patients with chronic P. aeruginosa lung infection are discussed....

  7. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice.

    Science.gov (United States)

    Lang, Undine E; Lang, Florian; Richter, Kerstin; Vallon, Volker; Lipp, Hans-Peter; Schnermann, Jürgen; Wolfer, David P

    2003-10-17

    Several lines of evidence point to the involvement of adenosine in the regulation of important central mechanisms such as cognition, arousal, aggression and anxiety. In order to elucidate the involvement of the adenosine A1 receptor (A1AR) in spatial learning and the control of exploratory behaviour, we assessed A1AR knockout mice (A1AR-/-) and their wild-type littermates (A1AR+/+) in a place navigation task in the water maze and in a battery of forced and free exploration tests. In the water maze, A1AR-/- mice showed normal escape latencies and were indistinguishable from controls with respect to measures of spatial performance during both training and probe trial. But despite normal performance they showed increased wall hugging, most prominently after the relocation of the goal platform for reversal training. Quantitative analysis of strategy choices indicated that wall hugging was increased mainly at the expense of chaining and passive floating, whereas the frequency of trials characterised as direct swims or focal searching was normal in A1AR-/- mice. These results indicate intact spatial cognition, but mildly altered emotional reactions to the water maze environment. In line with this interpretation, A1AR-/- mice showed normal levels and patterns of activity, but a mild increase of some measures of anxiety in our battery of forced and free exploration paradigms. These results are in line with findings published using a genetically similar line, but demonstrate that the magnitude of the changes and the range of affected behavioural measures may vary considerably depending on the environmental conditions during testing.

  8. Experimental study on acute toxicity of Qingnao tablet to mice

    Science.gov (United States)

    Xie, Guoqi; Wang, Huamin; Ma, Zhenzhen; Hao, Shaojun; Li, Jun; Wang, Hongyu; Wen, Zhonghua; Zhang, Zhengchen

    2018-04-01

    To investigate the effect of Qingnao tablets on acute toxicity in mice. Forty mice, half male and half female, were randomly divided into normal saline group and Qingnao tablet group. After fasting for 12 hours, the mice were given 0. 4 ml / 10 g in maximum volume. In 1st, the rats were perfused 3 times (every 8 hours). The rats in the saline group were perfused with the same volume of saline in the same way. The mice were observed continuously within 3 hours and then every hour. The mice were given a normal diet for 14 consecutive days, and the changes of autonomous activity, reaction, diet, stool, secretion, eye and nose were observed daily. The mice fasted on the 13th day and weighed on the 14th day. And then put the mice to death, The changes of the liver, heart, spleen, lung, kidney, stomach, intestines, and brain were observed by the naked eye. There was no obvious abnormality in normal saline group. The autonomous activity of mice in the administration group decreased after initial administration, and gradually returned to normal after 2 hours of administration. On the day of administration, the stool of the mice became dark brown, and the feces returned to normal after 1.1 days of normal urination. No other mice had abnormal secretion, reaction, eye nose, diet, etc. On the 14th day, there were no visible heart, liver, spleen, lung, kidney, gastrointestinal tract in normal saline group and Qingnao tablet group. Abnormal changes in brain and other organs (edema, color, etc.). In the normal saline group and Qingnao tablet group, the initial weight of the mice was: 21.70 ± 0.97N 21.71 ± 1.13, and the weight of the mice on the 7th day was 29.70 ± 2.4c28.65 ± 3.11. On the 14th day, the body weight was 32.38 ± 3.40, 33.77 ± 3.82. Qingnao tablet has no obvious toxicity to the main organs of mice, so it can be considered safe in clinical use.

  9. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  10. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  11. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aquifoliaceae shows reduction of LPS-induced peritonitis in mice.

    Science.gov (United States)

    Sun, Weidong; Liu, Chang; Zhang, Yaqi; Qiu, Xia; Zhang, Li; Zhao, Hongxia; Rong, Yi; Sun, Yun

    2017-02-15

    Ilexgenin A (IA) is a novel pentacyclic triterpenoid, which extracted from leaves of Ilex hainanensis Merr. In the present study, we aim to explore anti-inflammatory activity of IA on LPS-induced peritonitis and its underlying molecular mechanism. The results determined that IA was capable of suppressing peritonitis in mice induced by intraperitoneal (i.p.) injection of lipopolysaccaride (LPS). Furthermore, the results showed that IA dramatically inhibited levels of inflammatory cells infiltration in peritoneal cavity and serum in LPS-induced mice peritonitis model. Besides, IA could dramatically inhibit levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) in peritoneal cavity in LPS-induced mice peritonitis model. In vitro study, the results showed that IA inhibited production of IL-1β, IL-6 and TNF-α at transcriptional and translational levels in RAW 264.7 cells induced by LPS. Furthermore, IA could suppress the LPS-induced activation of Akt and downstream degradation and phosphorylation of kappa B-α (IκB-α). Moreover, IA could significantly inhibit ERK 1/2 phosphorylation in RAW 264.7 cells induced by LPS. These results were concurrent with molecular docking which revealed ERK1/2 inhibition. These results demonstrated that IA might as an anti-inflammatory agent candidate for inflammatory disease therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  13. Multistep process of neoplastic transformation of normal human fibroblasts by 60Co gamma rays and Harvey sarcoma viruses

    Energy Technology Data Exchange (ETDEWEB)

    Namba, M.; Nishitani, K.; Fukushima, F.; Kimoto, T.; Nose, K.

    1986-03-15

    As reported previously (Namba et al., 1985), normal human fibroblasts were transformed by 60Co gamma-ray irradiation into immortal cells with abnormal karyotypes. These transformed cells (KMST-6), however, showed a low cloning efficiency in soft agar and no transplantability. However, upon treatment with Harvey murine sarcoma virus (Ha-MSV), the cells acquired elevated clonability in soft agar and transplantability in nude mice. Ha-MSV alone, however, did not convert normal human fibroblasts into either immortal or tumorigenic cells. The Ha-MSV-transformed KMST-6 cells showed an enhanced expression of the ras oncogene, but normal and 60Co gamma-ray-transformed cells did not. Our current data suggest that gamma rays worked against normal human cells as an initiator, giving rise to chromosome aberrations and immortality, and that Ha-MSV, probably through its ras oncogene, played a role in the progression of the malignant cell population to a more malignant one showing enhanced colony formation in soft agar and tumorigenicity in nude mice.

  14. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  15. 57Co-bleomycin kinetics in normal and tumour-bearing mice after systemic and local administration

    International Nuclear Information System (INIS)

    Bier, J.; Benders, P.; Bitter, K.; Wenzel, M.

    1979-01-01

    In tumour-free and tumour-bearing mice the body clearance and organ distribution of 57 Co-BLM was measured at different time intervals after i.v., sc, and it. administration of the drug. No significant difference could be demonstrated in body clearance following different doses and routes of application of labelled BLM in tumour-free and tumour-bearing mice. The organ distribution studies showed higher concentrations following iv. compared to sc. or it of 57 Co-BLM: however, the activity in the ipsilateral injection sites was significantly increased after sc. and it. injection. In tumour-bearing mice the activity in the lymph nodes draining injection site was as high as that seen in the draining lymph modes following iv. injection. However, on the contralateral side, the lymph mode concentration was significantly reduced after it injection. These results indicate on the basis of organ distribution of 57 Co-BLM a rational basis for it treatment of malignant tumours. (orig.) [de

  16. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  17. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking.

    Science.gov (United States)

    Holstein, Sarah E; Spanos, Marina; Hodge, Clyde W

    2011-10-01

    Binge alcohol drinking during adolescence is a serious health problem that may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). Binge-like alcohol consumption was investigated in adolescent (4 weeks) and adult (10 weeks) male C57BL/6J mice for 2 to 4 h/d for 16 days. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with the intake of a novel tastant (NaCl). Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. These results indicate that adolescent mice consume more alcohol, per kilogram body weight, than adults in a binge-like model of alcohol drinking and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge alcohol intake during

  18. Effect of Different Starvation Levels on Cognitive Ability in Mice

    Science.gov (United States)

    Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan

    2018-01-01

    Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.

  19. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  20. Enhancement of Wound Healing in Normal and Diabetic Mice by Topical Application of Amorphous Polyphosphate. Superior Effect of a Host–Guest Composite Material Composed of Collagen (Host and Polyphosphate (Guest

    Directory of Open Access Journals (Sweden)

    Werner E.G. Müller

    2017-07-01

    Full Text Available The effect of polyphosphate (polyP microparticles on wound healing was tested both in vitro and in a mice model in vivo. Two approaches were used: pure salts of polyphosphate, fabricated as amorphous microparticles (MPs, consisting of calcium and magnesium salts of polyP, “Ca–polyp-MPs” and “Mg–polyp-MPs”, and host–guest composite particles, prepared from amorphous collagen (host and polyphosphate (guest, termed “col/polyp-MPs”. Animal experiments with polyP on healing of excisional wounds were performed using both normal mice and diabetic mice. After a healing period of 7 days “Ca–polyp-MP” significantly improved re-epithelialization in normal mice from 31% (control to 72% (polyP microparticle-treated. Importantly, in diabetic mice, particularly the host–guest particles “col/polyp-MP”, increased the rate of re-epithelialization to ≈40% (control, 23%. In addition, those particles increased the expression of COL-I and COL-III as well as the expression the α-smooth muscle actin and the plasminogen activator inhibitor-1. We propose that “Ca–polyp-MPs”, and particularly the host–guest “col/polyp-MPs” are useful for topical treatment of wounds.

  1. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  2. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  3. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Seidenbecher, Constanze I; Asztely, Fredrik

    2002-01-01

    to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect....... Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles....

  4. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Science.gov (United States)

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  5. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  6. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  7. mPeriod2 Brdm1 and other single Period mutant mice have normal food anticipatory activity.

    Science.gov (United States)

    Pendergast, Julie S; Wendroth, Robert H; Stenner, Rio C; Keil, Charles D; Yamazaki, Shin

    2017-11-14

    Animals anticipate the timing of food availability via the food-entrainable oscillator (FEO). The anatomical location and timekeeping mechanism of the FEO are unknown. Several studies showed the circadian gene, Period 2, is critical for FEO timekeeping. However, other studies concluded that canonical circadian genes are not essential for FEO timekeeping. In this study, we re-examined the effects of the Per2 Brdm1 mutation on food entrainment using methods that have revealed robust food anticipatory activity in other mutant lines. We examined food anticipatory activity, which is the output of the FEO, in single Period mutant mice. Single Per1, Per2, and Per3 mutant mice had robust food anticipatory activity during restricted feeding. In addition, we found that two different lines of Per2 mutant mice (ldc and Brdm1) anticipated restricted food availability. To determine if FEO timekeeping persisted in the absence of the food cue, we assessed activity during fasting. Food anticipatory (wheel-running) activity in all Period mutant mice was also robust during food deprivation. Together, our studies demonstrate that the Period genes are not necessary for the expression of food anticipatory activity.

  8. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker

    International Nuclear Information System (INIS)

    Sonta, Toshiyo; Inoguchi, Toyoshi; Matsumoto, Shingo; Yasukawa, Keiji; Inuo, Mieko; Tsubouchi, Hirotaka; Sonoda, Noriyuki; Kobayashi, Kunihisa; Utsumi, Hideo; Nawata, Hajime

    2005-01-01

    This study was undertaken to evaluate oxidative stress in the kidney of diabetic mice by electron spin resonance (ESR) imaging technique. Oxidative stress in the kidney was evaluated as organ-specific reducing activity with the signal decay rates of carbamoyl-PROXYL probe using ESR imaging. The signal decay rates were significantly faster in corresponding image pixels of the kidneys of streptozotocin-induced diabetic mice than in those of controls. This technique further demonstrated that administration of angiotensin II type 1 receptor blocker (ARB), olmesartan (5 mg/kg), completely restored the signal decay rates in the diabetic kidneys to control values. In conclusion, this study provided for the first time the in vivo evidence for increased oxidative stress in the kidneys of diabetic mice and its normalization by ARB as evaluated by ESR imaging. This technique would be useful as a means of further elucidating the role of oxidative stress in diabetic nephropathy

  9. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  10. Experimental Chagas disease in Balb/c mice previously vaccinated with T. rangeli. II. The innate immune response shows immunological memory: reality or fiction?

    Science.gov (United States)

    Basso, B; Marini, V

    2015-03-01

    Trypanosoma cruzi is a real challenge to the host's immune system, because it requires strong humoral and cellular immune response to remove circulating trypomastigote forms, and to prevent the replication of amastigote forms in tissues, involving many regulator and effector components. This protozoan is responsible for Chagas disease, a major public health problem in Latinamerica. We have developed a model of vaccination with Trypanosoma rangeli, a parasite closely related to T. cruzi, but nonpathogenic to humans, which reduces the infectiousness in three different species of animals, mice, dogs and guinea pigs, against challenge with T. cruzi. In a previous work, we demonstrated that mice vaccinated with T. rangeli showed important soluble mediators that stimulate phagocytic activity versus only infected groups. The aim of this work was to study the innate immune response in mice vaccinated or not with T. rangeli. Different population cells and some soluble mediators (cytokines) in peritoneal fluid and plasma in mice vaccinated-infected and only infected with T. cruzi were studied. In the first hours of challenge vaccinated mice showed an increase of macrophages, NK, granulocytes, and regulation of IL6, IFNγ, TNFα and IL10, with an increase of IL12, with respect to only infected mice. Furthermore an increase was observed of Li T, Li B responsible for adaptative response. Finally the findings showed that the innate immune response plays an important role in vaccinated mice for the early elimination of the parasites, complementary with the adaptative immune response, suggesting that vaccination with T. rangeli modulates the innate response, which develops some kind of immunological memory, recognizing shared antigens with T. cruzi. These results could contribute to the knowledge of new mechanisms which would have an important role in the immune response to Chagas disease. Copyright © 2014 Elsevier GmbH. All rights reserved.

  11. Deficits of learning and memory in Hemojuvelin knockout mice.

    Science.gov (United States)

    Li, Jinglong; Zhang, Peng; Liu, Hongju; Ren, Wei; Song, Jinjing; Rao, Elizabeth; Takahashi, Eiki; Zhou, Ying; Li, Weidong; Chen, Xiaoping

    2015-10-01

    Iron is involved in various physiological processes of the human body to maintain normal functions. Abnormal iron accumulation in brain has been reported as a pathogenesis of several neurodegenerative disorders and cognitive impairments. Hemojuvelin (HVJ) is a membrane-bound and soluble protein in mammals that is responsible for the iron overload condition known as juvenile hemochromatosis. Although iron accumulation in brain has been related to neurodegenerative diseases, it remains unknown the effect of mutation of HVJ gene on cognitive performance. In our studies, HJV(-/-) mice showed deficits in novel object recognition and Morris water maze tests. Furthermore, the expression ration of apoptotic marker Bax and anti-apoptotic marker Bcl-2 in the hippocampus and prefrontal cortex showed higher levels in HJV(-/-) mice. Our results suggested that deletion of HJV gene could increase apoptosis in brain which might contribute to learning and memory deficits in mutant mice. These results indicated that HJV(-/-) mice would be a useful model to study cognitive impairment induced by iron overload in brain.

  12. Serum steroid levels in intact and endocrine ablated BALB/c nude mice and their intact littermates

    DEFF Research Database (Denmark)

    Brünner, N; Svenstrup, B; Spang-Thomsen, M

    1986-01-01

    An investigation was made of the serum steroid levels found in intact and endocrine ablated nude mice of both sexes and in their intact homozygous littermates. The results showed that nude mice have a normal steroidogenesis, but with decreased levels of circulating steroids compared to those...

  13. Two Genetically Similar H9N2 Influenza A Viruses Show Different Pathogenicity in Mice

    Directory of Open Access Journals (Sweden)

    Qingtao Liu

    2016-11-01

    Full Text Available H9N2 Avian influenza virus has repeatedly infected humans and other mammals, which highlights the need to determine the pathogenicity and the corresponding mechanism of this virus for mammals. In this study, we found two H9N2 viruses with similar genetic background but with different pathogenicity in mice. The A/duck/Nanjing/06/2003 (NJ06 virus was highly pathogenic for mice, with a 50% mouse lethal dose of 102.83 50% egg infectious dose, whereas the A/duck/Nanjing/01/1999 (NJ01 virus was low pathogenic for mice, with a 50% mouse lethal dose of >106.81 50% egg infectious dose. Further studies showed that the NJ06 virus grew faster and reached significantly higher titers than NJ01 in vivo and in vitro. Moreover, the NJ06 virus induced more severe lung lesions, and higher levels of inflammatory cellular infiltration and cytokine response in lungs than NJ01 did. However, only twelve different amino acid residues (HA-K157E, NA-A9T, NA-R435K, PB2-T149P, PB2-K627E, PB1-R187K, PA-L548M, PA-M550L, NP-G127E, NP-P277H, NP-D340N, NS1-D171N were found between the two viruses, and all these residues except for NA-R435K were located in the known functional regions involved in interaction of viral proteins or between the virus and host factors. Summary, our results suggest that multiple amino acid differences may be responsible for the higher pathogenicity of the NJ06 virus for mice, resulting in lethal infection, enhanced viral replication, severe lung lesions, and excessive inflammatory cellular infiltration and cytokine response in lungs. These observations will be helpful for better understanding the pathogenic potential and the corresponding molecular basis of H9N2 viruses that might pose threats to human health in the future.

  14. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  15. Effects of sulekang capsule in enhancement of resistance to radiation and regulating immunological function in mice

    International Nuclear Information System (INIS)

    Zhao Naikun; Zhou Ouliang; Du Weixia

    1990-01-01

    The effects of Sulekang capsule in enhancing the resistance to radiation and regulating the immunological function in mice were described. The results show that Sulekang capsule may lengthen the survival time (p 60 Co gamma rays. The experimental results of ANAE reaction show that the activety of T cells of normal or exposed mice may be enhanced by Sulekang capsule, which can control the decrease of both ANAE-positive cells and T cells in exposed mice. So it may enhance the immunological function on exposed animals

  16. Assessment of the effect of prolonged forced swimming on CD-1 mice sperm morphology with and without antioxidant supplementation.

    Science.gov (United States)

    Rodriguez, I; Diaz, A; Vaamonde, D

    2016-04-01

    As physical exercise has been shown to negatively affect sperm morphology, this study was undertaken to assess the effect of a 3-min forced swimming protocol during 50 days, with and without administration of antioxidants [N-acetylcysteine (NAC) and trans-resveratrol], on sperm morphology in CD-1 mice. Forty-four 13-week-old CD-1 mice were randomly allocated to four different groups: mice not submitted to exercise, control group (CG), mice submitted to swimming without administration of antioxidants (EX), mice submitted to swimming that received trans-resveratrol supplementation [exercise group (EX)+Resv] and mice submitted to swimming exercise that received NAC supplementation (EX+NAC). The EX showed 30.5% of spermatozoa with normal morphology, showing significant differences with regard to the CG, which showed 58.5%. The groups receiving antioxidant supplements showed significantly higher percentages of spermatozoa with normal morphology in comparison with the EX group (EX+Resv: 64.1%, EX+NAC: 48.2%). The imposed model of forced swimming caused alterations in sperm morphology. The antioxidants employed seem to be suitable antioxidants for avoiding exercise-associated sperm morphology anomalies in prolonged forced swimming exercise. Trans-resveratrol has proven to be more efficient for this purpose. © 2015 Blackwell Verlag GmbH.

  17. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  18. Liver regeneration in mice bearing a transplanted hepatoma.

    Science.gov (United States)

    Badran, A F; Moreno, F R; Echave Llanos, J M

    1984-01-01

    The hepatocyte mitotic index curve in hepatectomized hepatoma-bearing mice, rises earlier, has a greater amplitude and is less synchronized than that of normal hepatectomized mice. This indicates a stimulation (more mitosis in a shorter time period) produced by the presence of the tumors. The sinusoid litoral cells mitotic index curve in hepatectomized hepatoma-bearing mice appears earlier and is much less synchronized than that of normal hepatectomized mice. Nevertheless both curves have the same amplitude for the whole sampling period and the early stimulation is quickly compensated by lower values (apparent inhibition) appearing in the resting (light) period.

  19. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    Directory of Open Access Journals (Sweden)

    Carol L Murray

    Full Text Available Interleukin-1 (IL-1 is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI. IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/- mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/- animals. Therefore, in the current study we compared wildtype (WT mice to IL-1RI(-/- mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/- mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/- mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/- mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/- mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/- mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal

  20. The chondrogenic response to exercise in the proximal femur of normal and mdx mice

    Directory of Open Access Journals (Sweden)

    Nye David J

    2010-09-01

    Full Text Available Abstract Background Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response to voluntary exercise in dystrophin-deficient mice. Methods Control and dystrophin-deficient (mdx mice were divided into sedentary and exercise-treated groups and tested for chondral histomorphometric differences at the proximal femur. Results Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically significant (P > 0.05. However, exercised control mice exhibited significantly enlarged femur head diameter, articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary controls and exercised mdx mice (P Conclusions Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue may not be a clinical concern with dystrophinopathy.

  1. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  2. Inhibitory effects of prior low-dose X-ray irradiation on carbon tetrachloride-induced hepatopathy in acatalasemic mice

    International Nuclear Information System (INIS)

    Yamaoka, Kiyonori; Kataoka, Takahiro; Taguchi, Takehito; Wang, Da-Hong; Mori, Shuji; Hanamoto, Katsumi; Kira, Shohei; Nomura, Takaharu

    2004-01-01

    The catalase activities in blood and organs of the acatalasemic (C3H/AnLCs b Cs b ) mouse of C3H strain are lower than those of the normal (C3H/AnLCs a Cs a ) mouse. We examined the effects of prior low-dose (0.5 Gy) X-ray irradiation, which reduced the oxidative damage under carbon tetrachloride-induced hepatopathy in the acatalasemic or normal mice. The acatalasemic mice showed a significantly lower catalase activity and a significantly higher glutathione peroxidase activity compared with those in the normal mice. Moreover, low-dose irradiation increased the catalase activity in the acatalasemic mouse liver to a level similar to that of the normal mouse liver. Pathological examinations and analyses of blood glutamic oxaloacetic and glutamic pyruvic transaminase activity and lipid peroxide levels showed that carbon tetrachloride induced hepatopathy was inhibited by low-dose irradiation. These findings may indicate that the free radical reaction induced by the lack of catalase and the administration of carbon tetrachloride is more properly neutralized by high glutathione peroxidase activity and low-dose irradiation in the acatalasemic mouse liver. (author)

  3. Case report of a young stroke patient showing interim normalization of the MRI diffusion-weighted imaging lesion

    International Nuclear Information System (INIS)

    Ostwaldt, Ann-Christin; Usnich, Tatiana; Nolte, Christian H.; Villringer, Kersten; Fiebach, Jochen B.

    2015-01-01

    In acute ischemic stroke, diffusion weighted imaging (DWI) shows hyperintensities and is considered to indicate irreversibly damaged tissue. We present the case of a young stroke patient with unusual variability in the development of signal intensities within the same vessel territory. A 35-year-old patient presented with symptoms of global aphasia and hypesthesia of the left hand. MRI demonstrated a scattered lesion in the MCA territory. After rtPA therapy the patient received further MRI examination, three times on day 1, and once on day 2, 3, 5 and 43. The posterior part of the lesion showed the usual pattern with increasing DWI hyperintensity and decreased ADC, as well as delayed FLAIR positivity. However, the anterior part of the lesion, which was clearly visible in the first examination completely normalized on the first day and only reappeared on day 2. This was accompanied by a normalization of the ADC as well as an even further delayed FLAIR positivity. We showed that interim normalization of DWI and ADC in the acute phase can not only be found in rodent models of stroke, but also in humans. We propose that DWI lesion development might be more variable during the first 24 h after stroke than previously assumed

  4. Collagen VII deficient mice show morphologic and histologic corneal changes that phenotypically mimic human dystrophic epidermolysis bullosa of the eye.

    Science.gov (United States)

    Chen, Vicki M; Shelke, Rajani; Nyström, Alexander; Laver, Nora; Sampson, James F; Zhiyi, Cao; Bhat, Najma; Panjwani, Noorjahan

    2018-06-16

    Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The immune-histologic and morphologic changes in the corneas of the mouse model for this disease have not been described in the literature. Our purpose is to characterize the eyes of these mice to determine if this is an appropriate model for study of human therapeutics. Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess the relative collagen VII protein levels and its location within the cornea. Additional IHC for inflammatory and fibrotic biomarkers alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting opacification of the corneas of animals of differing ages were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. IHC and WB confirmed that these mice are deficient in collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-β showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-β appear to be

  5. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  6. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    Science.gov (United States)

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Adaptation to experimental jet-lag in R6/2 mice despite circadian dysrhythmia.

    Directory of Open Access Journals (Sweden)

    Nigel I Wood

    Full Text Available The R6/2 transgenic mouse model of Huntington's disease (HD shows a disintegration of circadian rhythms that can be delayed by pharmacological and non-pharmacological means. Since the molecular machinery underlying the circadian clocks is intact, albeit progressively dysfunctional, we wondered if light phase shifts could modulate the deterioration in daily rhythms in R6/2 mice. Mice were subjected to four x 4 hour advances in light onset. R6/2 mice adapted to phase advances, although angles of entrainment increased with age. A second cohort was subjected to a jet-lag paradigm (6 hour delay or advance in light onset, then reversal after 2 weeks. R6/2 mice adapted to the original shift, but could not adjust accurately to the reversal. Interestingly, phase shifts ameliorated the circadian rhythm breakdown seen in R6/2 mice under normal LD conditions. Our previous finding that the circadian period (tau of 16 week old R6/2 mice shortens to approximately 23 hours may explain how they adapt to phase advances and maintain regular circadian rhythms. We tested this using a 23 hour period light/dark cycle. R6/2 mice entrained to this cycle, but onsets of activity continued to advance, and circadian rhythms still disintegrated. Therefore, the beneficial effects of phase-shifting are not due solely to the light cycle being closer to the tau of the mice. Our data show that R6/2 mice can adapt to changes in the LD schedule, even beyond the age when their circadian rhythms would normally disintegrate. Nevertheless, they show abnormal responses to changes in light cycles. These might be caused by a shortened tau, impaired photic re-synchronization, impaired light detection and/or reduced masking by evening light. If similar abnormalities are present in HD patients, they may suffer exaggerated jet-lag. Since the underlying molecular clock mechanism remains intact, light may be a useful treatment for circadian dysfunction in HD.

  8. Motivational Disturbances and Effects of L-dopa Administration in Neurofibromatosis-1 Model Mice

    Science.gov (United States)

    Wozniak, David F.; Diggs-Andrews, Kelly A.; Conyers, Sara; Yuede, Carla M.; Dearborn, Joshua T.; Brown, Jacquelyn A.; Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F.; Gutmann, David H.

    2013-01-01

    Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1

  9. Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice.

    Directory of Open Access Journals (Sweden)

    David F Wozniak

    Full Text Available Children with neurofibromatosis type 1 (NF1 frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice. In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at

  10. Sunitinib DDI with paracetamol, diclofenac, mefenamic acid and ibuprofen shows sex-divergent effects on the tissue uptake and distribution pattern of sunitinib in mice.

    Science.gov (United States)

    Tan, Siok Yean; Wong, Mei Mei; Tiew, Angela Lu Wun; Choo, Yai Wen; Lim, Suat Hun; Ooi, Ing Hong; Modamio, Pilar; Fernández, Cecilia; Mariño, Eduardo L; Segarra, Ignacio

    2016-10-01

    Pharmacokinetic interaction of sunitinib with diclofenac, paracetamol, mefenamic acid and ibuprofen was evaluated due to their P450 mediated metabolism and OATP1B1, OATP1B3, ABCB1, ABCG2 transporters overlapping features. Male and female mice were administered 6 sunitinib doses (60 mg/kg) PO every 12 h and 30 min before the last dose were administered vehicle (control groups), 250 mg/kg paracetamol, 30 mg/kg diclofenac, 50 mg/kg mefenamic acid or 30 mg/kg ibuprofen (study groups), euthanized 6 h post last administration and sunitinib plasma, liver, kidney, brain concentrations analyzed. Ibuprofen halved sunitinib plasma concentration in female mice (p Diclofenac and paracetamol female mice showed 45 and 25 % higher plasma concentrations than male mice which were 27 % lower in mefenamic acid female mice. Paracetamol increased 2.2 (p diclofenac, paracetamol, mefenamic acid and ibuprofen (p diclofenac group in male mice (liver, brain) and female mice (liver, kidney). These results portray gender-based sunitinib pharmacokinetic differences and NSAIDs selective effects on male or female mice, with potential clinical translatability.

  11. INFLUENCE OF MICROBIOTA IN EXPERIMENTAL CUTANEOUS LEISHMANIASIS IN SWISS MICE

    Directory of Open Access Journals (Sweden)

    OLIVEIRA Marcia Rosa de

    1999-01-01

    Full Text Available Infection of Swiss/NIH mice with Leishmania major was compared with infection in isogenic resistant C57BL/6 and susceptible BALB/c mice. Swiss/NIH mice showed self-controlled lesions in the injected foot pad. The production of high levels of interferon-g (IFN-g and low levels of interleukin-4 (IL-4 by cells from these animals suggests that they mount a Th1-type immune response. The importance of the indigenous microbiota on the development of murine leishmaniasis was investigated by infecting germfree Swiss/NIH in the hind footpad with L. major and conventionalizing after 3 weeks of infection. Lesions from conventionalized Swiss/NIH mice were significantly larger than conventional mice. Histopathological analysis of lesions from conventionalized animals showed abscesses of variable shapes and sizes and high numbers of parasitized macrophages. In the lesions from conventional mice, besides the absence of abscess formation, parasites were rarely observed. On the other hand, cells from conventional and conventionalized mice produced similar Th1-type response characterized by high levels of IFN-g and low levels of IL-4. In this study, we demonstrated that Swiss/NIH mice are resistant to L. major infection and that the absence of the normal microbiota at the beginning of infection significantly influenced the lesion size and the inflammatory response at the site of infection.

  12. Effect of Guava Extract Administration on Megakaryocytes Amount in Mice Femur

    Directory of Open Access Journals (Sweden)

    Nur Atik

    2017-06-01

    Full Text Available Dengue fever is a disease spread by mosquito’s bite. Dengue fever is marked by the presence of thrombocytopenia. Traditional crops such as guava are commonly used to treat dengue fever. This research aims to know the effect of guava extract administration towards megakaryocytes amount in mice femur. The study was conducted at the Laboratory of Pharmacology and Therapy, Histology Laboratory of Faculty of Medicine at Universitas Padjadjaran, Eijkman, Bandung from September until November 2016 using laboratory experimental study design. 20 Swiss webster mice strains were divided randomly into 4 groups. Group I and II were administered quinine 2.8 mg/20 grBW/day for 14 days to decrease amount of trombocytes. Group II and III were administered guava extract 0.785 mg/20 grBW/day for 5 days. Group IV was administered aquadest for 19 days. In the 27th day, the mice left femurs were collected and made into paraffin section preparations with hematoxylin-eosin staining and then observed under microscope. Group IV had the most megakaryocytes followed by Group II, III, and I. Based on Kruskal-Wallis test, a significant difference was shown (p<0.05. Mann-Whitney test showed that there were significant differences between Group I and Group II, III, and IV. Meanwhile there was no significant difference between normal mice and extract-given mice. Guava extract is proven statistically significant to increase the megakaryocytes amount in thrombocytopenic mice without increasing number of megakaryocytes in normal mice.

  13. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Cassava is not a goitrogen in mice

    International Nuclear Information System (INIS)

    Hershman, J.M.; Pekary, A.E.; Sugawara, M.; Adler, M.; Turner, L.; Demetriou, J.A.; Hershman, J.D.

    1985-01-01

    To examine the effect of cassava on the thyroid function of mice, the authors fed fresh cassava root to mice and compared this diet with low iodine diet and Purina. Cassava provided a low iodine intake and increased urine thiocyanate excretion and serum thiocyanate levels. Mice on cassava lost weight. The thyroid glands of mice on cassava were not enlarged, even when normalized for body weight. The 4- and 24-hr thyroid uptakes of mice on cassava were similar to those of mice on low iodine diets. Protein-bound [ 125 I]iodine at 24 hr was high in mice on either the cassava or low iodine diets. The thyroid iodide trap (T/M) was similar in mice on cassava and low iodine diets. When thiocyanate was added in vitro to the incubation medium, T/M was reduced in all groups of mice; under these conditions, thiocyanate caused a dose-related inhibition of T/M. The serum thyroxine (T4) and triiodothyronine (T3) concentrations of mice on cassava were reduced compared with mice on Purina diet. Thyroid T4 and T3 contents of mice on cassava were relatively low compared with mice on Purina diet. Hepatic T3 content and T4 5'-monodeiodination in liver homogenates were reduced in mice on cassava compared with other groups. The data show that cassava does not cause goiter in mice. The thiocyanate formed from ingestation of cassava is insufficient to inhibit thyroid iodide transport or organification of iodide. The cassava diet leads to rapid turnover of hormonal iodine because it is a low iodine diet. It also impairs 5'-monodeiodination of T4 which may be related to nutritional deficiency. These data in mice do not support the concept that cassava per se has goitrogenic action in man

  15. Role of green tea on nicotine toxicity on liver and lung of mice ...

    African Journals Online (AJOL)

    DR_Mohsen

    2012-01-26

    Jan 26, 2012 ... formation of lipid peroxidative products (Zhen et al.,. 2007). Antioxidant .... mg/kg green tea for three weeks showing normal lung structure with ..... injury in experimental model of carrageenan induced pleurisy in mice. Resp.

  16. A Valepotriate Fraction of Valeriana glechomifolia Shows Sedative and Anxiolytic Properties and Impairs Recognition But Not Aversive Memory in Mice

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2011-01-01

    Full Text Available Plants of the genus Valeriana (Valerianaceae are used in traditional medicine as a mild sedative, antispasmodic and tranquilizer in many countries. This study was undertaken to explore the neurobehavioral effects of systemic administration of a valepotriate extract fraction of known quantitative composition of Valeriana glechomifolia (endemic of southern Brazil in mice. Adult animals were treated with a single intraperitoneal injection of valepotriate fraction (VF in the concentrations of 1, 3 or 10 mg kg-1, or with vehicle in the pre-training period before each behavioral test. During the exploration of an open field, mice treated with 10 mg kg-1 of VF showed reduced locomotion and exploratory behavior. Although overall habituation sessions for locomotion and exploratory behavior among vehicle control and doses of VF were not affected, comparison between open-field and habituation sessions within each treatment showed that VF administration at 1 and 10 mg kg-1 impaired habituation. In the elevated plus-maze test, mice treated with VF (10 mg kg-1 showed a significant increase in the percentage of time spent in the open arms without significant effects in the number of total arm entries. VF at 3 mg kg-1 produced an impairment of novel-object recognition memory. In contrast, VF did not affect fear-related memory assessed in an inhibitory avoidance task. The results indicate that VF can have sedative effects and affect behavioral parameters related to recognition memory.

