WorldWideScience

Sample records for mice prenatally exposed

  1. The developmental neurobehavioral effects of fenugreek seeds on prenatally exposed mice.

    Science.gov (United States)

    Khalki, Loubna; Bennis, Mohamed; Sokar, Zahra; Ba-M'hamed, Saâdia

    2012-01-31

    Fenugreek (Trigonella foenum graecum (L.)), is a medicinal plant whose seeds and leaves are widely used in Moroccan traditional medicine. Consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida. In previous work we have shown that exposure of pregnant mice to aqueous extract of fenugreek seeds (AEFS) leads to reduced litter size, intrauterine growth retardation, and malformations. However, there have been no studies to date of its longer-term neurobehavioral effects. We investigated these effects in prenatally exposed mice. Pregnant females were exposed to 0, 500 or 1000 mg/kg/day AEFS, by gavage, for the whole period of gestation. Pups body weight was measured at 1, 7, 14, 21 and 28 day of age. Behavior of progeny was evaluated three weeks after birth using the open field, the rotarod test and the continuous alternation task by the T-maze. At 28 postnatal day age, brain of progeny was removed and cut for histological evaluation. The progeny of exposed mice displayed reduced body weight at birth (1000 mg/kg group: 27%; 500 mg/kg group: 32%) and reduced brain weight (10% in both treated groups). Both males and females mice prenatally exposed to AEFS displayed a significant decrease in the locomotor activity, in the boli deposits during the open field test and in motor coordination. These results seem to show that exposure to AEFS induces a depressive effect in the offspring. Assessment on a continuous alternation T-maze test showed a significant reduction in successful spontaneous alternations in males and females but only in the 1000 mg/kg group. These results suggest that prenatal exposure of mice to high dose of fenugreek seeds causes growth retardation and altered neurobehavioral performance in the post-weaning period in both male and female. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  3. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  4. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    OpenAIRE

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods: Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until d...

  5. Emotional Contagion is not Altered in Mice Prenatally Exposed to Poly (I:C) on Gestational Day 9.

    Science.gov (United States)

    Gonzalez-Liencres, Cristina; Juckel, Georg; Esslinger, Manuela; Wachholz, Simone; Manitz, Marie-Pierre; Brüne, Martin; Friebe, Astrid

    2016-01-01

    Prenatal immune activation has been associated with increased risk of developing schizophrenia. The polyinosinic-polycytidylic acid (Poly(I:C)) mouse model replicates some of the endophenotype characteristic of this disorder but the social deficits observed in schizophrenia patients have not been well studied in this model. Therefore we aimed to investigate social behavior, in particular emotional contagion for pain, in this mouse model. We injected pregnant mouse dams with Poly(I:C) or saline (control) on gestation day 9 (GD9) and we evaluated their offspring in the pre-pulse inhibition (PPI) test at age 50-55 days old to confirm the reliability of our model. Mice were then evaluated in an emotional contagion test immediately followed by the light/dark test to explore post-test anxiety-like behavior at 10 weeks of age. In the emotional contagion test, an observer (prenatally exposed to Poly(I:C) or to saline) witnessed a familiar wild-type (WT) mouse (demonstrator) receiving electric foot shocks. Our results replicate the sensory gating impairments in the Poly(I:C) offspring but we only observed minor group differences in the social tasks. One of the differences we found was that demonstrators deposited fewer feces in the presence of control observers than of observers prenatally exposed to Poly(I:C), which we suggest could be due to the observers' behavior. We discuss the findings in the context of age, sex and day of prenatal injection, suggesting that Poly(I:C) on GD9 may be a valuable tool to assess other symptoms or symptom clusters of schizophrenia but perhaps not comprising the social domain.

  6. NanoTIO2 (UV-Titan does not induce ESTR mutations in the germline of prenatally exposed female mice

    Directory of Open Access Journals (Sweden)

    Boisen Anne Mette

    2012-06-01

    Full Text Available Abstract Background Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR loci in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development. Accordingly, an increase in germline ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO2 produces a long-lasting inflammatory response in mice, it was chosen for the present study. Findings Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO2 UV-Titan L181 (~42.4 mg UV-Titan/m3 or filtered clean air on gestation days (GD 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls. ESTR mutation rates of 0.029 (maternal allele and 0.047 (paternal allele in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele and 0.061 (paternal allele. Conclusions We found no evidence for increased ESTR mutation rates in F1 females exposed in utero to UV-Titan nanoparticles from GD8-18 relative to control females.

  7. Early cannabinoid exposure influences neuroendocrine and reproductive functions in male mice: I. Prenatal exposure.

    Science.gov (United States)

    Dalterio, S; Steger, R; Mayfield, D; Bartke, A

    1984-01-01

    Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.

  8. Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice.

    Directory of Open Access Journals (Sweden)

    Loubna Khalki

    Full Text Available Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1 g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.

  9. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy.

    Science.gov (United States)

    Wang, Hua; Meng, Xiu-Hong; Ning, Huan; Zhao, Xian-Feng; Wang, Qun; Liu, Ping; Zhang, Heng; Zhang, Cheng; Chen, Gui-Hai; Xu, De-Xiang

    2010-02-01

    Lipopolysaccharide (LPS)-induced intrauterine infection has been associated with neurodevelopmental injury in rodents. The purpose of the present study was to analyze the dynamic changes of neurobehaviors in mice whose mothers were exposed to LPS during pregnancy. The pregnant mice were intraperitoneally (i.p.) injected with LPS (8 microg/kg) daily from gestational day (gd) 8 to gd 15. A battery of neurobehavioral tasks was performed in mice at postnatal day (PND) 70, 200, 400 and 600. Results showed that the spatial learning and memory ability, determined by radial six-arm water maze (RAWM), were obviously impaired in two hundred-day-old female mice and four hundred-day-old male mice whose mothers were exposed to LPS during pregnancy. Open field test showed that the number of squares crossed and peripheral time, a marker of anxiety and exploration activity, were markedly increased in two hundred-day-old female mice following prenatal LPS exposure. In addition, prenatal LPS exposure significantly shortened the latency to the first grid crossing in six hundred-day-old female offspring. Moreover, sensorimotor impairment in the beam walking was observed in two hundred-day-old female mice whose mothers were exposed to LPS during pregnancy. Species-typical behavior examination showed that prenatal LPS exposure markedly increased weight burrowed in seventy-day-old male offspring and six hundred-day-old female offspring. Correspondingly, prenatal LPS exposure significantly reduced weight hoarded in two hundred-day-old female offspring. Taken together, these results suggest that prenatal LPS exposure induces neurobehavioral impairments at adulthood in an age- and gender-dependent manner. 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Prenatal exposure to an environmentally relevant phthalate mixture disrupts reproduction in F1 female mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changqing; Gao, Liying; Flaws, Jodi A., E-mail: jflaws@illinois.edu

    2017-03-01

    Phthalates are used in a large variety of products, such as building materials, medical devices, and personal care products. Most previous studies on the toxicity of phthalates have focused on single phthalates, but it is also important to study the effects of phthalate mixtures because humans are exposed to phthalate mixtures. Thus, we tested the hypothesis that prenatal exposure to an environmentally relevant phthalate mixture adversely affects female reproduction in mice. To test this hypothesis, pregnant CD-1 dams were orally dosed with vehicle (tocopherol-stripped corn oil) or a phthalate mixture (20 and 200 μg/kg/day, 200 and 500 mg/kg/day) daily from gestational day 10 to birth. The mixture was based on the composition of phthalates detected in urine samples from pregnant women in Illinois. The mixture included 35% diethyl phthalate, 21% di(2-ethylhexyl) phthalate, 15% dibutyl phthalate, 15% diisononyl phthalate, 8% diisobutyl phthalate, and 5% benzylbutyl phthalate. Female mice born to the exposed dams were subjected to tissue collections and fertility tests at different ages. Our results indicate that prenatal exposure to the phthalate mixture significantly increased uterine weight and decreased anogenital distance on postnatal days 8 and 60, induced cystic ovaries at 13 months, disrupted estrous cyclicity, reduced fertility-related indices, and caused some breeding complications at 3, 6, and 9 months of age. Collectively, our data suggest that prenatal exposure to an environmentally relevant phthalate mixture disrupts aspects of female reproduction in mice. - Highlights: • Prenatal exposure to a phthalate mixture disrupts F1 estrous cyclicity. • Prenatal exposure to a phthalate mixture induces F1 ovarian cysts. • Prenatal exposure to a phthalate mixture decreases F1 female fertility-related indices. • Prenatal exposure to a phthalate mixture induces F1 breeding complications.

  11. Cytokine mRNA profiles in pigs exposed prenatally and postnatally to Schistosoma japonicum

    DEFF Research Database (Denmark)

    Techau, Michala E.; Johansen, Maria V.; Aasted, Bent

    2007-01-01

    of septal fibrosis were significantly higher in the postnatal group compared to the prenatal group (P prenatally infected animals compared to the control...... group (P prenatal group showed higher levels of TGF-beta 1 in the liver compared with the postnatally infected group (P control group (P prenatally exposed pigs.......The pig is a natural host for Schistosoma japonicum and a useful animal model of human infection. The aim of the present study was to assess the differences between the cytokine profiles in prenatally or postnatally S. japonicum exposed pigs. Seven prenatally exposed pigs, 7 postnatally exposed...

  12. Prenatal Metformin Exposure in Mice Programs the Metabolic Phenotype of the Offspring during a High Fat Diet at Adulthood

    Science.gov (United States)

    Salomäki, Henriikka; Vähätalo, Laura H.; Laurila, Kirsti; Jäppinen, Norma T.; Penttinen, Anna-Maija; Ailanen, Liisa; Ilyasizadeh, Juan; Pesonen, Ullamari; Koulu, Markku

    2013-01-01

    Aims The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. Methods Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. Results Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. Conclusions The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during

  13. Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. METHODS: Metformin (300 mg/kg or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase and high fat diet (HFD-phase. At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. RESULTS: Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. CONCLUSIONS: The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a

  14. Effects of pre-natal X-ray exposure on learning behaviour of mice

    International Nuclear Information System (INIS)

    Frank, P.; Faber, U.; Budny, T.

    1983-01-01

    The authors investigated whether prenatal X-raying affects the learning behaviour of mice. For this purpose they irradiated mice of strain C57BL/6Ffm with 130 r at different points of the fetal phase. Unirradiated mice served as controls. The animals underwent two learning test series of 14 days each teaching them optical signs. The results of the test series show a distinctly inferior learning ability in the animals exposed to pre-natal irradiation as compared to unirradiated controls. The extent of the reduction of the learning ability depends on the stage of the pregnancy at the time of X-ray exposure. The greatest difference as compared to non-irradiated mice occurred in the animals irradiated at the earliest stage (13th/14th day of pregnancy). The results of the other test groups (15th/16th and 17th/18th day of pregnancy) exhibited less distinct, but still significant differences to the controls. Exposure at the latest period (17th/18th day) coincided with the smallest difference. (orig./MG) [de

  15. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice.

    Science.gov (United States)

    Schambra, Uta B; Nunley, Kevin; Harrison, Theresa A; Lewis, C Nicole

    In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in

  16. Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice

    Science.gov (United States)

    Chamorro-García, Raquel; Sahu, Margaret; Abbey, Rachelle J.; Laude, Jhyme; Pham, Nhieu

    2013-01-01

    Background: We have previously shown that exposure to tributyltin (TBT) modulates critical steps of adipogenesis through RXR/PPARγ and that prenatal TBT exposure predisposes multipotent mesenchymal stem cells (MSCs) to become adipocytes by epigenetic imprinting into the memory of the MSC compartment. Objective: We tested whether the effects of prenatal TBT exposure were heritable in F2 and F3 generations. Methods: We exposed C57BL/6J female mice (F0) to DMSO vehicle, the pharmaceutical obesogen rosiglitazone (ROSI), or TBT (5.42, 54.2, or 542 nM) throughout pregnancy via the drinking water. F1 offspring were bred to yield F2, and F2 mice were bred to produce F3. F1 animals were exposed in utero and F2 mice were potentially exposed as germ cells in the F1, but F3 animals were never exposed to the chemicals. We analyzed the effects of these exposures on fat depot weights, adipocyte number, adipocyte size, MSC programming, hepatic lipid accumulation, and hepatic gene expression in all three generations. Discussion: Prenatal TBT exposure increased most white adipose tissue (WAT) depot weights, adipocyte size, and adipocyte number, and reprogrammed MSCs toward the adipocyte lineage at the expense of bone in all three generations. Prenatal TBT exposure led to hepatic lipid accumulation and up-regulated hepatic expression of genes involved in lipid storage/transport, lipogenesis, and lipolysis in all three subsequent generations. Conclusions: Prenatal TBT exposure produced transgenerational effects on fat depots and induced a phenotype resembling nonalcoholic fatty liver disease through at least the F3 generation. These results show that early-life obesogen exposure can have lasting effects. PMID:23322813

  17. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Hara, Yuta; Ago, Yukio; Takano, Erika; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-08-30

    We recently demonstrated that prenatal exposure to valproic acid (VPA) at embryonic day 12.5 causes autism spectrum disorder (ASD)-like phenotypes such as hypolocomotion, anxiety-like behavior, social deficits and cognitive impairment in mice and that it decreases dendritic spine density in the hippocampal CA1 region. Previous studies show that some abnormal behaviors are improved by environmental enrichment in ASD rodent models, but it is not known whether environmental enrichment improves cognitive impairment. In the present study, we examined the effects of early environmental enrichment on behavioral abnormalities and neuromorphological changes in prenatal VPA-treated mice. We also examined the role of dendritic spine formation and synaptic protein expression in the hippocampus. Mice were housed for 4 weeks from 4 weeks of age under either a standard or enriched environment. Enriched housing was found to increase hippocampal brain-derived neurotrophic factor mRNA levels in both control and VPA-exposed mice. Furthermore, in VPA-treated mice, the environmental enrichment improved anxiety-like behavior, social deficits and cognitive impairment, but not hypolocomotion. Prenatal VPA treatment caused loss of dendritic spines in the hippocampal CA1 region and decreases in mRNA levels of postsynaptic density protein-95 and SH3 and multiple ankyrin repeat domains 2 in the hippocampus. These hippocampal changes were improved by the enriched housing. These findings suggest that the environmental enrichment improved most ASD-like behaviors including cognitive impairment in the VPA-treated mice by enhancing dendritic spine function. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice

    Directory of Open Access Journals (Sweden)

    Kyaw Htet eAung

    2016-03-01

    Full Text Available Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although it has been demonstrated that exposure to sodium arsenite (NaAsO2 suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL, which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.

  19. Effects of prenatal cocaine exposure on social development in mice.

    Science.gov (United States)

    Kabir, Zeeba D; Kennedy, Bruce; Katzman, Aaron; Lahvis, Garet P; Kosofsky, Barry E

    2014-01-01

    Prenatal cocaine exposure (PCE) in humans and animals has been shown to impair social development. Molecules that mediate synaptic plasticity and learning in the medial prefrontal cortex (mPFC), specifically brain-derived neurotrophic factor (BDNF) and its downstream signaling molecule, early growth response protein 1 (egr1), have been shown to affect the regulation of social interactions (SI). In this study we determined the effects of PCE on SI and the corresponding ultrasonic vocalizations (USVs) in developing mice. Furthermore, we studied the PCE-induced changes in the constitutive expression of BDNF, egr1 and their transcriptional regulators in the mPFC as a possible molecular mechanism mediating the altered SI. In prenatal cocaine-exposed (PCOC) mice we identified increased SI and USV production at postnatal day (PD) 25, and increased SI but not USVs at PD35. By PD45 the expression of both social behaviors normalized in PCOC mice. At the molecular level, we found increased BDNF exon IV and egr1 mRNA in the mPFC of PCOC mice at PD30 that normalized by PD45. This was concurrent with increased EGR1 protein in the mPFC of PCOC mice at PD30, suggesting a role of egr1 in the enhanced SI observed in juvenile PCOC mice. Additionally, by measuring the association of acetylation of histone 3 at lysine residues 9 and 14 (acH3K9,14) and MeCP2 at the promoters of BDNF exons I and IV and egr1, our results provide evidence of promoter-specific alterations in the mPFC of PCOC juvenile mice, with increased association of acH3K9,14 only at the BDNF exon IV promoter. These results identify a potential PCE-induced molecular alteration as the underlying neurobiological mechanism mediating the altered social development in juvenile mice. © 2014 S. Karger AG, Basel.

  20. Effects of prenatal ethanol exposure and early experience on home-cage and open-field activity in mice.

    Science.gov (United States)

    Mothes, H K; Opitz, B; Werner, R; Clausing, P

    1996-01-01

    -C57BL/6 mice were intubated from gestational day 14-18 twice daily with 1.58 g/kg ethanol, 4.2 g/kg sucrose, or remained untreated. Offspring of ethanol treated or lab chow control groups were raised either by group-housed dams and weaned on postnatal day (PND) 28 or by individually housed dams and weaned on PND 21. Offspring of the sucrose control group were raised by individually housed dams and weaned on PND 21. Groups did not differ in pup weight or litter size. Offspring were assessed for home-cage activity (PND 36-38) and open-field behavior (PND 40-42). Mice prenatally exposed to ethanol showed increased activity in their home cages, whereas open-field behavior was generally not different from that of control groups. Conversely, different preweaning rearing conditions had affected open-field behavior, but not home-cage activity. In conclusion, home-cage behavior was a sensitive paradigm for detecting hyperactivity subsequent to a relatively low dose of prenatal ethanol in mice, and communal nesting/late weaning vs. individual nesting/ standard weaning may be a useful preweaning environmental manipulation to study possible modifications of prenatal neurobehavioral effects.

  1. Prenatal administration of the cytochrome P4501A inducer, Β-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: Implications for bronchopulmonary dysplasia (BPD) in premature infants

    International Nuclear Information System (INIS)

    Couroucli, Xanthi I.; Liang Yanhong Wei; Jiang Weiwu; Wang Lihua; Barrios, Roberto; Yang Peiying; Moorthy, Bhagavatula

    2011-01-01

    Supplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ss-napthoflavone (BNF), will lead to attenuation of lung injury in newborns (delivered from these dams) exposed to hyperoxia by mechanisms entailing transplacental induction of hepatic and pulmonary CYP1A enzymes. Pregnant mice were administered the vehicle corn oil (CO) or BNF (40 mg/kg), i.p., once daily for 3 days on gestational days (17-19), and newborns delivered from the mothers were either maintained in room air or exposed to hyperoxia (> 95% O 2 ) for 1-5 days. After 3-5 days of hyperoxia, the lungs of CO-treated mice showed neutrophil infiltration, pulmonary edema, and perivascular inflammation. On the other hand, BNF-pretreated neonatal mice showed decreased susceptibility to hyperoxic lung injury. These mice displayed marked induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities, and levels of the corresponding apoproteins and mRNA levels until PND 3 in liver, while CYP1A1 expression alone was augmented in the lung. Prenatal BNF did not significantly alter gene expression of pulmonary NAD(P)H quinone reductase (NQO1). Hyperoxia for 24-72 h resulted in increased pulmonary levels of the F 2 -isoprostane 8-iso-PGF 2α , whose levels were decreased in mice prenatally exposed to BNF. In conclusion, our results suggest that prenatal BNF protects newborns against hyperoxic lung injury, presumably by detoxification of lipid hydroperoxides by CYP1A enzymes, a phenomenon that has implications for prevention of BPD in infants. - Highlights: → Supplemental oxygen is routinely administered to premature infants. → Hyperoxia causes lung injury in experimental animals. → Prenatal treatment of mice with beta-naphthoflavone attenuates oxygen injury

  2. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR γ methylation in offspring, grand-offspring mice.

    Directory of Open Access Journals (Sweden)

    Zhonghai Yan

    Full Text Available Greater levels of prenatal exposure to polycyclic aromatic hydrocarbon (PAH have been associated with childhood obesity in epidemiological studies. However, the underlying mechanisms are unclear.We hypothesized that prenatal PAH over-exposure during gestation would lead to weight gain and increased fat mass in offspring and grand-offspring mice. Further, we hypothesized that altered adipose gene expression and DNA methylation in genes important to adipocyte differentiation would be affected.Pregnant dams were exposed to a nebulized PAH mixture versus negative control aerosol 5 days a week, for 3 weeks. Body weight was recorded from postnatal day (PND 21 through PND60. Body composition, adipose cell size, gene expression of peroxisome proliferator-activated receptor (PPAR γ, CCAAT/enhancer-binding proteins (C/EBP α, cyclooxygenase (Cox-2, fatty acid synthase (FAS and adiponectin, and DNA methylation of PPAR γ, were assayed in both the offspring and grand-offspring adipose tissue.Offspring of dams exposed to greater PAH during gestation had increased weight, fat mass, as well as higher gene expression of PPAR γ, C/EBP α, Cox2, FAS and adiponectin and lower DNA methylation of PPAR γ. Similar differences in phenotype and DNA methylation extended through the grand-offspring mice.Greater prenatal PAH exposure was associated with increased weight, fat mass, adipose gene expression and epigenetic changes in progeny.

  3. Enhancement of radial maze performances in CD1 mice after prenatal exposure to oxiracetam: possible role of sustained investigative responses developed during ontogeny.

    Science.gov (United States)

    Ammassari-Teule, M; D'Amato, F R; Sansone, M; Oliverio, A

    1988-01-01

    A longitudinal study aimed at analyzing the behavioral effects of prenatal exposure to the nootropic compound oxiracetam was carried out in CD1 mice. Two groups of females were injected either with oxiracetam or saline from the beginning of pregnancy until parturition. Examination of pups from birth until the first month of age revealed no-influence of the treatment on litter size, body weights, sensory motor reflexes and motility. When placed in the open field at one month of age, mice born by mothers exposed to oxiracetam displayed more self grooming and spent less time in freezing than control mice. Prenatally treated mice were then found more interactive with their environment since the introduction of a novel object in the open field was followed by increased ambulation and higher sniffing object and rearing object scores. At three months of age, mice from both groups were tested in a radial six-arm maze task. Choice accuracy was significantly higher in prenatally treated mice which also tended to optimize their exploratory sequences by frequently running the maze in a clock-wise fashion. These results suggest that the better learning performances observed in the experimental group could be viewed as a consequence of an enhanced cognitive development based upon the higher rate of interactions with the environment shown by prenatally treated mice during ontogeny.

  4. Hippocampal neurogenesis in the C57BL/6J mice at early adulthood following prenatal alcohol exposure.

    Science.gov (United States)

    Olateju, Oladiran I; Spocter, Muhammad A; Patzke, Nina; Ihunwo, Amadi O; Manger, Paul R

    2018-04-01

    We examined the effect of chronic prenatal alcohol exposure (PAE) on the process of adult neurogenesis in C57BL/6J mice at early adulthood (PND 56). Pregnant mice, and their in utero litters, were exposed to alcohol, through oral gavage, on gestational days 7-16, with recorded blood alcohol concentrations averaging 184 mg/dL (CA group). Two control groups, sucrose (CAc) and non-treated (NTc) control groups were also examined. The brains of pups at PND 56 from each experimental group were sectioned in a sagittal plane, and stained for Nissl substance with cresyl violet, and immunostained for Ki-67 which labels proliferative cells and doublecortin (DCX) for immature neurons. Morphologically, the neurogenic pattern was identical in all three groups studied. Populations of Ki-67 immunopositive cells in the dentate gyrus were not statistically significantly different between the experimental groups and there were no differences between the sexes. Thus, the PAE in this study does not appear to have a strong effect on the proliferative process in the adult hippocampus. In contrast, the numbers of immature neurons, labeled with DCX, was statistically significantly lower in the prenatal alcohol exposed mice compared with the two control groups. Alcohol significantly lowered the number of DCX hippocampal cells in the male mice, but not in the female mice. This indicates that the PAE appears to lower the rate of conversion of proliferative cells to immature neurons and this effect of alcohol is sexually dimorphic. This lowered number of immature neurons in the hippocampus appears to mirror hippocampal dysfunctions observed in FASD children.

  5. Language Outcomes at 12 Years for Children Exposed Prenatally to Cocaine

    Science.gov (United States)

    Lewis, Barbara A.; Minnes, Sonia; Short, Elizabeth J.; Min, Meeyoung O.; Wu, Miaoping; Lang, Adelaide; Weishampel, Paul; Singer, Lynn T.

    2013-01-01

    Purpose: In this study, the authors aimed to examine the long-term effects of prenatal cocaine exposure (PCE) on the language development of 12-year-old children using a prospective design, controlling for confounding prenatal drug exposure and environmental factors. Method: Children who were exposed to cocaine in utero (PCE; "n" = 183)…

  6. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study.

    Science.gov (United States)

    Howell, Kristy R; Pillai, Anilkumar

    2014-08-01

    Both genetic and environmental factors play important roles in the pathophysiology of schizophrenia. Although prenatal hypoxia is a potential environmental factor implicated in schizophrenia, very little is known about the consequences of combining models of genetic risk factor with prenatal hypoxia. Heterozygous reeler (haploinsufficient for reelin; HRM) and wild-type (WT) mice were exposed to prenatal hypoxia (9% oxygen for two hour) or normoxia at embryonic day 17 (E17). Behavioral (Prepulse inhibition, Y-maze and Open field) and functional (regional volume in frontal cortex and hippocampus as well as hippocampal blood flow) tests were performed at 3 months of age. The levels of hypoxia and stress-related molecules such as hypoxia-inducible factor-1 α (HIF-1α), vascular endothelial factor (VEGF), VEGF receptor-2 (VEGFR2/Flk1) and glucocorticoid receptor (GR) were examined in frontal cortex and hippocampus at E18, 1 month and 3 months of age. In addition, serum VEGF and corticosterone levels were also examined. Prenatal hypoxia induced anxiety-like behavior in both HRM and WT mice. A significant reduction in hippocampal blood flow, but no change in brain regional volume was observed following prenatal hypoxia. Significant age and region-dependent changes in HIF-1α, VEGF, Flk1 and GR were found following prenatal hypoxia. Serum VEGF and corticosterone levels were found decreased following prenatal hypoxia. None of the above prenatal hypoxia-induced changes were either diminished or exacerbated due to reelin deficiency. These results argue against any gene-environment interaction between hypoxia and reelin deficiency. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  7. Visual selective attention is impaired in children prenatally exposed to opioid agonist medication.

    Science.gov (United States)

    Konijnenberg, Carolien; Melinder, Annika

    2015-01-01

    To examine whether prenatal exposure to opioid agonist medication is associated with visual selective attention and general attention problems in early childhood. Twenty-two children (mean age = 52.17 months, SD = 1.81) prenatally exposed to methadone, 9 children (mean age = 52.41 months, SD = 1.42) prenatally exposed to buprenorphine and 25 nonexposed comparison children (mean age = 51.44 months, SD = 1.31) were tested. Visual selective attention was measured with a Tobii 1750 Eye Tracker using a spatial negative priming paradigm. Attention problems were measured using the Child Behavior Checklist. The comparison group demonstrated a larger spatial negative priming effect (mean = 23.50, SD = 45.50) than the exposed group [mean = -6.84, SD = 86.39, F(1,50) = 5.91, p = 0.019, η(2) = 0.11]. No difference in reported attention problems was found [F(1,51) = 1.63, p = 0.21, η(2) = 0.03]. Neonatal abstinence syndrome and prenatal exposure to marijuana were found to predict slower saccade latencies in the exposed group (b = 54.55, SE = 23.56, p = 0.03 and b = 88.86, SE = 32.07, p = 0.01, respectively). Although exposed children did not appear to have attention deficits in daily life, lower performance on the SNP task indicates subtle alteration in the attention system. © 2014 S. Karger AG, Basel.

  8. Effect of prenatal and postnatal microwave exposures on relative activity of SDH of brain and liver in newborn mice

    International Nuclear Information System (INIS)

    Jiang Huai; Yao Gengdong; Zhou Shiyun

    1987-01-01

    Pregnant mice were irradiated with 3 GHz pulse microwave at 8 mW/cm 2 (SAR 3.0-3.5 mW/g) and part of their offspring were irradiated at 1 mW/cm 2 . The effects on the mitochondria marker enzyme SDH of brain and liver in the newborn mice were observed. SDH was quanlitatively determined by microspectrophotometry. The results show that a decrease in the relative activity of SDH in brain was induced by either prenatal or postnatal microwave exposure (p < 0.01). The greatest decrease in the relative activity of SDH occurred in the offspring exposed both prenatally and postnatally. The similar but less changes in the activity of SDH occurred in liver of these mice. The results indicate that the brain SDH is a sensitive index to observe the subtle metabolic alterations which can not be detected using conventional morphologic teratologic procedures. It is suggested that pregnant women should be protected from high power density microwave exposure

  9. Prenatal Exposure to Unconventional Oil and Gas Operation Chemical Mixtures Altered Mammary Gland Development in Adult Female Mice.

    Science.gov (United States)

    Sapouckey, Sarah A; Kassotis, Christopher D; Nagel, Susan C; Vandenberg, Laura N

    2018-03-01

    Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 μg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 μg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 μg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies. Copyright © 2018 Endocrine Society.

  10. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    Science.gov (United States)

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  12. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes

    International Nuclear Information System (INIS)

    Han, Longzhe; Itoh, Kyoko; Yaoi, Takeshi; Moriwaki, Sanzo; Kato, Shingo; Nakamura, Keiko; Fushiki, Shinji

    2011-01-01

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection

  13. Development Enamel Defects in Children Prenatally Exposed to Anti-Epileptic Drugs

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Endrup; Henriksen, Tine Brink; Haubek, Dorte

    2013-01-01

    Objective Some anti-epileptic drugs (AED) have well-known teratogenic effects. The aim of the present study was to elucidate the effect of prenatal exposure to AED and the risk of enamel defects in the primary and permanent dentition. Methods A total of 38 exposed and 129 non-exposed children, 6......–10 years of age, were recruited from the Aarhus Birth Cohort and the Department of Neurology, Viborg Regional Hospital, Denmark. Medication during pregnancy was confirmed by the Danish Prescription Database. All children had their teeth examined and outcomes in terms of enamel opacities and enamel...... hypoplasia were recorded. Results Children prenatally exposed to AED have an increased prevalence of enamel hypoplasia (11% vs. 4%, odds ratio (OR) = 3.6 [95% confidence interval (CI): 0.9 to 15.4]), diffuse opacities (18% vs. 7%, OR = 3.0; [95% CI: 1.0 to 8.7, p3) white opacities (18...

  14. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    Science.gov (United States)

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  15. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan. A study in mice

    Directory of Open Access Journals (Sweden)

    Vibenholt Anni

    2010-06-01

    Full Text Available Abstract Background Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181. Methods Time-mated mice (C57BL/6BomTac were exposed by inhalation 1h/day to 42 mg/m3 aerosolized powder (1.7·106 n/cm3; peak-size: 97 nm on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Results Particles consisted of mainly elongated rutile titanium dioxide (TiO2 with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test. Conclusion Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  16. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice.

    Science.gov (United States)

    Hougaard, Karin S; Jackson, Petra; Jensen, Keld A; Sloth, Jens J; Löschner, Katrin; Larsen, Erik H; Birkedal, Renie K; Vibenholt, Anni; Boisen, Anne-Mette Z; Wallin, Håkan; Vogel, Ulla

    2010-06-14

    Engineered nanoparticles are smaller than 100 nm and designed to improve or achieve new physico-chemical properties. Consequently, also toxicological properties may change compared to the parent compound. We examined developmental and neurobehavioral effects following maternal exposure to a nanoparticulate UV-filter (UV-titan L181). Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring neurofunction and fertility. Physicochemical particle properties were determined to provide information on specific exposure and deposition. Particles consisted of mainly elongated rutile titanium dioxide (TiO2) with an average crystallite size of 21 nm, modified with Al, Si and Zr, and coated with polyalcohols. In exposed adult mice, 38 mg Ti/kg was detected in the lungs on day 5 and differential cell counts of bronchoalveolar lavage fluid revealed lung inflammation 5 and 26-27 days following exposure termination, relative to control mice. As young adults, prenatally exposed offspring tended to avoid the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally exposed offspring displayed moderate neurobehavioral alterations. The results are discussed in the light of the observed particle size distribution in the exposure atmosphere and the potential pathways by which nanoparticles may impart changes in fetal development.

  17. Effect of Amphetamine on Adult Male and Female Rats Prenatally Exposed to Methamphetamine

    Directory of Open Access Journals (Sweden)

    Romana Šlamberová

    2014-01-01

    Full Text Available The aim of the present study was to examine the cross-sensitization induced by prenatal methamphetamine (MA exposure to adult amphetamine (AMP treatment in male and female rats. Rat mothers received a daily injection of MA (5 mg/kg or saline throughout the gestation period. Adult male and female offspring (prenatally MA- or saline-exposed were administered with AMP (5 mg/kg or saline (1 ml/kg in adulthood. Behaviour in unknown environment was examined in open field test (Laboras, active drug-seeking behaviour in conditioned place preference test (CPP, spatial memory in the Morris water maze (MWM, and levels of corticosterone (CORT were analyzed by enzyme immunoassay (EIA. Our data demonstrate that in Laboras test, AMP treatment in adulthood increased general locomotion (time and distance travelled regardless of the prenatal exposure and sex, while AMP increased exploratory activity (rearing only in prenatally MA-exposed animals. AMP induced sensitization only in male rats, but not in females when tested drug-seeking behaviour in the CPP test. In the spatial memory MWM test, AMP worsened the performance only in females, but not in males. On the other hand, males swam faster after chronic AMP treatment regardless of the prenatal drug exposure. EIA analysis of CORT levels demonstrated higher level in females in all measurement settings. In males, prenatal MA exposure and chronic adult AMP treatment decreased CORT levels. Thus, our data demonstrated that adult AMP treatment affects behaviour of adult rats, their spatial memory and stress response in sex-specific manner. The effect is also influenced by prenatal drug exposure.

  18. Responsiveness of cerebral and hepatic cytochrome P450s in rat offspring prenatally exposed to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2008-01-01

    ABSTRACT: Prenatal exposure to low doses of lindane has been shown to affect the ontogeny of xenobiotic metabolizing cytochrome P450s (CYPs), involved in the metabolism and neurobehavioral toxicity of lindane. Attempts were made in the present study to investigate the responsiveness of CYPs in offspring prenatally exposed to lindane (0.25 mg/kg b. wt.; 1/350th of LD 50 ; p. o. to mother) when challenged with 3-methylcholanthrene (MC) or phenobarbital (PB), inducers of CYP1A and 2B families or a sub-convulsant dose of lindane (30 mg/kg b. wt., p. o.) later in life. Prenatal exposure to lindane was found to produce an increase in the mRNA and protein expression of CYP1A1, 1A2, 2B1, 2B2 isoforms in brain and liver of the offspring at postnatal day 50. The increased expression of the CYPs in the offspring suggests the sensitivity of the CYPs during postnatal development, possibly, to low levels of lindane, which may partition into mother's milk. A higher increase in expression of CYP1A and 2B isoenzymes and their catalytic activity was observed in animals pretreated prenatally with lindane and challenged with MC (30 mg/kg, i. p. x 5 days) or PB (80 mg/kg, i. p. x 5 days) when young at age (approx. 7 weeks) compared to animals exposed to MC or PB alone. Further, challenge of the control and prenatally exposed offspring with a single sub-convulsant dose of lindane resulted in an earlier onset and increased incidence of convulsions in the offspring prenatally exposed to lindane have demonstrated sensitivity of the CYPs in the prenatally exposed offspring. Our data assume significance as the subtle changes in the expression profiles of hepatic and cerebral CYPs in rat offspring during postnatal development could modify the adult response to a later exposure to xenobiotics

  19. The effect of colostrum on pigs pre-natally or post-natally exposed to Schistosoma japonicum

    DEFF Research Database (Denmark)

    Techau, M.E.; Johansen, M.V.; Lind, Peter

    2004-01-01

    Pre-natal infection of Schistosoma japonicum in pigs may prove to be a useful model in shedding light on human pre-natal schistosomiasis. This study describes the effects of immune colostrum on worm burdens, tissue egg counts, liver pathology and crude worm or egg antigen-specific IgG and Ig......A responses, in groups of pigs pre-natally, pre-natally + post-natally or post-natally exposed to S. japonicum. Results suggest that pre-natal exposure and immune colostrum did not affect the establishment of a post-natal challenge infection. However, immune colostrum seemed to increase the levels of septal...

  20. Prenatal zinc reduces stress response in adult rat offspring exposed to lipopolysaccharide during gestation.

    Science.gov (United States)

    Galvão, Marcella C; Chaves-Kirsten, Gabriela P; Queiroz-Hazarbassanov, Nicolle; Carvalho, Virgínia M; Bernardi, Maria M; Kirsten, Thiago B

    2015-01-01

    Previous investigations by our group have shown that prenatal treatment with lipopolysaccharide (LPS; 100 μg/kg, intraperitoneally) on gestation day (GD) 9.5 in rats, which mimics infections by Gram-negative bacteria, induces short- and long-term behavioral and neuroimmune changes in the offspring. Because LPS induces hypozincemia, dams were treated with zinc after LPS in an attempt to prevent or ameliorate the impairments induced by prenatal LPS exposure. LPS can also interfere with hypothalamic-pituitary-adrenal (HPA) axis development; thus, behavioral and neuroendocrine parameters linked to HPA axis were evaluated in adult offspring after a restraint stress session. We prenatally exposed Wistar rats to LPS (100 μg/kg, intraperitoneally, on GD 9.5). One hour later they received zinc (ZnSO4, 2 mg/kg, subcutaneously). Adult female offspring that were in metestrus/diestrus were submitted to a 2 h restraint stress session. Immediately after the stressor, 22 kHz ultrasonic vocalizations, open field behavior, serum corticosterone and brain-derived neurotrophic factor (BDNF) levels, and striatal and hypothalamic neurotransmitter and metabolite levels were assessed. Offspring that received prenatal zinc after LPS presented longer periods in silence, increased locomotion, and reduced serum corticosterone and striatal norepinephrine turnover compared with rats treated with LPS and saline. Prenatal zinc reduced acute restraint stress response in adult rats prenatally exposed to LPS. Our findings suggest a potential beneficial effect of prenatal zinc, in which the stress response was reduced in offspring that were stricken with infectious/inflammatory processes during gestation. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Mother-child interaction and cognitive development in children prenatally exposed to methadone or buprenorphine.

    Science.gov (United States)

    Konijnenberg, Carolien; Sarfi, Monica; Melinder, Annika

    2016-10-01

    To assess the influence of mother-child interaction on children's cognitive development in a group of children prenatally exposed to methadone or buprenorphine. The study is part of a prospective longitudinal project investigating the development of children born to women in opioid maintenance therapy (OMT). The sample includes 67 children born between 2005 and 2007, 35 of which prenatally exposed to either methadone or buprenorphine and 32 non-exposed comparison children. Both groups scored within the normal range of development. However, the OMT group scored significantly lower on measures of cognitive development and mother-child interaction compared to the comparison group. Cognitive development was found to be affected by both group status, F(1,54)=5.65, p=0.02, η(2)=0.10 and mother-child interaction F(1,54)=5.26, p=0.03, η(2)=0.09. Behavioral inhibition (statue), sensorimotor function (imitating hand positions), and short-term memory (sentences) was influenced by group status while narrative memory and vocabulary were found to be more influenced by mother-child interaction. Different risk factors may influence different cognitive functions in children of women in OMT. Specifically, language-related cognitive skills may be more related to mother-child interaction while performance in higher cognitive functions requiring precise control over sensorimotor responses may be more sensitive to other factors such as prenatal OMT exposure, genetics, and/or prenatal exposure to other substances. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice.

    Science.gov (United States)

    Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C

    2018-02-01

    Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet.

    Science.gov (United States)

    Berry, Alessandra; Bellisario, Veronica; Panetta, Pamela; Raggi, Carla; Magnifico, Maria C; Arese, Marzia; Cirulli, Francesca

    2018-01-01

    A growing body of evidence suggests the consumption of high-fat diet (HFD) during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS), might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy) on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery) and were exposed to the N-acetyl-cysteine (NAC) antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother's body weight and offspring's weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females) and in the central nervous system (males). Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important long

  4. Brain abnormalities among the mentally retarded prenatally exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori; Nishitani, Hiromu; Hasuo, Kanehiro; Kobayashi, Takuro; Goto, Ikuo.

    1992-07-01

    An increased occurrence of severe mental retardation, with or without accompanying small head size, at specific gestational ages has been the most conspicuous effect on brain development of prenatal exposure to the bombings of Hiroshima and Nagasaki. A variety of biological mechanisms could be responsible for this finding, including cell killing and mismanaged neuronal migration. We describe here the findings on magnetic resonance imaging of the brains of five of these mentally retarded individuals, all of whom were exposed in the 8th through the 15th weeks following fertilization, the gestational period shown to be the most vulnerable to radiation-related damage. In the two cases exposed at the 8th or 9th week following fertilization, large areas of ectopic gray matter are seen, strong evidence of a failure of the neurons to migrate to their proper functional sites. The two individuals exposed in the 12th or 13th week show no readily recognized ectopic gray areas but do show mild macrogyria, which implies some impairment in the development of the cortical zone. Moreover, both have mega cisterna magna. Finally, the one individual seen who was exposed still later in development, in the 15th week, shows none of the changes seen in the other four individuals. This person's brain, though small, appears to have normal architecture. These findings are discussed in terms of the embryological events transpiring at the time of the prenatal exposure of these individuals to ionizing radiation. (author)

  5. Immunotoxic effects of iodine-131 in prenatally exposed rats

    International Nuclear Information System (INIS)

    Cole, D.A.; Stevens, R.H.; Lindholm, P.A.; Cheng, H.F.

    1985-01-01

    Present results suggest that offspring exposed in utero to radioactive iodine-131 develop a measureable cell-mediated immune (CMI) response. Regnant Fischer F344 inbred rats were exposed to 370 kBg to 3.7 MBg (10 to 100 μCi) Na 131I on 16 to 18 days of gestation and evaluated for CMI responsiveness 2 to 3 months post exposure using an 125I radiolabeled membrane release assay. Current data suggest that not only the F1, but also the F2 pups develop a measureable CMI response. In order to determine whether other immune functions are altered studies have been initiated to evaluate the immunotoxic effect of prenatal exposure to 131I. These studies include the evaluation of the delayed hypersensitivity response and the blastogenic responses to phytoheemagglutinin, concanavalin A, and lipopolysaccharide

  6. Endocrine-disrupting activity of hydraulic fracturing chemicals and adverse health outcomes after prenatal exposure in male mice

    Science.gov (United States)

    Kassotis, Christopher D.; Klemp, Kara C.; Vu, Danh C.; Lin, Chung-Ho; Meng, Chun-Xia; Besch-Williford, Cynthia L.; Pinatti, Lisa; Zoeller, R. Thomas; Drobnis, Erma Z.; Balise, Victoria D.; Isiguzo, Chiamaka J.; Williams, Michelle A.; Tillitt, Donald E.; Nagel, Susan C.

    2015-01-01

    Oil and natural gas operations have been shown to contaminate surface and ground water with endocrine-disrupting chemicals. In the current study, we fill several gaps in our understanding of the potential environmental impacts related to this process. We measured the endocrine-disrupting activities of 24 chemicals used and/or produced by oil and gas operations for five nuclear receptors using a reporter gene assay in human endometrial cancer cells. We also quantified the concentration of 16 of these chemicals in oil and gas wastewater samples. Finally, we assessed reproductive and developmental outcomes in male C57BL/6J mice after the prenatal exposure to a mixture of these chemicals. We found that 23 commonly used oil and natural gas operation chemicals can activate or inhibit the estrogen, androgen, glucocorticoid, progesterone, and/or thyroid receptors, and mixtures of these chemicals can behave synergistically, additively, or antagonistically in vitro. Prenatal exposure to a mixture of 23 oil and gas operation chemicals at 3, 30, and 300 μg/kg · d caused decreased sperm counts and increased testes, body, heart, and thymus weights and increased serum testosterone in male mice, suggesting multiple organ system impacts. Our results suggest possible adverse developmental and reproductive health outcomes in humans and animals exposed to potential environmentally relevant levels of oil and gas operation chemicals.

  7. Administration of the Antioxidant N-Acetyl-Cysteine in Pregnant Mice Has Long-Term Positive Effects on Metabolic and Behavioral Endpoints of Male and Female Offspring Prenatally Exposed to a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Berry

    2018-03-01

    Full Text Available A growing body of evidence suggests the consumption of high-fat diet (HFD during pregnancy to model maternal obesity and the associated increase in oxidative stress (OS, might act as powerful prenatal stressors, leading to adult stress-related metabolic or behavioral disorders. We hypothesized that administration of antioxidants throughout gestation might counteract the negative effects of prenatal exposure to metabolic challenges (maternal HFD feeding during pregnancy on the developing fetus. In this study, female C57BL/6J mice were fed HFD for 13 weeks (from 5-weeks of age until delivery and were exposed to the N-acetyl-cysteine (NAC antioxidant from 10-weeks of age until right before delivery. Body weight of the offspring was assessed following birth, up to weaning and at adulthood. The metabolic, neuroendocrine and emotional profile of the adult offspring was tested at 3-months of age. Prenatal HFD increased mother’s body weight and offspring’s weight at the time of weaning, when administered in conjunction with NAC. In females, NAC administration reduced high levels of leptin resulting from prenatal HFD. Prenatal NAC administration also resulted in greater glucose tolerance and insulin sensitivity while increasing adiponectin levels, as well as increasing exploratory behavior, an effect accompanied by reduced plasma corticosterone levels in response to restraint stress. Analysis of glutathione levels in the hypothalamus and in brown adipose tissue indicates that, while HFD administration to pregnant dams led to reduced levels of glutathione in the offspring, as in the male hypothalamus, NAC was able to revert this effect and to increase glutathione levels both in the periphery (Brown Adipose Tissue, both males and females and in the central nervous system (males. Overall, results from this study indicate that the body redox milieu should be tightly regulated during fetal life and that buffering OS during pregnancy can have important

  8. Some effects of prenatal exposure to d-amphetamine sulfate and phenobarbital on developmental neurochemistry and on behavior.

    Science.gov (United States)

    Zemp, J W; Middaugh, L D

    1975-01-01

    Amphetamine. Prenatal intraperitoneal injection of d-amphetamine sulfate (5 mg/kg) produces decreases in the levels of catecholamines in the brain the day of birth and increases on day 30. Open-field activity from days 12 to 31 was higher for the group of animals injected with amphetamine or saline if scores were totaled across all test days. At day 75 the offspring of amphetamine-injected mothers exhibited altered open-field behavior. The effects were not observed with subcutaneous injection regardless of the dose used (2.5, 5.0, and 10.0 mg/kg). The lowest subcutaneous dose decreases neonatal viability. Phenobarbital. Prenatal intraperitoneal injection of phenobarbital (80 mg/kg) resulted in decreased litter size, increases mortality, and decreased amounts of nucleic acid and protein in the brains of surviving offspring. Behavioral deficits associated with response perseveration could be demonstrated at 60 days in the mice prenatally exposed to this dosage. Subcutaneous injections of phenobarbital to pregnant mice at 80 and 40 mg/kg, but not 20 mg/kg, doses increased neonatal mortality. Mature animals prenatally exposed to 40 mg/kg phenobarbital have altered open-field behavior and differ from control animals on a passive avoidance task. Mature offspring prenatally exposed to the 20 or 40 mg/kg dose also responded less than controls on an operant task requiring an increasing number of responses per reinforcement. These studies suggest that prenatal exposure to phenobarbital has in some way altered the animals' reactivity to stimualtion.

  9. Neurodevelopment of children prenatally exposed to selective reuptake inhibitor antidepressants: Toronto sibling study.

    Science.gov (United States)

    Nulman, Irena; Koren, Gideon; Rovet, Joanne; Barrera, Maru; Streiner, David L; Feldman, Brian M

    2015-07-01

    The reproductive safety of selective reuptake inhibitor (SRI) antidepressants needs to be established to provide optimal control of maternal depression while protecting the fetus. To define a child's neurodevelopment following prenatal exposure to SRIs and to account for genetic and environmental confounders in a sibling design using the Toronto Motherisk prospective database. Intelligence and behavior of siblings prenatally exposed and unexposed to SRIs were assessed by using the Wechsler Preschool and Primary Scale of Intelligence-Third Edition, Child Behavior Checklist, and Conners Parent Rating Scale-Revised and subsequently compared. Mothers, diagnosed with depression using DSM-IV, were assessed for intelligence quotient (IQ) and for severity of depressive symptoms with the Center for Epidemiologic Studies Depression scale. Prenatal drug doses and durations of exposure, child's age, child's sex, birth order, severity of maternal depression symptoms, and Full Scale IQ, the primary outcome measure, of both the mother and the child were considered in the analyses. Forty-five sibling pairs (ages 3 years to 6 years 11 months, prenatally exposed and unexposed to SRIs) did not differ in their mean ± SD Full Scale IQs (103 ± 13 vs 106 ± 12; P = .30; 95% CI, -7.06 to 2.21) or rates of problematic behaviors. Significant predictor of children's intelligence was maternal IQ (P = .043, β = 0.306). Severity of maternal depression was a significant predictor of Child Behavior Checklist Internalizing (P = .019, β = 0.366), Externalizing (P = .003, β = 0.457), and Total scores (P = .001, β = 0.494). Drug doses and durations of exposure during pregnancy did not predict any outcomes of interest in the exposed siblings. SRI antidepressants were not found to be neurotoxic. Maternal depression may risk the child's future psychopathology. The sibling design in behavioral teratology aids in separating the effects of maternal depression from those of SRIs, providing stronger

  10. Psychopharmacologic treatment of children prenatally exposed to drugs of abuse.

    Science.gov (United States)

    Hulvershorn, Leslie A; Schroeder, Kristen M; Wink, Logan K; Erickson, Craig A; McDougle, Christopher J

    2015-05-01

    This pilot study compared the pharmacologic treatment history and clinical outcomes observed in pediatric outpatients with psychiatric disorders exposed to drugs of abuse in utero to those of an age-matched, sex-matched and psychiatric disorder-matched, non-drug-exposed group. In this matched cohort study, medical records of children treated at an academic, child and adolescent psychiatry outpatient clinic were reviewed. Children with caregiver-reported history of prenatal drug exposure were compared with a non-drug-exposed control group being cared for by the same providers. Patients were rated with the Clinical Global Impressions-Severity scale (CGI-S) throughout treatment. The changes in pre-treatment and post-treatment CGI-S scores and the total number of medication trials were determined between groups. The drug-exposed group (n = 30) had a higher total number of lifetime medication trials compared with the non-drug-exposed group (n = 28) and were taking significantly more total medications, at their final assessment. Unlike the non-drug-exposed group, the drug-exposed group demonstrated a lack of clinical improvement. These results suggest that in utero drug-exposed children may be more treatment-refractory to or experience greater side effects from the pharmacologic treatment of psychiatric disorders than controls, although we cannot determine if early environment or drugs exposure drives these findings. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: A prospective study

    DEFF Research Database (Denmark)

    Wohlfahrt-Veje, Christine; Main, Katharina Maria; Schmidt, Ida Maria

    2011-01-01

    of prenatal exposure to currently used pesticides on children's growth, endocrine and reproductive function. METHOD: In a prospective study of 247 children born by women working in greenhouses in early pregnancy, 168 were categorized as prenatally exposed to pesticides. At three months (n=203) and at 6 to11......: Occupational exposure to currently used pesticides may have adverse effects in spite of the added protection offered to pregnant women. Maternal exposure to combinations of modern, non-persistent pesticides during early pregnancy was associated with affected growth, both prenatally and postnatally. We found...... a biphasic association with lower weight at birth followed by increased body fat accumulation from birth to school age. We cannot rule out some residual confounding due to differences in social class, although this was adjusted for. Associations were stronger in highly exposed than in medium exposed children...

  12. Changes in markers of oxidative stress and membrane properties in synaptosomes from rats exposed prenatally to toluene

    DEFF Research Database (Denmark)

    Edelfors, Sven; Hass, Ulla; Hougaard, Karin S.

    2002-01-01

    for the experiments, Synaptosomes from rats exposed prenatally to toluene exhibited an increased level of oxidative stress when incubated with toluene in vitro compared to synaptosomes from unexposed offspring. Also the cell membrane was affected, as the calcium leakage was more increased from exposed synaptosomes...

  13. Premorbid Anomalies and Risk of Schizophrenia and Depressive Disorders in a Birth Cohort Exposed to Prenatal Rubella

    Science.gov (United States)

    Penner, Justin D.; Brown, Alan S.

    2007-01-01

    In a birth cohort prenatally exposed to rubella, we assessed whether prospectively documented premorbid neuromotor dysfunction, mannerisms, deviant behaviors, and temperament during childhood and adolescence were impaired in cases who developed depressive disorder (DD) relative to rubella-exposed controls and cases who developed schizophrenia…

  14. Prenatal and early postnatal NOAEL-dose clothianidin exposure leads to a reduction of germ cells in juvenile male mice.

    Science.gov (United States)

    Yanai, Shogo; Hirano, Tetsushi; Omotehara, Takuya; Takada, Tadashi; Yoneda, Naoki; Kubota, Naoto; Yamamoto, Anzu; Mantani, Youhei; Yokoyama, Toshifumi; Kitagawa, Hiroshi; Hoshi, Nobuhiko

    2017-07-07

    Neonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates. Here, we investigated the male reproductive toxicity of prenatal and early postnatal exposure to CTD, because it is likely that developmental exposure more severely affects the testis compared to adults due to the absence of the blood-testis barrier. Pregnant C57BL/6 mice were given water gel blended with CTD (0, 10 or 50 mg/kg/day; no-observed-adverse-effect-level [NOAEL for mice]: 47.2 mg/kg/day) between gestational day 1 and 14 days post-partum. We then examined the testes of male offspring at postnatal day 14. The testis weights and the numbers of germ cells per seminiferous tubule were decreased in the CTD-50 group, and abnormal tubules containing no germ cells appeared. Nevertheless, the apoptotic cell number and proliferative activity were not significantly different between the control and CTD-exposed groups. There were no significant differences in the androgen-related parameters, such as the Leydig cell volume per testis, the Sertoli cell number and the tubule diameter. The present study is the first demonstration that in utero and lactational exposures to CTD at around the NOAEL for mice reduce the germ cell number, but our findings suggest that these exposures do not affect steroidogenesis in Leydig cells during prenatal or early postnatal life.

  15. Behavioural changes in mice exposed to low level microwave fields

    International Nuclear Information System (INIS)

    Goiceanu, C.; Gradinaru, F.; Danulescu, R.; Balaceanu, G.; Sandu, D. D.; Avadanei, O. G.

    2001-01-01

    The aim of our study is to point out some changes in mice behaviour due possibly to exposure to low-level microwave fields. Animals spontaneous behaviour were monitored and the exploring behaviour and motor activity were assessed. Ten selected Swiss male mice were exposed to low-level microwave fields of about 1 mW/cm 2 power density for a relatively long period of time (13 weeks), comparing to their lifetime. The exposure system consists in a transverse electromagnetic (TEM) Cell. A control lot of ten Swiss male mice was used. All twenty mice were selected to be of same age and of 202 g initial body weight. Each animal was placed in his own holder. The behaviour of the animals, from both exposed and control lots, was assessed by using a battery of three behavioural tests. The test sessions were performed every two weeks. During exposure period it was recorded a progressive but moderate loss of motor activity for both exposed and controls, probably due to weight gain and aging. Concerning exploratory activity there is a significant difference between control and exposed animals. Control mice had approximately constant performances in time. On the other hand exposed mice showed a progressive decrease in time of their exploratory ability. Motor activity of exposed animals does not seem to be affected by microwave exposure, in spite of moderate loss in time of motor activity in both lots, as long as it was recorded a quite similar evolution. The difference in performances of exposed and controls concerning exploratory activity seem to emphasise an effect of long-term low-level microwave exposure. The progressive loss in time of exploratory activity of exposed mice, in contrast with controls, could be due to the interference of microwaves with central nervous activity. (authors)

  16. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD

    International Nuclear Information System (INIS)

    Mustafa, A.; Holladay, S.D.; Goff, M.; Witonsky, S.G.; Kerr, R.; Reilly, C.M.; Sponenberg, D.P.; Gogal, R.M.

    2008-01-01

    Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 μg/kg TCDD on gestation day (gd) 12. Offspring of these mice (n = 5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4 + CD8 + thymocytes, and increased CD4 + CD8 - thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4 - CD8 + T cells, and increased Vβ3 + and Vβ17a + T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24 - B220 + B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 μg/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease

  17. Oxytocin attenuates deficits in social interaction but not recognition memory in a prenatal valproic acid-induced mouse model of autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Higuchi, Momoko; Hasebe, Shigeru; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2017-11-01

    Recent studies have reported that oxytocin ameliorates behavioral abnormalities in both animal models and individuals with autism spectrum disorders (ASD). However, the mechanisms underlying the ameliorating effects of oxytocin remain unclear. In this study, we examined the effects of intranasal oxytocin on impairments in social interaction and recognition memory in an ASD mouse model in which animals are prenatally exposed to valproic acid (VPA). We found that a single intranasal administration of oxytocin restored social interaction deficits for up to 2h in mice prenatally exposed to VPA, but there was no effect on recognition memory impairments. Additionally, administration of oxytocin across 2weeks improved prenatal VPA-induced social interaction deficits for at least 24h. In contrast, there were no effects on the time spent sniffing in control mice. Immunohistochemical analysis revealed that intranasal administration of oxytocin increased c-Fos expression in the paraventricular nuclei (PVN), prefrontal cortex, and somatosensory cortex, but not the hippocampal CA1 and CA3 regions of VPA-exposed mice, suggesting the former regions may underlie the effects of oxytocin. These findings suggest that oxytocin attenuates social interaction deficits through the activation of higher cortical areas and the PVN in an ASD mouse model. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Detrimental effects of prenatal exposure to filtered diesel exhaust on mouse spermatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Naoka; Niwata, Yuichiro; Takeda, Ken [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Chiba (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Oshio, Shigeru [Tokyo University of Science, Department of Hygiene Chemistry, Faculty of Pharmaceutical Sciences, Chiba (Japan); Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Ohu University, Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Fukushima (Japan); Ohu University, Department of Hygiene Chemistry, School of Pharmaceutical Sciences, Koriyama, Fukushima (Japan); Yoshida, Seiichi [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Oita University of Nursing and Health Sciences, Department of Health and Sciences, Oita (Japan); Tsukue, Naomi [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); Sugawara, Isamu [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); The Research Institute of Tuberculosis, Mycobacterial Reference Center, Tokyo (Japan); Takano, Hirohisa [Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Saitama (Japan); National Institute for Environmental Studies, Environmental Health Sciences Division, Ibaraki (Japan)

    2008-11-15

    We recently showed that prenatal exposure to diesel exhaust (DE) disrupts spermatogenesis in mouse offspring. This study was undertaken to determine whether filtered DE in which 99.97% of diesel exhaust particles >0.3{mu}m in diameter were removed affects spermatogenesis in growing mice. After prenatal exposure to filtered DE for 2-16 days postcoitum, we examined daily sperm production (DSP), testicular histology, serum testosterone levels and mRNA expression of hormone synthesis process-related factors. In the filtered DE exposed group, DSP was markedly reduced at 12 weeks compared with the control group; clean air exposed group. Histological examination showed multinucleated giant cells and partial vacuolation in the seminiferous tubules of the exposed group. Testosterone was elevated significantly at 5 weeks. Moreover, luteinizing hormone receptor mRNA at 5 and 12 weeks, 17{alpha}-hydroxylase/C17-20-lyase and 17{beta}-hydroxysteroid dehydrogenase mRNAs at 12 weeks were significantly elevated. These results suggest that filtered DE retains its toxic effects on the male reproductive system following prenatal exposure. (orig.)

  19. Life shortening and carcinogenesis in mice irradiated at the perinatal period with gamma rays

    International Nuclear Information System (INIS)

    Sasaki, S.; Kasuga, T.

    1986-01-01

    This study elucidates the life-span radiation effects in mice irradiated at the perinatal period in comparison to mice irradiated at the young adult period. B6C3F 1 female mice were irradiated at 17 days of prenatal age, at 0 days of postnatal age, or as young adults at 15 weeks of age with 190, 380, or 570 rads of 137 Cs gamma rays. Mice irradiated at the late fetal period showed dose-dependent life shortening of somewhat lesser magnitude than that seen after neonatal or young adult irradiation. Mice exposed at the late fetal period were highly susceptible to induction of pituitary tumors for which the latent period was the longest of all induced neoplasms. Incidence of lung tumors in mice irradiated at the late fetal period with 190 and 380 rads was higher than in controls. Malignant lymphomas of the lymphocytic type developed in excess, after a short latent period, in mice irradiated fetally with the highest dose; susceptibility of prenatally exposed mice was lower than that of early postnatally exposed mice. Liver tumors developed more frequently in mice irradiated in utero than in controls; susceptibility to induction of this type of neoplasm was highest at the neonatal period. In general, carcinogenic response of mice exposed at the late fetal period resembled that of neonatally exposed mice but was quite different from that of young adult mice. Mice exposed as young adults have no, or low, susceptibility to induction of pituitary, lung, and liver tumors; and a higher susceptibility to induction of myeloid leukemias and Harderian gland tumors. 19 refs., 4 figs., 3 tabs

  20. Brain fibronectin expression in prenatally irradiated mice

    International Nuclear Information System (INIS)

    Meznarich, H.K.; McCoy, L.S.; Bale, T.L.; Stiegler, G.L.; Sikov, M.R.

    1993-01-01

    Activation of gene transcription by radiation has been recently demonstrated in vivo. However, little is known on the specificity of these alterations on gene transcription. Prenatal irradiation is a known teratogen that affects the developing mammalian central nervous system (CNS). Altered neuronal migration has been suggested as a mechanism for abnormal development of prenatally irradiated brains. Fibronectin (FN), an extracellular glycoprotein, is essential for neural crest cell migration and neural cell growth. In addition, elevated levels of FN have been found in the extracellular matrix of irradiated lung. To test whether brain FN is affected by radiation, either FN level in insoluble matrix fraction or expression of FN mRNA was examined pre- and postnatally after irradiation. Mice (CD1), at 13 d of gestation (DG), served either as controls or were irradiated with 14 DG, 17 DG, or 5,6, or 14 d postnatal. Brain and liver were collected from offspring and analyzed for either total FN protein levels or relative mRNAs for FN and tubulin. Results of prenatal irradiation on reduction of postnatal brain weight relative to whole are comparable to that reported by others. Insoluble matrix fraction (IMF) per gram of brain, liver, lung, and heart weight was not significantly different either between control and irradiated groups or between postnatal stages, suggesting that radiation did not affect the IMF. However, total amounts of FN in brain IMF at 17 DG were significantly different (p < .02) between normal (1.66 ± 0.80 μg) and irradiated brains (0.58 ± 0.22 μg). FN mRNA was detectable at 13, 14, and 17 DG, but was not detectable at 6 and 14 d postnatal, indicating that FN mRNA is developmentally regulated. 41 refs., 4 figs., 3 tabs

  1. Metabolic trajectories based on 1H NMR spectra of urines from sheep exposed to nutritional challenges during prenatal and early postnatal life

    DEFF Research Database (Denmark)

    Nyberg, Nils; Nielsen, Mette Benedicte Olaf; Jaroszewski, Jerzy W.

    2010-01-01

    1H NMR metabolic profiles of urine from sheep exposed to prenatal nutritional restriction (n = 19) and a control group with normal prenatal nutritional requirements (n = 19), followed by either conventional (n = 10 + 10) or high carbohydrate high fat postnatal diet (n = 9 + 9), were studied. Urine...... undernutrition followed by normal postnatal diet showed metabolic patters that are ahead in time on the metabolic trajectory relative to the prenatal control group. No long-term effects of fetal undernutrition, alone or in combination with postnatal hypernutrition were observed....... amount of glucose, indicative of monogastric-like metabolism, and exhibiting concomitant increase of metabolites related to rumen microflora (mainly glycine conjugates of benzoic and phenylacetic acid) as the ruminal metabolism developed. Urines from young (2-month-old) animals exposed to prenatal...

  2. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression and DNA methylation of the Bdnf gene.

    Science.gov (United States)

    Miller, Rachel L; Yan, Zhonghai; Maher, Christina; Zhang, Hanjie; Gudsnuk, Kathryn; McDonald, Jacob; Champagne, Frances A

    2016-03-01

    Prenatal exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b , and greater DNA methylation of Bdnf . Our results indicated that during open-field testing, prenatal PAH exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males, and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression, but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  3. Impact of prenatal polycyclic aromatic hydrocarbon exposure on behavior, cortical gene expression, and DNA methylation of the Bdnf gene

    Directory of Open Access Journals (Sweden)

    Rachel L. Miller

    2016-03-01

    Full Text Available Prenatal exposure to polycyclic aromatic hydrocarbons (PAH has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of Bdnf and Grin2b, and greater DNA methylation of Bdnf. Our results indicated that during open-field testing, prenatal PAH–exposed offspring spent more time immobile and less time exploring. Females produced more fecal boli. Offspring prenatally exposed to PAH displayed modest reductions in overall exploration of objects. Further, prenatal PAH exposure was associated with lower cortical expression of Grin2b and Bdnf in males and greater Bdnf IV promoter methylation. Epigenetic differences within the Bdnf IV promoter correlated with Bdnf gene expression but not with the observed behavioral outcomes, suggesting that additional targets may account for these PAH-associated effects.

  4. Lower birth weight and increased body fat at school age in children prenatally exposed to modern pesticides: a prospective study

    Directory of Open Access Journals (Sweden)

    Grandjean Philippe

    2011-09-01

    Full Text Available Abstract Background Endocrine disrupting chemicals have been hypothesized to play a role in the obesity epidemic. Long-term effects of prenatal exposure to non-persistent pesticides on body composition have so far not been investigated. The purpose of this study was to assess possible effects of prenatal exposure to currently used pesticides on children's growth, endocrine and reproductive function. Methods In a prospective study of 247 children born by women working in greenhouses in early pregnancy, 168 were categorized as prenatally exposed to pesticides. At three months (n = 203 and at 6 to11 years of age (n = 177 the children underwent a clinical examination and blood sampling for analysis of IGF-I, IGFBP3 and thyroid hormones. Body fat percentage at age 6 to11 years was calculated from skin fold measurements. Pesticide related associations were tested by linear multiple regression analysis, adjusting for relevant confounders. Results Compared to unexposed children birth weight and weight for gestational age were lower in the highly exposed children: -173 g (-322; -23, -4.8% (-9.0; -0.7 and medium exposed children: -139 g (-272; -6, -3.6% (-7.2; -0.0. Exposed (medium and highly together children had significantly larger increase in BMI Z-score (0.55 SD (95% CI: 0.1; 1.0 from birth to school age and highly exposed children had 15.8% (0.2; 34.6 larger skin folds and higher body fat percentage compared to unexposed. If prenatally exposed to both pesticides and maternal smoking (any amount, the sum of four skin folds was 46.9% (95% CI: 8.1; 99.5 and body fat percentage 29.1% (95% CI: 3.0; 61.4 higher. There were subtle associations between exposure and TSH Z-score -0.66(-1.287; -0.022 and IGF-I Z-score (girls: -0.62(-1.0; -0.22, boys: 0.38(-0.03; 0.79, but not IGFBP3. Conclusions Occupational exposure to currently used pesticides may have adverse effects in spite of the added protection offered to pregnant women. Maternal exposure to

  5. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  6. Brain development in mice after prenatal irradiation: Modes of effect manifestation; dose-response-relationships and the RBE of neutrons

    International Nuclear Information System (INIS)

    Konermann, G.

    1986-01-01

    Postnatal effect manifestation in the CNS after exposures during advanced prenatal stages of development is due to both the prolonged period of neurogenesis and its complexity. Apart from acute proliferative effects, examples of two types of long-term effects in the brains of prenatally exposed mice are represented. Namely, persistent structural damage, and, fluctuating responses during the histochemical and biochemical brain maturation. Structural effects following X-ray exposure are quantified on the basis of data for diameter diminution of the cortical plate, corpus callosum and fimbria hippocampi. The studies include computerized micro-videoanalysis of neuronal branching defects. Continuous extension of exposure levels to doses as low as 0.05 Gy give evidence for the existence of thresholds for these types of structural damage in the vicinity of exposures to 0.1 Gy. The effects following X-ray exposures are partly compared with corresponding effects after neutron exposures. Our studies on postnatal maturation disturbances include proliferative responses, myelin formation, as well as the determination of different biochemical parameters (ATP, myelin-proteins, Na + /K + -balance). From our experimental findings we are able to stress the special significance of neurogenetical long-term effects for risk estimates in man. (orig.)

  7. Brain plasticity of rats exposed to prenatal immobilization stress

    Directory of Open Access Journals (Sweden)

    Badalyan B. Yu.

    2011-10-01

    Full Text Available Aim. This histochemical and immunohistochemical study was aimed at examining the brain cellular structures of newborn rats exposed to prenatal immobilization (IMO stress. Methods. Histochemical method on detection of Ca2+-dependent acid phosphatase activity and ABC immunohistochemical technique. Results. Cell structures with radial astrocytes marker GFAP, neuroepithelial stem cell marker gene nestin, stem-cells marker and the hypothalamic neuroprotective proline-rich polypeptide PRP-1 (Galarmin, a natural cytokine of a common precursor to neurophysin vasopressin associated glycoprotein have been revealed in several brain regions. Conclusions. Our findings indicate the process of generation of new neurons in response to IMO and PRP-1 involvement in this recovery mechanism, as PRP-1-Ir was detected in the above mentioned cell structures, as well as in the neurons and nerve fibers.

  8. In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice

    Directory of Open Access Journals (Sweden)

    Odagiri Takashi

    2010-03-01

    Full Text Available Abstract Background Epidemiological studies have suggested that suspended particulate matter (SPM causes detrimental health effects such as respiratory and cardiovascular diseases, and that diesel exhaust particles from automobiles is a major contributor to SPM. It has been reported that neonatal and adult exposure to diesel exhaust damages the central nervous system (CNS and induces behavioral alteration. Recently, we have focused on the effects of prenatal exposure to diesel exhaust on the CNS. In this study, we examined the effects of prenatal exposure to low concentration of diesel exhaust on behaviour and the monoaminergic neuron system. Spontaneous locomotor activity (SLA and monoamine levels in the CNS were assessed. Methods Mice were exposed prenatally to a low concentration of diesel exhaust (171 μg DEP/m3 for 8 hours/day on gestational days 2-16. SLA was assessed for 3 days in 4-week-old mice by analysis of the release of temperature-associated infrared rays. At 5 weeks of age, the mice were sacrificed and the brains were used for analysis by high-performance liquid chromatography (HPLC. Results and Discussion Mice exposed to a low concentration of diesel exhaust showed decreased SLA in the first 60 minutes of exposure. Over the entire test period, the mice exposed prenatally to diesel exhaust showed decreased daily SLA compared to that in control mice, and the SLA in each 3 hour period was decreased when the lights were turned on. Neurotransmitter levels, including dopamine and noradrenaline, were increased in the prefrontal cortex (PFC in the exposure group compared to the control group. The metabolites of dopamine and noradrenaline also increased in the PFC. Neurotransmitter turnover, an index of neuronal activity, of dopamine and noradrenaline was decreased in various regions of the CNS, including the striatum, in the exposure group. The serum corticosterone level was not different between groups. The data suggest that decreased

  9. [Cognitive impairments in persons exposed to radiation during the period of prenatal development].

    Science.gov (United States)

    Burtovaya, E Yu; Kantina, T E; Belova, M V; Akleyev, A V

    2015-01-01

    To assess the cognitive status in persons exposed to ionizing radiation in prenatal period. The study included in-utero exposed people (n = 77), and the comparison group (n = 73), which consisted of people who lived in the territories of the Chelyabinsk Oblast that were not radioactive. The following methods were used: clinical, clinical-psychological (Mini-Mental State Examination (MMSE), the WAIS test, the proverb interpretation task, neurophysiological (EEG) methods, laboratory-based methods (cholesterol, high and low-density lipoproteins, triglycerides, cortisol, melatonin), and methods of statistical data processing. The number of people with non-psychotic mental disorders with the prevalence of organic mental disorders (cognitive and asthenic) was significantly higher among in-utero exposed subjects. A neurophysiological study revealed more severe changes in the bioelectric brain activity with the presence of pathological and theta-rhythms in exposed persons. The clinical-psychological study revealed a significant decrease in the analytic/synthetic ability in exposed people and significantly lower level of the general and verbal IQ. These changes were accompanied by higher levels of cortisol and melatonin which led to the activation and tension of the adaptation mechanisms in in-utero exposed subjects.

  10. Prenatal Exposure to Carbon Black (Printex 90)

    DEFF Research Database (Denmark)

    Jackson, Petra; Vogel, Ulla; Wallin, Håkan

    2011-01-01

    Maternal pulmonary exposure to ultrafine particles during pregnancy may affect the health of the child. Developmental toxicity of carbon black (Printex 90) nanoparticles was evaluated in a mouse model. Time-mated mice were intratracheally instilled with Printex 90 dispersed in Millipore water on ...... on gestation days (GD) 7, 10, 15 and 18, with total doses of 11, 54 and 268 mu g Printex 90/animal. The female offspring prenatally exposed to 268 mu g Printex 90/animal displayed altered habituation pattern during the Open field test....

  11. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype.

    Science.gov (United States)

    Reis-Silva, Thiago M; Cohn, Daniel W H; Sandini, Thaísa M; Udo, Mariana S B; Teodorov, Elizabeth; Bernardi, Maria Martha

    2016-03-15

    The objective of the present study was to investigate whether prenatal lipopolysaccharide (LPS) administration modifies the expression of depressive and non-depressive-like behavior in male and female mice across two generations. The sexual dimorphism of these mice was also examined in the open-field test. Male and female mice of the parental (F0) generation were selected for depressive- or non-depressive-like behavioral profiles using the tail suspension test (TST). Animals with similar profiles were matched for further mating. On gestation day (GD) 15, pregnant F0 mice received LPS (100μg/kg, i.p.) and were allowed to nurture their offspring freely. Adult male and female of the F1 generation were then selected according to behavioral profiles and observed in the open field. Male and female mice of the two behavioral profiles were then mated to obtain the F2 generation. Adults from the F2 generation were also behaviorally phenotyped, and open field behavior was assessed. Male mice that were selected for depressive- and non-depressive-like behaviors and treated or not with LPS in the parental generation exhibited similar proportions of behavioral profiles in both filial lines, but LPS exposure increased the number of depressive-like behavior. An effect of gender was observed in the F1 and F2 generations, in which male mice were more sensitive to the intergenerational effects of LPS in the TST. These data indicate that prenatal LPS exposure on GD15 in the F0 generation influenced the transmission of depressive- and non-depressive-like behavior across filial lines, with sexual dimorphism between phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Prenatal Immune Challenge in Mice Leads to Partly Sex-Dependent Behavioral, Microglial, and Molecular Abnormalities Associated with Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chin W. Hui

    2018-02-01

    Full Text Available Epidemiological studies revealed that environmental factors comprising prenatal infection are strongly linked to risk for later development of neuropsychiatric disorders such as schizophrenia. Considering strong sex differences in schizophrenia and its increased prevalence in males, we designed a methodological approach to investigate possible sex differences in pathophysiological mechanisms. Prenatal immune challenge was modeled by systemic administration of the viral mimic polyinosinic-polycytidylic acid (Poly I:C to C57BL/6 mice at embryonic day 9.5. The consequences on behavior, gene expression, and microglia—brain immune cells that are critical for normal development—were characterized in male vs. female offspring at adulthood. The cerebral cortex, hippocampus, and cerebellum, regions where structural and functional alterations were mainly described in schizophrenia patients, were selected for cellular and molecular analyses. Confocal and electron microscopy revealed most pronounced differences in microglial distribution, arborization, cellular stress, and synaptic interactions in the hippocampus of male vs. female offspring exposed to Poly I:C. Sex differences in microglia were also measured under both steady-state and Poly I:C conditions. These microglial alterations were accompanied by behavioral impairment, affecting for instance sensorimotor gating, in males. Consistent with these results, increased expression of genes related to inflammation was measured in cerebral cortex and hippocampus of males challenged with Poly I:C. Overall, these findings suggest that schizophrenia's higher incidence in males might be associated, among other mechanisms, with an increased microglial reactivity to prenatal immune challenges, hence determining disease outcomes into adulthood.

  13. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  14. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  15. Maternal Active Mastication during Prenatal Stress Ameliorates Prenatal Stress-Induced Lower Bone Mass in Adult Mouse Offspring.

    Science.gov (United States)

    Azuma, Kagaku; Ogura, Minori; Kondo, Hiroko; Suzuki, Ayumi; Hayashi, Sakurako; Iinuma, Mitsuo; Onozuka, Minoru; Kubo, Kin-Ya

    2017-01-01

    Chronic psychological stress is a risk factor for osteoporosis. Maternal active mastication during prenatal stress attenuates stress response. The aim of this study is to test the hypothesis that maternal active mastication influences the effect of prenatal stress on bone mass and bone microstructure in adult offspring. Pregnant ddY mice were randomly divided into control, stress, and stress/chewing groups. Mice in the stress and stress/chewing groups were placed in a ventilated restraint tube for 45 minutes, 3 times a day, and was initiated on day 12 of gestation and continued until delivery. Mice in the stress/chewing group were allowed to chew a wooden stick during the restraint stress period. The bone response of 5-month-old male offspring was evaluated using quantitative micro-CT, bone histomorphometry, and biochemical markers. Prenatal stress resulted in significant decrease of trabecular bone mass in both vertebra and distal femur of the offspring. Maternal active mastication during prenatal stress attenuated the reduced bone formation and increased bone resorption, improved the lower trabecular bone volume and bone microstructural deterioration induced by prenatal stress in the offspring. These findings indicate that maternal active mastication during prenatal stress can ameliorate prenatal stress-induced lower bone mass of the vertebra and femur in adult offspring. Active mastication during prenatal stress in dams could be an effective coping strategy to prevent lower bone mass in their offspring.

  16. Brain anomalies induced by gamma irradiation in prenatal period

    International Nuclear Information System (INIS)

    Schmidt, S.L.

    1992-01-01

    Gamma irradiation has been utilized in order to produce cortical and callosal abnormalities. We have also checked for the presence of the aberrant longitudinal bundle in the brains of mice born acallosal due to prenatal irradiation is also checked. Pregnant mice were exposed to gamma irradiation from a 6 0 Co source at 16, 17 and 19 days of gestational age (E 16, E 17 and E 19) with total doses of 2 Gy and 3 Gy. At 60 days postnatal the offspring of irradiated animals were intra cardiac perfused, the brains were removed from the cranio and cut into coronal or para sagittal sections. (author)

  17. Growth and development of children prenatally exposed to telbivudine administered for the treatment of chronic hepatitis B in their mothers.

    Science.gov (United States)

    Zeng, Huihui; Cai, Haodong; Wang, Ying; Shen, Ying

    2015-04-01

    We studied the growth and development of children prenatally exposed to telbivudine used to treat chronic hepatitis B virus (HBV) infection in their mothers. Maternal abnormalities during pregnancy and delivery and infant congenital anomalies, physical development status, developmental quotient (DQ), HBV vertical transmission status, and HBV vaccination outcomes of 54 infants were evaluated (2010-2013). No fetal abnormalities were observed during pregnancy or delivery. Postpartum, three infants (5.56%) had abnormalities: ankyloglossia, cutaneous hemangioma, and vaginal canal leak. Height and weight were within the normal range at birth and at 6 weeks, but were higher than the reference at 12 months (pchildren (68.52%), abnormal or suspicious for a developmental delay (15.19%, 41/270) in 17 children (31.48%), and indicated a developmental delay (4.07%, 11/270) in seven children (12.96%). There were no significant differences in developmental delay between children prenatally exposed to telbivudine and controls (p>0.05). HBV vertical transmission was successfully blocked in all infants. The effective HBV vaccination rate was 98.15% (53/54). The growth and development of children prenatally exposed to telbivudine was normal, indicating that telbivudine treatment during pregnancy is safe and effective. Copyright © 2015. Published by Elsevier Ltd.

  18. Genetic effects in children exposed in prenatal period to ionizing radiation after the Chornobyl nuclear power plant accident.

    Science.gov (United States)

    Stepanova, Ye I; Vdovenko, V Yu; Misharina, Zh A; Kolos, V I; Mischenko, L P

    2016-12-01

    To study the genetic effects in children exposed to radiation in utero as a result of the Chornobyl nuclear power plant accident accounting the total radiation doses and equivalent radiation doses to the red bone marrow. Incidence of minor developmental anomalies was studied in children exposed to radiation in utero (study group) and in the control group (1144 subjects surveyed in total). Cytogenetic tests using the method of differential G-banding of chromosomes were conducted in 60 children of both study and control groups (10-12-year-olds) and repeatedly in 39 adolescents (15-17-year-olds). A direct correlation was found between the number of minor developmental anomalies and fetal dose of radiation, and a reverse one with fetal gestational age at the time of radiation exposure. Incidence of chromosomal damage in somatic cells of 10-12-year-old children exposed prenatally was associated with radiation dose to the red bone marrow. The repeated testing has revealed that an increased level of chromosomal aberrations was preserved in a third of adolescents. The persons exposed to ionizing radiation at prenatal period should be attributed to the group of carcinogenic risk due to persisting increased levels of chromosome damage. This article is a part of a Special Issue entitled "The Chornobyl Nuclear Accident: Thirty Years After".

  19. The effects of in vitro exposure to white spirit on [Ca2+] in synaptosomes from rats exposed prenatally to white spirit

    DEFF Research Database (Denmark)

    Edelfors, S.; Hass, Ulla; Ravn-Jonsen, A.

    1999-01-01

    Female rats were exposed to white spirit (400 and 800 ppm for 6 hr/day) at day 7-20 during pregnancy. Thirty-five days after birth all female offspring were sacrificed, the brains removed, and the synaptosomal fractions prepared for in vitro studies. The cytosolic calcium concentration was measured...... using the FURA-2 technique. The results show that cytosolic calcium was increased in synaptosomes from rats exposed to white spirit prenatally compared to synaptosomes from unexposed rats. When synaptosomes were exposed to white spirit in vitro, the cytosolic calcium concentration changes were identical...... in all groups of rats. The membrane leakage measured as FURA-2 leakage from the synaptosomes identical in all three groups of animals. The results suggest that prenatal exposure to white spirit induces long-lasting and possibly irreversible changes in calcium homeostasis in the rat nervous system....

  20. Dental health of young children prenatally exposed to buprenorphine. A concern of child neglect?

    Science.gov (United States)

    Kivistö, K; Alapulli, H; Tupola, S; Alaluusua, S; Kivitie-Kallio, S

    2014-06-01

    To study the oral health and dental neglect of prenatally buprenorphine-exposed 3-year-old children. The study consisted of 51 children who as newborns tested positive for buprenorphine in a urine screen. The control group comprised 68 children previously unexposed to narcotics. The dentist examined the children and interviewed their guardians. Buprenorphine-exposed children exhibited significantly more early childhood caries than did the control group. Caries indices, the number of decayed, missing and filled teeth or tooth surfaces and decayed teeth were greater in the buprenorphine-exposed children than the control children (p = 0.004, p = 0.004, p = 0.001, respectively). In the buprenorphine group, more children showed visible plaque (p = 0.003) and fewer children were caries-free (p = 0.009) than in the control group. The control children's teeth were also brushed more often than the buprenorphine-exposed children's teeth (p = 0.001) and the parents were more involved in their children's tooth brushing than were those in the buprenorphine-exposed group (p = 0.035). More caries and dental neglect were found in buprenorphine-exposed children than in controls. These findings highlight the importance of routine dental appointments, caries screening and preventive care for children in substance-abusing families.

  1. Children prenatally exposed to maternal anxiety devote more attentional resources to neutral pictures.

    Science.gov (United States)

    van den Heuvel, Marion I; Henrichs, Jens; Donkers, Franc C L; Van den Bergh, Bea R H

    2017-10-22

    Maternal anxiety during pregnancy can negatively affect fetal neurodevelopment, predisposing the offspring to a higher risk of behavioral and emotional problems later in life. The current study investigates the association between maternal anxiety during pregnancy and child affective picture processing using event-related brain potentials (ERPs). Mothers reported anxiety during the second trimester using the anxiety subscale of the Symptom Checklist (SCL-90). At age 4 years, child affective picture processing (N = 86) was measured by recording ERPs during viewing of neutral, pleasant, and unpleasant pictures selected from the International Affective Pictures System. The late positive potential (LPP)-an ERP component reflecting individual differences in affective processing-was used as child outcome. The expected positive association between maternal anxiety and LPP amplitude for unpleasant pictures was not found. Nevertheless, we found a positive association between maternal anxiety during pregnancy and LPP amplitudes for neutral pictures in the middle and late time window at anterior locations (all p anxiety and gestational age at birth and after FDR correction for multiple comparisons. Our study provides neurophysiological evidence that children prenatally exposed to higher maternal anxiety devote more attentional resources to neutral pictures, but not to unpleasant pictures. Possibly, these children show enhanced vigilance for threat when viewing neutral pictures. Although useful in dangerous environments, this enhanced vigilance may predispose children prenatally exposed to higher maternal anxiety to developing behavioral and/or emotional problems later in life. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=kEzYi6IS2HA. © 2017 John Wiley & Sons Ltd.

  2. Threshold dose to developing central nerve system of rats and mice from prenatal exposure to tritiated water

    International Nuclear Information System (INIS)

    Zhou Xiangyan; Wang Bing; Gao Weimin; Lu Huimin

    1999-01-01

    Objective: To study the threshold dose to the developing central nerve system of rats and mice from prenatal exposure to tritiated water. methods: Pregnant adult C 57 BL/6J strain mice and Wistar strain rats were irradiated with beta-rays from HTO by a single intraperitoneal injection on the 12.5 th and 13 th days of gestation. The activities of HTO were 24.09, 48.18 and 144.54 ( x 10 4 Bq/g bw), respectively. Fifty-six parameters including postnatal growth, neutro-behavior, pathology of brain, neuropeptide contents, changes of hippocampal neurons, Ca 2+ conductance of hippocampal neurons etc were used to test the teratogenic threshold dose the lowest dose was different from that of the control). Results: Of the observed 56 parameters of rats and mice 80.4% indicated that the threshold doses for prenatal HTO exposure ranged from 0.030 Gy to 0.092 Gy, and the other 19.6% showed the threshold doses from 0.093 to 0.300 Gy. Conclusions: There exists threshold dose from the low level tritiated water irradiation of the developing central nerve system

  3. Neurobehavioral Deficits and Increased Blood Pressure in School-Age Children Prenatally Exposed to Pesticides

    Science.gov (United States)

    Harari, Raul; Julvez, Jordi; Murata, Katsuyuki; Barr, Dana; Bellinger, David C.; Debes, Frodi; Grandjean, Philippe

    2010-01-01

    Background The long-term neurotoxicity risks caused by prenatal exposures to pesticides are unclear, but a previous pilot study of Ecuadorian school children suggested that blood pressure and visuospatial processing may be vulnerable. Objectives In northern Ecuador, where floriculture is intensive and relies on female employment, we carried out an intensive cross-sectional study to assess children’s neurobehavioral functions at 6–8 years of age. Methods We examined all 87 children attending two grades in the local public school with an expanded battery of neurobehavioral tests. Information on pesticide exposure during the index pregnancy was obtained from maternal interview. The children’s current pesticide exposure was assessed from the urinary excretion of organophosphate metabolites and erythrocyte acetylcholine esterase activity. Results Of 84 eligible participants, 35 were exposed to pesticides during pregnancy via maternal occupational exposure, and 23 had indirect exposure from paternal work. Twenty-two children had detectable current exposure irrespective of their prenatal exposure status. Only children with prenatal exposure from maternal greenhouse work showed consistent deficits after covariate adjustment, which included stunting and socioeconomic variables. Exposure-related deficits were the strongest for motor speed (Finger Tapping Task), motor coordination (Santa Ana Form Board), visuospatial performance (Stanford-Binet Copying Test), and visual memory (Stanford-Binet Copying Recall Test). These associations corresponded to a developmental delay of 1.5–2 years. Prenatal pesticide exposure was also significantly associated with an average increase of 3.6 mmHg in systolic blood pressure and a slight decrease in body mass index of 1.1 kg/m2. Inclusion of the pilot data strengthened these results. Conclusions These findings support the notion that prenatal exposure to pesticides—at levels not producing adverse health outcomes in the mother

  4. Prenatal Exposure to Tributyltin Decreases GluR2 Expression in the Mouse Brain.

    Science.gov (United States)

    Ishida, Keishi; Saiki, Takashi; Umeda, Kanae; Miyara, Masatsugu; Sanoh, Seigo; Ohta, Shigeru; Kotake, Yaichiro

    2017-01-01

    Tributyltin (TBT), a common environmental contaminant, is widely used as an antifouling agent in paint. We previously reported that exposure of primary cortical neurons to TBT in vitro decreased the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit glutamate receptor 2 (GluR2) expression and subsequently increased neuronal vulnerability to glutamate. Therefore, to identify whether GluR2 expression also decreases after TBT exposure in vivo, we evaluated the changes in GluR2 expression in the mouse brain after prenatal or postnatal exposure to 10 and 25 ppm TBT through pellet diets. Although the mean feed intake and body weight did not decrease in TBT-exposed mice compared with that in control mice, GluR2 expression in the cerebral cortex and hippocampus decreased after TBT exposure during the prenatal period. These results indicate that a decrease in neuronal GluR2 may be involved in TBT-induced neurotoxicity, especially during the fetal period.

  5. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    International Nuclear Information System (INIS)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T.

    2007-01-01

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process

  6. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  7. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Grabrucker

    2018-01-01

    Full Text Available A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1 in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.

  8. Dopamine and serotonin levels following prenatal viral infection in mouse--implications for psychiatric disorders such as schizophrenia and autism.

    Science.gov (United States)

    Winter, Christine; Reutiman, Teri J; Folsom, Timothy D; Sohr, Reinhard; Wolf, Rainer J; Juckel, Georg; Fatemi, S Hossein

    2008-10-01

    Prenatal viral infection has been associated with neurodevelopmental disorders such as schizophrenia and autism. It has previously been demonstrated that viral infection causes deleterious effects on brain structure and function in mouse offspring following late first trimester (E9) and middle-late second trimester (E18) administration of influenza virus. Neurochemical analysis following infection on E18 using this model has revealed significantly altered levels of serotonin, 5-hydroxyindoleacetic acid, and taurine, but not dopamine. In order to monitor these different patterns of monoamine expression in exposed offspring in more detail and to see if there are changes in the dopamine system at another time point, pregnant C57BL6J mice were infected with a sublethal dose of human influenza virus or sham-infected using vehicle solution on E16. Male offspring of the infected mice were collected at P0, P14, and P56, their brains removed and cerebellum dissected and flash frozen. Dopamine and serotonin levels were then measured using HPLC-ED technique. When compared to controls, there was a significant decrease in serotonin levels in the cerebella of offspring of virally exposed mice at P14. No differences in levels of dopamine were observed in exposed and control mice, although there was a significant decrease in dopamine at P14 and P56 when compared to P0. The present study shows that the serotonergic system is disrupted following prenatal viral infection, potentially modelling disruptions that occur in patients with schizophrenia and autism.

  9. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice.

    Science.gov (United States)

    Balsevich, Georgia; Baumann, Valentin; Uribe, Andres; Chen, Alon; Schmidt, Mathias V

    2016-01-01

    There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. We used a mouse model of maternal diet-induced obesity to investigate whether maternal obesity affects the response to adult chronic stress exposure in young adult (3-month-old) and aged adult (12-month-old) offspring. Long-lasting, delayed impairments to anxiety-like behaviors and stress coping strategies resulted on account of prenatal exposure to maternal obesity. Although maternal obesity did not change the offspring's behavioral response to chronic stress per se, we demonstrate that the behavioral outcomes induced by prenatal exposure to maternal obesity parallel the deleterious effects of adult chronic stress exposure in aged male mice. We found that the glucocorticoid receptor (GR, Nr3c1) is upregulated in various hypothalamic nuclei on account of maternal obesity. In addition, gene expression of a known regulator of the GR, FKBP51, is increased specifically within the paraventricular nucleus. These findings indicate that maternal obesity parallels the deleterious effects of adult chronic stress exposure, and furthermore identifies GR/FKBP51 signaling as a novel candidate pathway regulated by maternal obesity. © 2015 S. Karger AG, Basel.

  10. Immunomodulatory effects of maternal atrazine exposure on male Balb/c mice

    International Nuclear Information System (INIS)

    Rowe, Alexander M.; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B.

    2006-01-01

    Atrazine is a widely used herbicide applied to corn, sugar and other crops as a broad leaf weed inhibitor. Using the Balb/c mouse model, we have determined that prenatal/lactational exposure to atrazine alters adult immune function. Pregnant Balb/c dams were exposed subcutaneously for 21 days via time release pellets to 700 μg per day of atrazine beginning between days 10 and 12 of pregnancy. Prenatal/Lactational exposure caused no overt physical malformations in the offspring and had no effect on the number of litters carried to term or the litter size. Upon reaching early adulthood (approximately 3 months of age), the state of their immune system was evaluated. There were no changes in body weight or in the organ to body weight ratio of the spleen. Additionally, no changes were observed in the number of CD8 + T cell, CD4 + T cell, or B220 + B cell subpopulations in the spleen. T cell function was assessed by measuring proliferation and cytolytic activity after in vitro allogeneic stimulation. Male mice which had been prenatally/lactationally exposed to atrazine had an increase in both T cell proliferation and cytolytic activity. The humoral immune response was assessed after immunization with heat killed Streptococcus pneumoniae (HKSP). There was a significant increase in the number of HKSP-specific IgM secreting B cells in the spleen of prenatal/lactational exposed male mice. Inasmuch as atrazine is a widespread environmental contaminant, this immunopotentiation raises concerns that it may potentiate clinical diseases, such as autoimmune disease and hypersensitivity, and needs to be carefully monitored and studied

  11. Methylomic changes in individuals with psychosis, prenatally exposed to endocrine disrupting compounds: Lessons from diethylstilbestrol.

    Directory of Open Access Journals (Sweden)

    Fabrice Rivollier

    Full Text Available In the Western world, between 1940 and 1970, more than 2 million people were exposed in utero to diethylstilbestrol (DES. In exposed individuals, and in their descendants, adverse outcomes have been linked to such exposure, including cancers, genital malformations, and less consistently, psychiatric disorders. We aimed to explore whether prenatal DES exposure would be associated with DNA methylation changes, and whether these epigenetic modifications would be associated with increased risk of psychosis.From 247 individuals born from mothers exposed to DES, we selected 69 siblings from 30 families. In each family, at least one sibling was exposed in utero to DES. We performed a methylome-wide association study using HumanMethylation450 DNA Analysis BeadChip® in peripheral blood. We analyzed methylation changes at individual CpGs or regions in exposed (n = 37 versus unexposed individuals (n = 32. We also compared exposed individuals with (n = 7 and without psychosis (n = 30.There were more individuals with schizophrenia in the DES-exposed group. We found no significant differences between exposed and unexposed individuals with respect to differentially methylated CpGs or regions. The largest difference was in a region near the promoter of an ADAMTS proteoglycanase gene (ADAMTS9. Compared to exposed individuals without psychosis, exposed individuals with psychosis had differential methylation in the region encompassing the gene encoding the zinc finger protein 57 (ZFP57.In utero exposure to DES was not associated with methylation changes at specific CpG or regions. In exposed individuals, however, psychosis was associated with specific methylomic modifications that could impact neurodevelopment and neuroplasticity.

  12. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Åsa, E-mail: asa.gustafsson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bergström, Ulrika [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Organismal Biology, Uppsala University, SE-751 Uppsala (Sweden); Ågren, Lina [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Österlund, Lars [Dept of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 Uppsala (Sweden); Sandström, Thomas [Dept of Public Health and Clinical Medicine, Umeå University (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Dept of Public Health and Clinical Medicine, Umeå University (Sweden)

    2015-10-01

    The aim of this study was to investigate the inflammatory and immunological responses in airways and lung-draining lymph nodes (LDLNs), following lung exposure to iron oxide (hematite) nanoparticles (NPs). The responses to the hematite NPs were evaluated in both healthy non-sensitized mice, and in sensitized mice with an established allergic airway disease. The mice were exposed intratracheally to either hematite NPs or to vehicle (PBS) and the cellular responses were evaluated on days 1, 2, and 7, post-exposure. Exposure to hematite NPs increased the numbers of neutrophils, eosinophils, and lymphocytes in the airways of non-sensitized mice on days 1 and 2 post-exposure; at these time points the number of lymphocytes was also elevated in the LDLNs. In contrast, exposing sensitized mice to hematite NPs induced a rapid and unspecific cellular reduction in the alveolar space on day 1 post-exposure; a similar decrease of lymphocytes was also observed in the LDLN. The results indicate that cells in the airways and in the LDLN of individuals with established airway inflammation undergo cell death when exposed to hematite NPs. A possible explanation for this toxic response is the extensive generation of reactive oxygen species (ROS) in the pro-oxidative environment of inflamed airways. This study demonstrates how sensitized and non-sensitized mice respond differently to hematite NP exposure, and it highlights the importance of including individuals with respiratory disorders when evaluating health effects of inhaled nanomaterials. - Highlights: • Hematite NPs induce differential responses in airways of healthy and allergic mice. • Hematite induced an airway inflammation in healthy mice. • Hematite induced cellular reduction in the alveolus and lymph nodes of allergic mice. • Cell death is possible due to extensive pro-oxidative environment in allergic mice. • It is important to include sensitive individuals when valuing health effects of NPs.

  13. Later Life Changes in Hippocampal Neurogenesis and Behavioral Functions After Low-Dose Prenatal Irradiation at Early Organogenesis Stage

    International Nuclear Information System (INIS)

    Ganapathi, Ramya; Manda, Kailash

    2017-01-01

    Purpose: To investigate long-term changes in behavioral functions of mice after exposure to low-dose prenatal radiation at an early organogenesis stage. Methods and Materials: Pregnant C57BL/6J mice were irradiated (20 cGy) at postcoitus day 5.5. The male and female offspring were subjected to different behavioral assays for affective, motor, and cognitive functions at 3, 6, and 12 months of age. Behavioral functions were further correlated with the population of CA1 and CA3 pyramidal neurons and immature neurons in hippocampal dentate gyrus. Results: Prenatally exposed mice of different age groups showed a sex-specific pattern of sustained changes in behavioral functions. Male mice showed significant changes in anxiety-like phenotypes, learning, and long-term memory at age 3 months. At 6 months of age such behavioral functions were recovered to a normal level but could not be sustained at age 12 months. Female mice showed an appreciable recovery in almost all behavioral functions at 12 months. Patterns of change in learning and long-term memory were comparable to the population of CA1 and CA3 pyramidal neurons and doublecortin-positive neurons in hippocampus. Conclusion: Our finding suggests that prenatal (early organogenesis stage) irradiation even at a lower dose level (20 cGy) is sufficient to cause potential changes in neurobehavioral function at later stages of life. Male mice showed relatively higher vulnerability to radiation-induced neurobehavioral changes as compared with female.

  14. Later Life Changes in Hippocampal Neurogenesis and Behavioral Functions After Low-Dose Prenatal Irradiation at Early Organogenesis Stage

    Energy Technology Data Exchange (ETDEWEB)

    Ganapathi, Ramya; Manda, Kailash, E-mail: kailashmanda@gmail.com

    2017-05-01

    Purpose: To investigate long-term changes in behavioral functions of mice after exposure to low-dose prenatal radiation at an early organogenesis stage. Methods and Materials: Pregnant C57BL/6J mice were irradiated (20 cGy) at postcoitus day 5.5. The male and female offspring were subjected to different behavioral assays for affective, motor, and cognitive functions at 3, 6, and 12 months of age. Behavioral functions were further correlated with the population of CA1 and CA3 pyramidal neurons and immature neurons in hippocampal dentate gyrus. Results: Prenatally exposed mice of different age groups showed a sex-specific pattern of sustained changes in behavioral functions. Male mice showed significant changes in anxiety-like phenotypes, learning, and long-term memory at age 3 months. At 6 months of age such behavioral functions were recovered to a normal level but could not be sustained at age 12 months. Female mice showed an appreciable recovery in almost all behavioral functions at 12 months. Patterns of change in learning and long-term memory were comparable to the population of CA1 and CA3 pyramidal neurons and doublecortin-positive neurons in hippocampus. Conclusion: Our finding suggests that prenatal (early organogenesis stage) irradiation even at a lower dose level (20 cGy) is sufficient to cause potential changes in neurobehavioral function at later stages of life. Male mice showed relatively higher vulnerability to radiation-induced neurobehavioral changes as compared with female.

  15. Follow-up study on histogenesis of microcephaly associated with ectopic gray matter induced by prenatal γ-irradiation in the mouse

    International Nuclear Information System (INIS)

    Sun, Xue-Zhi; Inouye, Monoru; Takagishi, Yoshiko

    1996-01-01

    Brain malformation with ectopic gray matter was visualized with magnetic resonance imaging in small-sized heads of prenatally exposed atomic bomb survivors. The identical brain malformation was reproduced in mice and its histogenesis was studied in the present experiment. Pregnant mice were exposed to 60 Co γ-irradiation at a single dose of 1.5 Gy on embryonic day 13 (E13), and then injected intraperitoneally with 30 mg/kg BrdU on E15. The extensive dead cells appeared throughout the brain mantle at 6 hours (h) after exposure. On E16 cell aggregations formed rosettes. On E18 a high proportion of BrdU-labeled cells reached the superficial layers of the cortical plate with the remaining cells located in the ectopic neuronal masses. The quantitative study showed that labeled cells in layers II to III were fewer and those in layers IV to VI more numerous in the prenatally irradiated adult mice than in controls. The anti-GFAP immunostaining revealed that the glial fibers in the irradiated mice were preserved, but disorganized. These findings suggested that the majority of migrating neurons were able to arrive at their normal layers, but some neurons remained due to the interrupted migratory pathway and eventually formed ectopic neuronal masses beneath the subcortical white matter. 60 refs., 5 figs., 1 tab

  16. Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica.

    Science.gov (United States)

    Zelko, Igor N; Zhu, Jianxin; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-11-28

    Occupational and environmental exposure to crystalline silica may lead to the development of silicosis, which is characterized by inflammation and progressive fibrosis. A substantial number of patients diagnosed with silicosis develop pulmonary hypertension. Pulmonary hypertension associated with silicosis and with related restrictive lung diseases significantly reduces survival in affected subjects. An animal model of silicosis has been described previously however, the magnitude of vascular remodeling and hemodynamic effects of inhaled silica are largely unknown. Considering the importance of such information, this study investigated whether mice exposed to silica develop pulmonary hypertension and vascular remodeling. C57BL6 mice were intratracheally injected with either saline or crystalline silica at doses 0.2 g/kg, 0.3 g/kg and 0.4 g/kg and then studied at day 28 post-exposure. Pulmonary hypertension was characterized by changes in right ventricular systolic pressure and lung histopathology. Mice exposed to saline showed normal lung histology and hemodynamic parameters while mice exposed to silica showed increased right ventricular systolic pressure and marked lung pathology characterized by a granulomatous inflammatory reaction and increased collagen deposition. Silica-exposed mice also showed signs of vascular remodeling with pulmonary artery muscularization, vascular occlusion, and medial thickening. The expression of pro-inflammatory genes such as TNF-α and MCP-1 was significantly upregulated as well as the expression of the pro-remodeling genes collagen type I, fibronectin and the metalloproteinases MMP-2 and TIMP-1. On the other hand, the expression of several vasculature specific genes involved in the regulation of endothelial function was significantly attenuated. We characterized a new animal model of pulmonary hypertension secondary to pulmonary fibrosis induced by crystalline silica. Our data suggest that silica promotes the damage of the

  17. Genetic Analysis of Mice Skin Exposed by Hyper-Gravity

    Science.gov (United States)

    Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki

    2013-02-01

    In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate

  18. Brain biochemistry of infant mice and rats exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Berber, G.B.; Maes, J.; Gilliavod, N.; Casale, G.

    1978-05-01

    Brains of rats and mice exposed to lead from birth receive biochemical examinations. Mice are given drinking water with lead and are studied until they are 17 days old. Rats ae given lead in the diet and followed for more than a year. In mice a retardation in body growth and development in brain DNA is found. In rats, cathepsin is enhanced at almost all times. An important role of proteolytic processes and biogenic animes is suggested in lead encephalopathy. (33 references, 7 tables)

  19. Apocynin and ebselen reduce influenza A virus-induced lung inflammation in cigarette smoke-exposed mice.

    Science.gov (United States)

    Oostwoud, L C; Gunasinghe, P; Seow, H J; Ye, J M; Selemidis, S; Bozinovski, S; Vlahos, R

    2016-02-15

    Influenza A virus (IAV) infections are a common cause of acute exacerbations of chronic obstructive pulmonary disease (AECOPD). Oxidative stress is increased in COPD, IAV-induced lung inflammation and AECOPD. Therefore, we investigated whether targeting oxidative stress with the Nox2 oxidase inhibitors and ROS scavengers, apocynin and ebselen could ameliorate lung inflammation in a mouse model of AECOPD. Male BALB/c mice were exposed to cigarette smoke (CS) generated from 9 cigarettes per day for 4 days. On day 5, mice were infected with 1 × 10(4.5) PFUs of the IAV Mem71 (H3N1). BALF inflammation, viral titers, superoxide production and whole lung cytokine, chemokine and protease mRNA expression were assessed 3 and 7 days post infection. IAV infection resulted in a greater increase in BALF inflammation in mice that had been exposed to CS compared to non-smoking mice. This increase in BALF inflammation in CS-exposed mice caused by IAV infection was associated with elevated gene expression of pro-inflammatory cytokines, chemokines and proteases, compared to CS alone mice. Apocynin and ebselen significantly reduced the exacerbated BALF inflammation and pro-inflammatory cytokine, chemokine and protease expression caused by IAV infection in CS mice. Targeting oxidative stress using apocynin and ebselen reduces IAV-induced lung inflammation in CS-exposed mice and may be therapeutically exploited to alleviate AECOPD.

  20. Prenatal treatment prevents learning deficit in Down syndrome model.

    Science.gov (United States)

    Incerti, Maddalena; Horowitz, Kari; Roberson, Robin; Abebe, Daniel; Toso, Laura; Caballero, Madeline; Spong, Catherine Y

    2012-01-01

    Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8-10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, PDown syndrome-placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome-placebo (ptreatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.

  1. A mouse model of prenatal ethanol exposure using a voluntary drinking paradigm.

    Science.gov (United States)

    Allan, Andrea M; Chynoweth, Julie; Tyler, Lani A; Caldwell, Kevin K

    2003-12-01

    The incidence of fetal alcohol spectrum disorders is estimated to be as high as 1 in 100 births. Efforts to better understand the basis of prenatal ethanol-induced impairments in brain functioning, and the mechanisms by which ethanol produces these defects, will rely on the use of animal models of fetal alcohol exposure (FAE). Using a saccharin-sweetened alcohol solution, we developed a free-choice, moderate alcohol access model of prenatal alcohol exposure. Stable drinking of a saccharin solution (0.066%) was established in female mice. Ethanol then was added to the saccharin in increasing concentrations (2%, 5%, 10% w/v) every 2 days. Water was always available, and mice consumed standard pellet chow. Control mice drank saccharin solution without ethanol. After a stable baseline of ethanol consumption (14 g/kg/day) was obtained, females were impregnated. Ethanol consumption continued throughout pregnancy and then was decreased to 0% in a step-wise fashion over a period of 6 days after pups were delivered. Characterization of the model included measurements of maternal drinking patterns, blood alcohol levels, food consumption, litter size, pup weight, pup retrieval times for the dams, and effects of FAE on performance in fear-conditioned learning and novelty exploration. Maternal food consumption, maternal care, and litter size and number were all found to be similar for the alcohol-exposed and saccharin control animals. FAE did not alter locomotor activity in an open field but did increase the time spent inspecting a novel object introduced into the open field. FAE mice displayed reduced contextual fear when trained using a delay fear conditioning procedure. The mouse model should be a useful tool in testing hypotheses about the neural mechanisms underlying the learning deficits present in fetal alcohol spectrum disorders. Moreover, a mouse prenatal ethanol model should increase the opportunity to use the power of genetically defined and genetically altered mouse

  2. Influence of conditioned psychological stress on immunological recovery in mice exposed to low-dose x irradiation

    International Nuclear Information System (INIS)

    Sato, K.; Flood, J.F.; Makinodan, T.

    1984-01-01

    A study was initiated to determine the effects of psychological stress on the immune response in BALB/c mice recovering from exposure to a low dose of ionizing radiation. Mice were first subjected to conditioning training for 12 days, then exposed to 200 R, subjected to psychological stress for 14 days, and assessed for peak anti-sheep RBC response. The seven treatment groups included two unirradiated groups and five irradiated groups. Mice exposed to 200 R and then subjected to conditioned psychological stress responded less vigorously to antigenic stimulation than those of the other irradiated groups. The psychological stress imposed upon these mice did not influence the antibody-forming capacity of unirradiated mice. These results indicate that a psychological stress which did not affect the immunological activity of unirradiated mice can curtail the immunological recovery of mice exposed to low doses of ionizing radiation

  3. Effect of honey on the reproductive system of male rat offspring exposed to prenatal restraint stress.

    Science.gov (United States)

    Haron, M N; Mohamed, M

    2016-06-01

    Exposure to prenatal stress is associated with impaired reproductive function in male rat offspring. Honey is traditionally used by the Malays for enhancement of fertility. The aim of this study was to determine the effect of honey on reproductive system of male rat offspring exposed to prenatal restraint stress. Dams were divided into four groups (n = 10/group): control, honey, stress and honey + stress groups. Dams from honey and honey + stress groups received oral honey (1.2 g kg(-1) body weight) daily from day 1 of pregnancy, meanwhile dams from stress and honey + stress groups were subjected to restraint stress (three times per day) from day 11 of pregnancy until delivery. At 10 weeks old, each male rat offspring was mated with a regular oestrus cycle female. Male sexual behaviour and reproductive performance were evaluated. Then, male rats were euthanised for assessment on reproductive parameters. Honey supplementation during prenatal restraint stress significantly increased testis and epididymis weights as well as improved the percentages of abnormal spermatozoa and sperm motility in male rat offspring. In conclusion, this study might suggest that supplementation of honey during pregnancy seems to reduce the adverse effects of restraint stress on reproductive organs weight and sperm parameters in male rat offspring. © 2015 Blackwell Verlag GmbH.

  4. Experimental study of gene expression in lung and bronchus of radon-exposed mice

    International Nuclear Information System (INIS)

    Guo Zhiying; Tian Mei; Liu Jianxiang; Ruan Jianlei; Piao Chunnan; Su Xu

    2008-01-01

    Objective: To construct and identify differentially expressed cDNA library in lung and bronchus of mice exposed to radon. Methods: 2 week old, weighing (18-22)g, male BALB/c mice were placed in a SR-NIM02 radon chamber. One group of mice was exposed to radon, which was equivalent to the accumulative dose of 30 WLM. The control group was about 0.02 WLM. To construct a subtracted cDNA library enriched with differentially expressed genes, the Super SMART technique and the suppression subtractive hybridization (SSH) were performed. The obtained forward and reverse cDNA fragments were directly inserted into pGEM-T-easy vector and transformed into E. coli DH5α. The inserts in plasmid were amplified by nested polymerase chain reaction (PCR), and some of which were sequenced. In the end these sequences were BLASTed with GeneBank. Results: 146 of 460 clones obtained randomly were positive clones contained (1000-1500)bp inserted cDNA fragments. The forward and reverse subtracted cDNA library in lung and bronchus of mice exposed to radon was constructed, and 48 up-regulation and 61 down-regulation cDNA sequences selected were homologous with GeneBank in different extent. Conclusions: The subtracted cDNA library in lung and bronchus of mice exposed to radon is successfully constructed, and genes that differentially expressed are identified. Some genes might have relation with the immunity, cell cycle and apoptosis. (authors)

  5. Altered functional connectivity to stressful stimuli in prenatally cocaine-exposed adolescents.

    Science.gov (United States)

    Zakiniaeiz, Yasmin; Yip, Sarah W; Balodis, Iris M; Lacadie, Cheryl M; Scheinost, Dustin; Constable, R Todd; Mayes, Linda C; Sinha, Rajita; Potenza, Marc N

    2017-11-01

    Prenatal cocaine exposure (PCE) is linked to addiction and obesity vulnerability. Neural responses to stressful and appetitive cues in adolescents with PCE versus those without have been differentially linked to substance-use initiation. However, no prior studies have assessed cue-reactivity responses among PCE adolescents using a connectivity-based approach. Twenty-two PCE and 22 non-prenatally drug-exposed (NDE) age-, sex-, IQ- and BMI-matched adolescents participated in individualized guided imagery with appetitive (favorite-food), stressful and neutral-relaxing cue scripts during functional magnetic resonance imaging. Subjective favorite-food craving scores were collected before and after script exposure. A data-driven voxel-wise intrinsic connectivity distribution analysis was used to identify between-group differences and examine relationships with craving scores. A group-by-cue interaction effect identified a parietal lobe cluster where PCE versus NDE adolescents showed less connectivity during stressful and more connectivity during neutral-relaxing conditions. Follow-up seed-based connectivity analyses revealed that, among PCE adolescents, the parietal seed was positively connected to inferior parietal and sensory areas and negatively connected to corticolimbic during both stress and neutral-relaxing conditions. For NDE, greater parietal connectivity to parietal, cingulate and sensory areas and lesser parietal connectivity to medial prefrontal areas were found during stress compared to neutral-relaxing cueing. Craving scores inversely correlated with corticolimbic connectivity in PCE, but not NDE adolescents, during the favorite-food condition. Findings from this first data-driven intrinsic connectivity analysis of PCE influences on adolescent brain function indicate differences relating to PCE status and craving. These findings provide insight into the developmental impact of in utero drug exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sodium pertechnetate (Na99mTcO4) biodistribution in mice exposed to cigarette smoke

    International Nuclear Information System (INIS)

    Valenca, Samuel S; Lima, Elaine AC; Dire, Gláucio F; Bernardo-Filho, Mário; Porto, Luís Cristóvão

    2005-01-01

    The biological effects of cigarette smoke are not fully known. To improve our understanding of the action of various chemical agents, we investigated the biodistribution of sodium pertechnetate (Na 99m TcO 4 ) in mice exposed to cigarette smoke. Fifteen BALB/c male mice were exposed to the smoke of nine whole commercial cigarettes per day, 3 times/day, for up to 10 days to whole body exposure in a chamber. A control group of 5 BALB/c male mice was sham-smoked. One day later, the exposed and control groups of mice received (7.4 MBq/0.3 ml) of Na 99m TcO 4 before being killed at 30 min. Bones, brain, heart, intestine, kidney, liver, lungs, muscle, pancreas, spleen, stomach, testis and thyroid were weighed and these organs and blood radioactivity recorded with a gamma counter. The percentage per gram of tissue of injected dose (%ID/g) was determined for each organ. Cigarette smoke significantly decreased (p < 0.05) the %ID/g in red blood cells, bone, kidney, lung, spleen, stomach, testis and thyroid of the exposed mice. The toxic effects of cigarette smoke reduced the Na 99m TcO 4 biodistribution

  7. Deficits in spatial learning and memory in adult mice following acute, low or moderate levels of prenatal ethanol exposure during gastrulation or neurulation.

    Science.gov (United States)

    Schambra, Uta B; Lewis, C Nicole; Harrison, Theresa A

    2017-07-01

    Debate continues on the merits of strictly limiting alcohol consumption during all of pregnancy, and whether "safe" consumption levels and/or times exist. Only a relatively few experimental studies have been conducted that limit the timing of exposure to specific events during development and the exposure level to one that might model sporadic, incidental drinking during pregnancy. In the present study, the effects of two acute gavage exposures to low and moderate levels of ethanol (peak blood ethanol concentrations (BEC) of 104 and 177mg/dl, respectively) either during gastrulation on gestational day (GD) 7 (at GD7:0h and GD7:4h) or during neurulation on GD8 (at GD8:6h and GD8:10h) on the spatial learning and memory abilities of adult mice in the radial arm maze (RAM) were examined. Mice were selected from a prenatal ethanol exposure (PAE) cohort that had been tested as neonates for their sensorimotor development (Schambra et al., 2015) and as juveniles and young adults for open field activity levels and emotionality (Schambra et al., 2016). Mice exposed on either of the two gestational days to acute, low or moderate levels of ethanol were deficient in overall performance in the RAM in adulthood. Importantly, mice in ethanol exposed groups took longer to reach criterion in the RAM, and many mice in these groups failed to do so after 48 trials when testing was terminated. Exposure to a low level of ethanol on either GD7 or GD8, or a moderate level on GD7, resulted in significant impairment in spatial reference (long-term) memory, while only mice exposed on GD7 to the low level of ethanol were significantly impaired in spatial working (short-term) memory. Mice exposed to the low ethanol level on either day had significantly shorter response latencies, which may reflect impairment of processes related to response inhibition or executive attention in these mice. For all measures, distributions of individual scores revealed a relatively small subset of mice in each PAE

  8. Effects of continuous low-dose prenatal irradiation on neuronal migration in mouse cerebral cortex

    International Nuclear Information System (INIS)

    Hyodo-Taguchi, Yasuko; Ishikawa, Yuji; Hirobe, Tomohisa; Fushiki, Shinji; Kinoshita, Chikako.

    1997-01-01

    We investigated the effects of continuous exposure to γ-rays during corticogenesis on the migration of neuronal cells in developing cerebral cortex. Pregnant mice were injected with 0.5 mg of bromodeoxyuridine (BrdU) on day 14 of gestation to label cells in the S phase. The mice were then exposed to 137 Cs γ-rays (dose rates of 0.1, 0.3, and 0.94 Gy/day) continuously for 3 days. Brains from 17-day-old embryos and from offspring at 3 and 8 weeks after birth were processed immunohistochemically to track the movements of BrdU-labeled cells. Comparative analyses of the distribution pattern of BrdU-labeled cells in the cerebral cortex revealed that the migration of neurons was delayed during the embryonic period in mice irradiated at 0.94 Gy/day, in 3-week-old mice, there was a significant difference in the distribution pattern of BrdU-labeled cells in the cerebral cortex between the mice irradiated prenatally and control, and in 8-week-old mice, there were no differences in the distribution pattern of BrdU-labeled cells between control and animals irradiated with 0.1 and 0.3 Gy/day. In contrast, in the animals irradiated with 0.94 Gy/day, the significant difference in the distribution pattern of the labeled cells relative to control was maintained. These results suggest that the migration of neuronal cells in mouse cerebral cortex is disturbed by continuous prenatal irradiation at low-dose and some modificational process occurred during the postnatal period. (author)

  9. Automated measurement of pulmonary emphysema and small airway remodeling in cigarette smoke-exposed mice.

    Science.gov (United States)

    Laucho-Contreras, Maria E; Taylor, Katherine L; Mahadeva, Ravi; Boukedes, Steve S; Owen, Caroline A

    2015-01-16

    COPD is projected to be the third most common cause of mortality world-wide by 2020((1)). Animal models of COPD are used to identify molecules that contribute to the disease process and to test the efficacy of novel therapies for COPD. Researchers use a number of models of COPD employing different species including rodents, guinea-pigs, rabbits, and dogs((2)). However, the most widely-used model is that in which mice are exposed to cigarette smoke. Mice are an especially useful species in which to model COPD because their genome can readily be manipulated to generate animals that are either deficient in, or over-express individual proteins. Studies of gene-targeted mice that have been exposed to cigarette smoke have provided valuable information about the contributions of individual molecules to different lung pathologies in COPD((3-5)). Most studies have focused on pathways involved in emphysema development which contributes to the airflow obstruction that is characteristic of COPD. However, small airway fibrosis also contributes significantly to airflow obstruction in human COPD patients((6)), but much less is known about the pathogenesis of this lesion in smoke-exposed animals. To address this knowledge gap, this protocol quantifies both emphysema development and small airway fibrosis in smoke-exposed mice. This protocol exposes mice to CS using a whole-body exposure technique, then measures respiratory mechanics in the mice, inflates the lungs of mice to a standard pressure, and fixes the lungs in formalin. The researcher then stains the lung sections with either Gill's stain to measure the mean alveolar chord length (as a readout of emphysema severity) or Masson's trichrome stain to measure deposition of extracellular matrix (ECM) proteins around small airways (as a readout of small airway fibrosis). Studies of the effects of molecular pathways on both of these lung pathologies will lead to a better understanding of the pathogenesis of COPD.

  10. Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice

    International Nuclear Information System (INIS)

    Ribes, Diana; Fuentes, Silvia; Torrente, Margarita; Colomina, M. Teresa; Domingo, Jose L.

    2010-01-01

    Although it is known that prenatal exposure to perfluorooctane sulfonate (PFOS) can cause developmental adverse effects in mammals, the disruptive effects of this compound on hormonal systems are still controversial. Information concerning the effects of PFOS on hypothalamus adrenal (HPA) axis response to stress and corticosterone levels is not currently available. On the other hand, it is well established that stress can enhance the developmental toxicity of some chemicals. In the present study, we assessed the combined effects of maternal restraint stress and PFOS on HPA axis function in the offspring of mice. Twenty plug-positive female mice were divided in two groups. Animals were given by gavage 0 and 6 mg PFOS/kg/day on gestation days 12-18. One half of the animals in each group were also subjected to restraint stress (30 min/session, 3 sessions/day) during the same period. Five plug-positive females were also included as non-manipulated controls. At 3 months of age, activity in an open-field and the stress response were evaluated in male and female mice by exposing them to 30 min of restraint stress. Male and female offspring were subsequently sacrificed and blood samples were collected to measure changes in corticosterone levels at four different moments related to stress exposure conditions: before stress exposure, immediately after 30 min of stress exposure, and recuperation levels at 60 and 90 min after stress exposure. Results indicate corticosterone levels were lower in mice prenatally exposed to restraint. In general terms, PFOS exposure decreased corticosterone levels, although this effect was only significant in females. The recuperation pattern of corticosterone was mainly affected by prenatal stress. Interactive effects between PFOS and maternal stress were sex dependent. The current results suggest that prenatal PFOS exposure induced long-lasting effects in mice.

  11. Development of auditory event-related potentials in infants prenatally exposed to methadone.

    Science.gov (United States)

    Paul, Jonathan A; Logan, Beth A; Krishnan, Ramesh; Heller, Nicole A; Morrison, Deborah G; Pritham, Ursula A; Tisher, Paul W; Troese, Marcia; Brown, Mark S; Hayes, Marie J

    2014-07-01

    Developmental features of the P2 auditory ERP in a change detection paradigm were examined in infants prenatally exposed to methadone. Opiate dependent pregnant women maintained on methadone replacement therapy were recruited during pregnancy (N = 60). Current and historical alcohol and substance use, SES, and psychiatric status were assessed with a maternal interview during the third trimester. Medical records were used to collect information regarding maternal medications, monthly urinalysis, and breathalyzer to confirm comorbid drug and alcohol exposures. Between birth and 4 months infant ERP change detection performance was evaluated on one occasion with the oddball paradigm (.2 probability oddball) using pure-tone stimuli (standard = 1 kHz and oddball = 2 kHz frequency) at midline electrode sites, Fz, Cz, Pz. Infant groups were examined in the following developmental windows: 4-15, 16-32, or 33-120 days PNA. Older groups showed increased P2 amplitude at Fz and effective change detection performance at P2 not seen in the newborn group. Developmental maturation of amplitude and stimulus discrimination for P2 has been reported in developing infants at all of the ages tested and data reported here in the older infants are consistent with typical development. However, it has been previously reported that the P2 amplitude difference is detectable in neonates; therefore, absence of a difference in P2 amplitude between stimuli in the 4-15 days group may represent impaired ERP performance by neonatal abstinence syndrome or prenatal methadone exposure. © 2013 Wiley Periodicals, Inc.

  12. Incidence of lung tumors in LX mice exposed to (1) free radicals; (2) SO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Peacock, P R; Spence, J B

    1967-01-01

    60 to 65 3-month-old LX mice were exposed to either radio frequency-generated free radicals for 3 hr/day, 5 days/week, or 500 ppM SO/sub 2/ for 5 min/day, 5 days/week, for more than 2 yr (results only on mice surviving > 300 days). Incidence of primary neoplasia (adenoma) in mice exposed to SO/sub 2/ increased from 31% (control) to 54% in males and from 17% to 43% in females. Incidence of neoplasia in mice exposed to free radicals increased 10 and 6% above controls for males and females, respectively. The action of SO/sub 2/ was thought to be that of nonspecific inflammation leading to hyperplasia and lymphatic engorgement, which precede and predispose adenoma.

  13. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  14. Effects of prenatal exposure to single-wall carbon nanotubes on reproductive performance and neurodevelopment in mice.

    Science.gov (United States)

    Ivani, Saeed; Karimi, Isaac; Tabatabaei, Seyed Reza Fatemi; Syedmoradi, Leila

    2016-07-01

    Carbon nanotubes with extraordinary properties may become a novel drug and gene delivery tool in nanomedicine; however, insufficient information is available regarding their biosafety. Therefore, this work was performed to study the effect of prenatal exposure of single-walled carbon nanotubes (SWCNTs) on reproductive and neurobehavioral endpoints in mice. Thirty pregnant female mice were assigned to three groups (n = 10 for each group). The two treated groups were injected intraperitoneally (i.p.) with 1 or 10 mg/kg body weight (b.w.) of SWCNTs suspended in 1 ml of phosphate buffer saline (PBS) on gestational days 0 and 3. The control group was injected i.p. with an equal volume of PBS. The neurobehavioral ontogeny of pups was evaluated using a modified Fox battery. A decrease in litter size on postnatal day 2 was observed in the group treated with 10 mg/kg b.w. of SWCNTs whereas no significant differences between groups were observed in any other parameters. The behavioral development of pups did not show significant differences during growth except for the surface righting reflex, which showed significant delay compared to control in the group treated with 1 mg/kg b.w. SWCNTs. Moreover, exposed offspring (10 mg/kg b.w. SWCNTs) displayed enhanced anxiety in the elevated plus maze; however, other ethological analysis (Morris water maze and open field test) did not show behavioral changes in the experimental groups. In conclusion, the present results demonstrated small changes in offspring sensory and motor development following exposure to SWCNTs and support the idea that SWCNT risk assessment merits further investigation. © The Author(s) 2014.

  15. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    International Nuclear Information System (INIS)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M.

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice

  16. Amount of prenatal visual stimulation alters incubation times and postnatal preferences in leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Sleigh, M J; Birchard, G F

    2001-09-01

    The authors exposed gecko (Eublepharis macularius) embryos to patterned visual stimulation beginning at either 1 week or 2 weeks prior to hatching. Embryos exposed to the substantially augmented amount of prenatal visual stimulation hatched significantly earlier than the embryos either exposed to the moderately augmented prenatal visual stimulation or not exposed to any prenatal visual stimulation (p geckos in all conditions failed to exhibit a preference for either stimulus.

  17. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide.

    Science.gov (United States)

    Fonken, Laura K; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    The mammalian circadian system regulates many physiological functions including inflammatory responses. Appropriately timed light information is essential for maintaining circadian organization. Over the past ∼120 years, urbanization and the widespread adoption of electric lights have dramatically altered lighting environments. Exposure to light at night (LAN) is pervasive in modern society and disrupts core circadian clock mechanisms. Because microglia are the resident macrophages in the brain and macrophages contain intrinsic circadian clocks, we hypothesized that chronic exposure to LAN would alter microglia cytokine expression and sickness behavior following LPS administration. Exposure to 4 weeks of dim LAN elevated inflammatory responses in mice. Mice exposed to dimly lit, as compared to dark, nights exaggerated changes in body temperature and elevated microglia pro-inflammatory cytokine expression following LPS administration. Furthermore, dLAN mice had a prolonged sickness response following the LPS challenge. Mice exposed to dark or dimly lit nights had comparable sickness behavior directly following the LPS injection; however, dLAN mice showed greater reductions in locomotor activity, increased anorectic behavior, and increased weight loss than mice maintained in dark nights 24h post-LPS injection. Overall, these data suggest that chronic exposure to even very low levels of light pollution may alter inflammatory responses. These results may have important implications for humans and other urban dwelling species that commonly experience nighttime light exposure. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Gene expression profile in bone marrow and hematopoietic stem cells in mice exposed to inhaled benzene

    International Nuclear Information System (INIS)

    Faiola, Brenda; Fuller, Elizabeth S.; Wong, Victoria A.; Recio, Leslie

    2004-01-01

    Acute myeloid leukemia and chronic lymphocytic leukemia are associated with benzene exposure. In mice, benzene induces chromosomal breaks as a primary mode of genotoxicity in the bone marrow (BM). Benzene-induced DNA lesions can lead to changes in hematopoietic stem cells (HSC) that give rise to leukemic clones. To gain insight into the mechanism of benzene-induced leukemia, we investigated the DNA damage repair and response pathways in total bone marrow and bone marrow fractions enriched for HSC from male 129/SvJ mice exposed to benzene by inhalation. Mice exposed to 100 ppm benzene for 6 h per day, 5 days per week for 2 week showed significant hematotoxicity and genotoxicity compared to air-exposed control mice. Benzene exposure did not alter the level of apoptosis in BM or the percentage of HSC in BM. RNA isolated from total BM cells and the enriched HSC fractions from benzene-exposed and air-exposed mice was used for microarray analysis and quantitative real-time RT-PCR. Interestingly, mRNA levels of DNA repair genes representing distinct repair pathways were largely unaffected by benzene exposure, whereas altered mRNA expression of various apoptosis, cell cycle, and growth control genes was observed in samples from benzene-exposed mice. Differences in gene expression profiles were observed between total BM and HSC. Notably, p21 mRNA was highly induced in BM but was not altered in HSC following benzene exposure. The gene expression pattern suggests that HSC isolated immediately following a 2 weeks exposure to 100 ppm benzene were not actively proliferating. Understanding the toxicogenomic profile of the specific target cell population involved in the development of benzene-associated diseases may lead to a better understanding of the mechanism of benzene-induced leukemia and may identify important interindividual and tissue susceptibility factors

  19. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice

    DEFF Research Database (Denmark)

    Jackson, Petra; Halappanavar, Sabina; Hougaard, Karin Sorig

    2013-01-01

    We investigated effects of maternal pulmonary exposure to titanium dioxide (UV-Titan) on prenatally exposed offspring. Time-mated mice (C57BL/6BomTac) were inhalation exposed (1 h/day to 42 mg UV-Titan/m(3) aerosolised powder or filtered air) during gestation days (GDs) 8-18. We evaluated DNA...... strand breaks using the comet assay in bronchoalveolar lavage (BAL) cells and livers of the time-mated mice (5 and 26-27 days after inhalation exposure), and in livers of the offspring (post-natal days (PND) 2 and 22). We also analysed hepatic gene expression in newborns using DNA microarrays. UV-Titan...

  20. Transfer of tritium to prenatal and neonatal rats from their mothers exposed to tritiated compounds

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Nishimura, Y.; Inaba, J. (National Inst. of Radiological Sciences, Chiba (Japan))

    1994-01-01

    The transfer of tritium through the placenta or milk was investigated to estimate the radiation dose to the fetus and newborn. Female rats at gestational stages or after delivery were exposed to tritium in the form of water, thymidine and lysine by a single oral administration and radioactivity in tissues including conceptuses (placenta, fetal membrane and fetus) and in the newborn was determined at various times after administration. In all cases of the investigated triated compounds, there was no significant difference between the tritium concentration in the fetus and that in the maternal tissues, suggesting that the placenta has no effect in preventing or accelerating the placental transfer of tritium. The time course of tritium concentration and tritium content in the fetus and newborn were, however, dependent on the chemical form of tritium and on the prenatal or neonatal stages at the time of ingestion. In general, the tritium concentration and tritium content after the ingestion of [sup 3]H-lysine were higher than that after the ingestion of tritiated water or [sup 3]H-thymidine. The result of dose estimation showed that [sup 3]H-lysine gave higher prenatal and neonatal doses than tritiated water or [sup 3]H-thymidine by a factor of 1.5 to 6.0. (author).

  1. Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice.

    Science.gov (United States)

    Maruoka, Takashi; Kodomari, Ikuko; Yamauchi, Rena; Wada, Etsuko; Wada, Keiji

    2009-04-17

    The maternal environment is thought to be important for fetal brain development. However, the effects of maternal environment are not fully understood. Here, we investigated whether enrichment of the maternal environment can influence prenatal brain development and postnatal behaviors in mice. An enriched environment is a housing condition with several objects such as a running wheel, tube and ladder, which are thought to increase sensory, cognitive and motor stimulation in rodents compared with standard housing conditions. First, we measured the number of BrdU-positive cells in the hippocampal dentate gyrus of fetuses from pregnant dams housed in an enriched environment. Our results revealed that maternal enrichment influences cell proliferation in the hippocampus of female, but not male, fetuses. Second, we used the open-field test to investigate postnatal behaviors in the offspring of dams housed in the enriched environment during pregnancy. We found that maternal enrichment significantly affects the locomotor activity and time spent in the center of the open-field in female, but not male, offspring. These results indicate that maternal enrichment influences prenatal brain development and postnatal behaviors in female offspring.

  2. Postnatal development of rat pups is altered by prenatal methamphetamine exposure.

    Science.gov (United States)

    Slamberová, Romana; Pometlová, Marie; Charousová, Petra

    2006-01-01

    There are studies showing that drug abuse during pregnancy may have impairing effect on progeny of drug-abusing mothers. Methamphetamine (MA) is one of the most common illicit drugs throughout the world. The purpose of the present study was to assess the effect of prenatal MA exposure on postnatal development of rat pups before the time of separation from their mothers. Female rats were injected with MA (5 mg/kg daily) for the duration of their pregnancy. Pups were then tested throughout the lactation period. They were weighed daily and the ano-genital distance was measured on postnatal day (PD) 1. Development of postural motor reaction was tested by righting reflex on surface between PD 1 and 12, and righting reflex in mid-air after PD 12 until successfully accomplished. On PD 15 homing test was examined as a test of pup acute learning. On PD 23 sensory-motor coordination was examined using the rotarod and bar-holding tests. Additionally, the markers of physical maturation, such as eye opening, testes descent in males and vaginal opening in females were also recorded. The birth weight in prenatally MA-exposed pups was lower than in controls or saline-exposed pups regardless of sex. There were no changes induced by prenatal MA exposure in weight gain or in sexual maturation. In righting reflexes, we demonstrated that pups exposed prenatally to MA were slower in righting reflex on surface and that they accomplished the test of righting reflex in mid-air later than controls or saline-exposed pups. The performance of homing test was not affected by prenatal drug exposure. The sensory-motor coordination was impaired in prenatally MA-exposed pups when testing in the rotarod test. Also, the number of falls in the bar-holding test was higher in MA-exposed pups than in controls. There were no sex differences in any measures. Thus, the present study demonstrated that prenatal MA exposure impairs development of postural motor movements of rat pups during the first 3 weeks

  3. Decreased antibody formation in mice exposed to lead

    Energy Technology Data Exchange (ETDEWEB)

    Koller, L D; Kovacic, S

    1974-07-12

    Swiss Webster mice were given 1375, 137.5, or 13.75 ppM lead acetate in deionized water for 56 days. The control group was given deionized water orally. There were 120 mice in each group. The diet fed to all the mice was contaminated with 1.12 ppM lead. After 56 days, all mice were inoculated intraperitoneally with 0.2 ml of a 2% suspension of sheep red blood cells. Ten mice in each group were killed on days 3 to 7 to measure primary immune response (19S or IgM antibody) and on days 9 to 14 for the secondary response (7S or IgG antibody) after a second inoculation of sheep red blood cells while they remained on 137.5 ppM lead. The number of plaque forming cells was measured in the spleen. Erythrocytes were observed for basophilic stippling, packed cell volume was measured, serum was collected for hemolysin titration, and kidneys were examined for lead. Chronic exposure to lead produced a significant decrease in antibody synthesis, particularly IgG, indicating that the memory cell was involved. The results also indicated that the reduced antibody synthesis was responsible for the increased mortality from bacterial and viral diseases in animals that were chronically exposed to lead. Other environmental contaminants such as polychlorinated biphenyls, cadmium, mercury, DDT, and sulfur dioxide have also resulted in reduction of circulating antibodies in animals, in other experiments.

  4. Visual evoked potentials in children prenatally exposed to methylmercury

    DEFF Research Database (Denmark)

    Yorifuji, Takashi; Murata, Katsuyuki; Bjerve, Kristian S

    2013-01-01

    Prenatal exposure to methylmercury can cause both neurobehavioral deficits and neurophysiological changes. However, evidence of neurotoxic effects within the visual nervous system is inconsistent, possibly due to incomplete statistical adjustment for beneficial nutritional factors. We evaluated t...

  5. Developmental disruption of amygdala transcriptome and socioemotional behavior in rats exposed to valproic acid prenatally.

    Science.gov (United States)

    Barrett, Catherine E; Hennessey, Thomas M; Gordon, Katelyn M; Ryan, Steve J; McNair, Morgan L; Ressler, Kerry J; Rainnie, Donald G

    2017-01-01

    The amygdala controls socioemotional behavior and has consistently been implicated in the etiology of autism spectrum disorder (ASD). Precocious amygdala development is commonly reported in ASD youth with the degree of overgrowth positively correlated to the severity of ASD symptoms. Prenatal exposure to VPA leads to an ASD phenotype in both humans and rats and has become a commonly used tool to model the complexity of ASD symptoms in the laboratory. Here, we examined abnormalities in gene expression in the amygdala and socioemotional behavior across development in the valproic acid (VPA) rat model of ASD. Rat dams received oral gavage of VPA (500 mg/kg) or saline daily between E11 and 13. Socioemotional behavior was tracked across development in both sexes. RNA sequencing and proteomics were performed on amygdala samples from male rats across development. Effects of VPA on time spent in social proximity and anxiety-like behavior were sex dependent, with social abnormalities presenting in males and heightened anxiety in females. Across time VPA stunted developmental and immune, but enhanced cellular death and disorder, pathways in the amygdala relative to saline controls. At postnatal day 10, gene pathways involved in nervous system and cellular development displayed predicted activations in prenatally exposed VPA amygdala samples. By juvenile age, however, transcriptomic and proteomic pathways displayed reductions in cellular growth and neural development. Alterations in immune pathways, calcium signaling, Rho GTPases, and protein kinase A signaling were also observed. As behavioral, developmental, and genomic alterations are similar to those reported in ASD, these results lend support to prenatal exposure to VPA as a useful tool for understanding how developmental insults to molecular pathways in the amygdala give rise to ASD-related syndromes.