  17. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    Science.gov (United States)

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  18. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  19. Evaluation of Anticonvulsive ٍEffect of Magnesium Oxide Nanoparticles in Comparison with Conventional MgO in Diabetic and Non-diabetic Male Mice

    Directory of Open Access Journals (Sweden)

    Leila Jahangiri

    2014-05-01

    Full Text Available Introduction: Some studies show magnesium has anticonvulsive effect in some animal models. Despite of the availability of well-studied anticonvulsant drugs, this evaluation was not carried on new kind of magnesium supplement, magnesium oxide nanoparticles (nMgO. According to the interaction between magnesium and convulsion, this study was designed to evaluate the effect of nMgO on strychnine-induced convulsive model in compared to its conventional in diabetic and normal mice. Methods: Healthy male albino mice were divided to 10 groups. Diabete mellitus was induced by streptozocin in 5 groups. Conventional and nanoparticle MgO (5&10mg/kg in presence and absence diabetes injected to mice, then strychnine injected and onset of convulsions and time of death were measured after strychnine administration. Results: Convulsive parameters did not change in normal and diabetic mice. cMgO pretreatment did not have anticonvulsant effect in strychnine-induced convulsion in normal and diabetic mice. But nMgO significantly changed convulsion onset and death time after strychnine administration in normal and diabetic status. Discussion: According to our results It seems that nMgO may be important in prevention or treatment of epilepsy and has more efficacy than its conventional form to showing anticonvulsive effect that probably is related to the physicochemical properties of nMgO, specially in diabetic subjects, a point that need to further investigation.

  20. Cell-extrinsic defective lymphocyte development in Lmna(-/- mice.

    Directory of Open Access Journals (Sweden)

    J Scott Hale

    2010-04-01

    Full Text Available Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna(-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna(-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.Lmna(-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna(-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4(+ and CD8(+ T cells. Transplantation of Lmna(-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna(-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna(-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.

  1. Tracheal sound parameters of respiratory cycle phases show differences between flow-limited and normal breathing during sleep

    International Nuclear Information System (INIS)

    Kulkas, A; Huupponen, E; Virkkala, J; Saastamoinen, A; Rauhala, E; Tenhunen, M; Himanen, S-L

    2010-01-01

    The objective of the present work was to develop new computational parameters to examine the characteristics of respiratory cycle phases from the tracheal breathing sound signal during sleep. Tracheal sound data from 14 patients (10 males and 4 females) were examined. From each patient, a 10 min long section of normal and a 10 min section of flow-limited breathing during sleep were analysed. The computationally determined proportional durations of the respiratory phases were first investigated. Moreover, the phase durations and breathing sound amplitude levels were used to calculate the area under the breathing sound envelope signal during inspiration and expiration phases. An inspiratory sound index was then developed to provide the percentage of this type of area during the inspiratory phase with respect to the combined area of inspiratory and expiratory phases. The proportional duration of the inspiratory phase showed statistically significantly higher values during flow-limited breathing than during normal breathing and inspiratory pause displayed an opposite difference. The inspiratory sound index showed statistically significantly higher values during flow-limited breathing than during normal breathing. The presented novel computational parameters could contribute to the examination of sleep-disordered breathing or as a screening tool

  2. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

    Directory of Open Access Journals (Sweden)

    Nicholas J. Anderson

    2014-06-01

    Full Text Available One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity and central nervous system function (learning ability, memory were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

  3. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  4. Effects of Lizhong Tang on gastrointestinal motility in mice.

    Science.gov (United States)

    Lee, Min Cheol; Ha, Wooram; Park, Jinhyeong; Kim, Junghoon; Jung, Yunjin; Kim, Byung Joo

    2016-09-14

    To investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice. The in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). In normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits. These results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.

  5. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β.

    Science.gov (United States)

    Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas

    2016-04-01

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  7. Treated of type 1 diabetes mellitus in non-obese diabetic mice by transplantation of allogeneic bone marrow and pancreatic tissue

    International Nuclear Information System (INIS)

    Yasumizu, R.; Sugiura, K.; Iwai, H.

    1987-01-01

    Non-obese diabetic (NOD) mice provide a model for type 1 diabetes mellitus. We previously showed that allogeneic bone marrow transplantation (ABMT) can prevent and treat insulitis and overt diabetes in NOD mice. However, ABMT alone could not be used to treat overt diabetes in NOD mice whose islets had been completely destroyed. To provide insulin-producing cells, pancreatic tissue from newborn mice was grafted under the renal capsules in combination with ABMT. The aims of concomitant ABMT are as follows. (i) It induces immunological tolerance to the donor-type major histocompatibility complex determinants and permits the host to accept subsequent pancreatic allografts from the bone marrow donor. (ii) ABMT replaces abnormal stem cells with normal stem cells. After transplantation of bone marrow plus newborn pancreas, NOD mice showed reduction of the glycosuria and a normal response in the glucose-tolerance test. Immunohistological study revealed the presence of clustered insulin-containing beta cells in the grafted pancreatic transplants. ABMT may become a viable treatment of established type 1 diabetes mellitus in humans

  8. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice.

    Science.gov (United States)

    Liu, Jing-yu; Feng, Cui-ping; Li, Xing; Chang, Ming-chang; Meng, Jun-long; Xu, Li-jing

    2016-05-01

    To evaluate the immune activation and reactive oxygen species scavenging activity of Cordyceps militaris polysaccharides (CMP) in vivo, 24 male and 24 female Kunming mice were randomly divided into four groups. The mice in the four experimental groups were administered 0 (normal control), 50, 100, or 200mg/kg/d body weight CMP via gavage. After 30 days, the viscera index, leukocyte count, differential leukocyte count, immunoglobulin (IgG) levels, and biochemical parameters were measured. The effect of CMP on the expression of tumor necrosis (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-1β in the spleens of experimental mice was investigated by real-time polymerase chain reaction. The results showed that the administration of CMP improved the immune function in mice, significantly increased the spleen and thymus indices, the spleen lymphocyte activity, the total quantity of white blood cells, and IgG function in mice serum. CMP exhibited significant antioxidative activity in mice, and decreased malondialdehyde levels in vivo. CMP upregulated the expression of TNF-α, IFN-γ, and IL-1β mRNA in high-dose groups compared to that observed for the control mice. We can thus conclude that CMP effectively improved the immune function through protection against oxidative stress. CMP thus shows potential for development as drugs and health supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  10. Radioresistant CD4+ T cells in normal, unprimed mice, with verification of the Bergonie-Tribondeau law

    International Nuclear Information System (INIS)

    Makidono, Reiko; Ito, Akira.

    1997-01-01

    This is the first report on radioresistant CD4+ T cells found in normal, unprimed mice. After sublethal whole body irradiation, regular CD4+ as well as primitive NK1.1+ CD4+ T cells were enriched in the spleen. Since it has been well established that virgin T and B cells are highly radiosensitive, these cells were once assumed to be a unique lymphocyte population for which radiosensitivity does not follow the general law of radiation sensitivity for mammalian cells (Bergonie-Tribondeau law). These cells exhibited higher proliferative response to accessory cells than the non-irradiated control cells in the syngeneic mixed leukocyte reaction (SMLR). This indicated that virgin CD4+ T cells sensitized to, and readily respond to self-MHC class II molecules are radioresistant, and that their radioresistance, as activated cells, is consistent with the Bergonie-Tribondeau law. (author)

  11. Histomorphological effects of isoniazid induced hepatotoxicity in male albino mice

    International Nuclear Information System (INIS)

    Humayun, F.; Zareen, N.

    2017-01-01

    To observe the histomorphological changes of isoniazid induced hepatotoxicity in male albino mice. Methodology: This experimental study was carried out at University of Health Sciences, Lahore, Pakistan from January to December 2013. Forty male albino mice selected by simple random technique, were divided into two groups; A-Control, and B-experimental. Group A comprised of 15, while Group B comprised 25 mice. Both the groups were kept under identical conditions and diet. However, experimental group was treated with an additional oral hepatotoxic dose of isoniazid i.e. 100mg/kg bodyweight daily for 30 days. After 30 days, the animals were sacrificed and livers were dissected out. Gross comparison of the organ and stained sections were histologically compared for morphological differences between the groups. Fischer Exact test was used to analyze the qualitative data and a p<0.05 was considered significant. Results: Group A animals showed the normal liver architecture. Whereas, those of Group B showed deranged hepatic histomorphology. Conclusion: Hepatotoxic dose of Isoniazid caused histomorphological alterations in the liver of male albino mice. (author)

  12. Spatial reversal learning in preclinical scrapie-inoculated mice.

    Science.gov (United States)

    Lysons, A M; Woollard, S J

    1996-04-10

    Acquisition and reversal of a two-choice spatial discrimination were tested in scrapie-inoculated mice. Both acquisition and reversal were normal in mice tested 138 and 103 days prior to the onset of clinical symptoms. At 65 days before onset of clinical symptoms, scrapie-inoculated mice required more trails to criterion in reversal learning, but this effect was not significant in a second experiment (68 days preclinical) and was transient: no effect was seen 33 days before symptoms. However, the course of reversal learning was abnormal in all three late preclinical groups (68, 65 and 33 days before symptoms). Reversal learning in these three groups was characterized by a rapid extinction of the original discrimination, followed by a period, absent in controls, during which performance showed no further improvement. This effect corresponds in time of onset to the appearance of characteristic neuropathological features.

  13. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of Jiangzhi tablet on gastrointestinal propulsive function in mice

    Science.gov (United States)

    Wang, Xiangrong; Geng, Xiuli; Zhao, Jingsheng; Fan, Lili; Zhang, Zhengchen

    2018-04-01

    This paper aims to study the effect of lipid-lowering tablets on gastric emptying and small intestinal propulsion in mice. Mice were randomly divided into control group, Digestant Pill group, Jiangzhi tablet group, middle dose and small dose, the mice gastric emptying phenolsulfonphthalein, gastric residual rate of phenol red indicator to evaluate the gastric emptying rate, residual rate of detection in mouse stomach; small intestine propulsion and selection of carbon ink as the experimental index. Effects were observed to promote the function of normal mice gastric emptying and intestine. The gastric emptying and small intestinal motor function of normal mice were all promoted by each administration group, and the effect was most obvious in small dose group. The effect of reducing blood lipid on gastrointestinal motility of mice ware obviously enhanced.

  15. The influence of elevated endogenous free radical production on apoptosis and genomic instability in transgenic growth hormone mice

    International Nuclear Information System (INIS)

    Lemon, J.A.; Rollo, D.; Boreham, D.R.

    2003-01-01

    Full text: Previous studies have shown transgenic growth hormone mice (TGM) have significantly elevated levels of endogenous reactive oxygen species (ROS) and lipid peroxidation, shortened lifespan (approximately 50% of normal siblings), greatly enhanced learning in youth, and accelerated aging with a rapid age-related loss of cognitive abilities. A complex oral antioxidant supplement was found to completely abolish the cognitive decline and significantly extend longevity in TGM. We have determined in a recently completed experiment studying radiation-induced apoptosis that the antioxidant supplement significantly reduces the elevated level of apoptosis seen in untreated old TGM compared to age-matched controls. It was also determined that older normal mice treated with the supplement also show a reduction in apoptosis. We are conducting experiments using spectral karyotyping to examine genomic instability in TGM and their normal siblings, that indicate, given their elevated ROS, TGM show an increase in chromosome aberrations compared to normal controls. Based on our previous experiments we speculate that TGM treated with the antioxidant supplement are expected to show a reduction in ROS induced chromosome aberrations

  16. Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2013-01-01

    Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng +/- mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng +/+ mice). This study was aimed at investigating whether reduced tissue damage in Eng +/- mice also results in superior kidney function. Material and Methods: Kidneys of Eng +/+ and Eng +/- mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation. Results: Eng +/- mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng +/+ mice at 40 weeks after irradiation. Irradiation of Eng +/+ kidneys damaged the vascular network and led to an increase in PDGFR-β positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng +/+ kidneys, vascular perfusion and number of PDGFR-β positive cells were reduced in Eng +/- control mice; however, this did not further deteriorate after irradiation. Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng +/- compared to Eng +/+ mice

  17. Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice

    Science.gov (United States)

    Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in

  18. Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram

    DEFF Research Database (Denmark)

    Epp, Bastian; Hots, J.; Verhey, J. L.

    2012-01-01

    Recent auditory brain stem response measurements in tinnitus subjects with normal audiograms indicate the presence of hidden hearing loss that manifests as reduced neural output from the cochlea at high sound intensities, and results from mice suggest a link to deafferentation of auditory nerve...... fibers. As deafferentation would lead to deficits in hearing performance, the present study investigates whether tinnitus patients with normal hearing thresholds show impairment in intensity discrimination compared to an audiometrically matched control group. Intensity discrimination thresholds were...... significantly increased in the tinnitus frequency range, consistent with the hypothesis that auditory nerve fiber deafferentation is associated with tinnitus....

  19. Effect of Powder Leaf Breadfruit Disposals (Arthocarpus Altilis) in Oil Mandar District and Polman Against Cholesterol and Glucose Mice (Mus Musculus)

    Science.gov (United States)

    Mu'nisa, A.; Asmawati, A.; Farida, A.; FA, Fressy; Erni

    2018-01-01

    The purpose of this study was to determine the effect of powdered leaves of breadfruit (Arthocarpus altilis) on oil is mandated origin of the Polman glucose and cholesterol levels in mice (Mus musculus). This study comprised 4 treatments and each treatment consisted of 5 replicates, ie groups of mice were fed a standard (negative control); 2 groups: group of mice fed with standard and cholesterol feed (positive control); Group 3 that mice fed with standard and Selayar oil; and group 4: group of mice fed with standard and Mandar oil that has been given powdered leaves of breadfruit. Measurement of glucose and blood cholesterol levels in mice done 3 times ie 2 weeks after the adaptation period (phase 1), 2 weeks after administration of the oil (phase 2) and 2 weeks after feeding cholesterol (stage 3). Based on the analysis of data both cholesterol and glucose levels showed that in a group of 4 decreased glucose and cholesterol levels in stage 2 but at stage 3 an increase in the group of mice given only the oil while in the group of mice given the oil and powdered leaves of breadfruit indicate glucose levels and normal cholesterol. The conclusion of this study show that the addition of powdered leaves of breadfruit into cooking oil Mandar influential in glucose levels and normalize blood cholesterol levels in mice.

  20. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    Science.gov (United States)

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  1. Interval timing in genetically modified mice: a simple paradigm.

    Science.gov (United States)

    Balci, F; Papachristos, E B; Gallistel, C R; Brunner, D; Gibson, J; Shumyatsky, G P

    2008-04-01

    We describe a behavioral screen for the quantitative study of interval timing and interval memory in mice. Mice learn to switch from a short-latency feeding station to a long-latency station when the short latency has passed without a feeding. The psychometric function is the cumulative distribution of switch latencies. Its median measures timing accuracy and its interquartile interval measures timing precision. Next, using this behavioral paradigm, we have examined mice with a gene knockout of the receptor for gastrin-releasing peptide that show enhanced (i.e. prolonged) freezing in fear conditioning. We have tested the hypothesis that the mutants freeze longer because they are more uncertain than wild types about when to expect the electric shock. The knockouts however show normal accuracy and precision in timing, so we have rejected this alternative hypothesis. Last, we conduct the pharmacological validation of our behavioral screen using d-amphetamine and methamphetamine. We suggest including the analysis of interval timing and temporal memory in tests of genetically modified mice for learning and memory and argue that our paradigm allows this to be done simply and efficiently.

  2. AβPP/PS1 Transgenic Mice Show Sex Differences in the Cerebellum Associated with Aging.

    Science.gov (United States)

    Ordoñez-Gutierrez, Lara; Fernandez-Perez, Ivan; Herrera, Jose Luis; Anton, Marta; Benito-Cuesta, Irene; Wandosell, Francisco

    2016-09-06

    Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AβPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AβPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-β accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.

  3. Residual haematopoietic damage in adult and 8 day-old mice exposed to 7 Gy of x-rays

    International Nuclear Information System (INIS)

    Grande, T.; Bueren, J.A.; Gaitan, S.; Tejero, C.

    1993-01-01

    The authors' experiments have focused on the analysis of residual haematopoietic damage in 8-day-old and 12-week-old mice X-irradiated with a single dose of 7 Gy. In the case of adult mice, analysis of femoral and splenic CFU-S, CFU-GM and BFU-E showed a persistent depletion of these haematopoietic progenitor cells after irradiation. In contrast, in 1-week-old irradiated mice, a progressive recovery of the femoral haematopoietic progenitors was observed, achieving essentially normal values 1 year after irradiation. The spleens of these mice, however, contained significantly less haematopoietic progenitors than the control group, mainly as a consequence of the size reduction of this organ. In the peripheral blood, normal cellularity values were observed in most cases, although in the adult group a decline in numbers or circulating cells was noted after the first year following irradiation. (author)

  4. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  5. Immunomodulatory and protective effect of probiotic Lactobacillus casei against Candida albicans infection in malnourished mice.

    Science.gov (United States)

    Villena, Julio; Salva, Susana; Agüero, Graciela; Alvarez, Susana

    2011-06-01

    The effect of Lactobacillus casei CRL 431 (Lc), when administered as a supplement to a repletion diet, on the resistance of malnourished mice to Candida albicans infection was studied. Weaned mice were malnourished by being given a protein-free diet (PFD) for 21 days. The malnourished mice were then fed a balanced conventional diet (BCD) for 7 days or BCD for 7 days with supplemental Lc on days 6 and 7 (BCD+Lc). Malnourished (MNC) and well-nourished (WNC) mice were used as controls. At the end of the treatments the mice were infected intraperitoneally with C. albicans. Animals that had received probiotics had improved survival and resistance against this infection compared to those in the BCD and MNC groups. The number and fungicidal activity of phagocytes, and the concentrations of tumor necrosis factor-α, interferon-γ and interleukin-6 (IL-6), increased in blood and infected tissues in all experimental groups, but MNC mice showed lower concentrations than those in the WNC group. BCD and BCD+Lc mice showed higher concentrations of these variables than those in the MNC group, but only the BCD+Lc group presented values similar to the WNC mice. Malnutrition also impaired the production of IL-17 and IL-10 in response to infection. Both repletion treatments normalized IL-17 concentrations, but IL-10 in the BCD+Lc group was significantly higher than in WNC mice. The addition of L. casei to the repletion diet normalized the immune response against C. albicans, allowing efficient recruitment and activation of phagocytes, as well as effective release of pro-inflammatory cytokines. In addition, probiotic treatment induced an increase in IL-10 concentrations, which would have helped to prevent damage caused by the inflammatory response. © 2011 The Societies and Blackwell Publishing Asia Pty Ltd.

  6. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a.

    Science.gov (United States)

    Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V

    2017-06-01

    Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.

  7. Oxygen tension measurements of tumors growing in mice

    International Nuclear Information System (INIS)

    Adam, Markus F.; Dorie, Mary Jo; Brown, J. Martin

    1999-01-01

    Purpose: Clinical studies using the Eppendorf histograph have shown that patients whose tumors have a low pO 2 have worse local control after radiotherapy, and have higher metastatic rates. Because preclinical studies of methods of overcoming, or exploiting, hypoxia generally use transplanted tumors in mice, we have compared the oxygenation of mouse tumors with human tumors to determine the appropriateness of the transplanted mouse model for such preclinical studies. Methods and Materials: We evaluated the oxygenation status of subcutaneous (s.c.) tissue and of 12 intradermally (i.d.)- and 7 s.c.-growing mouse or human transplanted tumors in mice using the Eppendorf histograph, and compared the values obtained with measurements of human head and neck nodes. Results: The normal tissue pO 2 profile of air-breathing mice showed a nearly Gaussian distribution (38.2 ± 14.9 mmHg). Breathing 10% O 2 or carbogen resulted in dramatic changes in normal tissue oxygenation. Tumors growing intradermally in the back of air-breathing mice were extremely hypoxic and resistant to expected changes in oxygenation (carbogen breathing, size, and use of anesthetics). Tumors growing s.c. in the foot showed higher oxygen profiles with marked changes in oxygenation when exposing the animals to different levels of oxygen. However, the oxygenation of the mouse tumors transplanted in either site was only a fraction of that of the majority of human tumors. Conclusion: Experimental mouse tumors are markedly hypoxic, with median values of 10-20% of those of human tumors. Hence, mouse tumors are probably good models for the most hypoxic human tumors that respond poorly to radiotherapy; however, caution has to be exercised in extrapolating data from mouse to man

  8. The Mice Drawer System (MDS experiment and the space endurance record-breaking mice.

    Directory of Open Access Journals (Sweden)

    Ranieri Cancedda

    Full Text Available The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS, contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS. The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th, 2009. MDS returned to Earth on November 27(th, 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  9. The Mice Drawer System (MDS) experiment and the space endurance record-breaking mice.

    Science.gov (United States)

    Cancedda, Ranieri; Liu, Yi; Ruggiu, Alessandra; Tavella, Sara; Biticchi, Roberta; Santucci, Daniela; Schwartz, Silvia; Ciparelli, Paolo; Falcetti, Giancarlo; Tenconi, Chiara; Cotronei, Vittorio; Pignataro, Salvatore

    2012-01-01

    The Italian Space Agency, in line with its scientific strategies and the National Utilization Plan for the International Space Station (ISS), contracted Thales Alenia Space Italia to design and build a spaceflight payload for rodent research on ISS: the Mice Drawer System (MDS). The payload, to be integrated inside the Space Shuttle middeck during transportation and inside the Express Rack in the ISS during experiment execution, was designed to function autonomously for more than 3 months and to involve crew only for maintenance activities. In its first mission, three wild type (Wt) and three transgenic male mice over-expressing pleiotrophin under the control of a bone-specific promoter (PTN-Tg) were housed in the MDS. At the time of launch, animals were 2-months old. MDS reached the ISS on board of Shuttle Discovery Flight 17A/STS-128 on August 28(th), 2009. MDS returned to Earth on November 27(th), 2009 with Shuttle Atlantis Flight ULF3/STS-129 after 91 days, performing the longest permanence of mice in space. Unfortunately, during the MDS mission, one PTN-Tg and two Wt mice died due to health status or payload-related reasons. The remaining mice showed a normal behavior throughout the experiment and appeared in excellent health conditions at landing. During the experiment, the mice health conditions and their water and food consumption were daily checked. Upon landing mice were sacrificed, blood parameters measured and tissues dissected for subsequent analysis. To obtain as much information as possible on microgravity-induced tissue modifications, we organized a Tissue Sharing Program: 20 research groups from 6 countries participated. In order to distinguish between possible effects of the MDS housing conditions and effects due to the near-zero gravity environment, a ground replica of the flight experiment was performed at the University of Genova. Control tissues were collected also from mice maintained on Earth in standard vivarium cages.

  10. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Weaver, P.

    1994-01-01

    The recent cloning and characterization of recombinase genes (RAG- 1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice (wst). Our results revealed expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/sm-bullet mice). In thymus tissue, a small RAG-1 transcript was detected in wst/wst mice that was not evident in thymus from control mice. In wst/lg-bullet mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/sm-bullet and not from wst;/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  11. Acute exercise does not modify brain activity and memory performance in APP/PS1 mice.

    Science.gov (United States)

    Miki Stein, Angelica; Munive, Victor; Fernandez, Ana M; Nuñez, Angel; Torres Aleman, Ignacio

    2017-01-01

    Age is the main risk factor for Alzheimer´s disease (AD). With an increasingly aging population, development of affordable screening techniques to determine cognitive status will help identify population-at-risk for further follow-up. Because physical exercise is known to modulate cognitive performance, we used it as a functional test of cognitive health. Mice were submitted to treadmill running at moderate speed for 30 min, and their brain activity was monitored before and after exercise using electrocorticogram (ECG) recordings. After exercise, normal, but not APP/PS1 mice, a well established AD model, showed significantly increased ECG theta rhythm. At the same time normal, but not AD mice, showed significantly enhanced performance in a spatial memory test after exercise. Therefore, we postulate that a running bout coupled to pre- and post-exercise brain activity recordings will help identify individuals with cognitive alterations, by determining the presence or absence of exercise-specific changes in brain activity. Work in humans using a bout of moderate exercise plus electroencephalography, a clinically affordable procedure, is warranted.

  12. Acute exercise does not modify brain activity and memory performance in APP/PS1 mice.

    Directory of Open Access Journals (Sweden)

    Angelica Miki Stein

    Full Text Available Age is the main risk factor for Alzheimer´s disease (AD. With an increasingly aging population, development of affordable screening techniques to determine cognitive status will help identify population-at-risk for further follow-up. Because physical exercise is known to modulate cognitive performance, we used it as a functional test of cognitive health. Mice were submitted to treadmill running at moderate speed for 30 min, and their brain activity was monitored before and after exercise using electrocorticogram (ECG recordings. After exercise, normal, but not APP/PS1 mice, a well established AD model, showed significantly increased ECG theta rhythm. At the same time normal, but not AD mice, showed significantly enhanced performance in a spatial memory test after exercise. Therefore, we postulate that a running bout coupled to pre- and post-exercise brain activity recordings will help identify individuals with cognitive alterations, by determining the presence or absence of exercise-specific changes in brain activity. Work in humans using a bout of moderate exercise plus electroencephalography, a clinically affordable procedure, is warranted.

  13. C4.4A gene ablation is compatible with normal epidermal development and causes modest overt phenotypes

    DEFF Research Database (Denmark)

    Kriegbaum, Mette Camilla; Jacobsen, Benedikte; Füchtbauer, Annette

    2016-01-01

    of C4.4A in normal physiology and cancer progression. The unchallenged C4.4A-deficient mice were viable, fertile, born in a normal Mendelian distribution and, surprisingly, displayed normal development of squamous epithelia. The C4.4A-deficient mice were, nonetheless, significantly lighter than...

  14. Salivary gland hypofunction in tyrosylprotein sulfotransferase-2 knockout mice is due to primary hypothyroidism.

    Science.gov (United States)

    Westmuckett, Andrew D; Siefert, Joseph C; Tesiram, Yasvir A; Pinson, David M; Moore, Kevin L

    2013-01-01

    Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice. Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were (≈) 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine-induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s) extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight) and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes) were restored to normal or near normal by thyroid hormone supplementation. Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism.

  15. Salivary gland hypofunction in tyrosylprotein sulfotransferase-2 knockout mice is due to primary hypothyroidism.

    Directory of Open Access Journals (Sweden)

    Andrew D Westmuckett

    Full Text Available Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2. We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice.Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were (≈ 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine-induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes were restored to normal or near normal by thyroid hormone supplementation.Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism.

  16. Dark reticular cells in the thymus of mice

    Energy Technology Data Exchange (ETDEWEB)

    Jaerplid, B [Foersvarets Forskningsanstalt, Stockholm (Sweden)

    1974-01-01

    The morphology and distribution of dark reticular cells in the thymus of normal mice, of irradiated mice, and of mice with thymic lymphoma are described. It is concluded that dark cells are epithelial reticular cells and the hypothesis is suggested that dark and light epithelial reticular cells may be different modes of expression of the same cell type. (auth)

  17. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  18. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    Science.gov (United States)

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  19. Investigation of the antioxidant activity of chitooligosaccharides on mice with high-fat diet

    Directory of Open Access Journals (Sweden)

    Daofeng Qu

    Full Text Available ABSTRACT The objective of this study was to analyze the antioxidant activities of chitooligosaccharides (COS both in vitro and in high-fat diet (HFD-mouse model. In antioxidant assays in HFD-mouse model, mice were administered with normal diet, HFD, or HFD with 0.5% COS for six weeks. The administration of HFD with 0.5% COS resulted in significant increase in the activity of superoxide dismutase, catalase, and glutathione peroxidase in stomach, liver, and serum of mice as compared with the HFD-fed group, which means that COS may have certain antioxidant activity and can restore the activity of the enzymes affected by the HFD. Through morphological measurements of the small intestinal mucosa, mice fed HFD showed decreased villus height compared with other groups. On the other hand, HFD with 0.5% COS group showed similar ratio of villus height to depth compared with control mice, indicating that intestinal integrity was improved when COS was added. Chitooligosaccharides have potent antioxidant activity that can protect mice from oxidative stress.

  20. HIV-1 Nef mutations abrogating downregulation of CD4 affect other Nef functions and show reduced pathogenicity in transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Hu, Chunyan; Vincent, Patrick; Jolicoeur, Paul

    2006-01-01

    HIV-1 Nef has the ability to downmodulate CD4 cell surface expression. Several studies have shown that CD4 downregulation is required for efficient virus replication and high infectivity. However, the pathophysiological relevance of this phenomenon in vivo, independently of its role in sustaining high virus loads, remains unclear. We studied the impact of the CD4 downregulation function of Nef on its pathogenesis in vivo, in the absence of viral replication, in the CD4C/HIV transgenic (Tg) mouse model. Two independent Nef mutants (RD35/36AA and D174K), known to abrogate CD4 downregulation, were tested in Tg mice. Flow cytometry analysis showed that downregulation of murine CD4 was severely decreased or abrogated on Tg T cells expressing respectively Nef RD35/36AA and Nef D174K . Similarly, the severe depletion of double-positive CD4 + CD8 + and of single-positive CD4 + CD8 - thymocytes, usually observed with Nef Wt , was not detected in Nef RD35/36AA and Nef D174K Tg mice. However, both mutant Tg mice showed a partial depletion of peripheral CD4 + T cells. This was accompanied, as previously reported for Net Wt Tg mice, by the presence of an activated/memory-like phenotype (CD69 + , CD25 + , CD44 + , CD45RB Low , CD62 Low ) of CD4 + T cells expressing Nef RD35/36AA and to a lesser extent Nef D174K . In addition, both mutants retained the ability to block CD4 + T cell proliferation in vitro after anti-CD3 stimulation, but not to enhance apoptosis/death of CD4 + T cells. Therefore, it appears that Nef-mediated CD4 downregulation is associated with thymic defects, but segregates independently of the activated/memory-like phenotype, of the partial depletion and of the impaired in vitro proliferation of peripheral CD4 + T cells. Histopathological assessment revealed the total absence of or decrease severity and frequency of organ AIDS-like diseases (lung, heart and kidney pathologies) in respectively Nef RD35/36AA and Nef D174K Tg mice, relative to those developing in

  1. A rabies virus vampire bat variant shows increased neuroinvasiveness in mice when compared to a carnivore variant.

    Science.gov (United States)

    Mesquita, Leonardo Pereira; Gamon, Thais Helena Martins; Cuevas, Silvia Elena Campusano; Asano, Karen Miyuki; Fahl, Willian de Oliveira; Iamamoto, Keila; Scheffer, Karin Correa; Achkar, Samira Maria; Zanatto, Dennis Albert; Mori, Cláudia Madalena Cabrera; Maiorka, Paulo César; Mori, Enio

    2017-12-01

    Rabies is one of the most important zoonotic diseases and is caused by several rabies virus (RABV) variants. These variants can exhibit differences in neurovirulence, and few studies have attempted to evaluate the neuroinvasiveness of variants derived from vampire bats and wild carnivores. The aim of this study was to evaluate the neuropathogenesis of infection with two Brazilian RABV street variants (variant 3 and crab-eating fox) in mice. BALB/c mice were inoculated with RABV through the footpad, with the 50% mouse lethal dose (LD 50 ) determined by intracranial inoculation. The morbidity of rabies in mice infected with variant 3 and the crab-eating fox strain was 100% and 50%, respectively, with an incubation period of 7 and 6 days post-inoculation (dpi), respectively. The clinical disease in mice was similar with both strains, and it was characterized initially by weight loss, ruffled fur, hunched posture, and hind limb paralysis progressing to quadriplegia and recumbency at 9 to 12 dpi. Histological lesions within the central nervous system (CNS) characterized by nonsuppurative encephalomyelitis with neuronal degeneration and necrosis were observed in mice infected with variant 3 and those infected with the crab-eating fox variant. However, lesions and the presence of RABV antigen, were more widespread within the CNS of variant-3-infected mice, whereas in crab-eating fox-variant-infected mice, RABV antigens were more restricted to caudal areas of the CNS, such as the spinal cord and brainstem. In conclusion, the results shown here demonstrate that the RABV vampire bat strain (variant 3) has a higher potential for neuroinvasiveness than the carnivore variant.

  2. ALK1 heterozygosity delays development of late normal tissue damage in the irradiated mouse kidney

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Korlaar, Regina; Russell, Nicola S.; Stewart, Fiona A.

    2011-01-01

    Background and Purpose: Activin receptor-like kinase 1 (ALK1) is a transforming growth factor β (TGF-β) receptor, which is mainly expressed in endothelial cells regulating proliferation and migration in vitro and angiogenesis in vivo. Endothelial cells also express the co-receptor endoglin, which modulates ALK1 effects on endothelial cells. Our previous studies showed that mice with reduced endoglin levels develop less irradiation-induced vascular damage and fibrosis, caused by an impaired inflammatory response. This study was aimed at investigating the role of ALK1 in late radiation toxicity. Material and Methods: Kidneys of ALK +/+ and ALK1 +/- mice were irradiated with 14 Gy. Mice were sacrificed at 10, 20, and 30 weeks after irradiation and gene expression and protein levels were analyzed. Results: Compared to wild type littermates, ALK1 +/- mice developed less inflammation and fibrosis at 20 weeks after irradiation, but displayed an increase in pro-inflammatory and pro-fibrotic gene expression at 30 weeks. In addition, ALK1 +/- mice showed superior vascular integrity at 10 and 20 weeks after irradiation which deteriorated at 30 weeks coinciding with changes in the VEGF pathway. Conclusions: ALK1 +/- mice develop a delayed normal tissue response by modulating the inflammatory response and growth factor expression after irradiation.

  3. Impaired growth and neurological abnormalities in branched-chain α-keto acid dehydrogenase kinase-deficient mice

    Science.gov (United States)

    Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.