  6. Construction and identification of subtracted cDNA library in bone marrow cells of radon-exposed mice

    International Nuclear Information System (INIS)

    Li Jianxiang; Nie Jihua; Tong Jian; Fu Chunling; Zhou Jianwei

    2008-01-01

    Objective: To construct and identify subtracted cDNA library in bone marrow cells of mice exposed to radon inhalation. Methods: Adult male BALB/c mice, weighing 18-22 g, were placed in a multi- functional radon chamber. One group of mice was exposed to radon up to the accumulative dose of 105 work level month (WLM). The control group of mice was housed in a room with an accumulative dose of 1 WLM. To construct a subtracted cDNA library enriched with differentially expressed genes, the SMART technique and the suppression subtractive hybridization were performed. The obtained forward and reverse cDNA fragments were directly inserted into pMD18-T vector and transformed into E. coli JM109. The inserting cDNA fragments were screened by the blue-and-white blot screening and nested PCR of bacterium liquid. Results: The 244 of 285 white bacteria clones obtained randomly were positive clones contained 100-1100 bp inserted cDNA fragments. Conclusions: The forward and reverse subtracted cDNA library in bone marrow cells of mice exposed to radon inhalation is successfully constructed. (authors)

  7. Prenatal irradiation and spatial memory in mice: investigation of dose-response relationship

    International Nuclear Information System (INIS)

    Sienkiewicz, Z.J.; Haylock, R.G.E.; Saunders, R.D.

    1994-01-01

    Pregnant CD1 mice were exposed on gestational day 18 to 250 kV X-rays at 0.1, 0.25, 0.35 and 0.5 Gy. The performances of 10 adult male offspring from each exposure condition were investigated on a spatial discrimination learning task in a radial arm maze. An impairment in the performance of this task was found which showed a correlation with dose. Compared with sham exposed control mice, performance was not significantly affected with irradiation at 0.1 Gy and was slightly but non-significantly reduced at 0.25 Gy. Irradiation at 0.35 Gy caused a significant impairment in performance, and exposure at 0.5 Gy resulted in a still larger impairment. The overall association between dose and behavioural impairment was best described by a linear relationship without a threshold, although at doses lower than about 0.25 Gy any impairment would appear to be too small to be detectable. (Author)

  8. Prenatal Exposure to Progesterone Affects Sexual Orientation in Humans

    DEFF Research Database (Denmark)

    Reinisch, June M.; Mortensen, Erik Lykke; Sanders, Stephanie A.

    2017-01-01

    Prenatal sex hormone levels affect physical and behavioral sexual differentiation in animals and humans. Although prenatal hormones are theorized to influence sexual orientation in humans, evidence is sparse. Sexual orientation variables for 34 prenatally progesterone-exposed subjects (17 males...... and 17 females) were compared to matched controls (M age = 23.2 years). A case–control double-blind design was used drawing on existing data from the US/Denmark Prenatal Development Project. Index cases were exposed to lutocyclin (bioidentical progesterone = C21H30O2; MW: 314.46) and no other hormonal...... preparation. Controls were matched on 14 physical, medical, and socioeconomic variables. A structured interview conducted by a psychologist and self-administered questionnaires were used to collect data on sexual orientation, self-identification, attraction to the same and other sex, and history of sexual...

  9. Association of Diet With Skin Histological Features in UV-B-Exposed Mice.

    Science.gov (United States)

    Bhattacharyya, Tapan K; Hsia, Yvonne; Weeks, David M; Dixon, Tatiana K; Lepe, Jessica; Thomas, J Regan

    2017-09-01

    Long-term exposure to solar radiation produces deleterious photoaging of the skin. It is not known if diet can influence skin photoaging. To study the influence of a calorie-restricted diet and an obesity diet in mice exposed to long-term UV-B irradiation to assess if there is an association between diet and histopathological response to UV-B irradiation. In this animal model study in an academic setting, the dorsal skin of SKH1 hairless mice receiving normal, calorie-restricted, and obesity diets was exposed to UV-B irradiation 3 times a week for 10 weeks and were compared with corresponding controls. The mice were placed in the following groups, with 8 animals in each group: (1) intact control (C) with regular diet and no UV-B exposure, (2) intact control with UV-B exposure (CR), (3) calorie-restricted diet (CrC), (4) calorie-restricted diet with UV-B exposure (CrR), (5) obesity diet (OC), and (6) obesity diet with UV-B exposure (OR). The experiment was conducted during October through December 2013. Tissue processing and histological analysis were completed in 2016. Histomorphometric analysis was performed on paraffin-embedded skin sections stained by histological and immunohistochemical methods for estimation of epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, mast cells, dermal cellularity, and adipose layer ratio. Changes in wrinkles were noted. Hairless female mice (age range, 6-8 weeks) were obtained. With a normal diet, changes from UV-B irradiation occurred in epidermal thickness, epidermal proliferating cell nuclear antigen index, collagen I, elastic fibers, fibroblasts, and mast cells, which were modestly influenced by an obesity diet. Calorie restriction influenced the skin in nonirradiated control animals, with higher values for most variables. After UV-B exposure in animals with calorie restriction, epidermal thickness was increased, but other variables were unaffected. Animals

  10. The effects of in utero irradiation on mutation induction and transgenerational instability in mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Hardwick, Robert J.; Shanks, Morag E.; Glen, Colin D.; Mughal, Safeer K.; Voutounou, Mariel; Dubrova, Yuri E.

    2009-01-01

    Epidemiological evidence suggests that the deleterious effects of prenatal irradiation can manifest during childhood, resulting in an increased risk of leukaemia and solid cancers after birth. However, the mechanisms underlying the long-term effects of foetal irradiation remain poorly understood. This study was designed to analyse the impact of in utero irradiation on mutation rates at expanded simple tandem repeat (ESTR) DNA loci in directly exposed mice and their first-generation (F 1 ) offspring. ESTR mutation frequencies in the germline and somatic tissues of male and female mice irradiated at 12 days of gestation remained highly elevated during adulthood, which was mainly attributed to a significant increase in the frequency of singleton mutations. The prevalence of singleton mutations in directly exposed mice suggests that foetal irradiation results in genomic instability manifested both in utero and during adulthood. The frequency of ESTR mutation in the F 1 offspring of prenatally irradiated male mice was equally elevated across all tissues, which suggests that foetal exposure results in transgenerational genomic instability. In contrast, maternal in utero exposure did not affect the F 1 stability. Our data imply that the passive erasure of epigenetic marks in the maternal genome can diminish the transgenerational effects of foetal irradiation and therefore provide important clues to the still unknown mechanisms of radiation-induced genomic instability. The results of this study offer a plausible explanation for the effects of in utero irradiation on the risk of leukaemia and solid cancers after birth.

  11. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanic Acid (PFOA) Exposure in CD-1 Mice: Low Doses Induce Elevated Serum, Leptin, Insulin, and Overweight in Mid-Life.

    Science.gov (United States)

    The synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing prenatal pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the ser...

  12. Developmental Implications for Prenatal Exposure to Environmental Toxins: Consumption Habits of Pregnant Women and Prenatal Nicotine Exposure in a Mouse Model

    Science.gov (United States)

    Santiago, Sarah Emily

    This dissertation provides a discussion of the effects of maternal consumption of environmental toxins, and will hopefully contribute to the prevention and understanding of developmental disorders and physiological deficits. Developing systems are particularly susceptible to toxic insults, and small changes in utero can result in long-term deficits. Chapter one of this dissertation reviews the potential teratogenicity of nicotine, alcohol, caffeine, MeHg, PCBs, BPA, and tap water contaminants, so as to characterize the current body of literature detailing the effects and implications of prenatal exposure to toxins. In chapter two, research on maternal consumption habits is presented, with an emphasis on commonly-consumed, potentially-teratogenic substances. Occurrences and frequencies of maternal intake of healthy and unhealthy foods, beverages, and medications in a population of predominantly Hispanic women in Southern California were assessed using the Food, Beverage, and Medication Intake Questionnaire (FBMIQ). The described study reveals that a proportion of pregnant women consumed BPA, MeHg, caffeine, and alcohol at varied levels during pregnancy. The following chapters provide an in-depth analysis of the postnatal effects of a particular neuroteratogen, nicotine, which has been shown to impart various detrimental postnatal effects on exposed offspring. A CD-1 mouse model of prenatal nicotine exposure (PNE) was used to analyze aspects of the brain and neocortex that may underly some of the cognitive and behavioral phenotypes seen with PNE. Analyses included postnatal measurements of brain weight, brain widths and lengths, development of neocortical circuitry, and cortical thickness measures. Exposed mice were found to exhibit reduced brain and body weights at birth, a phenotype that recovered by postnatal day 10. No changes in neocortical circuity or thickness in sensory and motor areas were found. PNE also resulted in persistent behavioral effects, including

  13. Studies on Some Biophysical Properties of the Serum Protein of Mice blood exposed to an electric field

    International Nuclear Information System (INIS)

    Hanafy, M.S.

    2005-01-01

    As an indication of the effect of the electric field on each of the dielectric properties and the molecular structure of the serum protein of the mice blood, an electric field of a 6 kv/m strength and 50 Hz frequency was directed to three groups of mice for exposure periods 30, 45 and 60 days respectively, and investigated directly. Another group was exposed to also 60 days, but investigated after 30 days from switching off the electric field for delayed effect studies. The molecular structure of the serum protein was studied by measuring each of the dielectric relaxation and the electric conductivity in the frequency range 0.15 MHz at 4 ± 0.5 degree C and the dielectric increment (Δ), relaxation time (τ) and average molecular radii (τ) were calculated for all groups. The absorption spectra of the extracted protein were also measured in the wavelength range 200 600 nm. Moreover, electrophoresis of enzymes B-esterase, lactate and Malate dehydrogenase extracted from the blood serum of exposed mice were taken by using the gel electrophoresis technique. The results indicated that exposure of the animals to 50 H, 6 kv/m electric field resulted in the decrease of serum protein permittivity values and increase its conductivity a fact that indicates pronounced changes in the molecular structure of total serum protein the exposed mice. In addition, the intensity of the absorption spectral bands of serum protein of exposed mice were found to decrease relative to unexposed mice. Also the enzymes B-esterase and lactate dehydrogenase were slightly affected by exposing to the electric field whereas their number of bands and their intensities changed relative to the unexposed mice but the malate dehydrogenase was not affected

  14. Prenatal Estrogens and the Development of Homosexual Orientation.

    Science.gov (United States)

    Meyer-Bahlburg, Heino F. L.; And Others

    1995-01-01

    Examines the hypothesis that prenatal estrogens contribute to the development of human sexual orientation. Several groups of women with a history of prenatal exposure to diethylstilbestrol (DES) were compared with several samples of control women. Findings showed that more DES-exposed women than controls were rated as bisexual or homosexual,…

  15. ATTENTION FUNCTIONING IN CHILDREN WITH PRENATAL DRUG EXPOSURE.

    Science.gov (United States)

    Jaeger, Dominique A; Suchan, Boris; Schölmerich, Axel; Schneider, Dominik T; Gawehn, Nina

    2015-01-01

    Children born to drug abusers are exposed to teratogenic influences on intrauterine brain development and undergo postnatal withdrawal. We investigated the interplay of different domains and levels of attention functioning in 24 prenatally exposed and 25 nonexposed children who were 5 to 6 years old. Assessment included parent ratings and neuropsychological and electrophysiological methods. Exposed children had a higher prevalence of attention deficit hyperactivity symptoms, tended to have poorer performance in an attention test battery, and showed EEG alterations in P3 and N2c. Findings suggest long-term effects of prenatal drug exposure on specific domains and on different levels of attention functioning. © 2015 Michigan Association for Infant Mental Health.

  16. Postnatal Administration of Allopregnanolone Modifies Glutamate Release but Not BDNF Content in Striatum Samples of Rats Prenatally Exposed to Ethanol

    Directory of Open Access Journals (Sweden)

    Roberto Yunes

    2015-01-01

    Full Text Available Ethanol consumption during pregnancy may induce profound changes in fetal CNS development. We postulate that some of the effects of ethanol on striatal glutamatergic transmission and neurotrophin expression could be modulated by allopregnanolone, a neurosteroid modulator of GABAA receptor activity. We describe the acute pharmacological effect of allopregnanolone (65 μg/kg, s.c. administered to juvenile male rats (day 21 of age on the corticostriatal glutamatergic pathway, in both control and prenatally ethanol-exposed rats (two ip injections of 2.9 g/kg in 24% v/v saline solution on gestational day 8. Prenatal ethanol administration decreased the K+-induced release of glutamate regarding the control group. Interestingly, this effect was reverted by allopregnanolone. Regarding BDNF, allopregnanolone decreases the content of this neurotrophic factor in the striatum of control groups. However, both ethanol alone and ethanol plus allopregnanolone treated animals did not show any change regarding control values. We suggest that prenatal ethanol exposure may produce an alteration of GABAA receptors which blocks the GABA agonist-like effect of allopregnanolone on rapid glutamate release, thus disturbing normal neural transmission. Furthermore, the reciprocal interactions found between GABAergic neurosteroids and BDNF could underlie mechanisms operating during the neuronal plasticity of fetal development.

  17. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice

    DEFF Research Database (Denmark)

    Hougaard, Karin S.; Jackson, Petra; Jensen, Keld A.

    2010-01-01

    to a nanoparticulate UV-filter (UV-titan L181). Methods: Time-mated mice (C57BL/6BomTac) were exposed by inhalation 1h/day to 42 mg/m(3) aerosolized powder (1.7.10(6) n/cm(3); peak-size: 97 nm) on gestation days 8-18. Endpoints included: maternal lung inflammation; gestational and litter parameters; offspring...... the central zone of the open field and exposed female offspring displayed enhanced prepulse inhibition. Cognitive function was unaffected (Morris water maze test). Conclusion: Inhalation exposure to nano-sized UV Titan dusts induced long term lung inflammation in time-mated adult female mice. Gestationally...

  18. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  19. Aspartame administered in feed, beginning prenatally through life span, induces cancers of the liver and lung in male Swiss mice.

    Science.gov (United States)

    Soffritti, Morando; Belpoggi, Fiorella; Manservigi, Marco; Tibaldi, Eva; Lauriola, Michelina; Falcioni, Laura; Bua, Luciano

    2010-12-01

    Aspartame (APM) is a well-known intense artificial sweetener used in more than 6,000 products. Among the major users of aspartame are children and women of childbearing age. In previous lifespan experiments conducted on Sprague-Dawley rats we have shown that APM is a carcinogenic agent in multiple sites and that its effects are increased when exposure starts from prenatal life. The aim of this study is to evaluate the potential of APM to induce carcinogenic effects in mice. Six groups of 62-122 male and female Swiss mice were treated with APM in feed at doses of 32,000, 16,000, 8,000, 2,000, or 0  ppm from prenatal life (12 days of gestation) until death. At death each animal underwent complete necropsy and all tissues and organs of all animals in the experiment were microscopically examined. APM in our experimental conditions induces in males a significant dose-related increased incidence of hepatocellular carcinomas (P < 0.01), and a significant increase at the dose levels of 32,000  ppm (P < 0.01) and 16,000  ppm (P < 0.05). Moreover, the results show a significant dose-related increased incidence of alveolar/bronchiolar carcinomas in males (P < 0.05), and a significant increase at 32,000  ppm (P < 0.05). The results of the present study confirm that APM is a carcinogenic agent in multiple sites in rodents, and that this effect is induced in two species, rats (males and females) and mice (males). No carcinogenic effects were observed in female mice. Am. J. Ind. Med. 53:1197-1206, 2010. © 2010 Wiley-Liss, Inc.

  20. Neurodevelopmental Outcomes of Prenatal Stress

    Directory of Open Access Journals (Sweden)

    M. Genco Usta

    2012-03-01

    Full Text Available The influence of prenatal stress on psychopathology has been observed in many animal and human studies. In many studies, stress during prenatal period has been shown to result in negative feedback dysregulation and hyperactivity of hypothalamo-pituitary-adrenocortical axis. Prenatal stres also may cause increased risk of birth complications, startle or distress in response to novel and surprising stimuli during infancy; lower Full Scale IQs, language abilities and attention deficiency in period of 3-5 years; increased risk of attention deficit hyperactivity syndrome, anxiety symptoms, depressive disorder and impulsivity during adolescence. Additionally, timing of prenatal stress is also important and 12-22 weeks of gestation seems to be the most vulnerable period. The results underline the need for early prevention and intervention programs for highly anxious women during pregnancy. Administration of prenatal stress monitoring to public health programs or removing pregnant women who have been exposed to life events such as natural disaster, terror attack to secure areas that provide basic needs may be crucial.

  1. NICOTINE EFFECTS ON THE ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Considerable research has shown long-lasting effects of early exposure in experimental animals to nicotine. Anatoxin-a is produced by cyanobacteria and has been shown to be a potent nicotinic agonist. This experiment evaluated the motor activity of adult mice, and their respons...

  2. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications

    Science.gov (United States)

    Mamczarz, Jacek; Pescrille, Joseph D.; Gavrushenko, Lisa; Burke, Richard D.; Fawcett, William P.; DeTolla, Louis J.; Chen, Hegang; Pereira, Edna F.R.; Albuquerque, Edson X.

    2017-01-01

    Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25 mg/kg, s.c.) or vehicle (peanut oil) for 10 days starting on presumed gestation day (GD) 53–55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain. PMID:27296654

  3. MATERNAL INTERACTION QUALITY MODERATES EFFECTS OF PRENATAL MATERNAL EMOTIONAL SYMPTOMS ON GIRLS' INTERNALIZING PROBLEMS.

    Science.gov (United States)

    Endendijk, Joyce J; De Bruijn, Anouk T C E; Van Bakel, Hedwig J A; Wijnen, Hennie A A; Pop, Victor J M; Van Baar, Anneloes L

    2017-09-01

    The role of mother-infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioral problems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the "exposed group" (n = 46), consisting of mothers with high levels of prenatal feelings of anxiety and depression, or the "low-exposed group" (n = 50), consisting of mothers with normal levels of depressive or anxious symptoms during pregnancy. When the children (49 girls, 47 boys) were 23 to 60 months of age (M = 39.0, SD = 9.6), parents completed the Child Behavior Checklist (T.M. Achenbach & L.A. Rescorla, ), and mother-child interaction quality during a home visit was rated using the Emotional Availability Scales. There were no differences in mother-child interaction quality between the prenatally exposed and low-exposed groups. Girls exposed to high prenatal emotional symptoms showed more internalizing problems, if maternal interaction quality was less optimal. No significant effects were found for boys. © 2017 Michigan Association for Infant Mental Health.

  4. Histopathological and Ultrastructural Studies of Liver Tissue from TCDD-Exposed Beach Mice (Peromyscus polionotus).

    Science.gov (United States)

    1980-03-01

    TQuantitative ultrastructural studies were conducted on liver tissue f ran beach Lj mice, Per~ ascus polionotus, exposed to the toxin 2,3, 7f8...weights per se was not attempted since the ages of the beach mice were not known and the animals could only be classified by sex and treatment. The

  5. Prenatal Cigarette Smoke Exposure Causes Hyperactivity and Agressive Behavior: Role of Altered Catcholamines and BDNF

    Science.gov (United States)

    Yochum, Carrie; Doherty-Lyon, Shannon; Hoffman, Carol; Hossain, Muhammad M.; Zellikoff, Judith T.; Richardson, Jason R.

    2014-01-01

    Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4 hr/d and 5 d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25 ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior assessed on at 4 weeks of age and again at 4–6 months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders and suggest a role for monoaminergic and BDNF alterations in these effects. PMID:24486851

  6. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour.

    Science.gov (United States)

    Hay-Schmidt, Anders; Finkielman, Olivia T Ejlstrup; Jensen, Benjamin A H; Høgsbro, Christine F; Bak Holm, Jacob; Johansen, Kristoffer Haurum; Jensen, Tina Kold; Andrade, Anderson Martino; Swan, Shanna H; Bornehag, Carl-Gustaf; Brunak, Søren; Jegou, Bernard; Kristiansen, Karsten; Kristensen, David Møbjerg

    2017-08-01

    Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women. © 2017 Society for Reproduction and Fertility.

  7. Prenatal Exposure to Progesterone Affects Sexual Orientation in Humans.

    Science.gov (United States)

    Reinisch, June M; Mortensen, Erik Lykke; Sanders, Stephanie A

    2017-07-01

    Prenatal sex hormone levels affect physical and behavioral sexual differentiation in animals and humans. Although prenatal hormones are theorized to influence sexual orientation in humans, evidence is sparse. Sexual orientation variables for 34 prenatally progesterone-exposed subjects (17 males and 17 females) were compared to matched controls (M age = 23.2 years). A case-control double-blind design was used drawing on existing data from the US/Denmark Prenatal Development Project. Index cases were exposed to lutocyclin (bioidentical progesterone = C 21 H 30 O 2 ; M W : 314.46) and no other hormonal preparation. Controls were matched on 14 physical, medical, and socioeconomic variables. A structured interview conducted by a psychologist and self-administered questionnaires were used to collect data on sexual orientation, self-identification, attraction to the same and other sex, and history of sexual behavior with each sex. Compared to the unexposed, fewer exposed males and females identified as heterosexual and more of them reported histories of same-sex sexual behavior, attraction to the same or both sexes, and scored higher on attraction to males. Measures of heterosexual behavior and scores on attraction to females did not differ significantly by exposure. We conclude that, regardless of sex, exposure appeared to be associated with higher rates of bisexuality. Prenatal progesterone may be an underappreciated epigenetic factor in human sexual and psychosexual development and, in light of the current prevalence of progesterone treatment during pregnancy for a variety of pregnancy complications, warrants further investigation. These data on the effects of prenatal exposure to exogenous progesterone also suggest a potential role for natural early perturbations in progesterone levels in the development of sexual orientation.

  8. Prenatal phencyclidine treatment induces behavioral deficits through impairment of GABAergic interneurons in the prefrontal cortex.

    Science.gov (United States)

    Toriumi, Kazuya; Oki, Mika; Muto, Eriko; Tanaka, Junko; Mouri, Akihiro; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2016-06-01

    We previously reported that prenatal treatment with phencyclidine (PCP) induces glutamatergic dysfunction in the prefrontal cortex (PFC), leading to schizophrenia-like behavioral deficits in adult mice. However, little is known about the prenatal effect of PCP treatment on other types of neurons. We focused on γ-aminobutyric acid (GABA)-ergic interneurons and evaluated the effect of prenatal PCP exposure on the neurodevelopment of GABAergic interneurons in the PFC. PCP was administered at the dose of 10 mg/kg/day to pregnant dams from embryonic day 6.5 to 18.5. After the pups were reared to adult, we analyzed their GABAergic system in the PFC using immunohistological, biochemical, and behavioral analyses in adulthood. The prenatal PCP treatment decreased the density of parvalbumin-positive cells and reduced the expression level of glutamic acid decarboxylase 67 (GAD67) and GABA content of the PFC in adults. Additionally, prenatal PCP treatment induced behavioral deficits in adult mice, such as hypersensitivity to PCP and prepulse inhibition (PPI) deficits. These behavioral deficits were ameliorated by pretreatment with the GABAB receptor agonist baclofen. Furthermore, the density of c-Fos-positive cells was decreased after the PPI test in the PFC of mice treated with PCP prenatally, and this effect was ameliorated by pretreatment with baclofen. These findings suggest that prenatal treatment with PCP induced GABAergic dysfunction in the PFC, which caused behavioral deficits.

  9. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study.

    Science.gov (United States)

    Smith, Andra M; Mioduszewski, Ola; Hatchard, Taylor; Byron-Alhassan, Aziza; Fall, Carley; Fried, Peter A

    Understanding the potentially harmful long term consequences of prenatal marijuana exposure is important given the increase in number of pregnant women smoking marijuana to relieve morning sickness. Altered executive functioning is one area of research that has suggested negative consequences of prenatal marijuana exposure into adolescence. Investigating if these findings continue into young adulthood and exploring the neural basis of these effects was the purpose of this research. Thirty one young adults (ages 18-22years) from the longitudinal Ottawa Prenatal Prospective Study (OPPS) underwent functional magnetic resonance imaging (fMRI) during four tasks; 1) Visuospatial 2-Back, 2) Go/NoGo, 3) Letter 2-Back and 4) Counting Stroop task. Sixteen participants were prenatally exposed to marijuana while 15 had no prenatal marijuana exposure. Task performance was similar for both groups but blood flow was significantly different between the groups. This paper presents the results for all 4 tasks, highlighting the consistently increased left posterior brain activity in the prenatally exposed group compared with the control group. These alterations in neurophysiological functioning of young adults prenatally exposed to marijuana emphasizes the importance of education for women in child bearing years, as well as for policy makers and physicians interested in the welfare of both the pregnant women and their offspring's future success. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Transfer of 14C to prenatal and neonatal rats from their mothers exposed to 14C compounds by ingestion

    International Nuclear Information System (INIS)

    Takeda, H.; Fuma, S.; Miyamoto, K.; Kuroda, N.; Inaba, J.

    2003-01-01

    The transfer of 14 C through placenta or milk was investigated and the radiation dose to fetal and newborn rats was estimated. Female rats at gestational stages or after delivery were exposed to 14 C in the form of sodium bicarbonate, thymidine and lysine by a single ingestion. Radioactivity in maternal tissues and conceptuses (placenta, fetal membrane and fetus) and in the newborn was determined at various times after ingestion. After exposure to these 14 C compounds, there was no significant difference between the 14 C concentration in the fetus and that in the maternal tissues, suggesting that the placenta has no effect in preventing or accelerating the placental transfer of 14 C. The concentration and content of 14 C in the fetus and newborn were, however, dependent on the chemical form of 14 C and on the prenatal or neonatal stage at the time of ingestion. The result of the dose estimation showed that 14 C-lysine gave significantly higher prenatal and neonatal doses than 14 C-sodium bicarbonate or 14 C-thymidine. (author)

  11. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring.

    Science.gov (United States)

    Salomäki, Henriikka; Heinäniemi, Merja; Vähätalo, Laura H; Ailanen, Liisa; Eerola, Kim; Ruohonen, Suvi T; Pesonen, Ullamari; Koulu, Markku

    2014-01-01

    Despite the wide use of metformin in metabolically challenged pregnancies, the long-term effects on the metabolism of the offspring are not known. We studied the long-term effects of prenatal metformin exposure during metabolically challenged pregnancy in mice. Female mice were on a high fat diet (HFD) prior to and during the gestation. Metformin was administered during gestation from E0.5 to E17.5. Male and female offspring were weaned to a regular diet (RD) and subjected to HFD at adulthood (10-11 weeks). Body weight and several metabolic parameters (e.g. body composition and glucose tolerance) were measured during the study. Microarray and subsequent pathway analyses on the liver and subcutaneous adipose tissue of the male offspring were performed at postnatal day 4 in a separate experiment. Prenatal metformin exposure changed the offspring's response to HFD. Metformin exposed offspring gained less body weight and adipose tissue during the HFD phase. Additionally, prenatal metformin exposure prevented HFD-induced impairment in glucose tolerance. Microarray and annotation analyses revealed metformin-induced changes in several metabolic pathways from which electron transport chain (ETC) was prominently affected both in the neonatal liver and adipose tissue. This study shows the beneficial effects of prenatal metformin exposure on the offspring's glucose tolerance and fat mass accumulation during HFD. The transcriptome data obtained at neonatal age indicates major effects on the genes involved in mitochondrial ATP production and adipocyte differentiation suggesting the mechanistic routes to improved metabolic phenotype at adulthood.

  12. Cancer risk in men exposed in utero to diethylstilbestrol.

    Science.gov (United States)

    Strohsnitter, W C; Noller, K L; Hoover, R N; Robboy, S J; Palmer, J R; Titus-Ernstoff, L; Kaufman, R H; Adam, E; Herbst, A L; Hatch, E E

    2001-04-04

    An association between prenatal diethylstilbestrol (DES) exposure and cancer in men, especially testicular cancer, has been suspected, but findings from case-control studies have been inconsistent. This study was conducted to investigate the association between prenatal DES exposure and cancer risk in men via prospective follow-up. A total of 3613 men whose prenatal DES exposure status was known were followed from 1978 through 1994. The overall and site-specific cancer incidence rates among the DES-exposed men were compared with those of the unexposed men in the study and with population-based rates. The relative rate (RR) was used to assess the strength of the association between prenatal DES exposure and cancer development. All statistical tests were two-sided. Overall cancer rates among DES-exposed men were similar to those among unexposed men (RR = 1.07; 95% confidence interval [CI] = 0.58 to 1.96) and to national rates (RR = 0.99; 95% CI = 0.65 to 1.44). Testicular cancer may be elevated among DES-exposed men, since the RRs for testicular cancer were 3.05 (95% CI = 0.65 to 22.0) times those of unexposed men in the study and 2.04 (95% CI = 0.82 to 4.20) times those of males in the population-based rates. The higher rate of testicular cancer in the DES-exposed men is, however, also compatible with a chance observation. To date, men exposed to DES in utero do not appear to have an increased risk of most cancers. It remains uncertain, however, whether prenatal DES exposure is associated with testicular cancer.

  13. The effect of prenatal methamphetamine exposure on recognition memory in adult rats.

    Science.gov (United States)

    Fialová, Markéta; Šírová, Jana; Bubeníková-Valešová, Věra; Šlamberová, Romana

    2015-01-01

    The use of methamphetamine (MA) among pregnant women is an increasing world-wide health problem. Prenatal MA exposure may cause changes in foetus but the exact effects have remained unclear. The aim of this study is to present the effect of prenatal MA exposure on recognition memory in adult rats. Adult female Wistar rats were injected daily with D-methamphetamine HCl (MA; 5 mg/kg, s.c.) during the entire gestation period. Control females were treated with saline in the same regime. Adult male offspring was administrated acutely by MA (1 mg/kg i.p.) or saline 30 minutes before beginning of an experiment. For testing recognition memory two tasks were chosen: Novel Object Recognition Test (NORT) and Object Location Test (OLT). Our results demonstrate that prenatally MA-exposed animals were worse in NORT independently on an acute administration of MA in adulthood. Prenatally MA-exposed rats did not deteriorate in OLT, but after acute administration of MA in adulthood, there was significant worsening compared to appropriate control. Prenatally saline-exposed offspring did not deteriorate in any test even after acute administration of MA. Our data suggest that prenatal MA exposure in rats cause impairment in recognition memory in adult offspring, but not in spatial memory. In addition, acute administration of MA to controls did not deteriorate either recognition or spatial memory.

  14. Prenatal Cocaine Exposure and Infant Cortisol Reactivity

    Science.gov (United States)

    Eiden, Rina D.; Veira, Yvette; Granger, Douglas A.

    2009-01-01

    This study examined the effects of prenatal cocaine exposure on infant hypothalamic-pituitary-adrenal axis activity and reactivity at 7 months of infant age. Participants were 168 caregiver-infant dyads (87 cocaine exposed, 81 not cocaine exposed; 47% boys). Maternal behavior, caregiving instability, and infant growth and behavior were assessed,…

  15. Neurobehavioral deficits associated with PCB in 7-year-old children prenatally exposed to seafood neurotoxicants

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Weihe, Pál; Burse, Virlyn W.

    2001-01-01

    Methylmercury compounds, Neuropsychological tests, Polychlorinated biphenyls, Prenatal exposure delayed effects, Preschool child......Methylmercury compounds, Neuropsychological tests, Polychlorinated biphenyls, Prenatal exposure delayed effects, Preschool child...

  16. PRENATAL ETHANOL EXPOSURE LEADS TO GREATER ETHANOL-INDUCED APPETITIVE REINFORCEMENT

    Science.gov (United States)

    Pautassi, Ricardo M.; Nizhnikov, Michael E.; Spear, Norman E.; Molina, Juan C.

    2012-01-01

    Prenatal ethanol significantly heightens later alcohol consumption, but the mechanisms that underlie this phenomenon are poorly understood. Little is known about the basis of this effect of prenatal ethanol on the sensitivity to ethanol’s reinforcing effects. One possibility is that prenatal ethanol exposure makes subjects more sensitive to the appetitive effects of ethanol or less sensitive to ethanol’s aversive consequences. The present study assessed ethanol-induced second-order conditioned place preference (CPP) and aversion and ethanol-induced conditioned taste aversion (CTA) in infant rats prenatally exposed to ethanol (2.0 g/kg) or vehicle (water) or left untreated. The involvement of the κ opioid receptor system in ethanol-induced CTA was also explored. When place conditioning occurred during the ascending limb of the blood-ethanol curve (Experiment 1), the pups exposed to ethanol in utero exhibited greater CPP than untreated controls, with a shift to the right of the dose-response curve. Conditioning during a later phase of intoxication (30–45 min post-administration; Experiment 2) resulted in place aversion in control pups exposed to vehicle during late gestation but not in pups that were exposed to ethanol in utero. Ethanol induced a reliable and similar CTA (Experiment 3) in the pups treated with vehicle or ethanol during gestation, and CTA was insensitive to κ antagonism. These results suggest that brief exposure to a moderate ethanol dose during late gestation promotes ethanol-mediated reinforcement and alters the expression of conditioned aversion by ethanol. This shift in the motivational reactivity to ethanol may be an underlying basis of the effect of prenatal ethanol on later ethanol acceptance. PMID:22698870

  17. Delayed radiation injury of gut-exposed and gut-shielded mice. II. The decrement in life span

    International Nuclear Information System (INIS)

    Spalding, J.F.; Archuleta, R.F.; Prine, J.R.

    1978-01-01

    Two mouse strains (RF/J and C57B1/6J) were exposed to x-ray doses totaling 400, 800, and 1200 rad. Total doses were given in 200-rad fractions at 7-day intervals to the whole body, gut only, or bone tissue with the gut shielded. Animals were anesthetized during exposure. Two control groups were used. A sham control group was anesthetized but not exposed to x rays, and another control group received neither anesthesia nor x-radiation. All mice were retained in a standard laboratory environment for observations on life span and histopathology at death. Life shortening was observed in all irradiated groups of strain RF/J mice and was attributed primarily to an increase in incidence and/or earlier onset of neoplasia. Life shortening was observed in the C57B1/6J whole-body exposed mice, but the effect appeared to be noncarcinogenic. Shielding of the bone or gut tissue proved to have a 100% sparing effect in strain C57 mice and none in strain RF mice. In both mouse strains, the sham control groups (anesthetized but not irradiated) showed approximately 8% life shortening below the non-anesthetized control groups and increased incidences of neoplasia of approximately 40%, suggesting that sodium pentabarbital may be as carcinogenic as x-radiation

  18. Prenatal Influences on Human Sexual Orientation: Expectations versus Data.

    Science.gov (United States)

    Breedlove, S Marc

    2017-08-01

    In non-human vertebrate species, sexual differentiation of the brain is primarily driven by androgens such as testosterone organizing the brains of males in a masculine fashion early in life, while the lower levels of androgen in developing females organize their brains in a feminine fashion. These principles may be relevant to the development of sexual orientation in humans, because retrospective markers of prenatal androgen exposure, namely digit ratios and otoacoustic emissions, indicate that lesbians, on average, were exposed to greater prenatal androgen than were straight women. Thus, the even greater levels of prenatal androgen exposure experienced by fetal males may explain why the vast majority of them grow up to be attracted to women. However, the same markers indicate no significant differences between gay and straight men in terms of average prenatal androgen exposure, so the variance in orientation in men cannot be accounted for by variance in prenatal androgen exposure, but may be due to variance in response to prenatal androgens. These data contradict several popular notions about human sexual orientation. Sexual orientation in women is said to be fluid, sometimes implying that only social influences in adulthood are at work, yet the data indicate prenatal influences matter as well. Gay men are widely perceived as under-masculinized, yet the data indicate they are exposed to as much prenatal androgen as straight men. There is growing sentiment to reject "binary" conceptions of human sexual orientations, to emphasize instead a spectrum of orientations. Yet the data indicate that human sexual orientation is sufficiently polarized that groups of lesbians, on average, show evidence of greater prenatal androgen exposure than groups of straight women, while groups of gay men have, on average, a greater proportion of brothers among their older siblings than do straight men.

  19. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    Science.gov (United States)

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  20. Bioassay in BALB/c mice exposed to low dose rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Km, Sung Dae; Gong, Eun Ji; Bae, Min Ji; Yang, Kwang Mo; Kim, Joong Sun [Dongnam Institute of Radiological and Medical Sciences, Suwon (Korea, Republic of)

    2012-09-15

    The present study was performed to investigate the toxicity of low-dose-rate irradiation in BALB/c mice. Twenty mice of each sex were randomly assigned to four groups of five mice each and were exposed to 0 (sham), 0.02, 0.2, or 2 Gy, equivalents to low-dose-rate irradiation to 3.49 mGy{center_dot}h{sup -1}. Urine, blood, and blood biochemistry were analyzed, and organ weight was measured. The low-dose-rate irradiation did not induce any toxicologically significant changes in mortality, clinical signs, body weight, food and water consumption, urinalysis, and serum biochemistry. However, the weights of reproductive organs including the testis, ovary, and uterus decreased in a dose-dependent manner. Irradiation at 2 Gy significantly decreased the testis, ovary, and uterus weights, but did not change the weights of other organs. There were no adverse effects on hematology in any irradiated group and only the number of neutrophils increased dose dependently. The low-dose-rate irradiation exposure did not cause adverse effects in mice at dose levels of 2 Gy or less, but the reproductive systems of male and female mice showed toxic effects.

  1. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  2. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-01-01

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  3. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Ieradi, L.A. [Istituto per lo Studio degli Ecosistemi, CNR, Rome (Italy); Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M. [Universite La Sapienza, Dipt. di Biologia Animale e dell' Uomo, Rome (Italy); Tanzarella, C. [Roma Univ., Dipt. di Biologia (Italy)

    2006-07-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 {mu}T E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 {mu}T) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  4. Cytogenetic damage in adult and newborn mice exposed to Elf magnetic fields

    International Nuclear Information System (INIS)

    Ieradi, L.A.; Udroiu, I.; Chiuchiarelli, G.; Migliorini, D.; Cristaldi, M.; Tanzarella, C.

    2006-01-01

    Data obtained in newborn mice show that the chronic exposure during intra-uterine life to a 50 Hz, 650 μT E.L.F. magnetic field induce a genetic damage. Nevertheless, the increase of DNA strand break in brain and in micronuclei frequency in peripheral blood and liver disagree with the data obtained by Abramsson-Zetterberg and Grawe (13) which did not find any genetic alterations in mice exposed to extremely low frequency (E.L.F.) magnetic field. In any case, along with other dissimilarities in the experimental design, the intensity of the field (14 μT) and the time of sampling (35 days) were different. It is important to underline the four-fold increase in C.R.E.S.T.+ micronuclei frequency in circulating erythrocytes in the exposed group in comparison with the control group. Even though this value is quite low, it could indicate that E.L.F. magnetic fields may have different properties to damage the genome integrity. This stresses the need for further investigation on the possible link between electromagnetic fields and aneuploidy in order to elucidate the relationship with carcinogenesis. Preliminary data obtained with sperm abnormality assay show a significant increase of sperm abnormalities in mice exposed to E.L.F. magnetic fields and suggest a possible alteration to the spermatogenic process after exposure. This data agrees with data obtained by Tablado et al. (1998), in mice exposed continually for 35 days to a field of 1 T. Regarding the palatal ridges alterations assay, the results obtained show that the development of the secondary palate is not affected by E.L.F. magnetic field (50 Hz, 0,65 T). Nevertheless further studies at different frequency and intensity should be carried out to detect the possible epigenetic damage induced by E.L.F. exposure (Migliorini, 2005). With regard to the mechanism of action, it is generally believed that the damage induced by the magnetic field is an oxidative damage and that free radicals are involved. Some authors

  5. Effects of sex and housing on social, spatial, and motor behavior in adult rats exposed to moderate levels of alcohol during prenatal development.

    Science.gov (United States)

    Rodriguez, Carlos I; Magcalas, Christy M; Barto, Daniel; Fink, Brandi C; Rice, James P; Bird, Clark W; Davies, Suzy; Pentkowski, Nathan S; Savage, Daniel D; Hamilton, Derek A

    2016-10-15

    Persistent deficits in social behavior, motor behavior, and behavioral flexibility are among the major negative consequences associated with exposure to ethanol during prenatal development. Prior work from our laboratory has linked moderate prenatal alcohol exposure (PAE) in the rat to deficits in these behavioral domains, which depend upon the ventrolateral frontal cortex (Hamilton et al., 2014) [20]. Manipulations of the social environment cause modifications of dendritic morphology and experience-dependent immediate early gene expression in ventrolateral frontal cortex (Hamilton et al., 2010) [19], and may yield positive behavioral outcomes following PAE. In the present study we evaluated the effects of housing PAE rats with non-exposed control rats on adult behavior. Rats of both sexes were either paired with a partner from the same prenatal treatment condition (ethanol or saccharin) or from the opposite condition (mixed housing condition). At four months of age (∼3 months after the housing manipulation commenced), social behavior, tongue protrusion, and behavioral flexibility in the Morris water task were measured as in (Hamilton et al., 2014) [20]. The behavioral effects of moderate PAE were primarily limited to males and were not ameliorated by housing with a non-ethanol exposed partner. Unexpectedly, social behavior, motor behavior, and spatial flexibility were adversely affected in control rats housed with a PAE rat (i.e., in mixed housing), indicating that housing with a PAE rat has broad behavioral consequences beyond the social domain. These observations provide further evidence that moderate PAE negatively affects social behavior, and underscore the importance of considering potential negative effects of housing with PAE animals on the behavior of critical comparison groups. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. High incidence of hydrocephalus following prenatal exposure to X-irradiation at early gestational stage in mice

    International Nuclear Information System (INIS)

    Aolad, H.; Inouye, Minoru; Hayasaka, Shizu; Darmanto, W.; Murata, Yoshiharu

    1998-01-01

    Hydrocephalus is one of the severe brain anomalies. Several causes of congenital hydrocephalus have been reported and, it is known that radiation is one of those. The current study was designed to obtain postnatally viable hydrocephalic offspring at a high incidence following X-radiation. This finding will be helpful to elucidate the mechanism of congenital hydrocephalus caused by X-radiation. Twenty pregnant Slc:ICR mice, 5 in each group, were exposed to X-irradiation at a dose of 1.0 Gy on gestational days 7 (G7), G8, G9 or G10. The incidence of hydrocephalus was high in the group exposed on G7. An additional 21 pregnant mice were then exposed to a dose of 1.2 Gy, 1.3 Gy, 1.4 Gy or 1.5 Gy X-radiation on G7. The highest incidence of hydrocephalic offspring was found following exposure to 1.4 Gy X-radiation. (author)

  7. Prenatal cocaine exposure alters alpha2 receptor expression in adolescent rats

    Directory of Open Access Journals (Sweden)

    Silvers Janelle M

    2006-04-01

    Full Text Available Abstract Background Prenatal cocaine exposure produces attentional deficits which to persist through early childhood. Given the role of norepinephrine (NE in attentional processes, we examined the forebrain NE systems from prenatal cocaine exposed rats. Cocaine was administered during pregnancy via the clinically relevant intravenous route of administration. Specifically, we measured α2-adrenergic receptor (α2-AR density in adolescent (35-days-old rats, using [3H]RX821002 (5 nM. Results Sex-specific alterations of α2-AR were found in the hippocampus and amygdala of the cocaine-exposed animals, as well as an upregulation of α2-AR in parietal cortex. Conclusion These data suggest that prenatal cocaine exposure results in a persistent alteration in forebrain NE systems as indicated by alterations in receptor density. These neurochemical changes may underlie behavioral abnormalities observed in offspring attentional processes following prenatal exposure to cocaine.

  8. Postlactational changes in cadmium retention in mice orally exposed to cadmium during pregnancy and lactation

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Sellers, D.A.; Peterson, D.P.

    1986-01-01

    Mice were continuously exposed to 109Cd in drinking water (0.03 microCi/ml; 0.11 ppb total cadmium) during pregnancy and lactation. After cessation of exposure, 109 Cd retention and distribution were examined during a 4-week postlactational period. At the start of the postlactational period (0 time), the fraction of oral 109 Cd retained by the dams was 2.4 times greater than that retained by similarly exposed nonpregnant mice. 109 Cd concentrations at 0 time were greater in the dams than in the nonpregnant mice in kidney (5-fold), liver (2.6-fold), mammary tissue (greater than 28-fold), and duodenum (13-fold). No changes in 109 Cd content of the whole body (minus gastrointestinal tract) occurred during the 4 weeks after cessation of exposure in either the dams or the nonpregnant mice; i.e., pregnancy-dependent increases in 109 Cd contents of individual organs were maintained during the 4 weeks of observation. An indication of translocation of 109 Cd from liver to kidney was observed in the dams but not in the nonpregnant mice. 109 Cd concentrations in the mammary tissue of the dams increased 2-fold during the postlactational period concomitant with a 3-fold decrease in mammary tissue mass. 109 Cd in the duodenum of the pregnant/lactating mice decreased, with a half-life of 14 days. Results indicate that multiparous women exposed to environmental levels of cadmium may takeup and retain in their kidneys, livers, and mammary tissue a greater fraction of their dietary cadmium than women with few or no children. Such results may bear on the etiology of Itai-Itai disease, a disease of the skeleton potentially related to oral cadmium exposure, with an incidence predominantly among postmenopausal women with a history of multiple childbirths

  9. Voluntary Exercise Improves Estrous Cyclicity in Prenatally Androgenized Female Mice Despite Programming Decreased Voluntary Exercise: Implications for Polycystic Ovary Syndrome (PCOS).

    Science.gov (United States)

    Homa, Lori D; Burger, Laura L; Cuttitta, Ashley J; Michele, Daniel E; Moenter, Suzanne M

    2015-12-01

    Prenatal androgen (PNA) exposure in mice produces a phenotype resembling lean polycystic ovary syndrome. We studied effects of voluntary exercise on metabolic and reproductive parameters in PNA vs vehicle (VEH)-treated mice. Mice (8 wk of age) were housed individually and estrous cycles monitored. At 10 weeks of age, mice were divided into groups (PNA, PNA-run, VEH, VEH-run, n = 8-9/group); those in the running groups received wheels allowing voluntary running. Unexpectedly, PNA mice ran less distance than VEH mice; ovariectomy eliminated this difference. In ovary-intact mice, there was no difference in glucose tolerance, lower limb muscle fiber types, weight, or body composition among groups after 16 weeks of running, although some mitochondrial proteins were mildly up-regulated by exercise in PNA mice. Before running, estrous cycles in PNA mice were disrupted with most days in diestrus. There was no change in cycles during weeks 1-6 of running (10-15 wk of age). In contrast, from weeks 11 to 16 of running, cycles in PNA mice improved with more days in proestrus and estrus and fewer in diestrus. PNA programs reduced voluntary exercise, perhaps mediated in part by ovarian secretions. Exercise without weight loss improved estrous cycles, which if translated could be important for fertility in and counseling of lean women with polycystic ovary syndrome.

  10. Anti-apoptotic role of retinoic acid in the inner ear of noise-exposed mice

    International Nuclear Information System (INIS)

    Ahn, Joong Ho; Kang, Hun Hee; Kim, Young-Jin; Chung, Jong Woo

    2005-01-01

    Exposure to loud noise can induce temporary or permanent hearing loss, and acoustic trauma is the major cause of hearing impairment in industrial nations. However, the mechanisms underlying the death of hair cells after acoustic trauma remain unclear. In addition to its involvement in cellular stress and apoptosis, the c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is involved in cell survival, transformation, embryonic morphogenesis, and differentiation. JNK is primarily activated by various environmental stresses including noise, and the phenotypic result appears be to cell death. All-trans retinoic acid (ATRA) is an active metabolite of vitamin A that regulates a wide range of biological processes, including cell proliferation, differentiation, and morphogenesis. We evaluated the role of ATRA in preserving hearing in mice exposed to noise that can induce permanent hearing loss. Mice fed with ATRA before and during 3 consecutive days of noise exposure had a more preserved hearing threshold than mice fed sesame oil or saline. Histological and TUNEL staining of the cochlea showed significantly enhanced preservation of the organ of Corti, including outer hair cells and relatively low apoptotic nuclei, in mice-fed ATRA than in mice-fed sesame oil or saline. Phospho-JNK immunohistochemistry showed that ATRA inhibited the activation of JNK. These results suggest that ATRA has an anti-apoptotic effect on cochleae exposed to noise

  11. Prenatal Cocaine Exposure: A Comparison of 2-Year-Old Children in Parental and Nonparental Care

    Science.gov (United States)

    Brown, Josephine V.; Bakeman, Roger; Coles, Claire D.; Platzman, Kathleen A.; Lynch, Mary Ellen

    2004-01-01

    Effects of prenatal cocaine exposure and parental versus nonparental care on outcome at 2 years of age were examined. The sample included 83 cocaine-exposed and 63 nonexposed children and their caregivers; 49 and 34 of the cocaine-exposed children experienced parental and nonparental care, respectively. Prenatal drug exposure was not related…

  12. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: Despite the wide use of metformin in metabolically challenged pregnancies, the long-term effects on the metabolism of the offspring are not known. We studied the long-term effects of prenatal metformin exposure during metabolically challenged pregnancy in mice. MATERIALS AND METHODS: Female mice were on a high fat diet (HFD prior to and during the gestation. Metformin was administered during gestation from E0.5 to E17.5. Male and female offspring were weaned to a regular diet (RD and subjected to HFD at adulthood (10-11 weeks. Body weight and several metabolic parameters (e.g. body composition and glucose tolerance were measured during the study. Microarray and subsequent pathway analyses on the liver and subcutaneous adipose tissue of the male offspring were performed at postnatal day 4 in a separate experiment. RESULTS: Prenatal metformin exposure changed the offspring's response to HFD. Metformin exposed offspring gained less body weight and adipose tissue during the HFD phase. Additionally, prenatal metformin exposure prevented HFD-induced impairment in glucose tolerance. Microarray and annotation analyses revealed metformin-induced changes in several metabolic pathways from which electron transport chain (ETC was prominently affected both in the neonatal liver and adipose tissue. CONCLUSION: This study shows the beneficial effects of prenatal metformin exposure on the offspring's glucose tolerance and fat mass accumulation during HFD. The transcriptome data obtained at neonatal age indicates major effects on the genes involved in mitochondrial ATP production and adipocyte differentiation suggesting the mechanistic routes to improved metabolic phenotype at adulthood.

  13. NICOTINE EFFECTS ON THE MOTOR ACTIVITY OF MICE EXPOSED PRENATALLY TO THE NICOTINIC AGONIST ANATOXIN-A.

    Science.gov (United States)

    Several studies in the literature have shown that exposure of mice and rats to nicotine early in development alters its effects when the rodents are subsequently challenged with nicotine. Anatoxin-a is a nicotinic agonist produced by several genera of cyanobacteria, and has caus...

  14. Effects of microwave oven exposed diet on spermatogenesis in testicular tissue of mice and comparative effects of mentha piperita and melatonin

    International Nuclear Information System (INIS)

    Naheed, K.; Qamar, K.; Jamal, S.

    2017-01-01

    Objective: To observe the effects of microwave oven exposed diet on spermatogenesis in the testis of mice and comparative effects of Mentha piperita and melatonin. Study Design: Laboratory based randomized controlled trial. Place and Duration of Study: Anatomy Department, Army Medical College Rawalpindi, in collaboration with National Institute of Health (NIH), Islamabad, from Apr 2015 to May 2015. Material and Method: Study comprised of 32 adult male mice (BALBc strain) weighing 25-30 gms. Selection criteria based on non-probability (purposive) simple random sampling. Mice were divided into four equal groups of 8 mice each. Group 1, taken as control, was given standard diet 5-10gm/animal/day daily for four weeks. Group 2 was given 5-10 gm/animal/day of microwave oven exposed mice pellets for four weeks. Group 3 received Mentha piperita leaf extract (1g/kg b.wt./day) along with microwave oven exposed mice pellets (5-10gm/animal/day) for 4 weeks and group 4 received oral dosage of melatonin 12mg/kg/day along with microwave oven exposed mice pellets (5-10gm/animal/day) for 4 weeks. After four weeks animals were dissected. The shape, color and any abnormal finding of the testis were observed. Testis were processed, embedded and stained for histological study. Spermatogenesis was assessed by the Johnsons scoring. SPSS 21 was used for statistical analysis. Chi square test was applied for intergroup comparison. Results: Spermatogenesis was suppressed and Johnsons score was decreased from normal spermatogenesis (10) to (6-8) in the experimental group 2 and was more improved in the Mentha piperita treated group as compare to the melatonin. Conclusion: Microwave oven exposed mice pellets suppressed spermatogenesis and Mentha piperita had better ameliorative effects than melatonin on the testis of mice. (author)

  15. Beneficial effects of co-treatment with dextromethorphan on prenatally methadone-exposed offspring.

    Science.gov (United States)

    Chiang, Yao-Chang; Ye, Li-Ci; Hsu, Kuei-Ying; Liao, Chien-Wei; Hung, Tsai-Wei; Lo, Wan-Jou; Ho, Ing-Kang; Tao, Pao-Luh

    2015-03-20

    Heroin use among young women of reproductive age has drawn much attention around the world. Although methadone is widely used in maintenance therapy for heroin/morphine addiction, the long-term effects of prenatal exposure to methadone and preventative therapy remain unclear. For revealing this question, female pregnant Sprague-Dawley rats were sub-grouped to receive (1) vehicle, (2) methadone 5 mg/kg at embryonic day 3 (E3) and then 7 mg/kg from E4 to E20, (3) dextromethorphan (DM) 3 mg/kg, and (4) methadone + DM (the rats received methadone followed by DM treatment), subcutaneously, twice a day from E3 to E20. The body weight, natural withdrawal, pain sensitivity, ED50, conditioned place preference and water maze were conducted at different postnatal stages (P1 to P79) of offspring. The quantitative real-time RT-PCR and electrophysiology were also used to measure the gene expression of opioid receptors in the spinal cord and changes of LTP/LTD in the hippocampus, separately. Prenatal exposure to methadone or DM did not affect survival rate, body weight, water maze and LTP or LTD of offspring. However, prenatal methadone significantly increased the withdrawal symptoms, pain sensitivity, addiction liability and decreased the mRNA expression of pain related opioid receptors. Co-administration of DM with methadone in the maternal rats effectively prevented these abnormalities of offspring induced by methadone. Our study clearly showed that co-administration of dextromethorphan with methadone in the maternal rats prevented the adverse effects induced by prenatal methadone exposure. It implies that dextromethorphan may have a potential to be used in combination with methadone for maintenance treatment in pregnant heroin-addicted women to prevent the adverse effects induced by methadone on offspring.

  16. Prenatal Nitrate Exposure and Childhood Asthma. Influence of Maternal Prenatal Stress and Fetal Sex.

    Science.gov (United States)

    Bose, Sonali; Chiu, Yueh-Hsiu Mathilda; Hsu, Hsiao-Hsien Leon; Di, Qian; Rosa, Maria José; Lee, Alison; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Wright, Robert O; Cohen, Sheldon; Coull, Brent A; Wright, Rosalind J

    2017-12-01

    Impact of ambient pollution upon children's asthma may differ by sex, and exposure dose and timing. Psychosocial stress can also modify pollutant effects. These associations have not been examined for in utero ambient nitrate exposure. We implemented Bayesian-distributed lag interaction models to identify sensitive prenatal windows for the influence of nitrate (NO 3 - ) on child asthma, accounting for effect modification by sex and stress. Analyses included 752 mother-child dyads. Daily ambient NO 3 - exposure during pregnancy was derived using a hybrid chemical transport (Geos-Chem)/land-use regression model and natural log transformed. Prenatal maternal stress was indexed by a negative life events score (high [>2] vs. low [≤2]). The outcome was clinician-diagnosed asthma by age 6 years. Most mothers were Hispanic (54%) or black (29%), had a high school education or less (66%), never smoked (80%), and reported low prenatal stress (58%); 15% of children developed asthma. BDILMs adjusted for maternal age, race, education, prepregnancy obesity, atopy, and smoking status identified two sensitive windows (7-19 and 33-40 wk gestation), during which increased NO 3 - was associated with greater odds of asthma, specifically among boys born to mothers reporting high prenatal stress. Cumulative effects of NO 3 - across pregnancy were also significant in this subgroup (odds ratio = 2.64, 95% confidence interval = 1.27-5.39; per interquartile range increase in ln NO 3 - ). Prenatal NO 3 - exposure during distinct sensitive windows was associated with incident asthma in boys concurrently exposed to high prenatal stress.

  17. Prenatal Alcohol Exposure Is Associated with Conduct Disorder in Adolescence: Findings from a Birth Cohort

    Science.gov (United States)

    Larkby, Cynthia A.; Goldschmidt, Lidush; Hanusa, Barbara H.; Day, Nancy L.

    2011-01-01

    Objective: To evaluate the association between prenatal alcohol exposure and the rate of conduct disorder in exposed compared with unexposed adolescents. Method: Data for these analyses are from a longitudinal study of prenatal substance exposures. Women were interviewed at their fourth and seventh prenatal months, and with their children, at…

  18. Toxicity bioassay in mice exposed to low dose-rate radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joog Sun; Gong, Eun Ji; Heo, Kyu; Yang, Kwang Mo [Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of)

    2013-04-15

    The systemic effect of radiation increases in proportion to the dose amount and rate. The association between accumulated radiation dose and adverse effects, which is derived according to continuous low dose-rate radiation exposure, is not clearly elucidated. Our previous study showed that low dose-rate radiation exposure did not cause adverse effects in BALB/c mice at dose levels of ≤2 Gy, but the testis weight decreased at a dose of 2 Gy. In this study, we studied the effects of irradiation at the low dose rate (3.49 mGy/h) in the testes of C57BL/6 mice. Mice exposed to a total dose of 0.02, 0.2, and 2 Gy were found to be healthy and did not show any significant changes in body weight and peripheral blood components. However, mice irradiated with a dose of 2 Gy had significantly decreased testis weight. Further, histological studies and sperm evaluation also demonstrated changes consistent with the findings of decreased testis weight. In fertile patients found to have arrest of sperm maturation, the seminiferous tubules lack the DNMT1 and HDAC1 protein. The decrease of DNMT1 and HDAC1 in irradiated testis may be the part of the mechanism via which low dose-rate irradiation results in teticular injury. In conclusion, despite a low dose-rate radiation, our study found that when mice testis were irradiated with 2 Gy at 3.49 mGy/h dose rate, there was significant testicular and sperm damage with decreased DNMT1 and HDAC1 expression.

  19. Mitigating the Effects of Poverty and Crime: The Long-Term Effects of an Early Intervention Programme for Children Who Were Developmentally Delayed and Prenatally Exposed to Cocaine

    Science.gov (United States)

    Ullery, Mary Anne; Gonzalez, Antonio; Katz, Lynne

    2016-01-01

    This study explores the long-term impact on participation in the Linda Ray Intervention Program (LRIP) for children (n = 54) who were developmentally delayed and prenatally exposed to cocaine. By identifying a group of programme graduates from a high crime/high poverty neighbourhood in Miami-Dade County using ArcGIS 10.2 software, a…

  20. Brain anomalies in children exposed prenatally to a common organophosphate pesticide.

    Science.gov (United States)

    Rauh, Virginia A; Perera, Frederica P; Horton, Megan K; Whyatt, Robin M; Bansal, Ravi; Hao, Xuejun; Liu, Jun; Barr, Dana Boyd; Slotkin, Theodore A; Peterson, Bradley S

    2012-05-15

    Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9-11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical surface features; all participants had minimal prenatal exposure to environmental tobacco smoke and polycyclic aromatic hydrocarbons. High CPF exposure was associated with enlargement of superior temporal, posterior middle temporal, and inferior postcentral gyri bilaterally, and enlarged superior frontal gyrus, gyrus rectus, cuneus, and precuneus along the mesial wall of the right hemisphere. Group differences were derived from exposure effects on underlying white matter. A significant exposure × IQ interaction was derived from CPF disruption of normal IQ associations with surface measures in low-exposure children. In preliminary analyses, high-exposure children did not show expected sex differences in the right inferior parietal lobule and superior marginal gyrus, and displayed reversal of sex differences in the right mesial superior frontal gyrus, consistent with disruption by CPF of normal behavioral sexual dimorphisms reported in animal models. High-exposure children also showed frontal and parietal cortical thinning, and an inverse dose-response relationship between CPF and cortical thickness. This study reports significant associations of prenatal exposure to a widely used environmental neurotoxicant, at standard use levels, with structural changes in the developing human brain.

  1. Prenatal methadone exposure is associated with altered neonatal brain development

    Directory of Open Access Journals (Sweden)

    Victoria J. Monnelly

    Full Text Available Methadone is used for medication-assisted treatment of heroin addiction during pregnancy. The neurodevelopmental outcome of children with prenatal methadone exposure can be sub-optimal. We tested the hypothesis that brain development is altered among newborn infants whose mothers were prescribed methadone.20 methadone-exposed neonates born after 37weeks' postmenstrual age (PMA and 20 non-exposed controls underwent diffusion MRI at mean PMA of 39+2 and 41+1weeks, respectively. An age-optimized Tract-based Spatial Statistics (TBSS pipeline was used to perform voxel-wise statistical comparison of fractional anisotropy (FA data between exposed and non-exposed neonates.Methadone-exposed neonates had decreased FA within the centrum semiovale, inferior longitudinal fasciculi (ILF and the internal and external capsules after adjustment for GA at MRI (p<0.05, TFCE corrected. Median FA across the white matter skeleton was 12% lower among methadone-exposed infants. Mean head circumference (HC z-scores were lower in the methadone-exposed group (−0.52 (0.99 vs 1.15 (0.84, p<0.001; after adjustment for HC z-scores, differences in FA remained in the anterior and posterior limbs of the internal capsule and the ILF. Polydrug use among cases was common.Prenatal methadone exposure is associated with microstructural alteration in major white matter tracts, which is present at birth and is independent of head growth. Although the findings cannot be attributed to methadone per se, the data indicate that further research to determine optimal management of opioid use disorder during pregnancy is required. Future studies should evaluate childhood outcomes including infant brain development and long-term neurocognitive function. Keywords: Prenatal, Methadone, Brain, Neonate, MRI, Opioid

  2. Response, thermal regulatory threshold and thermal breakdown threshold of restrained RF-exposed mice at 905 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, S [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Eom, S J [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland); Schuderer, J [Foundation for Research on Information Technologies in Society (IT' IS), Zeughausstrasse 43, 8004 Zurich (Switzerland); Apostel, U [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Tillmann, T [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Dasenbrock, C [Fraunhofer Institute for Toxicology and Experimental Medicine, Nicolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Kuster, N [Swiss Federal Institute of Technology (ETH), Zurich, 8092 Zurich (Switzerland)

    2005-11-07

    The objective of this study was the determination of the thermal regulatory and the thermal breakdown thresholds for in-tube restrained B6C3F1 and NMRI mice exposed to radiofrequency electromagnetic fields at 905 MHz. Different levels of the whole-body averaged specific absorption rate (SAR 0, 2, 5, 7.2, 10, 12.6 and 20 W kg{sup -1}) have been applied to the mice inside the 'Ferris Wheel' exposure setup at 22 {+-} 2 {sup 0}C and 30-70% humidity. The thermal responses were assessed by measurement of the rectal temperature prior, during and after the 2 h exposure session. For B6C3F1 mice, the thermal response was examined for three different weight groups (20 g, 24 g, 29 g), both genders and for pregnant mice. Additionally, NMRI mice with a weight of 36 g were investigated for an interstrain comparison. The thermal regulatory threshold of in-tube restrained mice was found at SAR levels between 2 W kg{sup -1} and 5 W kg{sup -1}, whereas the breakdown of regulation was determined at 10.1 {+-} 4.0 W kg{sup -1}(K = 2) for B6C3F1 mice and 7.7 {+-} 1.6 W kg{sup -1}(K = 2) for NMRI mice. Based on a simplified power balance equation, the thresholds show a clear dependence upon the metabolic rate and weight. NMRI mice were more sensitive to thermal stress and respond at lower SAR values with regulation and breakdown. The presented data suggest that the thermal breakdown for in-tube restrained mice, whole-body exposed to radiofrequency fields, may occur at SAR levels of 6 W kg{sup -1}(K = 2) at laboratory conditions.

  3. Effect of prenatal ethanol exposure on sexual motivation in adult rats.

    Science.gov (United States)

    Ávila, Mara Aparecida P; Marthos, Gabriela Cristina P; Oliveira, Liliane Gibram M; Figueiredo, Eduardo Costa; Giusti-Paiva, Alexandre; Vilela, Fabiana Cardoso

    2016-08-01

    Maternal alcohol use during pregnancy adversely affects prenatal and postnatal growth and increases the risk of behavioral deficits. The aim of the present study was to evaluate the effect of prenatal exposure to a moderate dose of alcohol on sexual motivation during adulthood. Rats were prenatally exposed to ethanol by feeding pregnant dams a liquid diet containing 25% ethanol-derived calories on days 6 through 19 of gestation. The controls consisted of pair-fed dams (receiving an isocaloric liquid diet containing 0% ethanol-derived calories) and dams with ad libitum access to a liquid control diet. The sexual motivation of offspring was evaluated during adulthood. The results revealed that the male and female pups of dams treated with alcohol exhibited reduced weight gain, which persisted until adulthood. Both male and female adult animals from dams that were exposed to alcohol showed a reduction in the preference score in the sexual motivation test. Taken together, these results provide evidence of the damaging effects of prenatal alcohol exposure on sexual motivation responses in adulthood. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hypersynchrony in MEG spectral amplitude in prospectively-identified 6-month-old infants prenatally exposed to alcohol

    Directory of Open Access Journals (Sweden)

    Julia M. Stephen

    2018-01-01

    amplitude at 6 months of age. These results provide new evidence that hypersynchrony, previously observed in neonates prenatally exposed to high levels of alcohol, persists until 6 months of age and this measure is detectable with low to moderate exposure of alcohol with a dose-response effect. These results indicate that hypersynchrony may provide a sensitive early marker of prenatal alcohol exposure in infants up to 6 months of age.

  5. Histological investigations on thymus of male rats prenatally exposed to bisphenol A.

    Science.gov (United States)

    Aydemir, Işıl; Kum, Şadiye; Tuğlu, Mehmet İbrahim

    2018-04-27

    Bisphenol A is called as a endocrine-distrupting chemical because of the its steroid-like activity and it used in the construction of plastic containing materials. It is indicated that bisphenol A can pass the human serum, urine, follicular fluid, placenta and umblical cord as a result of the use of substances containing this agent. In this study, we aimed to investigate the effects of bisphenol A on the development of the thymus, a primary lymphoid organ which plays an important role in the specific immunity. The adult pregnant female rats were administered orally with bisphenol A (for 21 days) and postnatal thymus samples were obtained on day 21, 45 and 90 and were performed for histochemical and immunohistochemical staining for CD3, CD4, CD8 and CD79a and TUNEL assay for the apoptotic cells. Evaluation of all groups, CD3, CD4, CD8 and CD79a stainings were decreased in the experimental groups compared with control group. The apoptotic cells were determined in the all groups on day 90 as a result of the thymus involution. It is noted that there was not any histological and morphological damages in the rats prenatally exposed the bisphenol A. The effect of the bisphenol A is unknown in the future, but there is no problem in the adult rats. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  7. Effects of prenatal brain irradiation as a result of the Chernobyl accident

    International Nuclear Information System (INIS)

    Nyagu, A.I.; Loganovsky, K.N.; Repin, V.S.; Bomko, M.A.; Pott-Born, R.

    2004-01-01

    A cohort of 154 children born between April 26, 1986 and February 26, 1987 to mothers who had been evacuated from Pripyat to Kiev, and 143 classmates from Kiev were examined. Individual dose reconstruction of the children exposed in utero was carried out considering internal and external exposure. Prenatal equivalent brain doses were 19.2 ± 11.3 mSv and 0.8 ± 0.2 mSv for the exposed and control groups, respectively. Thyroid doses in utero were 760.4 ± 631.8.1 mSv and 44.5 ± 43.3 mSv for the exposed and control groups, correspondingly. There were 20 children from Pripyat town (13.2%) who had been exposed in utero to thyroid doses >1 Sv. The prenatally exposed children show significantly more diseases of the nervous system and mental disorders. Among mothers of the exposed group of children with the neuropsychiatric disorders there are much more depression and somatization, as well as mental disorders

  8. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  9. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  10. Long-Term Effects of Prenatal Hypoxia on Schizophrenia-Like Phenotype in Heterozygous Reeler Mice.

    Science.gov (United States)

    Howell, Kristy R; Pillai, Anilkumar

    2016-07-01

    Prenatal hypoxia (PHX) is a well-known environmental factor implicated in the pathophysiology of schizophrenia. However, the long-term effects of PHX on schizophrenia-related neuroplasticity are poorly understood. Using behavioral tasks, MRI imaging, and biochemical studies, we examined the long-term effects of PHX in heterozygous reeler mice (HRM; mice deficient for reelin, a candidate gene for schizophrenia). PHX at E17 failed to induce any significant deficits in prepulse inhibition, spatial memory, anxiety-like behavior, or blood flow in wild type (WT) and HRM at 6 months of age. However, PHX induced a significant increase in frontal cortex volume in WT whereas the higher frontal cortical volume found in HRM was significantly reduced by PHX. A significant decrease in reelin levels was observed in frontal cortex of WT and HRM and hippocampus of HRM following PHX. In addition, PHX induced significant reductions in hypoxia inducible factor-1α (HIF-1α) levels in frontal cortex and hippocampus of HRM. Although no significant effect of PHX was observed in vascular endothelial growth factor (VEGF) protein levels in frontal cortex and hippocampus of WT and HRM, serum VEGF levels were found higher in HRM following PHX. Moreover, glucocorticoid receptor (GR) protein levels were significantly lower in frontal cortex of WT and HRM and hippocampus of HRM following PHX. We found a significant reduction in serum corticosterone levels of PHX-treated WT mice. These findings suggest that future experiments addressing gene-environment interaction in schizophrenia should consider age-dependent effects of the environmental factor, in addition to the specificity of the gene of interest.

  11. p38 MAPK and MMP-9 cooperatively regulate mucus overproduction in mice exposed to acrolein fog.

    Science.gov (United States)

    Liu, Dai-Shun; Wang, Tao; Han, Su-Xia; Dong, Jia-Jia; Liao, Zeng-Lin; He, Guang-Ming; Chen, Lei; Chen, Ya-Juan; Xu, Dan; Hou, Yan; Li, Yan-Ping; Wen, Fu-Qiang

    2009-09-01

    To evaluate the role of p38 mitogen-activated protein kinase (MAPK) on mice airway inflammation, mucus production and the possible cross-talk between p38 MAPK and matrix metalloproteinase-9 (MMP-9) in mucin protein synthesis. Mice were exposed to 4.0 ppm of acrolein for 21 days with daily intraperitoneal injection of SB203580, a specific inhibitor of p38 MAPK. In control mice, sterile saline was administered instead. On days 7 and 21, mice were sacrificed to examine airway inflammation and mucus production by BALF cell counts, cytokine ELISA, and H&E and AB-PAS staining. The mRNA and protein levels of Muc5ac, p38 MAPK and MMP-9 in the lung were determined by RT-PCR, immunohistochemistry and Western blotting analysis. MMP-9 activity was measured by gelatin zymography. Both the numbers of inflammatory cells and mucus-secreting goblet cells were significantly increased in the airways of mice exposed to acrolein as compared to the control mice. Acrolein-increased phosphorylation of p38 MAPK was significantly reduced by SB203580. The airway inflammation and goblet cell hyperplasia after acrolein challenge were also attenuated by SB203580 administration. Moreover, SB203580 treatment decreased the acrolein-induced increase of Muc5ac and MMP-9 expression and MMP-9 activity in airway epithelium. The results indicate an important role of p38 MAPK in acrolein-induced airway inflammation and mucus hypersecretion in mice. The cooperation of p38 and MMP-9 may contribute to the mucin overproduction after inflammatory challenge.

  12. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  13. Prenatal deaths and external malformations caused by x-irradiation during the preimplantation period of ddy mice

    International Nuclear Information System (INIS)

    Ro, Hee Jeong; Choi, Ihl Bhong; Gu, Yeun Wha

    1998-01-01

    To evaluate the effects of x-irradiation on prenatal deaths, i.e., preimplantation deaths. embryonic deaths, and fetal deaths, and on external malformations in precompacted preimplantation ddy mice. Pregnant mice (n=85), obtained by limiting the mating time to from 6 to 9 A.M., were segregated into 11 groups, The first five groups (n=26) were irradiated with X-ray doses of 0.1, 0.5, 0.75, 1.5, and 3 Gy, respectively, at 24 h post conception (p.c.) of the preimplantation period. The second five (n=27) groups were irradiated at the same X-ray doses, respectively, but at 48 h p.c. of the preimplantation period. The last group (n=32) was the control group. The uterine contents were examined on the 18th day of gestation for prenatal deaths and external malformations. 1) A statistically significant increase in preimplantation deaths with increasing dose was observed in the experimental groups irradiated at 24 h p.c. and in the groups irradiated at 48 h p.c., as compared to the control group. The threshold dose was close to 0.05 Gy and 0.075 Gy for the irradiations at 24 h p.c. and 48 h p.c. respectively. 2) A statistically significant increase in embryonic deaths with increasing dose was observed in all irradiation groups, except the group irradiated with a dose of 0,1 Gy at 48 h p.c.. 3) No fetal deaths were found in any experimental group. 4) In the experimental groups irradiated at 24 h p.c., anomalies increased with statistical significance, as compared with the control group: 2 exencephalies, 2 open eyelids,' 3 anophthalmias, 2 cleft palates. 2 gastroschisis, 1 abdominal wall defect. 1 leg defect, and 2 short tail anomalies; the threshold dose for external malformations was close to 0.2 Gy at 24 h p.c.. In the groups irradiated at 48 h p.c., 1 open eyelid and 2 short tail anomalies were observed, but there was no statistical significance in those malformations. The results of this study reveal that x-irradiation of precompacted preimplantation ddy mice causes not

  14. Prenatal zinc prevents communication impairments and BDNF disturbance in a rat model of autism induced by prenatal lipopolysaccharide exposure.

    Science.gov (United States)

    Kirsten, Thiago B; Queiroz-Hazarbassanov, Nicolle; Bernardi, Maria M; Felicio, Luciano F

    2015-06-01

    Aims: Previous investigations by our group have shown that prenatal exposure to lipopolysaccharide (LPS),which mimics infections by Gram-negative bacteria, induced autistic-like behavior. No effective treatment yet exists for autism. Therefore, we used our rat model to test a possible treatment for autism.We selected zinc as the prenatal treatment to prevent or ease the impairments induced by LPS because LPS induces hypozincaemia.Materials and methods:We evaluated the effects of LPS and zinc on female reproductive performance. Communication,which is impaired in autism,was tested in pups by ultrasonic vocalizations. Plasma levels of brain-derived neurotrophic factor (BDNF) were determined because it has been considered an autism important biomarker.Key findings: Prenatal LPS exposure reduced offspring number and treatment with zinc prevented this reduction.Moreover, pups that were prenatally exposed to LPS spent longer periods without calling their mothers, and posttreatment with zinc prevented this impairment induced by LPS to the same levels as controls. Prenatal LPS also increased BDNF levels in adult offspring, and posttreatment with zinc reduced the elevation of BDNF to the same levels as controls.Significance: BDNF hyperactivity was also found in several studies of autistic patients. Together with our previous studies, our model of prenatal LPS induced autistic-like behavioral, brain, and immune disturbances. This suggests that it is a valid rat model of autism. Prenatal zinc prevented reproductive, communication, and BDNF impairments.The present study revealed a potential beneficial effect of prenatal zinc administration for the prevention of autism with regard to the BDNF pathway.

  15. Characterization of intracellular inclusions in the urothelium of mice exposed to inorganic arsenic.

    Science.gov (United States)

    Dodmane, Puttappa R; Arnold, Lora L; Muirhead, David E; Suzuki, Shugo; Yokohira, Masanao; Pennington, Karen L; Dave, Bhavana J; Lu, Xiufen; Le, X Chris; Cohen, Samuel M

    2014-01-01

    Inorganic arsenic (iAs) is a known human carcinogen at high exposures, increasing the incidences of urinary bladder, skin, and lung cancers. In most mammalian species, ingested iAs is excreted mainly through urine primarily as dimethylarsinic acid (DMA(V)). In wild-type (WT) mice, iAs, DMA(V), and dimethylarsinous acid (DMA(III)) exposures induce formation of intramitochondrial urothelial inclusions. Arsenite (iAs(III)) also induced intranuclear inclusions in arsenic (+3 oxidation state) methyltransferase knockout (As3mt KO) mice. The arsenic-induced formation of inclusions in the mouse urothelium was dose and time dependent. The inclusions do not occur in iAs-treated rats and do not appear to be related to arsenic-induced urothelial cytotoxicity. Similar inclusions in exfoliated urothelial cells from humans exposed to iAs have been incorrectly identified as micronuclei. We have characterized the urothelial inclusions using transmission electron microscopy (TEM), DNA-specific 4',6-diamidino-2-phenylindole (DAPI), and non-DNA-specific Giemsa staining and determined the arsenical content. The mouse inclusions stained with Giemsa but not with the DAPI stain. Analysis of urothelial mitochondrial- and nuclear-enriched fractions isolated from WT (C57BL/6) and As3mt KO mice exposed to arsenate (iAs(V)) for 4 weeks showed higher levels of iAs(V) in the treated groups. iAs(III) was the major arsenical present in the enriched nuclear fraction from iAs(V)-treated As3mt KO mice. In conclusion, the urothelial cell inclusions induced by arsenicals appear to serve as a detoxifying sequestration mechanism similar to other metals, and they do not represent micronuclei.

  16. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

    Science.gov (United States)

    Xu, Dan; Luo, Hanwen W; Hu, Wen; Hu, Shuwei W; Yuan, Chao; Wang, Guihua H; Zhang, Li; Yu, Hong; Magdalou, Jacques; Chen, Liaobin B; Wang, Hui

    2018-05-02

    ac and H3K14ac) and expression of HMGCR. This GC-dependent cholesterol metabolism programming effect was sustained through adulthood, leading to the occurrence of hypercholesterolemia.-Xu, D., Luo, H. W., Hu, W., Hu, S. W., Yuan, C., Wang, G. H., Zhang, L., Yu, H., Magdalou, J., Chen, L. B., Wang, H. Intrauterine programming mechanism for hypercholesterolemia in prenatal caffeine-exposed female adult rat offspring.

  17. Transfer of {sup 14}C to prenatal and neonatal rats from their mothers exposed to {sup 14}C compounds by ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, H.; Fuma, S.; Miyamoto, K.; Kuroda, N.; Inaba, J

    2003-07-01

    The transfer of {sup 14}C through placenta or milk was investigated and the radiation dose to fetal and newborn rats was estimated. Female rats at gestational stages or after delivery were exposed to {sup 14}C in the form of sodium bicarbonate, thymidine and lysine by a single ingestion. Radioactivity in maternal tissues and conceptuses (placenta, fetal membrane and fetus) and in the newborn was determined at various times after ingestion. After exposure to these {sup 14}C compounds, there was no significant difference between the {sup 14}C concentration in the fetus and that in the maternal tissues, suggesting that the placenta has no effect in preventing or accelerating the placental transfer of {sup 14}C. The concentration and content of {sup 14}C in the fetus and newborn were, however, dependent on the chemical form of {sup 14}C and on the prenatal or neonatal stage at the time of ingestion. The result of the dose estimation showed that {sup 14}C-lysine gave significantly higher prenatal and neonatal doses than {sup 14}C-sodium bicarbonate or {sup 14}C-thymidine. (author)

  18. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Jensen, K. A.; Nordly, P.

    2008-01-01

    Background: Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether...... exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m(3) DEP (similar to 1.10(6) particles/cm(3); mass median diameter congruent...... to 240 nm) on gestational days 9-19, for 1 h/day. Results: Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed...

  19. The growth and development of Schistosoma mansoni in mice exposed to sublethal doses of radiation

    International Nuclear Information System (INIS)

    Aitken, R.; Wilson, R.A.

    1989-01-01

    The maturation of Schistosoma mansoni was studied in mice exposed to various sublethal doses of radiation. Although the treatment of mice with 500 rads of radiation prior to infection did not alter parasite maturation, doses in excess of 500 rads led to a reduction in worm burden. This could not be attributed to a delay in the arrival of parasites in the hepatic portal system. Worms developing in mice treated with 800 rads commenced egg-laying about 1 wk later than worms in intact mice, and the rate of egg deposition appeared to be lower in irradiated hosts. The data demonstrate that exposure of C57BL/6 mice to doses of radiation in excess of 500 rads impairs their ability to carry infections of S. mansoni. The findings do not support the hypothesis that primary worm burdens in the mouse are controlled by a host immune response

  20. Investigation of genomic instability by assay of DNA fingerprint from the offspring of male mice exposed to chronic low-level γ-radiation

    International Nuclear Information System (INIS)

    Bezlepkin, V.G.; Vasil'eva, G.V.; Lomaeva, M.G.; Sirota, N.P.; Gaziev, A.I.

    2000-01-01

    By polymerase chain reaction with arbitrary primer (AP-PCR), the possibility of transmission of genome instability to somatic cells of the offspring (F 1 generation) from male parents of mice exposed to chronic low-dose γ-radiation was studied. Male mice 15 days after exposure to 10-50 cGy were mated with unirradiated females. Biopsies were taken from tale tips of two month-old mice progeny for DNA separation. Primer in the AP-PCR was 20-mer oligonucleotide flanking the micro-satellite locus Atplb2 on chromosome 11 of the mouse. Comparative analysis of individual fingerprints of AP-PCR products on DNA-templates from the offspring of irradiated and unirradiated male mice revealed an increased variability of micro-satellite-associated sequences in the genome of the offspring of males exposed to 25 and 50 cGy. DNA-fingerprints of the offspring of male mice exposed to chronic irradiation doses 10 and 25 cGy. 15 days before fertilization (at the post-meiotic stage of spermatogenesis) showed an increased frequency of non-parent bands. Result of the study point to the possibility of transmission to the offspring somatic cells of changes increasing genome instability from male parents exposed to chronic low-dose radiation prior to fertilization [ru

  1. Effects of methimepip and JNJ-5207852 in Wistar rats exposed to an open-field with and without object and in Balb/c mice exposed to a radial-arm maze.

    Science.gov (United States)

    Abuhamdah, Rushdie M A; van Rensburg, Ruan; Lethbridge, Natasha L; Ennaceur, Abdel; Chazot, Paul L

    2012-01-01

    The role of the histamine H(3) receptor (H(3)R) in anxiety is controversial, due to limitations in drug selectivity and limited validity of behavioral tests used in previous studies. In the present report, we describe two experiments. In the first one, Wistar rats were treated with an H(3)R agonist (methimepip), and exposed to an open-field. In the second one, Balb/c mice were treated with H(3)R agonist (methimepip) or antagonist (JNJ-5207852), and exposed to an open space 3D maze which is a modified version of the radial-arm maze. C57BL/6J saline treated mice were included for comparisons. When exposed to an empty open field, Wistar rats spent more time in the outer area and made very low number of brief crossings in the central area. However, when an object occupied the central area, rats crossed frequently into and spent a long time in the central area. Administration of a range of different doses of methimepip (selective H(3)R agonist) reduced the entries into the central area with a novel object, indicating enhanced avoidance response. In the 3D maze, both Balb/c and C57BL/6J saline-treated mice crossed frequently onto the bridges that radiate from the central platform but only C57BL/6J mice crossed onto the arms which extend the bridges. This suggests that Balb/c mice are more anxious than C57BL/6J mice. Neither methimepip nor JNJ-5207852 (selective H(3)R antagonist/inverse agonist) induced entry into the arms of the maze, indicative of lack of anxiolytic effects.

  2. Neurotoxicity of low bisphenol A (BPA) exposure for young male mice: Implications for children exposed to environmental levels of BPA

    International Nuclear Information System (INIS)

    Zhou, Yuanxiu; Wang, Zhouyu; Xia, Minghan; Zhuang, Siyi; Gong, Xiaobing; Pan, Jianwen; Li, Chuhua; Fan, Ruifang; Pang, Qihua; Lu, Shaoyou

    2017-01-01

    To investigate the neuron toxicities of low-dose exposure to bisphenol A (BPA) in children, mice were used as an animal model. We examined brain cell damage and the effects of learning and memory ability after BPA exposure in male mice (4 weeks of age) that were divided into four groups and chronically received different BPA treatments for 8 weeks. The comet assay and hippocampal neuron counting were used to detect the brain cell damage. The Y-maze test was applied to test alterations in learning and memory ability. Long term potentiation induction by BPA exposure was performed to study the potential mechanism of performance. The percentages of tail DNA, tail length and tail moment in brain cells increased with increasing BPA exposure concentrations. Significant differences in DNA damage were observed among the groups, including between the low-dose and control groups. In the Y-maze test, the other three groups qualified for the learned standard one day earlier than the high-exposed group. Furthermore, the ratio of qualified mice in the high-exposed group was always the lowest among the groups, indicating that high BPA treatment significantly altered the spatial memory performance of mice. Different BPA treatments exerted different effects on the neuron numbers of different regions in the hippocampus. In the CA1 region, the high-exposed group had a significant decrease in neuron numbers. A non-monotonic relationship was observed between the exposure concentrations and neuron quantity in the CA3 region. The hippocampal slices in the control and medium-exposed groups generated long-term potentiation after induction by theta burst stimulation, but the low-exposed group did not. A significant difference was observed between the control and low-exposed groups. In conclusion, chronic exposure to a low level of BPA had adverse effects on brain cells and altered the learning and memory ability of adolescent mice. - Highlights: • Low dose BPA exposure could lead to DNA

  3. Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls

    DEFF Research Database (Denmark)

    Grandjean, Philippe; Grønlund, Ciea; Kjær, Ina M

    2012-01-01

    to covariate adjustment. In a structural equation model, a doubling in prenatal PCB exposure was associated with a decrease in LH of 6% (p=0.03). Prenatal exposure to PCB and DDE showed weak, non-significant inverse associations with testicular size and Tanner stage. DDE was highly correlated with PCB...

  4. Disease-toxicant interactions in manganese exposed Huntington disease mice: early changes in striatal neuron morphology and dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Jennifer L Madison

    Full Text Available YAC128 Huntington's disease (HD transgenic mice accumulate less manganese (Mn in the striatum relative to wild-type (WT littermates. We hypothesized that Mn and mutant Huntingtin (HTT would exhibit gene-environment interactions at the level of neurochemistry and neuronal morphology. Twelve-week-old WT and YAC128 mice were exposed to MnCl(2-4H(2O (50 mg/kg on days 0, 3 and 6. Striatal medium spiny neuron (MSN morphology, as well as levels of dopamine (DA and its metabolites (which are known to be sensitive to Mn-exposure, were analyzed at 13 weeks (7 days from initial exposure and 16 weeks (28 days from initial exposure. No genotype-dependent differences in MSN morphology were apparent at 13 weeks. But at 16 weeks, a genotype effect was observed in YAC128 mice, manifested by an absence of the wild-type age-dependent increase in dendritic length and branching complexity. In addition, genotype-exposure interaction effects were observed for dendritic complexity measures as a function of distance from the soma, where only YAC128 mice were sensitive to Mn exposure. Furthermore, striatal DA levels were unaltered at 13 weeks by genotype or Mn exposure, but at 16 weeks, both Mn exposure and the HD genotype were associated with quantitatively similar reductions in DA and its metabolites. Interestingly, Mn exposure of YAC128 mice did not further decrease DA or its metabolites versus YAC128 vehicle exposed or Mn exposed WT mice. Taken together, these results demonstrate Mn-HD disease-toxicant interactions at the onset of striatal dendritic neuropathology in YAC128 mice. Our results identify the earliest pathological change in striatum of YAC128 mice as being between 13 to 16 weeks. Finally, we show that mutant HTT suppresses some Mn-dependent changes, such as decreased DA levels, while it exacerbates others, such as dendritic pathology.

  5. Prenatal and postnatal cocaine exposure predict teen cocaine use

    Science.gov (United States)

    Delaney-Black, Virginia; Chiodo, Lisa M.; Hannigan, John H.; Greenwald, Mark K.; Janisse, James; Patterson, Grace; Huestis, Marilyn A.; Partridge, Robert T.; Ager, Joel; Sokol, Robert J.

    2015-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n = 316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. PMID:20609384

  6. Radiation-related small head sizes among prenatally exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Otaki, Masanori; Schull, William J.

    2004-01-01

    The population prenatally exposed to the atomic bombings of Hiroshima and Nagasaki, referred to as the In Utero Clinical Sample, on whom Dosimetry System 1986 doses are available consists of 1566 individuals (1242 in Hiroshima and 324 in Nagasaki). Of these study subjects, 1473 had the circumference of their heads measured at least once between ages 9 to 19. Among these 1473 individuals, 62 had small heads - the circumference of the head was two standard deviations or more below the observed specific age-at-measurement mean. Twenty-six of the 30 cases with severe mental retardation described elsewhere are included among these subjects. Of these 26 severely mentally retarded cases, 15 (58%) had small heads. Most (86%) of the individuals with small heads were exposed in the first or second trimester of pregnancy - 55% in the former period and 31% in the latter. Various dose-response relationships, with and without a threshold, have been fitted to the data grouped by the trimester or postovulatory age (weeks after ovulation) at which exposure occurred. A significant effect of radiation on the frequency of individuals with atypically small heads is observed only in the first and second trimesters and for the intervals postovulation of 0-7 weeks and 8-15 weeks. Although the risk of a small head at 0-7 weeks postovulation increases significantly with increasing dose, no increase in risk for severe mental retardation is noted in this period. No excess risk of a small head was seen in the third trimester or among individuals exposed at ≥ 16 weeks postovulation. The estimated threshold, based either on a linear or a linear-quadratic dose-response relationship, is zero or thereabouts. This apparent absence of a threshold and the somewhat different periods of vulnerability suggest an embryological difference in the development of both a small head and mental retardation. Mean IQ (using the Koga test) and its standard deviation are 63.8 and 8.5, respectively, for the

  7. Augmented atherogenesis in ApoE-null mice co-exposed to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin

    International Nuclear Information System (INIS)

    Shan, Qiuli; Wang, Jing; Huang, Fengchen; Lv, Xiaowen; Ma, Min; Du, Yuguo

    2014-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent organic pollutants found as complex mixtures in the environment throughout the world. Therefore, humans are ubiquitously and simultaneously exposed to TCDD and PCBs. TCDD and PCBs alone have been linked to atherosclerosis. However, the effects of interactions or synergism between TCDD and PCBs on atherogenesis are unknown. We investigated the possible enhanced atherogenesis by co-exposure to TCDD and PCBs and the potential mechanism(s) involved in this enhancement. Male ApoE −/− mice were exposed to TCDD (15 μg/kg) and Aroclor1254 (55 mg/kg, a representative mixture of PCBs) alone or in combination by intraperitoneal injection four times over six weeks of duration. Our results showed that mice exposed to TCDD alone, but not Aroclor1254 alone, developed atherosclerotic lesions. Moreover, we found that atherosclerotic disease was exacerbated to the greatest extent in mice co-exposed to TCDD and Aroclor1254. The enhanced lesions correlated with several pro-atherogenic changes, including a marked increase in the accumulation of the platelet-derived chemokine PF4, and the expression of the proinflammatory cytokine MCP-1 and the critical immunity gene-RIG-I. Our data demonstrated that co-exposure to TCDD and Aroclor1254 markedly enhanced atherogenesis in ApoE −/− mice. Significantly, our observations suggest that combined exposure to TCDD and PCBs may be a greater cardiovascular health risk than previously anticipated from individual studies. - Highlights: • Augmented atherogenesis was found in ApoE −/− mice co-exposed to Aroclor1254 and TCDD. • Enhanced expression of PF4, MCP-1 and RIG-I correlated with augmented lesions. • POPs combination may be a greater cardiovascular health risk than individual POPs

  8. Augmented atherogenesis in ApoE-null mice co-exposed to polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Qiuli [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Wang, Jing, E-mail: avaecn@gmail.com [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Huang, Fengchen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Lv, Xiaowen [Feed Safety Reference Laboratory of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Zhongguancun South Street 12, Beijing 100081 (China); Ma, Min [Laboratory of Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Du, Yuguo [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2014-04-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) are persistent organic pollutants found as complex mixtures in the environment throughout the world. Therefore, humans are ubiquitously and simultaneously exposed to TCDD and PCBs. TCDD and PCBs alone have been linked to atherosclerosis. However, the effects of interactions or synergism between TCDD and PCBs on atherogenesis are unknown. We investigated the possible enhanced atherogenesis by co-exposure to TCDD and PCBs and the potential mechanism(s) involved in this enhancement. Male ApoE{sup −/−} mice were exposed to TCDD (15 μg/kg) and Aroclor1254 (55 mg/kg, a representative mixture of PCBs) alone or in combination by intraperitoneal injection four times over six weeks of duration. Our results showed that mice exposed to TCDD alone, but not Aroclor1254 alone, developed atherosclerotic lesions. Moreover, we found that atherosclerotic disease was exacerbated to the greatest extent in mice co-exposed to TCDD and Aroclor1254. The enhanced lesions correlated with several pro-atherogenic changes, including a marked increase in the accumulation of the platelet-derived chemokine PF4, and the expression of the proinflammatory cytokine MCP-1 and the critical immunity gene-RIG-I. Our data demonstrated that co-exposure to TCDD and Aroclor1254 markedly enhanced atherogenesis in ApoE{sup −/−} mice. Significantly, our observations suggest that combined exposure to TCDD and PCBs may be a greater cardiovascular health risk than previously anticipated from individual studies. - Highlights: • Augmented atherogenesis was found in ApoE{sup −/−} mice co-exposed to Aroclor1254 and TCDD. • Enhanced expression of PF4, MCP-1 and RIG-I correlated with augmented lesions. • POPs combination may be a greater cardiovascular health risk than individual POPs.

  9. Influence of prenatal cocaine exposure on full-term infant neurobehavioral functioning.

    Science.gov (United States)

    Morrow, C E; Bandstra, E S; Anthony, J C; Ofir, A Y; Xue, L; Reyes, M L

    2001-01-01

    This study investigated infant neurobehavioral functioning during the newborn period in 334 full-term, African American neonates (187 cocaine exposed, 147 non-cocaine exposed) enrolled prospectively at birth, with documentation of drug exposure status through maternal interview and urine and meconium toxicology assays. Infants were assessed using the Brazelton Neonatal Behavioral Assessment Scale (BNBAS) during the newborn period (0-6 postnatal days). Findings from multivariate profile analyses support a consistent, modest effect of prenatal cocaine exposure on neurobehavioral functioning in full-term neonates. All of the BNBAS cluster scores, with the exception of abnormal reflexes, were similarly affected, sharing a common slope (D=-0.14; 95% CI=-0.27, -0.003; P=.046) representing a -0.14 point difference between cocaine-exposed and non-cocaine-exposed infants after controlling for prenatal exposure to alcohol, tobacco, and marijuana (ATM); maternal age, education, employment, primigravida status, and prenatal care visits; and infant sex and postnatal age in days. Fetal growth was also related to neurobehavioral functioning and, in part, mediated the relationship between cocaine exposure and the BNBAS cluster scores. Cocaine exposure during each trimester similarly influenced infant neurobehavioral profiles, with cocaine-associated deficits most pronounced in infants with exposure in all three trimesters. Results from qualitative and quantitative urine and meconium bioassay indicators further substantiated these results. Findings, while significant, represent modest effect sizes in full-term infants.

  10. Alteration of cytokine profiles in mice exposed to chronic low-dose ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Suk Chul [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Lee, Kyung-Mi [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kang, Yu Mi [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Kwanghee [Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705 (Korea, Republic of); Kim, Cha Soon; Yang, Kwang Hee; Jin, Young-Woo [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of); Kim, Chong Soon [Department of Nuclear Medicine, Haeundae Paik Hospital, Inje University, Busan 612-030 (Korea, Republic of); Kim, Hee Sun, E-mail: hskimdvm@khnp.co.kr [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703 (Korea, Republic of)

    2010-07-09

    While a high-dose of ionizing radiation is generally harmful and causes damage to living organisms, a low-dose of radiation has been shown to be beneficial in a variety of animal models. To understand the basis for the effect of low-dose radiation in vivo, we examined the cellular and immunological changes evoked in mice exposed to low-dose radiation at very low (0.7 mGy/h) and low (3.95 mGy/h) dose rate for the total dose of 0.2 and 2 Gy, respectively. Mice exposed to low-dose radiation, either at very low- or low-dose rate, demonstrated normal range of body weight and complete blood counts. Likewise, the number and percentage of peripheral lymphocyte populations, CD4{sup +} T, CD8{sup +} T, B, or NK cells, stayed unchanged following irradiation. Nonetheless, the sera from these mice exhibited elevated levels of IL-3, IL-4, leptin, MCP-1, MCP-5, MIP-1{alpha}, thrombopoietin, and VEGF along with slight reduction of IL-12p70, IL-13, IL-17, and IFN-{gamma}. This pattern of cytokine release suggests the stimulation of innate immunity facilitating myeloid differentiation and activation while suppressing pro-inflammatory responses and promoting differentiation of naive T cells into T-helper 2, not T-helper 1, types. Collectively, our data highlight the subtle changes of cytokine milieu by chronic low-dose {gamma}-radiation, which may be associated with the functional benefits observed in various experimental models.

  11. The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia.

    Science.gov (United States)

    Bittle, Jada; Stevens, Hanna E

    2018-02-16

    Maternal stress during pregnancy is associated with an increased risk of psychopathology in offspring. Resident immune cells of the brain, microglia, may be mediators of prenatal stress and altered neurodevelopment. Here, we demonstrate that neither the exogenous pro-inflammatory cytokine, interleukin-1β (IL-1β), nor the glucocorticoid hormone, corticosterone, recapitulated the full effects of prenatal stress on the morphology of microglial cells in the cortical plate of embryonic mice; IL-1β effects showed greater similarity to prenatal stress effects on microglia. Unexpectedly, oil vehicle alone, which has antioxidant properties, moderated the effects of prenatal stress on microglia. Microglia changes with prenatal stress were also sensitive to the antioxidant, N-acetylcysteine, suggesting redox dysregulation as a mechanism of prenatal stress.

  12. Yangjing Capsule Ameliorates Spermatogenesis in Male Mice Exposed to Cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Hongle Zhao

    2015-01-01

    Full Text Available Yangjing capsule (YC, a traditional Chinese compound herbal preparation, has been proven as an effective drug to improve spermatogenesis in clinical practice. However, its pharmacological mechanisms were not fully clarified. This study was designed to investigate the protective effects of YC on spermatogenesis in the mouse model of spermatogenesis dysfunction induced by cyclophosphamide (CP. The administration of YC significantly increased the epididymal index, sperm count, and sperm motility of model mice. Histopathological changes demonstrated that CP caused obvious structural damage to testis, which were reversed by the administration of YC. Results from TUNEL assay showed that treatment with YC dramatically decreased the apoptosis of spermatogenic cell induced by CP. Moreover, YC treatment could inhibit the mRNA and protein expression of Bax to Bcl-2 and also raised expression of AR at both mRNA and protein levels. These data suggest that YC might ameliorate spermatogenesis in male mice exposed to CP through inhibiting the apoptosis of spermatogenic cell and enhancing the actions of testosterone in spermatogenesis.

  13. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.

    Science.gov (United States)

    Lee, Alison; Leon Hsu, Hsiao-Hsien; Mathilda Chiu, Yueh-Hsiu; Bose, Sonali; Rosa, Maria José; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Cohen, Sheldon; Coull, Brent A; Wright, Robert O; Wright, Rosalind J

    2018-05-01

    The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM 2.5 ) and maternal stress and childhood asthma (n = 736). Daily PM 2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE stress and child sex. Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m 3 ] increase in prenatal PM 2.5 level) during which children concomitantly exposed to prenatal PM 2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM 2.5 ). Prenatal PM 2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Prenatal diethylstilbestrol exposure and reproductive hormones in premenopausal women.

    Science.gov (United States)

    Wise, L A; Troisi, R; Hatch, E E; Titus, L J; Rothman, K J; Harlow, B L

    2015-06-01

    Diethylstilbestrol (DES), a synthetic estrogen widely prescribed to pregnant women in the mid-1900s, is a potent endocrine disruptor. Prenatal DES exposure has been associated with reproductive disorders in women, but little is known about its effects on endogenous hormones. We assessed the association between prenatal DES exposure and reproductive hormones among participants from the Harvard Study of Moods and Cycles (HSMC), a longitudinal study of premenopausal women aged 36-45 years from Massachusetts (1995-1999). Prenatal DES exposure was reported at baseline (43 DES exposed and 782 unexposed). Early follicular-phase concentrations of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and estradiol were measured at baseline and every 6 months during 36 months of follow-up. Inhibin B concentrations were measured through 18 months. We used multivariable logistic and repeated-measures linear regression to estimate odds ratios (OR) and percent differences in mean hormone values (β), respectively, comparing DES exposed with unexposed women, adjusted for potential confounders. DES-exposed women had lower mean concentrations of estradiol (pg/ml) (β=-15.6%, 95% confidence interval (CI): -26.5%, -3.2%) and inhibin B (pg/ml) (β=-20.3%, CI: -35.1%, -2.3%), and higher mean concentrations of FSH (IU/I) (β=12.2%, CI: -1.5%, 27.9%) and LH (IU/I) (β=10.4%, CI: -7.2%, 31.3%), than unexposed women. ORs for the association of DES with maximum FSH>10 IU/I and minimum inhibin B<45 pg/ml--indicators of low ovarian reserve--were 1.90 (CI: 0.86, 4.22) and 4.00 (CI: 0.88-18.1), respectively. Prenatal DES exposure was associated with variation in concentrations of FSH, estradiol and inhibin B among women of late reproductive age.

  15. Unpredictable Variable Prenatal Stress Programs Expression of Genes Involved in Appetite Control and Energy Expenditure

    Science.gov (United States)

    Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.

  16. Prenatal and postnatal cocaine exposure predict teen cocaine use.

    Science.gov (United States)

    Delaney-Black, Virginia; Chiodo, Lisa M; Hannigan, John H; Greenwald, Mark K; Janisse, James; Patterson, Grace; Huestis, Marilyn A; Partridge, Robert T; Ager, Joel; Sokol, Robert J

    2011-01-01

    Preclinical studies have identified alterations in cocaine and alcohol self-administration and behavioral responses to pharmacological challenges in adolescent offspring following prenatal exposure. To date, no published human studies have evaluated the relation between prenatal cocaine exposure and postnatal adolescent cocaine use. Human studies of prenatal cocaine-exposed children have also noted an increase in behaviors previously associated with substance use/abuse in teens and young adults, specifically childhood and teen externalizing behaviors, impulsivity, and attention problems. Despite these findings, human research has not addressed prior prenatal exposure as a potential predictor of teen drug use behavior. The purpose of this study was to evaluate the relations between prenatal cocaine exposure and teen cocaine use in a prospective longitudinal cohort (n=316) that permitted extensive control for child, parent and community risk factors. Logistic regression analyses and Structural Equation Modeling revealed that both prenatal exposure and postnatal parent/caregiver cocaine use were uniquely related to teen use of cocaine at age 14 years. Teen cocaine use was also directly predicted by teen community violence exposure and caregiver negativity, and was indirectly related to teen community drug exposure. These data provide further evidence of the importance of prenatal exposure, family and community factors in the intergenerational transmission of teen/young adult substance abuse/use. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Effect of prenatal peroxisome proliferator-activated receptor α (PPARα) agonism on postnatal development

    International Nuclear Information System (INIS)

    Palkar, Prajakta S.; Anderson, Cherie R.; Ferry, Christina H.; Gonzalez, Frank J.; Peters, Jeffrey M.

    2010-01-01

    Recent work indicates that PPARα is required for perfluorooctanoic acid (PFOA)-induced postnatal lethality resulting from prenatal exposure. The present study tested the hypothesis that relatively modest activation of PPARα during prenatal development will cause postnatal lethality, similar to that observed with PFOA, a relatively low affinity PPARα agonist. Female wild-type and Pparα-null mice were mated overnight with males of the same genotype. The presence of a copulatory plug on the morning after mating was indicative of pregnancy and considered gestation day (GD) 0. Plugged female mice were fed either a control diet or one containing clofibrate (0.5%) or Wy-14,643 (0.005%) until GD18 or until parturition. Mice were examined on GD18 or on postnatal day (PND) 20 following the prenatal exposure period. Dietary administration of clofibrate or Wy-14,643 did not affect maternal weight or weight gain, the average number of implantations, the percentage of litter loss, the average number of live/dead fetuses, average crown-rump length, or the average fetal weight on GD18 in either genotype. An increase in relative maternal liver weight and elevated expression of PPARα target genes in maternal and fetal livers on GD18 were observed, indicative of PPARα-dependent changes in both the maternal and fetal compartments. However, no defects in postnatal development were observed by either clofibrate or Wy-14,643 in either genotype by PND20. These results demonstrate that relatively low level activation of PPARα by clofibrate or Wy-14,643 during prenatal development does not cause postnatal lethality.

  18. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang [Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Zhang, Yuanzhen [Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China); Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen 361005 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071 (China)

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by {sup 1}H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal

  19. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally

    International Nuclear Information System (INIS)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-01-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg · d) from gestational days (GD) 11 to 20, or 180 mg/kg · d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose–effect study and on GD11, 14 and 17 in the time–course study were analyzed by 1 H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. - Highlights: • Prenatal caffeine exposure elevated maternal blood glucocorticoid levels. • Prenatal caffeine exposure altered maternal blood metabonomes. • Maternal metabonome

  20. Lifespan studies on different strains of mice exposed chronically to low levels of whole body gamma irradiation

    International Nuclear Information System (INIS)

    Fox, L.A.; Klein, A.K.; Cain, G.R.; Rosenblatt, L.S.

    1982-01-01

    Several strains of mice, chosen for their predisposition to immunohematological disorders, were exposed to low levels of 60 irradiation continuously for four weeks. All individuals were subsequently followed throughout their lifetimes. W/W/sup v/ mice, which are tyically subject to a stem cell deficiency, had a lower cumulative survival rate for the irradiated group than for the unirradiated controls. Irradiated RF/sub j/ mice had a dramatically lower cumulative survival rate than their unirradiated controls. Conversely, BXSB mice, which have a lumphoproliferative autoimmune disorder, had a higher cumulative survival rate after chronic irradiation than did unirradiated BXSBs. Irradiation had no effect upon the survival rate curves of the NZB strain, the murine model for Lupus Erythematosus

  1. NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Hougaard, Karin Sørig

    2012-01-01

    Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) loci in mice are sensitive markers of mutagenic effects o...

  2. Behavioral neurotoxicity in adolescent and adult mice exposed to fenproporex during pregnancy.

    Science.gov (United States)

    Moreira, C Q; Faria, M J S S; Moreira, E G

    2005-08-01

    We investigated the effects of gestational exposure to fenproporex, one of the most used anorectic drugs in Brazil, on the behavior of adolescent and adult pups (30 and 60 days of age, respectively). Pregnant Swiss mice were treated daily, by gavage, with 15 mg/kg of fenproporex chloride or water during the whole gestational period. Male pups were submitted to open-field, forced swimming test, tail suspension test and fenproporex-induced stereotyped behavior. The results demonstrated that gestational exposure to fenproporex induces antidepressant-like effect and decreases fenproporex-induced stereotyped behavior in both adolescent and adult pups. Moreover, fenproporex-exposed adolescent pups tended (P= 0.06) to be more active than control pups. Our data show, for the first time, that gestational exposure to fenproporex leads to long-lasting behavioral toxicity in male mice characteristic of altered dopaminergic transmission.

  3. Brain anomalies in children exposed prenatally to a common organophosphate pesticide

    OpenAIRE

    Rauh, Virginia A.; Perera, Frederica P.; Horton, Megan K.; Whyatt, Robin M.; Bansal, Ravi; Hao, Xuejun; Liu, Jun; Barr, Dana Boyd; Slotkin, Theodore A.; Peterson, Bradley S.

    2012-01-01

    Prenatal exposure to chlorpyrifos (CPF), an organophosphate insecticide, is associated with neurobehavioral deficits in humans and animal models. We investigated associations between CPF exposure and brain morphology using magnetic resonance imaging in 40 children, 5.9–11.2 y, selected from a nonclinical, representative community-based cohort. Twenty high-exposure children (upper tertile of CPF concentrations in umbilical cord blood) were compared with 20 low-exposure children on cortical sur...

  4. Long-lasting neurobehavioral effects of prenatal exposure to xylene in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, S. P.; Simonsen, L.

    1997-01-01

    The persistence of neurobehavioral effects in female rats (Mol:WIST) exposed to 500 ppm technical xylene (dimethylbenzene, GAS-no 1330-20-7) for 6 hours per day on days 7-20 of prenatal development was studied. The dose level was selected so as not to induce maternal toxicity or decreased viabili...... are planned to investigate whether neurobehavioral effects resulting from prenatal xylene exposure can interact with neurophysiological aging processes. (C) 1997 Inter Press, Inc....

  5. Cerebral impact of prenatal irradiation by 131I: an experimental model of clinical neuroradioembryological effects.

    Science.gov (United States)

    Talko, V V; Loganovsky, K M; Drozd, I P; Tukalenko, Ye V; Loganovska, T K; Nechayev, S Yu; Masiuk, S V; Prokhorova, Ye M

    2017-12-01

    Human brain in prenatal period is a most vulnerable to ionizing radiation body structure. Unlike atomic bombings or radiological interventions in healthcare leading at most to external irradiation the intensive internal exposure may occur upon nuclear reactor accidents followed by substantial release and fallout of radioactive 131I. The latter can lead to specific neuroradioembryological effects. To create an experimental model of prenatal cerebral radiation effects of 131I in human and to determine the experimental and clinical neuroradioembryological effects.Study object. The neuroradioembryological effects in Vistar rats exposed to 131I in prenatal period. Nervous system status and mental status in 104 persons exposed to ionizing radiation in utero due to the ChNPP accident and the same in 78 not exposed subjects. Experimental i.e. behavioral techniques, including the spontaneous locomotive, exploratory activity and learning ability assessment, clinical i.e. neuropsychiatric, neuro and psychometric, neuropsychological, neurophys iological methods, both with dosimetric and statistical methods were applied. Intrauterine irradiation of Wistar rats by 131I was simulated on a model of one time oral 27.5 kBq radionu clide administration in the mid gestation period (0.72±0.14 Gy fetal thyroid dose), which provides extrapolation of neuroradioembryological effects in rats to that in humans exposed to intrauterine radiation as a result of the Chornobyl catastrophe. Abnormalities in behavioral reactions and decreased output of conditioned reflex reactions identified in the 10 month old rats suggest a deterioration of cerebral cognition in exposed animals. Specific cog nitive deficit featuring a disharmonic intellectual development through the relatively decreased verbal intelligence versus relative increase of nonverbal one is remained in prenatally exposed persons. This can indicate to dysfunc tion of cortical limbic system with especial involvement of a dominant

  6. Attenuated Effects of Bile Acids on Glucose Metabolism and Insulin Sensitivity in a Male Mouse Model of Prenatal Undernutrition

    NARCIS (Netherlands)

    Ma, Huijuan; Sales, Vicencia M.; Wolf, Ashley R.; Subramanian, Sathish; Matthews, Tucker J.; Chen, Michael; Sharma, Aparna; Gall, Walt; Kulik, Wim; Cohen, David E.; Adachi, Yusuke; Griffin, Nicholas W.; Gordon, Jeffrey I.; Patti, Mary-Elizabeth; Isganaitis, Elvira

    2017-01-01

    Prenatal undernutrition and low birth weight are associated with risk of type 2 diabetes and obesity. Prenatal caloric restriction results in low birth weight, glucose intolerance, obesity, and reduced plasma bile acids (BAs) in offspring mice. Because BAs can regulate systemic metabolism and

  7. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  8. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan P; Jackson-Humbles, Daven N; Buglak, Nicholas; Li, Ning; White, Kaylin; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2017-08-01

    Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2 -/- mice (devoid of T and B cells), and ILC-deficient Rag2 -/- Il2rg -/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.

  9. Pathology of Serially Sacrificed Female B6C3F1 Mice Continuously Exposed to Very Low-Dose-Rate Gamma Rays.

    Science.gov (United States)

    Tanaka, I B; Komura, J; Tanaka, S

    2017-03-01

    We have previously reported on life span shortening as well as increased incidence rates in several neoplasms in B6C3F1 mice that were continuously exposed to 21 mGy/day of gamma rays for 400 days. To clarify whether the life shortening was due to early appearance of neoplasms (shortened latency) or increased promotion/progression, 8-week-old female specific-pathogen-free B6C3F1 mice were gamma-ray irradiated at a low dose rate of 20 mGy/day for 400 days. At 100 days postirradiation, 60-90 mice were sacrificed, and thereafter every 100 days alongside the age-matched nonirradiated controls, for 700 days. Additional groups were allowed to live out their natural life span. Pathological examination was performed on all mice to identify lesions, non-neoplastic and neoplastic, as well as to determine the cause of death. Body weights were significantly increased in irradiated mice from sacrifice days 200-500. Incidence rates for spontaneously occurring non-neoplastic lesions, such as adrenal subcapsular cell hyperplasia, fatty degeneration of the liver, atrophy and tubulostromal hyperplasia of the ovaries, were significantly increased in irradiated mice. Significantly increased incidence rates with no shortening of latency periods were observed in irradiated mice for malignant lymphomas, hepatocellular adenomas/carcinomas, bronchioloalveolar adenomas, harderian gland adenoma/adenocarcinoma. Shortened latencies with significantly increased incidence rates were observed for adrenal subcapsular cell adenomas and ovarian neoplasms (tubulostromal adenoma, granulosa cell tumors) in irradiated mice. Life span shortening in mice exposed to 20 mGy/day was mostly due to malignant lymphomas. Multiple primary neoplasms were significantly increased in mice exposed to 20 mGy/day from sacrifice days 400-700 and in the life span group. Our results confirm that continuous low-dose-rate gamma-ray irradiation of female B6C3F1 mice causes both cancer induction (shortened latency) and

  10. The effects of gut commensal bacteria depletion on mice exposed to acute lethal irradiation

    International Nuclear Information System (INIS)

    Hou Bing; Xu Zhiwei; Zhang Chenggang

    2007-01-01

    The prevention and management of bacterial infection are the mainstays of therapies for irradiation victims. However, worries about adverse effects arise from gut commensal flora depletion owing to the broad-spectrum antibiotics treatment. In the present study, we investigated the effects of gut bacteria depletion on the mice receiving total-body irradiation (TBI) at a single dose of 12 Gy. One group of mice was merely exposed to TBI but was free of antibiotic treatment throughout the experiment, while the other two groups of mice were additionally given broad-spectrum antibiotics, either from 2 weeks before or immediately after irradiation. The survival time of each animal in each group was recorded for analysis. Results showed that the mean survival time of mice was longest in the group without antibiotic treatment and shortest in the group treated with broad-spectrum antibiotics from 2 weeks before TBI. In conclusion, our data suggested that depletion of gut commensal bacteria with broad-spectrum antibiotics seemed deleterious for mammals receiving lethal TBI. (author)

  11. Microstructure and Ultrastructure Alterations in the Pallium of Immature Mice Exposed to Cadmium.

    Science.gov (United States)

    Yang, X F; Han, Q G; Liu, D Y; Zhang, H T; Fan, G Y; Ma, J Y; Wang, Z L

    2016-11-01

    The aim of this study was to investigate microstructure and ultrastructure alterations in the pallium of immature mice exposed to cadmium. Forty immature mice were randomly divided into control, 1/100 LD 50 (1.87 mg/kg, low), 1/50 LD 50 (3.74 mg/kg, medium), and 1/25 LD 50 (7.48 mg/kg, high) dose groups. After oral cadmium exposure for 40 days, the pallium of mice was obtained for microstructure and ultrastructure studies. The results showed that both microstructure and ultrastructure alterations of the pallium were observed in all treated mice and the most obvious alterations were in the high dose group. Microstructural analysis showed seriously congested capillary in the pia mater of the pallium in the high cadmium group. Meanwhile, vacuolar degenerate or karyopyknosis presented in some neurocytes, capillary quantity, and the number of apoptotic cells increased, some neurocytes became hypertrophy, the pia mater separated from the cortex, and local hemorrhage and accompanied inflammatory cell infiltration were also observed. Ultrastructural analysis showed that rough endoplasmic reticulum was expanded, heterochromatin marginalized, perinuclear space distinctly broadened, swelling and vacuolization mitochondria appeared, synapse was swelling, presynaptic and postsynaptic membranes presented fusion, and most of mitochondrial cristae were ambiguous. The results indicated that cadmium exposure for 40 days induced dose-dependent microstructure and ultrastructure alterations in pallium of immature mice.

  12. Prenatal methylmercury exposure hampers glutathione antioxidant system ontogenesis and causes long-lasting oxidative stress in the mouse brain

    International Nuclear Information System (INIS)

    Stringari, James; Nunes, Adriana K.C.; Franco, Jeferson L.; Bohrer, Denise; Garcia, Solange C.; Dafre, Alcir L.; Milatovic, Dejan; Souza, Diogo O.; Rocha, Joao B.T.; Aschner, Michael; Farina, Marcelo

    2008-01-01

    During the perinatal period, the central nervous system (CNS) is extremely sensitive to metals, including methylmercury (MeHg). Although the mechanism(s) associated with MeHg-induced developmental neurotoxicity remains obscure, several studies point to the glutathione (GSH) antioxidant system as an important molecular target for this toxicant. To extend our recent findings of MeHg-induced GSH dyshomeostasis, the present study was designed to assess the developmental profile of the GSH antioxidant system in the mouse brain during the early postnatal period after in utero exposure to MeHg. Pregnant mice were exposed to different doses of MeHg (1, 3 and 10 mg/l, diluted in drinking water, ad libitum) during the gestational period. After delivery, pups were killed at different time points - postnatal days (PND) 1, 11 and 21 - and the whole brain was used for determining biochemical parameters related to the antioxidant GSH system, as well as mercury content and the levels of F 2 -isoprostane. In control animals, cerebral GSH levels significantly increased over time during the early postnatal period; gestational exposure to MeHg caused a dose-dependent inhibition of this developmental event. Cerebral glutathione peroxidase (GPx) and glutathione reductase (GR) activities significantly increased over time during the early postnatal period in control animals; gestational MeHg exposure induced a dose-dependent inhibitory effect on both developmental phenomena. These adverse effects of prenatal MeHg exposure were corroborated by marked increases in cerebral F 2 -isoprostanes levels at all time points. Significant negative correlations were found between F 2 -isoprostanes and GSH, as well as between F 2 -isoprostanes and GPx activity, suggesting that MeHg-induced disruption of the GSH system maturation is related to MeHg-induced increased lipid peroxidation in the pup brain. In utero MeHg exposure also caused a dose-dependent increase in the cerebral levels of mercury at

  13. Prenatal stressors in rodents: Effects on behavior

    Directory of Open Access Journals (Sweden)

    Marta Weinstock

    2017-02-01

    Full Text Available The current review focuses on studies in rodents published since 2008 and explores possible reasons for any differences they report in the effects of gestational stress on various types of behavior in the offspring. An abundance of experimental data shows that different maternal stressors in rodents can replicate some of the abnormalities in offspring behavior observed in humans. These include, anxiety, in juvenile and adult rats and mice, assessed in the elevated plus maze and open field tests and depression, detected in the forced swim and sucrose-preference tests. Deficits were reported in social interaction that is suggestive of pathology associated with schizophrenia, and in spatial learning and memory in adult rats in the Morris water maze test, but in most studies only males were tested. There were too few studies on the novel object recognition test at different inter-trial intervals to enable a conclusion about the effect of prenatal stress and whether any deficits are more prevalent in males. Among hippocampal glutamate receptors, NR2B was the only subtype consistently reduced in association with learning deficits. However, like in humans with schizophrenia and depression, prenatal stress lowered hippocampal levels of BDNF, which were closely correlated with decreases in hippocampal long-term potentiation. In mice, down-regulation of BDNF appeared to occur through the action of gene-methylating enzymes that are already increased above controls in prenatally-stressed neonates. In conclusion, the data obtained so far from experiments in rodents lend support to a physiological basis for the neurodevelopmental hypothesis of schizophrenia and depression.

  14. Moral maturity and delinquency after prenatal alcohol exposure.

    Science.gov (United States)

    Schonfeld, Amy M; Mattson, Sarah N; Riley, Edward P

    2005-07-01

    Prenatal exposure to alcohol is associated with cognitive, behavioral and social deficits, including delinquency. Although delinquent populations and those with intellectual and behavioral deficits exhibit impaired moral judgment and reasoning, this area remains unexplored in alcohol-exposed individuals. Moral maturity and delinquency were evaluated in 27 participants with prenatal alcohol exposure (ALC group) and 29 nonexposed controls (CON group) matched on age (range: 10-18), gender, handedness, socioeconomic status and ethnicity. Moral maturity was evaluated using the Sociomoral Reflection Measure-Short Form, and delinquency was evaluated with the Conduct Disorder (CD) Questionnaire. Additional measures included social desirability and inhibition. The ALC group performed at a lower level of moral maturity than the CON group. Whereas Verbal IQ primarily predicted this difference, a deficit on the moral value judgment having to do with relationships with others was specific to prenatal alcohol exposure. Furthermore, delinquency was higher in the ALC group, and specific sociomoral values were predictive of delinquent behavior. Finally, half of the children and adolescents with a history of prenatal alcohol exposure but without fetal alcohol syndrome had probable CD. The results of this study indicate that interventions aimed at reducing delinquency in those with prenatal alcohol exposure are necessary, and targeting moral judgment for this purpose may be beneficial.

  15. Learning disabilities and intellectual functioning in school-aged children with prenatal cocaine exposure.

    Science.gov (United States)

    Morrow, Connie E; Culbertson, Jan L; Accornero, Veronica H; Xue, Lihua; Anthony, James C; Bandstra, Emmalee S

    2006-01-01

    Risk for developing a learning disability (LD) or impaired intellectual functioning by age 7 was assessed in full-term children with prenatal cocaine exposure drawn from a cohort of 476 children born full term and enrolled prospectively at birth. Intellectual functioning was assessed using the Wechsler Intelligence Scale for Children-Third Edition (Wechsler, 1991) short form, and academic functioning was assessed using the Wechsler Individual Achievement Test (WIAT; Wechsler, 1993) Screener by examiners blind to exposure status. LDs were categorized based on ability-achievement discrepancy scores, using the regression-based predicted achievement method described in the WIAT manual. The sample in this report included 409 children (212 cocaine-exposed, 197 non-cocaine-exposed) from the birth cohort with available data. Cumulative incidence proportions and relative risk values were estimated using STATA software (Statacorp, 2003). No differences were found in the estimate of relative risk for impaired intellectual functioning (IQ below 70) between children with and without prenatal cocaine exposure (estimated relative risk = .95; 95% confidence interval [CI] = 0.65, 1.39; p = .79). The cocaine-exposed children had 2.8 times greater risk of developing a LD by age 7 than non-cocaine-exposed children (95% CI = 1.05, 7.67; p = .038; IQ >/= 70 cutoff). Results remained stable with adjustment for multiple child and caregiver covariates, suggesting that children with prenatal cocaine exposure are at increased risk for developing a learning disability by age 7 when compared to their non-cocaine-exposed peers.

  16. Spermaturia and serum hormone concentrations at the age of puberty in boys prenatally exposed to polychlorinated biphenyls

    DEFF Research Database (Denmark)

    Mol, Nanette M; Sørensen, Nicolina; Weihe, Pal

    2002-01-01

    To determine whether prenatal exposure to polychlorinated biphenyls (PCBs) with possible hormone-disrupting effects is capable of affecting sexual differentiation in boys at the age of puberty.......To determine whether prenatal exposure to polychlorinated biphenyls (PCBs) with possible hormone-disrupting effects is capable of affecting sexual differentiation in boys at the age of puberty....

  17. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body. gamma. irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-11-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body ..gamma.. irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice.

  18. Effect of intestinal microflora on the survival time of mice exposed to lethal whole-body γ irradiation

    International Nuclear Information System (INIS)

    Onoue, M.; Uchida, K.; Yokokura, T.; Takahashi, T.; Mutai, M.

    1981-01-01

    The effect of intestinal microflora on the survival time of mice exposed to 2-kR whole-body γ irradiation was studied using germfree, monoassociated, and conventionalized ICR mice. The germfree mice were monoassociated with 1 of 11 bacterial strains, which were isolated from the fresh feces of conventional mice, 2 weeks prior to irradiation. All mice died within 3 weeks after irradiation. Monoassociation with Fusobacterium sp., Streptococcus faecalis, Escherichia coli, or Pseudomonas sp. significantly reduced the mean survival time compared to that of germfree mice. In contrast, monoassociation with Clostridium sp., Bifidobacterium pseudolongum, or Lactobacillus acidophilus significantly prolonged the mean survival time compared to that of germfree mice. This suggests that the latter organisms may perform some activity to protect the mice from radiation injury. In this histopathological autopsy examination, the main lesions were hypocellularity in hematopoietic organs and hemorrhage in various organs. Neither karyorrhexis nor desquamation of intestinal mucosal cells was observed in any mice. From these observations, it is suggested that the death of these mice was related to hematopoietic damage. Bacterial invasion into various organs was observed in conventionalized and Pseudomonas-, E. coli-, or S. faecalis-monoassociated mice but not in Clostridium-, B. pseudolongum-, L. acidophilus-, or Fusobacterium-monoassociated mice

  19. Association of prenatal phenobarbital and phenytoin exposure with small head size at birth and with learning problems

    NARCIS (Netherlands)

    Dessens, A. B.; Cohen-Kettenis, P. T.; Mellenbergh, G. J.; Koppe, J. G.; van de Poll, N. E.; Boer, K.

    2000-01-01

    Small head size has been observed in prenatally anticonvulsant-exposed neonates. In infancy, cognitive impairments were revealed. It is presently unknown whether these impairments are permanent or disappear after puberty. We studied the link between the prenatal influence of anticonvulsants on brain

  20. Prenatal exposure to antiepileptic drugs and dental agenesis.

    Directory of Open Access Journals (Sweden)

    Pernille E Jacobsen

    Full Text Available OBJECTIVE: The aim of the study was to investigate the association between prenatal exposure to AEDs and the risk of dental agenesis and to differentiate between the possible effects of the different drugs used. METHODS: Data on 214 exposed and 255 unexposed children, aged 12-18 years, were extracted from the Prescription Database of the Central Denmark Region and North Denmark Region and the Danish Medical Birth Registry. The children's dental charts were examined for the presence of dental agenesis. RESULTS: Overall, children exposed to AED in utero had an increased risk of developing dental agenesis, but as a group, the difference was not significant (OR = 1.7; [95% CI: 0.8-3.6]. The risk of developing dental agenesis was three-fold increased (OR = 3.1; [95% CI: 1.3-7.4] in children exposed to valproate in mono- or in poly-therapy with other AEDs than carbamazepine or oxcarbazepine. The risk was further increased (OR = 11.2; [95% CI: 2.4-51.9] in children exposed to valproate and carbamazepine or oxcarbazepine in combination. CONCLUSIONS: The present study shows that dental agenesis is a potential congenital abnormality that is related to prenatal exposure to valproate, and dental agenesis may be considered a sensitive marker for the teratogenicity of valproate.

  1. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    Science.gov (United States)

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  2. Impact of low dose prenatal ethanol exposure on glucose homeostasis in Sprague-Dawley rats aged up to eight months.

    Directory of Open Access Journals (Sweden)

    Megan E Probyn

    Full Text Available Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring's health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure.

  3. Short-term social memory deficits in adult female mice exposed to tannery effluent and possible mechanism of action.

    Science.gov (United States)

    Estrela, Fernanda Neves; Rabelo, Letícia Martins; Vaz, Boniek Gontijo; de Oliveira Costa, Denys Ribeiro; Pereira, Igor; de Lima Rodrigues, Aline Sueli; Malafaia, Guilherme

    2017-10-01

    The accumulated organic residues in tannery-plant courtyards are an eating attraction to small rodents; however, the contact of these animals with these residues may change their social behavior. Thus, the aim of the present study is to investigate whether the exposure to tannery effluent (TE) can damage the social recognition memory of female Swiss mice, as well as to assess whether vitamin C supplementation could provide information about how TE constituents can damage these animals' memory. We have observed that resident females exposed to TE (without vitamin supplementation) did not explore the anogenital region, their body or chased intruding females for shorter time or with lower frequency during the retest session of the social recognition test, fact that indicates social recognition memory deficit in these animals. Such finding is reinforced by the confirmation that there was no change in the animals' olfactory function during the buried food test, or locomotor changes in females exposed to the pollutant. Since no behavioral change was observed in the females exposed to TE and treated with vitamin C (before or after the exposure), it is possible saying that these social cognitive impairments seem to be directly related to the imbalance between the cellular production of reactive oxygen species and the counteracting antioxidant mechanisms (oxidative stress) in female mice exposed to the pollutant (without vitamin supplementation). Therefore, the present study evidences that the direct contact with tannery effluent, even for a short period-of-time, may cause short-term social memory deficits in adult female Swiss mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Prenatal cadmium exposure dysregulates sonic hedgehog and Wnt/β-catenin signaling in the thymus resulting in altered thymocyte development

    International Nuclear Information System (INIS)

    Hanson, Miranda L.; Brundage, Kathleen M.; Schafer, Rosana; Tou, Janet C.; Barnett, John B.

    2010-01-01

    Cadmium (Cd) is both an environmental pollutant and a component of cigarette smoke. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports in the literature of immunomodulatory effects of prenatal exposure to Cd. The sonic hedgehog (Shh) and Wnt/β-catenin pathways are required for thymocyte maturation. Several studies have demonstrated that Cd exposure affects these pathways in different organ systems. This study was designed to investigate the effect of prenatal Cd exposure on thymocyte development, and to determine if these effects were linked to dysregulation of Shh and Wnt/β-catenin pathways. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose (10 ppm) of Cd throughout pregnancy and effects on the thymus were assessed on the day of birth. Thymocyte phenotype was determined by flow cytometry. A Gli:luciferase reporter cell line was used to measure Shh signaling. Transcription of target genes and translation of key components of both signaling pathways were assessed using real-time RT-PCR and western blot, respectively. Prenatal Cd exposure increased the number of CD4 + cells and a subpopulation of double-negative cells (DN; CD4 - CD8 - ), DN4 (CD44 - CD25 - ). Shh and Wnt/β-catenin signaling were both decreased in the thymus. Target genes of Shh (Patched1 and Gli1) and Wnt/β-catenin (c-fos, and c-myc) were affected differentially among thymocyte subpopulations. These findings suggest that prenatal exposure to Cd dysregulates two signaling pathways in the thymus, resulting in altered thymocyte development.

  5. Moderate Level Alcohol During Pregnancy, Prenatal Stress, or Both and Limbic-Hypothalamic-Pituitary-Adrenocortical Axis Response to Stress in Rhesus Monkeys

    Science.gov (United States)

    Schneider, Mary L.; Moore, Colleen F.; Kraemer, Gary W.

    2004-01-01

    This study examined the relationship between moderate-level prenatal alcohol exposure, prenatal stress, and postnatal response to a challenging event in 6-month-old rhesus monkeys. Forty-one rhesus monkey (Macaca mulatta) infants were exposed prenatally to moderate level alcohol, maternal stress, or both. Offspring plasma cortisol and…

  6. Hematopoietic effects of early and long terms of rhG-CSF in mice exposed to 6.5 Gy irradiation

    International Nuclear Information System (INIS)

    Cong Yuwen; Mao Bingzhi; Luo Qingliang; Dong Bo; Chen Huipeng

    1996-01-01

    In order to evaluate the long-term protective effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on hematopoiesis after a second irradiation, different doses of rhG-CSF were given to 6.5 Gy 60 Co γ-ray irradiated C 57 BL/6 mice. When the peripheral blood cells recovered to normal level, the survived mice were exposed to a second dose of radiation exactly the same as the first one. It was showed that peripheral WBC, RBC and platelet counts recovered much quicker in the mice treated with the factor after irradiation and the effect was dependent on the dose of rhG-CSF. In the survived mice exposed to a second dose of γ-rays 45 days after the first irradiation, as compared with the control, the recovery of peripheral blood cell counts was evidently accelerated and the survival rate was markedly elevated. These results not only demonstrate that the recovery of hematopoiesis in the irradiated mice could be accelerated after the administration of rhG-CSF but also suggest that early administration of the factor could produce a long-term protective effect on the hematopoietic function against a second irradiation given 45 days later

  7. Predictors of Inadequate Prenatal Care in Methamphetamine-Using Mothers in New Zealand and the United States

    Science.gov (United States)

    LaGasse, Linda L.; Wouldes, Trecia A.; Arria, Amelia M.; Wilcox, Tara; Derauf, Chris; Newman, Elana; Shah, Rizwan; Smith, Lynne M.; Neal, Charles R.; Huestis, Marilyn A.; DellaGrotta, Sheri; Lester, Barry M.

    2013-01-01

    This study compared patterns of prenatal care among mothers who used methamphetamine (MA) during pregnancy and non-using mothers in the US and New Zealand (NZ), and evaluated associations among maternal drug use, child protective services (CPS) referral, and inadequate prenatal care in both countries. The sample consisted of 182 mothers in the MA-Exposed and 196 in the Comparison groups in the US, and 107 mothers in the MA-Exposed and 112 in the Comparison groups in NZ. Positive toxicology results and/or maternal report of MA use during pregnancy were used to identify MA use. Information about sociodemographics, prenatal care and prenatal substance use was collected by maternal interview. MA-use during pregnancy is associated with lower socio-economic status, single marital status, and CPS referral in both NZ and the US. Compared to their non-using counterparts, MA-using mothers in the US had significantly higher rates of inadequate prenatal care. No association was found between inadequate care and MA-use in NZ. In the US, inadequate prenatal care was associated with CPS referral, but not in NZ. Referral to CPS for drug use only composed 40 % of all referrals in the US, but only 15 % of referrals in NZ. In our study population, prenatal MA-use and CPS referral eclipse maternal sociodemographics in explanatory power for inadequate prenatal care. The predominant effect of CPS referral in the US is especially interesting, and should encourage further research on whether the US policy of mandatory reporting discourages drug-using mothers from seeking antenatal care. PMID:22588827

  8. Brain damage among the prenatally exposed

    International Nuclear Information System (INIS)

    Otake, Masanori; Schull, W.J.; Yoshimaru, Hiroshi.

    1991-01-01

    Significant effects on the developing brain of exposure to ionizing radiation are seen among those individuals exposed in the 8th through the 25th week after fertilization. These effects, particularly in the most sensitive period, 8-15 weeks after fertilization, manifest themselves as an increased frequency of severe mental retardation (SMR), a diminution in IQ score and in school performance, and an increase in the occurrence of seizures. Of 30 SMR cases, 18 (60%) had small heads. About 10% of the individuals with small head sizes observed among the in utero clinical sample were mentally retarded. When all of the cases of mental retardation are included in the analysis, a linear dose-response model fits the data adequately and no evidence of a threshold emerges; however, if the two probable nonradiation-related cases of Down's syndrome are excluded from the 19 SMR cases exposed 8-15 weeks after fertilization, the evidence of a threshold is stronger. The 95% lower bound of the threshold based on the new dosimetry system appears to be in the range of 0.12-0.23 Gy. In the 16-25 week period, the 95% lower bound of the threshold is 0.21 Gy both with and without inclusion of two probable nonradiation-related retarded cases. In a regression analysis of IQ scores and school performance data, a greater linearity is suggested with the new dosimetry (DS86) than with the old (T65DR), but the mean IQ score and the mean school performance of those exposed in utero to doses under 0.10 Gy are similar, and not statistically different from the means in the control group. The risk ratios for unprovoked seizures, following exposure during the 8th through the 15th week after fertilization, are 4.4 (90% confidence interval: 0.5-40.9) after 0.10-0.49 Gy and 24.9 (4.1-191.6) after 0.50 Gy or more when the mentally retarded are included and 4.4 (0.5-40.9) and 14.5 (0.4-199.6), respectively, when they are excluded. (author)

  9. Early life disease programming during the preconception and prenatal period: making the link between stressful life events and type-1 diabetes.

    Directory of Open Access Journals (Sweden)

    Jasveer Virk

    Full Text Available BACKGROUND: To assess the risk of developing Type-1 diabetes among children who were exposed to maternal bereavement during the prenatal or 1-year preconception period. METHODS: We identified N = 1,548,746 singleton births born in Denmark between January 1(st 1979 through December 31(st 2004, and their next of kin. Altogether, 39,857 children were exposed to bereavement during their prenatal life. The main outcome of interest was hospitalization for type-1 diabetes (ICD 8: 249; ICD 10: E10. RESULTS: We found the strongest association for type-1 diabetes among children exposed to traumatic father or sibling deaths (aIRR: 2.03, 1.22-3.38; the association was mainly seen for girls (aIRR: 2.91, 1.61-5.26. CONCLUSIONS: We found evidence to suggest that female fetuses exposed to severe prenatal stress are at increased risk for developing type-1 diabetes.

  10. Long-term effects of prenatal x-ray of human females: reproductive experience

    International Nuclear Information System (INIS)

    Meyer, M.B.; Tonascia, J.