    2006-01-01

    The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466

  4. Craniofacial Statistical Deformation Models of Wild-type mice and Crouzon mice

    DEFF Research Database (Denmark)

    Ólafsdóttir, Hildur; Darvann, Tron Andre; Ersbøll, Bjarne Kjær

    2007-01-01

    Crouzon syndrome is characterised by the premature fusion of cranial sutures and synchondroses leading to craniofacial growth disturbances. The gene causing the syndrome was discovered approximately a decade ago and recently the first mouse model of the syndrome was generated. In this study, a set...... of Micro CT scannings of the heads of wild-type (normal) mice and Crouzon mice were investigated. Statistical deformation models were built to assess the anatomical differences between the groups, as well as the within-group anatomical variation. Following the approach by Rueckert et al. we built an atlas...

  5. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    Science.gov (United States)

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  6. [Neuroprotective effect of curcumin to Aβ of double transgenic mice with Alzheimer's disease].

    Science.gov (United States)

    Feng, Hui-Li; Fan, Hui; Dang, Hui-Zi; Chen, Xiao-Pei; Ren, Ying; Yang, Jin-Duo; Wang, Peng-Wen

    2014-10-01

    To observe the changes in Aβ40, Aβ42 and ADDLs in brains of 3 month-old APPswe/PS1dE9 double transgenic mice after six-month intervention with curcumin, in order to discuss the neuroprotective effect of curcumin. APPswe/PS1dE9dtg mice were randomly divided into the model group, the Rosiglitazone group (10 mg x kg(-1) x d(-1)) and curcumin high (400 mg x kg9-1) x d(-1)), medium (200 mg x kg(-1) x d(-1)) and low (100 mg x kg(-1) x d(-1)) dosage groups, with C57/BL6J mice of the same age and the same background in the normal control group. After 6 months, the immunohistochemical staining (IHC) and the Western blot method were used to observe the changes in positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area, their distribution and protein expressions. Both of the immunohistochemical staining and the Western blot method showed more positive cell of Aβ40, Aβ42 and ADDLs in hippocampal CA1 area and higher protein expressions in the model group than the normal group (P curcumin high group, the medium group showed a significant decrease (P curcumin can significantly reduce the expressions of hippocampal Aβ40, Aβ42 and ADDLs in brains of APPswe/PS1dE9 double transgenic mice. Whether curcumin can impact Aβ cascade reaction by down-regulating expressions of Aβ40, Aβ42 and ADDLs and show the neuroprotective effect needs further studies.

  7. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  8. Pomegranate (Punica granatum Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Badriah Alkathiri

    2017-12-01

    Full Text Available Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major-infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum, but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  9. Pomegranate (Punica granatum) Juice Shows Antioxidant Activity against Cutaneous Leishmaniasis-Induced Oxidative Stress in Female BALB/c Mice.

    Science.gov (United States)

    Alkathiri, Badriah; El-Khadragy, Manal F; Metwally, Dina M; Al-Olayan, Ebtesam M; Bakhrebah, Muhammed A; Abdel Moneim, Ahmed E

    2017-12-18

    Leishmania species are parasites that multiply within phagocytes and cause several clinical diseases characterized by single or multiple ulcerations. One of the complications that can induce tissue damage and the resulting scars is caused by secondary bacterial infections. Studies to find new, effective, and safe oral drugs for treating leishmaniasis are being conducted since several decades, owing to the problems associated with the use of antimonials available. Previously, the antiparasitic and antioxidant properties of Punica granatum (pomegranate, P. granatum ) have been reported. Therefore, in the present study, we aimed to investigate the antileishmanial activity of pomegranate aqueous juice in vitro and in female BALB/c mice. A 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in Leishmania major promastigotes and alterations in the antioxidant status, liver function, and skin histological changes in L. major -infected mice orally treated with pomegranate juice alone and in combination with the antibiotic ciprofloxacin, were used to investigate the in vitro and in vivo antileishmanial activity of pomegranate juice, respectively. Oral P. granatum juice treatment significantly reduced the average size of cutaneous leishmaniasis lesions compared with that of the untreated mice. This antileishmanial activity of P. granatum was associated with enhanced antioxidant enzyme activities. Histopathological evaluation proved the antileishmanial activity of P. granatum , but did not reveal changes in the treated animals, compared to the positive control. In conclusion, P. granatum shows high and fast antileishmanial activity probably by boosting the endogenous antioxidant activity.

  10. Extraneural manifestations of prion infection in GPI-anchorless transgenic mice

    International Nuclear Information System (INIS)

    Lee, Andrew M.; Paulsson, Johan F.; Cruite, Justin; Andaya, Abegail A.; Trifilo, Matthew J.; Oldstone, Michael B.A.

    2011-01-01

    Earlier studies indicated that transgenic (tg) mice engineered to express prion protein (PrP) lacking the glycophosphatidylinositol (GPI -/- ) membrane anchor formed abnormal proteinase-resistant prion (PrPsc) amyloid deposits in their brains and hearts when infected with the RML strain of murine scrapie. In contrast, RML scrapie infection of normal mice with a GPI-anchored PrP did not deposit amyloid with PrPsc in the brain or the heart. Here we report that scrapie-infected GPI -/- PrP tg mice also deposit PrP and transmissible infectious material in the gut, kidneys, and islets of Langerhans. Similar to previously reported amyloid deposits in the brain and heart, amyloid deposits were found in the gut; however, no amyloid deposited in the islets. By high-resolution electron microscopy, we show PrP is located primarily in α cells and also β cells. Islets contain abundant insulin and there is no abnormality in glucose metabolism in infected GPI -/- PrP tg mice.

  11. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  12. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays

    International Nuclear Information System (INIS)

    Chi, C.; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Anzai, Kazunori; Urano, Shiro

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation. (author)

  13. Comparison of the suppressor cells found in the spleens of 89Sr-treated mice and in normal murine bone marrow

    International Nuclear Information System (INIS)

    Levy, E.M.; Corvese, J.S.; Bennett, M.

    1981-01-01

    Normal murine bone marrow cells and spleen cells of mice treated with 89 Sr both have suppressive activity. These nonspecific suppressor cells inhibit the ability of normal spleen cells to undergo antibody responses in vitro. After being precultured for 24 hr, these cells will also suppress antibody responses in vivo and the responses of normal spleen cells to T and B cell mitogens in vitro. These cells have previously been shown not to be mature T or B lymphocytes or macrophages. Velocity sedimentation and cell-size analysis indicated that both suppressor cells are large (approx. =206 μ 3 ). Mitomycin C treatment eliminated the ability of both suppressor cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to suppress a mitogenic response. Irradiation (1000 R) was also ineffective in eliminating the ability of either cell to suppress a mitogenic response. We conclude that the 2 suppressor cells are closely related if not identical, and we speculate that these cells may function in vivo to suppress immune reactivity in areas of intense hematopoiesis

  14. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P.; Churchill, M.; Chang-Liu, C.M.

    1993-01-01

    Mice recessive for the autosomal gene ''wasted'' (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/· mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/· mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/· and not from wst/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  15. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ., Maywood, IL (United States); Libertin, C.R.; Weaver, P. [Loyola Univ., Maywood, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-09-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot} mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot} mice, a two-fold increase in RAG-1 MRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  16. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism.

    Science.gov (United States)

    Xing, Lianping; Chen, Di; Boyce, Brendan F

    2013-12-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.

  17. Brown Adipose Tissue Function Is Enhanced in Long-Lived, Male Ames Dwarf Mice

    Science.gov (United States)

    McFadden, Samuel; Fang, Yimin; Huber, Joshua A.; Zhang, Chi; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Ames dwarf mice (Prop1df/df) are long-lived due to a loss of function mutation, resulting in deficiency of GH, TSH, and prolactin. Along with a marked extension of longevity, Ames dwarf mice have improved energy metabolism as measured by an increase in their oxygen consumption and heat production, as well as a decrease in their respiratory quotient. Along with alterations in energy metabolism, Ames dwarf mice have a lower core body temperature. Moreover, Ames dwarf mice have functionally altered epididymal white adipose tissue (WAT) that improves, rather than impairs, their insulin sensitivity due to a shift from pro- to anti-inflammatory cytokine secretion. Given the unique phenotype of Ames dwarf epididymal WAT, their improved energy metabolism, and lower core body temperature, we hypothesized that Ames dwarf brown adipose tissue (BAT) may function differently from that of their normal littermates. Here we use histology and RT-PCR to demonstrate that Ames dwarf mice have enhanced BAT function. We also use interscapular BAT removal to demonstrate that BAT is necessary for Ames dwarf energy metabolism and thermogenesis, whereas it is less important for their normal littermates. Furthermore, we show that Ames dwarf mice are able to compensate for loss of interscapular BAT by using their WAT depots as an energy source. These findings demonstrate enhanced BAT function in animals with GH and thyroid hormone deficiencies, chronic reduction of body temperature, and remarkably extended longevity. PMID:27740871

  18. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.

    Science.gov (United States)

    Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z

    2000-12-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  19. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Tian, J. E-mail: tianjun@public.lz.gs.cn; Yin, X.M.; Zhang, X.; Wang, Q.Z

    2000-12-15

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon {sup 40}Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.

  20. The excretion of biotrace elements using the multitracer technique in tumour-bearing mice

    International Nuclear Information System (INIS)

    Wang, X.; Tian, J.; Yin, X.M.; Zhang, X.; Wang, Q.Z.

    2000-01-01

    A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40 Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice

  1. Cell Proliferation during Lymphopoiesis in the Thymus of Normal and Continuously Irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I. [Department of Radiological Science, Johns Hopkins University, Baltimore, MD (United States)

    1968-08-15

    The patterns of lymphoid cell proliferation in the thymus and spleen in normal and continuously irradiated young C57BL mice have been examined with techniques of flash and repeated labelling with tritiated thymidine and high resolution autoradiography. Changes in percentage labelling indices and labelled mitoses data have provided information on sites and rates of lymphoid cell proliferation in the thymus cortex (reticular cells, large, medium and small lymphocytes) and the spleen white pulp (germinal centre cells, large, medium and small lymphocytes). Labelling rates were fastest in the more primitive cell forms; in both lymphoid organs, the stem-cell labelling - reticular cells and germinal centre cells - reached 100% rapidly, whereas this was not the case for the different lymphocyte populations, and thymic lymphopoiesis was more rapid than splenic lymphopoiesis. Mean cycle times for thymus lymphoid cells were {approx} 12.5 hours for reticular cells, {approx} 9.5 hours for large lymphocytes, and {approx} 10.0 hours for medium and small lymphocytes; in the spleen, representative cycle times were significantly longer. Small lymphocytes were replaced at a greater rate in the thymus than in the spleen. Under continuous {gamma}-irradiation (caesium-137) at 45 rad/day and 75 rad/day for 15 days, there was a progressive depopulation of all lymphoid cell classes, an increase in the relative proportion of the more primitive forms, and a marked decrease in the numbers of small lymphocytes in both tissues. In the thymus and in the spleen, there was an increase in proliferation rates in both stem-cell populations and in all lymphoid cell forms, a decrease in mean cell cycle times to shorter values and a possible reduction in the spread of cell cycle times. In irradiated tissues, there was little evidence for lymphoid cell emigration. Tentative patterns of lymphopoiesis in the normal thymus and spleen based on the autoradiographic data aredescribed and changes in the

  2. Stevia and Saccharin Preferences in Rats and Mice

    Science.gov (United States)

    Bahrani, Mahsa; Zukerman, Steven; Ackroff, Karen

    2010-01-01

    Use of natural noncaloric sweeteners in commercial foods and beverages has expanded recently to include compounds from the plant Stevia rebaudiana. Little is known about the responses of rodents, the animal models for many studies of taste systems and food intake, to stevia sweeteners. In the present experiments, preferences of female Sprague–Dawley rats and C57BL/6J mice for different stevia products were compared with those for the artificial sweetener saccharin. The stevia component rebaudioside A has the most sweetness and least off-tastes to human raters. In ascending concentration tests (48-h sweetener vs. water), rats and mice preferred a high-rebaudioside, low-stevioside extract as strongly as saccharin, but the extract stimulated less overdrinking and was much less preferred to saccharin in direct choice tests. Relative to the extract, mice drank more pure rebaudioside A and showed stronger preferences but still less than those for saccharin. Mice also preferred a commercial mixture of rebaudioside A and erythritol (Truvia). Similar tests of sweet receptor T1R3 knockout mice and brief-access licking tests with normal mice suggested that the preferences were based on sweet taste rather than post-oral effects. The preference response of rodents to stevia sweeteners is notable in view of their minimal response to some other noncaloric sweeteners (aspartame and cyclamate). PMID:20413452

  3. Effects of mesenchymal stem cells on thymus tissue injury induced by ionizing radiation in mice

    International Nuclear Information System (INIS)

    Wang Hongyan; Qi Yali; Gong Shouliang; Song Xiangfu; Liu Liping; Chen Yubing

    2009-01-01

    Objective: To observe the migration,colonization and repairing effects of marrow mesenchymal stem cells (MSCs) on thymus tissue injury induced by ionizing radiation in mice. Methods: MSCs of C57BL/6 mice were isolated, purified and cultivated in vitro. Their migration and colorization were observed with laser confocal microscopy 1, 5 and 10 d after DAPI labeled. MSCs were injected into the thymus tissue of mice through tail vein. The model of thymus tissue injury induced by whole-body X-irradiation was established. The mice were divided into four groups: normal, irradiation, irradiation+saline, and irradiation+MSCs groups. The apoptosis was detected by flow cytometry and the repairing effect of MSCs on thymus tissue injury was observed by histological method 3 months later. Results: The occurrence of MSCs in the thymus was observed 1 d after MSCs injection, the diffusion of MSCs in the thymus appeared 5 d later, and widely dispersed 10 d later. The apoptotic rate of thymocytes in irradiation group was higher than that in normal (P<0.05) and was lower than that in MSCs group (P<0.05). The structures of cortex and medulla of thymus were clear in mice in normal group, there were a large number of lymphocytes in the cortex and small number of lymphocytes in the medulla. The structures of cortex and medulla of thymus were unclear in mice in both irradiation, irradiation and saline groups. The lymphocytes in thymus showed extensive coagulation necrosis. There were remnants or newborn lymphoid tissue in the cortex and medulla in mice in irradiation+MSCs groups. Conclusion: MSCs can be rapidly enriched in thymus tissue and promote regeneration and repair of damaged thymus. (authors)

  4. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  5. Immune mechanisms in Ehrlich ascites tumor growth in mice

    International Nuclear Information System (INIS)

    Marusic, M.

    1979-01-01

    Normal mice immunised with irradiated Ehrlich ascites tumor (EAT) cells rejected EAT challenge given 2 weeks later but T-cell-deficient thymectomised lethally irradiated, and bone-marrow-reconstituted (TIR) mice succumbed. However, when TIR mice were injected i.v. with thymus, lymph node, or spleen cells from normalsyngetic donors immediately following i.p. injection of irradiated EAT cells, they rejected the subsequent tumor challenge. This induction of immunity in TIR mice was shown to be T-cell dependent. Spleen cells from EAT- bearing mice given immediately after irradiated tumor cells were also able to promote rejection of EAT challenge in TIR mice. Spleen cells from EAT-immune mice inhibited EAT growth when admixed with tumor cells prior to i.p. injection into normal recipients, but had no effect on progressive tumor growth when given i.v. immediately after i.p. tumor injection. Immune serum inhibited i.p. EAT growth when given either i.p. or i.v. Whereas inhibition of EAT growth by admixed spleen cells was shown to be T-cell independent. The data indicate that T lymphocytes are required only in the induction phase of the immune reponse of mice against EAT, while the efferent phase of the response is accomplished by serum antibodies, perhaps through an interaction with host macrophages. (author)

  6. A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Burchart, P.; Wyatt, H.

    2008-01-01

    Low doses of ionizing radiation to cells and animals may induce adaptive responses that reduce the risk of cancer. However, there are upper dose thresholds above which these protective adaptive responses do not occur. We have now tested the hypothesis that there are similar lower dose thresholds that must be exceeded in order to induce protective effects in vivo. We examined the effects of low dose/low dose rate fractionated exposures on cancer formation in Trp53 normal or cancer-prone Trp53 heterozygous female C57BL/6 mice. Beginning at 6 weeks of age, mice were exposed 5 days/week to single daily doses (0.33 mGy, 0.7 mGy/h) totaling 48, 97 or 146 mGy over 30, 60 or 90 weeks. The exposures for shorter times (up to 60 weeks) appeared to be below the level necessary to induce overall protective adaptive responses in Trp53 normal mice, and detrimental effects (shortened lifespan, increased frequency) evident for only specific tumor types (B- and T-cell lymphomas), were produced. Only when the exposures were continued for 90 weeks did the dose become sufficient to induce protective adaptive responses, balancing the detrimental effects for these specific cancers, and reducing the risk level back to that of the unexposed animals. Detrimental effects were not seen for other tumor types, and a protective effect was seen for sarcomas after 60 weeks of exposure, which was then lost when the exposure continued for 90 weeks. As previously shown for the upper dose threshold for protection by low doses, the lower dose boundary between protection and harm was influenced by Trp53 functionality. Neither protection nor harm was observed in exposed Trp53 heterozygous mice, indicating that reduced Trp53 function raises the lower dose/dose rate threshold for both detrimental and protective tumorigenic effects. (author)

  7. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  8. Cell structure and proliferative activity of organ cultures of normal embryonic lung tissue of mice resistant (C57BL) and predisposed (A) to lung tumors

    International Nuclear Information System (INIS)

    Kolesnichenko, T.S.; Gor'kova, T.G.

    1985-01-01

    Local factors such as proliferative activity and the numerical ratio between epithelial and mesenchymal cells, and also the character of interaction between the tissue components in ontogeny may play an important role in the realization of sensitivity of mice of a particular line to the development of lung tumors. These characteristics of lung tissue in mice of lines A and C57BL are investigated under normal conditions and during induced carcinogenesis. Results are given of a comparative study of the relative numbers of epithelial and mesenchymal cells in organ cultures of embryonic lungs. 3 H-thymidine was added to the cultures on the 14th day of the experiment in a concentration of 1 microCi/m1 medium. An autoradiographic study of the cultures was performed

  9. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  10. Taeyeumjoweetang Affects Body Weight and Obesity-Related Genes in Mice

    Directory of Open Access Journals (Sweden)

    Si-Woo Lee

    2009-01-01

    Full Text Available Taeyeumjoweetang (TYJWT is a herbal medication that was mentioned in Jema Lee's Donguisusebowon, which is a book about Sasang constitutional medicine. Tae-eumnis, one of the four constitutions, tend to suffer from metabolic diseases such as obesity and diabetes. It is widely used to treat the digestive problems and obesity of Tae-eumins. We divided mice that were fed a normal diet for 48 days into control, TYJWT 250 mg kg-1 and TYJWT 500 mg kg-1 groups. After carrying out the experiments, the serum levels of leptin, adiponectin, ghrelin and resistin were measured. The results showed that TYJWT significantly reduced the weights of mice that were fed a normal diet, and that this was due to a decrease in food intake. Also, the two TYJWT groups had lower serum levels of leptin compared to the control group, and the ghrelin levels were proportionately increased by the dosage of TYJWT given. These results show that TYJWT has obesity-suppressing effects similar to those previously reported using high fat diets. In addition, these results also provide evidence that TYJWT has anti-obesity effects.

  11. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    Science.gov (United States)

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mast cells are dispensable for normal and activin-promoted wound healing and skin carcinogenesis.

    Science.gov (United States)

    Antsiferova, Maria; Martin, Caroline; Huber, Marcel; Feyerabend, Thorsten B; Förster, Anja; Hartmann, Karin; Rodewald, Hans-Reimer; Hohl, Daniel; Werner, Sabine

    2013-12-15

    The growth and differentiation factor activin A is a key regulator of tissue repair, inflammation, fibrosis, and tumorigenesis. However, the cellular targets, which mediate the different activin functions, are still largely unknown. In this study, we show that activin increases the number of mature mast cells in mouse skin in vivo. To determine the relevance of this finding for wound healing and skin carcinogenesis, we mated activin transgenic mice with CreMaster mice, which are characterized by Cre recombinase-mediated mast cell eradication. Using single- and double-mutant mice, we show that loss of mast cells neither affected the stimulatory effect of overexpressed activin on granulation tissue formation and reepithelialization of skin wounds nor its protumorigenic activity in a model of chemically induced skin carcinogenesis. Furthermore, mast cell deficiency did not alter wounding-induced inflammation and new tissue formation or chemically induced angiogenesis and tumorigenesis in mice with normal activin levels. These findings reveal that mast cells are not major targets of activin during wound healing and skin cancer development and also argue against nonredundant functions of mast cells in wound healing and skin carcinogenesis in general.

  13. Dietary phosphate restriction normalizes biochemical and skeletal abnormalities in a murine model of tumoral calcinosis.

    Science.gov (United States)

    Ichikawa, Shoji; Austin, Anthony M; Gray, Amie K; Allen, Matthew R; Econs, Michael J

    2011-12-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal), and 1.65% (high). Sera were analyzed for calcium, phosphorus, alkaline phosphatase, creatinine, blood urine nitrogen, 1,25-dihydroxyvitamin D, osteocalcin, tartrate-resistant acid phosphatase 5b, and fibroblast growth factor 23 (Fgf23). Femurs were evaluated by dual-energy x-ray absorptiometry, dynamic histomorphometry, and/or microcomputed tomography. Galnt3 knockout mice in C57BL/6J had the same biochemical phenotype observed in our previous study: hyperphosphatemia, inappropriately normal 1,25-dihydroxyvitamin D level, decreased alkaline phosphatase activity, and low intact Fgf23 concentration but high Fgf23 fragments. Skeletal analyses of their femurs revealed significantly high BMD with increased cortical bone area and trabecular bone volume. On all four phosphate diets, Galnt3 knockout mice had consistently higher phosphorus levels and lower alkaline phosphatase and intact Fgf23 concentrations than littermate controls. The low-phosphate diet normalized serum phosphorus, alkaline phosphatase, and areal BMD but failed to correct male infertility in Galnt3 knockout mice. The high-phosphate diet did not increase serum phosphorus concentration in either mutant or control mice due to a compensatory increase in circulating intact Fgf23 levels. In conclusion, dietary phosphate restriction normalizes biochemical and skeletal phenotypes of Galnt3 knockout mice and, thus, can be an effective therapy for tumoral calcinosis.

  14. Experimental treatment of diabetic mice with microencapsulated rat islet cells transplantation

    International Nuclear Information System (INIS)

    Luo Yun; Xue Yilong; Li Yanling; Li Xinjian

    2006-01-01

    To observe treatment effects of diabetic mice with microcapsulated and non-microcapsulated rat islet cell transplantation, pancreas of SD rat was perfused with collagenase through cloledchus, and then the pancreatic tissues were isolated and digested. Histopaque-1077 was used to purify the digested pancreas. Islet cells were collected and implanted into the peritoneal cavity of diabetic mice. The isolated islets had a response upon glucose stimulation. When the microcapsulated islets and non- microcapsulated islets were transplanted into diabetic mices the high blood glucose level could be decreased to normal. The normal blood glucose level in the diabetic mice transpanted with microcapsulated islets could be maintained for over 30 days,but it could be mainlained only for 2-3 days in the diabetic mice transplanted with non-microcapsulated islets. Thus it is believed that microcapsulated islet cell transplantation exerts good effect on diabetic mice and the microcapsules possessed good immunoisolating function. (authors)

  15. Graft-versus-host reaction and immune function. III. Functional pre-T cells in the bone marrow of graft-versus-host-reactive mice displaying T cell immunodeficiency

    International Nuclear Information System (INIS)

    Seddik, M.; Seemayer, T.A.; Lapp, W.S.

    1986-01-01

    Studies were performed to determine whether pre-T cells develop normally in the bone marrow of mice displaying thymic dysplasia and T cell immunodeficiency as a consequence of a graft-versus-host (GVH) reaction. GVH reactions were induced in CBAxAF1 mice by the injection of A strain lymphoid cells. To test for the presence of pre-T cells in GVH-reactive mice, bone marrow from GVH-reactive mice (GVHBM) was injected into irradiated syngeneic F1 mice and 30-40 days later thymic morphology and function were studied. Morphology studies showed nearly normal thymic architectural restoration; moreover, such glands contained normal numbers of Thy-1-positive cells. Functional pre-T cells were evaluated by transferring thymocytes from the irradiated GVHBM-reconstituted mice into T-cell-deprived mice. These thymocytes reconstituted allograft reactivity, T helper cell function and Con A and PHA mitogen responses of T-cell-deprived mice. These results suggest that the pre-T cell population in the bone marrow is not affected by the GVH reaction. Therefore, the T cell immunodeficiency associated with the GVH reaction is not due to a deficiency of pre-T cells in the bone marrow but is more likely associated with GVH-induced thymic dysplasia

  16. Radioprotection of Swiss albino mice by Adhatoda vesica leaf extract

    International Nuclear Information System (INIS)

    Kumar, A.

    2003-01-01

    Full text: The radioprotective role of aqueous extract of Adhatoda vesica leaf extract against radiation induced hematological alterations in peripheral blood of Swiss albino mice was studied at various post-irradiation intervals between 6 hrs to 30 days. Oral administration of Adhatoda vesica leaf extract (800 mg / kg body weight) prior to whole-body irradiation showed a significant protection in terms of survival percentage and hematological parameters. Mice exposed to radiation (8 Gy) without Adhatoda vesica leaf extract pre-treatment exhibited signs of radiation sickness like anorexia, lethargicity, ruffled hairs and diarrhoea and such animals died within 26 days post-irradiation. The dose reduction factor (DRF=1.6) for Adhatoda vesica leaf extract was calculated from LD50/30 values. A significant decline in hematological constituents (RBCs, WBCs, Hb and Hct) was evident till day 15, at later period of observation (day 15 onwards), no animals could survive from control group whereas, in Adhatoda vesica leaf extract pre-treated irradiated group, a gradual recovery was noted in the hematological values. However, these hematological values remained significantly below the normal even till day 30. A significant decrease in GSH was recorded in control animals. Experimental animals showed a significant increase in GSH content (blood as well as liver) with respect to control, but such values remained below normal. A significant increase in TBARS level in liver and serum was evident in control animals. Although, no significant difference was noticed in such levels in normal and Adhatoda vesica leaf extract treated animals. But, a significant decrease was registered in Adhatoda vesica leaf extract pretreated irradiated animals. The results from the present study suggest that Adhatoda vesica leaf extract has radioprotective role in stimulating/protecting the hematopoietic system thereby enhancing the survival and increasing the hematological constituents in peripheral

  17. Rac1 Dosage Is Crucial for Normal Endochondral Bone Growth.

    Science.gov (United States)

    Suzuki, Dai; Bush, Jason R; Bryce, Dawn-Marie; Kamijo, Ryutaro; Beier, Frank

    2017-10-01

    Rac1, a member of the small Rho GTPase family, plays multiple cellular roles. Studies of mice conditionally lacking Rac1 have revealed essential roles for Rac1 in various tissues, including cartilage and limb mesenchyme, where Rac1 loss produces dwarfism and long bone shortening. To gain further insight into the role of Rac1 in skeletal development, we have used transgenic mouse lines to express a constitutively active (ca) Rac1 mutant protein in a Cre recombinase-dependent manner. Overexpression of caRac1 in limb bud mesenchyme or chondrocytes leads to reduced body weight and shorter bones compared with control mice. Histological analysis of growth plates showed that caRac1;Col2-Cre mice displayed ectopic hypertrophic chondrocytes in the proliferative zone and enlarged hypertrophic zones. These mice also displayed a reduced proportion of proliferating cell nuclear antigen-positive cells in the proliferative zone and nuclear β-catenin localization in the ectopic hypertrophic chondrocytes. Importantly, overexpression of caRac1 partially rescued the phenotypes of Rac1fl/fl;Col2-Cre and Rac1fl/fl;Prx1-Cre conditional knockout mice, including body weight, bone length, and growth plate disorganization. These results suggest that tight regulation of Rac1 activity is necessary for normal cartilage development. Copyright © 2017 Endocrine Society.

  18. Colitic scid mice fed Lactobacillus spp. show an ameliorated gut histopathology and an altered cytokine profile by local T cells

    DEFF Research Database (Denmark)

    Møller, Peter Lange; Paerregaard, Anders; Gad, Monika

    2005-01-01

    BACKGROUND: Scid mice transplanted with CD4 T blast cells develop colitis. We investigated if the disease was influenced in colitic mice treated with antibiotic and fed Lactobacillus spp. METHODS: Colitic scid mice were treated for 1 week with antibiotics (vancomycin/meropenem) followed or not fo......-gamma production than mice not fed probiotics. CONCLUSIONS: Our data suggest that probiotics added to the drinking water may ameliorate local histopathological changes and influence local cytokine levels in colitic mice but not alter the colitis-associated weight loss....

  19. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  20. 135-Day Interventions of Yam Dioscorin and the Dipeptide Asn-Trp (NW) To Reduce Weight Gains and Improve Impaired Glucose Tolerances in High-Fat Diet-Induced C57BL/6 Mice.

    Science.gov (United States)

    Wu, Guang-Cheng; Lin, Shyr-Yi; Liang, Hong-Jen; Hou, Wen-Chi

    2018-01-24

    The C57BL/6J mice were fed a 135-day normal diet or a high-fat diet (HFD) without, or concurrent with, a single yam dioscorin (80 mg/kg) or dipeptide NW (40 mg/kg) intervention every day. The final body weights (g) of mice were 26.1 ± 1.4, 34.97 ± 2.1, 31.75 ± 2.6, and 31.66 ± 3.1, respectively, for normal diet-fed, HFD-fed, dioscorin-intervened, and NW-intervened group. The mice in both intervened groups showed similar less weight gains and had significant differences (P index of mice with dioscorin interventions showed significantly lower contents in total cholesterol and low-density lipoprotein, and NW interventions showed significantly lower total triglyceride contents compared to those of the HFD group (P glucose levels by oral glucose tolerance tests and both showed significant differences (P glucose tolerance controls, which require further clinical trial investigations.

  1. Fraction From Lycium barbarum Polysaccharides Reduces Immunotoxicity and Enhances Antitumor Activity of Doxorubicin in Mice.

    Science.gov (United States)

    Deng, Xiangliang; Luo, Shuang; Luo, Xia; Hu, Minghua; Ma, Fangli; Wang, Yuanyuan; Zhou, Lian; Huang, Rongrong

    2018-01-01

    The aim of the present study was to investigate whether fraction from Lycium barbarum polysaccharide (LBP) could reduce immunotoxicity and enhance antitumor activity of doxorubicin (Dox) in mice. A water-soluble LBP fraction, designated LBP3, was isolated from edible Chinese herbal Lycium barbarum and used in this study. To investigate the effect of LBP3 on Dox-induced immunotoxicity, tumor-free mice were used and treated with either normal saline, Dox, or Dox plus LBP3. To investigate the effect of LBP3 on antitumor activity of Dox, H22 tumor-bearing mice were used and treated with either normal saline, Dox, LBP3, or Dox plus LBP3. The results showed that LBP3 did not protect against the body weight loss caused by Dox, but it promoted the recovery of body weight starting at day 5 after Dox treatment in tumor-free mice. LBP3 also improved peripheral blood lymphocyte counts, promoted cell cycle recovery in bone marrow cells, and restored the cytotoxicity of natural killer cells. Furthermore, in H22 tumor-bearing mice, LBP3 enhanced antitumor activity of Dox and improved peripheral blood lymphocyte counts and the cytotoxicity of splenocytes. In brief, our results demonstrated that LBP3 could reduce the immunotoxicity and enhance antitumor activity of Dox.

  2. Running rescues a fear-based contextual discrimination deficit in aged mice

    Directory of Open Access Journals (Sweden)

    Melody V. Wu

    2015-08-01

    Full Text Available Normal aging and exercise exert extensive, often opposing, effects on the dentate gyrus (DG of the hippocampus altering volume, synaptic function, and behaviors. The DG is especially important for behaviors requiring pattern separation—a cognitive process that enables animals to differentiate between highly similar contextual experiences. To determine how age and exercise modulate pattern separation in an aversive setting, young, aged, and aged mice provided with a running wheel were assayed on a fear-based contextual discrimination task. Aged mice showed a profound impairment in contextual discrimination compared to young animals. Voluntary exercise rescued this deficit to such an extent that behavioral pattern separation of aged-run mice was now similar to young animals. Running also resulted in a significant increase in the number of immature neurons with tertiary dendrites in aged mice. Despite this, neurogenesis levels in aged-run mice were still considerably lower than in young animals. Thus, mechanisms other than DG neurogenesis likely play significant roles in improving behavioral pattern separation elicited by exercise in aged animals.

  3. Impact of taurine depletion on glucose control and insulin secretion in mice.

    Science.gov (United States)

    Ito, Takashi; Yoshikawa, Natsumi; Ito, Hiromi; Schaffer, Stephen W

    2015-09-01

    Taurine, an endogenous sulfur-containing amino acid, is found in millimolar concentrations in mammalian tissue, and its tissue content is altered by diet, disease and aging. The effectiveness of taurine administration against obesity and its related diseases, including type 2 diabetes, has been well documented. However, the impact of taurine depletion on glucose metabolism and fat deposition has not been elucidated. In this study, we investigated the effect of taurine depletion (in the taurine transporter (TauT) knockout mouse model) on blood glucose control and high fat diet-induced obesity. TauT-knockout (TauTKO) mice exhibited lower body weight and abdominal fat mass when maintained on normal chow than wild-type (WT) mice. Blood glucose disposal after an intraperitoneal glucose injection was faster in TauTKO mice than in WT mice despite lower serum insulin levels. Islet beta-cells (insulin positive area) were also decreased in TauTKO mice compared to WT mice. Meanwhile, overnutrition by high fat (60% fat)-diet could lead to obesity in TauTKO mice despite lower body weight under normal chow diet condition, indicating nutrition in normal diet is not enough for TauTKO mice to maintain body weight comparable to WT mice. In conclusion, taurine depletion causes enhanced glucose disposal despite lowering insulin levels and lower body weight, implying deterioration in tissue energy metabolism. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. [Oxidative damage effects induced by CdTe quantum dots in mice].