    1981-01-01

    A cohort of singleton black human females exposed to diagnostic x-ray in utero and controls matched by parity, hospital of birth and birthdate have been followed to ages 25 to 30 years in Baltimore, Maryland. The search for possible effects of prenatal irradiation has focused on health, growth, development, and reproductive experience of exposed and control women. This paper reports findings related to reproductive experience. From an original data set of 1458 matched exposed-control pairs of women, questionnaire responses were received from 1109 exposed and 1124 control women including 852 each from pairs in which both the exposed and control woman responded. After careful search for alternative explanations of the findings, the authors concluded that females exposed in utero to low doses of x-ray (probably 1 to 5 rads) had significant increases in their rates of early onset of menses, births at age 15 years or less, numbers of living children, stillbirths, and sterilizing operations by their mid-twenties. These findings are compatible with animal studies in which prenatal irradiation kills many oocytes, but accelerates the development of remaining cells to stages more closely correlated with fertility. Although these animals subsequently became sterile, this cannot be tested in the current study because significantly more of the irradiated women have had surgical sterilizations

  11. Non-Coding Transcript Heterogeneity in Mesothelioma: Insights from Asbestos-Exposed Mice.

    Science.gov (United States)

    Felley-Bosco, Emanuela; Rehrauer, Hubert

    2018-04-11

    Mesothelioma is an aggressive, rapidly fatal cancer and a better understanding of its molecular heterogeneity may help with making more efficient therapeutic strategies. Non-coding RNAs represent a larger part of the transcriptome but their contribution to diseases is not fully understood yet. We used recently obtained RNA-seq data from asbestos-exposed mice and performed data mining of publicly available datasets in order to evaluate how non-coding RNA contribute to mesothelioma heterogeneity. Nine non-coding RNAs are specifically elevated in mesothelioma tumors and contribute to human mesothelioma heterogeneity. Because some of them have known oncogenic properties, this study supports the concept of non-coding RNAs as cancer progenitor genes.

  12. Effects of prenatal exposure to toluene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hougaard, K. S.; Hass, Ulla; Lund, S. P.

    1999-01-01

    Development and neurobehavioral effects of prenatal exposure to toluene (CAS 108-88-3) were studied after exposing pregnant rats (Mol:WIST) to 1800 ppm of the solvent for 6 h daily on days 7-20 of gestation. Body weights of exposed offspring were lower until day 10 after parturition. Neurobehavio...

  13. Can prenatal social stress impact sex characteristics in piglets?

    Science.gov (United States)

    Prenatal stress (PNS) alters sex traits in rodents by androgenizing offspring resulting in reduced reproduction. In production, gestating sows are often exposed to social stress of mixing. This study examined if mixing gestating sows alters sexual development in piglets. At 34 ± 10 d of gestation, 6...

  14. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    Science.gov (United States)

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  15. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Prenatal exposure to bereavement and type-2 diabetes: a Danish longitudinal population based study.

    Directory of Open Access Journals (Sweden)

    Jasveer Virk

    Full Text Available BACKGROUND: The etiology of type-2 diabetes is only partly known, and a possible role of prenatal stress in programming offspring for insulin resistance has been suggested by animal models. Previously, we found an association between prenatal stress and type-1 diabetes. Here we examine the association between prenatal exposure to maternal bereavement during preconception and pregnancy and development of type-2 diabetes in the off-spring. METHODS: We utilized data from the Danish Civil Registration System to identify singleton births in Denmark born January 1(st 1979 through December 31(st 2008 (N = 1,878,246, and linked them to their parents, grandparents, and siblings. We categorized children as exposed to bereavement during prenatal life if their mothers lost an elder child, husband or parent during the period from one year before conception to the child's birth. We identified 45,302 children exposed to maternal bereavement; the remaining children were included in the unexposed cohort. The outcome of interest was diagnosis of type-2 diabetes. We estimated incidence rate ratios (IRRs from birth using log-linear poisson regression models and used person-years as the offset variable. All models were adjusted for maternal residence, income, education, marital status, sibling order, calendar year, sex, and parents' history of diabetes at the time of pregnancy. RESULTS: We found children exposed to bereavement during their prenatal life were more likely to have a type-2 diabetes diagnosis later in life (aIRR: 1.31, 1.01-1.69. These findings were most pronounced when bereavement was caused by death of an elder child (aIRR: 1.51, 0.94-2.44. Results also indicated the second trimester of pregnancy to be the most sensitive period of bereavement exposure (aIRR:2.08, 1.15-3.76. CONCLUSIONS: Our data suggests that fetal exposure to maternal bereavement during preconception and the prenatal period may increase the risk for developing type-2 diabetes in

  17. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    Science.gov (United States)

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P exercise training (P smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P exercise training (P smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  18. Prenatal effects of ancestral irradiation in inbred mice

    International Nuclear Information System (INIS)

    Sprackling, L.E.S.

    1975-01-01

    Mice from 13 inbred strains (S, Z, E, Bab, BaB, BrR, C, K, N, Q, G, CFW, CF1) received continuous cobalt 60 irradiation at low dose rates for varying numbers of consecutive generations. Some Bab and BaB mice had received continuous irradiation for from 24 to 31 generations and the other mice had up to six generations of continuous irradiation in their ancestry. At weaning, the mice were removed from the irradiation room and were mated within strains either to sibs or nonsibs. Ancestral and direct irradiation doses were calculated. The ancestral dose was the effective accumulated dose to the progeny of the mated mice. The direct dose was the amount of irradiation received by any mated female from her conception to her weaning. Each irradiated or control female was scored as fertile or sterile and in utero litter counts were made in pregnant females that were dissected past the tenth day of pregnancy; the sum of moles, dead embryos, and live embryos was the total in utero litter size. A ratio of the living embryos to the total number of embryos in utero was determined for each litter. An increase in ancestral or direct irradiation dose significantly decreased fertility in 11 of the 13 strains. The fertility curves for the pooled data were sigmoid in the area of the doses below those that caused complete sterility. Among the controls, there were significant strain differences in total litter size and in the ratio. Strain X--Y plots, with ancestral or direct doses plotted against total litter size or ratio, revealed the tendency for litter size to decrease as dose increased. The only trend shown for ratio was for the litters with ratios of 0.50 or less to appear more frequently among the irradiated mice. The few corpora lutea counts revealed nothing of significance. Generally, there was a definite trend toward fewer mice alive in utero among the irradiated mice

  19. Effect of Bidens pilosa extract on renal functions and some tumor markers of Ehrlich Ascites Carcinoma bearing mice exposed to γ-radiation

    International Nuclear Information System (INIS)

    El-Kabany, H.; Ibrahim, S.I.

    2013-01-01

    The Ethanolic extract of Bidens pilosa (EtBP) was tested in Swiss albino mice transplanted with Ehrlich ascites carcinoma (EAC) and exposed to γ-radiation. EAC mice received intraperitoneal (i.p) 250 mg/kg body weight EtBP for nine days , 24hr after tumor inoculation. Mice exposed to 4 Gy γ-radiation 30 min after the first dose of EtBP. Seventy female mice were classified into 6 groups (15 mice in each group) as follows, control, mice treated with EtBP for 9 consecutive days, mice bearing EAC cells, EAC bearing mice treated with EtBP, 24 hour after tumor inoculation, EAC bearing mice and irradiated, and EAC bearing mice treated with EtBP and exposed to γ-radiation. Five animals from each group were sacrificed 18 hr after administration of the last EtBP dose. Blood and ascetic fluid were collected and kidneys were removed for biochemical and histopathological studies. The remaining animals were observed daily for recording survival percentage and body weight. Results showed that treatment of EAC bearing mice with EtBP and/or exposure to γ- radiation increased the survival percentage of the animals and decreased their body weight compared to EAC group. Inoculation of mice with EAC cells resulted in biochemical and histopathological changes leading to kidney damage. Animals of EAC bearing mice with EtBP and /or exposure to γ- radiation significantly restored the elevated levels of serum urea and creatinine, tumor necrosis factor-alpha (TNF-α), metalo matrix protein (mmp-2 and mmp9), also the elevated level of lipid peroxidation (MDA) in kidneys tissue, compared to EAC group. On the other hand, a significantly decline was observed in glutathione (GSH) and super oxide dismutase (SOD) contents in kidney tissue of EAC group. Treatment of EAC bearing mice with EtBP and/or exposure to γ-radiation resulted in increase GSH and SOD in kidney tissue and increased caspase-3 in ascetic fluid, comparing to EAC group. It could be concluded that EtBP through its antioxidant

  20. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice

    OpenAIRE

    Balsevich, G.; Baumann, V.; Uribe, A.; Chen, A.; Schmidt, M.

    2016-01-01

    Background: There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. Methods: We used a mouse...

  1. Prenatal androgenization of female mice programs an increase in firing activity of gonadotropin-releasing hormone (GnRH) neurons that is reversed by metformin treatment in adulthood.

    Science.gov (United States)

    Roland, Alison V; Moenter, Suzanne M

    2011-02-01

    Prenatal androgenization (PNA) of female mice with dihydrotestosterone programs reproductive dysfunction in adulthood, characterized by elevated luteinizing hormone levels, irregular estrous cycles, and central abnormalities. Here, we evaluated activity of GnRH neurons from PNA mice and the effects of in vivo treatment with metformin, an activator of AMP-activated protein kinase (AMPK) that is commonly used to treat the fertility disorder polycystic ovary syndrome. Estrous cycles were monitored in PNA and control mice before and after metformin administration. Before metformin, cycles were longer in PNA mice and percent time in estrus lower; metformin normalized cycles in PNA mice. Extracellular recordings were used to monitor GnRH neuron firing activity in brain slices from diestrous mice. Firing rate was higher and quiescence lower in GnRH neurons from PNA mice, demonstrating increased GnRH neuron activity. Metformin treatment of PNA mice restored firing activity and LH to control levels. To assess whether AMPK activation contributed to the metformin-induced reduction in GnRH neuron activity, the AMPK antagonist compound C was acutely applied to cells. Compound C stimulated cells from metformin-treated, but not untreated, mice, suggesting that AMPK was activated in GnRH neurons, or afferent neurons, in the former group. GnRH neurons from metformin-treated mice also showed a reduced inhibitory response to low glucose. These studies indicate that PNA causes enhanced firing activity of GnRH neurons and elevated LH that are reversible by metformin, raising the possibility that central AMPK activation by metformin may play a role in its restoration of reproductive cycles in polycystic ovary syndrome.

  2. Prenatal exposure to anticonvulsant drugs and spatial ability in adulthood

    NARCIS (Netherlands)

    Dessens, A.; Cohen-Kettenis, P.; Mellenbergh, G.; van de Poll, N.; Koppe, J.; Boer, K.

    1998-01-01

    By disturbing steroid hormone balances in the fetus, the anticonvulsant drugs phenobarbital and phenytoin may affect certain aspects of cognitive functioning. In order to test this hypothesis, we studied hormone related cognitive functioning in 72 men and 75 women who had been prenatally exposed to

  3. Effects of prenatal exposure to low-dose β radiation from tritiated water on the neutrobehavior of mice

    International Nuclear Information System (INIS)

    Wang Bing; Zhou Xiangyan.

    1995-01-01

    Pregnant adult C57BL/6J mice, randomly assigned to 1 of 4 groups, 3 of them were irradiated with β-rays from tritiated water (HTO) by a single intraperitoneal injection on the 12.5th day of gestation. Their offspring received cumulative doses of 0, 5, 10 or 30 cGy in utero. Male pups were trained and examined using a set of behavioral tests that included avoidance acquisition and avoidance maintenance, open field test, hole-board dipping, a water maze, and a food labyrinth. Results were found for most parameters in the 10 and 30 cGy groups that differed significantly from results for the controls, indicating that the behavioral teratogenic effect of prenatal exposure to chronic β-ray radiation from HTO may be greater than the same dose of acute X- or γ-irradiation and that 10 cGy may be the lowest detectable dose level at which behavioral changes is detectable under the conditions used in this experiment. (author) 56 refs

  4. Effects of prenatal exposure to low-dose {beta} radiation from tritiated water on the neutrobehavior of mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing [Tokyo Univ. (Japan). Faculty of Science; Zhou Xiangyan

    1995-06-01

    Pregnant adult C57BL/6J mice, randomly assigned to 1 of 4 groups, 3 of them were irradiated with {beta}-rays from tritiated water (HTO) by a single intraperitoneal injection on the 12.5th day of gestation. Their offspring received cumulative doses of 0, 5, 10 or 30 cGy in utero. Male pups were trained and examined using a set of behavioral tests that included avoidance acquisition and avoidance maintenance, open field test, hole-board dipping, a water maze, and a food labyrinth. Results were found for most parameters in the 10 and 30 cGy groups that differed significantly from results for the controls, indicating that the behavioral teratogenic effect of prenatal exposure to chronic {beta}-ray radiation from HTO may be greater than the same dose of acute X- or {gamma}-irradiation and that 10 cGy may be the lowest detectable dose level at which behavioral changes is detectable under the conditions used in this experiment. (author) 56 refs.

  5. Characterization of the cognitive impairments induced by prenatal exposure to stress in the rat

    Directory of Open Access Journals (Sweden)

    Julie A. Markham

    2010-11-01

    Full Text Available We have previously shown that male rats exposed to gestational stress exhibit phenotypes resembling what is observed in schizophrenia, including hypersensitivity to amphetamine, blunted sensory gating, disrupted social behavior, impaired stress axis regulation, and aberrant prefrontal expression of genes involved in synaptic plasticity. Maternal psychological stress during pregnancy has been associated with adverse cognitive outcomes among children, as well as an increased risk for developing schizophrenia, which is characterized by significant cognitive deficits. We sought to characterize the long-term cognitive outcome of prenatal stress using a preclinical paradigm, which is readily amenable to the development of novel therapeutic strategies. Rats exposed to repeated variable prenatal stress during the third week of gestation were evaluated using a battery of cognitive tests, including the novel object recognition task, cued and contextual fear conditioning, the Morris water maze, and iterative versions of a paradigm in which working and reference memory for both objects and spatial locations can be assessed (the ‘Can Test’. Prenatally stressed males were impaired relative to controls on each of these tasks, confirming the face validity of this preclinical paradigm and extending the cognitive implications of prenatal stress exposure beyond the hippocampus. Interestingly, in experiments where both sexes were included, the performance of females was found to be less affected by prenatal stress compared to that of males. This could be related to the finding that women are less vulnerable than men to schizophrenia, and merits further investigation.

  6. Statins do not alter the incidence of mesothelioma in asbestos exposed mice or humans.

    Directory of Open Access Journals (Sweden)

    Cleo Robinson

    Full Text Available Mesothelioma is principally caused by asbestos and may be preventable because there is a long latent period between exposure and disease development. The most at-risk are a relatively well-defined population who were exposed as a consequence of their occupations. Although preventative agents investigated so far have not been promising, discovery of such an agent would have a significant benefit world-wide on healthcare costs and personal suffering. Statins are widely used for management of hypercholesterolemia and cardiovascular risk; they can induce apoptosis in mesothelioma cells and epidemiological data has linked their use to a lower incidence of cancer. We hypothesised that statins would inhibit the development of asbestos-induced mesothelioma in mice and humans. An autochthonous murine model of asbestos-induced mesothelioma was used to test this by providing atorvastatin daily in the feed at 100 mg/kg, 200 mg/kg and 400 mg/kg. Continuous administration of atorvastatin did not alter the rate of disease development nor increase the length of time that mice survived. Latency to first symptoms of disease and disease progression were also unaffected. In a parallel study, the relationship between the use of statins and development of mesothelioma was investigated in asbestos-exposed humans. In a cohort of 1,738 asbestos exposed people living or working at a crocidolite mine site in Wittenoom, Western Australia, individuals who reported use of statins did not have a lower incidence of mesothelioma (HR = 1.01; 95% CI = 0.44-2.29, p = 0.99. Some individuals reported use of both statins and non-steroidal anti-inflammatory drugs or COX-2 inhibitors, and these people also did not have an altered risk of mesothelioma development (HR = 1.01; 95% CI = 0.61-1.67, p = 0.97. We conclude that statins do not moderate the rate of development of mesothelioma in either a mouse model or a human cohort exposed to asbestos.

  7. Corneal NF-kappaB activity is necessary for the retention of transparency in the cornea of UV-B-exposed transgenic reporter mice.

    Science.gov (United States)

    Alexander, George; Carlsen, Harald; Blomhoff, Rune

    2006-04-01

    To determine the dynamics of Nuclear Factor-kappaB (NF-kappaB) in murine corneal pathology and the role of NF-kappaB in maintaining corneal clarity after ultraviolet B radiation insult, transgenic mice containing NF-kappaB-luciferase reporter were exposed to LPS (bacterial lipopolysaccharide), TNF-alpha (Tumor Necrosis Factor-alpha) or 4 kJ m(-2) UV-B radiation. NF-kappaB decoy oligonucleotides were also administered in some of the UV-B experiments. Following various exposure times, the mice were sacrificed and whole eyes or corneal tissues were obtained. Whole eyes were examined for scattering using a point-source optical imaging technique. Tissue homogenates were examined for luciferase activity using a luminometer. TNF-alpha and LPS-injected NF-kappaB-luciferase transgenic mice demonstrated 3-10-fold increases in cornea NF-kappaB with peak activities at 4 and 6 hr post-injection, respectively. Mice exposed to 4 kJ m(-2) UV-B exhibited a 3-fold increase in NF-kappaB activity 4 hr post-exposure. The administration of NF-kappaB-decoy oligonucleotides to mice had the effect of reducing UV-B-induced NF-kappaB activity in the cornea and significantly increasing the amount of light scattering in UV-B exposed corneas 7 days post-UV-B exposure when compared to sham injected mice. These results indicate that NF-kappaB is activated in cornea in pathologies that involves increased plasma levels of LPS and TNF-alpha, as well as direct UV-B exposure, and suggest that NF-kappaB activation play an essential part in the corneal healing process.

  8. Prenatal coke: what's behind the smoke? Prenatal cocaine/alcohol exposure and school-age outcomes: the SCHOO-BE experience.

    Science.gov (United States)

    Delaney-Black, V; Covington, C; Templin, T; Ager, J; Martier, S; Compton, S; Sokol, R

    1998-06-21

    Despite media reports and educators' concerns, little substantive data have been published to document or refute the emerging reports that children prenatally exposed to cocaine have serious behavioral problems in school. Recent pilot data from this institution have indeed demonstrated teacher-reported problem behaviors following prenatal cocaine exposure after controlling for the effects of prenatal alcohol use and cigarette exposure. Imperative in the study of prenatal exposure and child outcome is an acknowledgement of the influence of other control factors such as postnatal environment, secondary exposures, and parenting issues. We report preliminary evaluation from a large ongoing historical prospective study of prenatal cocaine exposure on school-age outcomes. The primary aim of this NIDA-funded study is to determine if a relationship exists between prenatal cocaine/alcohol exposures and school behavior and, if so, to determine if the relationship is characterized by a dose-response relationship. A secondary aim evaluates the relationship between prenatal cocaine/alcohol exposures and school achievement. Both relationships will be assessed in a black, urban sample of first grade students using multivariate statistical techniques for confounding as well as mediating and moderating prenatal and postnatal variables. A third aim is to evaluate the relationship between a general standardized classroom behavioral measure and a tool designed to tap the effects thought to be specific to prenatal cocaine exposure. This interdisciplinary research team can address these aims because of the existence of a unique, prospectively collected perinatal Database, funded in part by NIAAA and NICHD. The database includes repeated measures of cocaine, alcohol, and other substances for over 3,500 births since 1986. Information from this database is combined with information from the database of one of the largest public school systems in the nation. The final sample will be

  9. Prenatal Coke: What's Behind the Smoke?: Prenatal Cocaine/Alcohol Exposure and School-Age Outcomes: The SCHOO-BE Experiencea.

    Science.gov (United States)

    Delaney-Black, Virginia; Covington, Chandice; Templin, Tom; Ager, Joel; Martier, Sue; Compton, Scott; Sokol, Robert

    1998-06-01

    Despite media reports and educators' concerns, little substantive data have been published to document or refute the emerging reports that children prenatally exposed to cocaine have serious behavioral problems in school. Recent pilot data from this institution have indeed demonstrated teacher-reported problem behaviors following prenatal cocaine exposure after controlling for the effects of prenatal alcohol use and cigarette exposure. Imperative in the study of prenatal exposure and child outcome is an acknowledgment of the influence of other control factors such as postnatal environment, secondary exposures, and parenting issues. We report preliminary evaluation from a large ongoing historical prospective study of prenatal cocaine exposure on school-age outcomes. The primary aim of this NIDA-funded study is to determine if a relationship exists between prenatal cocaine/alcohol exposures and school behavior and, if so, to determine if the relationship is characterized by a dose-response relationship. A secondary aim evaluates the relationship between prenatal cocaine/alcohol exposures and school achievement. Both relationships will be assessed in a black, urban sample of first grade students using multivariate statistical techniques for confounding as well as mediating and moderating prenatal and postnatal variables. A third aim is to evaluate the relationship between a general standardized classroom behavioral measure and a tool designed to tap the effects thought to be specific to prenatal cocaine exposure. This interdisciplinary research team can address these aims because of the existence of a unique, prospectively collected Perinatal Database, funded in part by NIAAA and NICHD. The database includes repeated measures of cocaine, alcohol, and other substances for over 3,500 births since 1986. Information from this database is combined with information from the database of one of the largest public school systems in the nation. The final sample will be composed

  10. Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice

    Directory of Open Access Journals (Sweden)

    Ping Xie

    2017-11-01

    Full Text Available Carbon nanoparticles suspension injection (CNSI has been widely used in tumor drainage lymph node mapping, and its new applications in drug delivery, photothermal therapy, and so on have been extensively investigated. To develop new clinical applications, the toxicity of CNSI after intravenous exposure should be thoroughly investigated to ensure its safe use. Herein, we studied the bioaccumulation of CNSI in reticuloendothelial system (RES organs and the corresponding toxicity to mice. After the intravenous injection of CNSI, no abnormal behavior of mice was observed during the 28-day observation period. The body weight increases were similar among the exposed groups and the control group. The parameters of hematology and serum biochemistry remained nearly unchanged, with very few of them showing significant changes. The low toxicity of CNSI was also reflected by the unchanged histopathological characteristics of these organs. The injection of CNSI did not induce higher apoptosis levels either. The slight oxidative stress was observed in RES organs at high dosages at day 7 post-exposure. The implication to the clinical applications and toxicological evaluations of carbon nanomaterials is discussed.

  11. Melatonin protects uterus and oviduct exposed to nicotine in mice

    Directory of Open Access Journals (Sweden)

    Seyed Saadat Seyedeh Nazanin

    2014-03-01

    Full Text Available Smoking is associated with higher infertility risk. The aim of this study was to evaluate protective effects of melatonin on the uterus and oviduct in mice exposed to nicotine. Adult female mice (n=32 were divided into four groups. Group A: control animals received normal saline, Group B: injected with nicotine 40 μg/kg, Group C: injected with melatonin 10 μg, Group D: injected with nicotine 40 μg/kg and melatonin 10 μg. All animals were treated over 15 days intraperitoneally. On the 16th day, animals in the estrus phase were dissected and their uterus and oviducts were removed. Immunohistochemistry was recruited for studying apoptosis and for detection of estrogen receptor (ER alpha in luminal epithelium of the uterus and oviduct. Enzyme-linked immunosorbent assay was used for serum estradiol level determination. Nicotine in group B decreased estradiol level and ERalpha numbers both in the uterus and oviduct (p<0.05. Co-administration of melatonin-nicotine in Group D ameliorated the histology of the uterus and oviduct, increased ERalpha numbers and reduced apoptosis in the uterus and oviduct compared with the nicotine Group B (p<0.05. This study indicates that nicotine impairs the histology of the uterus and oviduct and co-administration of melatonin-nicotine ameliorates these findings, partly through alteration in ERalpha numbers and reduction of apoptosis

  12. Anxiety-like behaviour and associated neurochemical and endocrinological alterations in male pups exposed to prenatal stress.

    Science.gov (United States)

    Laloux, Charlotte; Mairesse, Jérôme; Van Camp, Gilles; Giovine, Angela; Branchi, Igor; Bouret, Sebastien; Morley-Fletcher, Sara; Bergonzelli, Gabriela; Malagodi, Marithé; Gradini, Roberto; Nicoletti, Ferdinando; Darnaudéry, Muriel; Maccari, Stefania

    2012-10-01

    Epidemiological studies suggest that emotional liability in infancy could be a predictor of anxiety-related disorders in the adulthood. Rats exposed to prenatal restraint stress ("PRS rats") represent a valuable model for the study of the interplay between environmental triggers and neurodevelopment in the pathogenesis of anxious/depressive like behaviours. Repeated episodes of restraint stress were delivered to female Sprague-Dawley rats during pregnancy and male offspring were studied. Ultrasonic vocalization (USV) was assessed in pups under different behavioural paradigms. After weaning, anxiety was measured by conventional tests. Expression of GABA(A) receptor subunits and metabotropic glutamate (mGlu) receptors was assessed by immunoblotting. Plasma leptin levels were measured using a LINCOplex bead assay kit. The offspring of stressed dams emitted more USVs in response to isolation from their mothers and showed a later suppression of USV production when exposed to an unfamiliar male odour, indicating a pronounced anxiety-like profile. Anxiety like behaviour in PRS pups persisted one day after weaning. PRS pups did not show the plasma peak in leptin levels that is otherwise seen at PND14. In addition, PRS pups showed a reduced expression of the γ2 subunit of GABA(A) receptors in the amygdala at PND14 and PND22, an increased expression of mGlu5 receptors in the amygdala at PND22, a reduced expression of mGlu5 receptors in the hippocampus at PND14 and PND22, and a reduced expression of mGlu2/3 receptors in the hippocampus at PND22. These data offer a clear-cut demonstration that the early programming triggered by PRS could be already translated into anxiety-like behaviour during early postnatal life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Modulation of neurological related allergic reaction in mice exposed to low-level toluene

    International Nuclear Information System (INIS)

    Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Furuyama, Akiko; Fukushima, Atsushi; Ahmed, Sohel; Goto, Sumio; Fujimaki, Hidekazu

    2007-01-01

    The contributing role of indoor air pollution to the development of allergic disease has become increasingly evident in public health problems. It has been reported that extensive communication exists between neurons and immune cells, and neurotrophins are molecules potentially responsible for regulating and controlling this neuroimmune crosstalk. The adverse effects of volatile organic compounds which are main indoor pollutants on induction or augmentation of neuroimmune interaction have not been fully characterized yet. To investigate the effects of low-level toluene inhalation on the airway inflammatory responses, male C3H mice were exposed to filtered air (control), 9 ppm, and 90 ppm toluene for 30 min by nose-only inhalation on Days 0, 1, 2, 7, 14, 21, and 28. Some groups of mice were injected with ovalbumin intraperitoneally before starting exposure schedule and these mice were then challenged with aerosolized ovalbumin as booster dose. For analysis of airway inflammation, bronchoalveolar lavage (BAL) fluid were collected to determine inflammatory cell influx and lung tissue and blood samples were collected to determine cytokine and neurotrophin mRNA and protein expressions and plasma antibody titers using real-time RT-PCR and ELISA methods respectively. Exposure of the ovalbumin-immunized mice to low-level toluene resulted in (1) increased inflammatory cells infiltration in BAL fluid; (2) increased IL-5 mRNA, decreased nerve growth factor receptor tropomyosin-related kinase A and brain-derived neurotrophic factor mRNAs in lung; and (3) increased IgE and IgG 1 antibodies and nerve growth factor content in the plasma. These findings suggest that low-level toluene exposure aggravates the airway inflammatory responses in ovalbumin-immunized mice by modulating neuroimmune crosstalk

  14. Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Ozge Ozalp Yuregir

    2012-02-01

    Full Text Available Prenatal diagnosis is the process of determining the health or disease status of the fetus or embryo before birth. The purpose is early detection of diseases and early intervention when required. Prenatal genetic tests comprise of cytogenetic (chromosome assessment and molecular (DNA mutation analysis tests. Prenatal testing enables the early diagnosis of many diseases in risky pregnancies. Furthermore, in the event of a disease, diagnosing prenatally will facilitate the planning of necessary precautions and treatments, both before and after birth. Upon prenatal diagnosis of some diseases, termination of the pregnancy could be possible according to the family's wishes and within the legal frameworks. [Archives Medical Review Journal 2012; 21(1.000: 80-94

  15. Increased preference for ethanol in the infant rat after prenatal ethanol exposure, expressed on intake and taste reactivity tests.

    Science.gov (United States)

    Arias, Carlos; Chotro, M Gabriela

    2005-03-01

    Previous studies have shown that prenatal exposure during gestational days 17 to 20 to low or moderate doses of ethanol (1 or 2 g/kg) increases alcohol intake in infant rats. Taking into account that higher consumption does not necessarily suggest a preference for alcohol, in the present study, the hedonic nature of the prenatal experience was analyzed further with the use of a taste reactivity test. General activity, wall climbing, passive drips, paw licking, and mouthing in response to intraoral infusions of alcohol, water, and a sucrose-quinine solution (which resembles alcohol taste in rats) were tested in 161 preweanling 14-day-old rat pups that were prenatally exposed to 0, 1, or 2 g/kg of alcohol during gestational days 17 to 20. Consumption of those substances was measured during the taste reactivity test and on postnatal day 15. Pups that were prenatally exposed to both doses of ethanol displayed lower levels of general activity and wall climbing than controls in response to ethanol. Infant rats that were treated prenatally with both doses of ethanol showed higher intake of the drug and also more mouthing and paw licking in response to ethanol taste. Only pups that were exposed to the higher ethanol dose in utero generalized those responses to the sucrose-quinine compound. These results seem to indicate that for the infant rat, the palatability of ethanol is enhanced after exposure to the drug during the last days of gestation.

  16. Fewer self-reported depressive symptoms in young adults exposed to maternal depressed mood during pregnancy.

    Science.gov (United States)

    Zohsel, Katrin; Holz, Nathalie E; Hohm, Erika; Schmidt, Martin H; Esser, Günter; Brandeis, Daniel; Banaschewski, Tobias; Laucht, Manfred

    2017-02-01

    Depressed mood is prevalent during pregnancy, with accumulating evidence suggesting an impact on developmental outcome in the offspring. However, the long-term effects of prenatal maternal depression regarding internalizing psychopathology in the offspring are as yet unclear. As part of an ongoing epidemiological cohort study, prenatal maternal depressed mood was assessed at the child's age of 3 months. In a sample of n=307 offspring, depressive symptoms were obtained via questionnaire at the ages of 19, 22, 23 and 25 years. At age 25 years, diagnoses of depressive disorder were obtained using a diagnostic interview. In a subsample of currently healthy participants, voxel-based morphometry was conducted and amygdala volume was assessed. In n=85 young adults exposed to prenatal maternal depressed mood, no significantly higher risk for a diagnosis of depressive disorder was observed. However, they reported significantly lower levels of depressive symptoms. This association was especially pronounced when prenatal maternal depressed mood was present during the first trimester of pregnancy and when maternal mood was depressed pre- as well as postnatally. At an uncorrected level only, prenatal maternal depressed mood was associated with decreased amygdala volume. Prenatal maternal depressed mood was not assessed during pregnancy, but shortly after childbirth. No diagnoses of maternal clinical depression during pregnancy were available. Self-reported depressive symptoms do not imply increased, but rather decreased symptom levels in young adults who were exposed to prenatal maternal depressed mood. A long-term perspective may be important when considering consequences of prenatal risk factors. Copyright © 2016. Published by Elsevier B.V.

  17. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  18. Effects of prenatal substance exposure on neurocognitive correlates of inhibitory control success and failure.

    Science.gov (United States)

    Roos, Leslie E; Beauchamp, Kathryn G; Pears, Katherine C; Fisher, Philip A; Berkman, Elliot T; Capaldi, Deborah

    2017-01-01

    Adolescents with prenatal substance (drug and alcohol) exposure exhibit inhibitory control (IC) deficits and aberrations in associated neural function. Nearly all research to date examines exposure to individual substances, and a minimal amount is known about the effects of heterogeneous exposure-which is more representative of population exposure levels. Using functional magnetic resonance imaging (fMRI), we investigated IC (Go/NoGo) in heterogeneously exposed (n = 7) vs. control (n = 7) at-risk adolescents (ages 13-17). The fMRI results indicated multiple IC processing differences consistent with a more immature developmental profile for exposed adolescents (Exposed  >  Nonexposed: NoGo > Go: right ventrolateral prefrontal cortex, right cuneus, and left inferior parietal lobe; NoGo > false alarm: occipital lobe; Go > false alarm: right anterior prefrontal cortex). Simple effects suggest exposed adolescents exhibited exaggerated correct trial but decreased incorrect trial activation. Results provide initial evidence that prenatal exposure across substances creates similar patterns of atypical brain activation to IC success and failure.

  19. Neurobiology and neurodevelopmental impact of childhood traumatic stress and prenatal alcohol exposure.

    Science.gov (United States)

    Henry, Jim; Sloane, Mark; Black-Pond, Connie

    2007-04-01

    Research reveals that prenatal alcohol exposure and child trauma (i.e., abuse, neglect, sexual abuse) can have deleterious effects on child development across multiple domains. This study analyzed the impact on childhood neurodevelopment of prenatal alcohol exposure and postnatal traumatic experience compared to postnatal traumatic experience alone. Although the harmful effects of both have been well documented individually, there is no research documenting the concurrent effects of prenatal alcohol exposure and postnatal trauma on a child's developmental process. Transdisciplinary assessment of the children included the core disciplines of medicine, speech-language pathology, occupational therapy, social work, and psychology. Medical examination, standardized developmental and intelligence testing, projective tools, parent questionnaires, and psychosocial interviews provided information in the primary developmental areas. Findings indicated that children who had been exposed prenatally to alcohol along with postnatal traumatic experience had lower intelligence scores and more severe neurodevelopmental deficits in language, memory, visual processing, motor skills, and attention than did traumatized children without prenatal alcohol exposure, as well as greater oppositional/defiant behavior, inattention, hyperactivity, impulsivity, and social problems. Successful teacher and speech-language pathologist interventions with traumatized children with prenatal alcohol exposure demand a paradigm shift that requires the development of new perspectives and ongoing training.

  20. Types and three-dimensional distribution of neuronal ectopias in the brain of mice prenatally subjected to X-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xue-Zhi; Takahashi, Sentaro; Kubota, Yoshihisa; Sato, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan); Cui, Chun; Fukui, Yoshihiro [Tokushima Univ. (Japan). School of Medicine; Inouye, Minoru [Shin Nippon Biomedical Lab., Ltd., Miyanoura, Kagoshima (Japan)

    2002-03-01

    The types and three-dimensional distribution of neocortical ectopias following prenatal exposure to X-irradiation were studied by a histological examination and computer reconstruction techniques. Pregnant ICR mice were subjected to X-irradiation at a dose of 1.5 Gy on embryonic day 13. The brains from 30-day-old mice were serially sectioned on the frontal plane at 15 {mu}m, stained with HE and observed with a microscope. The image data for the sections were input to a computer, and then reconstructed to three-dimensional brain structures using the Magellan 3.6 program. Sectional images were then drawn on a computer display at 240 {mu}m intervals, and the positions of the different types of neocortical ectopias were marked using color coding. Three types of neocortical ectopias were recognized in the irradiated brains. Neocortical Lay I ectopias were identified as small patches in the caudal occipital cortex, and were located more laterally in the neocortex in caudal sections than in the rostral sections. Periventricular ectopias were located more rostrally than Lay I ectopias, and were found from the most caudal extent of the presumed motor cortex to the most caudal extent of the lateral ventricle. Hippocampal ectopias appeared as continuous linear bands, and were frequently associated with the anterior parts of the periventricular ectopias. (author)

  1. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice.

    Science.gov (United States)

    Shen, Pamela; Whelan, Fiona J; Schenck, L Patrick; McGrath, Joshua J C; Vanderstocken, Gilles; Bowdish, Dawn M E; Surette, Michael G; Stämpfli, Martin R

    2017-10-01

    Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium , Gemella , and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. Copyright © 2017 American Society for Microbiology.

  2. Prenatally administered HMB modifies the enamel surface roughness in spiny mice offspring: An atomic force microscopy study.

    Science.gov (United States)

    Świetlicka, Izabela; Muszyński, Siemowit; Tomaszewska, Ewa; Dobrowolski, Piotr; Kwaśniewska, Anita; Świetlicki, Michał; Skic, Anna; Gołacki, Krzysztof

    2016-10-01

    The aim of this research was to check the effect of the prenatally administered β-hydroxy β-methylbutyrate (HMB) on the development of enamel surface of the spiny mice offspring. The spiny mice dams were randomly assigned into three groups: control group (not supplemented with HMB) and two experimental groups in which powdered HMB was given at the daily dosage of 0.2g/kg of body weight (group I) and 0.02g/kg of body weight (group II) during the last period of gestation. Newborn pups were euthanized by CO 2 inhalation. The morphology of incisor teeth was analysed using atomic force microscopy (AFM) in semi-contact mode in the height, magnitude and phase domains. Height images became a basis for determination of surface roughness parameters. Conducted study indicated that maternal HMB administration markedly influences enamel development. Enamel of offspring's teeth in both experimental groups was characterized by significantly smaller values of indices describing surface roughness and profile. HMB supplementation influenced the calculated parameters regardless of the diet type and offspring sex, however higher dose of HMB caused stronger changes in enamel surface's physical properties and could be observed in higher intensity in the male group. HMB administration caused reduction in the irregularities of enamel surface, thereby possibly reducing the probability of bacteria adhesion and caries development. These observations may serve to improve nutrition and supplementation of animals and could be a lead for further research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response

    International Nuclear Information System (INIS)

    Holásková, Ida; Elliott, Meenal; Hanson, Miranda L.; Schafer, Rosana; Barnett, John B.

    2012-01-01

    Cadmium (Cd) is a common environmental contaminant. Adult exposure to Cd alters the immune system, however, there are limited studies on the effects of prenatal exposure to Cd. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl 2 (10 ppm) and the effects on the immune system of the offspring were assessed at 20 weeks of age. Prenatal Cd exposure caused an increase in the percent of CD4 − CD8 − CD44 + CD25 − (DN1) thymocytes in both sexes and a decrease in the percent of CD4 − CD8 − CD44 − CD25 + (DN3) thymocytes in females. Females had an increase in the percent of splenic CD4 + T cells, CD8 + T cells, and CD45R/B220 + B cells and a decrease in the percent of NK cells and granulocytes (Gr-1 + ). Males had an increase in the percent of splenic CD4 + T cells and CD45R/B220 + B cells and a decrease in the percent of CD8 + T cells, NK cells, and granulocytes. The percentage of neutrophils and myeloid-derived suppressor cells were reduced in both sexes. The percent of splenic nTreg cells was decreased in all Cd-exposed offspring. Cd-exposed offspring were immunized with a streptococcal vaccine and the antibody response was determined. PC-specific serum antibody titers were decreased in Cd exposed female offspring but increased in the males. PspA-specific serum IgG titers were increased in both females and males compared to control animals. Females had a decrease in PspA-specific serum IgM antibody titers. Females and males had a decrease in the number of splenic anti-PspA antibody-secreting cells when standardized to the number of B cells. These findings demonstrate that very low levels of Cd exposure during gestation can result in long term sex-specific alterations on the immune system of the offspring. -- Highlights: ► Prenatal exposure to cadmium alters the immune system of 20 week old offspring. ► The percentage of DN1 and DN3 thymocytes was changed. ► Males and females had changed percentages of numerous splenic cell

  4. Prenatal cadmium exposure produces persistent changes to thymus and spleen cell phenotypic repertoire as well as the acquired immune response

    Energy Technology Data Exchange (ETDEWEB)

    Holásková, Ida; Elliott, Meenal; Hanson, Miranda L.; Schafer, Rosana [Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506 (United States); Barnett, John B., E-mail: jbarnett@hsc.wvu.edu [Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, West Virginia University School of Medicine, Morgantown, WV 26506 (United States)

    2012-12-01

    Cadmium (Cd) is a common environmental contaminant. Adult exposure to Cd alters the immune system, however, there are limited studies on the effects of prenatal exposure to Cd. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at 20 weeks of age. Prenatal Cd exposure caused an increase in the percent of CD4{sup −}CD8{sup −}CD44{sup +}CD25{sup −} (DN1) thymocytes in both sexes and a decrease in the percent of CD4{sup −}CD8{sup −}CD44{sup −}CD25{sup +} (DN3) thymocytes in females. Females had an increase in the percent of splenic CD4{sup +} T cells, CD8{sup +} T cells, and CD45R/B220{sup +} B cells and a decrease in the percent of NK cells and granulocytes (Gr-1{sup +}). Males had an increase in the percent of splenic CD4{sup +} T cells and CD45R/B220{sup +} B cells and a decrease in the percent of CD8{sup +} T cells, NK cells, and granulocytes. The percentage of neutrophils and myeloid-derived suppressor cells were reduced in both sexes. The percent of splenic nTreg cells was decreased in all Cd-exposed offspring. Cd-exposed offspring were immunized with a streptococcal vaccine and the antibody response was determined. PC-specific serum antibody titers were decreased in Cd exposed female offspring but increased in the males. PspA-specific serum IgG titers were increased in both females and males compared to control animals. Females had a decrease in PspA-specific serum IgM antibody titers. Females and males had a decrease in the number of splenic anti-PspA antibody-secreting cells when standardized to the number of B cells. These findings demonstrate that very low levels of Cd exposure during gestation can result in long term sex-specific alterations on the immune system of the offspring. -- Highlights: ► Prenatal exposure to cadmium alters the immune system of 20 week old offspring. ► The percentage of DN1 and DN3 thymocytes was changed

  5. Impaired contextual fear extinction and hippocampal synaptic plasticity in adult rats induced by prenatal morphine exposure.

    Science.gov (United States)

    Tan, Ji-Wei; Duan, Ting-Ting; Zhou, Qi-Xin; Ding, Ze-Yang; Jing, Liang; Cao, Jun; Wang, Li-Ping; Mao, Rong-Rong; Xu, Lin

    2015-07-01

    Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory-related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety-like behavior in the elevated plus-maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral-CA1 synapses of the hippocampus in vivo. PS rats showed blocked long-term potentiation and enabled long-term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long-term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long-term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory-related neuropsychiatric disorders in adulthood. © 2014 Society for the Study of Addiction.

  6. Congenital malformations in embryos of female mice exposed to alcohol and nicotinamide

    Directory of Open Access Journals (Sweden)

    Natasha Soares Simões dos Santos

    2009-03-01

    Full Text Available Objective: To compare the incidence of congenital malformations among the offspring of female mice exposed to alcohol or alcohol plus nicotinamide. Methods: Three groups of pregnant C57BL/6J mice were studied; G1 received alcohol (5 g/kg in saline solution (20% - vol/vol; G2 received nicotinamide, 50 mg/ml associated to alcohol; and G3, only saline solution; all by intraperitoneal injection on the seventh day of pregnancy. The animals were killed in a CO2 chamber on day 18 of pregnancy. The intrauterine content was assessed and the number of complete and reabsorbed fetuses was counted. The complete fetuses had their weight and crown-rump length measured and malformations were identified. Rresults: G1 showed the highest number of malformations: micrognathia, low set ears, hypertrophic nose, scoliosis, and atrophy of the lower and upper limbs. Weight was significantly different among the groups (p = 0.0139, and in G1 it was below average as compared to G3 (p = 0.3133. As for length, the lowest values were found in G2 and G3 showed the highest ones. There was a significant difference among the groups (p = 0.0145. Cconclusions: Ethanol, when administered to pregnant mice was teratogenic. However, length of G1 fetuses was, in average, higher than that of other groups. Nicotinamide decreased the number of malformations and may be a possible protector against alcohol effects.

  7. Neuroprotective effects of sildenafil against oxidative stress and memory dysfunction in mice exposed to noise stress.

    Science.gov (United States)

    Sikandaner, Hu Erxidan; Park, So Young; Kim, Min Jung; Park, Shi Nae; Yang, Dong Won

    2017-02-15

    Noise exposure has been well characterized as an environmental stressor, and is known to have auditory and non-auditory effects. Phosphodiesterase 5 (PDE5) inhibitors affect memory and hippocampus plasticity through various signaling cascades which are regulated by cGMP. In this study, we investigated the effects of sildenafil on memory deficiency, neuroprotection and oxidative stress in mice caused by chronic noise exposure. Mice were exposed to noise for 4h every day up to 14days at 110dB SPL of noise level. Sildenafil (15mg/kg) was orally administered 30min before noise exposure for 14days. Behavioral assessments were performed using novel object recognition (NOR) test and radial arm maze (RAM) test. Higher levels of memory dysfunction and oxidative stress were observed in noise alone-induced mice compared to control group. Interestingly, sildenafil administration increased memory performance, decreased oxidative stress, and increased neuroprotection in the hippocampus region of noise alone-induced mice likely through affecting memory related pathways such as cGMP/PKG/CREB and p25/CDK5, and induction of free radical scavengers such as SOD1, SOD2, SOD3, Prdx5, and catalase in the brain of stressed mice. Copyright © 2016. Published by Elsevier B.V.

  8. Effects of prenatal exposure to opioids on focused attention in toddlers during free play.

    Science.gov (United States)

    Schneider, J W; Hans, S L

    1996-08-01

    The goals of this study were: (1) to determine if 24-month-old children exposed to opioids show decreased focused attention during free play compared with children of the same age who were not prenatally exposed; (2) to identify medical and social risk factors other than drug exposure that are related to focused attention; and (3) to determine if mothers' teaching ability had an effect on attention. Focused attention was rated during a 3-minute free play session for 30 toddlers who were methadone-exposed and for 44 comparison toddlers. The mother teaching the child to use a toy was also rated separately from the free play session. There was no difference in focused attention of 24 month olds during free play based only on prenatal exposure. Despite group differences in medical and social risk factors, only maternal IQ was significantly related to focused attention. Maternal instruction was strongly related to focused attention and mediated the effects of maternal IQ on attention.

  9. Immune competence in 90Sr-exposed, adult thymectomized and antilymphocyteglobulin-treated CBA mice. Pt. 1

    International Nuclear Information System (INIS)

    Bierke, P.

    1989-01-01

    CBA mice subjected to either adult thymectomy, internal exposure to 90 Sr or antilymphocyteglobulin treatment separately, or to combinations of the three were tested for cellular immune competence using their reaction to allogenic skin grafts. Peripheral blood white cell counts did not reveal any obvious correlation between the degree of mononuclear cell depletion and the ability to accept grafts, suggesting that the particular treatments depleted specific fractions of mononuclear cells, differing in their extent of involvement in the rejection process. No single treatment alone induced a significant prolongation in the time elapsed before graft rejection. Adult thymectomy followed by appropriate antilymphocyteglobulin treatment induced severe lymphocytopenia and a profound suppression of the cell-mediate immune system, as evidenced by the acceptance of allogenic skin grafts. When applied to 90 Sr-preexposed mice the same treatment induced lifelong acceptance of grafts, indicating a similar, though weaker immunosuppressive impact of 90 Sr. Hence it was possible to significantly enhance immunosuppression in 90 Sr-exposed mice. This in vivo model should be useful when investigating the role of immunological responsiveness in radiation carcinogenesis. (orig.)

  10. A novel platelet activating factor receptor antagonist reduces cell infiltration and expression of inflammatory mediators in mice exposed to desiccating conditions after PRK.

    Science.gov (United States)

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Nicolas G; Esquenazi, Isi; Bazan, Haydee E P

    2009-01-01

    To study the contribution of a novel PAF receptor antagonist LAU-0901 in the modulation of the increased inflammatory response in mice exposed to dessicating conditions (DE) after PRK. Eighty 13-14 week old female Balb/C mice were used. They were divided into two groups: One group was treated with LAU-0901 topical drops. The other group was treated with vehicle. In each group ten mice served as controls and ten were placed in DE. The other twenty mice underwent bilateral PRK and were divided in two additional groups: ten mice remained under normal conditions (NC) and the other ten were exposed to DE. After 1 week all animals underwent in vivo confocal microscopy, immunostaining and western blotting analysis. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-090). Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  11. Differential control of central cardiorespiratory interactions by hypercapnia and the effect of prenatal nicotine.

    Science.gov (United States)

    Huang, Zheng-Gui; Griffioen, Kathleen J S; Wang, Xin; Dergacheva, Olga; Kamendi, Harriet; Gorini, Christopher; Bouairi, Euguenia; Mendelowitz, David

    2006-01-04

    Hypercapnia evokes a strong cardiorespiratory response including gasping and a pronounced bradycardia; however, the mechanism responsible for these survival responses initiated in the brainstem is unknown. To examine the effects of hypercapnia on the central cardiorespiratory network, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and inhibitory synaptic neurotransmission to cardioinhibitory vagal neurons (CVNs). Hypercapnia differentially modulated inhibitory neurotransmission to CVNs; whereas hypercapnia selectively depressed spontaneous glycinergic IPSCs in CVNs without altering respiratory-related increases in glycinergic neurotransmission, it decreased both spontaneous and inspiratory-associated GABAergic IPSCs. Because maternal smoking is the highest risk factor for sudden infant death syndrome (SIDS) and prenatal nicotine exposure is proposed to be the link between maternal smoking and SIDS, we examined the cardiorespiratory responses to hypercapnia in animals exposed to nicotine in the prenatal and perinatal period. In animals exposed to prenatal nicotine, hypercapnia evoked an exaggerated depression of GABAergic IPSCs in CVNs with no significant change in glycinergic neurotransmission. Hypercapnia altered inhibitory neurotransmission to CVNs at both presynaptic and postsynaptic sites. Although the results obtained in this study in vitro cannot be extrapolated with certainty to in vivo responses, the results of this study provide a likely neurochemical mechanism for hypercapnia-evoked bradycardia and the dysregulation of this response with exposure to prenatal nicotine, creating a higher risk for SIDS.

  12. Antidepressant Effects of Aripiprazole Augmentation for Cilostazol-Treated Mice Exposed to Chronic Mild Stress after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2017-02-01

    Full Text Available The aim of this study was to determine the effects and underlying mechanism of aripiprazole (APZ augmentation for cilostazol (CLS-treated post-ischemic stroke mice that were exposed to chronic mild stress (CMS. Compared to treatment with either APZ or CLS alone, the combined treatment resulted in a greater reduction in depressive behaviors, including anhedonia, despair-like behaviors, and memory impairments. This treatment also significantly reduced atrophic changes in the striatum, cortex, and midbrain of CMS-treated ischemic mice, and inhibited neuronal cell apoptosis, particularly in the striatum and the dentate gyrus of the hippocampus. Greater proliferation of neuronal progenitor cells was also observed in the ipsilateral striatum of the mice receiving combined treatment compared to mice receiving either drug alone. Phosphorylation of the cyclic adenosine monophosphate response element binding protein (CREB was increased in the striatum, hippocampus, and midbrain of mice receiving combined treatment compared to treatment with either drug alone, particularly in the neurons of the striatum and hippocampus, and dopaminergic neurons of the midbrain. Our results suggest that APZ may augment the antidepressant effects of CLS via co-regulation of the CREB signaling pathway, resulting in the synergistic enhancement of their neuroprotective effects.

  13. Prenatal Opioid Exposure and Intermittent Hypoxemia in Preterm Infants: A Retrospective Assessment

    Directory of Open Access Journals (Sweden)

    Elie G. Abu Jawdeh

    2017-12-01

    Full Text Available IntroductionIntermittent hypoxemia (IH is defined as episodic drops in oxygen saturation (SpO2. Preterm infants are at increased risk for IH due to their immature respiratory control/apnea of prematurity. The clinical relevance of IH is a relatively new observation with rising evidence linking IH to neonatal morbidities and long-term impairment. Hence, assessing factors that influence IH in preterm infants is imperative. Given the epidemic of opioid misuse in the USA, there is an urgent need to understand the impact of prenatal opioid exposure on neonatal outcomes. Hence, we wanted to assess the relationship between isolated prenatal opioid exposure and IH in preterm infants.MethodsIn order to accurately calculate IH, SpO2 data were prospectively collected using high-resolution pulse oximeters during the first 8 weeks of life in preterm infants less than 30 weeks gestational age. Data related to prenatal opioid misuse were retrospectively collected from medical charts. Infants with tobacco or poly-drug exposure were excluded. The primary outcome measure is percent time spent with SpO2 below 80% (%time-SpO2 < 80. The secondary outcome measure is the number of severe IH events/week with SpO2 less than 80% (IH-SpO2 < 80.ResultsA total of 82 infants with isolated opioid exposure (n = 14 or who were unexposed (n = 68 were included. There were no significant differences in baseline characteristics between opioid exposed and unexposed groups. There was a statistically significant increase of 0.23 (95% CI: 0.03, 0.43, p = 0.03 in mean of the square root of %time-SpO2 < 80. The number of IH-SpO2 < 80 events was higher in the opioid exposed group (mean difference = 2.95, 95% CI: −0.35, 6.25, p-value = 0.08, although statistical significance was not quite attained.ConclusionThis study shows that preterm infants prenatally exposed to opioids have increased IH measures compared to unexposed infants. Interestingly

  14. Prenatal Opioid Exposure and Intermittent Hypoxemia in Preterm Infants: A Retrospective Assessment.

    Science.gov (United States)

    Abu Jawdeh, Elie G; Westgate, Philip M; Pant, Amrita; Stacy, Audra L; Mamilla, Divya; Gabrani, Aayush; Patwardhan, Abhijit; Bada, Henrietta S; Giannone, Peter

    2017-01-01

    Intermittent hypoxemia (IH) is defined as episodic drops in oxygen saturation (SpO 2 ). Preterm infants are at increased risk for IH due to their immature respiratory control/apnea of prematurity. The clinical relevance of IH is a relatively new observation with rising evidence linking IH to neonatal morbidities and long-term impairment. Hence, assessing factors that influence IH in preterm infants is imperative. Given the epidemic of opioid misuse in the USA, there is an urgent need to understand the impact of prenatal opioid exposure on neonatal outcomes. Hence, we wanted to assess the relationship between isolated prenatal opioid exposure and IH in preterm infants. In order to accurately calculate IH, SpO 2 data were prospectively collected using high-resolution pulse oximeters during the first 8 weeks of life in preterm infants less than 30 weeks gestational age. Data related to prenatal opioid misuse were retrospectively collected from medical charts. Infants with tobacco or poly-drug exposure were excluded. The primary outcome measure is percent time spent with SpO 2 below 80% (%time-SpO 2  < 80). The secondary outcome measure is the number of severe IH events/week with SpO 2 less than 80% (IH-SpO 2  < 80). A total of 82 infants with isolated opioid exposure ( n  = 14) or who were unexposed ( n  = 68) were included. There were no significant differences in baseline characteristics between opioid exposed and unexposed groups. There was a statistically significant increase of 0.23 (95% CI: 0.03, 0.43, p  = 0.03) in mean of the square root of %time-SpO 2  < 80. The number of IH-SpO 2  < 80 events was higher in the opioid exposed group (mean difference = 2.95, 95% CI: -0.35, 6.25, p -value = 0.08), although statistical significance was not quite attained. This study shows that preterm infants prenatally exposed to opioids have increased IH measures compared to unexposed infants. Interestingly, the increased IH in the opioid

  15. Neurobehavioral deficits and increased blood pressure in school-age children prenatally exposed to pesticides

    DEFF Research Database (Denmark)

    Harari, Raul; Julvez, Jordi; Murata, Katsuyuki

    2010-01-01

    -Binet Copying Recall Test). These associations corresponded to a developmental delay of 1.5-2 years. Prenatal pesticide exposure was also significantly associated with an average increase of 3.6 mmHg in systolic blood pressure and a slight decrease in body mass index of 1.1 kg/m2. Inclusion of the pilot data...

  16. Observations on late effects in mice exposed to 400 MeV neutrons

    CERN Document Server

    Covelli, V; Bassani, B; Baarli, Johan; Bianchi, M; Metalli, P; Covelli, V; Di Paola, M; Bassani, B; Baarli, J no 2; Bianchi, M no 2; Metalli, P

    1976-01-01

    Life-long observations on mortality and pathology at death were carried out on groups of mice irradiated with 250 kV X-rays or exposed to a 400 MeV neutron beam, both directly and after attenuation corresponding to the maximum dose build-up region, at comparable dose-rates. Doses up to 84 rad of 400 MeV neutrons and up to 200 rad of X-rays showed no effect on the longevity of the animals, which suggests an upper limit to the r.b.e. for life-shortening of approximately 2·5. Similar conclusions were drawn from the data on all types of leukemias. For all other neoplasms, the age-specific death-rate showed a similar shortening of the latency times for groups of mice irradiated with 0–84 rad of 400 MeV direct neutrons and 0–400 rad of X-rays, also suggesting an upper limit to the r.b.e. slightly higher than that previously indicated for life-shortening. No definite effect was observed after exposure to the attenuated neutron beam at the doses used in these experiments.

  17. Radioprotective effect of Tamarindus indica pod extract in Swiss albino mice exposed to whole body electron beam radiation

    International Nuclear Information System (INIS)

    Nandini, S.; Suchetha Kumari, N.; Ganesh Sanjeev; D'sa, Prima

    2013-01-01

    The objective of the study was to investigate the radioprotective effect of Tamarindus indica pod extract against radiation induced damage.The effect of 100 mg of hydroalcoholic extract of Tamarindus indica pod was studied in Swiss albino mice exposed to 6 Gy whole body electron beam radiation. Treatment of mice with extract for 15 days before irradiation reduced the symptoms of radiation sickness when compared with the untreated irradiated group. The irradiated animals showed an elevation in lipid peroxidation and reduction in glutathione, total antioxidants and antioxidant enzymes such as glutathione peroxidase and catalase activities. Radiation induced mice has shown micronucleus in the bone marrow cells. Treatment of mice with Tamarindus indica pod extract before irradiation caused a significant reduction in lipid peroxidation followed by significant elevation in reduced glutathione, total antioxidants, glutathione peroxidase and catalase activity. It also showed a reduction in the micronucleus formation in bone marrow cells. Results indicate that the radioprotective activity of Tamarindus indica pod extract may be due to free radical scavenging attributed as a result of increased antioxidant level in mice. (author)

  18. DNA-nicotine adduction of lung and liver of mice exposed to passive smoking studied by AMS

    International Nuclear Information System (INIS)

    Hou Qin; Sun Hongfang; Shi Jingyuan; Liu Yuanfang; Wang Jianjun; Lu Xiangyang; Li Kun; Zhao Qiang

    1997-01-01

    The author presents the measurement of adduction of mice lung or liver DNA with nicotine by accelerator mass spectrometry (AMS). Mice were exposed in a toxicity infecting chamber filled up with cigarette smoke for a period of time of simulate the exposure of mice to passive smoking. The dose of nicotine inhaled by mice was determined. The results of AMS showed, when the dose of inhaled nicotine ranged from 33 μg/kg to 330 μg/kg, the adducts number of lung DNA was 10 3 -10 4 adducts/10 12 nucleotides, and the adducts increased linearly with increasing dose of nicotine; the adducts number of liver DNA reached to 10 4 -10 5 adducts/10 12 nucleotides, when the dose of nicotine ranged from 99 μg/kg to 330 μg/kg, and the adducts increased vigorously as dose of nicotine increased. Comparing the DNA adducts levels of the same nicotine dose, liver DNA adducts were more than lung DNA adducts. This study also suggested that the other components of cigarette smoke have synergic effect on the formation of nicotine derived DNA adducts

  19. PRENATAL EXPOSURE TO PHENYTOIN, FACIAL DEVELOPMENT, AND A POSSIBLE ROLE FOR VITAMIN-K

    NARCIS (Netherlands)

    HOWE, AM; LIPSON, AH; SHEFFIELD, LJ; HAAN, EA; HALLIDAY, JL; JENSON, F; DAVID, DJ; WEBSTER, WS

    1995-01-01

    Ten patients with maxillonasal hypoplasia (Binder ''syndrome''), who were prenatally exposed to phenytoin (usually in combination with other anticonvulsants), were identified retrospectively. In addition to their facial anomalies, 6 of the patients were radiographed neonatally and showed punctate

  20. Prenatal Exposure to Sodium Arsenite Alters Placental Glucose 1, 3, and 4 Transporters in Balb/c Mice

    Directory of Open Access Journals (Sweden)

    Daniela Sarahí Gutiérrez-Torres

    2015-01-01

    Full Text Available Inorganic arsenic (iAs exposure induces a decrease in glucose type 4 transporter (GLUT4 expression on the adipocyte membrane, which may be related to premature births and low birth weight infants in women exposed to iAs at reproductive age. The aim of this study was to analyze the effect of sodium arsenite (NaAsO2 exposure on GLUT1, GLUT3, and GLUT4 protein expression and on placental morphology. Female Balb/c mice (n=15 were exposed to 0, 12, and 20 ppm of NaAsO2 in drinking water from 8th to 18th day of gestation. Morphological changes and GLUT1, GLUT3, and GLUT4 expression were evaluated in placentas by immunohistochemical and image analysis and correlated with iAs and arsenical species concentration, which were quantified by atomic absorption spectroscopy. NaAsO2 exposure induced a significant decrease in fetal and placental weight (P<0.01 and increases in infarctions and vascular congestion. Whereas GLUT1 expression was unchanged in placentas from exposed group, GLUT3 expression was found increased. In contrast, GLUT4 expression was significantly lower (P<0.05 in placentas from females exposed to 12 ppm. The decrease in placental GLUT4 expression might affect the provision of adequate fetal nutrition and explain the low fetal weight observed in the exposed groups.

  1. Nigella sativa EXTRACT IMPROVES SEMINIFEROUS TUBULE EPITHELIAL THICKNESS IN LEAD ACETATE-EXPOSED BALB/C MICE

    OpenAIRE

    Diana, Alis Nur; I’tishom, Reny; Sudjarwo, Sri Agus

    2017-01-01

    Lead that enters the body may lead to increased production of ROS (Reactive Oxygen Species) that may affect reproductive system. Black cumin (Nigella sativa) extract contains high antioxidant, tymoquinone, that may be used to suppress oxidative stress induced by lead in animal experiments. This study aimed to prove that black cumin (Nigella sativa) extract improves the thickness of seminiferous tubular epithelium in Balb/c mice exposed to lead (Pb) acetate. This study used post-test only cont...

  2. Group prenatal care.

    Science.gov (United States)

    Mazzoni, Sara E; Carter, Ebony B

    2017-06-01

    Patients participating in group prenatal care gather together with women of similar gestational ages and 2 providers who cofacilitate an educational session after a brief medical assessment. The model was first described in the 1990s by a midwife for low-risk patients and is now practiced by midwives and physicians for both low-risk patients and some high-risk patients, such as those with diabetes. The majority of literature on group prenatal care uses CenteringPregnancy, the most popular model. The first randomized controlled trial of CenteringPregnancy showed that it reduced the risk of preterm birth in low-risk women. However, recent meta-analyses have shown similar rates of preterm birth, low birthweight, and neonatal intensive care unit admission between women participating in group prenatal care and individual prenatal care. There may be subgroups, such as African Americans, who benefit from this type of prenatal care with significantly lower rates of preterm birth. Group prenatal care seems to result in increased patient satisfaction and knowledge and use of postpartum family planning as well as improved weight gain parameters. The literature is inconclusive regarding breast-feeding, stress, depression, and positive health behaviors, although it is theorized that group prenatal care positively affects these outcomes. It is unclear whether group prenatal care results in cost savings, although it may in large-volume practices if each group consists of approximately 8-10 women. Group prenatal care requires a significant paradigm shift. It can be difficult to implement and sustain. More randomized trials are needed to ascertain the true benefits of the model, best practices for implementation, and subgroups who may benefit most from this innovative way to provide prenatal care. In short, group prenatal care is an innovative and promising model with comparable pregnancy outcomes to individual prenatal care in the general population and improved outcomes in some

  3. The Effects of Low Level Prenatal Carbon Monoxide on Neocortical Development

    Science.gov (United States)

    2010-06-02

    amount of NO available, which may have formed free radicals damaging the tissue and resulting in cell death. Treatment with a synthetic cGMP also failed...Watkinson B (36- and 48-month neurobehavioral follow-up of children prenatally exposed to marijuana , cigarettes, and alcohol. J Dev Behav Pediatr

  4. Effect of prenatal exposure to diagnostic radiation on childhood physical and intellectual development

    International Nuclear Information System (INIS)

    Hu Yumei; Yao Jiaxiang

    1992-01-01

    An epidemiological investigation has been conducted on 1026 prenatally X-ray irradiated children aged from four to seven years in Beijing, Shanghai and Changchun, and 1191 controls of the same age, sex, and birth hospitals. The absorbed doses to fetus range from 11.75 to 42.70 mGy. The results show that there is no significant difference between the two groups in body height, weight and head circumference, and the parameters in the exposed group are all above the normal mean values except for three subgroups who have their height within half a standard deviation below the normal. On intelligence test, the exposed group achieves a slightly lower mean score than that of the control (t = 2.21, P<0.05). But the difference of the distributions of test scores in both groups is not significant, and logistic analysis of confounding factors rules out a consequential role of prenatal radiation in inducing mental retardation. The possible causes of lower I.Q. in the exposed group and the relationship of gestational age to I.Q. are discussed

  5. Prenatal stress and risk of febrile seizures in children: a nationwide longitudinal study in Denmark

    DEFF Research Database (Denmark)

    Li, Jiong; Olsen, Jørn; Obel, Carsten

    2009-01-01

    We aimed to examine whether exposure to prenatal stress following maternal bereavement is associated with an increased risk of febrile seizures. In a longitudinal population-based cohort study, we followed 1,431,175 children born in Denmark. A total of 34,777 children were born to women who lost...... a close relative during pregnancy or within 1 year before the pregnancy and they were included in the exposed group. The exposed children had a risk of febrile seizures similar to that of the unexposed children (hazard ratio (HR) 1.00, 95% CI 0.94-1.06). The HRs did not differ according to the nature...... or timing of bereavement. Our data do not suggest any causal link between exposure to prenatal stress and febrile seizures in childhood....

  6. Cognitive factors contributing to spelling performance in children with prenatal alcohol exposure.

    Science.gov (United States)

    Glass, Leila; Graham, Diana M; Akshoomoff, Natacha; Mattson, Sarah N

    2015-11-01

    Heavy prenatal alcohol exposure is associated with impaired school functioning. Spelling performance has not been comprehensively evaluated. We examined whether children with heavy prenatal alcohol exposure demonstrate deficits in spelling and related abilities, including reading, and tested whether there are unique underlying mechanisms for observed deficits in this population. Ninety-six school-age children made up 2 groups: children with heavy prenatal alcohol exposure (AE, n = 49) and control children (CON, n = 47). Children completed select subtests from the Wechsler Individual Achievement Test-Second Edition and the NEPSY-II. Group differences and relations between spelling and theoretically related cognitive variables were evaluated using multivariate analysis of variance and Pearson correlations. Hierarchical regression analyses were used to assess contributions of group membership and cognitive variables to spelling performance. The specificity of these deficits and underlying mechanisms was tested by examining the relations between reading ability, group membership, and cognitive variables. Groups differed significantly on all variables. Group membership and phonological processing significantly contributed to spelling performance, whereas for reading, group membership and all cognitive variables contributed significantly. For both reading and spelling, group × working memory interactions revealed that working memory contributed independently only for alcohol-exposed children. Alcohol-exposed children demonstrated a unique pattern of spelling deficits. The relation of working memory to spelling and reading was specific to the AE group, suggesting that if prenatal alcohol exposure is known or suspected, working memory ability should be considered in the development and implementation of explicit instruction. (c) 2015 APA, all rights reserved).

  7. Dietary choline levels modify the effects of prenatal alcohol exposure in rats.

    Science.gov (United States)

    Idrus, Nirelia M; Breit, Kristen R; Thomas, Jennifer D

    Prenatal alcohol exposure can cause a range of physical and behavioral alterations; however, the outcome among children exposed to alcohol during pregnancy varies widely. Some of this variation may be due to nutritional factors. Indeed, higher rates of fetal alcohol spectrum disorders (FASD) are observed in countries where malnutrition is prevalent. Epidemiological studies have shown that many pregnant women throughout the world may not be consuming adequate levels of choline, an essential nutrient critical for brain development, and a methyl donor. In this study, we examined the influence of dietary choline deficiency on the severity of fetal alcohol effects. Pregnant Sprague-Dawley rats were randomly assigned to receive diets containing 40, 70, or 100% recommended choline levels. A group from each diet condition was exposed to ethanol (6.0g/kg/day) from gestational day 5 to 20 via intubation. Pair-fed and ad lib lab chow control groups were also included. Physical and behavioral development was measured in the offspring. Prenatal alcohol exposure delayed motor development, and 40% choline altered performance on the cliff avoidance task, independent of one another. However, the combination of low choline and prenatal alcohol produced the most severe impairments in development. Subjects exposed to ethanol and fed the 40% choline diet exhibited delayed eye openings, significantly fewer successes in hindlimb coordination, and were significantly overactive compared to all other groups. These data suggest that suboptimal intake of a single nutrient can exacerbate some of ethanol's teratogenic effects, a finding with important implications for the prevention of FASD. Copyright © 2016. Published by Elsevier Inc.

  8. The effects of prenatal cocaine, post-weaning housing and sex on conditioned place preference in adolescent rats.

    Science.gov (United States)

    Dow-Edwards, Diana; Iijima, Maiko; Stephenson, Stacy; Jackson, April; Weedon, Jeremy

    2014-04-01

    Gestational exposure to cocaine now affects several million people including adolescents and young adults. Whether prenatal drug exposures alter an individual's tendency to take and/or abuse drugs is still a matter of debate. This study sought to answer the question "Does prenatal exposure to cocaine, in a dose-response fashion, alter the rewarding effects of cocaine using a conditioned place preference (CPP) procedure during adolescence in the rat?" Further, we wanted to assess the possible sex differences and the role of being raised in an enriched versus impoverished environment. Virgin female Sprague-Dawley rats were dosed daily with cocaine at 30 mg/kg (C30), 60 mg/kg (C60), or vehicle intragastrically prior to mating and throughout gestation. Pups were culled, fostered and, on postnatal day (PND) 23, placed into isolation cages or enriched cages with three same-sex littermates and stimulus objects. On PND43-47, CPP was determined across a range of cocaine doses. C30 exposure increased sensitivity to the rewarding effects of cocaine in adolescent males, and being raised in an enriched environment further enhanced this effect. Rats exposed to C60 resembled the controls in cocaine CPP. Overall, females were modestly affected by prenatal cocaine and enrichment. These data support the unique sensitivity of males to the effects of gestational cocaine, that moderate prenatal cocaine doses produce greater effects on developing reward circuits than high doses and that housing condition interacts with prenatal treatment and sex such that enrichment increases cocaine CPP mostly in adolescent males prenatally exposed to moderate cocaine doses.

  9. Life span and tumorigenesis in mice exposed to continuous low dose-rate gamma-rays

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Braga-Tanaka III, Ignacia; Takabatake, Takashi; Ichinohe, Kazuaki; Tanaka, Kimio; Matsumoto, Tsuneya; Sato, Fumiaki

    2004-01-01

    Two experiments were conducted to evaluate late biological effects of chronic low dose-rate radiation. 1: Late effects of chronic low dose-rate gamma-ray irradiation on SPF mice, using life span and pathological changes as parameters. Continuous irradiation for approximately 400 days was performed using 137 Cs gamma-rays at dose-rates of 20 mGy/day, 1 mGy/day and 0.05 mGy/day with accumulated doses equivalent to 8000 mGy, 400 mGy and 20 mGy, respectively. All mice were kept until their natural death. Statistical analyses show that the life spans of the both sexes irradiated at 20 mGy/day (p<0.0001) and of females irradiated at 1 mGy/day (p<0.05) were significantly shorter than those of the control group. There was no evidence of lengthened life span in mice continuously exposed to very low dose-rates of gama-rays. Pathodological examinations showed that the most frequently observed lethal neoplasms in males were malignant lymphomas, liver, lung, and soft tissue neoplasms, whereas, in females, malignant lymphomas and soft tissue neoplasms were common. No significant difference in the causes of death and mortality rates between groups. Hematopoietic neoplasms (malignant lymphoma and myeloid leukemia), liver, lung and soft tissue neoplasms, showed a tendency to appear at a younger age in both sexes irradiated at 20 mGy/day. Experiment 2: effects on the progeny of chronic low dose-rate gamma-ray irradiated SPF mice: preliminary study. No significant difference was observed between non-irradiated group and irradiated group with regards to litter size, sex ratio and causes of death in F1 and F2 mice. (author)

  10. [Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water].

    Science.gov (United States)

    Yu, Xiao-Yun; Zhong, Yuan; Niu, Yu-Hong; Qu, Chun-Qing; Li, Ge-Xin; Lü, Xiu-Qiang; Sun, Gui-Fan; Jin, Ya-Ping

    2008-09-01

    To explore the effect of glutathione (GSH) and sodium selenite on the metabolism of arsenic in the liver, kidney and blood of mice exposed to iAsIII through drinking water. The mice were randomly divided into control, arsenic, GSH and sodium selenite group, respectively. And each group had eight mice and the mice were exposed to 50 mg/L arsenite by drinking water for 4 weeks. Mice were intraperitoneally injected with GSH (600 mg/kg) and sodium selenite (1 mg/kg) for seven days from the beginning of the fourth week. At the end of the fourth week, liver, kidney and blood were sampled to assess the concentrations of inorganic arsenic (iAs), monomethylarsenic acid (MMA), dimethylarsenic acid (DMA) by hydride generation trapping by ultra-hypothermia coupled with atomic absorption spectrometry. The liver DMA (233.76 +/- 60.63 ng/g) concentration in GSH group was significantly higher than the arsenic group (218.36 +/- 42.71 ng/g). The concentration of DMA (88.52 +/- 30.86 ng/g) and total arsenic (TAs) (162.32 +/- 49.45 ng/g) in blood of GSH group was significantly higher than those [(45.32 +/- 12.19 ng/g), (108.51 +/- 18.00 ng/g), respectively] of arsenic groups(q values were 3.06, 6.40, 10.72 respectively, P < 0.05). The primary methylated index (PMI) (0.65 +/- 0.050) and secondary methylated index (SMI) (0.55 +/- 0.050) in liver sample of GSH group were significantly higher than those (0.58 +/- 0.056, 0.44 +/- 0. 093) in arsenic group. In blood samples, the PMI (0.85 +/- 0.066) in GSH group was significantly higher than that (0.54 +/- 0.113) in arsenic group (q values were 3.75, 5.26, 4.21 respectively, P < 0.05). However, no significant difference was identified between sodium selenite and arsenic groups in liver, kidney or blood samples. And no significant difference was detected in kidney samples among all arsenic exposing groups. Exogenous GSH could promote the methylated metabolism of iAsIII, but sodium selenite showed no significant effects.

  11. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water.

    Science.gov (United States)

    Wang, Yan; Zhao, Fenghong; Jin, Yaping; Zhong, Yuan; Yu, Xiaoyun; Li, Gexin; Lv, Xiuqiang; Sun, Guifan

    2011-03-01

    Chronic exposure to inorganic arsenic (iAs) is associated with neurotoxicity. Studies to date have disclosed that methylation of ingested iAs is the main metabolic pathway, and it is a process relying on reduced glutathione (GSH). The aim of this study was to explore the effects of exogenous GSH on arsenic burden and metabolism of nitric oxide (NO) in the brain of mice exposed to arsenite via drinking water. Mice were exposed to sodium arsenite through drinking water contaminated with 50 mg/L arsenic for 4 weeks and treated intraperitoneally with saline solution, 200 mg/kg body weight (b.w), 400 mg/kg b.w, or 800 mg/kg b.w GSH, respectively, at the 4th week. Levels of iAs, monomethylarsenic acid, and dimethylarsenic acid (DMAs) in the liver, blood, and brain were determined by method of hydride generation coupled with atomic absorption spectrophotometry. Activities of nitric oxide synthase (NOS) and contents of NO in the brain were determined by colorimetric method. Compared with mice exposed to arsenite alone, administration of GSH increased dose-dependently the primary and secondary methylation ratio in the liver, which caused the decrease in percent iAs and increase in percent DMAs in the liver, as a consequence, resulted in significant decrease in iAs levels in the blood and total arsenic levels in both blood and brain. NOS activities and NO levels in the brain of mice in iAs group were significantly lower than those in control; however, administration of GSH could increase significantly activities of NOS and contents of NO. Findings from this study suggested that exogenous GSH could promote both primary and secondary arsenic methylation capacity in the liver, which might facilitate excretion of arsenicals, and consequently reduce arsenic burden in both blood and brain and furthermore ameliorate the effects of arsenicals on NO metabolism in the brain.

  12. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    Science.gov (United States)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  13. Prenatal serotonin reuptake inhibitor (SRI antidepressant exposure and serotonin transporter promoter genotype (SLC6A4 influence executive functions at 6 years of age

    Directory of Open Access Journals (Sweden)

    Whitney eWeikum

    2013-10-01

    Full Text Available Prenatal exposure to serotonin reuptake inhibitor (SRI antidepressants and maternal depression may affect prefrontal cognitive skills (executive functions; EFs including self-control, working memory and cognitive flexibility. We examined long-term effects of prenatal SRI exposure on EFs to determine whether effects are moderated by maternal mood and/or genetic variations in SLC6A4 (a gene that codes for the serotonin transporter [5-HTT] central to the regulation of synaptic serotonin levels and behavior. Children who were exposed to SRIs prenatally (SRI-exposed N=26 and non-exposed (N=38 were studied at age 6 years (M=6.3 SD=0.5 using the Hearts & Flowers task (H&F to assess EFs. Maternal mood was measured during pregnancy (3rd trimester and when the child was age 6 years (Hamilton Depression Scale. Parent reports of child behavior were also obtained (MacArthur Health & Behavior Questionnaire. Parents of prenatally SRI-exposed children reported fewer child externalizing and inattentive (ADHD behaviors. Generalized estimate equation modeling showed a significant 3-way interaction between prenatal SRI exposure, SLC6A4 variant, and maternal mood at the 6-year time-point on H&F accuracy. For prenatally SRI-exposed children, regardless of maternal mood, the H&F accuracy of children with reduced 5HTT expression (a short [S] allele remained stable. Even with increasing maternal depressive symptoms (though all below clinical threshold, EFs of children with at least one short allele were comparable to children with the same genotype whose mothers reported few if any depressive symptoms – in this sense they showed resilience. Children with two long (L alleles were more sensitive to context. When their mothers had few depressive symptoms, LL children showed extremely good EF performance – better than any other group. When their mothers reported more depressive symptoms, LL children’s EF performance was worse than that of any other group.

  14. Effects of prenatal exposure to chronic mild stress and toluene in rats

    DEFF Research Database (Denmark)

    Hougaard, Karin; Andersen, Maibritt B; Hansen, Ase M

    2005-01-01

    The aim of the present study was to elucidate whether prenatal chronic stress, in combination with exposure to a developmental neurotoxicant, would increase effects in the offspring compared with the effects of either exposure alone. Development and neurobehavioral effects were investigated...... in female offspring of pregnant rats (Mol:WIST) exposed to chronic mild stress (CMS) during gestational days (GD) 9-20, or 1500 ppm toluene, 6 h/day during gestational days 7-20, or a combination of the two. Prenatal CMS was associated with decreased thymic weight and increased auditory startle response....... The corticosterone response to restraint seemed modified by prenatal exposure to toluene. Lactational body weight was decreased in offsprings subjected to CMS, primarily due to effects in the combined exposure group. Cognitive function was investigated in the Morris water maze, and some indications of improved...

  15. Effects of prenatal stress on vulnerability to stress in prepubertal and adult rats.

    Science.gov (United States)

    Fride, E; Dan, Y; Feldon, J; Halevy, G; Weinstock, M

    1986-01-01

    This study investigated the hypotheses that unpredictable prenatal stress has effects on the offspring, similar to those induced by perinatal administration of glucocorticoids and increases the vulnerability to stressful situations at adulthood. Rats were exposed to random noise and light stress throughout pregnancy. Offspring were tested for the development of spontaneous alternation behavior (SA) and at adulthood, their response to novel or aversive situations, open field, extinction and punishment following acquisition of an appetitive response and two-way active avoidance, were assessed. In prenatally stressed rats, the development of SA was significantly delayed. On repeated exposure to an open field they were less active; control rats had elevated plasma corticosterone (CCS) on days 2 and 4 of open field exposure, while prenatally stressed rats had significantly raised plasma CCS after each exposure (days 1-8). Furthermore, punishment-induced suppression of an appetitive response was enhanced. Acquisition of active avoidance was faciliated in female but reduced in male prenatally stressed offspring. It is suggested that random prenatal noise and light stress may cause impairment of development of hippocampal function which lasts into adulthood. This impairment is manifested as an increase in vulnerability and a decrease in habituation to stressful stimuli.

  16. Does prenatal maternal stress impair cognitive development and alter temperament characteristics in toddlers with healthy birth outcomes?

    Science.gov (United States)

    Zhu, Peng; Sun, Meng-Sha; Hao, Jia-Hu; Chen, Yu-Jiang; Jiang, Xiao-Min; Tao, Rui-Xue; Huang, Kun; Tao, Fang-Biao

    2014-03-01

    The aim of this study was to assess the cognitive and behavioural development of children with healthy birth outcomes whose mothers were exposed to prenatal stress but did not experience pregnancy complications. In this prospective study, self-reported data, including the Prenatal Life Events Checklist about stressful life events (SLEs) during different stages of pregnancy, were collected at 32 to 34 weeks' gestation. Thirty-eight healthy females (mean age 27 y 8 mo, SD 2 y 4 mo) who were exposed to severe SLEs in the first trimester were defined as the exposed infant group, and 114 matched comparison participants were defined as the unexposed infant group (1:3). Maternal postnatal depressive symptoms were assessed with the Edinburgh Postnatal Depression Scale. The Bayley Scales of Infant Development and the Toddler Temperament Scale were used to evaluate the cognitive development and temperament characteristics of the infants with healthy birth outcomes when they were 16 to 18 months old. A randomized block multivariate analysis of covariance showed that the mental development index scores of the infants of mothers with prenatal exposure to SLEs in the first trimester averaged seven points (95% confidence interval 3.23-10.73 points) lower than those of the unexposed infants. Moreover, the infants in the exposed group achieved higher scores for regularity (adjusted mean [SD] 2.77 [0.65] vs. 2.52 [0.78], F(5,146) =5.27, p=0.023) and for persistence and attention span (adjusted mean 3.61 [0.72] vs. 3.35 [0.52], F(5,146) =5.51, p=0.020). This study provides evidence that lower cognitive ability and less optimal worse behavioural response in infants might independently result from prenatal maternal stress. © 2014 Mac Keith Press.

  17. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    Science.gov (United States)

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  18. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  19. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria; Fantuzzi, Giamila

    2010-01-01

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4 + , CD8 + and CD4 + CD8 + T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  20. Reduced Adult Hippocampal Neurogenesis and Cognitive Impairments following Prenatal Treatment of the Antiepileptic Drug Valproic Acid

    Directory of Open Access Journals (Sweden)

    Berry Juliandi

    2015-12-01

    Full Text Available Prenatal exposure to valproic acid (VPA, an established antiepileptic drug, has been reported to impair postnatal cognitive function in children born to VPA-treated epileptic mothers. However, how these defects arise and how they can be overcome remain unknown. Using mice, we found that comparable postnatal cognitive functional impairment is very likely correlated to the untimely enhancement of embryonic neurogenesis, which led to depletion of the neural precursor cell pool and consequently a decreased level of adult neurogenesis in the hippocampus. Moreover, hippocampal neurons in the offspring of VPA-treated mice showed abnormal morphology and activity. Surprisingly, these impairments could be ameliorated by voluntary running. Our study suggests that although prenatal exposure to antiepileptic drugs such as VPA may have detrimental effects that persist until adulthood, these effects may be offset by a simple physical activity such as running.

  1. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty.

    Science.gov (United States)

    Meng, Xiu-Hong; Liu, Ping; Wang, Hua; Zhao, Xian-Feng; Xu, Zhong-Mei; Chen, Gui-Hai; Xu, De-Xiang

    2011-06-24

    In human and rodent models, endocrine disrupting chemicals (EDCs) interfere with the development of cognition and behaviors. Fenvalerate is a potential EDC. The purpose of this study was to examine whether pubertal fenvalerate exposure altered behavioral development. Mice were orally administered with either vehicle or fenvalerate (7.5 or 30 mg/kg/day) from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris Water Maze. Aggressive performance was evaluated by aggressive behavior test. Anxiety-related activities were detected by three tests: open-field, plus-maze and black-white alley. Sensorimotor function was analyzed using beam walking and tightrope. Results found that the impairment for spatial learning and memory was more severe in fenvalerate-exposed female mice than in male mice. In addition, pubertal fenvalerate exposure inhibited aggressive behavior in males. Moreover, pubertal fenvalerate exposure increased anxiety activities in females. Altogether, these results suggest that pubertal fenvalerate exposure impairs spatial cognition and behavioral development in a gender-dependent manner. These findings identify fenvalerate as candidate environmental risk factors for cognitive and behavioral development, especially in the critical period of development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Risk of affective disorders following prenatal exposure to severe life events: a Danish population-based cohort study.

    LENUS (Irish Health Repository)

    Khashan, Ali S

    2012-01-31

    OBJECTIVE: To examine the effect of prenatal exposure to severe life events on risk of affective disorders in the offspring. METHODS: In a cohort of 1.1 million Danish births from May 1978 until December 1997, mothers were considered exposed if one (or more) of their close relatives died or was diagnosed with serious illness up to 6 months before conception or during pregnancy. Offspring were followed up from their 10th birthday until their death, migration, onset of affective disorder or 31 December 2007; hospital admissions were identified by linkage to the Central Psychiatric Register. Log-linear Poisson regression was used for data analysis. RESULTS: The risk of affective disorders was increased in male offspring whose mothers were exposed to severe life events during the second trimester (adjusted RR 1.55 [95% CI 1.05-2.28]). There was an increased risk of male offspring affective disorders in relation to maternal exposure to death of a relative in the second trimester (adjusted RR 1.74 [95% CI 1.06-2.84]) or serious illness in a relative before pregnancy (adjusted RR 1.44 [95% CI 1.02-2.05]). There was no evidence for an association between prenatal exposure to severe life events and risk of female offspring affective disorders. CONCLUSIONS: Our population-based study suggests that prenatal maternal exposure to severe life events may increase the risk of affective disorders in male offspring. These findings are consistent with studies of populations exposed to famine and earthquake disasters which indicate that prenatal environment may influence the neurodevelopment of the unborn child.

  3. Effects of prenatal low dose beta radiation from tritiated water on rat hippocampus neurons. Electrophysiological and neuro behavioural changes

    International Nuclear Information System (INIS)

    Gao Weimin; Zhou Xiangyan

    1997-01-01

    Pregnent Wistar rats were exposed to tritiated water (HTO) on day 13 of gestation so that for their offsprings, the absorbed doses were estimated to be 0.000, 0.044, 0.088 and 0.264 Gy. The influence of HTO to the morphology and number of hippocampus pyramidal neurons and the maximum electric current of Ca 2+ in neurons was observed for the in-vitro-cultured hippocampus of new-born rats and the learning and memory behaviours were assessed by the electric avoidance reflex test in a Y-maze and the condition reflex test for young rats. The results show that prenatal exposure to HTO in a cumulative dose of 0.088 Gy can cause a reduction in number of neurons in hippocampus cultured in vitro, and that the electric current of Ca 2+ tends to decline with cumulative dose increasing, with the significant decrease in offsprings prenatally exposed to HTO in dose of 0.264 Gy. The results of electric avoidance reflex test in a Y-maze and condition reflex test indicate that for young rats prenatally exposed to HTO, a cumulative dose of 0.088 Gy could induce damage in their learning and memory behaviours

  4. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats

    Science.gov (United States)

    Ehrlich, David E.; Neigh, Gretchen N.; Bourke, Chase H.; Nemeth, Christina L.; Hazra, Rimi; Ryan, Steven J.; Rowson, Sydney; Jairam, Nesha; Sholar, Courtney; Rainnie, Donald G.; Stowe, Zachary N.; Owens, Michael J.

    2015-01-01

    Depression during pregnancy has been linked to in utero stress and is associated with long-lasting symptoms in offspring, including anxiety, helplessness, attentional deficits, and social withdrawal. Depression is diagnosed in 10-20% of expectant mothers, but the impact of antidepressant treatment on offspring development is not well documented, particularly for females. Here, we used a prenatal stress model of maternal depression to test the hypothesis that in utero antidepressant treatment could mitigate the effects of prenatal stress. We also investigated the effects of prenatal stress and antidepressant treatment on gene expression related to GABAergic and serotonergic neurotransmission in the amygdala, which may underlie behavioral effects of prenatal stress. Nulliparous female rats were implanted with osmotic minipumps delivering clinically-relevant concentrations of escitalopram and mated. Pregnant dams were exposed to 12 days of mixed-modality stressors, and offspring were behaviorally assessed in adolescence (postnatal day 28) and adulthood (beyond day 90) to determine the extent of behavioral change. We found that in utero stress exposure, regardless of escitalopram treatment, increased anxiety-like behavior in adolescent females and profoundly influenced amygdala expression of the chloride transporters KCC2 and NKCC1, which regulate GABAergic function. In contrast, prenatal escitalopram exposure alone elevated amygdala expression of 5-HT1A receptors. In adulthood, anxiety-like behavior returned to baseline and gene expression effects in the amygdala abated, whereas deficits emerged in novel object recognition for rats exposed to stress during gestation. These findings suggest prenatal stress causes age-dependent deficits in anxiety-like behavior and amygdala function in female offspring, regardless of antidepressant exposure. PMID:26032436

  5. DHA Mitigates Autistic Behaviors Accompanied by Dopaminergic Change in a Gene/Prenatal Stress Mouse Model.

    Science.gov (United States)

    Matsui, Fumihiro; Hecht, Patrick; Yoshimoto, Kanji; Watanabe, Yoshihisa; Morimoto, Masafumi; Fritsche, Kevin; Will, Matthew; Beversdorf, David

    2018-02-10

    Autism Spectrum Disorder (ASD) is characterized by impairments in social interaction, social communication, and repetitive and stereotyped behaviors. Recent work has begun to explore gene × environmental interactions in the etiology of ASD. We previously reported that prenatal stress exposure in stress-susceptible heterozygous serotonin transporter (SERT) KO pregnant dams in a mouse model resulted in autism-like behavior in the offspring (SERT/S mice). The association between prenatal stress and ASD appears to be affected by maternal SERT genotype in clinical populations as well. Using the mouse model, we examined autistic-like behaviors in greater detail, and additionally explored whether diet supplementation with docosahexaenoic acid (DHA) may mitigate the behavioral changes. Only male SERT/S mice showed social impairment and stereotyped behavior, and DHA supplementation ameliorated some of these behaviors. We also measured monoamine levels in the SERT/S mice after three treatment paradigms: DHA-rich diet continuously from breeding (DHA diet), DHA-rich diet only after weaning (CTL/DHA diet) and control diet only (CTL diet). The dopamine (DA) content in the striatum was significantly increased in the SERT/S mice compared with wild-type (WT) mice, whereas no difference was observed with noradrenaline and serotonin content. Moreover, DA content in the striatum was significantly reduced in the SERT/S mice with the DHA-rich diet provided continuously from breeding. The results indicate that autism-associated behaviors and changes in the dopaminergic system in this setting can be mitigated with DHA supplementation. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Prenatal paracetamol exposure and child neurodevelopment: a sibling-controlled cohort study

    Science.gov (United States)

    Brandlistuen, Ragnhild Eek; Ystrom, Eivind; Nulman, Irena; Koren, Gideon; Nordeng, Hedvig

    2013-01-01

    Background Paracetamol is used extensively during pregnancy, but studies regarding the potential neurodevelopmental sequelae of foetal paracetamol exposure are lacking. Method Between 1999 and 2008 all pregnant Norwegian women were eligible for recruitment into the prospective Norwegian Mother and Child Cohort Study. The mothers were asked to report on their use of paracetamol at gestational weeks 17 and 30 and at 6 months postpartum. We used data on 48 631 children whose mothers returned the 3-year follow-up questionnaire by May 2011. Within this sample were 2919 same-sex sibling pairs who were used to adjust for familial and genetic factors. We modelled psychomotor development (communication, fine and gross motor development), externalizing and internalizing behaviour problems, and temperament (emotionality, activity, sociability and shyness) based on prenatal paracetamol exposure using generalized linear regression, adjusting for a number of factors, including febrile illness, infections and co-medication use during pregnancy. Results The sibling-control analysis revealed that children exposed to prenatal paracetamol for more than 28 days had poorer gross motor development [β 0.24, 95% confidence interval (CI) 0.12–0.51], communication (β 0.20, 95% CI 0.01–0.39), externalizing behaviour (β 0.28, 95% CI 0.15–0.42), internalizing behaviour (β 0.14, 95% CI 0.01–0.28), and higher activity levels (β 0.24, 95% CI 0.11–0.38). Children exposed prenatally to short-term use of paracetamol (1–27 days) also had poorer gross motor outcomes (β 0.10, 95% CI 0.02–0.19), but the effects were smaller than with long-term use. Ibuprofen exposure was not associated with neurodevelopmental outcomes. Conclusion Children exposed to long-term use of paracetamol during pregnancy had substantially adverse developmental outcomes at 3 years of age. PMID:24163279

  7. Mental retardation occurring in embryo exposed in utero to the atomic bomb (Hiroshima)

    International Nuclear Information System (INIS)

    Ishikawa, Hiroya; Shimasaki, Akira; Fujiwara, Koichi; Harada, Masazumi; Minami, Ryuichi.

    1978-01-01

    This paper deals with a long term follow-up study on psychological symptoms in four patients with microscopically microcephaly induced by prenatal exposed to atomic bomb. They were exposed to atomic bomb at 8- and 12-week-embryos. The distance from the center of the explosion was 780 - 1180 m. All their mothers had acute radiation hazards. Their growths in the uterus were markedly damaged. Postnatal body weight ranged between 1,300 and 2,000 g. They were commonly characterized by microcephaly, physiological and mental retardation, stigmata of degeneracy, and skin symptoms, who were diagnosed as ''microcephaly induced by early prenatal exposure to atomic bomb'' by the research group for microcephaly in the Ministry of Health and Welfare. These common symptoms such as microcephaly, stigmata of degeneracy, and disturbed growth, but neurological symptoms such as motor aphasia were slighter in these patients than in those having congenital Minamata disease prenatal. These results suggested that the prognosis of these patients in whom 30 years have passed is unexpectedly serious. (Namekawa, K.)

  8. Congenital ventricular septal defects and prenatal exposure to cyclooxygenase inhibitors

    Directory of Open Access Journals (Sweden)

    F. Burdan

    2006-07-01

    Full Text Available Ventricular septal defects (VSDs are common congenital abnormalities which have been reported to be associated with maternal fever and various environmental factors. The aim of the present study was to evaluate the effect of prenatal exposure to cyclooxygenase (COX inhibitors on heart defects. A retrospective statistical analysis was performed using data collected in our laboratory during various teratological studies carried out on albino CRL:(WIWUBR Wistar strain rats from 1997 to 2004. The observations were compared with concurrent and historic control data, as well as findings from other developmental toxicological studies with selective and nonselective COX-2 inhibitors. Despite the lack of significant differences in the frequency of VSDs between drug-exposed and control groups, statistical analysis by the two-sided Mantel-Haenszel test and historical control data showed a higher incidence of heart defects in offspring exposed to nonselective COX inhibitors (30.06/10,000. Unlike other specific inhibitors, aspirin (46.26/10,000 and ibuprofen (106.95/10,000 significantly increased the incidence of the VSD when compared with various control groups (5.38-19.72/10,000. No significant differences in length or weight were detected between fetuses exposed to COX inhibitors and born with VSD and non-malformed offsprings. However, a statistically significant increase of fetal body length and decrease of body mass index were found in fetuses exposed to COX inhibitors when compared with untreated control. We conclude that prenatal exposure to COX inhibitors, especially aspirin and ibuprofen, increased the incidence of VSDs in rat offspring but was not related to fetal growth retardation.

  9. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats.

    Directory of Open Access Journals (Sweden)

    Ismael Palacios-García

    Full Text Available Prenatal stress causes predisposition to cognitive and emotional disturbances and is a risk factor towards the development of neuropsychiatric conditions like depression, bipolar disorders and schizophrenia. The extracellular protein Reelin, expressed by Cajal-Retzius cells during cortical development, plays critical roles on cortical lamination and synaptic maturation, and its deregulation has been associated with maladaptive conditions. In the present study, we address the effect of prenatal restraint stress (PNS upon Reelin expression and signaling in pregnant rats during the last 10 days of pregnancy. Animals from one group, including control and PNS exposed fetuses, were sacrificed and analyzed using immunohistochemical, biochemical, cell biology and molecular biology approaches. We scored changes in the expression of Reelin, its signaling pathway and in the methylation of its promoter. A second group included control and PNS exposed animals maintained until young adulthood for behavioral studies. Using the optical dissector, we show decreased numbers of Reelin-positive neurons in cortical layer I of PNS exposed animals. In addition, neurons from PNS exposed animals display decreased Reelin expression that is paralleled by changes in components of the Reelin-signaling cascade, both in vivo and in vitro. Furthermore, PNS induced changes in the DNA methylation levels of the Reelin promoter in culture and in histological samples. PNS adult rats display excessive spontaneous locomotor activity, high anxiety levels and problems of learning and memory consolidation. No significant visuo-spatial memory impairment was detected on the Morris water maze. These results highlight the effects of prenatal stress on the Cajal-Retzius neuronal population, and the persistence of behavioral consequences using this treatment in adults, thereby supporting a relevant role of PNS in the genesis of neuropsychiatric diseases. We also propose an in vitro model that

  10. Cancer Mortality Among Techa Riverside Residents (Southern Urals). Chronically Exposed to Radiation During the Prenatal Period and in Childhood

    International Nuclear Information System (INIS)

    Ostroumova, E. V.; Akleyev, A. V.

    2004-01-01

    Imperfect technology and lack of management and utilization facilities for reprocessing liquid waste released by the Mayak PA resulted in a protracted combined (external and internal) environmental radiation exposure of the population resident on the banks of the Techa River. The followup of 8.640 subjects exposed during the prenatal period and in childhood covered the period of 49 years (1.1.1950-31.12.1998), the total person-years under observation amounted to 222,686. From 1950 through 1998 1,231 death cases were registered in the catchment area (5 raions in Chelyabinsk OBlast through which the Techa flows). In 70 cases death was caused by solid cancers, and in 12 cases by leukemia. Analyses of solid cancer mortality yielded higher rates for men as compared to women (p<0.001). No significant differences in death rates were observed between different ethnic groups (Slavs vs Tartars and Bashkirs). A statistically significant increase in solid cancer mortality with attained age was shown (p<0.001). The age at first exposure was demonstrated to be a factor modifying the solid cancer mortality rate (p=0.049). The highest risk of death from solid cancers was manifested by persons whose exposure started in the prenatal period or at the age under 5 years. There were 4.6 excess cases in this group of 30 observed solid cancer cases, whereas in the group including subjects aged 5 years or older at first exposure only 1 excess case was registered among the 40 observed cancer cases. The obtained leukemia mortality ERR value (CLL excluded) was 7.76, p=0.09. The excess leukemia death was found to be 7.6 out of of 10 observed cases. The analysis performed should be regarded as a preliminary one, taking into account the need to further extend the followup of the cohort and a potential verification of dose estimates in the future. (Author) 11 refs

  11. Prenatal exposure to noise stress: anxiety, impaired spatial memory, and deteriorated hippocampal plasticity in postnatal life.

    Science.gov (United States)

    Barzegar, Marzieh; Sajjadi, Fatemeh Sadat; Talaei, Sayyed Alireza; Hamidi, Gholamali; Salami, Mahmoud

    2015-02-01

    Sound pollution is known as an annoying phenomenon in modern life. Especially, development of organisms during fetal life is more sensitive to environmental tensions. To address a link between the behavioral and electrophysiological aspects of brain function with action of hypothalamus-pituitary-adrenal (HPA) axis in stressed animals, this study was carried out on the male Wistar rats prenatally exposed to sound stress. Groups of pregnant rats were exposed to noise stress for 1, 2, and 4 hour(s). The degree of anxiety and the spatial memory were evaluated by elevated plus maze and Morris water maze, respectively. Basic synaptic activity and long-term potentiation (LTP) induction were assessed in the CA3-CA1 pathway of hippocampus. The serum level of corticosterone was measured in the pregnant mothers and the offspring. The behavioral experiments appeared that the stressed animals performed considerably weaker than the control rats. The prenatal stress negatively affected the basic synaptic responses and led to a lower level of LTP. The pregnant animals showed an increased serum corticosterone in comparison with the nonpregnant females. Also the offspring exposed to the noise stress had a more elevated level of corticosterone than the control rats. Our findings indicate that the corticosterone concentration changes markedly coincides the results of behavioral and electrophysiological experiments. We conclude that, similar to other environmental stresses, the sound stress during fetal life efficiently disturbs both cognitive abilities and synaptic activities. The changes in action of HPA axis may contribute to problems of the brain function in the prenatally stress exposed animals. © 2014 Wiley Periodicals, Inc.

  12. Association of Prenatal Ibuprofen Exposure with Birth Weight and Gestational Age: A Population-Based Sibling Study.

    Science.gov (United States)

    Nezvalová-Henriksen, Kateřina; Wood, Mollie; Spigset, Olav; Nordeng, Hedvig

    2016-01-01

    Three studies so far have investigated the effect of prenatal non-steroidal anti-inflammatory drug (NSAID) exposure on birth weight and gestational age. The aim in this study was to evaluate the association of prenatal ibuprofen with birth weight and gestational age at birth, using a sibling design in an attempt to adjust for the possibility of familial confounding. Using data from the Norwegian Mother and Child Cohort Study (MoBa) and the Medical Birth Registry of Norway (MBRN), we identified 28 597 siblings, of whom 1080 were prenatally exposed to ibuprofen and 26 824 were not exposed to any NSAID. Random and fixed effects models with propensity score adjustment were used to evaluate the effects of ibuprofen exposure on birth weight and gestational age. Ibuprofen exposure during the first trimester was associated with a decrease in birth weight of 79 grams (95% confidence interval -133 to -25 grams). In contrast, second and/or third trimester exposure, and duration of exposure had no impact on the effect estimates. We found no association between ibuprofen exposure and gestational age at birth. Our results suggest that prenatal exposure to ibuprofen during the first trimester is associated with a slight decrease in birth weight. The association does not seem to be attributable to shared genetics and family environment, and could be explained by either exposure to ibuprofen, or to non-shared confounding between pregnancies.

  13. Prenatal Tests

    Science.gov (United States)

    ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  14. Prenatal x-ray exposure and childhood cancer in twins

    International Nuclear Information System (INIS)

    Harvey, E.B.; Boice, J.D. Jr.; Honeyman, M.; Flannery, J.T.

    1985-01-01

    A case-control study was conducted to investigate the relation between prenatal exposure to x-rays and childhood cancer, including leukemia, in over 32,000 twins born in Connecticut from 1930 to 1969. Twins as opposed to single births were chosen for study to reduce the likelihood of medical selection bias, since twins were often exposed to x-rays to diagnose the twin pregnancy or to determine fetal positioning before delivery and not because of medical conditions that may conceivably pre-dispose to cancer. Each of 31 incident cases of cancer, identified by linking the Connecticut twin and tumor registries, was matched with four twin controls according to sex, year of birth, and race. Records of hospitals, radiologists, and private physicians were searched for histories of x-ray exposure and other potentially important risk factors. Documented prenatal x-ray exposures were found for 39 per cent of the cases (12 of 31) and for 26 per cent of the controls (28 of 109). No other pregnancy, delivery, or maternal conditions were associated with cancer risk except low birth weight: 38 per cent of the cases as compared with 25 per cent of the controls weighed under 2.27 kg at birth. When birth weight was adjusted for, twins in whom leukemia or other childhood cancer developed were twice as likely to have been exposed to x-rays in utero as twins who were free of disease (relative risk, 2.4; 95 per cent confidence interval, 1.0 to 5.9). The results, though based on small numbers, provide further evidence that low-dose prenatal irradiation may increase the risk of childhood cancer

  15. Sequence analysis of LACI mutations obtained from lung cells of control and radon-exposed Big Blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Jostes, R.F.; Cross, F.T.; Stillwell, L.

    1995-01-01

    We have exposed Stratagene Big Blue trademark transgenic mice by inhalation to 310, 640 and 960 Working Level Months (WLM) of radon progency. Twelve LacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM group and the LacI gene sequenced. Mutations are scored only if they occur unambiguously in both strands of the mutant gene; the entire gene is evaluated. In addition, sixteen LacI mutations were isolated from the lung tissue of a mouse from the 640-WLM group; seven have been completely sequenced. Nine LacI mutations from the lung tissue of unirradiated control mice have been sequenced. Sequence data from the unirradiated mice are similar to that found in lung tissue at Stratagene; predominately G:C to A:T transitions in the protein associated region. The mutation spectrum from radon-irradiated mice is markedly different from that obtained with the control, unirradiated mice. Small deletions and insertions compromise 53% of the mutations in the irradiated mice. No multiple events have been noted in the spontaneous mutations; six of the mutations obtained from radon-irradiated mice (26%) have multiple events within the gene. In some, deletions, insertions are base changes occur together. The mutational events in the irradiated mice are approximately equally distributed throughout the gene. The breakpoint rejoining regions of large deletions obtained from the radon-irradiated mice are being studied at the University of California, San Francisco

  16. Determinants of prenatal health care utilisation by low-risk women: a prospective cohort study.

    Science.gov (United States)

    Feijen-de Jong, Esther I; Jansen, Danielle E M C; Baarveld, Frank; Boerleider, Agatha W; Spelten, Evelien; Schellevis, François; Reijneveld, Sijmen A

    2015-06-01

    Prenatal health care is pivotal in providing adequate prevention and care to pregnant women. We examined the determinants of inadequate prenatal health care utilisation by low-risk women in primary midwifery-led care in the Netherlands. We used longitudinal data from the population-based DELIVER study with 20 midwifery practices across the Netherlands in 2009 and 2010 as the experimental setting. The participants were 3070 pregnant women starting pregnancy care in primary midwifery care. We collected patient-reported data on potential determinants of prenatal care utilisation derived from the Andersen model. Prenatal health care utilisation was measured by a revised version of the Kotelchuck Index, which measures a combination of care entry and number of visits. Low-risk pregnant women (not referred during pregnancy) were more likely to use prenatal care inadequately if they intended to deliver at a hospital, if they did not use folic acid adequately periconceptionally, or if they were exposed to cigarette smoke during pregnancy. Among those who were referred to secondary care, women reporting a chronic illnesses or disabilities, and women who did not use folic acid periconceptionally were more likely to make inadequate use of prenatal care. Inadequate prenatal health care use in primary midwifery care is more likely in specific groups, and the risk groups differ when women are referred to secondary care. The findings suggest routes that can target interventions to women who are at risk of not adequately using prenatal prevention and care services. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  17. Maternal prenatal cortisol predicts infant negative emotionality in a sex-dependent manner.

    Science.gov (United States)

    Braithwaite, Elizabeth C; Pickles, Andrew; Sharp, Helen; Glover, Vivette; O'Donnell, Kieran J; Tibu, Florin; Hill, Jonathan

    2017-06-01

    Prenatal stress influences fetal developmental trajectories, which may implicate glucocorticoid mechanisms. There is also emerging evidence that effects of prenatal stress on offspring development are sex-dependent. However, little is known about the prospective relationship between maternal prenatal cortisol levels and infant behaviour, and whether it may be different in male and female infants. We sought to address this question using data from a prospective longitudinal cohort, stratified by risk. The Wirral Child Health and Development Study (WCHADS) cohort (n=1233) included a stratified random sub-sample (n=216) who provided maternal saliva samples, assayed for cortisol, at home over two days at 32weeks of pregnancy (on waking, 30-min post-waking and during the evening) and a measure of infant negative emotionality from the Neonatal Behavioural Assessment Scale (NBAS) at five weeks-of-age. General population estimates of associations among measures were obtained using inverse probability weights. Maternal prenatal cortisol sampled on waking predicted infant negative emotionality in a sex-dependent manner (interaction term, p=0.005); female infants exposed to high levels of prenatal cortisol were more negative (Beta=0.440, p=0.042), whereas male infants were less negative (Beta=-0.407, p=0.045). There was no effect of the 30-min post-waking measure or evening cortisol. Our findings add to an emerging body of work that has highlighted sex differences in fetal programming, whereby females become more reactive following prenatal stress, and males less reactive. A more complete understanding of sex-specific developmental trajectories in the context of prenatal stress is essential for the development of targeted prevention strategies. Copyright © 2017. Published by Elsevier Inc.

  18. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure

    Directory of Open Access Journals (Sweden)

    Keri J. Woods

    2018-01-01

    Full Text Available Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI, we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS/partial FAS, 5 heavily exposed (HE non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years. Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS, bilateral posterior superior parietal lobules (PSPL, and left angular gyrus (left AG, using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non

  19. Differential Recruitment of Brain Regions During Response Inhibition in Children Prenatally Exposed to Alcohol.

    Science.gov (United States)

    Kodali, Vikas N; Jacobson, Joseph L; Lindinger, Nadine M; Dodge, Neil C; Molteno, Christopher D; Meintjes, Ernesta M; Jacobson, Sandra W

    2017-02-01

    Response inhibition is a distinct aspect of executive function that is frequently impaired in children with fetal alcohol spectrum disorders (FASD). We used a Go/NoGo (GNG) task in a functional MRI protocol to investigate differential activation of brain regions in the response inhibition network in children diagnosed with full or partial fetal alcohol syndrome (FAS/PFAS), compared with healthy controls. A rapid, event-related task with 120 Go and 60 NoGo trials was used to study children aged 8 to 12 years-8 with FAS/PFAS, 17 controls. Letters were projected sequentially, with Go and NoGo trials randomly interspersed across the task. BOLD signal in the whole brain was contrasted for the correct NoGo minus correct Go trials between the FAS/PFAS and control groups. Compared to the FAS/PFAS group, controls showed greater activation of the inferior frontal and anterior cingulate network linked to response inhibition in typically developing children. By contrast, the FAS/PFAS group showed greater BOLD response in dorsolateral prefrontal cortex and other middle prefrontal regions, suggesting compensation for inefficient function of pathways that normally mediate inhibitory processing. All group differences were significant after control for potential confounding variables. None of the effects of prenatal alcohol exposure on activation of the regions associated with response inhibition were attributable to the effects of this exposure on IQ. This is the first FASD GNG study in which all participants in the exposed group met criteria for a diagnosis of full FAS or PFAS. Although FASD is frequently comorbid with attention deficit hyperactivity disorder, the pattern of brain activation seen in these disorders differs, suggesting that different neural pathways mediate response inhibition in FASD and that different interventions for FASD are, therefore, warranted. Copyright © 2017 by the Research Society on Alcoholism.

  20. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Directory of Open Access Journals (Sweden)

    Jennifer M. Bratt

    2010-01-01

    Full Text Available Objectives and Design. The function of the airway nitric oxide synthase (NOS isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia.

  1. Nitric Oxide Synthase Enzymes in the Airways of Mice Exposed to Ovalbumin: NOS2 Expression Is NOS3 Dependent

    Science.gov (United States)

    Bratt, Jennifer M.; Williams, Keisha; Rabowsky, Michelle F.; Last, Michael S.; Franzi, Lisa M.; Last, Jerold A.; Kenyon, Nicholas J.

    2010-01-01

    Objectives and Design. The function of the airway nitric oxide synthase (NOS) isoforms and the lung cell types responsible for its production are not fully understood. We hypothesized that NO homeostasis in the airway is important to control inflammation, which requires upregulation, of NOS2 protein expression by an NOS3-dependent mechanism. Materials or Subjects. Mice from a C57BL/6 wild-type, NOS1−/−, NOS2−/−, and NOS3−/− genotypes were used. All mice strains were systemically sensitized and exposed to filtered air or ovalbumin (OVA) aerosol for two weeks to create a subchronic model of allergen-induced airway inflammation. Methods. We measured lung function, lung lavage inflammatory and airway epithelial goblet cell count, exhaled NO, nitrate and nitrite concentration, and airway NOS1, NOS2, and NOS3 protein content. Results. Deletion of NOS1 or NOS3 increases NOS2 protein present in the airway epithelium and smooth muscle of air-exposed animals. Exposure to allergen significantly reduced the expression of NOS2 protein in the airway epithelium and smooth muscle of the NOS3−/− strain only. This reduction in NOS2 expression was not due to the replacement of epithelial cells with goblet cells as remaining epithelial cells did not express NOS2. NOS1−/− animals had significantly reduced goblet cell metaplasia compared to C57Bl/6 wt, NOS2−/−, and NOS3−/− allergen-exposed mice. Conclusion. The airway epithelial and smooth muscle cells maintain a stable airway NO concentration under noninflammatory conditions. This “homeostatic” mechanism is unable to distinguish between NOS derived from the different constitutive NOS isoforms. NOS3 is essential for the expression of NOS2 under inflammatory conditions, while NOS1 expression contributes to allergen-induced goblet cell metaplasia. PMID:20953358

  2. Gendered Peer Involvement in Girls with Congenital Adrenal Hyperplasia: Effects of Prenatal Androgens, Gendered Activities, and Gender Cognitions.

    Science.gov (United States)

    Berenbaum, Sheri A; Beltz, Adriene M; Bryk, Kristina; McHale, Susan

    2018-05-01

    A key question in understanding gender development concerns the origins of sex segregation. Children's tendencies to interact with same-sex others have been hypothesized to result from gender identity and cognitions, behavioral compatibility, and personal characteristics. We examined whether prenatal androgen exposure was related to time spent with boys and girls, and how that gendered peer involvement was related to sex-typed activities and gender identity and cognitions. We studied 54 girls with congenital adrenal hyperplasia (CAH) aged 10-13 years varying in degree of prenatal androgen exposure: 40 girls with classical CAH (C-CAH) exposed to high prenatal androgens and 14 girls with non-classical CAH (NC-CAH) exposed to low, female-typical, prenatal androgens. Home interviews and questionnaires provided assessments of gendered activity interests and participation, gender identity, and gender cognitions. Daily phone calls over 7 days assessed time spent in gendered activities and with peers. Girls with both C-CAH and NC-CAH interacted more with girls than with boys, with no significant group differences. The groups did not differ significantly in gender identity or gender cognitions, but girls with C-CAH spent more time in male-typed activities and less time in female-typed activities than did girls with NC-CAH. Time spent with girls reflected direct effects of gender identity/cognitions and gender-typed activities, and an indirect effect of prenatal androgens (CAH type) through gender-typed activities. Our results extend findings that prenatal androgens differentially affect gendered characteristics and that gendered peer interactions reflect combined effects of behavioral compatibility and feelings and cognitions about gender. The study also shows the value of natural experiments for testing hypotheses about gender development.

  3. Increased precipitation of spasms in an animal model of infantile spasms by prenatal stress exposure.

    Science.gov (United States)

    Shi, Xiu-Yu; Ju, Jun; Zou, Li-Ping; Wang, Juan; Shang, Ning-Xiu; Zhao, Jian-Bo; Wang, Jing; Zhang, Jun-Yan

    2016-05-01

    Infantile spasms (IS) represent a serious epileptic syndrome, called West syndrome (WS) that occurs in the early infantile age. Although several hypotheses and animal models have been proposed to explain the pathogenesis of IS, the pathophysiology of IS has not been elucidated. Recently, we proposed a hypothesis for IS under prenatal stress exposure (also called Zou's hypothesis) by correlating diverse etiologies and prenatal stresses with IS development. This research aims to determine the mechanism through which prenatal stress affects the offspring and establish the potential underlying mechanisms. Pregnant rats were subjected to forced swimming in cold water. Rat pups exposed to prenatal stress were administered with N-methyl-D-aspartate (NMDA). Exposure to prenatal stress sensitized the rats against development of NMDA-induced spasms. However, this phenomenon was altered by administering adrenocorticotropin. Prenatal stress exposure also altered the hormonal levels and neurotransmitter receptor expression of the developing rats as well as influenced the tissue structure of the brain. These findings suggest that maternal stress could alter the level of endogenous glucocorticoid, which is the basis of IS, and cerebral dysplasia, hypoxic-ischemic encephalopathy (HIE), inherited metabolic diseases, and other factors activated this disease in developmental brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prenatal cocaine increases striatal serotonin innervation without altering the patch/matrix organization of intrinsic cell types.

    Science.gov (United States)

    Snyder-Keller, A M; Keller, R W

    1993-08-20

    The effect of prenatal cocaine on the anatomical development of the striatum was examined. The distribution and density of dopaminergic innervation of the striatum of animals exposed to cocaine during the second and third week of gestation was not noticeably different from prenatally saline-injected or untreated controls at any age. The patch/matrix organization of the striatum also appeared unaltered: neurons exhibiting dense substance P staining were localized to patches that overlapped dopamine terminal patches early in development, and enkephalin- and calbindin-immunoreactive neurons were found segregated to the matrix. Histochemical staining for acetylcholinesterase and NADPH diaphorase also revealed no differences between prenatally cocaine-treated and control brains. Whereas prenatal cocaine treatment failed to modify the basic compartmental organization of the striatum, it did lead to a hyperinnervation of serotonin-immunoreactive fibers which developed slowly after birth. Thus prenatal exposure to cocaine is capable of altering the ingrowth of serotonergic projections to the striatum while producing no change in the organization of neurons intrinsic to the striatum.

  5. Prenatal air pollution exposure induces sexually dimorphic fetal programming of metabolic and neuroinflammatory outcomes in adult offspring.

    Science.gov (United States)

    Bolton, Jessica L; Auten, Richard L; Bilbo, Staci D

    2014-03-01

    Environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal exposure to diesel exhaust particles (DEP), a primary component of air pollution, would prime microglia long-term, resulting in exacerbated metabolic and affective outcomes following exposure to a high-fat diet in adulthood. Time-mated mouse dams were intermittently exposed to respiratory instillations of either vehicle (VEH) or DEP throughout gestation. Adult male and female offspring were then fed either a low-fat diet (LFD) or high-fat diet (HFD) for 9 weeks. The male offspring of DEP-exposed dams exhibited exaggerated weight gain, insulin resistance, and anxiety-like behavior on HFD compared to the male offspring of VEH-exposed dams, whereas female offspring did not differ according to prenatal treatment. Furthermore, HFD induced evidence of macrophage infiltration of both adipose tissue and the brain in both sexes, but these cells were more activated specifically in DEP/HFD males. DEP/HFD males also expressed markedly higher levels of microglial/macrophage, but not astrocyte, activation markers in the hippocampus, whereas females exhibited only a suppression of astrocyte activation markers due to HFD. In a second experiment, DEP male offspring mounted an exaggerated peripheral IL-1β response to an LPS challenge at postnatal day (P)30, whereas their central IL-1β response did not differ from VEH male offspring, which is suggestive of macrophage priming due to prenatal DEP exposure. In sum, prenatal air pollution exposure "programs" offspring for increased susceptibility to diet-induced metabolic, behavioral, and neuroinflammatory changes in adulthood in a sexually dimorphic manner. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Prenatal stress modifies behavior and hypothalamic-pituitary-adrenal function in female guinea pig offspring: effects of timing of prenatal stress and stage of reproductive cycle.

    Science.gov (United States)

    Kapoor, Amita; Matthews, Stephen G

    2008-12-01

    Prenatal stress is associated with altered behavior and hypothalamic-pituitary-adrenal (HPA) axis function postnatally. Recent studies suggest that these outcomes are dependent on the timing of the prenatal stress. The majority of these studies have been carried out in male offspring. We hypothesized that a short period of prenatal stress would result in female offspring that exhibit differences in open-field behavior and HPA axis activity, but the outcome would depend on the timing of the prenatal stress and the stage of the reproductive cycle. Pregnant guinea pigs were exposed to a strobe light during the fetal brain growth spurt [gestational d 50-52 (PS50)] or during the period of rapid brain myelination [gestational d 60-62 (PS60)]. Open-field activity was assessed in juvenile and adult female offspring. HPA axis function was tested in adult offspring. All tests in adulthood were carried out during the estrous and luteal phases of the reproductive cycle to determine the effect of stage on HPA axis programming. Tissues were collected upon completion of the study for analysis by in situ hybridization. PS60 offspring exhibited decreased activity in an open field during the estrous phase of the reproductive cycle compared with control offspring. Both PS50 and PS60 offspring exhibited a lower salivary cortisol response to a stressor, only during the estrous phase. Consistent with the behavioral and endocrine data, PS60 females exhibited lower plasma estradiol levels, reduced ovary weight, and increased glucocorticoid receptor mRNA in the paraventricular nucleus. In conclusion, we have demonstrated that there are effects of prenatal stress on behavior and HPA axis functioning in female offspring but that the outcomes are dependent on the timing of the prenatal stress together with the status of the reproductive cycle.

  7. Diagnóstico Prenatal

    OpenAIRE

    López, Jaime Octavio; Saldarriaga, Wilmar; Fundación Valle de Lili

    2010-01-01

    Diagnóstico Prenatal/ propósitos del diagnóstico prenatal/ Tamizaje a partir del Control Prenatal/ Pacientes de bajo riesgo/ Tamizaje bioquímico/ Pacientes de alto riesgo/ Pruebas invasivas y no invasivas

  8. Effect of Ganoderma lucidum (G. lucidum) on the Liver of Mice Bearing Ehrlich Solid Tumor (EST) and Exposed to γ-Radiation

    International Nuclear Information System (INIS)

    Ibrahim, S.I.; El-Kabany, H.

    2013-01-01

    The present study was performed to investigate the antitumor and radio sensitizing efficacy of Ganodarma lucidum (G. lucidum) and to evaluate its potential to improve hepatic dysfunction in Ehrlich solid tumor (EST) bearing mice. G. lucidum (100 mg/Kg body weight) was administered orally to EST bearing mice for 15 days before and 15 days after tumor inoculation. Irradiation was carried out the 8th day of tumor inoculation when the diameter of the tumor reached approximately 10 mm. Mice were exposed to fractionated doses of whole body γ-radiation (3x2Gy) at two days interval to attain a total dose of 6 Gy. Mice were divided into 6 groups (15 mice in each group) as follows: normal control, mice treated with G. lucidum for 30 days, EST bearing mice, EST bearing mice exposed to fractionated doses of γ-radiation (2Gy x 3), EST bearing mice treated with G. lucidum for 15 days before and 15 days after tumor inoculation and EST bearing mice received combined treatment radiation and G. lucidum. Five mice from each group were sacrificed, after 18 hr fasting after the last dose of G. lucidum treatment. Blood was collected, liver and tumor were removed for biochemical and histopathological studies. The remaining animals were observed for recording survival percentage and tumor size. In vitro study on Ehrlich Ascites Carcinoma cells showed that the percentage of nonviable cells (NVC%) increase with increasing G. lucidum concentration. The results revealed also that treatment of EST bearing mice with G. lucidum and/or γ- radiation increased the survivability and decrease the tumor size as compared to EST group. The biochemical analysis for EST bearing group recorded an elevation in the activities of lactate dehydrogenase (LDH), asparta amino transferase (AST) and alanine amino transferase (ALT) in the serum. Also, there was an elevation in the concentration of malondialdehyde (MDA), a marker of lipid peroxidation, accompanied by a decrease in superoxide dismutase (SOD

  9. [Prenatal care in Latin America].

    Science.gov (United States)

    Buekens, P; Hernández, P; Infante, C

    1990-01-01

    Available data on the coverage of prenatal care in Latin America were reviewed. In recent years, only Bolivia had a coverage of prenatal care of less than 50 per cent. More than 90 per cent of pregnant women received prenatal care in Chile, Cuba, the Dominican Republic, and Puerto Rico. Prenatal care increased between the 1970 and 1980 in the Dominican Republic, Ecuador, Guatemala, Honduras, Mexico, and Peru. The coverage of prenatal care decreased in Bolivia and Colombia. The mean number of visits increased in Cuba and Puerto Rico. The increase of prenatal care in Guatemala and Honduras is due to increased care by traditional birth attendants, compared to the role of health care institutions. We compared the more recent data on tetanus immunization of pregnant women to the more recent data on prenatal care. The rates of tetanus immunization are always lower than the rates of prenatal care attendance, except in Costa Rica. The rates of tetanus immunization was less than half as compared to the rates of prenatal care in Bolivia, Guatemala, and Peru. To improve the content of prenatal care should be an objective complementary to the increase of the number of attending women.

  10. Exosomes and Metabolic Function in Mice Exposed to Alternating Dark-Light Cycles Mimicking Night Shift Work Schedules

    Directory of Open Access Journals (Sweden)

    Abdelnaby Khalyfa

    2017-11-01

    Full Text Available Sleep is an important modulator of metabolic function. Disruptions of sleep in circadian rhythm are common in modern societies and are associated with increased risk of developing cardiometabolic disorders. Exosomes are ubiquitous extracellular vesicles that may play a mechanistic role in metabolic derangements. We hypothesized that alternating dark-light cycles mimicking shift work in mice would alter fecal microbiota and colonic epithelium permeability and alter plasma exosome cargo and metabolic function. C57BL/6 mice were randomly assigned to (i control day light (CL, or (ii inverted dark-light every 2 weeks for 8 weeks (IN. Body weight, fat mass and HOMA-IR were measured, along with Tregs, metabolic, and resident macrophages in visceral white adipose tissue (vWAT. Fecal water samples were incubated with confluent colonic epithelium cell cultures in electric cell-substrate impedance sensing (ECIS arrays, and plasma exosomes were added to differentiated adipocytes and insulin-induced pAKT/AKT expression changes were assessed by western blots. Mice exposed to IN showed elevated HOMA-IR, and their fecal samples showed altered microbiota which promote increased permeability of the colonic epithelial cell barrier. Plasma exosomes decreased pAKT/AKT responses to exogenous insulin compared to CL, and altered expression of circadian clock genes. Inflammatory macrophages (Ly-6chigh were increased in IN-exposed vWAT, while Tregs were decreased. Thus, gut microbiota and the cargo of plasma exosomes are altered by periodic shifts in environmental lighting, and effectively alter metabolic function, possibly via induction of systemic inflammation and altered clock expression in target tissues. Further exploration of exosomal miRNA signatures in shift workers and their putative metabolic organ cell targets appears warranted.

  11. The α-fetoprotein knock-out mouse model suggests that parental behavior is sexually differentiated under the influence of prenatal estradiol

    Science.gov (United States)

    Keller, Matthieu; Pawluski, Jodi L.; Brock, Olivier; Douhard, Quentin; Bakker, Julie

    2010-01-01

    In rodent species, sexual differentiation of the brain for many reproductive processes depends largely on estradiol. This was recently confirmed again by using the α-fetoprotein knockout (AFP-KO) mouse model, which lacks the protective actions of α-fetoprotein against maternal estradiol and as a result represents a good model to determine the contribution of prenatal estradiol to the sexual differentiation of the brain and behavior. Female AFP-KO mice were defeminized and masculinized with regard to their neuroendocrine responses as well as sexual behavior. Since parental behavior is also strongly sexually differentiated in mice, we used the AFP-KO mouse model here to ask whether parental responses are differentiated prenatally under the influence of estradiol. It was found that AFP-KO females showed longer latencies to retrieve pups to the nest and also exhibited lower levels of crouching over the pups in the nest in comparison to WT females. In fact, they resembled males (WT and AFP-KO). Other measures of maternal behavior, for example the incidence of infanticide, tended to be higher in AFP-KO females than in WT females but this increase failed to reach statistical significance. The deficits observed in parental behavior of AFP-KO females could not be explained by any changes in olfactory function, novelty recognition or anxiety. Thus our results suggest that prenatal estradiol defeminizes the parental brain in mice. PMID:20109458

  12. Prenatal cocaine exposure and its impact on cognitive functions of offspring: a pathophysiological insight.

    Science.gov (United States)

    Gkioka, Eleana; Korou, Laskarina Maria; Daskalopoulou, Afrodite; Misitzi, Angelica; Batsidis, Eleni; Bakoyiannis, Ioannis; Pergialiotis, Vasilios

    2016-07-01

    It is estimated that approximately 0.5%-3% of fetuses are prenatally exposed to cocaine (COC). The neurodevelopmental implications of this exposure are numerous and include motor skill impairments, alterations of social function, predisposition to anxiety, and memory function and attention deficits; these implications are commonly observed in experimental studies and ultimately affect both learning and IQ. According to previous studies, the clinical manifestations of prenatal COC exposure seem to persist at least until adolescence. The pathophysiological cellular processes that underlie these impairments include dysfunctional myelination, disrupted dendritic architecture, and synaptic alterations. On a molecular level, various neurotransmitters such as serotonin, dopamine, catecholamines, and γ-aminobutyric acid seem to participate in this process. Finally, prenatal COC abuse has been also associated with functional changes in the hormones of the hypothalamic-pituitary-adrenal axis that mediate neuroendocrine responses. The purpose of this review is to summarize the neurodevelopmental consequences of prenatal COC abuse, to describe the pathophysiological pathways that underlie these consequences, and to provide implications for future research in the field.

  13. The effects of pre-natal-, early-life- and indirectly-initiated exposures to maximum adversities on the course of schizophrenia.

    Science.gov (United States)

    Levine, Stephen Z; Levav, Itzhak; Yoffe, Rinat; Pugachova, Inna

    2014-09-01

    The effects of pre-natal-, early-life- and indirectly-initiated exposures to protracted maximum adversity on the course of schizophrenia are unknown. To compare the aforementioned Holocaust directly exposed subgroups with an indirectly exposed subgroup on the course of schizophrenia. The study population were: Israeli Jews in-uterus or born in Nazi-occupied or dominated European nations by the end of the persecution of the Jews, who were alive in 1950, and who had a last discharge diagnosis of schizophrenia in the Israel National Psychiatric Case Registry by 2013 (N=4933). The population was disaggregated into subgroups who (1) migrated after WWII and who had (1a) pre-natal (n=584, 11.8%) and (1b) early-life (n=3709, 75.2%) initiated exposures to the maximum adversities of the Holocaust, and (2) indirectly exposed individuals to the Holocaust who migrated before the Nazi-era persecution begun (n=640, 13%). Recurrent event survival analyses were computed to examine the psychiatric re-hospitalization risk of the study subgroups, unadjusted and adjusted for age of onset of the disorder and sex. The pre-natal initiated exposure subgroup had a significantly (pPoland-born individuals, the years 1922 and 1935; and followed at least 10 years and to the year 2000. Pre-natal initiated exposure to the maximal adversity of the holocaust constitutes a consistent risk factor for a worse course of schizophrenia, a possible byproduct of neurodevelopment disruptions induced by maternal stress and/or famine and/or infections. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Maternal Interaction Quality Moderates Effects of Prenatal Maternal Emotional Symptoms on Girls’ Internalizing Problems

    NARCIS (Netherlands)

    Endendijk, Joyce; De Bruijn, Anouk T.c.e.; van Bakel, Hedwig J.A.; Wijnen, Hennie A.a.; Pop, Victor J.m.; van Baar, Anneloes

    2017-01-01

    The role of mother–infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioralproblems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the “exposed group” (n = 46), consisting of mothers withhigh levels of

  15. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    Science.gov (United States)

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Urogenital abnormalities in men exposed to diethylstilbestrol in utero: a cohort study

    Directory of Open Access Journals (Sweden)

    Palmer Julie R

    2009-08-01

    Full Text Available Abstract Background Diethylstilbestrol (DES, a synthetic estrogen widely prescribed to pregnant women during the 1940s–70s, has been shown to cause reproductive problems in the daughters. Studies of prenatally-exposed males have yielded conflicting results. Methods In data from a collaborative follow-up of three U.S. cohorts of DES-exposed sons, we examined the relation of prenatal DES exposure to occurrence of male urogenital abnormalities. Exposure status was determined through review of prenatal records. Mailed questionnaires (1994, 1997, 2001 asked about specified abnormalities of the urogenital tract. Risk ratios (RR were estimated by Cox regression with constant time at risk and control for year of birth. Results Prenatal DES exposure was not associated with varicocele, structural abnormalities of the penis, urethral stenosis, benign prostatic hypertrophy, or inflammation/infection of the prostate, urethra, or epididymus. However, RRs were 1.9 (95% confidence interval 1.1–3.4 for cryptorchidism, 2.5 (1.5–4.3 for epididymal cyst, and 2.4 (1.5–4.4 for testicular inflammation/infection. Stronger associations were observed for DES exposure that began before the 11th week of pregnancy: RRs were 2.9 (1.6–5.2 for cryptorchidism, 3.5 (2.0–6.0 for epididymal cyst, and 3.0 (1.7–5.4 for inflammation/infection of testes. Conclusion These results indicate that prenatal exposure to DES increases risk of male urogenital abnormalities and that the association is strongest for exposure that occurs early in gestation. The findings support the hypothesis that endocrine disrupting chemicals may be a cause of the increased prevalence of cryptorchidism that has been seen in recent years.

  17. Effects of prenatal exposure to xylene on postnatal development and behavior in rats

    DEFF Research Database (Denmark)

    Hass, Ulla; Lund, S. P.; Simonsen, L.

    1995-01-01

    The effects of prenatal exposure to the organic solvent xylene (dimethylbenzene, GAS-no 1330-20-7) on postnatal development and behavior in rats were studied. Pregnant rats (Mol:WIST) were exposed to 500 ppm technical xylene 6 h per day on gestation days 7-20. The dose level was selected so as no...

  18. Prenatal Earthquake Exposure and Midlife Uric Acid Levels Among Chinese Adults.

    Science.gov (United States)

    Ji, Chunpeng; Li, Yanping; Cui, Liufu; Cai, Jianfang; Shi, Jihong; Cheng, Feon W; Li, Yuqing; Curhan, Gary C; Wu, Shouling; Gao, Xiang

    2017-05-01

    To test whether prenatal exposure to earthquake (as a surrogate for acute prenatal stress) could have unfavorable effects on uric acid levels later in life. We included 536 individuals who had been prenatally exposed to the Tangshan earthquake in 1976, and 536 sex- and age-matched individuals without that exposure. Serum uric acid concentrations were measured based on fasting blood samples, which were repeatedly collected in 2006, 2008, and 2010. Mean uric acid concentrations in 2010 and the increasing rate from 2006 to 2010 were compared between the 2 groups, after adjustment for age, sex, body mass index, serum concentrations of glucose, triglycerides, C-reactive protein level, estimated glomerular filtration rate, and other potential confounders. We also used multiple logistic regression to estimate the risk of hyperuricemia (>416 μmole/liter in men or >357 μmole/liter in women) in 2010 by calculating the odds ratios (ORs) and 95% confidence intervals (95% CIs) after adjustment for the previously mentioned covariates. Participants with prenatal exposure to the earthquake had higher concentrations of serum uric acid (adjusted means 315 μmole/liter versus 296 μmole/liter; P = 0.001) and a higher likelihood of having hyperuricemia (multivariate adjusted OR 1.70 [95% CI 1.09-2.66]) in 2010 relative to those without the exposure. Prenatal exposure to the earthquake was consistently significantly associated with a faster increase in uric acid concentration from 2006 to 2010 (P earthquake was associated with higher serum uric acid and higher odds of hyperuricemia in early adulthood. © 2016, American College of Rheumatology.

  19. Care and supportive measures in school-aged children with prenatal substance exposure.

    Science.gov (United States)

    Sandtorv, Lisbeth B; Haugland, Siren; Elgen, Irene

    2017-12-01

    Prenatal exposure to substances, including alcohol, opiates, and a number of illicit drugs, may have a negative impact on fetal development. Studies have shown that substance exposure can influence a child's neurodevelopment and the need for care and supportive measures. In this study, we aimed to investigate the care status and the level of supportive measures in school-aged children prenatally exposed to alcohol and other substances. This study included children aged between 6 and 14 years who were referred to Haukeland University Hospital in Norway with developmental impairment and a history of prenatal substance exposure. Participants were classified according to their main prenatal exposure to either alcohol or other substances. Information on care status and supportive measures was obtained from medical records and participants' caregivers. We also compared the use of supportive measures for children placed into foster care before and after 1 year of age. A total of 111 (87% of 128 referrals) eligible children participated in the study. Of these 111 children, 96 (86%) were in foster care, of whom 29 (30%) were placed into foster care during their first year of life and 83 out of 90 (92%) had supportive measures, including reinforced foster care and school or social support. A high proportion of the sample lived in foster care and received supportive measures. Findings may reflect an increased need of care and support in school-aged children with prenatal substance exposure, highlighting the importance of awareness among caregivers and public agencies.

  20. Active coping of prenatally stressed rats in the forced swimming test: involvement of the Nurr1 gene.

    Science.gov (United States)

    Montes, Pedro; Ruiz-Sánchez, Elizabeth; Calvillo, Minerva; Rojas, Patricia

    2016-09-01

    Depending on genetic predisposition, prenatal stress may result in vulnerability or resilience to develop psychiatric disorders in adulthood. Nurr1 is an immediate early gene, important in the brain for the stress response. We tested the hypothesis that prenatal stress and the decrease of hippocampal Nurr1 alter offspring behavioral responses in the forced swimming test (FST). Pregnant Wistar rats were exposed to restraint stress (45 min, thrice daily) from gestation day 14. Prenatally stressed (PS) and non-prenatally stressed (NPS) male offspring were treated bilaterally with a Nurr1 antisense oligodeoxynucleotide (ODN; or control) into the hippocampus at 97 d of age. After 1 h, the rats were exposed to the FST (acute stressor) to analyze their behavioral responses. Thirty minutes after the FST, we analyzed the gene expression of Nurr1, Bdnf and Nr3c1 (genes for Nurr1, brain-derived neurotrophic factor (BDNF) and glucocorticoid receptor (GR), respectively) in the hippocampus, prefrontal cortex (PFC) and hypothalamus. Results showed that the decrease of hippocampal Nurr1 after the antisense ODN in adult NPS rats induces immobility (indicating depressive-like behavior). The PS adult rats, including the group with decreased hippocampal Nurr1, presented low immobility in the FST. This low immobility was concordant with maintenance of Nurr1 and Bdnf expression levels in the three analyzed brain regions; Nr3c1 gene expression was also maintained in the PFC and hypothalamus. These findings suggest that Nurr1 and associated genes could participate in the brain modifications induced by prenatal stress, allowing active coping (resilience) with acute stress in adulthood.