    Science.gov (United States)

    Xie, G Y; Chen, W; Wang, Q K; Cheng, X R; Xu, J N; Huang, P L

    2017-07-20

    Objective: To investigate Oxidative damage effects induced by CdTe Quantum Dots (QDs) in mice. Methods: 40 ICR mice were randomly divided into 5 groups: one control group (normal saline) ; four CdTe QDs (exposed by intravenous injection of 0.2 ml of CdTe QDs at the concentration of 0、0.5、5.0、50.0 and 500.0 nmol/ml respectively) . After 24 h, the mice were decapitated and the blood was collected for serum biochemically indexes、hematology indexes, the activities of SOD、GSH-Px and the concentration of MDA were all detected. Results: The results showed in the four CdTe QDs exposure groups, the level of CRE、PLT and the concentration of MDA were all significantly lower than those of the control group ( P control group ( P <0.01) . Conclusion: It was suggested that CdTe QDs at 0.5 nmol/ml could induce Oxidative damage effects in mice.

  5. Apoptosis in spermatogonia irradiated P53 null mice

    International Nuclear Information System (INIS)

    Streit-Bianchi, M.; Hendry, J.H.; Roberts, S.A.; Morris, J.D.; Durgaryan, A.A.

    2007-01-01

    Complete text of publication follows. The exposure of germ cells to ionizing radiations is of concern both from high-dose therapeutic exposures and from low doses causing deleterious trans-generational mutations. P53 protein plays an important role in cellular damage and is expressed in the testis normally during meiosis, its expression being localised to the preleptotene and early/mid pachytene spermatocytes. P53 null mice, heterozygotes possessing a 129 Sv/C57BL6 genetic background and B6D2F1 mice have been irradiated to 1 and 2 Gy single doses. Fractionated exposures of 1+1 Gy at 4 hours interval were also carried out. Apoptosis induction, spermatogonia and spermatocytes survival were assessed by microscope analysis of histological samples at 4 to 96 hours after irradiation in time-course experiments. The same end-points were also assessed at 72 and 96 hours after irradiation to single doses in the region between 20cGy to 2Gy. A dose dependent level of p53 expression was observed at 4 hours after irradiation to 1 and 2 Gy which returned to normal level by 24 hours. Our data support a two process mode of apoptosis with a first wave around 12 hours followed by a second wave at 2-3 days. The first wave apoptosis is substantially reduced in p53 null mice whereas the second wave is reduced in B6D2F1 mice. The initial increase in apoptosis was delayed in some stages of the of germ cells development which were identified by the spermatids shape. Clear correlation exists between apoptosis and survival assessed in stage XI-XII Tubules 72 hours after irradiation. The data are in agreement with other data in literature indicating that irradiated spermatogonia die through apoptosis. The lack of apoptosis observed in p53 null mice results in a very high survival rate of daughter cells assessed later. Theses spermatocytes and the following progenitor cells are likely to carry mutations as most will not die in the smaller second wave of apoptosis observed 3 days after

  6. Co-segregation of hyperactivity, active coping styles and cognitive dysfunction in mice selectively bred for low levels of anxiety

    Directory of Open Access Journals (Sweden)

    Yi-Chun eYen

    2013-08-01

    Full Text Available We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania and attention deficit hyperactivity disorder (ADHD share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field test with deficits in habituation, compared to mice bred for normal (NAB and high anxiety-related behavior (HAB. Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition, implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD

  7. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety.

    Science.gov (United States)

    Yen, Yi-Chun; Anderzhanova, Elmira; Bunck, Mirjam; Schuller, Julia; Landgraf, Rainer; Wotjak, Carsten T

    2013-01-01

    We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms.

  8. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety

    Science.gov (United States)

    Yen, Yi-Chun; Anderzhanova, Elmira; Bunck, Mirjam; Schuller, Julia; Landgraf, Rainer; Wotjak, Carsten T.

    2013-01-01

    We established mouse models of extremes in trait anxiety, which are based on selective breeding for low vs. normal vs. high open-arm exploration on the elevated plus-maze. Genetically selected low anxiety-related behavior (LAB) coincided with hyperactivity in the home cage. Given the fact that several psychiatric disorders such as schizophrenia, mania, and attention deficit hyperactivity disorder (ADHD) share hyperactivity symptom, we systematically examined LAB mice with respect to unique and overlapping endophenotypes of the three diseases. To this end Venn diagrams were used as an instrument for discrimination of possible models. We arranged the endophenotypes in Venn diagrams and translated them into different behavioral tests. LAB mice showed elevated levels of locomotion in the open field (OF) test with deficits in habituation, compared to mice bred for normal (NAB) and high anxiety-related behavior (HAB). Cross-breeding of hypoactive HAB and hyperactive LAB mice resulted in offspring showing a low level of locomotion comparable to HAB mice, indicating that the HAB alleles are dominant over LAB alleles in determining the level of locomotion. In a holeboard test, LAB mice spent less time in hole exploration, as shown in patients with schizophrenia and ADHD; however, LAB mice displayed no impairments in social interaction and prepulse inhibition (PPI), implying a unlikelihood of LAB as an animal model of schizophrenia. Although LAB mice displayed hyperarousal, active coping styles, and cognitive deficits, symptoms shared by mania and ADHD, they failed to reveal the classic manic endophenotypes, such as increased hedonia and object interaction. The neuroleptic haloperidol reduced locomotor activity in all mouse lines. The mood stabilizer lithium and the psychostimulant amphetamine, in contrast, selectively reduced hyperactivity in LAB mice. Based on the behavioral and pharmacological profiles, LAB mice are suggested as a novel rodent model of ADHD-like symptoms

  9. Relationship between misonidazole toxicity and core temperature in C3H mice

    International Nuclear Information System (INIS)

    Gomer, C.J.; Johnson, R.J.

    1979-01-01

    A single intraperitoneal injection of the radiation sensitizer misonidazole at doses greater than 0.5 mg/g was found to produce a transient hypothermic response in C3H mice. An increase in the acute toxicity of this drug was demonstrated when the animal core temperature was maintained at a normal 35 to 37 0 C by placing the mice in a warmed environment immediately following injection of the drug. The LD/sub 50/3 days/ dose of misonidazole was determined to be 1.48 mg/g for mice allowed to become hypothermic following injection but 0.77 mg/g for mice maintained at a normal core temperature following injection

  10. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  11. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    Science.gov (United States)

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  12. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  13. Mechanisms of an increased level of serum iron in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Xie, Li-hua; Zhang, Xiao-hong; Hu, Xiao-dan; Min, Xuan-yu; Zhou, Qi-fu; Zhang, Hai-qian

    2016-01-01

    The potential mechanisms underlying the increase in serum iron concentration in gamma-irradiated mice were studied. The gamma irradiation dose used was 4 Gy, and cobalt-60 ( 60 Co) source was used for the irradiation. The dose rate was 0.25 Gy/min. In the serum of irradiated mice, the concentration of ferrous ions decreased, whereas the serum iron concentration increased. The concentration of ferrous ions in irradiated mice returned to normal at 21 day post-exposure. The concentration of reactive oxygen species in irradiated mice increased immediately following irradiation but returned to normal at 7 day post-exposure. Serum iron concentration in gamma-irradiated mice that were pretreated with reduced glutathione was significant lower (p < 0.01) than that in mice exposed to gamma radiation only. However, the serum iron concentration was still higher than that in normal mice (p < 0.01). This change was biphasic, characterized by a maximal decrease phase occurring immediately after gamma irradiation (relative to the irradiated mice) and a recovery plateau observed during the 7th and 21st day post-irradiation, but serum iron recovery was still less than that in the gamma-irradiated mice (4 Gy). In gamma-irradiated mice, ceruloplasmin activity increased and serum copper concentration decreased immediately after irradiation, and both of them were constant during the 7th and 21st day post-irradiation. It was concluded that ferrous ions in irradiated mice were oxidized to ferric ions by ionizing radiation. Free radicals induced by gamma radiation and ceruloplasmin mutually participated in this oxidation process. The ferroxidase effect of ceruloplasmin was achieved by transfer of electrons from ferrous ions to cupric ions. (orig.)

  14. Inhibitory interneuron progenitor transplantation restores normal learning and memory in ApoE4 knock-in mice without or with Aβ accumulation.

    Science.gov (United States)

    Tong, Leslie M; Djukic, Biljana; Arnold, Christine; Gillespie, Anna K; Yoon, Seo Yeon; Wang, Max M; Zhang, Olivia; Knoferle, Johanna; Rubenstein, John L R; Alvarez-Buylla, Arturo; Huang, Yadong

    2014-07-16

    Excitatory and inhibitory balance of neuronal network activity is essential for normal brain function and may be of particular importance to memory. Apolipoprotein (apo) E4 and amyloid-β (Aβ) peptides, two major players in Alzheimer's disease (AD), cause inhibitory interneuron impairments and aberrant neuronal activity in the hippocampal dentate gyrus in AD-related mouse models and humans, leading to learning and memory deficits. To determine whether replacing the lost or impaired interneurons rescues neuronal signaling and behavioral deficits, we transplanted embryonic interneuron progenitors into the hippocampal hilus of aged apoE4 knock-in mice without or with Aβ accumulation. In both conditions, the transplanted cells developed into mature interneurons, functionally integrated into the hippocampal circuitry, and restored normal learning and memory. Thus, restricted hilar transplantation of inhibitory interneurons restores normal cognitive function in two widely used AD-related mouse models, highlighting the importance of interneuron impairments in AD pathogenesis and the potential of cell replacement therapy for AD. More broadly, it demonstrates that excitatory and inhibitory balance are crucial for learning and memory, and suggests an avenue for investigating the processes of learning and memory and their alterations in healthy aging and diseases. Copyright © 2014 the authors 0270-6474/14/349506-10$15.00/0.

  15. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  16. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  17. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    Science.gov (United States)

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.

  18. Anti-fatigue effects of polysaccharides extracted from Portulaca oleracea L. in mice.

    Science.gov (United States)

    Xu, Zhongxin; Shan, Ying

    2014-08-01

    Portulaca oleracea L. has been used as a food and medicinal plant for thousands of years in China. Polysaccharides extracted from P. oleracea L. (POP) are its main bioactive compound and have multiple pharmacological activities. However, anti-fatigue effects of POP have not yet been tested. This study was designed to investigate the anti-fatigue effects of POP in mice using the rotarod and forced swimming tests. The mice were randomly divided into four groups, namely normal control group, low-dose POP supplementation group, medium-dose POP supplementation group and high-dose POP supplementation group. The normal control group received distilled water and the supplementation groups received different doses of POP (75, 150 and 300 mg/kg, respectively). The POP or distilled water was administered orally and daily for 30 day. After 30 days, the rotarod and forced swimming tests were performed and then several biochemical parameters related to fatigue were determined. The data showed that POP prolonged the riding times and exhaustive swimming times of mice, decreasing blood lactic acid and serum urea nitrogen levels, as well as increasing the liver and muscle glycogen contents. These results indicated that POP had the anti-fatigue effects.

  19. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis.

    Science.gov (United States)

    Qiu, Xinyun; Zhang, Feng; Yang, Xi; Wu, Na; Jiang, Weiwei; Li, Xia; Li, Xiaoxue; Liu, Yulan

    2015-05-27

    Intestinal fungi are increasingly believed to greatly influence gut health. However, the effects of fungi on intestinal inflammation and on gut bacterial constitution are not clear. Here, based on pyrosequencing method, we reveal that fungal compositions vary in different intestinal segments (ileum, cecum, and colon), prefer different colonization locations (mucosa and feces), and are remarkably changed during intestinal inflammation in dextran sulfate sodium (DSS)-colitis mouse models compare to normal controls: Penicillium, Wickerhamomyces, Alternaria, and Candida are increased while Cryptococcus, Phialemonium, Wallemia and an unidentified Saccharomycetales genus are decreased in the guts of DSS-colitis mice. Fungi-depleted mice exhibited aggravated acute DSS-colitis associated with gain of Hallella, Barnesiella, Bacteroides, Alistipes, and Lactobacillus and loss of butyrate-producing Clostridium XIVa, and Anaerostipes compare with normal control. In contrast, bacteria-depleted mice show attenuated acute DSS-colitis. Mice with severely chronic recurrent DSS-colitis show increased plasma (1,3)-β-D-glucan level and fungal translocation into the colonic mucosa, mesenteric lymph nodes and spleen. This work demonstrate the different roles of fungi in acute and chronic recurrent colitis: They are important counterbalance to bacteria in maintaining intestinal micro-ecological homeostasis and health in acutely inflamed intestines, but can harmfully translocate into abnormal sites and could aggravate disease severity in chronic recurrent colitis.

  20. Histopathological studies show protective efficacy of Hippophae leaf extract against damage to jejunum in whole body 60Co-a-irradiated mice

    International Nuclear Information System (INIS)

    Gupta, Manish; Prasad, Jagdish; Madhu Bala

    2012-01-01

    Background: Ionizing radiation affect living tissue by causing majority of in vivo damage by free radical production. Earlier we reported that our preparation from Hippophae leaf offered survival benefit to >90% mice population which was whole body irradiated ( 60 Co-a-rays, 10 Gy). Objective: This study was planned to examine the protective effects of our drug (from Hippophae leaf) on ( 60 Co-a-ray induced oxidative damage and histopathological changes in jejunum. Methods: Around 2 months old adult male Strain 'A' mice were irradiated (10 Gy). Drug was administered intraperitoneally (-30 mm.). Histological parameters were studied after staining the sections with hematoxylin and eosin. Malondialdehyde formation (index of lipid peroxidation), alkaline phosphatase activity, and total thiol content were determined by biochemical techniques. The data was obtained at different time interval upto 30 days. Results: Biochemical studies showed that in comparison to the untreated controls, in the irradiated (10 Gy) mice, there was significant increase in the alkaline phosphatase activity and level of malondialdehyde whereas decrease in total thiol content within 2 days. Histological studies showed that whole body irradiation (10 Gy), damaged the jejunam crypt cells and decreased the villi height within 2 days. Intra-peritoneal administration of drug, 30 mm prior to irradiation, protected the crypt cells and villi height, countered the radiation induced increase in alkaline phosphatase activity and lipid peroxidation and values were comparable to the level of control in 30 days. Conclusions: These biochemical and histopathological studies suggested that our drug can offer effective radioprotection against the oxidative damage to jejunum in vivo. (author)

  1. Differential androgenesis in gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihyang; Yoon, Yongdal [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2002-07-01

    The Leydig cells of the testis account for at least 75% of the total testosterone produced in the normal adult male. Whereas the production of estrogen from androgen is catalyzed by aromatase cytochrome P450, which is found in many tissues, including gonad, brain, adipose tissue, bone, and heart. The gamma-irradiation causes the impairment of spermatogenesis and steroidogenesis in male mice. The present study was performed to analyze changes in testosterone concentrations and expression of steroidogenic enzyme of mice after whole body gamma-irradiation. Eight-week-old male ICR mice were irradiated with 6.5 or 10 Gy. At days 1, 2, 3, 4, and 5 after irradiation, testes were removed and processed for paraffin sections and isolation of mRNA. We calculated the gonad index from body and testis weight, and checked the testis volume. Hormonal analysis was performed by means of radioimmunoassay (RIA) in serum and intratesticular fluid. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the expression kinetics of the apoptotic gene and the cytochrome P450 aromatase gene after irradiation. In gamma-irradiated mice, the body weight reduced in comparison to that of the control group. Therefore, gonad indices increased. The testosterone concentrations in serum and intratesticular fluid were significantly reduced. RT- PCR data represented that the expression of Fas, Fas ligand, and aromatase cytochrome P450 showed the specific patterns against control groups. These results indicated that gamma- irradiation of adult mice induced the alteration of androgenesis and suggested that might counteract the spermatogenesis.

  2. [Sulfatide-loaded CD1d tetramer to detect typeII NKT cells in mice].

    Science.gov (United States)

    Zhang, Gu-qin; Nie, Han-xiang; Yang, Jiong; Yu, Hong-ying

    2012-07-01

    To create a method of detecting typeII natural killer T (NKT) cells of mice. Biotinylated mouse CD1d monomers were mixed with sulfatide at a molar ratio of 1:3 (protein:lipid) and incubated at room temperature overnight, and then 80 μg of streptavidin-PE was added into 200 μg of the CD1d-sulfatide mixture and incubated at room temperature for 4 h to get sulfatide/CD1d tetramer. Flow cytometry was used to detect the percentage of typeII NKT cells in mononuclear cells (MNCs) of lung and spleen of normal mice, as well as the percentage of typeII NKT cells in spleen MNCs of mice after stimulated with sulfatide. In normal mice, the percentage of typeII NKT cells accounted for (0.875±0.096)% and (1.175±0.263)% in MNCs of spleen and lung; the percentage in spleen MNCs after activated with sulfatide was (2.75±0.603)%, which significantly increased as compared with that in normal mice (PNKT cells in mice.

  3. [A five-year-old girl with epilepsy showing forced normalization due to zonisamide].

    Science.gov (United States)

    Hirose, Mieko; Yokoyama, Hiroyuki; Haginoya, Kazuhiro; Iinuma, Kazuie

    2003-05-01

    A case of forced normalization in childhood is presented. When zonisamide was administered to a five-year-old girl with intractable epilepsy, disappearance of seizures was accompanied by severe psychotic episodes such as communication disturbance, personal relationship failure, and stereotyped behavior, which continued after the withdrawal of zonisamide. These symptoms gradually improved by administration of fluvoxamine, however epileptic attacks reappeared. Although most patients with forced normalization are adult and teenager, attention should be paid to this phenomenon as adverse psychotic effects of zonisamide even in young children. Fluvoxamine may be effective for the symptoms.

  4. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  5. REGENERATIVE GROWTH OF CORTICOSPINAL TRACT AXONS VIA THE VENTRAL COLUMN AFTER SPINAL CORD INJURY IN MICE

    OpenAIRE

    Steward, Oswald; Zheng, Binhai; Tessier-Lavigne, Marc; Hofstadter, Maura; Sharp, Kelli; Yee, Kelly Matsudaira

    2008-01-01

    Studies that have assessed regeneration of corticospinal tract (CST) axons in mice following genetic modifications or other treatments have tacitly assumed that there is little if any regeneration of CST axons in normal mice in the absence of some intervention. Here, we document a previously unrecognized capability for regenerative growth of CST axons in normal mice that involves growth past the lesion via the ventral column. Mice received dorsal hemisection injuries at thoracic level 6–7, wh...

  6. Aged interleukin-10tm1Cgn chronically inflamed mice have substantially reduced fat mass, metabolic rate, and adipokines.

    Directory of Open Access Journals (Sweden)

    Reyhan M Westbrook

    Full Text Available Interleukin 10tm1Cgn (IL 10tm mice have been utilized as a model of chronic inflammation and declining health span because of their propensity to develop chronic activation in NFkB pathways, skeletal muscle and cardiac changes, and mitochondrial dysfunction. We hypothesized that older IL 10tm frail mice would have alterations similar to frail, older humans in measured parameters of glucose metabolism, oxygen consumption (VO2, respiratory quotient (RQ, spontaneous locomotor activity, body composition and plasma adipokine levels. To test this hypothesis, we investigated these metabolic parameters in cohorts of 3, 10, and 20 month old IL 10tm female mice and age and gender matched C57Bl/6 mice. Insulin sensitivity, glucose homeostasis, locomotor activity and RQ were not significantly altered between the two strains of mice. Interestingly, old IL 10tm mice had significantly decreased VO2 when normalized by lean mass, but not when normalized by fat mass or the lean/fat mass ratio. NMR based body composition analysis and dissection weights show that fat mass is decreased with age in IL 10tm mice compared to controls. Further, plasma adiponectin and leptin were also decreased in IL 10tm.These findings suggest that frailty observed in this mouse model of chronic inflammation may in part be driven by alterations in fat mass, hormone secretion and energy metabolism.

  7. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  8. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis

    NARCIS (Netherlands)

    Zwijnenburg, Petra J. G.; van der Poll, Tom; Florquin, Sandrine; Akira, Shizuo; Takeda, Kiyoshi; Roord, John J.; van Furth, A. Marceline

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  9. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation

    DEFF Research Database (Denmark)

    Chidgey, M; Brakebusch, C; Gustafsson, E

    2001-01-01

    epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human...

  10. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis.

    NARCIS (Netherlands)

    Zwijnenburg, P.J.G.; Poll, van der T.; Florquin, S; Akira, S; Takeda, K; Roord, J.J.; Furth, van A.M.

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  11. Anti-ghrelin immunoglobulins modulate ghrelin stability and its orexigenic effect in obese mice and humans

    Science.gov (United States)

    Takagi, Kuniko; Legrand, Romain; Asakawa, Akihiro; Amitani, Haruka; François, Marie; Tennoune, Naouel; Coëffier, Moïse; Claeyssens, Sophie; do Rego, Jean-Claude; Déchelotte, Pierre; Inui, Akio; Fetissov, Sergueï O.

    2013-01-01

    Obese individuals often have increased appetite despite normal plasma levels of the main orexigenic hormone ghrelin. Here we show that ghrelin degradation in the plasma is inhibited by ghrelin-reactive IgG immunoglobulins, which display increased binding affinity to ghrelin in obese patients and mice. Co-administration of ghrelin together with IgG from obese individuals, but not with IgG from anorectic or control patients, increases food intake in rats. Similarly, chronic injections of ghrelin together with IgG from ob/ob mice increase food intake, meal frequency and total lean body mass of mice. These data reveal that in both obese humans and mice, IgG with increased affinity for ghrelin enhances ghrelin’s orexigenic effect, which may contribute to increased appetite and overeating. PMID:24158035

  12. Plaque formation reduction with glutathione monoester in mice fed on atherogenic diet

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehboobali, N.; Pervez, S.

    2006-01-01

    To determine the role of glutathione monoester on reducing the development of plaque formation in an animal model. Twenty-four Balb/c mice were divided into 3 equal groups. First group was fed on atherogenic diet alone, while the second group received atherogenic diet plus twice weekly injections of glutathione monoester. The third group was fed on normal diet for mice. After one year, the animals were sacrificed. Blood was analyzed for lipid levels, while liver, kidney, spleen, heart and aorta were removed to study morphological changes. Results: In the groups of mice receiving atherogenic diet (with and without glutathione monoesters), there was significant increase in levels of total cholesterol (p=0.011) and LDL cholesterol (p=0.001) compared to levels of these lipids in mice on normal diet. However, a significant decrease in levels of triglycerides (p=0.01) was observed in the group receiving atherogenic diet along with glutathione monoester. Supplementation with glutathione monoester had the most pronounced effect only on triglyceride levels. Atherosclerotic plaques were seen in heart and/or aorta of mice receiving atherogenic diet. However, such plaques were either totally absent or if seen in an animal, were extremely small and diffuse in the group receiving glutathione monoester along with atherogenic diet. Mice on normal diet had no evidence of any plaque formation. Cholesterol granuloma was seen in liver of mice on atherogenic diet alone. In mice receiving atherogenic diet plus glutathione monoester, no cholesterol granuloma was found in liver. There were no remarkable morphological changes in spleen and kidney in the three groups of mice. Glutathione monoester appears to inhibit or reduce the development of plaque formation in mice. (author)

  13. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2010-12-01

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  14. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    Science.gov (United States)

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  15. Transgene silencing of the Hutchinson-Gilford progeria syndrome mutation results in a reversible bone phenotype, whereas resveratrol treatment does not show overall beneficial effects

    DEFF Research Database (Denmark)

    Strandgren, Charlotte; Nasser, Hasina Abdul; McKenna, Tomás

    2015-01-01

    model to study the possibility of recovering from HGPS bone disease upon silencing of the HGPS mutation, and the potential benefits from treatment with resveratrol. We show that complete silencing of the transgenic expression of progerin normalized bone morphology and mineralization already after 7...... weeks. The improvements included lower frequencies of rib fractures and callus formation, an increased number of osteocytes in remodeled bone, and normalized dentinogenesis. The beneficial effects from resveratrol treatment were less significant and to a large extent similar to mice treated with sucrose...... alone. However, the reversal of the dental phenotype of overgrown and laterally displaced lower incisors in HGPS mice could be attributed to resveratrol. Our results indicate that the HGPS bone defects were reversible upon suppressed transgenic expression and suggest that treatments targeting aberrant...

  16. Radioimmunotherapy of small cell lung cancer xenograft mice with a 90Y anti-ROBO1 monoclonal antibody: Pathological study of effects on tumor and normal organs

    International Nuclear Information System (INIS)

    Fujiwara, K.; Koyama, K.; Kitada, T.; Takahashi, M.; Momose, T.; Suga, K.

    2015-01-01

    Full text of publication follows. ROBO1 is a membrane protein that is concerned about axon guidance. It is reported that ROBO1 contributes to tumor metastasis and angio genesis. ROBO1 is specifically expressed at high levels in small cell lung cancer (SCLC). In this study, we performed radioimmunotherapy (RIT) to SCLC models, and analyzed pathological alteration of tumor and organs. Methods: For the biodistribution study, 111 In-DOTA anti-ROBO1 IgG (about 370 kBq, 111 In anti-ROBO1) was injected into NCI-H69 xenograft mice via tail vein. To evaluate antitumor effect, RIT study was performed. 90 Y-DOTA anti-ROBO1 IgG (about 7.4 MBq, 90 Y anti-ROBO1) was injected. The experiments measured tumor volume, mouse weights and blood cell counts periodically. The tumors and organs (liver, kidney, intestine, spleen, femoral and sternum) of mice were obtained, and histopathologic analysis were carried out. Results: as a result of biodistribution study, the specific accumulation in the tumor of 111 In anti-ROBO1 was observed. Liver, kidney, spleen and lung showed comparatively high accumulation of 111 In anti-ROBO1. In the RIT study, 90 Y anti-ROBO1 significantly reduced tumor volume compared with original volume and increased median survival time to 58 days (p<0.01, versus saline, 28 days), while 90 Y anti-ROBO1 induced transient pancytopenia. Histopathologic analysis of tumors and organs further validated the therapeutic efficacy and the systemic toxicity of 90 Y anti-ROBO1. In day 7 when tumor volume reduced to 60% compared with original volume, irreversible nuclear denaturation and fibrosis were observed. The percentage of TUNEL-positive cells increased to 11.4%±5.1 in the day 7 (p<0.01, versus control, 4.14%±1.4), which showed increase of DNA fragmentation and apoptosis in the tumor tissues. Normal organs excluding spleen and sternum showed no significant injury. In day 7 post injection, spleen showed transient reduction of hematopoietic cells. Hematopoietic cells in

  17. Constitutive luteinizing hormone receptor signaling causes sexual dysfunction and Leydig cell adenomas in male mice.

    Science.gov (United States)

    Hai, Lan; Hiremath, Deepak S; Paquet, Marilène; Narayan, Prema

    2017-05-01

    The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal. In this study, we sought to determine the reason for the progressive infertility and the long-term consequences of constant LHCGR signaling. Mating with superovulated females showed that infertile KiLHRD582G mice had functional sperm and normal accessory gland function. Sexual behavior studies revealed that KiLHRD582G mice mounted females, but intromission was brief and ejaculation was not achieved. Histological analysis of the reproductive tract showed unique metaplastic changes resulting in pseudostratified columnar epithelial cells with cilia in the ampulla and chondrocytes in the penile body of the KiLHRD582G mice. The infertile KiLHRD582G exhibited enlarged sinusoids and a decrease in smooth muscle content in the corpora cavernosa of the penile body. However, collagen content was unchanged. Leydig cell adenomas and degenerating seminiferous tubules were seen in 1-year-old KiLHRD582G mice. We conclude that progressive infertility in KiLHRD582G mice is due to sexual dysfunction likely due to functional defects in the penis. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  18. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  19. Combined Effects of Acamprosate and Escitalopram on Ethanol Consumption in Mice.

    Science.gov (United States)

    Ho, Ada Man-Choi; Qiu, Yanyan; Jia, Yun-Fang; Aguiar, Felipe S; Hinton, David J; Karpyak, Victor M; Weinshilboum, Richard M; Choi, Doo-Sup

    2016-07-01

    Major depression is one of the most prevalent psychiatry comorbidities of alcohol use disorders (AUD). As negative emotions can trigger craving and increase the risk of relapse, treatments that target both conditions simultaneously may augment treatment success. Previous studies showed a potential synergistic effect of Food and Drug Administration approved medication for AUD acamprosate and the antidepressant escitalopram. In this study, we investigated the effects of combining acamprosate and escitalopram on ethanol (EtOH) consumption in stress-induced depressed mice. Forty singly housed C57BL/6J male mice were subjected to chronic unpredictable stress. In parallel, 40 group-housed male mice were subjected to normal husbandry. After 3 weeks, depressive- and anxiety-like behaviors and EtOH consumption were assessed. For the next 7 days, mice were injected with saline, acamprosate (200 mg/kg; twice/d), escitalopram (5 mg/kg; twice/d), or their combination (n = 9 to 11/drug group/stress group). Two-bottle choice limited-access drinking of 15% EtOH and tap water was performed 3 hours into dark phase immediately after the daily dark phase injection. EtOH drinking was monitored for another 7 days without drug administration. Mice subjected to the chronic unpredictable stress paradigm for 3 weeks showed apparent depression- and anxiety-like behaviors compared to their nonstressed counterparts including longer immobility time in the forced swim test and lower sucrose preference. Stressed mice also displayed higher EtOH consumption and preference in a 2-bottle choice drinking test. During the drug administration period, the escitalopram-only and combined drug groups showed significant reduction in EtOH consumption in nonstressed mice, while only the combined drug group showed significantly reduced consumption in stressed mice. However, such reduction did not persist into the postdrug administration period. The combination of acamprosate and escitalopram suppressed

  20. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    Energy Technology Data Exchange (ETDEWEB)

    Guo, S.J. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai (China); Qi, C.H.; Zhou, W.X.; Zhang, Y.X. [Beijing Institute of Pharmacology and Toxicology, Beijing (China); Zhang, X.M.; Wang, J.; Wang, H.X. [National Center of Biomedical Analysis, Beijing (China)

    2013-04-12

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4{sup +} T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging.

  1. Proteomic data show an increase in autoantibodies and alpha-fetoprotein and a decrease in apolipoprotein A-II with time in sera from senescence-accelerated mice

    International Nuclear Information System (INIS)

    Guo, S.J.; Qi, C.H.; Zhou, W.X.; Zhang, Y.X.; Zhang, X.M.; Wang, J.; Wang, H.X.

    2013-01-01

    We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2-A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4 + T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging

  2. Protective effect of N-Acetylcysteine against ethanol-induced gastric ulcer: a pharmacological assessment in mice

    Directory of Open Access Journals (Sweden)

    Ausama Ayoob Jaccob

    2015-06-01

    Aim: Since there is an increasing need for gastric ulcer therapies with optimum benefit-risk profile. This study was conducted to investigate gastro-protective effects of N-Acetylcysteine (NAC against ethanol-induced gastric ulcer models in mice. Materials and Methods: Forty-two mice were allocated into six groups consisting of 7 mice each. Groups 1 (normal control and 2 (ulcer control received distilled water at a dose of 10 ml/kg, groups 3, 4 and 5 were given NAC at doses 100, 300 and 500 mg/kg, respectively, and the 6th group received ranitidine (50 mg/kg. All drugs administered orally once daily for 7 days, on the 8th day absolute ethanol (7 ml/kg was administrated orally to all mice to induce the acute ulcer except normal control group. Then 3 h after, all animals were sacrificed then consequently the stomachs were excised for examination. Results: NAC administration at the tested doses showed a dose-related potent gastro-protective effect with significant increase in curative ratio, PH of gastric juice and mucus content viscosity seen with the highest dose of NAC and it is comparable with that observed in ranitidine group. Conclusion: The present findings demonstrate that, oral NAC shows significant gastro-protective effects comparable to ranitidine confirmed by antisecretory, cytoprotective, histological and biochemical data but the molecular mechanisms behind such protection are complex. [J Intercult Ethnopharmacol 2015; 4(2.000: 90-95

  3. Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice.

    Science.gov (United States)

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Nio-Kobayashi, Junko; Nakamura, Kyoko; Morimatsu, Masami; Sakaue, Hiroshi; Saito, Masayuki; Kimura, Kazuhiro

    2017-07-27

    We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.

  4. Effect of rTMP-GH recombinant fusion protein on thrombocytopoiesis in irradiation injured mice

    International Nuclear Information System (INIS)

    Xu Yang; Wang Junping; Chen Fang; Shen Mingqiang; Chen Mo; Wang Song; Ran Xinze; Su Yongping; Kai Li

    2009-01-01

    Objective: To investigate the in vivo effects of rTMP-GH recombinant fusion protein on thrombocytopoiesis in mice with thrombopenia inflicted by irradiation. Methods: BALB/C mice weighting around 20 g were irradiated with 5 Gy of 60 Co γ-ray irradiation to generate thrombopenia. The irradiation injured mice were injected with rTMP-GH or rhGH subcutaneously at the dose of 200 (μg ·kg -1 · d -1 for 7 days. From the 6 th day, the platelets in blood samples from vena caudalis were counted routinely, and the pathological changes of bone marrow were determined by morphological observation. Results: From the 10 th day, the levels of blood platelet in rTMP-GH treated mice were much higher than those of rhGH treatment group and normal saline (NS) control group, especially at the nadir (P < 0.01). On the 22 nd day, the platelet count has recovered up to 80% of normal level in rTMP-GH treatment group, while it has just recovered up to 30% in NS control group. Morphological observation showed that there was obvious reconstruction of bone marrow in mice treated with rTMP-GH, compared with NS group.The number of megarkaryoblasts and megakaryocytes in bone marrow of rTMP-GH treated mice (3.07 ± 0.32) was much higher than those of rhGH treatment group (2.20 ± 0.22, P < 0.05) and NS control group (0.87 ± 0.19, P <0.01). Conclusions: rTMP-GH has potent effects on the recovery of blood platelet by promoting megarkaryocytopoiesis in irradiation injuried mice. (authors)

  5. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  6. PIXE analysis of tumors and localization behavior of a lanthanide in nude mice

    Science.gov (United States)

    Chang, Pei-Jiun; Yang, Czau-Siung; Chou, Ming-Ji; Wei, Chau-Chin; Hsu, Chu-Chung; Wang, Chia-Yu

    1984-04-01

    We have used particle induced X-ray emission (PIXE) to analyze the elemental compositions and uptakes of a lanthanide, yttrium in this report, in tumors and normal tissues of nude mice. A small amount of yttrium nitrate was injected into nude mice with tumors. Samples of normal and malignant tissues taken from these mice were bombarded by the 2 MeV proton beam from a 3 MeV Van de Graaff accelerator with a Ge detector system to determine the relative elemental compositions of tissues and the relative concentrations of yttrium taken up by these tissues. We found that the uptakes of yttrium by tumors were at least five times more than those by normal tissues. Substantial differences were often observed between the trace element weight (or concentration) pattern of the cancerous and normal tissues. The present result is compared with human tissues.

  7. Hemopoiesis in bone marrow of lethally irradiated mice

    International Nuclear Information System (INIS)

    Viktora, L.; Zoubkova, M.; Urbankova, J.

    1976-01-01

    A percentual representation of individual types of cells and their share of the restoration of hemopoiesis in bone marrow was observed on the 9th, 12th, 16th and 20th days following transplantation of bone marrow cells to letally irradiated mice. Myelopoiesis was ascertained which on the 20th day after transplantation became the dominant constituent and reached peak level around the 16th day after transplantation. The examination further showed that with regard to the period of irradiation and transplantation the erythropoiesis in bone marrow culminates on the 9th day after the transplantation and that normal values are quickly restored. On the 2ath day myelopoiesis and lymphopoiesis come close to values in normal bone marrow

  8. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  9. Decreased Bone Formation and Osteopenia in Lamin A/C-Deficient Mice

    Science.gov (United States)

    Vidal, Christopher; McCorquodale, Thomas; Herrmann, Markus; Fatkin, Diane; Duque, Gustavo

    2011-01-01

    Age-related bone loss is associated with changes in bone cellularity with characteristically low levels of osteoblastogenesis. The mechanisms that explain these changes remain unclear. Although recent in vitro evidence has suggested a new role for proteins of the nuclear envelope in osteoblastogenesis, the role of these proteins in bone cells differentiation and bone metabolism in vivo remains unknown. In this study, we used the lamin A/C null (Lmna −/−) mice to identify the role of lamin A/C in bone turnover and bone structure in vivo. At three weeks of age, histological and micro computed tomography measurements of femurs in Lmna −/− mice revealed a significant decrease in bone mass and microarchitecture in Lmna −/− mice as compared with their wild type littermates. Furthermore, quantification of cell numbers after normalization with bone surface revealed a significant reduction in osteoblast and osteocyte numbers in Lmna −/− mice compared with their WT littermates. In addition, Lmna −/− mice have significantly lower osteoclast number, which show aberrant changes in their shape and size. Finally, mechanistic analysis demonstrated that absence of lamin A/C is associated with increase expression of MAN-1 a protein of the nuclear envelope closely regulated by lamin A/C, which also colocalizes with Runx2 thus affecting its capacity as osteogenic transcription factor. In summary, these data clearly indicate that the presence of lamin A/C is necessary for normal bone turnover in vivo and that absence of lamin A/C induces low bone turnover osteopenia resembling the cellular changes of age-related bone loss. PMID:21547077

  10. Gallic Acid Ameliorated Impaired Glucose and Lipid Homeostasis in High Fat Diet-Induced NAFLD Mice

    Science.gov (United States)

    Chao, Jung; Huo, Teh-Ia; Cheng, Hao-Yuan; Tsai, Jen-Chieh; Liao, Jiunn-Wang; Lee, Meng-Shiou; Qin, Xue-Mei; Hsieh, Ming-Tsuen; Pao, Li-Heng; Peng, Wen-Huang

    2014-01-01

    Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help

  11. Metabolic characteristics of long-lived mice

    Directory of Open Access Journals (Sweden)

    Andrzej eBartke

    2012-12-01

    Full Text Available Genetic suppression of insulin/insulin-like growth factor signaling (IIS can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor (IGF-1. Long-lived GH-resistant GHRKO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df and Snell dwarf (Pit1dw mice lacking GH (along with prolactin and TSH, are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHRKO mice. Indirect calorimetry revealed that both Ames dwarf and GHRKO mice utilize more oxygen per gram (g of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient (RQ, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2 were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHRKO and normal mice. Thus, the increased metabolic rate of the GHRKO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of

  12. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    International Nuclear Information System (INIS)

    Zhang, Yandong; Yu, Xinchun; Sun, Shuhui; Li, Qian; Xie, Yunli; Li, Qiang; Zhao, Yifan; Pei, Jianfeng; Zhang, Wenmin; Xue, Peng; Zhou, Zhijun; Zhang, Yubin

    2016-01-01

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.

  13. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yandong; Yu, Xinchun [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Sun, Shuhui [Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Li, Qian [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Xie, Yunli [Insititute of Brain Sciences, Fudan University, Shanghai 200032 (China); Li, Qiang [Putuo District Center for Disease Control and Prevention, Shanghai 200062 (China); Zhao, Yifan; Pei, Jianfeng; Zhang, Wenmin; Xue, Peng; Zhou, Zhijun [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China); Zhang, Yubin, E-mail: yz001@fudan.edu.cn [School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032 (China)

    2016-12-15

    The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3 months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis. - Highlights: • Cd increases the number of LT-HSCs but impairs their development. • Cd-treated hosts have compromised ability to support LT-HSCs. • Cd promotes myelopoiesis at the expense of lymphopoiesis at the MPP level.

  14. Influence of intensity of bone marrow erythropoietic activity on radiosensitivity of mice

    International Nuclear Information System (INIS)

    Kwiek, S. Jr.

    1985-01-01

    Hypererythropoiesis was induced in mice by exposure to carbon monoxide. They became polycythemic after transfer to normal air. Mice irradiated with 550-650 R of X-rays in the state of polycythemia had higher 30-day survival than controls. Bone marrow levels of multipotential haemopoietic stem cells (CFU-S) were found to be elevated by 50% in polycythemic mice and after whole body sublethal irradiation (200 R) substantially faster regeneration of bone marrow was noted in them. It was estimated by renewal of bone marrow cellularity, content of CFU-S and ability to growth in diffusion chambers. Bone marrow from polycythemic mice was found to yield considerably less macrophages than the ones from hypererythropoietic and normal donors. 27 refs., 5 tabs. (author)

  15. Ames dwarf (Prop1(df)/Prop1(df)) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle.

    Science.gov (United States)

    Miquet, Johanna G; Muñoz, Marina C; Giani, Jorge F; González, Lorena; Dominici, Fernando P; Bartke, Andrzej; Turyn, Daniel; Sotelo, Ana I

    2010-04-01

    Growth hormone (GH) is an anabolic hormone that regulates growth and metabolism. Ames dwarf mice are natural mutants for Prop1, with impaired development of anterior pituitary and undetectable levels of circulating GH, prolactin and TSH. They constitute an endocrine model of life-long GH-deficiency. The main signaling cascades activated by GH binding to its receptor are the JAK2/STATs, PI-3K/Akt and the MAPK Erk1/2 pathways. We have previously reported that GH-induced STAT5 activation was higher in Ames dwarf mice liver compared to non-dwarf controls. The aim of this study was to evaluate the principal components of the main GH-signaling pathways under GH-deficiency in liver and skeletal muscle, another GH-target tissue. Ames dwarf mice and their non-dwarf siblings were assessed. Animals were injected i.p. with GH or saline 15min before tissue removal. Protein content and phosphorylation of signaling mediators were determined by immunoblotting of tissue solubilizates. GH was able to induce STAT5 and STAT3 tyrosine phosphorylation in both liver and muscle, but the response was higher for Ames dwarf mice than for non-dwarf controls. When Erk1/2 activation was assessed in liver, only dwarf mice showed GH-induced phosphorylation, while in muscle no response to the hormone was found in either genotype. GH-induced Akt phosphorylation at Ser473 in liver was only detected in dwarf mice. In skeletal muscle, both normal and dwarf mice responded to a GH stimulus, although dwarf mice presented higher GH activation levels. The phosphorylation of GSK-3, a substrate of Akt, increased upon hormone stimulation only in dwarf mice in both tissues. In contrast, no differences in the phosphorylation of mTOR, another substrate of Akt, were observed after GH stimulus, either in normal or dwarf mice in liver, while we were unable to determine mTOR in muscle. Protein content of GH-receptor and of the signaling mediators studied did not vary between normal and dwarf animals in the assessed

  16. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    Science.gov (United States)

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  17. Decreased bone mineral density in experimental myasthenia gravis in C57BL/6 mice.

    Science.gov (United States)

    Oshima, Minako; Iida-Klein, Akiko; Maruta, Takahiro; Deitiker, Philip R; Atassi, M Zouhair

    2017-09-01

    Experimental autoimmune myasthenia gravis (EAMG), an animal model of myasthenia gravis (MG), can be induced in C57BL/6 (B6, H-2  b ) mice by 2-3 injections with Torpedo californica AChR (tAChR) in complete Freund's adjuvant. Some EAMG mice exhibit weight loss with muscle weakness. The loss in body weight, which is closely associated with bone structure, is particularly evident in EAMG mice with severe muscle weakness. However, the relationship between muscle weakness and bone loss in EAMG has not been studied before. Recent investigations on bone have shed light on association of bone health and immunological states. It is possible that muscle weakness in EAMG developed by anti-tAChR immune responses might accompany bone loss. We determined whether reduced muscle strength associates with decreased bone mineral density (BMD) in EAMG mice. EAMG was induced by two injections at 4-week interval of tAChR and adjuvants in two different age groups. The first tAChR injection was either at age 8 weeks or at 15 weeks. We measured BMD at three skeletal sites, including femur, tibia, and lumbar vertebrae, using dual energy X-ray absorptiometry. Among these bone areas, femur of EAMG mice in both age groups showed a significant decrease in BMD compared to control adjuvant-injected and to non-immunized mice. Reduction in BMD in induced EAMG at a later-age appears to parallel the severity of the disease. The results indicate that anti-tAChR autoimmune response alone can reduce bone density in EAMG mice. BMD reduction was also observed in adjuvant-injected mice in comparison to normal un-injected mice, suggesting that BMD decrease can occur even when muscle activity is normal. Decreased BMD observed in both tAChR-injected and adjuvant-injected mice groups were discussed in relation to innate immunity and bone-related immunology involving activated T cells and tumour necrosis factor-related cytokines that trigger osteoclastogenesis and bone loss.

  18. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    Science.gov (United States)

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  19. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP knockout mice

    Directory of Open Access Journals (Sweden)

    Satoko eHattori

    2012-10-01

    Full Text Available Pituitary adenylate cyclase-activating polypeptide (PACAP is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1. Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J x 129SvEv for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased social interaction in Crawley’s three-chamber social approach test, although PACAP KO had no significant impact on social interaction in a home cage. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze and the T-maze, while they did not show any significant abnormalities in the left-right discrimination task in the T-maze. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially

  20. T cell potentiation in normal and autoimmune-prone mice after extended exposure to low doses of ionizing radiation and/or caloric restriction

    Energy Technology Data Exchange (ETDEWEB)

    James, S.J.; Makinodan, T.

    1988-01-01

    In order to better understand the apparent physiologic up-regulation in response to low levels of potentially lethal insults, murine T lymphocytes were analysed for functional and phenotypic alterations after exposure to 0.005 Gy/day, 0.01 Gy/day and 0.04 Gy/day in groups of ad-libitum-fed and calorie-restricted mice. Studies were conducted in two strains of mice: long-lived and immunologically normal C57B1/6 +/+ and congenic short-lived immunologically depressed C57B1/6 1pr/1pr. Whole-body exposure to 0.01 Gy/day and 0.04 Gy/day for an extended period of 20 days was associated with an increase in splenic proliferative response and shifts in proportions of T cell subpopulations in the thymus and spleen of both strains. Caloric restriction independently altered functional activity and T cell subpopulations in the same direction as low dose rates of ionizing radiation. Although dose-response augmentation in proliferative activity was similar in the strains, observed alterations in thymic and splenic T cell subpopulations were clearly different, suggesting different mechanisms were responsible for immune enhancement in each strain.

  1. Prohibitin-induced obesity leads to anovulation and polycystic ovary in mice

    Directory of Open Access Journals (Sweden)

    Sudharsana Rao Ande

    2017-06-01

    Full Text Available Polycystic ovary syndrome (PCOS is a prevalent endocrine disorder and the most common cause of female infertility. However, its etiology and underlying mechanisms remain unclear. Here we report that a transgenic obese mouse (Mito-Ob developed by overexpressing prohibitin in adipocytes develops polycystic ovaries. Initially, the female Mito-Ob mice were equally fertile to their wild-type littermates. The Mito-Ob mice began to gain weight after puberty, became significantly obese between 3-6 months of age, and ∼25% of them had become infertile by 9 months of age. Despite obesity, female Mito-Ob mice maintained glucose homeostasis and insulin sensitivity similar to their wild-type littermates. Mito-Ob mice showed morphologically distinct polycystic ovaries and elevated estradiol, but normal testosterone and insulin levels. Histological analysis of the ovaries showed signs of impaired follicular dynamics, such as preantral follicular arrest and reduced number, or absence, of corpus luteum. The ovaries of the infertile Mito-Ob mice were closely surrounded by periovarian adipose tissue, suggesting a potential role in anovulation. Collectively, these data suggest that elevated estradiol and obesity per se might lead to anovulation and polycystic ovaries independent of hyperinsulinemia and hyperandrogenism. As obesity often coexists with other abnormalities known to be involved in the development of PCOS such as insulin resistance, compensatory hyperinsulinemia and hyperandrogenism, the precise role of these factors in PCOS remains unclear. Mito-Ob mice provide an opportunity to study the effects of obesity on anovulation and ovarian cyst formation independent of the major drivers of obesity-linked PCOS.

  2. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  3. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    Energy Technology Data Exchange (ETDEWEB)

    Popp, R A; Stratton, L P; Hawley, D K; Effron, K [Oak Ridge National Lab., TN (USA)

    1979-01-15

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F/sub 1/ offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of ..cap alpha..-chains normally found in all SEC mice. The deficient ..cap alpha..-chain synthesis caused these mice to exhibit an ..cap alpha..-thalassemia similar to human ..cap alpha..-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with ..cap alpha..-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining ..beta..-chain structure) produced twice as much SEC as 101 ..beta..-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC ..beta..-chain gene.

  4. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    International Nuclear Information System (INIS)

    Popp, R.A.; Stratton, L.P.; Hawley, D.K.; Effron, K.

    1979-01-01

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F 1 offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of α-chains normally found in all SEC mice. The deficient α-chain synthesis caused these mice to exhibit an α-thalassemia similar to human α-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with α-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining β-chain structure) produced twice as much SEC as 101 β-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC β-chain gene. (author)

  5. Oxidized CaMKII causes cardiac sinus node dysfunction in mice

    Science.gov (United States)

    Swaminathan, Paari Dominic; Purohit, Anil; Soni, Siddarth; Voigt, Niels; Singh, Madhu V.; Glukhov, Alexey V.; Gao, Zhan; He, B. Julie; Luczak, Elizabeth D.; Joiner, Mei-ling A.; Kutschke, William; Yang, Jinying; Donahue, J. Kevin; Weiss, Robert M.; Grumbach, Isabella M.; Ogawa, Masahiro; Chen, Peng-Sheng; Efimov, Igor; Dobrev, Dobromir; Mohler, Peter J.; Hund, Thomas J.; Anderson, Mark E.

    2011-01-01

    Sinus node dysfunction (SND) is a major public health problem that is associated with sudden cardiac death and requires surgical implantation of artificial pacemakers. However, little is known about the molecular and cellular mechanisms that cause SND. Most SND occurs in the setting of heart failure and hypertension, conditions that are marked by elevated circulating angiotensin II (Ang II) and increased oxidant stress. Here, we show that oxidized calmodulin kinase II (ox-CaMKII) is a biomarker for SND in patients and dogs and a disease determinant in mice. In wild-type mice, Ang II infusion caused sinoatrial nodal (SAN) cell oxidation by activating NADPH oxidase, leading to increased ox-CaMKII, SAN cell apoptosis, and SND. p47–/– mice lacking functional NADPH oxidase and mice with myocardial or SAN-targeted CaMKII inhibition were highly resistant to SAN apoptosis and SND, suggesting that ox-CaMKII–triggered SAN cell death contributed to SND. We developed a computational model of the sinoatrial node that showed that a loss of SAN cells below a critical threshold caused SND by preventing normal impulse formation and propagation. These data provide novel molecular and mechanistic information to understand SND and suggest that targeted CaMKII inhibition may be useful for preventing SND in high-risk patients. PMID:21785215

  6. Preserved dopaminergic homeostasis and dopamine-related behaviour in hemizygous TH-Cre mice.

    Science.gov (United States)

    Runegaard, Annika H; Jensen, Kathrine L; Fitzpatrick, Ciarán M; Dencker, Ditte; Weikop, Pia; Gether, Ulrik; Rickhag, Mattias

    2017-01-01

    Cre-driver mouse lines have been extensively used as genetic tools to target and manipulate genetically defined neuronal populations by expression of Cre recombinase under selected gene promoters. This approach has greatly advanced neuroscience but interpretations are hampered by the fact that most Cre-driver lines have not been thoroughly characterized. Thus, a phenotypic characterization is of major importance to reveal potential aberrant phenotypes prior to implementation and usage to selectively inactivate or induce transgene expression. Here, we present a biochemical and behavioural assessment of the dopaminergic system in hemizygous tyrosine hydroxylase (TH)-Cre mice in comparison to wild-type (WT) controls. Our data show that TH-Cre mice display preserved dopaminergic homeostasis with unaltered levels of TH and dopamine as well as unaffected dopamine turnover in striatum. TH-Cre mice also show preserved dopamine transporter expression and function supporting sustained dopaminergic transmission. In addition, TH-Cre mice demonstrate normal responses in basic behavioural paradigms related to dopaminergic signalling including locomotor activity, reward preference and anxiolytic behaviour. Our results suggest that TH-Cre mice represent a valid tool to study the dopamine system, though careful characterization must always be performed to prevent false interpretations following Cre-dependent transgene expression and manipulation of selected neuronal pathways. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Protective Effects of Essential Oils as Natural Antioxidants against Hepatotoxicity Induced by Cyclophosphamide in Mice.

    Science.gov (United States)

    Sheweita, Salah A; El-Hosseiny, Lobna S; Nashashibi, Munther A

    2016-01-01

    Clinical application of cyclophosphamide (CP) as an anticancer drug is often limited due to its toxicity. CP is metabolized mainly in the liver by cytochrome P450 system into acrolein which is the proximate toxic metabolite. Many different natural antioxidants were found to alleviate the toxic effects of various toxic agents via different mechanisms. Therefore, the present study aimed at investigating the role of essential oils extracted from fennel, cumin and clove as natural antioxidants in the alleviation of hepatotoxicity induced by CP through assessment of hepatotoxicity biomarkers (AST, ALT, ALP), histopathology of liver tissues as well as other biochemical parameters involved in the metabolism of CP. The data of the present study showed that treatment of male mice with cyclophosphamide (2.5 mg/Kg BW) as repeated dose for 28 consecutive days was found to induce hepatotoxicity through the elevation in the activities of AST, ALT, and ALP. Combined administration of any of these oils with CP to mice partially normalized the altered hepatic biochemical markers caused by CP, whereas administration of fennel, clove or cumin essential oils alone couldn't change liver function indices. Moreover, CP caused histological changes in livers of mice including swelling and dilation in sinusoidal space, inflammation in portal tract and hepatocytes, as well as, hyperplasia in Kuppfer cells. However, co-administration of any of the essential oils with CP alleviated to some extent the changes caused by CP but not as the normal liver. CP was also found to induce free radical levels (measured as thiobarbituric acid reactive substances) and inhibited the activities of superoxide dismutase, glutathione reductase, and catalase as well as activities and protein expressions of both glutathione S-transferase (GSTπ) and glutathione peroxidase. Essential oils restored changes in activities of antioxidant enzymes (SOD, CAT, GR, GST, and GPx) caused by CP to their normal levels compared

  8. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  9. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  10. alpha-Glucosidase-albumin conjugates: effect of chronic administration in mice

    International Nuclear Information System (INIS)

    Allen, T.M.; Murray, L.; Bhardwaj, D.; Poznansky, M.J.

    1985-01-01

    Enzyme albumin conjugates have been proposed as a means of increasing the efficacy of enzyme use in vivo and decreasing immune response to the enzyme. Particulate drug carriers, however, have a pronounced tendency to localize in the mononuclear phagocyte (reticuloendothelial) system. The authors have examined in mice the effect on phagocytic index, tissue distribution and organ size of continued administration of conjugates of alpha-glucosidase with either homologous or heterologous albumin. Mice received 10 X 2-mg injections of bovine serum albumin (BSA) or mouse serum albumin (MSA), either free, polymerized or conjugated with alpha-glucosidase. Experiments involving BSA had to be terminated before the end of the experiment because of anaphylaxis, but these reactions were less severe to the polymerized albumin than to free albumin. Free BSA, BSA polymer and BSA-enzyme conjugates all caused a decrease in phagocytic index after six injections. Mice receiving MSA showed no evidence of anaphylaxis, but mice receiving six or more injections of free MSA, MSA polymer or MSA-enzyme conjugate had significantly decreased phagocytic indices as compared to controls. Phagocytic indices had returned to normal by 7 days after the final injection. Tissue distribution of 125 I-labeled albumin preparations was determined in either naive or chronically injected mice

  11. Anti-diabetic properties of Momordica charantia L. polysaccharide in alloxan-induced diabetic mice.

    Science.gov (United States)

    Xu, Xin; Shan, Bin; Liao, Cai-Hu; Xie, Jian-Hua; Wen, Ping-Wei; Shi, Jia-Yi

    2015-11-01

    A water-soluble polysaccharide (MCP) was isolated from the fruits of Momordica charantia L., and the hypoglycemic effects of MCP were investigated in both normal healthy and alloxan-induced diabetic mice. MCP was orally administered once a day after 3 days of alloxan-induction at 100, 200 and 300mg/kg body weight for 28 day. Results showed that fasting blood glucose level (BGL) was significantly decreased, whereas the glucose tolerance was marked improvement in alloxan-induced diabetic mice, and loss in body weight was also prevented in diabetic mice compared to the diabetic control group. The dosage of 300mg/kg body weight exhibited the best effects. In addition, MCP did not exhibit any toxic symptoms in the limited toxicity evaluation in mice. The results suggest that MCP possess significantly dose-dependent anti-diabetic activity on alloxan-induced diabetic mice. Hence, MCP can be incorporated as a supplement in health-care food, drugs and/or combined with other hypoglycemic drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Obesity-Associated Alterations in Inflammation, Epigenetics, and Mammary Tumor Growth Persist in Formerly Obese Mice.

    Science.gov (United States)

    Rossi, Emily L; de Angel, Rebecca E; Bowers, Laura W; Khatib, Subreen A; Smith, Laura A; Van Buren, Eric; Bhardwaj, Priya; Giri, Dilip; Estecio, Marcos R; Troester, Melissa A; Hair, Brionna Y; Kirk, Erin L; Gong, Ting; Shen, Jianjun; Dannenberg, Andrew J; Hursting, Stephen D

    2016-05-01

    Using a murine model of basal-like breast cancer, we tested the hypothesis that chronic obesity, an established breast cancer risk and progression factor in women, induces mammary gland epigenetic reprogramming and increases mammary tumor growth. Moreover, we assessed whether the obesity-induced epigenetic and protumor effects are reversed by weight normalization. Ovariectomized female C57BL/6 mice were fed a control diet or diet-induced obesity (DIO) regimen for 17 weeks, resulting in a normal weight or obese phenotype, respectively. Mice on the DIO regimen were then randomized to continue the DIO diet or were switched to the control diet, resulting in formerly obese (FOb) mice with weights comparable with control mice. At week 24, all mice were orthotopically injected with MMTV-Wnt-1 mouse mammary tumor cells. Mean tumor volume, serum IL6 levels, expression of proinflammatory genes in the mammary fat pad, and mammary DNA methylation profiles were similar in DIO and FOb mice and higher than in controls. Many of the genes found to have obesity-associated hypermethylation in mice were also found to be hypermethylated in the normal breast tissue of obese versus nonobese human subjects, and nearly all of these concordant genes remained hypermethylated after significant weight loss in the FOb mice. Our findings suggest that weight normalization may not be sufficient to reverse the effects of chronic obesity on epigenetic reprogramming and inflammatory signals in the microenvironment that are associated with breast cancer progression. Cancer Prev Res; 9(5); 339-48. ©2016 AACR. ©2016 American Association for Cancer Research.

  13. Quantitative studies on the influence of radiophosphorus (P-32) on bone marrow in young mice

    International Nuclear Information System (INIS)

    Park, Il Young; Kwon, Dal Gwan

    1984-01-01

    This study was performed to observe the effect of internal radioactive source on the bone marrow of mice at various stages of development (1 day, 1,2,3, and 4 weeks). Radiophosphorus (P-32) was injected to mice intraperitoneally at the dose rate of 1.0 uCi/g body weight. Mice were autopsied at weekly intervals up to six weeks and observed on pronormoblats and normoblasts, granulocytes total and lymphocytes of bone marrow in 130 mice. 1. The erythroid cells show rapid decreases in their percentage due to their destruction. 2. The myeloid cells undergo accelerated maturation resulting in increased percentage of segmented form in bone marrow. 3. The percentage of lymphocytes is also decreased with some signs of their destruction. 4. The regeneration sets in and a normal picture is seen by the time the animals become adult

  14. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  15. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Science.gov (United States)

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  16. Fisetin-Rich Extracts of Rhus verniciflua Stokes Improve Blood Flow Rates in Mice Fed Both Normal and High-Fat Diets.

    Science.gov (United States)

    Im, Won Kyun; Park, Hyun Jung; Lee, Kwang Soo; Lee, Jung Hoon; Kim, Young Dong; Kim, Kyeong-Hee; Park, Sang-Jae; Hong, Seokmann; Jeon, Sung Ho

    2016-02-01

    Although it has been previously reported that Rhus verniciflua Stokes (RVS) possesses in vitro anti-inflammatory activity, the precise in vivo mechanisms of RVS extracts and a main active component called fisetin have not been well elucidated. In this study, using newly developed protocols, we prepared urushiol-free but fisetin-enriched RVS extracts and investigated their effects on the vascular immune system. We found that the water-soluble fractions of detoxified RVS with the flavonoid fisetin can inhibit lipopolysaccharide-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). Furthermore, RVS can reduce inducible nitric oxide synthase and COX2 gene expression levels, which are responsible for NO and PGE2 production, respectively, in RAW264.7 macrophage cells. Because inflammation is linked to the activation of the coagulation system, we hypothesized that RVS and its active component fisetin possess anticoagulatory activities. As expected, we found that both RVS and fisetin could inhibit the coagulation of human peripheral blood cells. Moreover, in vivo RVS treatment could return the retarded blood flow elicited by a high-fat diet (HFD) back to the normal level in mice. In addition, RVS treatment has significantly reduced body weight gained by HFD in mice. Taken together, the fisetin-rich RVS extracts have potential antiplatelet and antiobesity activities and could be used as a functional food ingredient to improve blood circulation.

  17. Delivery of acid sphingomyelinase in normal and niemann-pick disease mice using intercellular adhesion molecule-1-targeted polymer nanocarriers.

    Science.gov (United States)

    Garnacho, Carmen; Dhami, Rajwinder; Simone, Eric; Dziubla, Thomas; Leferovich, John; Schuchman, Edward H; Muzykantov, Vladimir; Muro, Silvia

    2008-05-01

    Type B Niemann-Pick disease (NPD) is a multiorgan system disorder caused by a genetic deficiency of acid sphingomyelinase (ASM), for which lung is an important and challenging therapeutic target. In this study, we designed and evaluated new delivery vehicles for enzyme replacement therapy of type B NPD, consisting of polystyrene and poly(lactic-coglycolic) acid polymer nanocarriers targeted to intercellular adhesion molecule (ICAM)-1, an endothelial surface protein up-regulated in many pathologies, including type B NPD. Real-time vascular imaging using intravital microscopy and postmortem imaging of mouse organs showed rapid, uniform, and efficient binding of fluorescently labeled ICAM-1-targeted ASM nanocarriers (anti-ICAM/ASM nanocarriers) to endothelium after i.v. injection in mice. Fluorescence microscopy of lung alveoli actin, tissue histology, and 125I-albumin blood-to-lung transport showed that anti-ICAM nanocarriers cause neither detectable lung injury, nor abnormal vascular permeability in animals. Radioisotope tracing showed rapid disappearance from the circulation and enhanced accumulation of anti-ICAM/125I-ASM nanocarriers over the nontargeted naked enzyme in kidney, heart, liver, spleen, and primarily lung, both in wild-type and ASM knockout mice. These data demonstrate that ICAM-1-targeted nanocarriers may enhance enzyme replacement therapy for type B NPD and perhaps other lysosomal storage disorders.

  18. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  19. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice

    Directory of Open Access Journals (Sweden)

    Olakunle James Onaolapo

    2013-01-01

    Full Text Available This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  20. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice.

    Science.gov (United States)

    Onaolapo, Olakunle James; Onaolapo, Adejoke Yetunde

    2013-01-01

    This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  1. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    Directory of Open Access Journals (Sweden)

    Morgan Kristen

    2011-01-01

    Full Text Available Abstract Background We and others have demonstrated previously that ghrelin receptor (GhrR knock out (KO mice fed a high fat diet (HFD have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG and hyperinsulinemic-euglycemic (HI-E clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd, and decreased hepatic glucose production (HGP. HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is

  2. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks.

    Science.gov (United States)

    Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal

    2008-11-21

    Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.

  3. Induction of the immune response suppression in mice inoculated with Candida albicans.

    Science.gov (United States)

    Valdez, J C; Mesón, D E; Sirena, A; de Petrino, S F; Eugenia, M; de Jorrat, B B; de Valdex, M G

    1986-03-01

    There is a controversy in respect to the immunological response (humoral or cellular) concerning the defense against Candida albicans. Candidosis would induce sub-populations of suppressor cells in the host cell-immune response. This report tries to show the effect of different doses of C. albicans (alive or heat-killed) on the expression of cell-mediated and humoral immunity. The effect upon cell immunity was determined by inoculating different lots of singeneic mice, doses of varied concentration of C. albicans and checking for delayed-type hipersensitivity (D.T.H.). D.T.H. was also controlled in syngeneic normal mice which had previously been injected with inoculated mice spleen cells. Humoral immunity was assayed by measuring the induced blastogenesis by Pokeweed Mitogen on spleen mononuclear cells with different doses of C. albicans. Results obtained show that the different doses gave origin to: Suppression of humoral and cell response (10(8) alive); Suppression of only humoral response (10(6) alive); Suppression of cell response and increase of humoral response (10(9) dead); Increase of both responses (10(8) dead).

  4. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  5. Effect of Cistanche deserticola Ma extract on memory of aged mice ...

    African Journals Online (AJOL)

    Orobanchaceae) extract (CDME) on normal aged mice. Methods: An open-field test was used to study the effects of various doses of CDME on mouse locomotive activity. The mice were sacrificed following the locomotor test and the brain ...

  6. Modulation of radiation induced DNA damage by natural products in hemopoietic tissue of mice

    International Nuclear Information System (INIS)

    Jayakumar, S.; Bhilwade, H.N.; Chaubey, R.C.

    2014-01-01

    Ionizing radiation is known to induce oxidative stress through generation of ROS leading to a variety of DNA lesions. However, the most dangerous DNA lesions which are responsible for the origin of lethal effects, mutagenesis, genomic instability and carcinogenesis are the DSBs. During recent years efforts are being made to identify phytochemicals, antioxidants or neutraxeuticals which can reduce harmful effect of radiation during accidental exposure or prevent normal tissue injury during radiotherapy. In the present study, we have investigated the radioprotective role of curcumin, a dietary antioxidant, taurine, malabaricone-C, and umbelliferone, for their radioprotective properties in hemopoietic cells of mice. Groups of mice-were fed 1% of curcumin in diet for three weeks. Similarly other groups of mice were injected i.p. with 50 mg/kg body weight of taurine for five consecutive days. After the completion of the treatment mice pre-treated with curcumin and taurine were exposed to 3 Gy of gamma rays. Malabaricone-C was tested for its radiomodulation potential in vitro, in spleenocytes of mouse. Spleenocytes were isolated and treated with different concentrations (0.5-25 ìM) of malabaricone-C. Immediately after irradiation, alkaline comet assay were performed using standard procedures. Twenty four post radiation exposure mice were sacrificed for micronucleus test. Results of these studies showed significant reduction in DNA damage by curcumin. The micronucleus data showed marginal increase in the frequency of micronucleated erythrocytes in curcumin fed group as compared to the controls. Mice receiving curcumin for 3 weeks in diet followed by gamma radiation (3 Gy), showed approximately 50% reduction in the frequency of micro nucleated polychromatic erythrocytes. Pre-treatment of mice with taurine significantly (p < 0.01) reduced the frequency of gamma rays induced mn-PCEs in bone marrow tissue. Malabaricone-C at 1.5 ìM concentration showed very good protection

  7. Evidence that radio-sensitive cells are central to skin-phase protective immunity in CBA/Ca mice vaccinated with radiation-attenuated cercariae of Schistosoma mansoni as well as in naive mice protected with vaccine serum

    International Nuclear Information System (INIS)

    Delgado, V.S.; McLaren, D.J.

    1990-01-01

    Naive CBA/Ca mice and CBA/ca mice vaccinated 4 weeks previously with radiation-attenuated cercariae of Schistosoma mansoni were subjected to 550 rad of whole body (gamma) irradiation and then challenged 3 days later with normal cercariae. The perfusion recovery data showed that this procedure reduced the primary worm burden in naive mice by 22% and the challence worm burden in vaccinated mice by 82%. Irradiation also ablated the peripheral blood leucocytes of both mouse groups by 90-100% at the time of challenge. Histological data revealed that such treatment caused a dramatic change in number, size and leucocyte composition of cutaneous inflammatory skin reactions that characterize challenged vacccinated mice and are known to entrap invading larvae; cutaneous eosinophils were preferentially abolished by this treatment. Polyvaccine mouse serum that conferred protection passively upon naive recipient mice, failed to protect naive/irradiated mice when administered by the same protocol. Distraction of macrophages by treatment of mice with silica did not affect the establishment of a primary worm burden and reduced the protection exhibited by vaccinated mice by only 16%. These data indicade that radio-sensitive cells are important to both innate and specific acquired resistance in this mouse model and that macrophages contribute only marginally to the expression of vaccine immunity. (author)

  8. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth.

    Science.gov (United States)

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-06-30

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.