  1. Maternal interaction quality moderates effects of prenatal maternal emotional symptoms on girls’ internalizing problems

    NARCIS (Netherlands)

    Endendijk, J. J.; de Bruijn, A.; van Bakel, H.J.A.; Wijnen, H.; Pop, V.J.M.; van Baar, A.L.

    2017-01-01

    The role of mother-infant interaction quality is studied in the relation between prenatal maternal emotional symptoms and child behavioral problems. Healthy pregnant, Dutch women (N = 96, M = 31.6, SD = 3.3) were allocated to the "exposed group" (n = 46), consisting of mothers with high levels of

  2. Gene expression profiling in colon of mice exposed to food additive titanium dioxide (E171).

    Science.gov (United States)

    Proquin, Héloïse; Jetten, Marlon J; Jonkhout, Marloes C M; Garduño-Balderas, Luis G; Briedé, Jacob J; de Kok, Theo M; Chirino, Yolanda I; van Loveren, Henk

    2018-01-01

    Dietary factors that may influence the risks of colorectal cancer, including specific supplements, are under investigation. Previous studies showed the capacity of food additive titanium dioxide (E171) to induce DNA damage in vitro and facilitate growth of colorectal tumours in vivo. This study aimed to investigate the molecular mechanisms behind these effects after E171 exposure. BALB/c mice were exposed by gavage to 5 mg/kg bw /day of E171 for 2, 7, 14, and 21 days. Transcriptome changes were studied by whole genome mRNA microarray analysis on the mice's distal colons. In addition, histopathological changes as well as a proliferation marker were analysed. The results showed significant gene expression changes in the olfactory/GPCR receptor family, oxidative stress, the immune system and of cancer related genes. Transcriptome analysis also identified genes that thus far have not been included in known biological pathways and can induce functional changes by interacting with other genes involved in different biological pathways. Histopathological analysis showed alteration and disruption in the normal structure of crypts inducing a hyperplastic epithelium. At cell proliferation level, no consistent increase over time was observed. These results may offer a mechanistic framework for the enhanced tumour growth after ingestion of E171 in BALB/c mice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    Science.gov (United States)

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L

    2016-02-19

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development. © 2016 The Author(s).

  4. Studies concerning the effects of low level prenatal X-irradiation on postnatal growth and adult behaviour in the Wistar rat

    International Nuclear Information System (INIS)

    Jensh, R.P.; Brent, R.L.; Vogel, W.H.

    1986-01-01

    Fifty-nine pregnant Wistar strain rats were sham irradiated or given a 0.1 or 0.2 Gy exposure of X-radiation on the 9th or 17th day of gestation. Twenty-seven were killed at term for teratologic analysis. The remaining mothers raised their young. At 60 days of age the 252 offspring were randomly assigned three of six tests: open field, swimming, hanging, activity wheel, water T-maze, or conditioned avoidance response. Male offspring exposed at the 0.2 Gy level exhibited retarded growth only during the first few weeks of postnatal life. Female offspring exposed on the 17th day to 0.2 Gy X-radiation were growth retarded throughout the test period. Postnatal growth rates were not significantly different between the irradiated and control groups. There were no significant alterations in adult behaviour due to prenatal X-irradiation. There were sex differences in activity wheel and forelimb hanging performance, unrelated to radiation exposure. These results indicate that prenatal low level X-irradiation on the 9th or 17th day of gestation dose not result in significant alterations in rat adult behavioural performance but prenatal growth retardation persists postnatally. Growth may be a more sensitive indicator of the effects of prenatal exposure than postnatal behaviour. (author)

  5. Influence of seeds extract of Trigonella foenum graecum (Methi) on mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, R; Gupta, U; Goyal, P.K., E-mail: pkgoyal2002@gmail.co [Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur, (India)

    2010-07-01

    The present study has been carried out to evaluate the radioprotective effect of Trigonella foenum seeds extract (TFE) on peripheral blood of mice. For this purpose, mice were orally given double distilled water (control) or optimum dose (100 mg/kg of body weight per day) of TFE for five consecutive days (experimental). Thirty minutes after the last administration of double distilled water or TFE, these were exposed whole-body to 5 Gy gamma radiation and autopsied between 12 hours to 30 days for hematological and biochemical estimation. Total erythrocyte count, hemoglobin level, and hematocrit percentage were decreased from normal in both the groups. A significant increase in these parameters was observed in TFE administered irradiated group, in contrast to without TFE irradiated one, by restoring towards normal values at the end of the experiment. From the results, it is evident that TFE may be responsible for the protection of stem cells in bone marrow which subsequently resulted in higher hematological constituents in peripheral blood. The study concludes the prophylactic use of such plant extract against radiation induced hematological alterations. (author)

  6. Prenatal alcohol exposure alters p35, CDK5 and GSK3β in the medial frontal cortex and hippocampus of adolescent mice

    Directory of Open Access Journals (Sweden)

    Samantha L. Goggin

    2014-01-01

    Full Text Available Fetal alcohol spectrum disorders (FASDs are the number one cause of preventable mental retardation. An estimated 2–5% of children are diagnosed as having a FASD. While it is known that children prenatally exposed to alcohol experience cognitive deficits and a higher incidence of psychiatric illness later in life, the pathways underlying these abnormalities remain uncertain. GSK3β and CDK5 are protein kinases that are converging points for a vast number of signaling cascades, including those controlling cellular processes critical to learning and memory. We investigated whether levels of GSK3β and CDK5 are affected by moderate prenatal alcohol exposure (PAE, specifically in the hippocampus and medial frontal cortex of the adolescent mouse. In the present work we utilized immunoblotting techniques to demonstrate that moderate PAE increased hippocampal p35 and β-catenin, and decreased total levels of GSK3β, while increasing GSK3β Ser9 and Tyr216 phosphorylation. Interestingly, different alterations were seen in the medial frontal cortex where p35 and CDK5 were decreased and increased total GSK3β was accompanied by reduced Tyr216 of the enzyme. These results suggest that kinase dysregulation during adolescence might be an important contributing factor to the effects of PAE on hippocampal and medial frontal cortical functioning; and by extension, that global modulation of these kinases may produce differing effects depending on brain region.

  7. The Prenatal Care at School Program

    Science.gov (United States)

    Griswold, Carol H.; Nasso, Jacqueline T.; Swider, Susan; Ellison, Brenda R.; Griswold, Daniel L.; Brooks, Marilyn

    2013-01-01

    School absenteeism and poor compliance with prenatal appointments are concerns for pregnant teens. The Prenatal Care at School (PAS) program is a new model of prenatal care involving local health care providers and school personnel to reduce the need for students to leave school for prenatal care. The program combines prenatal care and education…

  8. Examination of gene expression in mice exposed to low dose radiation using affymetrix cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Morris, D.; Knox, D.; Lavoie, J.; Lemon, J.; Boreham, D. [McMaster Univ., Hamilton, Ontario (Canada)

    2005-07-01

    'Full text:' Gamma radiation acts via the indirect effect to damage cells by producing reactive oxygen species (ROS). These ROS are capable damaging macromolecules and, altering signal pathways and gene transcription. Cells have evolved enzymes and mechanisms to scavenge ROS and repair oxidative damage. Microarrays allow the survey of the gene transcription activity of thousands of genes simultaneously. Messenger RNA is extracted from cells, hybridized with the complementary DNA (cDNA) of a microarray chip, and examined with a chip reader. Affymetrix microarray chips have been produced by the CSCHAH in Winnipeg containing 26000 murine genes. Groups of female mice have been exposed to low dose whole body chronic gamma radiation exposures of 0,50,100, and 120 mGy, corresponding to 15,30,60, and 75 weeks, respectively. MRNA from mice brain tissue has been extracted, isolated, converted to cDNA and labeled. Gene expression in each irradiated mouse was compared to the pooled expression of the control mice. Analysis of gene expression levels are performed with microarray analytical software, Array Pro by Media Cybernetics, and powerful statistical software, BRB microarray tools. Differences in gene expressions, focusing on genes for cytokines, DNA repair mechanisms, immuno-modulators, apoptosis pathways, and enzymatic anti-oxidant systems, are being examined and will be reported. (author)

  9. Developmental toxicity of prenatal exposure to toluene.

    Science.gov (United States)

    Bowen, Scott E; Hannigan, John H

    2006-01-01

    Organic solvents have become ubiquitous in our environment and are essential for industry. Many women of reproductive age are increasingly exposed to solvents such as toluene in occupational settings (ie, long-term, low-concentration exposures) or through inhalant abuse (eg, episodic, binge exposures to high concentrations). The risk for teratogenic outcome is much less with low to moderate occupational solvent exposure compared with the greater potential for adverse pregnancy outcomes, developmental delays, and neurobehavioral problems in children born to women exposed to high concentrations of abused organic solvents such as toluene, 1,1,1-trichloroethane, xylenes, and nitrous oxide. Yet the teratogenic effects of abuse patterns of exposure to toluene and other inhalants remain understudied. We briefly review how animal models can aid substantially in clarifying the developmental risk of exposure to solvents for adverse biobehavioral outcomes following abuse patterns of use and in the absence of associated health problems and co-drug abuse (eg, alcohol). Our studies also begin to establish the importance of dose (concentration) and critical perinatal periods of exposure to specific outcomes. The present results with our clinically relevant animal model of repeated, brief, high-concentration binge prenatal toluene exposure demonstrate the dose-dependent effect of toluene on prenatal development, early postnatal maturation, spontaneous exploration, and amphetamine-induced locomotor activity. The results imply that abuse patterns of toluene exposure may be more deleterious than typical occupational exposure on fetal development and suggest that animal models are effective in studying the mechanisms and risk factors of organic solvent teratogenicity.

  10. Does prenatal valproate interact with a genetic reduction in the serotonin transporter?A rat study on anxiety and cognition

    Directory of Open Access Journals (Sweden)

    Bart A Ellenbroek

    2016-09-01

    Full Text Available There is ample evidence that prenatal exposure to valproate (or valproic acid, VPA enhances the risk of developing Autism Spectrum Disorders (ASD. In line with this, a single injection of VPA induces a multitude of ASD-like symptoms in animals such as rats and mice. However, there is equally strong evidence that genetic factors contribute significantly to the risk of ASD and indeed, like most other psychiatric disorders, ASD is now generally thought to results from an interaction between genetic and environmental factors. Given that VPA significantly impacts on the serotonergic system, and serotonin has strong biochemical and genetic links to ASD, we aimed to investigate the interaction between genetic reduction in the serotonin transporter and prenatal valproate administration. More specifically, we exposed both wildtype (SERT+/+ rats and rats heterozygous for the serotonin transporter deletion (SERT+/- to a single injection of 400 mg/kg VPA at gestational day (GD 12. The offspring, in adulthood, was assessed in four different tests: Elevated Plus Maze and Novelty Suppressed Feeding as measures for anxiety and prepulse inhibition (PPI and latent inhibition as measures for cognition and information processing. The results show that prenatal VPA significantly increased anxiety in both paradigm, reduced PPI and reduced conditioning in the latent inhibition paradigm. However, we failed to find a significant gene – environment interaction. We propose that this may be related to the timing of the VPA injection and suggest that whereas GD12 might be optimal for affecting normal rat, rats with a genetically compromised serotonergic system may be more sensitive to VPA at earlier time points during gestation. Overall our data are the first to investigate gene * environmental interactions in a genetic rat model for ASD suggest that timing may be of crucial importance to the long-term outcome.

  11. Kinetics of hemopoietic stem cells and survival of mice treated with hydroxyurea and exposed to prolonged γ-radiation

    International Nuclear Information System (INIS)

    Chertkov, K.S.; Rogozkin, V.D.; Dikovenko, E.A.; Mosina, Z.M.

    1979-01-01

    A study was made of radioprotective efficiency of hydroxyurea in relation to mice exposed to prolonged 137 Cs-γ-radiation. It was found that a 30-day survival rate, under optimal conditions of treatment with hydroxyurea, was more than 40 per cent higher than that of the controls. The protective effect of hydroxyurea was manifested at the level of hemopoietic stem cells due to a quicker onset and accelerated rate of the repopulation process

  12. X-ray induced dysplasia in the developing telencephalic choroid plexus of mice exposed in utero

    International Nuclear Information System (INIS)

    Heinzmann, U.

    1982-01-01

    Pregnant NMRI-mice were X-irradiated with single doses of 0.95 Gy (100 R) and 1.9 Gy (200 R) on day of gestation (dg) 12. For sampling, anesthetized animals were perfused with buffered glutaraldehyde solution or fixed by immersion in Karnovsky solution. LM, SEM, and TEM studies were carried out on brains prenatally and up to the age of 20 months to follow the radiation effects on the developing lateral choroid plexus. Radiation-induced changes were found using all three methods and at all stages studied. The normally sickle-shaped and stretched choroid plexus is shortened and irregular, and the dome-shaped plexus cells are flattened. Their superficial fine structures, i.e., the microvilli and cilia, are altered. Three stages of severity can be distinguished and the internal hydromicrocephalus increases from stage I to III. Intercellular spaces of the treated plexus epithelium are often dilated, but the tight junctions at the ventricular surface seem to be intact. The interstitium shows large dilations in comparison with the controls. Thus, gross changes and alterations in the fine structure can be induced in the choroid plexus by doses of 0.95 Gy and 1.9 Gy, which persist throughout postnatal life

  13. Prenatal Care Checkup

    Science.gov (United States)

    ... Careers Archives Health Topics Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ... Report Cards Careers Archives Pregnancy Before or between pregnancies Nutrition, weight & fitness Prenatal care Is it safe? Labor & ...

  14. Prenatal exposure to escitalopram and/or stress in rats: a prenatal stress model of maternal depression and its treatment

    Science.gov (United States)

    Bourke, Chase H.; Capello, Catherine F.; Rogers, Swati M.; Yu, Megan L.; Boss-Williams, Katherine A.; Weiss, Jay M.; Stowe, Zachary N.; Owens, Michael J.

    2014-01-01

    Rationale A rigorously investigated model of stress and antidepressant administration during pregnancy is needed to evaluate possible effects on the mother. Objective The objective of this study was to develop a model of clinically relevant prenatal exposure to an antidepressant and stress during pregnancy to evaluate the effects on maternal care behavior. Results Female rats implanted with 28 day osmotic minipumps delivering the SSRI escitalopram throughout pregnancy had serum escitalopram concentrations in a clinically observed range (17-65 ng/mL). A separate cohort of pregnant females exposed to a chronic unpredictable mild stress paradigm on gestational days 10-20 showed elevated baseline (305 ng/mL), and acute stress-induced (463 ng/mL), plasma corticosterone concentrations compared to unstressed controls (109 ng/mL). A final cohort of pregnant dams were exposed to saline (control), escitalopram, stress, or stress and escitalopram to determine the effects on maternal care. Maternal behavior was continuously monitored over the first 10 days post parturition. A reduction of 35% in maternal contact and 11% in nursing behavior was observed due to stress during the light cycle. Licking and grooming behavior was unaffected by stress or drug exposure in either the light or dark cycle. Conclusions These data indicate that: 1) clinically relevant antidepressant treatment during human pregnancy can be modeled in rats using escitalopram; 2) chronic mild stress can be delivered in a manner that does not compromise fetal viability; and 3) neither of these prenatal treatments substantially altered maternal care post parturition. PMID:23436130

  15. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology

    Directory of Open Access Journals (Sweden)

    Brian R. Mullen

    2016-06-01

    Full Text Available Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors—reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon—gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology.

  16. Prenatal Exposure to Autism-Specific Maternal Autoantibodies Alters Proliferation of Cortical Neural Precursor Cells, Enlarges Brain, and Increases Neuronal Size in Adult Animals.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica; Camacho, Jasmin; Fox, Elizabeth; Miller, Elaine; Ariza, Jeanelle; Kienzle, Devon; Plank, Kaela; Noctor, Stephen C; Van de Water, Judy

    2016-01-01

    Autism spectrum disorders (ASDs) affect up to 1 in 68 children. Autism-specific autoantibodies directed against fetal brain proteins have been found exclusively in a subpopulation of mothers whose children were diagnosed with ASD or maternal autoantibody-related autism. We tested the impact of autoantibodies on brain development in mice by transferring human antigen-specific IgG directly into the cerebral ventricles of embryonic mice during cortical neurogenesis. We show that autoantibodies recognize radial glial cells during development. We also show that prenatal exposure to autism-specific maternal autoantibodies increased stem cell proliferation in the subventricular zone (SVZ) of the embryonic neocortex, increased adult brain size and weight, and increased the size of adult cortical neurons. We propose that prenatal exposure to autism-specific maternal autoantibodies directly affects radial glial cell development and presents a viable pathologic mechanism for the maternal autoantibody-related prenatal ASD risk factor. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Automated cerebellar segmentation: Validation and application to detect smaller volumes in children prenatally exposed to alcohol

    Directory of Open Access Journals (Sweden)

    Valerie A. Cardenas

    2014-01-01

    Discussion: These results demonstrate excellent reliability and validity of automated cerebellar volume and mid-sagittal area measurements, compared to manual measurements. These data also illustrate that this new technology for automatically delineating the cerebellum leads to conclusions regarding the effects of prenatal alcohol exposure on the cerebellum consistent with prior studies that used labor intensive manual delineation, even with a very small sample.

  18. Time course of pulmonary burden in mice exposed to residual oil fly ash

    Directory of Open Access Journals (Sweden)

    Giovanna Marcella Cavalcante Carvalho

    2014-09-01

    Full Text Available Residual oil fly ash (ROFA is a common pollutant in areas where oil is burned. This particulate matter with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25±5 g were randomly divided into 7 groups and intranasally instilled with either 10 µL of sterile saline solution (0.9% NaCl, CTRL or ROFA (0.2 µg in 10 L of saline solution. Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure, neutrophils (in blood and bronchoalveolar lavage fluid were determined at 6 h in CTRL and at 6, 24, 48, 72, 96 and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons, and organochlorines. Lung resistive pressure augmented early (6 h in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for four days and disappeared spontaneously.

  19. Time course of pulmonary burden in mice exposed to residual oil fly ash.

    Science.gov (United States)

    Carvalho, Giovanna Marcella Cavalcante; Nagato, Lilian Katiê da Silva; Fagundes, Sheila da Silva; Dos Santos, Flávia Brandão; Calheiros, Andrea Surrage; Malm, Olaf; Bozza, Patricia Torres; Saldiva, Paulo Hilário N; Faffe, Débora Souza; Rocco, Patricia Rieken Macedo; Zin, Walter Araujo

    2014-01-01

    Residual oil fly ash (ROFA) is a common pollutant in areas where oil is burned. This particulate matter (PM) with a broad distribution of particle diameters can be inhaled by human beings and putatively damage their respiratory system. Although some studies deal with cultured cells, animals, and even epidemiological issues, so far a comprehensive analysis of respiratory outcomes as a function of the time elapsed after exposure to a low dose of ROFA is wanted. Thus, we aimed to investigate the time course of mechanical, histological, and inflammatory lung changes, as well as neutrophils in the blood, in mice exposed to ROFA until 5 days after exposure. BALB/c mice (25 ± 5 g) were randomly divided into 7 groups and intranasally instilled with either 10 μL of sterile saline solution (0.9% NaCl, CTRL) or ROFA (0.2 μg in 10 μL of saline solution). Pulmonary mechanics, histology (normal and collapsed alveoli, mononuclear and polymorphonuclear cells, and ultrastructure), neutrophils (in blood and bronchoalveolar lavage fluid) were determined at 6 h in CTRL and at 6, 24, 48, 72, 96, and 120 h after ROFA exposure. ROFA contained metal elements, especially iron, polycyclic aromatic hydrocarbons (PAHs), and organochlorines. Lung resistive pressure augmented early (6 h) in the course of lung injury and other mechanical, histological and inflammatory parameters increased at 24 h, returning to control values at 120 h. Blood neutrophilia was present only at 24 and 48 h after exposure. Swelling of endothelial cells with adherent neutrophils was detected after ROFA instillation. No neutrophils were present in the lavage fluid. In conclusion, the exposure to ROFA, even in low doses, induced early changes in pulmonary mechanics, lung histology and accumulation of neutrophils in blood of mice that lasted for 4 days and disappeared spontaneously.

  20. Preconception Care and Prenatal Care

    Science.gov (United States)

    ... Twitter Pinterest Email Print About Preconception Care and Prenatal Care What is preconception care? Preconception care is the ... improve the health of your child. What is prenatal care? Prenatal care is the health care a woman ...

  1. Modulation by metformin of molecular and histopathological alterations in the lung of cigarette smoke-exposed mice

    International Nuclear Information System (INIS)

    Izzotti, Alberto; Balansky, Roumen; D'Agostini, Francesco; Longobardi, Mariagrazia; Cartiglia, Cristina; Micale, Rosanna T; La Maestra, Sebastiano; Camoirano, Anna; Ganchev, Gancho; Iltcheva, Marietta; Steele, Vernon E; De Flora, Silvio

    2014-01-01

    The anti-diabetic drug metformin is endowed with anti-cancer properties. Epidemiological and experimental studies, however, did not provide univocal results regarding its role in pulmonary carcinogenesis. We used Swiss H mice of both genders in order to detect early molecular alterations and tumors induced by mainstream cigarette smoke. Based on a subchronic toxicity study, oral metformin was used at a dose of 800 mg/kg diet, which is 3.2 times higher than the therapeutic dose in humans. Exposure of mice to smoke for 4 months, starting at birth, induced a systemic clastogenic damage, formation of DNA adducts, oxidative DNA damage, and extensive downregulation of microRNAs in lung after 10 weeks. Preneoplastic lesions were detectable after 7.5 months in both lung and urinary tract along with lung tumors, both benign and malignant. Modulation by metformin of 42 of 1281 pulmonary microRNAs in smoke-free mice highlighted a variety of mechanisms, including modulation of AMPK, stress response, inflammation, NFκB, Tlr9, Tgf, p53, cell cycle, apoptosis, antioxidant pathways, Ras, Myc, Dicer, angiogenesis, stem cell recruitment, and angiogenesis. In smoke-exposed mice, metformin considerably decreased DNA adduct levels and oxidative DNA damage, and normalized the expression of several microRNAs. It did not prevent smoke-induced lung tumors but inhibited preneoplastic lesions in both lung and kidney. In conclusion, metformin was able to protect the mouse lung from smoke-induced DNA and microRNA alterations and to inhibit preneoplastic lesions in lung and kidney but failed to prevent lung adenomas and malignant tumors induced by this complex mixture

  2. Prenatal flavor exposure affects flavor recognition and stress-related behavior of piglets.

    Science.gov (United States)

    Oostindjer, Marije; Bolhuis, J Elizabeth; van den Brand, Henry; Kemp, Bas

    2009-11-01

    Exposure to flavors in the amniotic fluid and mother's milk derived from the maternal diet has been shown to modulate food preferences and neophobia of young animals of several species. Aim of the experiment was to study the effects of pre- and postnatal flavor exposure on behavior of piglets during (re)exposure to this flavor. Furthermore, we investigated whether varying stress levels, caused by different test settings, affected behavior of animals during (re)exposure. Piglets were exposed to anisic flavor through the maternal diet during late gestation and/or during lactation or never. Piglets that were prenatally exposed to the flavor through the maternal diet behaved differently compared with unexposed pigs during reexposure to the flavor in several tests, suggesting recognition of the flavor. The differences between groups were more pronounced in tests with relatively high stress levels. This suggests that stress levels, caused by the design of the test, can affect the behavior shown in the presence of the flavor. We conclude that prenatal flavor exposure affects behaviors of piglets that are indicative of recognition and that these behaviors are influenced by stress levels during (re)exposure.

  3. Effect on school performance of prenatal exposure to ionizing radiation in Hiroshima

    International Nuclear Information System (INIS)

    Otake, Masanori; Schull, W.J.; Fujikoshi, Yasunori; Yoshimaru, Hiroshi.

    1988-08-01

    As a part of the continuing assessment of the effects on the developing embryonic and fetal brain of exposure to ionizing radiation, the school performances of prenatally exposed survivors of the atomic bombing of Hiroshima and a suitable comparison group have been studied. In this report, the changes in performance in seven school subjects according to dose are compared under the T65DR dosimetry heretofore used by ABCC-RERF, and the new dosimetry (DS86) installed in 1986. Those survivors with school performance records but without T65DR doses, or not exposed in utero, or without school records are excluded. Thus, the T65DR study group consists of 1,090 children, including 14 clinically diagnosed cases of mental retardation. The findings can be summarized as follows: Damage to the 8-15 week fetal brain appears to be lincarly related to the fetal absorbed dose, as judged by the simple regression of average school performance score on dose. This is so for both the T65DR study group and the DS86 sample with or without the 14 cases of retardation. Damage to the fetus exposed at 16-25 weeks after fertilization appears similar to that seen in the 8-15 week group. Canonical and multiple correlations also show a highly significant relationship of exposure 8-15 weeks and 16-25 weeks after fertilization to achievement in school. This trend is stronger, however, in the earliest years of schooling. In the groups exposed within 0-7 weeks following fertilization, or 26 or more weeks after fertilization, there is no evidence of a radiation-related effect on scholastic performance. These results parallel those previously found in prenatally exposed survivors with respect to achievement in standard intelligence tests in childhood. (author)

  4. Maternal glucocorticoid elevation and associated blood metabonome changes might be involved in metabolic programming of intrauterine growth retardation in rats exposed to caffeine prenatally.

    Science.gov (United States)

    Kou, Hao; Liu, Yansong; Liang, Gai; Huang, Jing; Hu, Jieqiong; Yan, You-e; Li, Xiaojun; Yu, Hong; He, Xiaohua; Zhang, Baifang; Zhang, Yuanzhen; Feng, Jianghua; Wang, Hui

    2014-03-01

    Our previous studies demonstrated that prenatal caffeine exposure causes intrauterine growth retardation (IUGR), fetuses are over-exposed to high levels of maternal glucocorticoids (GC), and intrauterine metabolic programming and associated metabonome alteration that may be GC-mediated. However, whether maternal metabonomes would be altered and relevant metabolite variations might mediate the development of IUGR remained unknown. In the present studies, we examined the dose- and time-effects of caffeine on maternal metabonome, and tried to clarify the potential roles of maternal GCs and metabonome changes in the metabolic programming of caffeine-induced IUGR. Pregnant rats were treated with caffeine (0, 20, 60 or 180 mg/kg·d) from gestational days (GD) 11 to 20, or 180 mg/kg·d caffeine from GD9. Metabonomes of maternal plasma on GD20 in the dose-effect study and on GD11, 14 and 17 in the time-course study were analyzed by ¹H nuclear magnetic resonance spectroscopy, respectively. Caffeine administration reduced maternal weight gains and elevated both maternal and fetal corticosterone (CORT) levels. A negative correlation between maternal/fetal CORT levels and fetal bodyweight was observed. The maternal metabonome alterations included attenuated metabolism of carbohydrates, enhanced lipolysis and protein breakdown, and amino acid accumulation, suggesting GC-associated metabolic effects. GC-associated metabolite variations (α/β-glucoses, high density lipoprotein-cholesterol, β-hydroxybutyrate) were observed early following caffeine administration. In conclusion, prenatal caffeine exposure induced maternal GC elevation and metabonome alteration, and maternal GC and relevant discriminatory metabolites might be involved in the metabolic programming of caffeine-induced IUGR. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Drug and Alcohol Exposed Children: Implications for Special Education for Students Identified as Behaviorally Disordered.

    Science.gov (United States)

    Bauer, Anne M.

    1991-01-01

    This article reviews the literature on children prenatally exposed to drugs and alcohol, the potential impact on the educational and social services systems, and implications for programing for children identified as behaviorally disordered. (Author/JDD)

  6. Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.

    Science.gov (United States)

    Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A

    1985-01-01

    The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.

  7. Association between Prenatal and Postnatal Psychological Distress and Toddler Cognitive Development: A Systematic Review.

    Science.gov (United States)

    Kingston, Dawn; McDonald, Sheila; Austin, Marie-Paule; Tough, Suzanne

    2015-01-01

    Maternal psychological distress is one of the most common perinatal complications, affecting up to 25% of pregnant and postpartum women. Research exploring the association between prenatal and postnatal distress and toddler cognitive development has not been systematically compiled. The objective of this systematic review was to determine the association between prenatal and postnatal psychological distress and toddler cognitive development. Articles were included if: a) they were observational studies published in English; b) the exposure was prenatal or postnatal psychological distress; c) cognitive development was assessed from 13 to 36 months; d) the sample was recruited in developed countries; and e) exposed and unexposed women were included. A university-based librarian conducted a search of electronic databases (Embase, CINAHL, Eric, PsycInfo, Medline) (January, 1990-March, 2014). We searched gray literature, reference lists, and relevant journals. Two reviewers independently evaluated titles/abstracts for inclusion, and quality using the Scottish Intercollegiate Guideline Network appraisal tool for observational studies. One reviewer extracted data using a standardized form. Thirteen of 2448 studies were included. There is evidence of an association between prenatal and postnatal distress and cognitive development. While variable effect sizes were reported for postnatal associations, most studies reported medium effect sizes for the association between prenatal psychological distress and cognitive development. Too few studies were available to determine the influence of the timing of prenatal exposure on cognitive outcomes. Findings support the need for early identification and treatment of perinatal mental health problems as a potential strategy for optimizing toddler cognitive development.

  8. Association between Prenatal and Postnatal Psychological Distress and Toddler Cognitive Development: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Dawn Kingston

    Full Text Available Maternal psychological distress is one of the most common perinatal complications, affecting up to 25% of pregnant and postpartum women. Research exploring the association between prenatal and postnatal distress and toddler cognitive development has not been systematically compiled. The objective of this systematic review was to determine the association between prenatal and postnatal psychological distress and toddler cognitive development.Articles were included if: a they were observational studies published in English; b the exposure was prenatal or postnatal psychological distress; c cognitive development was assessed from 13 to 36 months; d the sample was recruited in developed countries; and e exposed and unexposed women were included. A university-based librarian conducted a search of electronic databases (Embase, CINAHL, Eric, PsycInfo, Medline (January, 1990-March, 2014. We searched gray literature, reference lists, and relevant journals. Two reviewers independently evaluated titles/abstracts for inclusion, and quality using the Scottish Intercollegiate Guideline Network appraisal tool for observational studies. One reviewer extracted data using a standardized form.Thirteen of 2448 studies were included. There is evidence of an association between prenatal and postnatal distress and cognitive development. While variable effect sizes were reported for postnatal associations, most studies reported medium effect sizes for the association between prenatal psychological distress and cognitive development. Too few studies were available to determine the influence of the timing of prenatal exposure on cognitive outcomes.Findings support the need for early identification and treatment of perinatal mental health problems as a potential strategy for optimizing toddler cognitive development.

  9. Prenatal drug exposure: infant and toddler outcomes.

    Science.gov (United States)

    Bandstra, Emmalee S; Morrow, Connie E; Mansoor, Elana; Accornero, Veronica H

    2010-04-01

    This manuscript provides an overview of the current scientific literature on the impact of maternal drug use, specifically opioids and cocaine, during pregnancy on the acute and long-term outcomes of infants and toddlers from birth through age 3 years. Emphasis with regard to opioids is placed on heroin and opioid substitutes used to treat opioid addiction, including methadone, which has long been regarded as the standard of care in pregnancy, and buprenorphine, which is increasingly being investigated and prescribed as an alternative to methadone. Controlled studies comparing methadone at high and low doses, as well as those comparing methadone with buprenorphine, are highlighted and the diagnosis and management of neonatal abstinence syndrome is discussed. Over the past two decades, attention of the scientific and lay communities has also been focused on the potential adverse effects of cocaine and crack cocaine, especially during the height of the cocaine epidemic in the United States. Herein, the findings are summarized from prospective studies comparing cocaine-exposed with non-cocaine-exposed infants and toddlers with respect to anthropometric growth, infant neurobehavior, visual and auditory function, and cognitive, motor, and language development. The potentially stigmatizing label of the so-called "crack baby" preceded the evidence now accumulating from well-designed prospective investigations that have revealed less severe sequelae in the majority of prenatally exposed infants than originally anticipated. In contrast to opioids, which may produce neonatal abstinence syndrome and infant neurobehavioral deficits, prenatal cocaine exposure appears to be associated with what has been described as statistically significant but subtle decrements in neurobehavioral, cognitive, and language function, especially when viewed in the context of other exposures and the caregiving environment which may mediate or moderate the effects. Whether these early findings may

  10. Ochratoxin A: In Utero Exposure in Mice Induces Adducts in Testicular DNA

    Directory of Open Access Journals (Sweden)

    Jamie E. Jennings-Gee

    2010-06-01

    Full Text Available Ochratoxin A (OTA is a nephrotoxin and carcinogen that is associated with Balkan endemic nephropathy and urinary tract tumors. OTA crosses the placenta and causes adducts in the liver and kidney DNA of newborns. Because the testis and kidney develop from the same embryonic tissue, we reasoned that OTA also may cause adducts transplacentally in the testis. We tested the hypothesis that acute exposure to OTA, via food and via exposure in utero, causes adducts in testicular DNA and that these lesions are identical to those that can be produced in the kidney and testis by the consumption of OTA. Adult mice received a single dose of OTA (from 0–1,056 µg/kg by gavage. Pregnant mice received a single i.p. injection of OTA (2.5 mg/kg at gestation day 17. DNA adducts were determined by 32P-postlabeling. Gavage-fed animals sacrificed after 48 hours accumulated OTA in kidney and testis and showed DNA adducts in kidney and testis. Some OTA metabolites isolated from the tissues were similar in both organs (kidney and testis. The litters of mice exposed prenatally to OTA showed no signs of overt toxicity. However, newborn and 1-month old males had DNA adducts in kidney and testis that were chromatographically similar to DNA adducts observed in the kidney and testis of gavage-fed adults. One adduct was identified previously as C8-dG-OTA adduct by LC MS/MS. No adducts were observed in males from dams not exposed to OTA. Our findings that in utero exposure to OTA causes adducts in the testicular DNA of male offspring support a possible role for OTA in testicular cancer.

  11. Changes in peripheral nervous system activity produced in rats by prenatal exposure to carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Carratu, M.R. (Inst. of Pharmacology, Bari Univ. (Italy)); Renna, G. (Inst. of Pharmacology, Bari Univ. (Italy)); Giustino, A. (Inst. of Pharmacology, Bari Univ. (Italy)); De Salvia, M.A. (Inst. of Pharmacology, Bari Univ. (Italy)); Cuomo, V. (Inst. of Pharmacology, Bari Univ. (Italy))

    1993-06-01

    The present experiments were designed to investigate whether alterations of peripheral nervous system activity may be produced in male Wistar rats by prenatal exposure (from day 0 to day 20 of pregnancy) to relatively low levels of CO (75 and 150 ppm). The voltage clamp analysis of ionic currents recorded from sciatic nerve fibres showed that prenatal exposure to CO produced modifications of sodium current properties. In particular, in 40-day-old rats exposed to CO (75 and 150 ppm) during gestation, the inactivation kinetics of transient sodium current were significantly slowed. Analysis of the potential dependence of steady-state Na inactivation, h[sub [infinity

  12. Behavioral testing of mice exposed to intermediate frequency magnetic fields indicates mild memory impairment.

    Directory of Open Access Journals (Sweden)

    Kajal Kumari

    Full Text Available Human exposure to intermediate frequency magnetic fields (MF is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 μT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 μT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 μT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 μT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.

  13. Changes in Serum Adiponectin in Mice Chronically Exposed to Inorganic Arsenic in Drinking Water.

    Science.gov (United States)

    Song, Xuanbo; Li, Ying; Liu, Junqiu; Ji, Xiaohong; Zhao, Lijun; Wei, Yudan

    2017-09-01

    Cardiovascular disease and diabetes mellitus are prominent features of glucose and lipid metabolism disorders. Adiponectin is a key adipokine that is largely involved in glucose and lipid metabolism processes. A growing body of evidence suggests that chronic exposure to inorganic arsenic is associated with cardiovascular disease and diabetes mellitus. We hypothesized that arsenic exposure may increase the risk of cardiovascular disease and diabetes mellitus by affecting the level of adiponectin. In this study, we examined serum adiponectin levels, as well as serum levels of metabolic measures (including fasting blood glucose, insulin, total cholesterol, triglyceride, and high-density lipoprotein (HDL)-cholesterol) in C57BL/6 mice exposed to inorganic arsenic in drinking water (5 and 50 ppm NaAsO 2 ) for 18 weeks. Body mass and adiposity were monitored throughout the study. We found no significant changes in serum insulin and glucose levels in mice treated with arsenic for 18 weeks. However, arsenic exposure decreased serum levels of adiponectin, triglyceride, and HDL-cholesterol. Further, an inverse relationship was observed between urinary concentrations of total arsenic and serum levels of adiponectin. This study suggests that arsenic exposure could disturb the metabolism of lipids and increase the risk of cardiovascular disease by reducing the level of adiponectin.

  14. Prenatal and Postnatal Cell Phone Exposures and Headaches in Children.

    Science.gov (United States)

    Sudan, Madhuri; Kheifets, Leeka; Arah, Onyebuchi; Olsen, Jorn; Zeltzer, Lonnie

    2012-12-05

    Children today are exposed to cell phones early in life, and may be at the greatest risk if exposure is harmful to health. We investigated associations between cell phone exposures and headaches in children. The Danish National Birth Cohort enrolled pregnant women between 1996 and 2002. When their children reached age seven years, mothers completed a questionnaire regarding the child's health, behaviors, and exposures. We used multivariable adjusted models to relate prenatal only, postnatal only, or both prenatal and postnatal cell phone exposure to whether the child had migraines and headache-related symptoms. Our analyses included data from 52,680 children. Children with cell phone exposure had higher odds of migraines and headache-related symptoms than children with no exposure. The odds ratio for migraines was 1.30 (95% confidence interval: 1.01-1.68) and for headache-related symptoms was 1.32 (95% confidence interval: 1.23-1.40) for children with both prenatal and postnatal exposure. In this study, cell phone exposures were associated with headaches in children, but the associations may not be causal given the potential for uncontrolled confounding and misclassification in observational studies such as this. However, given the widespread use of cell phones, if a causal effect exists it would have great public health impact.

  15. Sequence analysis of laci mutations obtained from lung cells of radon-exposed big blue trademark transgenic mice

    International Nuclear Information System (INIS)

    Layton, A.D.; Cross, F.T.; Steigler, G.L.; Stillwell, L.S.; Jostes, R.F.; Lutze, L.H.

    1994-01-01

    We have exposed Big Blue trademark transgenic mice by inhalation to 320, 640 and 960 Working Level Months (WLM) of radon progeny. Mice were sacrificed after 3, 6 and 9 days; the time periods required to obtain the exposures. Control mice were also sacrificed at each time interval. In each case all tissues were excised, flash frozen in liquid nitrogen, and stored at -80 degrees C for further analysis. Twelve lacI mutations have been isolated from the lung tissue of a mouse from the 960-WLM exposure group; the lacI genes from these mutants have been sequenced. Sequence data indicate that three of the mutants have a C;G deletion at BP 978 and are possibly clonal in origin. Two mutants have multiple events within the gene: one has a an A:T to C:G transversion and a C:G insertion separated by 291 BPs; the second has a G:C to A:T transition as well as an A:T deletion followed by 6 base pairs downstream by a T:A insertion. Other mutations include a single G:C to A:T transition, a two base pair deletion, and a C:G to T:A transition. Mutant plaques are being evaluated from individual mice at other dose levels. Time course experiments are also planned. These studies will help define the molecular fine structure of mutations induced by high-LET radiation exposure

  16. Noninvasive Prenatal Diagnosis of Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Khattab, Ahmed; Yuen, Tony; Sun, Li; Yau, Mabel; Barhan, Ariella; Zaidi, Mone; Lo, Y M Dennis; New, Maria I

    2016-01-01

    A major hallmark of classical congenital adrenal hyperplasia (CAH) is genital ambiguity noted at birth in affected females, which leads to psychological and psychosexual issues in adult life. Attempts to correct genital ambiguity through surgical intervention have been partially successful. Fetal hyperandrogenemia and genital ambiguity have been shown to be preventable by prenatal administration of low-dose dexamethasone initiated before the 9th week of gestation. In 7 of 8 at-risk pregnancies, the unaffected fetus is unnecessarily exposed to dexamethasone for weeks until the diagnosis of classical CAH is ruled out by invasive procedures. This therapeutic dilemma calls for early prenatal diagnosis so that dexamethasone treatment can be directed to affected female fetuses only. We describe the utilization of cell-free fetal DNA in mothers carrying at-risk fetuses as early as 6 gestational weeks by targeted massively parallel sequencing of the genomic region including and flanking the CYP21A2 gene. Our highly personalized and innovative approach should permit the diagnosis of CAH before genital development begins, therefore restricting the purposeful administration of dexamethasone to mothers carrying affected females. © 2016 S. Karger AG, Basel.

  17. Prenatal VPA exposure and changes in sensory processing by the superior colliculus

    Directory of Open Access Journals (Sweden)

    Georgia eDendrinos

    2011-10-01

    Full Text Available Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA, a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.

  18. The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid.

    Science.gov (United States)

    Castro, Kamila; Baronio, Diego; Perry, Ingrid Schweigert; Riesgo, Rudimar Dos Santos; Gottfried, Carmem

    2017-07-01

    Autism spectrum disorder (ASD) is characterized by impairments in social interaction and communication, and by restricted repetitive behaviors and interests. Its etiology is still unknown, but different environmental factors during pregnancy, such as exposure to valproic acid (VPA), are associated with high incidence of ASD in children. In this context, prenatal exposure to VPA in rodents has been used as a reliable model of ASD. Ketogenic diet (KD) is an alternative therapeutic option for refractory epilepsy; however, the effects of this approach in ASD-like behavior need to be evaluated. We conducted a behavioral assessment of the effects of KD in the VPA model of autism. Pregnant animals received a single-intraperitoneal injection of 600 mg/kg VPA, and their offspring were separated into four groups: (1) control group with standard diet (C-SD), (2) control group with ketogenic diet (C-KD), (3) VPA group with standard diet (VPA-SD), and (4) VPA group with ketogenic diet (VPA-KD). When compared with the control group, VPA animals presented increased social impairment, repetitive behavior and higher nociceptive threshold. Interestingly, the VPA group fed with KD presented improvements in social behavior. These mice displayed higher scores in sociability index and social novelty index when compared with the SD-fed VPA mice. VPA mice chronically exposed to a KD presented behavioral improvements; however, the mechanism by which KD improves ASD-like features needs to be further investigated. In conclusion, the present study reinforces the potential use of KD as a treatment for the core deficits of ASD.

  19. Low-dose prenatal alcohol exposure modulates weight gain and eliminates fractalkine expression in e14.5 mouse embryos

    Directory of Open Access Journals (Sweden)

    Jordyn Karliner

    2017-07-01

    Full Text Available Fetal Alcohol Spectrum Disorder (FASD is caused by maternal alcohol consumption during pregnancy and often leads to long-lasting developmental symptoms, including increased microglial migration and increased release of the chemokine, fractalkine, both of which play a role in embryonic brain development. However, the effects of low-dose alcohol exposure on microglia and fractalkine embryonically are not well documented. This study addresses this gap by using the voluntary drinking paradigm, Drinking in the Dark (DiD, to expose mice to acute doses of alcohol from embryonic day 7.5 (E7.5 to E14.5. Maternal mice and embryo analyses revealed increased embryo weights and a trend of increased gestational weight gain in alcohol-exposed mice compared to water-exposed mice. After quantifying soluble fractalkine concentrations through Western Blots, results indicated decreased fractalkine in alcohol-exposed mice compared to water-exposed. Overall, our data suggest that exposure to low doses of alcohol inhibits fractalkine release, which may affect microglial function.

  20. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ radiation.

    Directory of Open Access Journals (Sweden)

    Prem Kumarathasan

    Full Text Available BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body to Co60 (γ (single dose 0, 0.5, and 2 Gy at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05 in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05 after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008 relative to controls. Percent lesion area increased (p = 0.005 with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  1. Effect on intelligence test score of prenatal exposure to ionizing radiation in Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori; Yoshimaru, Hiroshi.

    1988-10-01

    Analyses of intelligence test scores (Koga) at 10-11 years of age of individuals exposed prenatally to the atomic bombing of Hiroshima and Nagasaki using estimates of the uterine absorbed dose based on the recently introduced system of dosimetry, the Dosimetry System 1986 (DS86), reveal the following: 1) there is no evidence of a radiation-related effect on intelligence among those individuals exposed within 0-7 weeks after fertilization or in the 26th or subsequent weeks; 2) for individuals exposed at 8-15 weeks after fertilization, and to a lesser extent those exposed at 16-25 weeks, the mean tests scores but not the variances are significantly heterogeneous among exposure categories; 3) the cumulative distribution of test scores suggests a progressive shift downwards in individual scores with increasing exposure; and 4) within the group most sensitive to the occurrence of clinically recognizable severe mental retardation, individuals exposed 8 through 15 weeks after fertilization, the regression of intelligence score on estimated DS86 uterine absorbed dose is more linear than with T65DR fetal dose, the diminution in intelligence score under the linear model is 21-29 points at 1Gy. The effect is somewhat greater when the controls receiving less than 0.01 Gy are excluded, 24-33 points at 1 Gy. These findings are discussed in the light of the earlier analysis of the frequency of occurrence of mental retardation among the prenatally exposed survivors of the A-bombing of Hiroshima and Nagasaki. It is suggested that both are the consequences of the same underlying biological process or processes. (author)

  2. Effects of prenatal stress and emotional reactivity of the mother on emotional and cognitive abilities in lambs.

    Science.gov (United States)

    Coulon, Marjorie; Nowak, Raymond; Andanson, Stephane; Petit, Bérengère; Lévy, Frédéric; Boissy, Alain

    2015-07-01

    Consequences of prenatal stress on emotional reactivity and cognitive abilities in offspring are under-documented in precocial mammals. Here, we investigated to what extent emotional reactivity, judgment bias and spatial learning abilities of lambs are affected by chronic stress during late pregnancy and by their dams' emotional reactivity. The 20 highest-responsive (HR) and 20 lowest-responsive (LR) ewes from a population of 120 Romane ewes were selected according to their pre-mating reactivity to social isolation in a new environment. Over the final third of pregnancy, 10 HR ewes and 10 LR ewes were exposed daily to various unpredictable aversive events such as restraint, mixing groups and transport while the other 20 selected ewes were not. In a human and an object test, prenatally-stressed lambs were more fearful than control lambs, but the prenatal stress effect was moderated by the reactivity of the mothers: prenatally-stressed lambs from ewes with high emotional reactivity were more affected. Prenatally-stressed lambs did not perform as well as control lambs in a maze test and showed pessimistic-like judgment in a cognitive bias test. Prenatally-stressed lambs were thus characterized by a negative affective state with increased fear reactions and impaired cognitive evaluation. The development of negative moods could have long-lasting consequences on the coping strategies of the lambs in response to their rearing conditions. © 2015 Wiley Periodicals, Inc.

  3. Neurodevelopmental outcomes at 5 years in children exposed prenatally to maternal dental amalgam: the Seychelles Child Development Nutrition Study.

    Science.gov (United States)

    Watson, Gene E; van Wijngaarden, Edwin; Love, Tanzy M T; McSorley, Emeir M; Bonham, Maxine P; Mulhern, Maria S; Yeates, Alison J; Davidson, Philip W; Shamlaye, Conrad F; Strain, J J; Thurston, Sally W; Harrington, Donald; Zareba, Grazyna; Wallace, Julie M W; Myers, Gary J

    2013-01-01

    Limited human data are available to assess the association between prenatal mercury vapor (Hg⁰)) exposure from maternal dental amalgam restorations and neurodevelopment of children. We evaluated the association between maternal dental amalgam status during gestation and children's neurodevelopmental outcomes at 5 years in the Seychelles Child Development Nutrition Study (SCDNS). Maternal amalgam status was determined prospectively in a longitudinal cohort study examining the associations of prenatal exposure to nutrients and methylmercury (MeHg) with neurodevelopment. A total of 236 mother-child pairs initially enrolled in the SCDNS in 2001 were eligible to participate. Maternal amalgam status was measured as number of amalgam surfaces (the primary metric) and number of occlusal points. The neurodevelopmental assessment battery was comprised of age-appropriate tests of cognitive, language, and perceptual functions, and scholastic achievement. Linear regression analysis controlled for MeHg exposure, maternal fatty acid status, and other covariates relevant to child development. Maternal amalgam status evaluation yielded an average of 7.0 surfaces (range 0-28) and 11.0 occlusal points (range 0-40) during pregnancy. Neither the number of maternal amalgam surfaces nor occlusal points were associated with any outcome. Our findings do not provide evidence to support a relationship between prenatal exposure to Hg⁰ from maternal dental amalgam and neurodevelopmental outcomes in children at 5 years of age. © 2013.

  4. Developmental aspects of anandamide: ontogeny of response and prenatal exposure.

    Science.gov (United States)

    Fride, E; Mechoulam, R

    1996-02-01

    Recent breakthroughs in cannabinoid research, including the identification of two cannabinoid receptors (CB receptors) and a family of endogenous ligands, the anandamides, may shed new light on the sequelae of pre- and perinatal exposure to cannabinoid receptor ligands and enable the experimental manipulation of the endogenous ligand in the developing organism. In the present study we examined the behavioural response to anandamide (ANA) in developing mice from day 13 into adulthood. We observed that depression of ambulation in an open field and the analgetic response to ANA are not fully developed until adulthood. In a separate set of experiments, we administered five daily injections of ANA (SC, 20 mg/kg) during the last trimester of pregnancy. No effects on birth weight, litter size, sex ratio and eye opening were detected after maternal ANA treatment. Further, no effects on open field performance of the offspring were observed until 4 weeks of age. However, from 40 days of age, a number of differences between the prenatal ANA and control offspring were detected. Thus, the offspring from ANA-treated dams showed impaired responsiveness to a challenge with ANA or delta 0-THC expressed as a lack of immobility in the ring test for catalepsy, hypothermia and analgesia. On the other hand, without challenge, they exhibited a spontaneous decrease in open field activity, catalepsy, hypothermia and a hypoalgetic tendency. These data suggest that exposure to excessive amounts of ANA during gestation alters the functioning of the ANA-CB receptor system. Further experiments investigating responsivity of the immune system suggest an increased inflammatory response to arachidonic acid, and enhanced hypothermic response to lipopolysaccharide in prenatally treated offspring. The results are discussed in relation to other manipulations of the maternal milieu, especially prenatal stress. It is concluded that alterations induced by prenatal exposure to ANA, cannabinoids and other

  5. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    Science.gov (United States)

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  6. Does offering prenatal screening influence pregnant women's attitudes regarding prenatal testing?

    NARCIS (Netherlands)

    Kleinveld, J.H.; van den Berg, M.; van Eijk, J.T.; van Vugt, J.M.G.; van der Wal, G.; Timmermans, D.R.M.

    2008-01-01

    Objectives: This study aims to find out whether offering prenatal screening for Down syndrome and neural tube defects influences pregnant women's attitudes toward having a screening test. Methods: Women were randomised into a group that was offered prenatal screening and a group that was not offered

  7. Vascular Hyperpermeability Response in Animals Systemically Exposed to Arsenic.

    Science.gov (United States)

    Chen, Shih-Chieh; Chang, Chao-Yuah; Lin, Ming-Lu

    2018-01-01

    The mechanisms underlying cardiovascular diseases induced by chronic exposure to arsenic remain unclarified. The objectives of this study were to investigate whether increased vascular leakage is induced by inflammatory mustard oil in mice systemically exposed to various doses of arsenic and whether an increased vascular leakage response is still present in arsenic-fed mice after arsenic discontinuation for 2 or 6 months. ICR mice were fed water or various doses of sodium arsenite (10, 15, or 20 mg/kg/day; 5 days/week) for 8 weeks. In separate experiments, the mice were treated with sodium arsenite (20 mg/kg) for 2 or 8 weeks, followed by arsenic discontinuation for 2 or 6 months. Vascular permeability to inflammatory mustard oil was quantified using Evans blue (EB) techniques. Both arsenic-exposed and water-fed (control) mice displayed similar basal levels of EB leakage in the ears brushed with mineral oil, a vehicle of mustard oil. The levels of EB leakage induced by mustard oil in the arsenic groups fed with sodium arsenite (10 or 15 mg/kg) were similar to those of water-fed mice. However, increased levels of EB leakage in response to mustard oil stimulation were significantly higher in mice treated with sodium arsenite (20 mg/kg; high dose) than in arsenic-fed (10 or 15 mg/kg; low and middle doses) or control mice. After arsenic discontinuation for 2 or 6 months, mustard oil-induced vascular EB leakage in arsenic-fed (20 mg/kg) mice was similar to that in control mice. Dramatic increases in mustard oil-induced vascular leakage were only present in mice systemically exposed to the high arsenic dose, indicating the synergistic effects of the high arsenic dose and mustard oil.

  8. Chronic Prenatal Hypoxia Down-Regulated BK Channel Β1 Subunits in Mesenteric Artery Smooth Muscle Cells of the Offspring

    Directory of Open Access Journals (Sweden)

    Bailin Liu

    2018-02-01

    Full Text Available Background/Aims: Chronic hypoxia in utero could impair vascular functions in the offspring, underlying mechanisms are unclear. This study investigated functional alteration in large-conductance Ca2+-activated K+ (BK channels in offspring mesenteric arteries following prenatal hypoxia. Methods: Pregnant rats were exposed to normoxic control (21% O2, Con or hypoxic (10.5% O2, Hy conditions from gestational day 5 to 21, their 7-month-old adult male offspring were tested for blood pressure, vascular BK channel functions and expression using patch clamp and wire myograh technique, western blotting, and qRT-PCR. Results: Prenatal hypoxia increased pressor responses and vasoconstrictions to phenylephrine in the offspring. Whole-cell currents density of BK channels and amplitude of spontaneous transient outward currents (STOCs, not the frequency, were significantly reduced in Hy vascular myocytes. The sensitivity of BK channels to voltage, Ca2+, and tamoxifen were reduced in Hy myocytes, whereas the number of channels per patch and the single-channel conductance were unchanged. Prenatal hypoxia impaired NS1102- and tamoxifen-mediated relaxation in mesenteric arteries precontracted with phenylephrine in the presence of Nω-nitro-L-arginine methyl ester. The mRNA and protein expression of BK channel β1, not the α-subunit, was decreased in Hy mesenteric arteries. Conclusions: Impaired BK channel β1-subunits in vascular smooth muscle cells contributed to vascular dysfunction in the offspring exposed to prenatal hypoxia.

  9. Susceptibility or resilience? Prenatal stress predisposes male rats to social subordination, but facilitates adaptation to subordinate status.

    Science.gov (United States)

    Scott, Karen A; de Kloet, Annette D; Smeltzer, Michael D; Krause, Eric G; Flak, Jonathan N; Melhorn, Susan J; Foster, Michelle T; Tamashiro, Kellie L K; Sakai, Randall R

    2017-09-01

    Mood disorders such as major depressive disorder (MDD) affect a significant proportion of the population. Although progress has been made in the development of therapeutics, a large number of individuals do not attain full remission of symptoms and adverse side effects affect treatment compliance for some. In order to develop new therapies, there is a push for new models that better reflect the multiple risk factors that likely contribute to the development of depressive illness. We hypothesized that early life stress would exacerbate the depressive-like phenotype that we have previously observed in socially subordinate (SUB) adult male rats in the visible burrow system (VBS), a semi-natural, ethologically relevant environment in which males in a colony form a dominance hierarchy. Dams were exposed to chronic variable stress (CVS) during the last week of gestation, resulting in a robust and non-habituating glucocorticoid response that did not alter maternal food intake, body weight or litter size and weight. As adults, one prenatal CVS (PCVS) and one non-stressed (NS) male were housed in the VBS with adult females. Although there were no overt differences between PCVS and NS male offspring prior to VBS housing, a greater percentage of PCVS males became SUB. However, the depressive-like phenotype of SUB males was not exacerbated in PCVS males; rather, they appeared to better cope with SUB status than NS SUB males. They had lower basal plasma corticosterone than NS SUB males at the end of VBS housing. In situ hybridization for CRH in the PVN and CeA did not reveal any prenatal treatment or status effects, while NPY expression was higher within the MeA of dominant and subordinate males exposed to the VBS in comparison with controls, but with no effect of prenatal treatment. These data suggest that prenatal chronic variable stress may confer resilience to offspring when exposed to social stress in adulthood. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Effects of Prenatal Stocking Densities on the Fear Responses and Sociality of Goat (Capra hircus) Kids

    Science.gov (United States)

    Chojnacki, Rachel M.; Vas, Judit; Andersen, Inger Lise

    2014-01-01

    Prenatal stress (stress experienced by a pregnant mother) and its effects on offspring have been comprehensively studied but relatively little research has been done on how prenatal social stress affects farm animals such as goats. Here, we use the operational description of ‘stress’ as “physical or perceived threats to homeostasis.” The aim of this study was to investigate the prenatal effects of different herd densities on the fear responses and sociality of goat kids. Pregnant Norwegian dairy goats were exposed to high, medium or low prenatal animal density treatments throughout gestation (1.0, 2.0 or 3.0 m2 per animal, respectively). One kid per litter was subjected to two behavioral tests at 5 weeks of age. The ‘social test’ was applied to assess the fear responses, sociality and social recognition skills when presented with a familiar and unfamiliar kid and the ‘separation test’ assessed the behavioral coping skills when isolated. The results indicate goat kids from the highest prenatal density of 1.0 m2 were more fearful than the kids from the lower prenatal densities (i.e. made more escape attempts (separation test: P kids did not differentiate between a familiar and an unfamiliar kid at 5 weeks of age and sociality was not affected by the prenatal density treatment. We conclude that high animal densities during pregnancy in goats produce offspring that have a higher level of fear, particularly in females. Behavioral changes in offspring that occur as an effect of prenatal stress are of high importance as many of the females are recruited to the breeding stock of dairy goats. PMID:24710177

  11. Frequency of marriage and live birth among survivors prenatally exposed to the atomic bomb

    International Nuclear Information System (INIS)

    Blot, W.J.; Shimizu, Y.; Kato, H.; Miller, R.W.

    1975-01-01

    Frequency of marriage and birth as of January 1973 was determined for persons exposed in utero to the atomic bombs in 1945 and for controls. The marriage rate was lower in persons heavily exposed in utero than in the non-exposed or lightly exposed. This difference is attributed partly to the lesser marriageability of persons with mental retardation who are significantly more numerous among the heavily exposed, and partly to unmeasured variables, possibly including social discrimination against survivors of the atomic bomb. No consistent relation was observed between radiation exposure and three reproductive indices: childless marriages, number of births, and interval between marriage and first birth

  12. Effects of environmental enrichment on behavioral deficits and alterations in hippocampal BDNF induced by prenatal exposure to morphine in juvenile rats.

    Science.gov (United States)

    Ahmadalipour, A; Sadeghzadeh, J; Vafaei, A A; Bandegi, A R; Mohammadkhani, R; Rashidy-Pour, A

    2015-10-01

    Prenatal morphine exposure throughout pregnancy can induce a series of neurobehavioral and neurochemical disturbances by affecting central nervous system development. This study was designed to investigate the effects of an enriched environment on behavioral deficits and changes in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by prenatal morphine in rats. On pregnancy days 11-18, female Wistar rats were randomly injected twice daily with saline or morphine. Offspring were weaned on postnatal day (PND) 21. They were subjected to a standard rearing environment or an enriched environment on PNDs 22-50. On PNDs 51-57, the behavioral responses including anxiety and depression-like behaviors, and passive avoidance memory as well as hippocampal BDNF levels were investigated. The light/dark (L/D) box and elevated plus maze (EPM) were used for the study of anxiety, forced swimming test (FST) was used to assess depression-like behavior and passive avoidance task was used to evaluate learning and memory. Prenatal morphine exposure caused a reduction in time spent in the EPM open arms and a reduction in time spent in the lit side of the L/D box. It also decreased step-through latency and increased time spent in the dark side of passive avoidance task. Prenatal morphine exposure also reduced immobility time and increased swimming time in FST. Postnatal rearing in an enriched environment counteracted with behavioral deficits in the EPM and passive avoidance task, but not in the L/D box. This suggests that exposure to an enriched environment during adolescence period alters anxiety profile in a task-specific manner. Prenatal morphine exposure reduced hippocampal BDNF levels, but enriched environment significantly increased BDNF levels in both saline- and morphine-exposed groups. Our results demonstrate that exposure to an enriched environment alleviates behavioral deficits induced by prenatal morphine exposure and up-regulates the decreased levels of BDNF

  13. Prenatal care: associations with prenatal depressive symptoms and social support in low-income urban women.

    Science.gov (United States)

    Sidebottom, Abbey C; Hellerstedt, Wendy L; Harrison, Patricia A; Jones-Webb, Rhonda J

    2017-10-01

    We examined associations of depressive symptoms and social support with late and inadequate prenatal care in a low-income urban population. The sample was prenatal care patients at five community health centers. Measures of depressive symptoms, social support, and covariates were collected at prenatal care entry. Prenatal care entry and adequacy came from birth certificates. We examined outcomes of late prenatal care and less than adequate care in multivariable models. Among 2341 study participants, 16% had elevated depressive symptoms, 70% had moderate/poor social support, 21% had no/low partner support, 37% had late prenatal care, and 29% had less than adequate prenatal care. Women with both no/low partner support and elevated depressive symptoms were at highest risk of late care (AOR 1.85, CI 1.31, 2.60, p care (AOR 0.74, CI 0.54, 1.10, p = 0.051). Women with moderate/high depressive symptoms were less likely to experience less than adequate care compared to women with low symptoms (AOR 0.73, CI 0.56, 0.96, p = 0.022). Social support and partner support were negatively associated with indices of prenatal care use. Partner support was identified as protective for women with depressive symptoms with regard to late care. Study findings support public health initiatives focused on promoting models of care that address preconception and reproductive life planning. Practice-based implications include possible screening for social support and depression in preconception contexts.

  14. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  15. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  16. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  17. The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure.

    Science.gov (United States)

    Tucker, Deirdre K; Macon, Madisa B; Strynar, Mark J; Dagnino, Sonia; Andersen, Erik; Fenton, Suzanne E

    2015-07-01

    Perfluorooctanoic acid (PFOA) is a developmental toxicant in mice, with varied strain outcomes depending on dose and period of exposure. The impact of PFOA on female mouse pubertal development at low doses (≤1mg/kg) has yet to be determined. Therefore, female offspring from CD-1 and C57Bl/6 dams exposed to PFOA, creating serum concentrations similar to humans, were examined for pubertal onset, including mammary gland development. Pups demonstrated a shorter PFOA elimination half-life than that reported for adult mice. Prenatal exposure to PFOA caused significant mammary developmental delays in female offspring in both strains. Delays started during puberty and persisted into young adulthood; severity was dose-dependent. Also an evaluation of female serum hormone levels and pubertal timing onset revealed no effects of PFOA compared to controls in either strain. These data suggest that the mammary gland is more sensitive to early low level PFOA exposures compared to other pubertal endpoints, regardless of strain. Published by Elsevier Inc.

  18. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells

    DEFF Research Database (Denmark)

    Boisen, Anne Mette Zenner; Shipley, Thomas; Jackson, Petra

    2013-01-01

    Inhalation of particles has been shown to induce mutations in the male germline in mice following both prenatal and adult exposures in several experiments. In contrast, the effects of particles on female germ cell mutagenesis are not well established. Germline mutations are induced during active...... cell division, which occurs during fetal development in females. We investigated the effects of prenatal exposure to carbon black nanoparticles (CB) on induction of mutations in the female mouse germline during fetal development, spanning the critical developmental stages of oogenesis. Pregnant C57BL/6...... mutation rates in the resulting F2 generation were determined from full pedigrees (mother, father, offspring) of F1 female mice (178 CB-exposed and 258 control F2 offspring). ESTR mutation rates in CB-exposed F2 female offspring were not statistically different from those of F2 female control offspring....

  19. Prenatal screening and genetics

    DEFF Research Database (Denmark)

    Alderson, P; Aro, A R; Dragonas, T

    2001-01-01

    Although the term 'genetic screening' has been used for decades, this paper discusses how, in its most precise meaning, genetic screening has not yet been widely introduced. 'Prenatal screening' is often confused with 'genetic screening'. As we show, these terms have different meanings, and we...... examine definitions of the relevant concepts in order to illustrate this point. The concepts are i) prenatal, ii) genetic screening, iii) screening, scanning and testing, iv) maternal and foetal tests, v) test techniques and vi) genetic conditions. So far, prenatal screening has little connection...... with precisely defined genetics. There are benefits but also disadvantages in overstating current links between them in the term genetic screening. Policy making and professional and public understandings about screening could be clarified if the distinct meanings of prenatal screening and genetic screening were...

  20. Birth prevalence of congenital cytomegalovirus among infants of HIV-infected women on prenatal antiretroviral prophylaxis in South Africa.

    Science.gov (United States)

    Manicklal, S; van Niekerk, A M; Kroon, S M; Hutto, C; Novak, Z; Pati, S K; Chowdhury, N; Hsiao, N Y; Boppana, S B

    2014-05-01

    A high rate of congenital cytomegalovirus (CMV) has been documented in human immunodeficiency virus (HIV)-exposed infants in industrialized settings, both in the pre- and post-highly active antiretroviral therapy (HAART) era. Only limited data on the birth prevalence of congenital CMV among infants of HIV-infected women on prenatal antiretroviral (ARV) prophylaxis are available from sub-Saharan Africa, despite a high prevalence of both infections. We evaluated the prevalence of congenital CMV in HIV-exposed infants in the Western Cape, South Africa. HIV-infected mothers were recruited in the immediate postnatal period at a referral maternity hospital between April and October 2012. Maternal and infant clinical data and newborn saliva swabs were collected. Saliva swabs were assayed by real-time polymerase chain reaction for CMV. Data were analyzed using univariate and multivariate logistic regression analyses to determine specific demographic, maternal, and newborn characteristics associated with congenital CMV. CMV was detected in 22 of 748 newborn saliva swabs (2.9%; 95% confidence interval [CI], 1.9%-4.4%). Overall, 96% of mothers used prenatal ARV prophylaxis (prenatal zidovudine, 43.9%; HAART, 52.1%). Maternal age, gestational age, prematurity (CMV-infected and -uninfected infants. Maternal CD4 count CMV (adjusted odds ratio, 2.9; 95% CI, 1.2-7.3). A negative correlation between CMV load in saliva and maternal CD4 count was observed (r = -0.495, n = 22, P = .019). The birth prevalence of congenital CMV was high despite prenatal ARV prophylaxis, and was associated with advanced maternal immunosuppression.

  1. Developmental programming: impact of prenatal testosterone excess on pre- and postnatal gonadotropin regulation in sheep.

    Science.gov (United States)

    Manikkam, Mohan; Thompson, Robert C; Herkimer, Carol; Welch, Kathleen B; Flak, Jonathan; Karsch, Fred J; Padmanabhan, Vasantha

    2008-04-01

    The goal of this study was to explore mechanisms that mediate hypersecretion of LH and progressive loss of cyclicity in female sheep exposed during fetal life to excess testosterone. Our working hypothesis was that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH (but not FSH) secretion and, thus, hypersecretion of LH in adulthood, and that this results from altered developmental gene expression of GnRH and estradiol (E2) receptors, gonadotropin subunits, and paracrine factors that differentially regulate LH and FSH synthesis. We observed that, relative to controls, females exposed during fetal life to excess testosterone, as well as the nor-aromatizable androgen dihydrotestosterone, exhibited enhanced LH but not FSH responses to intermittent delivery of GnRH boluses under conditions in which endogenous LH (GnRH) pulses were suppressed. Luteinizing hormone hypersecretion was more evident in adults than in prepubertal females, and it was associated with development of acyclicity. Measurement of pituitary mRNA concentrations revealed that prenatal testosterone excess induced developmental changes in gene expression of pituitary GnRH and E2 receptors and paracrine modulators of LH and FSH synthesis in a manner consistent with subsequent amplification of LH release. Together, this series of studies suggests that prenatal testosterone excess, by its androgenic action, amplifies GnRH-induced LH response, leading to LH hypersecretion and acyclicity in adulthood, and that this programming involves developmental changes in expression of pituitary genes involved in LH and FSH release.

  2. Effects of prenatal exposure to a low dose atrazine metabolite mixture on pubertal timing and prostate development of male Long-Evans rats

    Energy Technology Data Exchange (ETDEWEB)

    Stanko, Jason [National Institute of Environmental Health Sciences (NIEHS); Enoch, Rolondo [North Carolina Central University, Durham; Rayner, Jennifer L [ORNL; Davis, Christine [U.S. Environmental Protection Agency; Wolf, Douglas [U.S. Environmental Protection Agency; Malarkey, David [University of North Carolina, Chapel Hill; Fenton, Suzanne [National Institute of Environmental Health Sciences (NIEHS)

    2010-12-01

    The present study examines the postnatal reproductive development of male rats following prenatal exposure to an atrazine metabolite mixture (AMM) consisting of the herbicide atrazine and its environmental metabolites diaminochlorotriazine, hydroxyatrazine, deethylatrazine, and deisopropylatrazine. Pregnant Long-Evans rats were treated by gavage with 0.09, 0.87, or 8.73 mg AMM/kg body weight (BW), vehicle, or 100 mg ATR/kg BW positive control, on gestation days 15 19. Preputial separation was significantly delayed in 0.87 mg and 8.73 mg AMM-exposed males. AMM-exposed males demonstrated a significant treatment-related increase in incidence and severity of inflammation in the prostate on postnatal day (PND) 120. A dose-dependent increase in epididymal fat masses and prostate foci were grossly visible in AMM-exposed offspring. These results indicate that a short, late prenatal exposure to mixture of chlorotriazine metabolites can cause chronic prostatitis in male LE rats. The mode of action for these effects is presently unclear.