  9. Toll-Like Receptor 4 Deficiency Causes Reduced Exploratory Behavior in Mice Under Approach-Avoidance Conflict.

    Science.gov (United States)

    Li, Chunlu; Yan, Yixiu; Cheng, Jingjing; Xiao, Gang; Gu, Jueqing; Zhang, Luqi; Yuan, Siyu; Wang, Junlu; Shen, Yi; Zhou, Yu-Dong

    2016-04-01

    Abnormal approach-avoidance behavior has been linked to deficits in the mesolimbic dopamine (DA) system of the brain. Recently, increasing evidence has indicated that toll-like receptor 4 (TLR4), an important pattern-recognition receptor in the innate immune system, can be directly activated by substances of abuse, resulting in an increase of the extracellular DA level in the nucleus accumbens. We thus hypothesized that TLR4-dependent signaling might regulate approach-avoidance behavior. To test this hypothesis, we compared the novelty-seeking and social interaction behaviors of TLR4-deficient (TLR4(-/-)) and wild-type (WT) mice in an approach-avoidance conflict situation in which the positive motivation to explore a novel object or interact with an unfamiliar mouse was counteracted by the negative motivation to hide in exposed, large spaces. We found that TLR4(-/-) mice exhibited reduced novelty-seeking and social interaction in the large open spaces. In less stressful test apparatuses similar in size to the mouse cage, however, TLR4(-/-) mice performed normally in both novelty-seeking and social interaction tests. The reduced exploratory behaviors under approach-avoidance conflict were not due to a high anxiety level or an enhanced fear response in the TLR4(-/-) mice, as these mice showed normal anxiety and fear responses in the open field and passive avoidance tests, respectively. Importantly, the novelty-seeking behavior in the large open field induced a higher level of c-Fos activation in the nucleus accumbens shell (NAcSh) in TLR4(-/-) mice than in WT mice. Partially inactivating the NAcSh via infusion of GABA receptor agonists restored the novelty-seeking behavior of TLR4(-/-) mice. These data suggested that TLR4 is crucial for positive motivational behavior under approach-avoidance conflict. TLR4-dependent activation of neurons in the NAcSh may contribute to this phenomenon.

  10. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    Science.gov (United States)

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  11. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Light microscopic study of the effect of new antischistosmal drug (myrrh extract) on the liver of mice.

    Science.gov (United States)

    Massoud, Ahmed M A; el Ebiary, Faika H; Ibrahim, Suzi H

    2005-12-01

    The efficacy of purified oleo-resin extract of myrrh derived from Commiphora molmol tree, (known as Mirazid) was studied against an Egyptian strain of Schistosoma mansoni in mice. Seventy adult male mice were used in this study. They were divided into 4 groups: G.I: consisted of control noninfected nontreated mice. G.II: comprised the noninfected treated mice and was subdivided into two subgroups, subgroup II-A: included mice which received Myrrh extract dissolved in cremophore EL and subgroup II-B: included mice which were treated with cremophore EL. G.III: consisted of the infected nontreated animals and G.IV: included infected mice which were treated with myrrh extract. The drug was given 8 weeks post infection in a dose of 500 mg/kg body weight/day for 5 successive days. All animals were sacrificed after 12 weeks from the beginning of the experiment. Liver paraffin sections were prepared and stained with H&E, Masson's Trichrome stain, PAS stain and Wilder's technique. A morphometric study was performed for the mean number and perimeter of the granulomas. Area percentage of the total collagen content around central veins as well as in portal areas was also estimated. The livers of the animals in G.II which received either myrrh extract (subgroup II-A) or cremophore EL (subgroup II-B) showed a more or less normal histological profile when compared to G.I (noninfected-nontreated group). G.IV (Infected treated G.) showed complete preservation of the hepatic architecture. Most of the hepatocytes appeared almost normal. The reticular network in the central part of the granulomas as well as in the portal tracts appeared rarefied. The hepatic reticular network was preserved. A significant decrease in the number and size of granulomas with significant reduction in the collagen content deposition in portal tracts and around central veins was detected when compared to G.III (infected nontreated mice). The data of this study proved the efficacy of myrrh as a promising

  13. Factors influencing the vaccinia-specific cytotoxic response of thymocytes from normal and chimeric mice

    International Nuclear Information System (INIS)

    Doherty, P.C.; Schwartz, D.H.; Bennink, J.R.; Korngold, R.

    1981-01-01

    Following adoptive transfer into irradiated recipients, thymocytes can be induced to respond strongly to vaccinia virus. High levels of cytotoxic T-lymphocyte (CTL) activity may be generated from thymus, but not from spleen, of 3-day-old mice. The capacity of thymocytes to differentiate into effector CTL tends to be lost with age. Some of this loss may reflect positive suppression: a single, low dose of cyclophosphamide allows the reemergence of responsiveness in at least one mouse strain. Thymocytes from [A leads to (A x B)F1] and [(A x B)F1 leads to A] chimeras show the response patterns that would by predicted from previous studies of lymph node and spleen cells. However, thymic function seems to be rapidly lost in the [A leads to (A x B)F1] Chimeras

  14. Therapeutic Effect of Activated Carbon-Induced Constipation Mice with Lactobacillus fermentum Suo on Treatment

    Directory of Open Access Journals (Sweden)

    Huayi Suo

    2014-11-01

    Full Text Available The aim of this study was to investigate the effects of Lactobacillus fermentum Suo (LF-Suo on activated carbon-induced constipation in ICR (Institute of Cancer Research mice. ICR mice were orally administered with lactic acid bacteria for 9 days. Body weight, diet intake, drinking amount, defecation status, gastrointestinal transit and defecation time, and the serum levels of MTL (motilin, Gas (gastrin, ET (endothelin, SS (somatostatin, AChE (acetylcholinesterase, SP (substance P, VIP (vasoactive intestinal peptide were used to evaluate the preventive effects of LF-Suo on constipation. Bisacodyl, a laxative drug, was used as a positive control. The normal, control, 100 mg/kg bisacodyl treatment, LB (Lactobacillus bulgaricus-, LF-Suo (L- and LF-Suo (H-treated mice showed the time to the first black stool defecation at 90, 218, 117, 180, 155 and 137 min, respectively. By the oral administration of LB-, LF-Suo (L, LF-Suo (H or bisacodyl (100 mg/kg, the gastrointestinal transit was reduced to 55.2%, 72.3%, 85.5% and 94.6%, respectively, of the transit in normal mice, respectively. In contrast to the control mice, the serum levels of MTL, Gas, ET, AChE, SP and VIP were significantly increased and the serum levels of SS were reduced in the mice treated with LF-Suo (p < 0.05. By the RT-PCR (reverse transcription–polymerase chain reaction and western blot assays, LF-Suo increased the c-Kit, SCF (stem cell factor, GDNF (glial cell line-derived neurotrophic factor and decreased TRPV1 (transient receptor potential vanilloid 1, NOS (nitric oxide synthase expressions of small intestine tissue in mice. These results demonstrate that lactic acid bacteria has preventive effects on mouse constipation and LF-Suo demonstrated the best functional activity.

  15. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    Science.gov (United States)

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Course of induced infection by Eimeria krijgsmannni in immunocompetent and immunodeficient mice.

    Science.gov (United States)

    Ono, Yuina; Matsubayashi, Makoto; Kawaguchi, Hiroaki; Tsujio, Masashi; Mizuno, Masanobu; Tanaka, Tetsuya; Masatani, Tatsunori; Matsui, Toshihiro; Matsuo, Tomohide

    2016-01-01

    Recently, we have demonstrated the utility of Eimeria krijgsmanni as a novel mouse eimerian parasite for elucidating the biological diversity. The parasite showed notable infectivity to mice with various levels of immune status and susceptibility to antimicrobial agents including coccidiostat. However, the detailed lifecycle of E. krijgsmanni had not yet been determined and this information was lacking in discussion of previous findings. In the present study, we clarified the morphological characteristics of E. krijgsmanni and its lifecycle in normal mice, and examined the effects in immunodeficient mice and lifecycle stage for challenge infections after the primary inoculation. In immunocompetent mice, the lifecycle consisted of four asexual stages and the sexual sages followed by formation of oocysts during the prepatent periods. Interestingly, the second-generation meronts were detected in all observation periods after the disappearance of the other stages. For the challenge infection of immunodeficient mice, all developmental stages except for the second generation meronts were temporarily vanished. This finding suggests a "rest" or marked delay in development and a "restart" of the promotion toward the next generations. The second generation meronts may play an important role in the lifecycle of E. krijgsmanni.

  17. Dexamethasone treatment induces susceptibility of outbred Webster mice to experimental infection with Besnoitia darlingi isolated from opossums (Didelphis virginiana).

    Science.gov (United States)

    Elsheikha, Hany M; Rosenthal, Benjamin M; Mansfield, Linda S

    2005-04-01

    The Sarcocystidae comprise a diverse, monophyletic apicomplexan parasite family, most of whose members form intracellular cysts in their intermediate hosts. The extent of pathology associated with such cyst formation can range widely. We currently lack experimental animal models for many of these infections. Here we explored dexamethasone treatment as a means to render outbred mice susceptible to Besnoitia darlingi infection and demonstrated that this approach allows viable parasites to be subsequently isolated from these mice and maintained in tissue culture. Besnoitia bradyzoites recovered from crushed cysts derived from naturally infected opossums (Didelphis virginiana) replicated and reproduced the development of besnoitiosis in mice treated with dexamethasone (0.5 mg/ml drinking water) daily for 12 days post infection (DPI). Isolates recovered from the peritoneal exudates of these mice were viable and were maintained in long-term tissue cultures. In contrast, control mice given saline without dexamethasone and challenged with similar bradyzoites remained clinically normal for up to 70 DPI. An additional group of mice challenged with the same inoculum of bradyzoites and given dexamethasone at the same concentration and treated with sulfadiazine (1 mg/ml drinking water) daily for 12 DPI also remained normal for up to 70 DPI. Severe disease developed more rapidly in dexamethasone-treated mice inoculated with culture-derived B. darlingi tachyzoites than in those inoculated with cyst-derived bradyzoites. B. darlingi tachyzoite-infected, untreated control mice developed signs of illness at 18 DPI. In contrast, mice treated with sulfadiazine showed no clinical signs up to 50 DPI. Although dexamethasone treatment was required to establish B. darlingi infection in outbred mice inoculated with opossum-derived B. darlingi bradyzoites, no such treatment was required for mice inoculated with culture-derived B. darlingi tachyzoites. Finally, sulfadiazine was highly

  18. Thymidine kinase 2 (H126N) knockin mice show the essential role of balanced deoxynucleotide pools for mitochondrial DNA maintenance.

    Science.gov (United States)

    Akman, Hasan O; Dorado, Beatriz; López, Luis C; García-Cazorla, Angeles; Vilà, Maya R; Tanabe, Lauren M; Dauer, William T; Bonilla, Eduardo; Tanji, Kurenai; Hirano, Michio

    2008-08-15

    Mitochondrial DNA (mtDNA) depletion syndrome (MDS), an autosomal recessive condition, is characterized by variable organ involvement with decreased mtDNA copy number and activities of respiratory chain enzymes in affected tissues. MtDNA depletion has been associated with mutations in nine autosomal genes, including thymidine kinase (TK2), which encodes a ubiquitous mitochondrial protein. To study the pathogenesis of TK2-deficiency, we generated mice harboring an H126N Tk2 mutation. Homozygous Tk2 mutant (Tk2(-/-)) mice developed rapidly progressive weakness after age 10 days and died between ages 2 and 3 weeks. Tk2(-/-) animals showed Tk2 deficiency, unbalanced dNTP pools, mtDNA depletion and defects of respiratory chain enzymes containing mtDNA-encoded subunits that were most prominent in the central nervous system. Histopathology revealed an encephalomyelopathy with prominent vacuolar changes in the anterior horn of the spinal cord. The H126N TK2 mouse is the first knock-in animal model of human MDS and demonstrates that the severity of TK2 deficiency in tissues may determine the organ-specific phenotype.

  19. Comprehensive behavioral analysis of Ox1r-/- mice showed implication of orexin receptor-1 in mood, anxiety and social behavior

    Directory of Open Access Journals (Sweden)

    Md Golam Abbas

    2015-12-01

    Full Text Available Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R is involved in physiological processes that regulate emotion, the reward system and autonomic nervous system. Here, we examined Ox1r-/- mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r-/- mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behaviour and sensory motor gating in addition to roles in mood and anxiety.

  20. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  1. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  2. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    Science.gov (United States)

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  3. : acquired resistance in mice by implantation of young irradiated worms into the portal system

    Directory of Open Access Journals (Sweden)

    Paulo Marcos Z. Coelho

    1989-02-01

    Full Text Available In two distinct experiments, immature S. mansoni worms (LE strain, Belo Horizonte, Brazil, aged 20 days, obtained from the portal system of white outbred mice, were irradiated with 14 and 4 Krad, respectively. Afterwards, the worms were directly inoculated into the portal vein of normal mice. Inoculation was performed with 20 irradiated worms per animal. Fifty days after inoculation, the mice that received 4 and 14 Krad-irradiated worms and their respective controls were infected with S. mansoni cercariae (LE strain, by transcutaneous route. Twenty days after this challenge infection, the animals were sacrificed and perfused for mature irradiated (90-day-old and immature (20-day-old worm counts. Analysis of the results showed that statistically significant protection against cercariae occurred in both groups with irradiated worms.

  4. Risk assessment of silica nanoparticles on liver injury in metabolic syndrome mice induced by fructose.

    Science.gov (United States)

    Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong

    2018-07-01

    This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  6. Effects of imidazole derivatives in the survival of 60Co irradiated mice

    International Nuclear Information System (INIS)

    Villavicencio, A.L.C.H.; Mastro, N.L. del.

    1988-07-01

    The presence of hypoxic and radioresistant cells is considered the main reason of failure in radiotherapy of neoplasms. Hypoxic cell radiosensitizers, as nitroimidazole derivatives, have an advantage over other alternative methods for improving the effects of radiotherapy since hypoxic cells exist in considerable concentration in tumours and only in small concentration in normal tissues. Its show also a direct cytotoxicity over the hypoxic cell population. In this work, studies on combining ip administered drugs and single dose radiation treatments in healthy albino mice are presented. It was compared the action of 2-nitroimidazole, levamisole and cysteine, the latest considered as radioprotector for several biological systems. The results showed some radioprotective action for 2 - nitroimidazole (MISO), sensitizer capacity for levamisole and in those conditions, cysteine failed to produce any effects on the survival of 9 Gy 60 Co irradiated mice. (author) [pt

  7. Effect of Ganoderma lucidum (G. lucidum) on the Liver of Mice Bearing Ehrlich Solid Tumor (EST) and Exposed to γ-Radiation

    International Nuclear Information System (INIS)

    Ibrahim, S.I.; El-Kabany, H.

    2013-01-01

    The present study was performed to investigate the antitumor and radio sensitizing efficacy of Ganodarma lucidum (G. lucidum) and to evaluate its potential to improve hepatic dysfunction in Ehrlich solid tumor (EST) bearing mice. G. lucidum (100 mg/Kg body weight) was administered orally to EST bearing mice for 15 days before and 15 days after tumor inoculation. Irradiation was carried out the 8th day of tumor inoculation when the diameter of the tumor reached approximately 10 mm. Mice were exposed to fractionated doses of whole body γ-radiation (3x2Gy) at two days interval to attain a total dose of 6 Gy. Mice were divided into 6 groups (15 mice in each group) as follows: normal control, mice treated with G. lucidum for 30 days, EST bearing mice, EST bearing mice exposed to fractionated doses of γ-radiation (2Gy x 3), EST bearing mice treated with G. lucidum for 15 days before and 15 days after tumor inoculation and EST bearing mice received combined treatment radiation and G. lucidum. Five mice from each group were sacrificed, after 18 hr fasting after the last dose of G. lucidum treatment. Blood was collected, liver and tumor were removed for biochemical and histopathological studies. The remaining animals were observed for recording survival percentage and tumor size. In vitro study on Ehrlich Ascites Carcinoma cells showed that the percentage of nonviable cells (NVC%) increase with increasing G. lucidum concentration. The results revealed also that treatment of EST bearing mice with G. lucidum and/or γ- radiation increased the survivability and decrease the tumor size as compared to EST group. The biochemical analysis for EST bearing group recorded an elevation in the activities of lactate dehydrogenase (LDH), asparta amino transferase (AST) and alanine amino transferase (ALT) in the serum. Also, there was an elevation in the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, accompanied by a decrease in superoxide dismutase (SOD

  8. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  9. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  10. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  11. Protective Role of Spirulina on Gamma Rays Induced Haematological and Biochemical Disorders in Mice

    International Nuclear Information System (INIS)

    Ibrahim, R.M.; Kamal El-Dein, E.M.

    2014-01-01

    The present study reports the haematological and biochemical protective effect of Salipriina on Swiss albino mice exposed to gamma radiation. Swiss albino mice (8 weeks old) were administered intraperitoneally Sanepil (800 mg/kg b.wt.) prior to whole body gamma-irradiation (7.5 Gy). Radiation exposure resulted in a significant decline in different bone marrow cells (pro-and normoblasts) and blood constituents (erythrocytes, leukocytes, differential leukocyte count, haematocrit,haemoglobin and erythrocyte sedimentation rate). Pro- and normoblasts, erythrocytes, leukocytes, haematocrit and haemoglobin values showed a significant (p<0.05) decline during the first 3 days, followed by a gradual recovery starting from day 7, but normal values were not recorded until 14 days post-exposure. Treatment of mice with Spirulina also caused a significant decrease in malondialdehyde (MDA) formation in the liver, suggesting its role in protection against radiation induced membrane and cellular damage. Similarly, pretreatment of mice with Spirulina caused a significant increase in serum glutathione (GSH) level in comparison with that of irradiated animals. Results suggest that Spirulina modulate the radiation induced hematological and biochemical alterations in Swiss albino mice

  12. Effects of Kerack used in addict Iranian people on fertility of adult mice

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-08-01

    Full Text Available Background: Infertility is one of the most serious social problems. Illicit drug use can be an important cause of male factor infertility. Kerack which its use is rising up in Iran refers to a high purity street-level heroin (heroin Kerack. Heroin Kerack used in Iran is an opioid and has harmful effects on body organs. The aim of this study is to investigate the effects of Kerack used in Iran on fertility adult mice.Methods: In this study, 25 male mice were divided into five groups (control, sham and three experimental. Experimental groups of Kerack-dependent mice (received ascend-ing dose of Kerack for seven days were divided into three categories, experimental I, II and III. Experimental I was given Kerack at a dose of 5 mg/kg, experimental II 35 mg/kg and experimental III 70 mg/kg, intraperitoneally twice a day for a period of 35 days. The sham group received normal saline and lemon juice (2.6 µl/ml whilst the control group just received water and food. Mice were then scarified and sperm removed from cauda epididymis were analyzed for sperm count, motility, morphology (normal/abnormal and viability. Testes were also removed, weighed and processed for light microscopic studies.Results: The results showed that fertility were significantly decreased in addicted mice compared with control groups (P≤0.05. Epididymal sperm parameters and thickness of seminiferous epithelium were significantly decreased in experimental groups (dose-dependent compared with sham and control groups (P≤0.05. Gonadosomatic index was significantly reduced with high dose Kerack injected (70 mg/kg in comparison with control testes (P≤0.05.Conclusion: This study has shown the deleterious effects of Kerack used in addicted Iranian people on fertility for the first time. This effect is especially on epididymal sperm parameters in adult mice.

  13. Dedicated low-field MRI in mice

    International Nuclear Information System (INIS)

    Choquet, P; Breton, E; Goetz, C; Constantinesco, A; Marin, C

    2009-01-01

    The rationale of this work is to point out the relevance of in vivo MR images of mice obtained using a dedicated low-field system. For this purpose a small 0.1 T water-cooled electro-magnet and solenoidal radio frequency (RF) transmit-receive coils were used. All MR images were acquired in three-dimensional (3D) mode. An isolation cell was designed allowing easy placement of the RF coils and simple delivery of gaseous anesthesia as well as warming of the animal. Images with and without contrast agent were obtained in total acquisition times on the order of half an hour to four hours on normal mice as well as on animals bearing tumors. Typical in plane pixel dimensions range from 200 x 200 to 500 x 500 μm 2 with slice thicknesses ranging between 0.65 and 1.50 mm. This work shows that, besides light installation and low cost, dedicated low-field MR systems are suitable for small rodents imaging, opening this technique even to small research units.

  14. Dedicated low-field MRI in mice

    Science.gov (United States)

    Choquet, P.; Breton, E.; Goetz, C.; Marin, C.; Constantinesco, A.

    2009-09-01

    The rationale of this work is to point out the relevance of in vivo MR images of mice obtained using a dedicated low-field system. For this purpose a small 0.1 T water-cooled electro-magnet and solenoidal radio frequency (RF) transmit-receive coils were used. All MR images were acquired in three-dimensional (3D) mode. An isolation cell was designed allowing easy placement of the RF coils and simple delivery of gaseous anesthesia as well as warming of the animal. Images with and without contrast agent were obtained in total acquisition times on the order of half an hour to four hours on normal mice as well as on animals bearing tumors. Typical in plane pixel dimensions range from 200 × 200 to 500 × 500 µm2 with slice thicknesses ranging between 0.65 and 1.50 mm. This work shows that, besides light installation and low cost, dedicated low-field MR systems are suitable for small rodents imaging, opening this technique even to small research units.

  15. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    Science.gov (United States)

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  16. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    , particularly against DENV strains that contain multiple mutations or genetic recombination within or between their DENV E and NS1 glycoprotein-encoding genes. The model provides potential for assessing DENV strain pathogenicity and anti-DENV therapies in normal mice.

  17. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  18. Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice.

    Directory of Open Access Journals (Sweden)

    Danique van Vliet

    Full Text Available Phenylketonuria (PKU was the first disorder in which severe neurocognitive dysfunction could be prevented by dietary treatment. However, despite this effect, neuropsychological outcome in PKU still remains suboptimal and the phenylalanine-restricted diet is very demanding. To improve neuropsychological outcome and relieve the dietary restrictions for PKU patients, supplementation of large neutral amino acids (LNAA is suggested as alternative treatment strategy that might correct all brain biochemical disturbances caused by high blood phenylalanine, and thereby improve neurocognitive functioning.As a proof-of-principle, this study aimed to investigate all hypothesized biochemical treatment objectives of LNAA supplementation (normalizing brain phenylalanine, non-phenylalanine LNAA, and monoaminergic neurotransmitter concentrations in PKU mice.C57Bl/6 Pah-enu2 (PKU mice and wild-type mice received a LNAA supplemented diet, an isonitrogenic/isocaloric high-protein control diet, or normal chow. After six weeks of dietary treatment, blood and brain amino acid and monoaminergic neurotransmitter concentrations were assessed.In PKU mice, the investigated LNAA supplementation regimen significantly reduced blood and brain phenylalanine concentrations by 33% and 26%, respectively, compared to normal chow (p<0.01, while alleviating brain deficiencies of some but not all supplemented LNAA. Moreover, LNAA supplementation in PKU mice significantly increased brain serotonin and norepinephrine concentrations from 35% to 71% and from 57% to 86% of wild-type concentrations (p<0.01, respectively, but not brain dopamine concentrations (p = 0.307.This study shows that LNAA supplementation without dietary phenylalanine restriction in PKU mice improves brain biochemistry through all three hypothesized biochemical mechanisms. Thereby, these data provide proof-of-concept for LNAA supplementation as a valuable alternative dietary treatment strategy in PKU. Based on these

  19. A mixture of extracts from Peruvian plants (black maca and yacon) improves sperm count and reduced glycemia in mice with streptozotocin-induced diabetes.

    Science.gov (United States)

    Gonzales, Gustavo F; Gonzales-Castañeda, Cynthia; Gasco, Manuel

    2013-09-01

    We investigated the effect of two extracts from Peruvian plants given alone or in a mixture on sperm count and glycemia in streptozotocin-diabetic mice. Normal or diabetic mice were divided in groups receiving vehicle, black maca (Lepidium meyenii), yacon (Smallanthus sonchifolius) or three mixtures of extracts black maca/yacon (90/10, 50/50 and 10/90%). Normal or diabetic mice were treated for 7 d with each extract, mixture or vehicle. Glycemia, daily sperm production (DSP), epididymal and vas deferens sperm counts in mice and polyphenol content, and antioxidant activity in each extract were assessed. Black maca (BM), yacon and the mixture of extracts reduced glucose levels in diabetic mice. Non-diabetic mice treated with BM and yacon showed higher DSP than those treated with vehicle (p maca/yacon increased DSP, and sperm count in vas deferens and epididymis with respect to non-diabetic and diabetic mice treated with vehicle (p maca, and this was associated with higher antioxidant activity. The combination of two extracts improved glycemic levels and male reproductive function in diabetic mice. Streptozotocin increased 1.43 times the liver weight that was reversed with the assessed plants extracts. In summary, streptozotocin-induced diabetes resulted in reduction in sperm counts and liver damage. These effects could be reduced with BM, yacon and the BM+yacon mixture.

  20. Mlh1 deficiency in normal mouse colon mucosa associates with chromosomally unstable colon cancer

    Science.gov (United States)

    Pussila, Marjaana; Törönen, Petri; Einarsdottir, Elisabet; Katayama, Shintaro; Krjutškov, Kaarel; Holm, Liisa; Kere, Juha; Peltomäki, Päivi; Mäkinen, Markus J; Linden, Jere; Nyström, Minna

    2018-01-01

    Abstract Colorectal cancer (CRC) genome is unstable and different types of instabilities, such as chromosomal instability (CIN) and microsatellite instability (MSI) are thought to reflect distinct cancer initiating mechanisms. Although 85% of sporadic CRC reveal CIN, 15% reveal mismatch repair (MMR) malfunction and MSI, the hallmarks of Lynch syndrome with inherited heterozygous germline mutations in MMR genes. Our study was designed to comprehensively follow genome-wide expression changes and their implications during colon tumorigenesis. We conducted a long-term feeding experiment in the mouse to address expression changes arising in histologically normal colonic mucosa as putative cancer preceding events, and the effect of inherited predisposition (Mlh1+/−) and Western-style diet (WD) on those. During the 21-month experiment, carcinomas developed mainly in WD-fed mice and were evenly distributed between genotypes. Unexpectedly, the heterozygote (B6.129-Mlh1tm1Rak) mice did not show MSI in their CRCs. Instead, both wildtype and heterozygote CRC mice showed a distinct mRNA expression profile and shortage of several chromosomal segregation gene-specific transcripts (Mlh1, Bub1, Mis18a, Tpx2, Rad9a, Pms2, Cenpe, Ncapd3, Odf2 and Dclre1b) in their colon mucosa, as well as an increased mitotic activity and abundant numbers of unbalanced/atypical mitoses in tumours. Our genome-wide expression profiling experiment demonstrates that cancer preceding changes are already seen in histologically normal colon mucosa and that decreased expressions of Mlh1 and other chromosomal segregation genes may form a field-defect in mucosa, which trigger MMR-proficient, chromosomally unstable CRC. PMID:29701748

  1. Dietary Phosphate Restriction Normalizes Biochemical and Skeletal Abnormalities in a Murine Model of Tumoral Calcinosis

    OpenAIRE

    Ichikawa, Shoji; Austin, Anthony M.; Gray, Amie K.; Allen, Matthew R.; Econs, Michael J.

    2011-01-01

    Mutations in the GALNT3 gene cause tumoral calcinosis characterized by ectopic calcifications due to persistent hyperphosphatemia. We recently developed Galnt3 knockout mice in a mixed background, which had hyperphosphatemia with increased bone mineral density (BMD) and infertility in males. To test the effect of dietary phosphate intake on their phenotype, Galnt3 knockout mice were generated in the C57BL/6J strain and fed various phosphate diets: 0.1% (low), 0.3% (low normal), 0.6% (normal),...

  2. Role of PKC and CaV1.2 in detrusor overactivity in a model of obesity associated with insulin resistance in mice.

    Directory of Open Access Journals (Sweden)

    Luiz O Leiria

    Full Text Available Obesity/metabolic syndrome are common risk factors for overactive bladder. This study aimed to investigate the functional and molecular changes of detrusor smooth muscle (DSM in high-fat insulin resistant obese mice, focusing on the role of protein kinase C (PKC and Ca(v1.2 in causing bladder dysfunction. Male C57BL/6 mice were fed with high-fat diet for 10 weeks. In vitro functional responses and cystometry, as well as PKC and Ca(v1.2 expression in bladder were evaluated. Obese mice exhibited higher body weight, epididymal fat mass, fasting glucose and insulin resistance. Carbachol (0.001-100 µM, α,β-methylene ATP (1-10 µM, KCl (1-300 mM, extracellular Ca(2+ (0.01-100 mM and phorbol-12,13-dibutyrate (PDBu; 0.001-3 µM all produced greater DSM contractions in obese mice, which were fully reversed by the Ca(v1.2 blocker amlodipine. Cystometry evidenced augmented frequency, non-void contractions and post-void pressure in obese mice that were also prevented by amlodipine. Metformin treatment improved the insulin sensitivity, and normalized the in vitro bladder hypercontractility and cystometric dysfunction in obese mice. The PKC inhibitor GF109203X (1 µM also reduced the carbachol induced contractions. PKC protein expression was markedly higher in bladder tissues from obese mice, which was normalized by metformin treatment. The Ca(v1.2 channel protein expression was not modified in any experimental group. Our findings show that Ca(v1.2 blockade and improvement of insulin sensitization restores the enhanced PKC protein expression in bladder tissues and normalizes the overactive detrusor. It is likely that insulin resistance importantly contributes for the pathophysiology of this urological disorder in obese mice.

  3. Effects of royal jelly on genotoxicity and nephrotoxicity induced by valproic acid in albino mice

    Directory of Open Access Journals (Sweden)

    Sanaa R. Galaly

    2014-03-01

    Full Text Available Epilepsy is one of the most common neurological diseases affecting at least 50 million people worldwide. Valproic acid (VPA is a widely used antiepileptic medication for both generalized and partial seizures of epilepsy. The objective of the study was to investigate the anti-mutagenic and anti-histopathologic effects of royal jelly (RJ on VPA-induced genotoxicity and nephrotoxicity in male albino mice (Mus musculus. 80 Mice were used for 21 days; they were divided into eight groups, (G1 served as normal control group, G2 received VPA (100 mg/kg and (G3–G5 received RJ at doses 50, 100 and 200 mg/kg respectively. While (G6–G8 were administrated RJ simultaneously with VPA. In RJ treated mice at doses of 50 and 100 mg/kg, the kidney sections showed normal histological structure with non significant changes in chromosomal aberrations (CA and mitotic index (MI, while RJ at dose of 200 mg/kg showed mild inflammatory cells infiltration and hyperemic glomeruli but not highly significant changes in CA and MI. The cortex of VPA treated mice revealed congested glomeruli with inflammatory cells infiltration, and marked degeneration of almost structures of the glomeruli including some vacuoles in mesangial cells with dark mesangial substances on the ultrastructure level. Some proximal tubules showed degeneration of microvilli on the apical parts of some cells. Cells of the distal tubules attained obliterated lumen and vacuolated lining epithelium. The results also revealed that valproic acid induced a high frequency of CA in bone marrow cells of mice and MI was significantly decreased indicating bone marrow cytotoxicity. The treatment of mice with RJ at doses 50, 100 and 200 mg/kg for 21 days simultaneously with VPA resulted in abating the histological alterations in renal tissues with significant reduction in chromosomal aberrations, for doses of 50 and 100 mg/kg, and elevation in mitotic index (P < 0.05. RJ at doses 50 and 100 mg/kg appeared

  4. Human CD4 restores normal T cell development and function in mice deficient in murine CD4

    OpenAIRE

    1994-01-01

    The ability of a human coreceptor to function in mice was investigated by generating human CD4 (hCD4)-expressing transgenic mice on a mouse CD4-deficient (mCD4-/-) background. From developing thymocyte to matured T lymphocyte functions, hCD4 was shown to be physiologically active. By examining the expansion and deletion of specific V beta T cell families in mutated mice with and without hCD4, it was found that hCD4 can participate in positive and negative selection. Mature hCD4 single positiv...

  5. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  6. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  7. The environmental chemical tributyltin chloride (TBT) shows both estrogenic and adipogenic activities in mice which might depend on the exposure dose

    International Nuclear Information System (INIS)

    Penza, M.; Jeremic, M.; Marrazzo, E.; Maggi, A.; Ciana, P.; Rando, G.; Grigolato, P.G.; Di Lorenzo, D.

    2011-01-01

    Exposure during early development to chemicals with hormonal action may be associated with weight gain during adulthood because of altered body homeostasis. It is known that organotins affect adipose mass when exposure occurs during fetal development, although no knowledge of effects are available for exposures after birth. Here we show that the environmental organotin tributyltin chloride (TBT) exerts adipogenic action when peripubertal and sexually mature mice are exposed to the chemical. The duration and extent of these effects depend on the sex and on the dose of the compound, and the effects are relevant at doses close to the estimated human intake (0.5 μg/kg). At higher doses (50-500 μg/kg), TBT also activated estrogen receptors (ERs) in adipose cells in vitro and in vivo, based on results from acute and longitudinal studies in ERE/luciferase reporter mice. In 3T3-L1 cells (which have no ERs), transiently transfected with the ERE-dependent reporter plus or minus ERα or ERβ, TBT (in a dose range of 1-100 nM) directly targets each ER subtype in a receptor-specific manner through a direct mechanism mediated by ERα in undifferentiated preadipocytic cells and by ERβ in differentiating adipocytes. The ER antagonist ICI-182,780 inhibits this effect. In summary, the results of this work suggest that TBT is adipogenic at all ages and in both sexes and that it might be an ER activator in fat cells. These findings might help to resolve the apparent paradox of an adipogenic chemical being also an estrogen receptor activator by showing that the two apparently opposite actions are separated by the different doses to which the organism is exposed. - Research highlights: → The environmental organotin tributyltin chloride shows dose-dependent estrogenic and adipogenic activities in mice. → The duration and extent of these effects depend on the sex and the dose of the compound. → The estrogenic and adipogenic effects of TBT occur at doses closed to the estimated

  8. RhoG protein regulates platelet granule secretion and thrombus formation in mice.

    Science.gov (United States)

    Goggs, Robert; Harper, Matthew T; Pope, Robert J; Savage, Joshua S; Williams, Christopher M; Mundell, Stuart J; Heesom, Kate J; Bass, Mark; Mellor, Harry; Poole, Alastair W

    2013-11-22

    Rho GTPases such as Rac, RhoA, and Cdc42 are vital for normal platelet function, but the role of RhoG in platelets has not been studied. In other cells, RhoG orchestrates processes integral to platelet function, including actin cytoskeletal rearrangement and membrane trafficking. We therefore hypothesized that RhoG would play a critical role in platelets. Here, we show that RhoG is expressed in human and mouse platelets and is activated by both collagen-related peptide (CRP) and thrombin stimulation. We used RhoG(-/-) mice to study the function of RhoG in platelets. Integrin activation and aggregation were reduced in RhoG(-/-) platelets stimulated by CRP, but responses to thrombin were normal. The central defect in RhoG(-/-) platelets was reduced secretion from α-granules, dense granules, and lysosomes following CRP stimulation. The integrin activation and aggregation defects could be rescued by ADP co-stimulation, indicating that they are a consequence of diminished dense granule secretion. Defective dense granule secretion in RhoG(-/-) platelets limited recruitment of additional platelets to growing thrombi in flowing blood in vitro and translated into reduced thrombus formation in vivo. Interestingly, tail bleeding times were normal in RhoG(-/-) mice, suggesting that the functions of RhoG in platelets are particularly relevant to thrombotic disorders.

  9. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  10. Mice Do Not Habituate to Metabolism Cage Housing

    DEFF Research Database (Denmark)

    Kalliokoski, Otto; Jacobsen, Kirsten Rosenmaj; Darusman, Huda Shalahudin

    2013-01-01

    The metabolism cage is a barren, non-enriched, environment, combining a number of recognized environmental stressors. We investigated the ability of male BALB/c mice to acclimatize to this form of housing. For three weeks markers of acute and oxidative stress, as well as clinical signs of abnorma...... metabolism warrant caution when interpreting data obtained from metabolism cage housed mice, as their condition cannot be considered representative of a normal physiology....

  11. Deregulation of mTOR signaling is involved in thymic lymphoma development in Atm-/- mice

    International Nuclear Information System (INIS)

    Kuang, Xianghong; Shen, Jianjun; Wong, Paul K.Y.; Yan, Mingshan

    2009-01-01

    Abnormal thymocyte development with thymic lymphomagenesis inevitably occurs in Atm-/- mice, indicating that ATM plays a pivotal role in regulating postnatal thymocyte development and preventing thymic lymphomagenesis. The mechanism for ATM controls these processes is unclear. We have shown previously that c-Myc, an oncoprotein regulated by the mammalian target of rapamycin (mTOR), is overexpressed in Atm-/- thymocytes. Here, we show that inhibition of mTOR signaling with its specific inhibitor, rapamycin, suppresses normal thymocyte DNA synthesis by downregulating 4EBP1, but not S6K, and that 4EBP1 phosphorylation and cyclin D1 expression are coordinately increased in Atm-/- thymocytes. Administration of rapamycin to Atm-/- mice attenuates elevated phospho-4EBP1, c-Myc and cyclin D1 in their thymocytes, and delays thymic lymphoma development. These results indicate that mTOR downstream effector 4EBP1 is essential for normal thymocyte proliferation, but deregulation of 4EBP1 in Atm deficiency is a major factor driving thymic lymphomagenesis in the animals.

  12. Restoring the secretory function of irradiation-damaged salivary gland by administrating deferoxamine in mice.

    Directory of Open Access Journals (Sweden)

    Junye Zhang

    Full Text Available One of the major side effects of radiotherapy for treatments of the head and neck cancer is the radiation-induced dysfunction of salivary glands. The aim of the present study is to investigate the efficacy of deferoxamine (DFO to restore the secretory function of radiation-damaged salivary glands in mice.DFO (50 mg/kg/d was administered intraperitoneally in C57BL/6 mice for 3 days before and/or after point-fixed irradiation (18 Gy of submandibular glands. The total 55 mice were randomly divided into: (1 Normal group: mice received no treatment (n = 5; (2 Irradiation group (IR: mice only received irradiation (n = 5; (3 Pre-DFO group (D+IR (n = 10; (4 Pre+Post DFO group (D+IR+D (n = 10; (5 Post-DFO group (IR+D (n = 10; (6 For each DFO-treated group, the mice were intraperitoneally injected with 0.1 ml sterilized water alone (by which DFO was dissolved for 3 days before and/or after irradiation, and served as control. Sham1: Pre-sterilized water group (n = 5; sham2: Pre+Post sterilized water group (n = 5; sham3: Post-sterilized water group (n = 5. The salivary flow rate (SFR was assessed at 30th, 60th and 90th day after irradiation, respectively. After 90 days, all mice were sacrificed and their submandibular glands were removed for further examinations.The salivary glands showed remarkable dysfunction and tissue damage after irradiation. DFO restored SFR in the irradiated glands to a level comparable to that in normal glands and angiogenesis in damaged tissue was greatly increased. DFO also increased the expression levels of HIF-1α and VEGF while reduced apoptotic cells. Furthermore, Sca-1+cells were preserved in the salivary glands treated with DFO before IR.Our results indicate DFO could prevent the radiation-induced dysfunction of salivary glands in mice. The mechanism of this protective effect may involve increased angiogenesis, reduced apoptosis of acinar cells and more preserved stem cells.

  13. Deletion of the miR-143/145 Cluster Leads to Hydronephrosis in Mice

    Science.gov (United States)

    Medrano, Silvia; Sequeira-Lopez, Maria Luisa S.; Gomez, R. Ariel

    2015-01-01

    Obstructive nephropathy, the leading cause of kidney failure in children, can be anatomic or functional. The underlying causes of functional hydronephrosis are not well understood. miRNAs, which are small noncoding RNAs, regulate gene expression at the post-transcriptional level. We found that miR-145-5p, a member of the miR-143/145 cluster that is highly expressed in smooth muscle cells of the renal vasculature, was present in the pelvicalyceal system and the ureter. To evaluate whether the miR-143/145 cluster is involved in urinary tract function we performed morphologic, functional, and gene expression studies in mice carrying a whole-body deletion of miR-143/145. miR-143/145–deficient mice developed hydronephrosis, characterized by severe papillary atrophy and dilatation of the pelvicalyceal system without obvious physical obstruction. Moreover, mutant mice showed abnormal ureteral peristalsis. The number of ureter contractions was significantly higher in miR-143/145–deficient mice. Peristalsis was replaced by incomplete, short, and more frequent contractions that failed to completely propagate in a proximal-distal direction. Microarray analysis showed 108 differentially expressed genes in ureters of miR-143/145–deficient mice. Ninety genes were up-regulated and 18 genes were down-regulated, including genes with potential regulatory roles in smooth muscle contraction and extracellular matrix-receptor interaction. We show that miR-143/145 are important for the normal peristalsis of the ureter and report an association between the expression of these miRNAs and hydronephrosis. PMID:25307343

  14. Embryotoxic effect of gamma radiation in mice and their modulation by vitamins

    International Nuclear Information System (INIS)

    Goyal, P.K.; Singh, N.; Gajawat, S.; Pareek, T.K.; Dev, P.K.

    1999-01-01

    Ionizing radiations severely interfere with normal embryonic or fetal development, although period of late fetal development in mammals is considered to be the somewhat radioresistant. Here, an attempt is made to check the radiation induced developmental anomalies by vitamins during fetal development period. For this purpose, pregnant Swiss albino mice were exposed to 0.50 Gy gamma radiation during fetal growth period (day 14.25 post-coitus) in the presence (experimental) or absence (control) of vitamin B complex (20 mg/kg b.w.) till term. All dams were sacrificed on day 18 post-coitus and their uteri were examined to study reproductive status and anatomical abnormalities of each conceptus. About 48% pregnant females of the control group showed a complete embryonic resorption while in the experimental group the number of females showing resorption was only 33%. Resorption of embryos, fetal mortality and reduction in placental weight were significantly increased in mice irradiated in the absence of vitamin B complex. Various gross malformations including skeletal anomalies were significantly reduced in 18 days old fetuses given vitamin B complex therapy. Further, such fetuses had better ossification of skull and vertebrae. Sex-ratio of the fetuses, however, remained unaltered in both groups as compared to normal. (orig.)

  15. Reduction of Sodium Arsenite-Mediated Adverse Effects in Mice using Dietary Supplementation of Water Hyacinth (Eichornia crassipes) Root Powder.

    Science.gov (United States)

    Sarker, Rim Sabrina Jahan; Ahsan, Nazmul; Hossain, Khaled; Ghosh, Paritosh Kumar; Ahsan, Chowdhury Rafiqul; Akhand, Anwarul Azim

    2012-07-01

    In this study, we evaluated the protective effects of water Hyacinth Root Powder (HRP) on arsenic-mediated toxic effects in mice. Swiss albino mice, used in this study, were divided into four different groups (for each group n=5). The control group was supplied with normal feed and water, Arsenic group (As-group) was supplied with normal feed plus arsenic (sodium arsenite)-containing water, and arsenic+hyacinth group (As+Hy group) was supplied with feed supplemented with HRP plus arsenic water. The remaining Hy-group was supplied with feed supplemented with HRP plus normal water. Oral administration of arsenic reduced the normal growth of the mice as evidenced by weight loss. Interestingly, tip of the tails of these mice developed wound that caused gradual reduction of the tail length. Supplementation of HRP in feed significantly prevented mice growth retardation and tail wounding in As+Hy group mice. However, the growth pattern in Hy-group mice was observed to be almost similar to that of the control group indicating that HRP itself has no toxic or negative effect in mice. Ingested arsenic also distorted the shape of the blood cells and elevated the serum enzymes such as lactate dehydrogenase (LDH), alkaline phosphatase (ALP) and serum glutamic pyruvic transaminase (SGPT). Importantly, elevation of these enzymes and distortion of blood cell shape were partially reduced in mice belong to As+Hy group, indicating HRP-mediated reduction of arsenic toxicity. Therefore, the preventive effect of hyacinth root on arsenic-poisoned mice suggested the future application of hyacinth to reduce arsenic toxicity in animal and human.

  16. Release of zinc from the brain of El (epilepsy) mice during seizure induction.

    Science.gov (United States)

    Takeda, A; Hanajima, T; Ijiro, H; Ishige, A; Iizuka, S; Okada, S; Oku, N

    1999-05-15

    Brain distribution after i.v. injection of 65ZnCl2 into El mice, an animal model of genetically determined epilepsy, was studied by autoradiography to study the utilization of zinc in the brain. The distribution of 65Zn in the brain of El mice 6 days after injection was almost the same as that of ddY (normal) mice, suggesting that the uptake of zinc by the brain of El mice is normal. To study the movement of zinc in the brain in the course of seizure induction, the concentrations of 65Zn in the brain of seizure-afflicted and untreated control El mice were compared 20 days after 65Zn injection. The concentration of 65Zn in the brain of seized El mice was overall lower than that of control El mice; the concentration of 65Zn was decreased notably in the piriform cortex and amygdaloid nuclei complex during convulsion. These results suggest that the release of zinc from the El mouse brain is enhanced during convulsion. The decrease in actively functioning zinc in the brain may be associated with the increase in susceptibility to seizure in the El mouse. Copyright 1999 Elsevier Science B.V.

  17. Special proliferative sites are not needed for seeding and proliferation of transfused bone marrow cells in normal syngeneic mice

    International Nuclear Information System (INIS)

    Brecher, G.; Ansell, J.D.; Micklem, H.S.; Tjio, J.H.; Cronkite, E.P.

    1982-01-01

    The widely held view that transfused bone marrow cells will not proliferate in normal mice, not exposed to irradiation or other forms of bone marrow ablation, was reinvestigated. Forty million bone marrow cells from male donors were given to female recipients on each of 5 consecutive days, 5 to 10 times the number customarily used in the past. When the recipients were examined 2-13 weeks after the last transfusion, donor cells were found to average 16-25% of total marrow cells. Similar percentages of donor cells were found when variants of the enzyme phosphoglycerate kinase determined electrophoretically were used for identification of donor and recipient cells. Evidence is presented that the proportion of donor cells is compatible with a nonlinear dependence on the number of cells transfused over the range tested - i.e., 20-200 million bone marrow cells injected intravenously. Special proliferative sites thus do not appear to be required

  18. Low body temperature in long-lived Ames dwarf mice at rest and during stress.

    Science.gov (United States)

    Hunter, W S; Croson, W B; Bartke, A; Gentry, M V; Meliska, C J

    1999-09-01

    Among homeothermic animals, larger species generally have lower metabolic rates and live longer than do smaller species. Because Ames dwarf mice (dwarfs) live approximately 1 year longer than their larger normal sex- and age-matched siblings (normals), we hypothesized that they would have lower body core temperature (Tco). We, therefore, measured Tco of six dwarfs and six normals during 24-h periods of ad lib feeding, 24-h food deprivation, and emotional stress induced by cage switching. With ad lib feeding, Tco of dwarfs averaged 1.6 degrees C lower than normals; during food deprivation, Tco of both dwarfs and controls was significantly lower than when food was available ad lib; and following cage switch, Tco was elevated in both groups. However, during all three experiments, Tco was significantly lower in dwarfs than in normals. These data support the hypothesis that Ames dwarf mice, which live longer than normal size controls, maintain lower Tco than normals. Because dwarfs are deficient in thyroid stimulating hormone (TSH) and growth hormone (GH), their low Tco may be a result of reduced thermogenesis due to lack of those hormones. However, whether low Tco per se is related to the increased longevity of the dwarf mice remains an interesting possibility to be investigated.

  19. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  20. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice

    Science.gov (United States)

    Suidan, Georgette L.; Demers, Melanie; Herr, Nadine; Carbo, Carla; Brill, Alexander; Cifuni, Stephen M.; Mauler, Maximilian; Cicko, Sanja; Bader, Michael; Idzko, Marco; Bode, Christoph

    2013-01-01

    The majority of peripheral serotonin is stored in platelets, which secrete it on activation. Serotonin releases Weibel-Palade bodies (WPBs) and we asked whether absence of platelet serotonin affects neutrophil recruitment in inflammatory responses. Tryptophan hydroxylase (Tph)1–deficient mice, lacking non-neuronal serotonin, showed mild leukocytosis compared with wild-type (WT), primarily driven by an elevated neutrophil count. Despite this, 50% fewer leukocytes rolled on unstimulated mesenteric venous endothelium of Tph1−/− mice. The velocity of rolling leukocytes was higher in Tph1−/− mice, indicating fewer selectin-mediated interactions with endothelium. Stimulation of endothelium with histamine, a secretagogue of WPBs, or injection of serotonin normalized the rolling in Tph1−/− mice. Diminished rolling in Tph1−/− mice resulted in reduced firm adhesion of leukocytes after lipopolysaccharide treatment. Blocking platelet serotonin uptake with fluoxetine in WT mice reduced serum serotonin by > 80% and similarly reduced leukocyte rolling and adhesion. Four hours after inflammatory stimulation, neutrophil extravasation into lung, peritoneum, and skin wounds was reduced in Tph1−/− mice, whereas in vitro neutrophil chemotaxis was independent of serotonin. Survival of lipopolysaccharide-induced endotoxic shock was improved in Tph1−/− mice. In conclusion, platelet serotonin promotes the recruitment of neutrophils in acute inflammation, supporting an important role for platelet serotonin in innate immunity. PMID:23243271

  1. Overactivation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice1

    Science.gov (United States)

    Ren, Yi; Cowan, Robert G.; Migone, Fernando F.; Quirk, Susan M.

    2012-01-01

    ABSTRACT The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2cre/+SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2cre/+SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2cre/+SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately. PMID:22402963

  2. Anti-bacterial immunity to Listeria monocytogenes in allogeneic bone marrow chimera in mice

    International Nuclear Information System (INIS)

    Onoe, K.; Good, R.A.; Yamamoto, K.

    1986-01-01

    Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, [BR----AKR], as well as syngeneic marrow cells, [AKR----AKR], showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, [B10----AKR], [B10.AQR----AKR], [B10.A(4R)----AKR], or [B10.A(5R)----AKR], were almost completely unresponsive in DTH and antibacterial immunity. However, when [B10----AKR] H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type

  3. Culture of normal human blood cells in diffusion chamber systems. I. Granulocyte survival and proliferation. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1978-01-01

    Blood cells from four normal volunteers were cultured in diffusion chambers (DC), made of Millipore (MDC) or Nuclepore (NDC) filters, in the peritoneal cavities of whole body X-irradiated (700 rad) mice. The total nucleated cell recovery from the two types of DC over 18 days indicates that the cells in DC persist and proliferate. The mature neutrophilic cells, metamyelocytes (M/sub 5/) + band forms (M/sub 6/) + segmented forms (M/sub 7/), survived with T/sup 1///sub 2/ of 29 and 34 h in MDC and NDC, respectively. The reduction of the cells in the DC was surmised to be due to degeneration and death of the M/sub 7/. The /sup 3/H-diisopropylfluorophosphate (/sup 3/HDFP) labeled M/sub /sub 6/+/sub 7// survival in MDC was slightly shorter than that of unlabeled cells, which may be explained on the basis of the loss of /sup 3/HDFP (5.1%/day) from the cells. The eosinophils survived with an average T/sup 1///sub 2/ of 7.2 days (range 4.8 to 9.6), and the results were comparable in both types of DC. Formation of myeloblasts, promyelocytes, and neutrophilic, eosinophilic and basophilic myelocytes, occasional megakaryocytes and rare normoblasts in DC indicated that the normal human blood contains progenitors (pluripotent and/or committed stem cells) of hemopoietic cells. The neutrophilic cell recovery pattern was similar from both types of DC, but the total number recovered was always greater from NDC than from MDC.

  4. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  5. Effect of oral administration of lactobacillus acidophilus on the immune responses and survival of BALB/c mice bearing human breast cancer

    Directory of Open Access Journals (Sweden)

    Soltan Dallal MM

    2010-02-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: In according to immunomodulatory effect of probiotics and effect of these bacteria on the effectiveness of immune responses, at the present work we proposed the evaluation of oral administration of L.acidophilus on the immune statues in BALB/c mice bearing breast cancer."n"nMethods: A total of 30 In-bred BALB/c mices aged from six to eight weeks weighting 25-30g were randomly enrolled in our study, in two groups each consist of 15 mices. The L.acidophilus ATCC4356 strain used in this study was inoculated in MRS broth and cultivated for a day at 37°C under anaerobic conditions, collected by centrifugation and resuspend in Phosphate Buffer Saline (PBS. After preparation of proper amount of these suspensions it was orally administered to the mice with a gastric feeding, Control mices received an equal volume of PBS in duration of study."n"nResults: Results showed the increase in production of IFnγ (p<0.005, and decrease in production of Th2 cytokines such as IL4 (p=0.347 in the L.acidophilus administered mice in comparison to control group of mice. In addition the proliferation of immune cells in probiotic group was significantly higher than controls, and most importantly probiotic administered mice showed

  6. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    OpenAIRE

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized gluco...

  7. Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica.

    Science.gov (United States)

    Zelko, Igor N; Zhu, Jianxin; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-11-28

    Occupational and environmental exposure to crystalline silica may lead to the development of silicosis, which is characterized by inflammation and progressive fibrosis. A substantial number of patients diagnosed with silicosis develop pulmonary hypertension. Pulmonary hypertension associated with silicosis and with related restrictive lung diseases significantly reduces survival in affected subjects. An animal model of silicosis has been described previously however, the magnitude of vascular remodeling and hemodynamic effects of inhaled silica are largely unknown. Considering the importance of such information, this study investigated whether mice exposed to silica develop pulmonary hypertension and vascular remodeling. C57BL6 mice were intratracheally injected with either saline or crystalline silica at doses 0.2 g/kg, 0.3 g/kg and 0.4 g/kg and then studied at day 28 post-exposure. Pulmonary hypertension was characterized by changes in right ventricular systolic pressure and lung histopathology. Mice exposed to saline showed normal lung histology and hemodynamic parameters while mice exposed to silica showed increased right ventricular systolic pressure and marked lung pathology characterized by a granulomatous inflammatory reaction and increased collagen deposition. Silica-exposed mice also showed signs of vascular remodeling with pulmonary artery muscularization, vascular occlusion, and medial thickening. The expression of pro-inflammatory genes such as TNF-α and MCP-1 was significantly upregulated as well as the expression of the pro-remodeling genes collagen type I, fibronectin and the metalloproteinases MMP-2 and TIMP-1. On the other hand, the expression of several vasculature specific genes involved in the regulation of endothelial function was significantly attenuated. We characterized a new animal model of pulmonary hypertension secondary to pulmonary fibrosis induced by crystalline silica. Our data suggest that silica promotes the damage of the

  8. Histopathology of normal skin and melanomas after nanosecond pulsed electric field treatment

    Science.gov (United States)

    Chen, Xinhua; Swanson, R. James; Kolb, Juergen F.; Nuccitelli, Richard; Schoenbach, Karl H.

    2011-01-01

    Nanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice. After a 100-pulse treatment with an nsPEF (40-kV/cm field strength; 300-ns duration; 30-ns rise time; 2-Hz repetition rate), tumor growth and histology were studied using transillumination, light microscopy with hematoxylin and eosin stain and transmission electron microscopy. Melanin and iron within the melanoma tumor were also detected with specific stains. After nsPEF treatment, tumor development was inhibited with decreased volumes post-nsPEF treatment compared with control tumors (Pelectric fields surrounding the needle electrodes. PMID:19730404

  9. Adolescent mice show anxiety- and aggressive-like behavior and the reduction of long-term potentiation in mossy fiber-CA3 synapses after neonatal maternal separation.

    Science.gov (United States)

    Shin, S Y; Han, S H; Woo, R-S; Jang, S H; Min, S S

    2016-03-01

    Exposure to maternal separation (MS) during early life is an identified risk factor for emotional disorders such as anxiety and depression later in life. This study investigated the effects of neonatal MS on the behavior and long-term potentiation (LTP) as well as basic synaptic transmission at hippocampal CA3-CA1 and mossy fiber (MF)-CA3 synapses in adolescent mice for 19days. When mice were adolescents, we measured depression, learning, memory, anxious and aggressive behavior using the forced swimming test (FST), Y-maze, Morris water maze (MWM), elevated plus maze (EPM), three consecutive days of the open field test, the social interaction test, the tube-dominance test and the resident-intruder test. The results showed that there was no difference in FST, Y-maze, and MWM performance. However, MS mice showed more anxiety-like behavior in the EPM test and aggressive-like behavior in the tube-dominance and resident-intruder tests. In addition, the magnitude of LTP and release probability in the MF-CA3 synapses was reduced in the MS group but not in the CA3-CA1 synapse. Our results indicate that early life stress due to MS may induce anxiety- and aggressive-like behavior during adolescence, and these effects are associated with synaptic plasticity at the hippocampal MF-CA3 synapses. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Marrow transfusions into normal recipients

    International Nuclear Information System (INIS)

    Brecher, G.

    1983-01-01

    During the past several years we have explored the transfusion of bone marrow into normal nonirradiated mice. While transfused marrow proliferates readily in irradiated animals, only minimal proliferation takes place in nonirradiated recipients. It has generally been assumed that this was due to the lack of available proliferative sites in recipients with normal marrow. Last year we were able to report that the transfusion of 200 million bone marrow cells (about 2/3 of the total complement of marrow cells of a normal mouse) resulted in 20% to 25% of the recipient's marrow being replaced by donor marrow. Thus we can now study the behavior of animals that have been transfused (donor) and endogenous (recipient) marrow cells, although none of the tissues of either donor or recipient have been irradiated. With these animals we hope to investigate the nature of the peculiar phenomenon of serial exhaustion of marrow, also referred to as the limited self-replicability of stem cells

  11. Changes of natural killer activity following local 60Co irradiation in intracranial tumor-bearing mice

    International Nuclear Information System (INIS)

    Otsuka, Shin-ichi; Suda, Kinya; Yamashita, Junkoh; Takeuchi, Juji; Handa, Hajime

    1982-01-01

    Changes of natural killer activity (NK activity) by local 60 Co irradiation in intracranial tumor-bearing mice were studied by the method of 51 Cr release assay. Local irradiation was administered 10 days after intracranial transplantation of 203-Glioma which had been originally induced by 20-methylcholanthrene in C57BL mice. Irradiation suppressed the growth of tumor and prolonged the mean survival time. The 50% survival time of untreated mice was about 2.5 weeks but that of mice treated by a single dose of 1000 rad and 1500 rad of irradiation was about 4.5 weeks and 6.5 weeks respectively. NK activity of spleen cells in these mice was serially examined. NK activity was gradually increased in mice treated by local irradiation, while it was gradually decreased in mice without treatment. On the other hand, NK activity remained unchanged in non-tumor-bearing control mice. Mice treated with 1000 rad and 1500 rad of irradiation showed 44.0% and 47.6% of % specific 51 Cr release respectively 11 days after irradiation while normal mice showed 18.0%. The increased NK activity after local irradiation suggested that local irradiation might have enhanced the immunological defence mechanisms against the tumor in the tumor-bearing hosts. Some characteristics of effector cells in this assay system were examined. The cytotoxicity of spleen cells was removed by the treatment of anti-BAT serum and complement but was not removed by the treatment of anti-Thy-1.2 serum and complement. Since NK activity reflects the immunological resistance to tumors to some extent, it is felt important to clarify the significance of changes of NK activity in patients with brain tumors in relation to various treatments including surgery, radiotherapy, chemotherapy and immunotherapy in the next step. (author)

  12. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Science.gov (United States)

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  13. Effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice

    International Nuclear Information System (INIS)

    Meng Qingyong; Chen Shali; Liu Shuzheng

    2003-01-01

    Objective: To the effect of low dose radiation on thymocyte cytosol and nuclei protein synthesis in mice. Methods: The expression of proteins was analyzed by gel filtration with Sephadex G-100 and HPLC based on separation of proteins on thymocyte cytosol and nuclei after whole-body irradiation with 75 mGy X-rays and sham-irradiation, and their biological activity was examined by mouse splenocyte proliferation and chromosome aberration of human peripheral blood lymphocytes. Results: HPLC analysis showed that there was a marked increase in expression of 61.4 kD protein in the extract of thymocyte cytosol and 30.4 kD protein in the extract of thymocyte nuclei in comparison with the corresponding fractions from the sham-irradiated control mice. These protein fractions from the thymocyte cytosol and nuclei of the irradiated mice showed both stimulating effect on normal T cell proliferation and protective effect on chromosome damage induced by high dose radiation. Conclusion: These findings might have implications in study of mechanism of immunoenhancement and cytogenetic adaptive response induced by low dose radiation

  14. Role of Omega 3 Fatty Acids Against Ehrlich Ascites Carcinoma-Induced Hepatic and Brain Dysfunctions in Gamma Irradiated Mice

    International Nuclear Information System (INIS)

    El-Gharib, M.M.M.

    2014-01-01

    Cancer is a deadly disease that has touched the lives of many people in the world today. Omega 3 essential fatty acids (ω-3 FAs); found in high concentrations in fish oil, claim a plethora of health benefits. The present study aimed to evaluate the role of ω-3 FAs supplementation either alone or combined with fractionated γ-radiation exposure against Ehrlich solid tumor-induced inflammation, oxidative stress, biochemical alterations and histopathological changes in the liver, brain and tumor tissues of Albino mice. ω-3 FAs were orally administered via gavages to mice for a period of 30 consecutive days at a dose of 300 mg/kg body weight. On the 7th day of experiment, mice were subcutaneously transplanted in the neck region with 0.2 ml of Ehrlich ascites carcinoma cells for solid tumor induction and on the 17th and 25th days, mice were exposed to a fractionated whole body γ-radiation (0.5 Gy/week for two weeks). The results of the present work showed that Ehrlich carcinoma (EC) and/or γ-irradiation led to systemic inflammation (elevated TNF-α, TLC and CRP levels), hepatic oxidative stress (elevated TBARs level, decreased GSH, GSH-Px, CAT and SOD levels) and biochemical alterations in liver (elevated AST, ALT, ALP and LDH activities) and brain (dopamine, EP,NE and serotonin levels) tissues. On the other hand, ω-3 FAs supplementation to the experimentally irradiated EC-bearing mice, significantly reduced tumor size, depressed the concentrations of inflammatory markers, reduced oxidative stress and also ameliorated the biochemical alterations in liver and brain tissues. Histopathological examinations showed that treatment with ω-3 FAs recorded great destruction of tumor tissue, great disappearance of metastatic EC cells from the liver tissue and normal appearance in cerebrum and cerebellum of brain tissue layers in EC-bearing mice. Combined treatment of EC-bearing mice with ω-3 FAs and γ-irradiation showed necrotic cells and remnant tumor cells in tumor

  15. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    Science.gov (United States)

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  16. Relative Biological Effectiveness of Energetic Heavy Ions for Intestinal Tumorigenesis Shows Male Preponderance and Radiation Type and Energy Dependence in APC{sup 1638N/+} Mice

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Shubhankar; Kumar, Santosh; Moon, Bo-Hyun; Strawn, Steve J.; Thakor, Hemang; Fan, Ziling [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Shay, Jerry W. [Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas (United States); Fornace, Albert J. [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States); Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah (Saudi Arabia); Datta, Kamal, E-mail: kd257@georgetown.edu [Department of Biochemistry and Molecular & Cellular Biology and Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia (United States)

    2016-05-01

    Purpose: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. Methods and Materials: Male and female APC{sup 1638N/+} mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, {sup 12}C, {sup 28}Si, or {sup 56}Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. Results: The highest number of tumors was observed after {sup 28}Si, followed by {sup 56}Fe and {sup 12}C radiation, and tumorigenesis showed a male preponderance, especially after {sup 28}Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with {sup 28}Si, and lower doses showed greater RBE relative to higher doses. Conclusions: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/μm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.

  17. Altered pancreatic growth and insulin secretion in WSB/EiJ mice.

    Directory of Open Access Journals (Sweden)

    Maggie M Ho

    Full Text Available These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies also highlight the role of post-natal growth in determining adult β-cell mass. Mice are important animal models for the study of metabolic physiology and the genetics of complex traits. Wild-derived inbred mouse strains, such as WSB/EiJ (WSB, are unrelated to the commonly studied mouse strains and are valuable tools to identify novel genes that modify disease risk. We have previously shown that in contrast to C57BL/6J (B6 mice, WSB mice fed a high fat diet do not develop hyperinsulinemia or insulin resistance, and had nearly undetectable insulin secretion in response to an intraperitoneal glucose challenge. As hyperinsulinemia may drive obesity and insulin resistance, we examined whether defects in β-cell mass or function could contribute to the low insulin levels in WSB mice. In young WSB mice, β-cell mass was similar to B6 mice. However, we found that adult WSB mice had reduced β-cell mass due to reduced pancreatic weights. Pancreatic sizes were similar between the strains when normalized to body weight, suggesting their pancreatic size is appropriate to their body size in adults, but overall post-natal pancreatic growth was reduced in WSB mice compared to B6 mice. Islet architecture was normal in WSB mice. WSB mice had markedly increased insulin secretion from isolated islets in vitro. These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies suggest that WSB mice may provide novel insight into mechanisms regulating insulin secretion and also highlight the role of post-natal growth in determining adult β-cell mass.

  18. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.

    Science.gov (United States)

    Campbell, Sara C; Wisniewski, Paul J; Noji, Michael; McGuinness, Lora R; Häggblom, Max M; Lightfoot, Stanley A; Joseph, Laurie B; Kerkhof, Lee J

    2016-01-01

    The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.

  19. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice.

    Directory of Open Access Journals (Sweden)

    Sara C Campbell

    Full Text Available The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet.Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2. The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP analysis and pyrosequencing of 16S rRNA gene amplicons.Lean sedentary (LS mice presented normal histologic villi while obese sedentary (OS mice had similar villi height with more than twice the width of the LS animals. Both lean (LX and obese exercise (OX mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp.These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host.

  20. Coumarin Compounds of Biebersteinia Multifida Roots Show Potential Anxiolytic Effects In Mice

    Directory of Open Access Journals (Sweden)

    Hamid Reza Monsef-Esfahani

    2013-06-01

    Full Text Available Background:Traditional preparations of the root of Biebersteinia multifida DC (Geraniaceae, a native medicinal plant of Irano-Turanian floristic region, have been used for the treatment of phobias as anxiolytic herbal preparation.Methods:We utilized the phobic behavior of mice in an elevated plus-maze as a model to evaluate the anxiolytic effect of the plant extract and bio-guided fractionation was applied to isolate the active compounds. Total root extract, alkaline and ether fraction were administered to mice at different doses 30 and 90 min prior to the maze test. Saline and diazepam were administered as negative and positive controls, respectively. The time spent in open and closed arms, an index of anxiety behavior and entry time, was measured as an index of animal activity.Results:The total root extract exhibited anxiolytic effect which was comparable to diazepam but with longer duration. This sustained effect of the crude extract was sustained for 90 min and was even more after injection of 45 mg/kg while the effect of diazepam had been reduced by 90 min. The anxiolytic effect factor was only present in the alkaline fraction and displayed its effect at lower doses than diazepam while pure vasicinone as the previously known alkaloid did not shown anxiolytic effect. The effect of the alkaline fraction was in a dose dependent manner starting at 0.2 mg/kg with a maximum at 1.0 mg/kg. Bio-guided fractionation using a variety of chromatographic methods led to isolation and purification of three coumarin derivatives from the bioactive fraction, including umbelliferone, scopoletin, and ferulic acid.Conclusion:For the first time, bio-guided fractionation of the root extract of B. multifida indicates significant sustained anxiolytic effects which led to isolation of three coumarin derivatives with well-known potent MAO inhibitory and anti-anxiety effects. These data contribute to evidence-based traditional use of B. multifida root for anxiety

  1. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    Science.gov (United States)

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.

  2. Effect of the histaminergic antagonist over the pulmonary oedema growth in P. berghei - infected mice

    International Nuclear Information System (INIS)

    Martins, M.A.

    1985-01-01

    The involvement of histaminergic mechanisms in the pathogenesis of pulmonary oedema observed in p. berghei - infected mice was investigated. Histamine concentrations in plasma and whole blood of infected and normal mice were determined by radioenzymatic assay during the seven days of the infection. Elevated plasma and whole blood histamine levels were found at the last stages of infection (sixth day and seventh day) after intraperitoneal injection of parasitized erythrocytes, showing a close temporal correlation between the development of the oedema and the elevation of the circulating histamine concentrations. The participation of H 1 and H 2 receptors in the increase in vascular permeability (IVP) induced by histamine was also verified. (author)

  3. Akt-mediated cardioprotective effects of aldosterone in type 2 diabetic mice.

    Science.gov (United States)

    Fazal, Loubina; Azibani, Feriel; Bihry, Nicolas; Coutance, Guillaume; Polidano, Evelyne; Merval, Régine; Vodovar, Nicolas; Launay, Jean-Marie; Delcayre, Claude; Samuel, Jane-Lise

    2014-06-01

    Studies have shown that aldosterone would have angiogenic effects and therefore would be beneficial in the context of cardiovascular diseases. We thus investigated the potential involvement of aldosterone in triggering a cardiac angiogenic response in the context of type-2 diabetes and the molecular pathways involved. Male 3-wk-old aldosterone synthase (AS)-overexpressing mice and their control wild-type (WT) littermates were fed a standard or high-fat, high-sucrose (HFHS) diet. After 6 mo of diet treatment, mice were euthanized, and cardiac samples were assayed by RT-PCR, immunoblotting, and immunohistology. HFHS diet induced type-2 diabetes in WT (WT-D) and AS (AS-D) mice. VEGFa mRNAs decreased in WT-D (-43%, P<0.05 vs. WT) and increased in AS-D mice (+236%, P< 0.01 vs. WT-D). In WT-D mouse hearts, the proapoptotic p38MAPK was activated (P<0.05 vs. WT and AS-D), whereas Akt activity decreased (-64%, P<0.05 vs. WT). The AS mice, which exhibited a cardiac up-regulation of IGF1-R, showed an increase in Akt phosphorylation when diabetes was induced (P<0.05 vs. WT and AS-D). Contrary to WT-D mice, AS-D mouse hearts did not express inflammatory markers and exhibited a normal capillary density (P<0.05 vs. WT-D). To our knowledge, this is the first study providing new insights into the mechanisms whereby aldosterone prevents diabetes-induced cardiac disorders. © FASEB.

  4. Chronic Caloric Restriction and Exercise Improve Metabolic Conditions of Dietary-Induced Obese Mice in Autophagy Correlated Manner without Involving AMPK

    Directory of Open Access Journals (Sweden)

    Mingxia Cui

    2013-01-01

    Full Text Available Aim. To investigate the role of AMPK activation and autophagy in mediating the beneficial effects of exercise and caloric restriction in obesity. Methods. Dietary-induced obesity mice were made and divided into 5 groups; one additional group of normal mice serves as control. Mice in each group received different combinations of interventions including low fat diet, caloric restriction, and exercise. Then their metabolic conditions were assessed by measuring serum glucose and insulin, serum lipids, and liver function. AMPK phosphorylation and autophagy activity were detected by western blotting. Results. Obese mice models were successfully induced by high fat diet. Caloric restriction consistently improved the metabolic conditions of the obese mice, and the effects are more prominent than the mice that received only exercise. Also, caloric restriction, exercise, and low fat diet showed a synergistic effect in the improvement of metabolic conditions. Western blotting results showed that this improvement was not related with the activation of AMPK in liver, skeletal muscle, or heart but correlates well with the autophagy activity. Conclusion. Caloric restriction has more prominent beneficial effects than exercise in dietary-induced obese mice. These effects are correlated with the autophagy activity and may be independent of AMPK activation.

  5. Long Term Expression of Drosophila melanogaster Nucleoside Kinase in Thymidine Kinase 2-deficient Mice with No Lethal Effects Caused by Nucleotide Pool Imbalances*

    Science.gov (United States)

    Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-01-01

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759

  6. Long term expression of Drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient mice with no lethal effects caused by nucleotide pool imbalances.

    Science.gov (United States)

    Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-11-21

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury.

    Science.gov (United States)

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule.

  8. Radioprotective effect of colony-stimulating factor on mice irradiated with 60Co γ-rays

    International Nuclear Information System (INIS)

    Zhang Junning; Wang Tao; Xu Changshao; Wang Hongyun

    1995-01-01

    Adult male mice were irradiated with γ-rays 6 Gy once or 3 Gy three times in 7 days and intraperitoneally injected with colony-stimulating factor (CSF) in high doses or low doses. Mice of the control group were injected with normal saline only. Within 30 days after irradiation, the survival rate of mice irradiated with 6 Gy γ-rays once and treated with high dose CSF was 9/25, while that in the control group was 2/25. The survival rate of mice irradiated with 3 Gy three times and treated with high dose CSF was 10/13, while that in the control group was 4/13. Moreover, the survival times of both irradiated groups treated with high dose CSF were much longer than the control groups (p<0.01). This experiment also showed that CSF could reduce the lowering of peripheral blood white blood cell counts and promote their recovery. The number of CFU-S in mice treated with CSF was much higher (23.8 +- 4.82) than in the control group (9.4 +- 4.39) (p<0.01). Therefore, CSF could recover and reconstruct the hematopoietic function of bone marrow, and prolong the survival of irradiated mice

  9. Exposure to excess insulin (glargine) induces type 2 diabetes mellitus in mice fed on a chow diet.

    Science.gov (United States)

    Yang, Xuefeng; Mei, Shuang; Gu, Haihua; Guo, Huailan; Zha, Longying; Cai, Junwei; Li, Xuefeng; Liu, Zhenqi; Cao, Wenhong

    2014-06-01

    We have previously shown that insulin plays an important role in the nutrient-induced insulin resistance. In this study, we tested the hypothesis that chronic exposure to excess long-acting insulin (glargine) can cause typical type 2 diabetes mellitus (T2DM) in normal mice fed on a chow diet. C57BL/6 mice were treated with glargine once a day for 8 weeks, followed by evaluations of food intake, body weight, blood levels of glucose, insulin, lipids, and cytokines, insulin signaling, histology of pancreas, ectopic fat accumulation, oxidative stress level, and cholesterol content in mitochondria in tissues. Cholesterol content in mitochondria and its association with oxidative stress in cultured hepatocytes and β-cells were also examined. Results show that chronic exposure to glargine caused insulin resistance, hyperinsulinemia, and relative insulin deficiency (T2DM). Treatment with excess glargine led to loss of pancreatic islets, ectopic fat accumulation in liver, oxidative stress in liver and pancreas, and increased cholesterol content in mitochondria of liver and pancreas. Prolonged exposure of cultured primary hepatocytes and HIT-TI5 β-cells to insulin induced oxidative stress in a cholesterol synthesis-dependent manner. Together, our results show that chronic exposure to excess insulin can induce typical T2DM in normal mice fed on a chow diet. © 2014 The authors.

  10. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  11. Normal hematopoietic stem cell function in mice with enforced expression of the Hippo signaling effector YAP1.

    Directory of Open Access Journals (Sweden)

    Lina Jansson

    Full Text Available The Hippo pathway has recently been implicated in the regulation of organ size and stem cells in multiple tissues. The transcriptional cofactor yes-associated protein 1 (Yap1 is the most downstream effector of Hippo signaling and is functionally repressed by the upstream components of the pathway. Overexpression of YAP1 stimulates proliferation of stem and progenitor cells in many tissues, consistent with inhibition of Hippo signaling. To study the role of Hippo signaling in hematopoietic stem cells (HSCs, we created a transgenic model with inducible YAP1 expression exclusively within the hematopoietic system. Following 3 months induction, examination of blood and bone marrow in the induced mice revealed no changes in the distribution of the hematopoietic lineages compared to control mice. Moreover, the progenitor cell compartment was unaltered as determined by colony forming assays and immunophenotyping. To address whether YAP1 affects the quantity and function of HSCs we performed competitive transplantation experiments. We show that ectopic YAP1 expression does not influence HSC function neither during steady state nor in situations of hematopoietic stress. This is in sharp contrast to effects seen on stem- and progenitor cells in other organs and suggests highly tissue specific functions of the Hippo pathway in regulation of stem cells.

  12. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Directory of Open Access Journals (Sweden)

    Susan M Lang

    Full Text Available The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/- mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/- mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/- mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/- mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  13. Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice.

    Science.gov (United States)

    Lang, Susan M; Kazi, Abid A; Hong-Brown, Ly; Lang, Charles H

    2012-01-01

    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/-) mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/-) mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/-) mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

  14. Metabolic Profiling of Liver Tissue in Diabetic Mice Treated with Artemisia Capillaris and Alisma Rhizome Using LC-MS and CE-MS.

    Science.gov (United States)

    Kim, Yumi; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Lee, Ji-Hyun; Bang, Eunjung; Jang, Hyeung-Jin; Na, Yun-Cheol

    2016-01-01

    Artemisia Capillaris (AC) and Alisma Rhizome (AR) are natural products for the treatment of liver disorders in oriental medicine clinics. Here, we report metabolomic changes in the evaluation of the treatment effects of AC and AR on fatty livers in diabetic mice, along with a proposition of the underlying metabolic pathway. Hydrophobic and hydrophilic metabolites extracted from mouse livers were analyzed using HPLC-QTOF and CE-QTOF, respectively, to generate metabolic profiles. Statistical analysis of the metabolites by PLS-DA and OPLA-DA fairly discriminated between the diabetic, and the AC- and AR-treated mice groups. Various PEs mostly contributed to the discrimination of the diabetic mice from the normal mice, and besides, DG (18:1/16:0), TG (16:1/16:1/20:1), PE (21:0/20:5), and PA (18:0/21:0) were also associated with discrimination by s-plot. Nevertheless, the effects of AC and AR treatment were indistinct with respect to lipid metabolites. Of the 97 polar metabolites extracted from the CE-MS data, 40 compounds related to amino acid, central carbon, lipid, purine, and pyrimidine metabolism, with [Formula: see text] values less than 0.05, were shown to contribute to liver dysregulation. Following treatment with AC and AR, the metabolites belonging to purine metabolism preferentially recovered to the metabolic state of the normal mice. The AMP/ATP ratio of cellular energy homeostasis in AR-treated mice was more apparently increased ([Formula: see text]) than that of AC-treated mice. On the other hand, amino acids, which showed the main alterations in diabetic mice, did not return to the normal levels upon treatment with AR or AC. In terms of metabolomics, AR was a more effective natural product in the treatment of liver dysfunction than AC. These results may provide putative biomarkers for the prognosis of fatty liver disorder following treatment with AC and AR extracts.

  15. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  16. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  17. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

    Directory of Open Access Journals (Sweden)

    Gilly Wolf

    2017-06-01

    Full Text Available Bilateral common carotid artery stenosis (BCAS models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month and young adult (3 month female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014: on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049, while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05 compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01 and old control mice (p < 0.05. These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

  18. [Effects of grain-sized moxibustion on learning and memory ability and amyloid deposition of transgenic Alzheimer's disease mice].

    Science.gov (United States)

    Yu, Jing; Chu, Jia-Mei; Gao, Ling-Ai; Zhang, Yong-Sheng; Bao, Ye-Hua

    2014-02-01

    To observe the effect of grain-sized moxibustion at "Xinshu" (BL 15) and "Shenshu" (BL 23) on memory-learning ability and amyloid deposition in transgenic Alzheimer's disease (AD) mice. seventeen amyloid precursor protein (APP)/presenilin (PS)1 (APP+/PS 1+) double transgenic 6799 mice aged 3-4 weeks were randomly divided into model group (n = 9) and moxibustion group (n = 8). Nine wide-type (C 57 BL/6 J) female mice were used as the normal control group. Moxibustion (ignited grain-sized moxa cone) was applied to bilateral "Xinshu" (BL 15) and "Shenshu" (BL 23) for about 30 s, once a day for 9 courses (10 days constitute a therapeutic course, with 2 days' break between every two courses). Morris water maze tests were performed to detect the mice's learning-memory ability. The alterations of beta-amyloid deposition (number of the positive plaques) in the cerebral cortex and hippocampus were detected by using an imaging analysis system following Congo red staining of the cerebral tissue sections. Compared with the normal group, the average escape latency of place navigation tests was significantly increased (P memory ability after moxibustion. Results of Congo red staining of the cerebral tissue showed that there were many irregular, uneven staining positive plaques in the cerebral cortex and hippocampus of AD mice in the model group. Compared with the model group, the positive plaque numbers in both cerebral cortex and hippocampus were considerably reduced in the moxibustion group (P memory ability and restrain the formation of amyloid deposition in AD mice.

  19. Alpha-1 adrenoceptors in brown adipose tissue of lean and ob/ob mice

    International Nuclear Information System (INIS)

    Behrens-Zaror, G.; Himms-Hagen, J.

    1986-01-01

    Obese (ob/ob) mice have a low capacity to increase thyroxine 5'-deiodinase (T4 5'-D) in brown adipose tissue (BAT) when exposed to cold. This effect is mediated by alpha-1 (A-1) adrenoceptors. The authors objective was to find out whether BAT of the ob/ob mouse has normal A-1 receptors. Saturation analysis of binding of [3H]-WB4101 at 0.05 nM to 10 μM to crude membrane preparations (100,000 g pellets from Polytron homogenates) using the LIGAND program of Munson and Rodbard, showed two populations of binding sites in BAT of lean (+/+, 11-15 wk old) mice. Acute exposure (12 h, 14 0 C) or acclimation to cold (3 wk, 14 0 C) did not alter affinity or concentration of sites. Displacement with yohimbine and prazosin indicated binding of WB4101 to A-1 receptors. Very young (5 wk) lean (+/.) and obese mice had similar affinity constants (lean 0.13 +/- 0.043 and 34.2 +/- 14.9; obese, 0.12 +/- 0.028 and 20.9 +/- 5.48 nM) and concentrations (lean 22.4 +/- 3.8 and 647 +/- 137; obese, 28.6 +/- 4.6 and 547 +/- 105 fmol/mg protein) of sites. Old (1 yr) mice had high affinity sites similar to those in younger animals (KD lean 0.19 +/- 0.028, obese, 0.25 +/- 0.075; Bmax lean, 60.2 +/- 12.1; obese, 63.1 +/- 13.5 fmol/mg protein). The authors conclude that the ob/ob mouse has normal high affinity A-1 receptors in BAT. Anomalous properties of low affinity binding in old ob/ob mice could not be characterized because of high nonspecific binding. BAT of the ob/ob mouse does not lack A-1 receptors but may have a post-receptor alteration in the A-1 adrenoceptor-mediated response

  20. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

    Directory of Open Access Journals (Sweden)

    Charlton HM

    2003-02-01

    Full Text Available Abstract During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI, 17β-hydroxysteroid dehydrogenase type III (17βHSD III, prostaglandin D (PGD-synthetase and oestrogen sulphotransferase (EST is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.

  1. A comparative study of total body irradiation as a method of inducing granulocyte depletion in mice

    International Nuclear Information System (INIS)

    Bogman, M.J.J.T.; Cornelissen, I.M.H.A.; Berden, J.H.M.; Jong, J. de; Koene, R.A.P.

    1984-01-01

    Since conventional methods of inducing depletion of polymorphonuclear granulocytes (PMNs) in mice, such as treatment with cytostatic drugs and anti-PMN sera, proved to be insufficient to induce a stable PMN depletion for several days, and were accompanied by considerable toxic side effects, we induced neutrophil depletion in mice by total body irradiation (TBI) in a single dose of 6.0 Gy (600 rads.) at a dose rate of 0.20 Gy/min. This treatment reduced the number of PMNs in the peripheral circulation to values below 150/μl from day 3-10 after irradiation. The number of lymphocytes fell simultaneously. Platelet counts remained above 60% of normal values during the first 7 days after irradiation. Complement levels were not significantly affected by TBI. The results show that TBI of 6.0 Gy induces pronounced and stable PMN depletion in mice for at least 7 days. Furthermore, under an aseptic regimen the mice can be kept in good condition and losses are less than 5%. (Auth.)

  2. [Role of α7 nicotinic acetylcholine receptor in attenuation of endotoxin induced delirium with dexmedetomidine in mice].

    Science.gov (United States)

    Zhang, Xueyan; Li, Zhifeng; Sun, Xiaochen; Jin, Feng; Liu, Junting; Li, Jianguo

    2016-02-01

    To observe the role of α7 nicotinic acetylcholine receptor (α7nAChR) in the protection against delirium by the use of dexmedetomidine (DEX) in endotoxin derived delirium and its mechanism. 100 male adult C57BL/6 mice were randomly divided into normal saline control group (NS group), DEX control group, lipopolysaccharide (LPS) induced endotoxemia model group (LPS group), DEX protection group (DEX+LPS group), and α-bungarotoxin antagonism group (α-BGT+DEX+LPS group), with 20 mice in each group. A model of endotoxemia was reproduced by intraperitoneal injection of LPS 20 mg/kg, and the mice in NS group and DEX control group were given equivalent sterile normal saline. The mice in DEX control group, DEX+LPS group, and α-BGT+DEX+LPS group were intraperitoneally injected with DEX 40 μg/kg 15 minutes before LPS injection. The mice in α-BGT+DEX+LPS group were intraperitoneally injected with α7nAChR inhibitor α-BGT 1 μg/kg 15 minutes before DEX injection. The mice in NS group were given equivalent sterile normal saline. Ten mice in each group were assigned for open field test before and 24 hours after model reproduction, and the mice were then sacrificed to obtain the specimens. The levels of tumor necrosis factor-α (TNF-α) and neuron-specific enolase (NSE) in serum were determined by enzyme-linked immune sorbent assay (ELISA). Western Blot method was used to determine the expression of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in hippocampus. Another 10 mice were subjected to new object recognition test to observe the total exploration time during training period and preference index at 3 hours and 24 hours after LPS challenge. There were no significant differences in all parameters between NS group and DEX control group. (1) It was shown by the open field test results that there were no significant differences in all parameters of open field test before model reproduction among all the groups. Twenty-four hours after model reproduction

  3. Preventive activity of banana peel polyphenols on CCl4-induced experimental hepatic injury in Kunming mice.

    Science.gov (United States)

    Wang, Rui; Feng, Xia; Zhu, Kai; Zhao, Xin; Suo, Huayi

    2016-05-01

    The aim of the present study was to evaluate the preventive effects of banana peel polyphenols (BPPs) against hepatic injury. Mice were divide into normal, control, 100 mg/kg and 200 mg/kg banana peel polyphenol and silymarin groups. All the mice except normal mice were induced with hepatic damage using CCl 4 . The serum and tissue levels of mice were determined by a kit and the tissues were further examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. BPPs reduced the serum levels of aspartate aminotransferase, alanine aminotransferase and lactate dehydrogenase in a CCl 4 -induced mouse model of hepatic injury. Furthermore, BPPs reduced the levels of malondialdehyde and triglyceride, while increasing glutathione levels in the serum and liver tissues of mice. In addition, the effects of 200 mg/kg treatment were more evident, and these effects were comparable to those of the drug silymarin. Serum levels of the cytokines, interleukin (IL)-6, IL-12, tumor necrosis factor (TNF)-α and interferon-γ, were reduced in the mice treated with BPPs compared with injury control group mice, and these levels were comparable to those of the normal and silymarin-treated groups. Histopathological examination indicated that BPPs were able to reduce the extent of CCl 4 -induced liver tissue injury and protect the liver cells. Furthermore, the mRNA and protein expression levels of the inflammation-associated factors cyclooxygenase-2, nitric oxide synthase, TNF-α and IL-1β were reduced in mice treated with BPPs compared with the control group mice. Mice that received 200 mg/kg BPP exhibited reduced expression levels of these factors compared with mice that received 100 mg/kg BPP. In conclusion, the results of the present study suggested that BPPs exert a good preventive effect against hepatic injury.

  4. Anti-aging effects of Piper cambodianum P. Fourn. extract on normal human dermal fibroblast cells and a wound-healing model in mice

    Directory of Open Access Journals (Sweden)

    Lee H

    2016-07-01

    that PPF-treated cells displayed dose-dependent increase in messenger RNA expression levels of collagen, elastin, and hyaluronan synthase-2 and decreased expression levels of matrix metalloproteinase-1 aging gene. PPF treatment led to decreased production of reactive oxygen species in cells subjected to ultraviolet irradiation. Furthermore, PPF extract showed positive wound-healing effects in mice.Conclusion: This study demonstrated the anti-aging and wound-healing effects of PPF extract. Therefore, PPF extract represents a promising new therapeutic agent for anti-aging and wound-healing treatments. Keywords: PPF extract, anti-aging, wound healing, antioxidant, ROS, normal human dermal fibroblasts

  5. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  6. Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice123

    Science.gov (United States)

    Storey, Granville P.; Heimbigner, Lauren; Walwyn, Wendy M.; Bamford, Nigel S.

    2016-01-01

    Abstract Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following

  7. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  8. Cdk2-Null Mice Are Resistant to ErbB-2-Induced Mammary Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    2011-05-01

    Full Text Available The concept of targeting G1 cyclin-dependent kinases (CDKs in breast cancer treatments is supported by the fact that the genetic ablation of Cdk4 had minimal impacts on normal cell proliferation in majority of cell types, resulting in near-normal mouse development, whereas such loss of Cdk4 completely abrogated ErbB-2/neu-induced mammary tumorigenesis in mice. In most human breast cancer tissues, another G1-regulatory CDK, CDK2, is also hyperactivated by various mechanisms and is believed to be an important therapeutic target. In this report, we provide genetic evidence that CDK2 is essential for proliferation and oncogenesis of murine mammary epithelial cells. We observed that 87% of Cdk2-null mice were protected from ErbB-2-induced mammary tumorigenesis. Mouse embryonic fibroblasts isolated from Cdk2-null mouse showed resistance to various oncogene-induced transformation. Previously, we have reported that hemizygous loss of Cdc25A, the major activator of CDK2, can also protect mice from ErbB-2-induced mammary tumorigenesis [Cancer Res (2007 67(14: 6605–11]. Thus, we propose that CDC25A-CDK2 pathway is critical for the oncogenic action of ErbB-2 in mammary epithelial cells, in a manner similar to Cyclin D1/CDK4 pathway.

  9. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  10. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  11. PGE from Octopus aegina Induces Apoptosis in Ehrlich's Ascites Carcinoma of Mice.

    Science.gov (United States)

    Karthigayan, S; Balasubashini, M Sri; Balasubramanian, T; Somasundaram, S T

    2007-01-01

    ABSTRACT The present study was carried out to assess the antitumor effect of venomous peptide from the cephalopod Octopus aegina on Ehrlich's ascites carcinoma (EAC). Male albino Swiss mice were used in the present study. Four groups of animals were treated with three doses of the sublethal dose of venom, 15, 75, and 150 mug/kg body weight (intraperitoneal injection), along with the standard drug 5-fluorouracil (20 mg/kg b.w.). After 10 days of treatment, six animals from each group were sacrificed for the biochemical analysis and the rest were left to calculate the mean survival time. In EAC-bearing mice, mean lifespan, tumor volume, hemoglobin, red blood cells, and lymphocytes were significantly decreased when compared to the normal animals. While body weight, neutrophils, and viable tumor cell count were increased in the EAC-bearing mice, these changes were brought back to near normal levels in different treatment groups. The macromolecule concentration of peritoneal cells, such as DNA, RNA, and protein, were altered in the EAC-bearing mice and observed to be near normal in the treatment groups. The caspase-3 activity was significantly increased in the peritoneal cells of the treatment groups when compared to the EAC-bearing mice. The role of apoptotic cascade in EAC cell death was confirmed by the DNA fragmentation on agarose gel. Apart from the antitumor effect, octopus venom reduced the tumor burden on the liver and altered the changes in the activities of alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP). Therefore, the venom from O. aegina has a potential antitumor effect on the EAC-bearing mice.

  12. Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology.

    Science.gov (United States)

    Son, Marjatta; Puttaparthi, Krishna; Kawamata, Hibiki; Rajendran, Bhagya; Boyer, Philip J; Manfredi, Giovanni; Elliott, Jeffrey L

    2007-04-03

    Cu, Zn superoxide dismutase (SOD1) has been detected within spinal cord mitochondria of mutant SOD1 transgenic mice, a model of familial ALS. The copper chaperone for SOD1 (CCS) provides SOD1 with copper, facilitates the conversion of immature apo-SOD1 to a mature holoform, and influences in yeast the cytosolic/mitochondrial partitioning of SOD1. To determine how CCS affects G93A-SOD1-induced disease, we generated transgenic mice overexpressing CCS and crossed them to G93A-SOD1 or wild-type SOD1 transgenic mice. Both CCS transgenic mice and CCS/wild-type-SOD1 dual transgenic mice are neurologically normal. In contrast, CCS/G93A-SOD1 dual transgenic mice develop accelerated neurological deficits, with a mean survival of 36 days, compared with 242 days for G93A-SOD1 mice. Immuno-EM and subcellular fractionation studies on the spinal cord show that G93A-SOD1 is enriched within mitochondria in the presence of CCS overexpression. Our results indicate that CCS overexpression in G93A-SOD1 mice produces severe mitochondrial pathology and accelerates disease course.

  13. Effects of social isolation, re-socialization and age on cognitive and aggressive behaviors of Kunming mice and BALB/c mice.

    Science.gov (United States)

    An, Dong; Chen, Wei; Yu, De-Qin; Wang, Shi-Wei; Yu, Wei-Zhi; Xu, Hong; Wang, Dong-Mei; Zhao, Dan; Sun, Yi-Ping; Wu, Jun-Cheng; Tang, Yi-Yuan; Yin, Sheng-Ming

    2017-05-01

    Both Kunming (KM) mice and BALB/c mice have been widely used as rodent models to investigate stress-associated mental diseases. However, little is known about the different behaviors of KM mice and BALB/c mice after social isolation, particularly cognitive and aggressive behaviors. In this study, the behaviors of KM and BALB/c mice isolated for 2, 4 and 8 weeks and age-matched controls were evaluated using object recognition, object location and resident-intruder tests. The recovery of behavioral deficits by re-socialization was also examined for the isolated mice in adolescence. Our study showed that isolation for 2, 4 and 8 weeks led to cognitive deficits and increased aggressiveness for both KM and BALB/c mice. An important finding is that re-socialization could completely recover spatial/non-spatial cognitive deficits resulted from social isolation for both KM and BALB/c mice. In addition, age only impacted aggressiveness of KM mice. Moreover, isolation duration showed different impacts on cognitive and aggressive behaviors for both KM and BALB/c mice. Furthermore, BALB/c mice showed weak spatial/non-spatial memory and low aggressiveness when they were at the same age and isolation duration, compared to KM mice. In conclusion, KM mice and BALB/c mice behaved characteristically under physiology and isolation conditions. © 2016 Japanese Society of Animal Science.

  14. Role of protein kinase C family in the cerebellum-dependent adaptive learning of horizontal optokinetic response eye movements in mice.

    Science.gov (United States)

    Shutoh, Fumihiro; Katoh, Akira; Ohki, Masafumi; Itohara, Shigeyoshi; Tonegawa, Susumu; Nagao, Soichi

    2003-07-01

    Among the subtypes of the Ca2+-dependent protein kinase C (PKC), which play a crucial role in long-term depression (LTD), both alpha and gamma are expressed in the cerebellar floccular Purkinje cells. To reveal the functional differences of PKC subtypes, we examined the adaptability of ocular reflexes of PKCgamma mutant mice, which show mild ataxia and normal LTD. In mutant mice, gains of the horizontal optokinetic eye response (HOKR) were reduced. Adaptation of the HOKR was not affected but its retinal slip dependency was altered in mutant mice. Sustained 1-h sinusoidal screen oscillation, which induced a relatively large amount of retinal slips in both mutant and wild-type mice, increased the HOKR gain in wild-type mice but not in mutant mice. In contrast, exposure to 1 h of sustained slower screen oscillations, which induced relatively small retinal slips in mutant and wild-type mice, increased the HOKR gain in both mutant and wild-type mice. Adaptation of the HOKR of the mutant mice to slow screen oscillation and those of wild-type mice to fast and slow screen oscillations were all abolished by local applications of a PKC inhibitor (chelerythrine) within the flocculi. Electrophysiological and anatomical studies showed no appreciable changes in the sources and magnitudes of climbing fibre inputs, which mediate retinal slip signals to the flocculus in the mutant mice. These results suggest that PKCgamma has a modulatory role in determining retinal slip dependency, and other PKC subtypes, e.g. PKCalpha, may play a crucial role in the adaptation of the HOKR.

  15. Nonmyocyte ERK1/2 signaling contributes to load-induced cardiomyopathy in Marfan mice.

    Science.gov (United States)

    Rouf, Rosanne; MacFarlane, Elena Gallo; Takimoto, Eiki; Chaudhary, Rahul; Nagpal, Varun; Rainer, Peter P; Bindman, Julia G; Gerber, Elizabeth E; Bedja, Djahida; Schiefer, Christopher; Miller, Karen L; Zhu, Guangshuo; Myers, Loretha; Amat-Alarcon, Nuria; Lee, Dong I; Koitabashi, Norimichi; Judge, Daniel P; Kass, David A; Dietz, Harry C

    2017-08-03

    Among children with the most severe presentation of Marfan syndrome (MFS), an inherited disorder of connective tissue caused by a deficiency of extracellular fibrillin-1, heart failure is the leading cause of death. Here, we show that, while MFS mice (Fbn1C1039G/+ mice) typically have normal cardiac function, pressure overload (PO) induces an acute and severe dilated cardiomyopathy in association with fibrosis and myocyte enlargement. Failing MFS hearts show high expression of TGF-β ligands, with increased TGF-β signaling in both nonmyocytes and myocytes; pathologic ERK activation is restricted to the nonmyocyte compartment. Informatively, TGF-β, angiotensin II type 1 receptor (AT1R), or ERK antagonism (with neutralizing antibody, losartan, or MEK inhibitor, respectively) prevents load-induced cardiac decompensation in MFS mice, despite persistent PO. In situ analyses revealed an unanticipated axis of activation in nonmyocytes, with AT1R-dependent ERK activation driving TGF-β ligand expression that culminates in both autocrine and paracrine overdrive of TGF-β signaling. The full compensation seen in wild-type mice exposed to mild PO correlates with enhanced deposition of extracellular fibrillin-1. Taken together, these data suggest that fibrillin-1 contributes to cardiac reserve in the face of hemodynamic stress, critically implicate nonmyocytes in disease pathogenesis, and validate ERK as a therapeutic target in MFS-related cardiac decompensation.

  16. Effect of thumus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice

    International Nuclear Information System (INIS)

    Jacobson, E.B.; Caporale, L.H.; Thorbecke, G.J.

    1974-01-01

    Nude mice, partially backcrossed to Balb/c or DBA/2, were injected iv with 5 x 10 7 thymus cells from the respective inbred strain. The response of these mice to immunization with Brucella abortus antigen was studied, with respect to both antibody production and the formation of germinal centers in their lymphoid tissues. The results were compared to those obtained with nude mice to which no thymus cells were given, as well as to Balb/c, DBA/2, or +/question litter mate controls. Nude mice formed less 19S as well as 7S antibody than did litter mate controls and completely lacked germinal centers in lymph nodes and gut-associated lymphoid tissue. Those nude mice which had been injected with thymus cells made a much better secondary response, both for 19S and for 7S antibody, and had active germinal centers in their lymph nodes as early as 3 wk after thymus cell injection. Intestinal lymphoid tissue in nude mice showed only slight reconstitution of germinal center activity several months after thymus cell injection and none at earlier times. Irradiated (3000 R) thymus cells appeared as effective as normal cells in facilitating germinal center appearance and 7S antibody production in the nude mice

  17. Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.

    Science.gov (United States)

    Potzner, Michaela R; Griffel, Carola; Lütjen-Drecoll, Elke; Bösl, Michael R; Wegner, Michael; Sock, Elisabeth

    2007-08-01

    The highly related transcription factors Sox4 and Sox11 are both expressed in oligodendrocyte precursors. Yet whether they have a function in oligodendrocyte development is unknown. By overexpressing Sox4 under the control of 3.1 kb of 5' flanking sequences of the myelin basic protein gene in transgenic mice, we extended Sox4 expression in the oligodendrocyte lineage from oligodendrocyte precursors to cells undergoing terminal differentiation. As a consequence of transgene expression, mice develop the full spectrum of phenotypic traits associated with a severe hypomyelination during the first postnatal weeks. Myelin gene expression was severely reduced, and myelin dramatically thinned in several central nervous system (CNS) regions. Despite these disturbances in CNS myelination, the number of oligodendrocytic cells remained unaltered. Considering that apoptosis rates were normal and proliferation only slightly increased, oligodendrocytes likely persist in a premyelinating to early myelinating state. This shows that prolonged Sox4 expression in cells of the oligodendrocyte lineage is incompatible with the acquisition of a fully mature phenotype and argues that the presence of Sox4, and possibly Sox11, in oligodendrocyte precursors may normally prevent premature differentiation.

  18. RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.

    Directory of Open Access Journals (Sweden)

    Enric Mocholí

    Full Text Available Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.

  19. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice

    Science.gov (United States)

    Wisniewski, Paul J.; Noji, Michael; McGuinness, Lora R.; Lightfoot, Stanley A.

    2016-01-01

    Background The gut microbiota is now known to play an important role contributing to inflammatory-based chronic diseases. This study examined intestinal integrity/inflammation and the gut microbial communities in sedentary and exercising mice presented with a normal or high-fat diet. Methods Thirty-six, 6-week old C57BL/6NTac male mice were fed a normal or high-fat diet for 12-weeks and randomly assigned to exercise or sedentary groups. After 12 weeks animals were sacrificed and duodenum/ileum tissues were fixed for immunohistochemistry for occludin, E-cadherin, and cyclooxygenase-2 (COX-2). The bacterial communities were assayed in fecal samples using terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of 16S rRNA gene amplicons. Results Lean sedentary (LS) mice presented normal histologic villi while obese sedentary (OS) mice had similar villi height with more than twice the width of the LS animals. Both lean (LX) and obese exercise (OX) mice duodenum and ileum were histologically normal. COX-2 expression was the greatest in the OS group, followed by LS, LX and OX. The TRFLP and pyrosequencing indicated that members of the Clostridiales order were predominant in all diet groups. Specific phylotypes were observed with exercise, including Faecalibacterium prausnitzi, Clostridium spp., and Allobaculum spp. Conclusion These data suggest that exercise has a strong influence on gut integrity and host microbiome which points to the necessity for more mechanistic studies of the interactions between specific bacteria in the gut and its host. PMID:26954359

  20. A water-soluble extract of chicken reduced plasma triacylglycerols, but showed no anti-atherosclerotic activity in apoE−/− mice

    Directory of Open Access Journals (Sweden)

    Rita Vik

    2015-08-01

    Conclusion: Chicken protein displayed a slight potential to increase mitochondrial fatty acid oxidation and reduce plasma TAG. However, CP did not affect plasma cholesterol levels, inflammation status or atherosclerotic development in apoE−/− mice. Based on these results, dietary intervention with CP does not have sufficient capacity to influence atherosclerotic development in apoE−/− mice.