  3. Cytokine expression in mice exposed to diesel exhaust particles by inhalation. Role of tumor necrosis factor

    Directory of Open Access Journals (Sweden)

    Loft Steffen

    2006-02-01

    Full Text Available Abstract Background Particulate air pollution has been associated with lung and cardiovascular disease, for which lung inflammation may be a driving mechanism. The pro-inflammatory cytokine, tumor necrosis factor (TNF has been suggested to have a key-role in particle-induced inflammation. We studied the time course of gene expression of inflammatory markers in the lungs of wild type mice and Tnf-/- mice after exposure to diesel exhaust particles (DEPs. Mice were exposed to either a single or multiple doses of DEP by inhalation. We measured the mRNA level of the cytokines Tnf and interleukin-6 (Il-6 and the chemokines, monocyte chemoattractant protein (Mcp-1, macrophage inflammatory protein-2 (Mip-2 and keratinocyte derived chemokine (Kc in the lung tissue at different time points after exposure. Results Tnf mRNA expression levels increased late after DEP-inhalation, whereas the expression levels of Il-6, Mcp-1 and Kc increased early. The expression of Mip-2 was independent of TNF if the dose was above a certain level. The expression levels of the cytokines Kc, Mcp-1 and Il-6, were increased in the absence of TNF. Conclusion Our data demonstrate that Tnf is not important in early DEP induced inflammation and rather exerts negative influence on Mcp-1 and Kc mRNA levels. This suggests that other signalling pathways are important, a candidate being one involving Mcp-1.

  4. The use of the mouse chimera assay to detect early embryonic damage from male mice exposed to low-dose radiation

    International Nuclear Information System (INIS)

    Oudiz, D.; Warner, P.; Walsh, K.J.; Wiley, L.

    1990-01-01

    Mouse chimeras are in vitro aggregations of two 4-cell embryos and are used to detect subtle, nonlethal changes, which are expressed as a proliferative disadvantage in exposed embryos. One of the embryos is labeled with a viable dye (FITC) in order to determine the relative cellular contribution of each embryo when the chimera is dissociated 40 hours later. This proliferative disadvantage has been seen at doses which do not produce an effect on cell number when the embryos are cultured singly. Previously, the assay has detected a decrease in cellular proliferation in embryos from male mice exposed to a single dose of x-radiation as low as 0.05 Gy. In the current study, male mice were irradiated with a single dose of 0, 0.001, 0.01, or 0.05 Gy, and then serially mated for the next 8 weeks to unexposed females. Chimeras were constructed from control and treated embryos. Embryos from males treated with 0.05 Gy exhibited a significant decrease in cellular proliferation during weeks 6 and 7 post-irradiation. A similar decrease was seen in the males treated with 0.01 Gy. No reductions were observed from embryos cultured singly in any of the treatment groups

  5. Prenatal stress may increase vulnerability to life events comparison with the effects of prenatal dexamethasone

    DEFF Research Database (Denmark)

    Hougaard, Karin; Andersen, Maibritt B; Kjaer, Sanna L

    2005-01-01

    naïve at the time of ASR testing, whereas the other had been through blood sampling for assessment of the hormonal stress response to restraint, 3 months previously. Both prenatal CMS and dexamethasone increased ASR in the offspring compared to controls, but only in prenatally stressed offspring......Prenatal stress has been associated with a variety of alterations in the offspring. The presented observations suggest that rather than causing changes in the offspring per se, prenatal stress may increase the organism's vulnerability to aversive life events. Offspring of rat dams stressed...... of the acoustic startle response. Further, a single aversive life event showed capable of changing the reactivity of prenatally stressed offspring, whereas offspring of dams going through a less stressful gestation was largely unaffected by this event. This suggests that circumstances dating back to the very...

  6. Assessment of immunotoxicity in female Fischer 344/N and Sprague Dawley rats and female B6C3F1 mice exposed to hexavalent chromium via the drinking water.

    Science.gov (United States)

    Shipkowski, Kelly A; Sheth, Christopher M; Smith, Matthew J; Hooth, Michelle J; White, Kimber L; Germolec, Dori R

    2017-12-01

    Sodium dichromate dihydrate (SDD), an inorganic compound containing hexavalent chromium (Cr(VI)), is a common environmental contaminant of groundwater sources due to widespread industrial use. There are indications in the literature that Cr(VI) may induce immunotoxic effects following dermal exposure, including acting as both an irritant and a sensitizer; however, the potential immunomodulatory effects of Cr(VI) following oral exposure are relatively unknown. Following the detection of Cr(VI) in drinking water sources, the National Toxicology Program (NTP) conducted extensive evaluations of the toxicity and carcinogenicity of SDD following drinking water exposure, including studies to assess the potential for Cr(VI) to modulate immune function. For the immunotoxicity assessments, female Fischer 344/N (F344/N) and Sprague Dawley (SD) rats and female B 6 C 3 F 1 mice were exposed to SDD in drinking water for 28 consecutive days and evaluated for alterations in cellular and humoral immune function as well as innate immunity. Rats were exposed to concentrations of 0, 14.3, 57.3, 172, or 516 ppm SDD while mice were exposed to concentrations of 0, 15.6, 31.3, 62.5, 125, or 250 ppm SDD. Final mean body weight and body weight gain were decreased relative to controls in 250 ppm B 6 C 3 F 1 mice and 516 ppm SD rats. Water consumption was significantly decreased in F344/N and SD rats exposed to 172 and 516 ppm SDD; this was attributed to poor palatability of the SDD drinking water solutions. Several red blood cell-specific parameters were significantly (5-7%) decreased in 250 ppm mice; however, these parameters were unaffected in rats. Sporadic increases in the spleen IgM antibody response to sheep red blood cells (SRBC) were observed, however, these increases were not dose-dependent and were not reproducible. No significant effects were observed in the other immunological parameters evaluated. Overall, exposure to Cr(VI) in drinking water had limited effects on

  7. Mental retardation occurring in embryo exposed in utero to the atomic bomb (Hiroshima). After 30 years follow-up study

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, H; Shimasaki, A; Fujiwara, K [Saijo Mental Hospital, Hiroshima (Japan); Harada, M; Minami, R

    1978-11-01

    This paper deals with a long term follow-up study on psychological symptoms in four patients with microscopically microcephaly induced by prenatal exposed to atomic bomb. They were exposed to atomic bomb at 8- and 12-week-embryos. The distance from the center of the explosion was 780 - 1180 m. All their mothers had acute radiation hazards. Their growths in the uterus were markedly damaged. Postnatal body weight ranged between 1,300 and 2,000 g. They were commonly characterized by microcephaly, physiological and mental retardation, stigmata of degeneracy, and skin symptoms, who were diagnosed as ''microcephaly induced by early prenatal exposure to atomic bomb'' by the research group for microcephaly in the Ministry of Health and Welfare. These common symptoms such as microcephaly, stigmata of degeneracy, and disturbed growth, but neurological symptoms such as motor aphasia were slighter in these patients than in those having congenital Minamata disease prenatal. These results suggested that the prognosis of these patients in whom 30 years have passed is unexpectedly serious.

  8. Relations between prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure

    Science.gov (United States)

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M.; Riggins, Tracy

    2014-01-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory), and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample included 105 (55 female, 50 male) urban, primarily African American adolescents (mean age 15.5 years) from low socioeconomic status (SES) families; 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. PMID:24630759

  9. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid

    OpenAIRE

    Servadio, M; Melancia, F; Manduca, A; di Masi, A; Schiavi, S; Cartocci, V; Pallottini, V; Campolongo, P; Ascenzi, P; Trezza, V

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by altered sociability, compromised communication and stereotyped/repetitive behaviors, for which no specific treatments are currently available. Prenatal exposure to valproic acid (VPA) is a known, although still underestimated, environmental risk factor for ASD. Altered endocannabinoid activity has been observed in autistic patients, and endocannabinoids are known to modulate behavioral traits that are typically affected in ASD. On this basi...

  10. Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA methylation in genes associated with cardio-metabolic disease risk-an exploratory study

    DEFF Research Database (Denmark)

    Declerck, Ken; Remy, Sylvie; Wohlfahrt-Veje, Christine

    2017-01-01

    BACKGROUND: Prenatal environmental conditions may influence disease risk in later life. We previously found a gene-environment interaction between the paraoxonase 1 (PON1) Q192R genotype and prenatal pesticide exposure leading to an adverse cardio-metabolic risk profile at school age. However...... was observed in prenatally pesticide exposed children carrying the PON1 192R-allele. Differentially methylated genes were enriched in several neuroendocrine signaling pathways including dopamine-DARPP32 feedback (appetite, reward pathways), corticotrophin releasing hormone signaling, nNOS, neuregulin signaling...

  11. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Science.gov (United States)

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  12. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    Directory of Open Access Journals (Sweden)

    Dana E. Lauterstein

    2016-04-01

    Full Text Available Electronic cigarettes (e-cigarettes, battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation throughout gestation (3 h/day; 5 days/week to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq. Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  13. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    Science.gov (United States)

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  14. Long-term outcome of prenatal dexamethasone treatment of 21-hydroxylase deficiency.

    Science.gov (United States)

    Lajic, Svetlana; Nordenström, Anna; Hirvikoski, Tatja

    2011-01-01

    Prenatal treatment of congenital adrenal hyperplasia (CAH) with dexamethasone (DEX) has been in use since the mid- 1980s. Its effectiveness for reducing virilization of external genitalia is well established. DEX treatment has to be started in the 6th-7th postmenstrual week and continued until the results of the prenatal diagnosis are available. Hence, the dilemma is that 7 out of 8 fetuses (boys and unaffected girls) are treated unnecessarily. Girls with CAH are treated until term. Accumulating evidence from animal studies and follow-up data has raised concerns regarding the long-term consequences of this controversial treatment. We have previously reported that direct neuropsychological assessment of children exposed to DEX and controls show normal full-scale IQ, learning and longterm memory. However, the children exposed to DEX during the first trimester had an impaired verbal working memory which was significantly associated with low self-perceived scholastic competence. In addition, the children showed increased self-rated social anxiety. The same cohort of children answered questions concerning friends, activities and gender-related behaviors. The results indicate less masculine and more neutral behavior in short-term DEX-exposed boys. These findings indicate that long-term follow-ups of this group of patients are of extreme importance and that future DEX treatment of CAH may be questioned. We therefore encourage additional studies on larger cohorts in order to draw more decisive conclusions about the safety of the treatment. Until then, it is important that the parents are thoroughly informed about the potential risks and uncertainties, as well as the benefits, of this treatment. Copyright © 2011 S. Karger AG, Basel.

  15. The effect of prenatal exposure to diazepam on aspects of postnatal development and behavior in rats.

    Science.gov (United States)

    Gai, N; Grimm, V E

    1982-01-01

    In the present study the effects of chronic treatment of pregnant rats with diazepam on the physical and behavioral development of their offspring were investigated. Rats that were diazepam-exposed prenatally were compared to age-matched controls in terms of the following: number of littermates; birth weight and weight gain until weaning: motor development and coordination; simple motor learning; open field activity; performance on learning tasks of varying complexity; retention of these tasks. Nulliparous Wistar rats were injected s.c. for 16 days of their pregnancy was either 2.5, 5, of 10 mg/kg diazepam or an equal volume of vehicle. Prenatal diazepam treatment did not alter litter size, birth weight, or the righting reflex, but seemed to retard early motor development transiently. Diazepam pups showed longer latencies and less rearing in the open field. There were no differences between animals exposed to drug and vehicle in simple motor learning or in acquiring a simple successive discrimination task. However, there were significant dose-dependent differences on a complex six-choice simultaneous discrimination learning task, the diazepam-exposed rats making more errors and taking more time to reach the goal. A significant difference was seen again between diazepam- and vehicle-exposed rats on the retention test 10 days later. The results indicate that diazepam administered to pregnant rats has long-range effects on the behavior of the offspring, some becoming manifest even in maturity.

  16. Prenatal exposure to ionizing radiation and subsequent development of seizures

    International Nuclear Information System (INIS)

    Dunn, K.; Yoshimaru, H.; Otake, M.; Annegers, J.F.; Schull, W.J.

    1990-01-01

    Seizures are a frequent sequela of impaired brain development and can be expected to affect more children with radiation-related brain damage than children without such damage. This report deals with the incidence and type of seizures among survivors prenatally exposed to the atomic bombing of Hiroshima and Nagasaki, and their association with specific stages of prenatal development at the time of irradiation. Fetal radiation dose was assumed to be equal to the dose to the maternal uterus. Seizures here include all references in the clinical record to seizure, epilepsy, or convulsion. Histories of seizures were obtained at biennial routine clinical examinations starting at about the age of 2 years. These clinical records were used to classify seizures as febrile or unprovoked (without precipitating cause). No seizures were ascertained among subjects exposed 0-7 weeks after fertilization at doses higher than 0.10 Gy. The incidence of seizures was highest with irradiation at the eighth through the 15th week after fertilization among subjects with doses exceeding 0.10 Gy and was linearly related to the level of fetal exposure. This obtains for all seizures without regard to the presence of fever or precipitating causes, and for unprovoked seizures. When the 22 cases of severe mental retardation were excluded, the increase in seizures was only suggestively significant and only for unprovoked seizures. After exposure at later stages of development, there was no increase in recorded seizures

  17. Effect of low level prenatal X-irradiation on postnatal growth in the Wistar rat

    International Nuclear Information System (INIS)

    Jensh, R.P.; Brent, R.L.

    1988-01-01

    Forty-five pregnant Wistar strain rats were exposed to 0.0, 0.4, 0.6, or 0.8 Gy X-radiation on the 9th or 17th day of gestation to determined if prenatal X-irradiation would result in alterations in postnatal growth or growth rate. The mothers delivered their offspring, and the litters were reduced to a maximum of eight per litter on the second postnatal day. The 336 offspring were weighed weekly from day 3 until day 86, at which time they were killed, an autopsy was performed, and selected organs were removed and weighed. Postnatal growth rates did not differ significantly in irradiated offspring compared to sham irradiated animals. Irradiation on the 9th day, at any of the 3 dosage levels, did not result in significant differences in weekly weight. Weekly weight remained significantly lower due to irradiation on the 17th day of gestation. The gonadal weight ratio was significantly reduced in males irradiated on the 9th day. There were not other statistically significant changes in organ weight or organ/body weight ratios due to these levels of prenatal X-irradiation on the 9th or 17th day of pregnancy. These results indicate that low level prenatal X-irradiation, on the 17th day of rat gestation, causes prenatal growth retardation, evident at birth, which is not recuperable postnatally. Exposure to x-radiation at this time, however, does not affect the rate at which offspring grow during postnatal life. Offspring are smaller because they never fully recover from the original radiation-induced prenatal growth retardation

  18. Transgenerational effects of prenatal bisphenol A on social recognition.

    Science.gov (United States)

    Wolstenholme, Jennifer T; Goldsby, Jessica A; Rissman, Emilie F

    2013-11-01

    Bisphenol A (BPA) is a man-made endocrine disrupting compound used to manufacture polycarbonate plastics. It is found in plastic bottles, canned food linings, thermal receipts and other commonly used items. Over 93% of people have detectable BPA levels in their urine. Epidemiological studies report correlations between BPA levels during pregnancy and activity, anxiety, and depression in children. We fed female mice control or BPA-containing diets that produced plasma BPA concentrations similar to concentrations in humans. Females were mated and at birth, pups were fostered to control dams to limit BPA exposure to gestation in the first generation. Sibling pairs were bred to the third generation with no further BPA exposure. First (F1) and third (F3) generation juveniles were tested for social recognition and in the open field. Adult F3 mice were tested for olfactory discrimination. In both generations, BPA exposed juvenile mice displayed higher levels of investigation than controls in a social recognition task. In F3 BPA exposed mice, dishabituation to a novel female was impaired. In the open field, no differences were noted in F1 mice, while in F3, BPA lineage mice were more active than controls. No impairments were detected in F3 mice, all were able to discriminate different male urine pools and urine from water. No sex differences were found in any task. These results demonstrate that BPA exposure during gestation has long lasting, transgenerational effects on social recognition and activity in mice. These findings show that BPA exposure has transgenerational actions on behavior and have implications for human neurodevelopmental behavioral disorders. © 2013.

  19. Joint Effects of Exposure to Prenatal Infection and Peripubertal Psychological Trauma in Schizophrenia.

    Science.gov (United States)

    Debost, Jean-Christophe P G; Larsen, Janne Tidselbak; Munk-Olsen, Trine; Mortensen, Preben Bo; Meyer, Urs; Petersen, Liselotte

    2017-01-01

    Prenatal infection and traumatizing experiences have both been linked with schizophrenia, but none of these factors seem sufficient to cause the disorder. However, recent evidence suggests that these environmental insults act in synergy to increase schizophrenia risk. To estimate the independent and joint effects of exposure to prenatal infection and peripubertal psychological trauma on the risk of schizophrenia. Danish nationwide registers were linked in this prospective cohort study. We used survival analysis to report incidence rate ratios (IRRs) and corresponding 95% confidence intervals (95% CIs). Analyses were adjusted for age and calendar period and stratified by sex. A total of 979701 persons born between 1980 and 1998 were followed up from January 1, 1995 through December 31, 2013, with 9656 having a hospital contact for schizophrenia. Females exposed to prenatal infection had a significantly increased risk of schizophrenia (IRR: 1.61, 95% CI: 1.30-2.00), but not males (IRR: 0.99, 95% CI: 0.77-1.28). Peripubertal trauma was associated with increased risk in both sexes. Males, however, had a significantly higher risk of schizophrenia after exposure to both prenatal infection and peripubertal psychological trauma (IRR: 2.85, 95% CI: 2.32-3.51), with significant interaction between infection and peripubertal trauma on the multiplicative scale (P = .007). Our study demonstrated for the first time that prenatal infection and psychological trauma in peripubertal life can act in synergy to increase the risk of schizophrenia, with a potentially stronger susceptibility in males. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. The long-term effects of prenatal nicotine exposure on verbal working memory: an fMRI study of young adults.

    Science.gov (United States)

    A Longo, Carmelinda; A Fried, Peter; Cameron, Ian; M Smith, Andra

    2014-11-01

    Using functional magnetic resonance imaging (fMRI), the long-term effects of prenatal nicotine exposure on verbal working memory were investigated in young adults. Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood. This allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a 2-Back working memory task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants with more prenatal nicotine exposure demonstrated significantly greater activity in several regions of the brain that typically subserve verbal working memory including the middle frontal gyrus, precentral gyrus, the inferior parietal lobe and the cingulate gyrus. These results suggest that prenatal nicotine exposure contributes to altered neural functioning during verbal working memory that continues into adulthood. Working memory is critical for a wide range of cognitive skills such as language comprehension, learning and reasoning. Thus, these findings highlight the need for continued educational programs and public awareness campaigns to reduce tobacco use among pregnant women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. Prenatal anxiety effects: A review.

    Science.gov (United States)

    Field, Tiffany

    2017-11-01

    This review is based on literature on prenatal anxiety effects that was found on Pubmed and PsycINFO for the years 2010-2016. Prenatal anxiety is thought to have distinct features, although it has been measured both by specific prenatal anxiety symptoms as well as by standardized anxiety scales. Its prevalence has ranged from 21 to 25% and it has been predicted by a number of pregnancy - related variables such as unintended pregnancy, demographic variables such as low acculturation and income and psychosocial factors including pessimism and partner tension. Prenatal anxiety effects on pregnancy include increased cortisol levels, pro-inflammatory cytokines, obstetric problems and cesarean section. Effects on the neonate include lower gestational age, prematurity, less insulin-like growth factor in cord blood, less exclusive breast-feeding and less self-regulation during the heelstick procedure. Prenatal anxiety effects continue into infancy and childhood both on physiological development and emotional/mental development. Among the physiological effects are lower vagal activity across the first two years, and lower immunity, more illnesses and reduced gray matter in childhood. Prenatal anxiety effects on emotional/mental development include greater negative emotionality and in infants, lower mental development scores and internalizing problems. Anxiety disorders occur during childhood and elevated cortisol and internalizing behaviors occur during adolescence. Interventions for prenatal anxiety are virtually nonexistent, although stroking (massaging) the infant has moderated the pregnancy - specific anxiety effects on internalizing behaviors in the offspring. The limitations of this literature include the homogeneity of samples, the frequent use of anxiety measures that are not specific to pregnancy, and the reliance on self-report. Nonetheless, the literature highlights the negative, long-term effects of prenatal anxiety and the need for screening and early

  2. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    Energy Technology Data Exchange (ETDEWEB)

    Yan, You-e [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Liu, Lian [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000 (China); Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2014-06-15

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  3. Prenatal nicotinic exposure suppresses fetal adrenal steroidogenesis via steroidogenic factor 1 (SF-1) deacetylation

    International Nuclear Information System (INIS)

    Yan, You-e; Liu, Lian; Wang, Jian-fei; Liu, Fang; Li, Xiao-hai; Qin, Hai-quan; Wang, Hui

    2014-01-01

    This study aimed to investigate the suppressive effect of nicotine on fetal adrenal steroidogenesis and to explore the potential role of epigenetic modification of steroidogenic factor-1 (SF-1) transcriptional activity in this process. Nicotine was intragastrically administered to pregnant rats and NCI-H295A cells were treated with nicotine or trichostatin A (TSA). The pathomorphology of fetal adrenals, steroid hormone levels, the expression of SF-1 and its target genes, and histone deacetylase (HDAC) mRNA were analyzed. Histone modification and DNA methylation of the SF-1 promoter region were assessed using chromatin immunoprecipitation (ChIP) and bisulfite sequencing PCR. The interaction between SF1 and its target genes was observed. Prenatal nicotinic exposure decreased fetal body weight, increased the IUGR rate and caused detrimental changes in fetal adrenal. In addition, the levels of corticosterone, the expression of SF-1 and its target genes were decreased while HDAC2 expression was enhanced. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels while there was no effect on the methylation frequency on the SF-1 promoter region. Furthermore, in nicotine-treated NCI-H295A cells, lower levels of steroidogenic synthesis, lower expression of SF-1 and its target genes were observed while the expression of HDACs was enhanced. The interaction between SF1 and StAR decreased with nicotine treatment. Nicotine treatment decreased histone H3K9 and H3K14 acetylation levels, and addition of TSA reversed the inhibition of nicotine-mediated SF-1 and its partial target genes. Thus, nicotine-mediated reduction of SF-1 expression resulted in an inhibitory effect on the expression of its target genes and steroid production via histone deacetylation. - Highlights: • Prenatal nicotine-exposed suppresses fetal adrenal steroidogenesis. • Nicotine-supressed fetal adrenal steroidogenesis is related to SF-1 deacetylation. • Prenatal nicotinic exposure decreased

  4. The administration of a high refined carbohydrate diet promoted an increase in pulmonary inflammation and oxidative stress in mice exposed to cigarette smoke

    Directory of Open Access Journals (Sweden)

    Pena KB

    2016-12-01

    Full Text Available Karina Braga Pena,1 Camila de Oliveira Ramos,1 Nícia Pedreira Soares,1 Pamela Félix da Silva,1 Ana Carla Balthar Bandeira,2 Guilherme de Paula Costa,3 Sílvia Dantas Cangussú,1 André Talvani,3 Frank Silva Bezerra1 1Laboratory of Experimental Pathophysiology (LAFEx, 2Laboratory of Metabolic Biochemistry (LBM, 3Laboratory of Immunobiology of Inflammation (LABIIN, Department of Biological Sciences (DECBI, Center of Research in Biological Sciences (NUPEB, Federal University of Ouro Preto (UFOP, Ouro Preto, MG, Brazil Abstract: This study aimed to evaluate the effects of a high refined carbohydrate diet and pulmonary inflammatory response in C57BL/6 mice exposed to cigarette smoke (CS. Twenty-four male mice were divided into four groups: control group (CG, which received a standard diet; cigarette smoke group (CSG, which was exposed to CS; a high refined carbohydrate diet group (RG, which received a high refined carbohydrate diet; and a high refined carbohydrates diet and cigarette smoke group (RCSG, which received a high refined carbohydrate diet and was exposed to CS. The animals were monitored for food intake and body weight gain for 12 weeks. After this period, the CSG and RCSG were exposed to CS for five consecutive days. At the end of the experimental protocol, all animals were euthanized for subsequent analyses. There was an increase of inflammatory cells in the bronchoalveolar lavage fluid (BALF of CSG compared to CG and RCSG compared to CG, CSG, and RG. In addition, in the BALF, there was an increase of tumor necrosis factor alpha in RCSG compared to CG, CSG, and RG; interferon gamma increase in RCSG compared to the CSG; and increase in interleukin-10 in RCSG compared to CG and RG. Lipid peroxidation increased in RCSG compared to CG, CSG, and RG. Furthermore, the oxidation of proteins increased in CSG compared to CG. The analysis of oxidative stress showed an increase in superoxide dismutase in RCSG compared to CG, CSG, and RG and an

  5. Prenatal vitamins: what is in the bottle?

    Science.gov (United States)

    Duerbeck, Norman B; Dowling, David D; Duerbeck, Jillinda M

    2014-12-01

    Nearly all obstetricians routinely prescribe prenatal vitamins to their pregnant patients at the time of the first prenatal visit. Many times, patients' understanding of the health benefits of prenatal vitamins differs substantially from that of the prescribing physician. The following is a review of the most common ingredients found in prenatal vitamins and their purported health benefits.

  6. Effect on intelligence of prenatal exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Schull, W.J.; Otake, Masanori.

    1987-01-01

    Analysis of intelligence test scores at 10 - 11 years of age of individuals exposed prenatally to the atomic bombing of Hiroshima and Nagasaki has revealed the following: 1) For those individuals exposed in the first eight weeks after fertilization or after the 25th week, there is no evidence of a radiation-related effect on intelligence; 2) The mean test scores but not the variances are significantly heterogeneous among exposure categories for individuals exposed at 8 - 15 weeks after fertilization, and to a lesser extent those exposed at 16 - 25 weeks; 3) The regression of intelligence score on estimated fetal tissue dose is linear or linear-quadratic for the 8 - 15 week group and possibly linear for the 16 - 25 week group; 4) The cumulative distributions of test scores suggest a progressive shift downwards in the scores with increasing exposure; and 5) Within the group most sensitive to the occurrence of clinically recognizable, severe mental retardation, individuals exposed 8 to 15 weeks after fertilization, the diminution in intelligence score under the linear-quadratic model is 21 - 27 points at 1 gray (Gy = 100 cGy = 100 rad). The effect is somewhat greater when the controls receiving less than 0.01 Gy are excluded, 33 - 41 points at 1 Gy; but the two estimates are not statistically significantly different. (author)

  7. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication.

    Directory of Open Access Journals (Sweden)

    Paul D Bozyk

    Full Text Available In bronchopulmonary dysplasia (BPD, alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.

  8. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael

    2014-01-01

    The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention with mandat......The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention...... the initiation and termination of vitamin D fortification programmes. In total, four sets of analyses were performed. Information on birth weight was available in the Copenhagen School Health Record Register for all school children in Copenhagen. The mean birth weight was lower among the exposed than non...

  9. Pulmonary gene and microRNA expression changes in mice exposed to benzo(a)pyrene by oral gavage

    International Nuclear Information System (INIS)

    Halappanavar, Sabina; Wu, Dongmei; Williams, Andrew; Kuo, Byron; Godschalk, Roger W.; Van Schooten, Frederik J.; Yauk, Carole Lyn

    2011-01-01

    Highlights: → The study examines pulmonary response in mice exposed to BaP by oral gavage. → We examined pulmonary gene and miRNA expression changes and measured DNA adducts. → We compare the mechanisms of action that operate in lungs relative to the liver. → We show differences in biological pathways activated in lungs versus the liver. → We suggest that liver miRNAs are less sensitive to perturbations than lung miRNAs. -- Abstract: Exposure to the environmental mutagen benzo(a)pyrene (BaP) alters the expression of AHR-responsive genes as well as genes involved in other pathways. We recently reported that exposure of adult mice to BaP resulted in a robust transcriptome response in the liver, but this was accompanied by a complete lack of change in microRNA (miRNA) expression. Since BaP exposure does not result in hepatocarcinogenicity, but does cause lung cancer, in the present study we examine the pulmonary mRNA and miRNA responses to BaP in the same mice. Adult male B6C3F1 mice were exposed to 150 and 300 mg/kg BaP by oral gavage for three consecutive days and sacrificed 4 h after the last exposure. Serum clinical chemistry was performed for both the doses to assess the general toxicity of BaP; a modest decrease in serum inorganic phosphorous was observed at both the doses. A small decrease in serum glucose following 150 mg/kg and alkaline phosphatase following 300 mg/kg BaP was observed. BaP-DNA adduct levels in whole lung and liver tissues were assessed by 32 P postlabelling and similar dose dependent increases were observed for lung and liver. Using DNA microarrays, pulmonary mRNA and miRNA expressions were analysed. Over 1000 genes were statistically differentially expressed (p < 0.05). The perturbed pathways included oxidative stress, xenobiotic metabolism, cell proliferation, cell cycle, B and T-cell receptor signalling and primary immunodeficiency signalling pathways. Analysis of miRNA profiles revealed downregulation of miR-150, miR-142-5p, mi

  10. Cerebellar level of neurotransmitters in rats exposed to paracetamol during development.

    Science.gov (United States)

    Blecharz-Klin, Kamilla; Joniec-Maciejak, Ilona; Jawna-Zboińska, Katarzyna; Pyrzanowska, Justyna; Piechal, Agnieszka; Wawer, Adriana; Widy-Tyszkiewicz, Ewa

    2016-12-01

    The present study was designed to clarify the effect of prenatal and postnatal paracetamol administration on the neurotransmitter level and balance of amino acids in the cerebellum. Biochemical analysis to determine the concentration of neurotransmitters in this brain structure was performed on two-month-old Wistar male rats previously exposed to paracetamol in doses of 5 (P5, n=10) or 15mg/kg (P15, n=10) throughout the entire prenatal period, lactation and until the completion of the second month of life, when the experiment was terminated. Control animals were given tapped water (Con, n=10). The cerebellar concentration of monoamines, their metabolites and amino acids were assayed using High Performance Liquid Chromatography (HPLC). The present experiment demonstrates that prenatal and postnatal paracetamol exposure results in modulation of cerebellar neurotransmission with changes concerning mainly 5-HIAA and MHPG levels. The effect of paracetamol on monoaminergic neurotransmission in the cerebellum is reflected by changes in the level of catabolic end-products of serotonin (5-HIAA) and noradrenaline (MHPG) degradation. Further work is required to define the mechanism of action and impact of prenatal and postnatal exposure to paracetamol in the cerebellum and other structures of the central nervous system (CNS). Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Sex-Specific Effects of Unpredictable Variable Prenatal Stress: Implications for Mammalian Developmental Programming During Spaceflight

    Science.gov (United States)

    Talyansky, Y.; Moyer, E. L.; Oijala, E.; Baer, L. A.; Ronca, A. E.

    2016-01-01

    During adaptation to the microgravity environment, adult mammals experience stress mediated by the Hypothalamic-Pituitary-Adrenal axis. In our previous studies of pregnant rats exposed to 2-g hypergravity via centrifugation, we reported decreased corticosterone and increased body mass and leptin in adult male, but not female, offspring. In this study, we utilized Unpredictable Variable Prenatal Stress to simulate the stressors of spaceflight by exposing dams to different stressors. Stress response modulation occurs via both positive and negative feedback in the hypothalamus, anterior pituitary gland, and adrenal cortex resulting in the differential release of corticosterone (CORT), a murine analog to human cortisol.

  12. Genes Underlying Positive Influence Of Prenatal Environmental ...

    African Journals Online (AJOL)

    Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And ... Prenatal environmental enrichment (EE) has been proven to positively affect but ... Conclusion: The negative-positive prenatal effect could contribute to altered ...

  13. Prenatal Metformin Therapy Attenuates Hypertension of Developmental Origin in Male Adult Offspring Exposed to Maternal High-Fructose and Post-Weaning High-Fat Diets

    Directory of Open Access Journals (Sweden)

    You-Lin Tain

    2018-04-01

    Full Text Available Widespread consumption of a Western diet, comprised of highly refined carbohydrates and fat, may play a role in the epidemic of hypertension. Hypertension can take origin from early life. Metformin is the preferred treatment for type 2 diabetes. We examined whether prenatal metformin therapy can prevent maternal high-fructose plus post-weaning high-fat diets-induced hypertension of developmental origins via regulation of nutrient sensing signals, uric acid, oxidative stress, and the nitric oxide (NO pathway. Gestating Sprague–Dawley rats received regular chow (ND or chow supplemented with 60% fructose diet (HFR throughout pregnancy and lactation. Male offspring were onto either the ND or high-fat diet (HFA from weaning to 12 weeks of age. A total of 40 male offspring were assigned to five groups (n = 8/group: ND/ND, HFR/ND, ND/HFA, HFR/HFA, and HFR/HFA+metformin. Metformin (500 mg/kg/day was administered via gastric gavage for three weeks during the pregnancy period. Combined maternal HFR plus post-weaning HFA induced hypertension in male adult offspring, which prenatal metformin therapy prevented. The protective effects of prenatal metformin therapy on HFR/HFA-induced hypertension, including downregulation of the renin-angiotensin system, decrease in uric acid level, and reduction of oxidative stress. Our results highlighted that the programming effects of metformin administered prenatally might be different from those reported in adults, and that deserves further elucidation.

  14. Prenatal Care: New Hampshire Residents - 1976.

    Science.gov (United States)

    Mires, Maynard H.; Sirc, Charles E.

    Data from 1976 New Hampshire birth certificates were used to examine the correlations between the degree (month of pregnancy that prenatal care began) and intensity (number of prenatal visits) of prenatal care and low infant birth weight, illegitimacy, maternal age, maternal education, and complications of pregnancy. The rate of low birth weight…

  15. Prenatal cigarette smoke exposure and early initiation of multiple substance use.

    Science.gov (United States)

    Goldschmidt, Lidush; Cornelius, Marie D; Day, Nancy L

    2012-06-01

    Earlier studies have shown a relation between prenatal cigarette smoke exposure (PCSE) and offspring initiation of tobacco use. No prior study has examined the association between PCSE and early initiation of multiple substances (EIMS) including marijuana and alcohol in addition to tobacco. We investigated the association between PCSE and multiple substance use during adolescence. Pregnant women attending an urban prenatal clinic were selected to participate in the prospective longitudinal study based on their substance use. This study is based on the 16-year follow-up phase and consists of 579 mother-offspring dyads. The women were of lower socioeconomic status, 54% were Black, and 53% reported smoking cigarettes. 52% of the offspring were female. EIMS is a measure of the number of substances initiated prior to age 16 by the adolescents; it ranged from 0 (no initiation, N = 166) to 3 (all, N = 162). Adolescents exposed to tobacco during first trimester of gestation were 1.4 times more likely to initiate multiple substances by age 16 than the nonexposed group. PCSE was a significant predictor of EIMS after controlling for other prenatal exposures, home environment, and demographic characteristics, using ordinal polytomous logistic regression. Other risk factors of EIMS were maternal and adolescent depression, less strict and less involved parenting, offspring attention problems, and lack of participation in a youth club. There is a significant relation between PCSE and adolescent's EIMS.

  16. Prenatal Exposure to Phthalates and Anogenital Distance in Male Infants from a Low-Exposed Danish Cohort (2010-2012)

    DEFF Research Database (Denmark)

    Jensen, Tina Kold; Frederiksen, Hanne; Kyhl, Henriette Boye

    2016-01-01

    BACKGROUND: Phthalates comprise a large class of chemicals used in a variety of consumer products. Several have anti-androgenic properties, and in rodents prenatal exposure has been associated with reduced anogenital distance (AGD)-the distance from the anus to the genitals in male offspring. Few...... (2010-2012). Environ Health Perspect 124:1107-1113; http://dx.doi.org/10.1289/ehp.1509870....

  17. Barriers to adequate prenatal care utilization in American Samoa

    Science.gov (United States)

    Hawley, Nicola L; Brown, Carolyn; Nu’usolia, Ofeira; Ah-Ching, John; Muasau-Howard, Bethel; McGarvey, Stephen T

    2013-01-01

    Objective To describe the utilization of prenatal care in American Samoan women and to identify socio-demographic predictors of inadequate prenatal care utilization. Methods Using data from prenatal clinic records, women (n=692) were categorized according to the Adequacy of Prenatal Care Utilization Index as having received adequate plus, adequate, intermediate or inadequate prenatal care during their pregnancy. Categorical socio-demographic predictors of the timing of initiation of prenatal care (week of gestation) and the adequacy of received services were identified using one way Analysis of Variance (ANOVA) and independent samples t-tests. Results Between 2001 and 2008 85.4% of women received inadequate prenatal care. Parity (P=0.02), maternal unemployment (P=0.03), and both parents being unemployed (P=0.03) were negatively associated with the timing of prenatal care initation. Giving birth in 2007–2008, after a prenatal care incentive scheme had been introduced in the major hospital, was associated with earlier initiation of prenatal care (20.75 versus 25.12 weeks; Pprenatal care utilization in American Samoa is a major concern. Improving healthcare accessibility will be key in encouraging women to attend prenatal care. The significant improvements in the adequacy of prenatal care seen in 2007–2008 suggest that the prenatal care incentive program implemented in 2006 may be a very positive step toward addressing issues of prenatal care utilization in this population. PMID:24045912

  18. Facial Curvature Detects and Explicates Ethnic Differences in Effects of Prenatal Alcohol Exposure.

    Science.gov (United States)

    Suttie, Michael; Wetherill, Leah; Jacobson, Sandra W; Jacobson, Joseph L; Hoyme, H Eugene; Sowell, Elizabeth R; Coles, Claire; Wozniak, Jeffrey R; Riley, Edward P; Jones, Kenneth L; Foroud, Tatiana; Hammond, Peter

    2017-08-01

    Our objective is to help clinicians detect the facial effects of prenatal alcohol exposure by developing computer-based tools for screening facial form. All 415 individuals considered were evaluated by expert dysmorphologists and categorized as (i) healthy control (HC), (ii) fetal alcohol syndrome (FAS), or (iii) heavily prenatally alcohol exposed (HE) but not clinically diagnosable as FAS; 3D facial photographs were used to build models of facial form to support discrimination studies. Surface curvature-based delineations of facial form were introduced. (i) Facial growth in FAS, HE, and control subgroups is similar in both cohorts. (ii) Cohort consistency of agreement between clinical diagnosis and HC-FAS facial form classification is lower for midline facial regions and higher for nonmidline regions. (iii) Specific HC-FAS differences within and between the cohorts include: for HC, a smoother philtrum in Cape Coloured individuals; for FAS, a smoother philtrum in Caucasians; for control-FAS philtrum difference, greater homogeneity in Caucasians; for control-FAS face difference, greater homogeneity in Cape Coloured individuals. (iv) Curvature changes in facial profile induced by prenatal alcohol exposure are more homogeneous and greater in Cape Coloureds than in Caucasians. (v) The Caucasian HE subset divides into clusters with control-like and FAS-like facial dysmorphism. The Cape Coloured HE subset is similarly divided for nonmidline facial regions but not clearly for midline structures. (vi) The Cape Coloured HE subset with control-like facial dysmorphism shows orbital hypertelorism. Facial curvature assists the recognition of the effects of prenatal alcohol exposure and helps explain why different facial regions result in inconsistent control-FAS discrimination rates in disparate ethnic groups. Heavy prenatal alcohol exposure can give rise to orbital hypertelorism, supporting a long-standing suggestion that prenatal alcohol exposure at a particular time causes

  19. Dietary zinc supplementation throughout pregnancy protects against fetal dysmorphology and improves postnatal survival after prenatal ethanol exposure in mice.

    Science.gov (United States)

    Summers, Brooke L; Rofe, Allan M; Coyle, Peter

    2009-04-01

    We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy.

  20. Deviant ERP Response to Spoken Non-Words among Adolescents Exposed to Cocaine in Utero

    Science.gov (United States)

    Landi, Nicole; Crowley, Michael J.; Wu, Jia; Bailey, Christopher A.; Mayes, Linda C.

    2012-01-01

    Concern for the impact of prenatal cocaine exposure (PCE) on human language development is based on observations of impaired performance on assessments of language skills in these children relative to non-exposed children. We investigated the effects of PCE on speech processing ability using event-related potentials (ERPs) among a sample of…

  1. Prenatal Care: Third Trimester Visits

    Science.gov (United States)

    ... Pregnancy week by week During the third trimester, prenatal care might include vaginal exams to check the baby's position. By Mayo Clinic Staff Prenatal care is an important part of a healthy pregnancy, ...

  2. Relations among prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure.

    Science.gov (United States)

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M; Riggins, Tracy

    2014-11-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory) and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample consisted of 105 (55 female and 50 male) urban, primarily African American adolescents (mean age=15.5 years) from low socioeconomic status (SES) families. Approximately 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but the adolescents were similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI (magnetic resonance imaging) scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal, and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Long-term effects of prenatal progesterone exposure

    DEFF Research Database (Denmark)

    Vedel, C.; Larsen, H.; Holmskov, Anni

    2016-01-01

    children from 498 twin pregnancies, were followed-up. PREDICT was a placebo-controlled randomized clinical trial examining the effect of progesterone for prevention of preterm delivery in unselected twin pregnancies. Medical histories of the children were reviewed and neurophysiological development...... does not seem to have long-term harmful effects during childhood, but future studies should focus on cardiac disease in the child. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.......OBJECTIVES: To perform a neurophysiological follow-up at 48 or 60 months of age in children exposed prenatally to progesterone compared with a placebo and evaluate their medical histories up to 8 years of age. METHODS: In this study, Danish participants of the PREDICT study, including 989 surviving...

  4. Immune competence in /sup 90/Sr-exposed, adult thymectomized and antilymphocyteglobulin-treated CBA mice. Pt. 1. Allogenic skin graft reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bierke, P.

    1989-01-01

    CBA mice subjected to either adult thymectomy, internal exposure to /sup 90/Sr or antilymphocyteglobulin treatment separately, or to combinations of the three were tested for cellular immune competence using their reaction to allogenic skin grafts. Peripheral blood white cell counts did not reveal any obvious correlation between the degree of mononuclear cell depletion and the ability to accept grafts, suggesting that the particular treatments depleted specific fractions of mononuclear cells, differing in their extent of involvement in the rejection process. No single treatment alone induced a significant prolongation in the time elapsed before graft rejection. Adult thymectomy followed by appropriate antilymphocyteglobulin treatment induced severe lymphocytopenia and a profound suppression of the cell-mediate immune system, as evidenced by the acceptance of allogenic skin grafts. When applied to /sup 90/Sr-preexposed mice the same treatment induced lifelong acceptance of grafts, indicating a similar, though weaker immunosuppressive impact of /sup 90/Sr. Hence it was possible to significantly enhance immunosuppression in /sup 90/Sr-exposed mice. This in vivo model should be useful when investigating the role of immunological responsiveness in radiation carcinogenesis. (orig.).

  5. Behavior and Attention Problems in Eight-Year-Old Children with Prenatal Opiate and Poly-Substance Exposure: A Longitudinal Study.

    Directory of Open Access Journals (Sweden)

    Egil Nygaard

    Full Text Available Multiple studies have found that children born to mothers with opioid or poly-substance use during pregnancy have more behavior and attention problems and lower cognitive functioning than non-exposed children. The present study aimed to investigate whether behavior and attention problems are more prominent than general cognitive deficits in this risk group and whether the problems wane or increase over time. This prospective longitudinal cross-informant study compared 72 children who were prenatally exposed to heroin and multiple drugs with a group of 58 children without known prenatal risk factors. Group differences in caregivers' and teachers' reports of the children's behavior and attention problems based on the Child Behavior Check List and the ADHD Rating Scale were compared based on group differences in general cognitive functioning at 4 ½ and 8 ½ years of age. Both parent and teacher reports suggest that the exposed group has significantly more problems in several behavioral areas than the comparison group, particularly with regard to attention problems. The preschool teachers had already reported these problems when the children were 4 ½ years old, whereas the caregivers reported these problems mainly when the children were 8 ½ years old. The group differences in behavioral and attentional problems were not significantly greater and some were even significantly smaller than the group differences in general cognitive abilities. These findings suggest that children subject to prenatally drug exposure have increasing problems in multiple areas related to behavior from preschool age to 8 ½ years but that these problems do not seem to be specific; i.e., they are not more severe than the problems with general cognitive abilities found for this group.

  6. Pronounced susceptibility to infection by Salmonella enterica serovar Typhimurium in mice chronically exposed to lead correlates with a shift to Th2-type immune responses

    International Nuclear Information System (INIS)

    Fernandez-Cabezudo, Maria J.; Ali, Sumaya A.E.; Ullah, Azim; Hasan, Mohammed Y.; Kosanovic, Melita; Fahim, Mohamed A.; Adem, Abdu; Al-Ramadi, Basel K.

    2007-01-01

    Persistent exposure to inorganic lead (Pb) is known to adversely affect the immune system. In the present study, we assessed the effect of chronic Pb exposure on susceptibility to infection by the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. Mice were exposed to 10 mM Pb-acetate in drinking water for ∼ 16 weeks, resulting in a significant level of Pb in the blood (106.2 ± 8.9 μg/dl). Pb exposure rendered mice susceptible to Salmonella infection, manifested by increased bacterial burden in target organs and heightened mortality. Flow cytometric analysis of the splenic cellular composition in normal and Pb-exposed mice revealed no gross alteration in the ratios of B and T lymphocytes or myeloid cells. Similarly, the capacity of B and T cells to upregulate the expression of activation antigens in response to mitogenic or inflammatory stimuli was not hindered by Pb exposure. Analysis of the ability of ex vivo-cultured splenocytes to secrete cytokines demonstrated a marked reduction in IFN-γ and IL-12p40 production associated with Pb exposure. In contrast, secretion of IL-4 by splenocytes of Pb-treated mice was 3- to 3.6-fold higher than in normal mice. The increased capacity to produce IL-4 correlated with a shift in the in vivo anti-Salmonella antibody response from the protective IgG2a isotype to the Th2-induced IgG1 isotype. We conclude that chronic exposure to high levels of Pb results in a state of immunodeficiency which is not due to an overt cytotoxic or immunosuppressive mechanism, but rather is largely caused by a shift in immune responsiveness to Th2-type reactions

  7. The effect of exposure of rats during prenatal period to radiation spreading from mobile phones on renal development.

    Science.gov (United States)

    Bedir, Recep; Tumkaya, Levent; Şehitoğlu, İbrahim; Kalkan, Yıldıray; Yilmaz, Adnan; Şahin, Osman Zikrullah

    2015-03-01

    The aim of this study was to investigate the effects of exposure to a 900-MHz electromagnetic field (EMF) produced by mobile phones on the renal development of prenatal rats. Histopathological changes and apoptosis in the kidneys, together with levels of urea, creatinine and electrolyte in serum were determined. A total of 14 Sprague-Dawley rats were studied. Pregnant rats were divided into two equal groups: a control group and an EMF-exposed group. The study group was exposed to 900-MHz of EMF during the first 20 days of pregnancy, while the control group was unexposed to EMF. Sections obtained from paraffin blocks were stained for caspase-3 by immunohistochemistry, hematoxylin-eosin and Masson's trichrome. Mild congestion and tubular defects, and dilatation of Bowman's capsule were observed in the kidney tissues of rats in the exposed group. Apoptosis was evaluated using anti-caspase-3; stronger positive staining was observed in the renal tubular cells in the study group than those of the control group. Although there was a significant difference between the study and control groups in terms of K+ level (p0.05). Our study shows that the electromagnetic waves propagated from mobile phones have harmful effects on the renal development of prenatal rats.

  8. Prenatal Care: Second Trimester Visits

    Science.gov (United States)

    ... Pregnancy week by week During the second trimester, prenatal care includes routine lab tests and measurements of your ... too. By Mayo Clinic Staff The goal of prenatal care is to ensure that you and your baby ...

  9. Prenatal exposure to maternal bereavement and childbirths in the offspring: a population-based cohort study.

    Science.gov (United States)

    Plana-Ripoll, Oleguer; Olsen, Jørn; Andersen, Per Kragh; Gómez, Guadalupe; Cnattingius, Sven; Li, Jiong

    2014-01-01

    The decline in birth rates is a concern in public health. Fertility is partly determined before birth by the intrauterine environment and prenatal exposure to maternal stress could, through hormonal disturbance, play a role. There has been such evidence from animal studies but not from humans. We aimed to examine the association between prenatal stress due to maternal bereavement following the death of a relative and childbirths in the offspring. This population-based cohort study included all subjects born in Denmark after 1968 and in Sweden after 1973 and follow-up started at the age of 12 years. Subjects were categorized as exposed if their mothers lost a close relative during pregnancy or the year before and unexposed otherwise. The main outcomes were age at first child and age-specific mean numbers of childbirths. Data was analyzed using Cox Proportional Hazards models stratified by gender and adjusted for several covariates. Subanalyses were performed considering the type of relative deceased and timing of bereavement. A total of 4,121,596 subjects were followed-up until up to 41 years of age. Of these subjects, 93,635 (2.3%) were exposed and 981,989 (23.8%) had at least one child during follow-up time. Compared to unexposed, the hazard ratio (HR) [95% confidence interval] of having at least one child for exposed males and females were 0.98 [0.96-1.01] and 1.01 [0.98-1.03], respectively. We found a slightly reduced probability of having children in females born to mothers who lost a parent with HR = 0.97 [0.94-0.99] and increased probability in females born to mothers who lost another child (HR = 1.09 [1.04-1.14]), the spouse (HR = 1.29 [1.12-1.48]) or a sibling (HR = 1.13 [1.01-1.27]). Our results suggested no overall association between prenatal exposure to maternal stress and having a child in early adulthood but a longer time of follow-up is necessary in order to reach a firmer conclusion.

  10. Sulforaphane Prevents Testicular Damage in Kunming Mice Exposed to Cadmium via Activation of Nrf2/ARE Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Shu-Hua Yang

    2016-10-01

    Full Text Available Sulforaphane (SFN is a natural and highly effective antioxidant. Studies suggest that SFN protects cells and tissues against cadmium (Cd toxicity. This study investigated the protective effect of SFN against oxidative damage in the testes of Kunming mice exposed to cadmium, and explored the possible molecular mechanisms involved. Cadmium greatly reduced the serum testosterone levels in mice, reduced sperm motility, total sperm count, and increased the sperm deformity rate. Cadmium also reduces superoxide dismutase (T-SOD and glutathione (GSH levels and increases malondialdehyde (MDA concentrations. SFN intervention improved sperm quality, serum testosterone, and antioxidant levels. Both mRNA and protein expression of mouse testicular nuclear factor-erythroid 2-related factor 2 (Nrf2 was reduced in cadmium-treated group. Furthermore, the downstream genes of Nrf2, glutathione peroxidase (GSH-Px, γ-glutamyl cysteine synthetase (γ-GCS, heme oxygenase-1 (HO-1, and NAD(PH:quinone oxidoreductase-1 (NQO1 were also decreased in cadmium-treated group. SFN intervention increases the expression of these genes. Sulforaphane prevents cadmium-induced testicular damage, probably via activation of Nrf2/ARE signaling.

  11. The distribution of tritium among the amino acids of proteins obtained from mice exposed to tritiated water

    International Nuclear Information System (INIS)

    Commerford, S.L.; Carsten, A.L.; Cronkite, E.P.

    1983-01-01

    The distribution of tritium among the amino acids of serum proteins in mice chronically exposed to tritiated water was determined by ion exchange chromatography of the protein hydrolysate. The specific activity of nonexchangeable tritium in these amino acids relative to the specific activity of tritium in the tissue water of mice ranged from 0.04 for phenylalanine and threonine to 1.0 for glycine and alanine. Since tritium from tissue water can enter the nonexchangeable positions of amino acids only as the result of metabolic processing, the relative specific activity of tritium in each amino acid is an indicator of the extent of such processing. The tritium content of tyrosine and all the amino acids required in the diet for survival is quite low, except for histidine, and can be entirely accounted for by transamination or, in the case of methionine, by transmethylation. The tritium content of the other amino acids is too high to result from such minor processing and must reflect primarily the fraction synthesized de novo. The implications of these findings with respect to the radiobiological consequences of a diet containing tritiated proteins are discussed

  12. Prenatal Genetic Counseling (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español Prenatal Genetic Counseling KidsHealth / For Parents / Prenatal Genetic Counseling What's in ... can they help your family? What Is Genetic Counseling? Genetic counseling is the process of: evaluating family ...

  13. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury.

    Science.gov (United States)

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule.

  14. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy.

    Science.gov (United States)

    Choi, Chang Soon; Gonzales, Edson Luck; Kim, Ki Chan; Yang, Sung Min; Kim, Ji-Woon; Mabunga, Darine Froy; Cheong, Jae Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2016-11-07

    Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence.

  15. Comparison of motor delays in young children with fetal alcohol syndrome to those with prenatal alcohol exposure and with no prenatal alcohol exposure.

    Science.gov (United States)

    Kalberg, Wendy O; Provost, Beth; Tollison, Sean J; Tabachnick, Barbara G; Robinson, Luther K; Eugene Hoyme, H; Trujillo, Phyllis M; Buckley, David; Aragon, Alfredo S; May, Philip A

    2006-12-01

    Researchers are increasingly considering the importance of motor functioning of children with fetal alcohol spectrum disorder (FASD). The purpose of this study was to assess the motor development of young children with fetal alcohol syndrome (FAS) to determine the presence and degree of delay in their motor skills and to compare their motor development with that of matched children without FAS. The motor development of 14 children ages 20 to 68 months identified with FAS was assessed using the Vineland Adaptive Behavior Scales (VABS). In addition, 2 comparison groups were utilized. Eleven of the children with FAS were matched for chronological age, gender, ethnicity, and communication age to: (1) 11 children with prenatal alcohol exposure who did not have FAS and (2) 11 matched children without any reported prenatal alcohol exposure. The motor scores on the VABS were compared among the 3 groups. Most of the young children with FAS in this study showed clinically important delays in their motor development as measured on the VABS Motor Domain, and their fine motor skills were significantly more delayed than their gross motor skills. In the group comparisons, the young children with FAS had significantly lower Motor Domain standard (MotorSS) scores than the children not exposed to alcohol prenatally. They also had significantly lower Fine Motor Developmental Quotients than the children in both the other groups. No significant group differences were found in gross motor scores. For MotorSS scores and Fine Motor Developmental Quotients, the means and standard errors indicated a continuum in the scores from FAS to prenatal alcohol exposure to nonexposure. These findings strongly suggest that all young children with FAS should receive complete developmental evaluations that include assessment of their motor functioning, to identify problem areas and provide access to developmental intervention programs that target deficit areas such as fine motor skills. Fine motor

  16. The effects of prenatal stocking densities on the fear responses and sociality of goat (Capra hircus kids.

    Directory of Open Access Journals (Sweden)

    Rachel M Chojnacki

    Full Text Available Prenatal stress (stress experienced by a pregnant mother and its effects on offspring have been comprehensively studied but relatively little research has been done on how prenatal social stress affects farm animals such as goats. Here, we use the operational description of 'stress' as "physical or perceived threats to homeostasis." The aim of this study was to investigate the prenatal effects of different herd densities on the fear responses and sociality of goat kids. Pregnant Norwegian dairy goats were exposed to high, medium or low prenatal animal density treatments throughout gestation (1.0, 2.0 or 3.0 m2 per animal, respectively. One kid per litter was subjected to two behavioral tests at 5 weeks of age. The 'social test' was applied to assess the fear responses, sociality and social recognition skills when presented with a familiar and unfamiliar kid and the 'separation test' assessed the behavioral coping skills when isolated. The results indicate goat kids from the highest prenatal density of 1.0 m2 were more fearful than the kids from the lower prenatal densities (i.e. made more escape attempts (separation test: P < 0.001 and vocalizations (social test: P < 0.001; separation test: P < 0.001. This effect was more pronounced in females than males in the high density (vocalizations; social test: P < 0.001; separation test: P  =  0.001 and females were generally more social than males. However, goat kids did not differentiate between a familiar and an unfamiliar kid at 5 weeks of age and sociality was not affected by the prenatal density treatment. We conclude that high animal densities during pregnancy in goats produce offspring that have a higher level of fear, particularly in females. Behavioral changes in offspring that occur as an effect of prenatal stress are of high importance as many of the females are recruited to the breeding stock of dairy goats.

  17. Eugenesia y diagnóstico prenatal

    OpenAIRE

    González Salvat, Rosa María; González Labrador, Ignacio

    2002-01-01

    El uso del diagnóstico prenatal en la práctica de la genética médica ha hecho que se recuerden teorías eugenésicas. Se realizó una revisión histórica de este término y se relacionó con el uso del diagnóstico prenatal (DPN) y el aborto selectivo a la luz de los conocimientos bioéticos actuales. The use of the prenatal diagnosis in the practice of medical genetics has led us to remember eugenic theories. A historical review of this term was made and it was connected with the use of prenatal ...

  18. Prenatal Diagnosis of Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Yau, Mabel; Khattab, Ahmed; New, Maria I

    2016-06-01

    Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is a monogenic disorder of adrenal steroidogenesis. To prevent genital ambiguity, in girls, prenatal dexamethasone treatment is administered early in the first trimester. Prenatal genetic diagnosis of CAH and fetal sex determination identify affected female fetuses at risk for genital virilization. Advancements in prenatal diagnosis are owing to improved understanding of the genetic basis of CAH and improved technology. Cloning of the CYP21A2 gene ushered in molecular genetic analysis as the current standard of care. Noninvasive prenatal diagnosis allows for targeted treatment and avoids unnecessary treatment of males and unaffected females. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Late-occurring chromosome aberrations and global DNA methylation in hematopoietic stem/progenitor cells of CBA/CaJ mice exposed to silicon ({sup 28}Si) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rithidech, Kanokporn Noy, E-mail: kanokporn.rithidech@stonybrookmedicine.edu [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Honikel, Louise M. [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Reungpathanaphong, Paiboon [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Chatuchuck, Bangkok 10900 (Thailand); Tungjai, Montree [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Excellence for Molecular Imaging, Chiang Mai University, Chiang Mai 50200 (Thailand); Jangiam, Witawat [Pathology Department, Stony Brook University, Stony Brook, NY 11794-8691 (United States); Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131 (Thailand); Whorton, Elbert B. [StatCom, PO Box 3041, Galveston, TX 77551 (United States)

    2015-11-15

    Highlights: • Late-occurring chromosome aberrations were found in HSPCs of exposed CBA/CaJ mice. • A dose-dependent reduction in the level of global 5hmC was detected in HSPCs. • There is a link between reduced global 5hmC levels and genomic instability in vivo. • The level of global 5hmC is a better marker of radiation exposure than that of 5mC. - Abstract: Although myeloid leukemia (ML) is one of the major health concerns from exposure to space radiation, the risk prediction for developing ML is unsatisfactory. To increase the reliability of predicting ML risk, a much improved understanding of space radiation-induced changes in the target cells, i.e. hematopoietic stem/progenitor cells (HSPCs), is important. We focused on the in vivo induction of late-occurring damage in HSPCs of mice exposed to {sup 28}Si ions since such damage is associated with radiation-induced genomic instability (a key event of carcinogenesis). We gave adult male CBA/CaJ mice, known to be sensitive to radiation-induced ML, a whole-body exposure (2 fractionated exposures, 15 days apart, that totaled each selected dose, delivered at the dose-rate of 1 cGy/min) to various doses of 300 MeV/n {sup 28}Si ions, i.e. 0 (sham controls), 0.1, 0.25, or 0.5 Gy. At 6 months post-irradiation, we collected bone marrow cells from each mouse (five mice per treatment-group) for obtaining the myeloid-lineage of HSPC-derived clones for analyses. We measured the frequencies of late-occurring chromosome aberrations (CAs), using the genome-wide multicolor fluorescence in situ hybridization method. The measurement of CAs was coupled with the characterization of the global DNA methylation patterns, i.e. 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). A dose-dependent increase in the frequencies of CAs was detected (Analysis of Variance or ANOVA, p < 0.01), indicating the induction of genomic instability after exposure of mice to 300 MeV/n {sup 28}Si ions. Slight increases in the levels of 5m

  20. Mediating role of stress reactivity in the effects of prenatal tobacco exposure on childhood mental health outcomes.

    Science.gov (United States)

    Park, Aesoon; O'Malley, Stephanie S; King, Sarah L; Picciotto, Marina R

    2014-02-01

    Prenatal tobacco exposure, through maternal smoking during pregnancy, has been associated with adverse mental health outcomes in childhood. However, the mechanisms by which prenatal tobacco exposure compromises mental health later in life are unclear. We hypothesized that sensitized reactivity to stressful life events in early childhood mediates the effect of prenatal tobacco exposure on mental health outcomes in middle childhood, after accounting for earlier mental health outcomes. Data were from 12,308 mothers and their children drawn from the Avon Longitudinal Study of Parents and Children, a large prospective population-based study. Mothers' self-reports of smoking during pregnancy, mothers' ratings of their child's reactivity to stressful life events, and teachers' and mothers' ratings of the Strengths and Difficulties Questionnaire assessing 5 domains of mental health outcomes were measured. A positive association was found between prenatal tobacco exposure and stress reactivity between the ages of 2 and 6. In turn, stress reactivity was positively associated with peer (isolation), hyperactivity, conduct, and emotional problems (but not prosocial behaviors) between the ages of 7 and 11, after accounting for the mental health outcome at age 4 and other confounders. Heightened stress reactivity in preschool ages mediated the effect of prenatal tobacco exposure on adverse mental health outcomes between the ages of 7 and 11. Interventions to assist children exposed to tobacco smoke during gestation in coping with stressful life events may help mitigate psychiatric symptoms in this population.

  1. MATERNAL TRAUMA AFFECTS PRENATAL MENTAL HEALTH AND INFANT STRESS REGULATION AMONG PALESTINIAN DYADS.

    Science.gov (United States)

    Isosävi, Sanna; Diab, Safwat Y; Kangaslampi, Samuli; Qouta, Samir; Kankaanpää, Saija; Puura, Kaija; Punamäki, Raija-Leena

    2017-09-01

    We examined how diverse and cumulated traumatic experiences predicted maternal prenatal mental health and infant stress regulation in war conditions and whether maternal mental health mediated the association between trauma and infant stress regulation. Participants were 511 Palestinian mothers from the Gaza Strip who reported exposure to current war trauma (WT), past childhood emotional (CEA) and physical abuse, socioeconomic status (SES), prenatal mental health problems (posttraumatic stress disorder and depression symptoms), and perceived stress during their secondtrimester of pregnancy as well as infant stress regulation at 4 months. While all trauma types were associated with high levels of prenatal symptoms, CEA had the most wide-ranging effects and was uniquely associated with depression symptoms. Concerning infant stress regulation, mothers' CEA predicted negative affectivity, but only among mothers with low WT. Against hypothesis, the effects of maternal trauma on infant stress regulation were not mediated by mental health symptoms. Mothers' higher SES was associated with better infant stress regulation whereas infant prematurity and male sex predisposed for difficulties. Our findings suggest that maternal childhood abuse, especially CEA, should be a central treatment target among war-exposed families. Cumulated psychosocial stressors might increase the risk for transgenerational problems. © 2017 Michigan Association for Infant Mental Health.

  2. Congenital lung malformations: correlation between prenatal and ...

    African Journals Online (AJOL)

    Aim: Congenital lung malformations are a common finding during prenatal ultrasonography (US). Investigations were completed by means of prenatal MRI and postnatal computed tomographic (CT) scan. The purpose of this study was to compare these prenatal findings with postnatal findings and pathological findings after ...

  3. Infant and childhood neurodevelopmental outcomes following prenatal exposure to selective serotonin reuptake inhibitors: overview and design of a Finnish Register-Based Study (FinESSI

    Directory of Open Access Journals (Sweden)

    Malm Heli

    2012-12-01

    Full Text Available Abstract Background Experimental animal studies and one population-based study have suggested an increased risk for adverse neurodevelopmental outcome after prenatal exposure to SSRIs. We describe the methods and design of a population-based study examining the association between prenatal SSRI exposure and neurodevelopment until age 14. Methods and design This is a cohort study of national registers in Finland: the Medical Birth Register, the Register of Congenital Malformations, the Hospital Discharge Register including inpatient and outpatient data, the Drug Reimbursement Register, and the Population Register. The total study population includes 845,345 women and their live-born, singleton offspring aged 14 or younger and born during Jan 1st 1996-Dec 31st 2010. We will compare the prevalence of psychiatric and neurodevelopmental outcomes in offspring exposed prenatally to SSRIs to offspring exposed to prenatal depression and unexposed to SSRIs. Associations between exposure and outcome are assessed by statistical methods including specific modeling to account for correlated outcomes within families and differences in duration of follow-up between the exposure groups. Descriptive results. Of all pregnant women with pregnancy ending in delivery (n = 859,359, 1.9% used SSRIs. The prevalence of diagnosed depression and depression-related psychiatric disorders within one year before or during pregnancy was 1.7%. The cumulative incidence of registered psychiatric or neurodevelopmental disorders was 6.9% in 2010 among all offspring born during the study period (age range 0–14 years. Discussion The study has the potential for significant public health importance in providing information on prenatal exposure to SSRIs and long-term neurodevelopment.

  4. Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid-induced autism.

    Science.gov (United States)

    Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Katashiba, Keisuke; Hasebe, Shigeru; Takano, Erika; Onaka, Yusuke; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro

    2016-09-01

    Rodents exposed prenatally to valproic acid (VPA) show autism-related behavioral abnormalities. We recently found that prenatal VPA exposure causes a reduction of dopaminergic activity in the prefrontal cortex of male, but not female, mice. This suggests that reduced prefrontal dopaminergic activity is associated with behavioral abnormalities in VPA-treated mice. In the present study, we examined whether the attention deficit/hyperactivity disorder drugs methylphenidate and atomoxetine (which increase dopamine release in the prefrontal cortex, but not striatum, in mice) could alleviate the behavioral abnormalities and changes in dendritic spine morphology induced by prenatal VPA exposure. We found that methylphenidate and atomoxetine increased prefrontal dopamine and noradrenaline release in VPA-treated mice. Acute treatment with methylphenidate or atomoxetine did not alleviate the social interaction deficits or recognition memory impairment in VPA-treated mice, while chronic treatment for 2 weeks did. Methylphenidate or atomoxetine for 2 weeks also improved the prenatal VPA-induced decrease in dendritic spine density in the prefrontal cortex. The effects of these drugs on behaviors and dendritic spine morphology were antagonized by concomitant treatment with the dopamine-D1 receptor antagonist SCH39166 or the dopamine-D2 receptor antagonist raclopride, but not by the α2 -adrenoceptor antagonist idazoxan. These findings suggest that chronic treatment with methylphenidate or atomoxetine improves abnormal behaviors and diminishes the reduction in spine density in VPA-treated mice via a prefrontal dopaminergic system-dependent mechanism. Autism Res 2016, 9: 926-939. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  5. Behavioural Outcomes of Four-Year-Old Children Prenatally Exposed to Methadone or Buprenorphine: A Test of Three Risk Models

    Science.gov (United States)

    Konijnenberg, Carolien; Lund, Ingunn Olea; Melinder, Annika

    2015-01-01

    It is still under debate whether the reported effects of opioid maintenance therapy (OMT) on child behaviour are a direct effect of prenatal exposure, or whether other factors are involved. This prospective cohort study investigated three models: the teratogenic risk model, the maternal risk model, and a combined risk model in a group of 35…

  6. Differential effects of lead and zinc on inhibitory avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    F.S. de Oliveira

    2001-01-01

    Full Text Available We studied the effects of chronic intoxication with the heavy metals lead (Pb2+ and zinc (Zn2+ on memory formation in mice. Animals were intoxicated through drinking water during the pre- and postnatal periods and then tested in the step-through inhibitory avoidance memory task. Chronic postnatal intoxication with Pb2+ did not change the step-through latency values recorded during the 4 weeks of the test (ANOVA, P>0.05. In contrast, mice intoxicated during the prenatal period showed significantly reduced latency values when compared to the control group (day 1: q = 4.62, P<0.05; day 7: q = 4.42, P<0.05; day 14: q = 5.65, P<0.05; day 21: q = 3.96, P<0.05, and day 28: q = 6.09, P<0.05. Although chronic postnatal intoxication with Zn2+ did not alter a memory retention test performed 24 h after training, we noticed a gradual decrease in latency at subsequent 4-week intervals (F = 3.07, P<0.05, an effect that was not observed in the control or in the Pb2+-treated groups. These results suggest an impairment of memory formation by Pb2+ when the animals are exposed during the critical period of neurogenesis, while Zn2+ appears to facilitate learning extinction.

  7. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling.

    Science.gov (United States)

    Kajta, Malgorzata; Wnuk, Agnieszka; Rzemieniec, Joanna; Litwa, Ewa; Lason, Wladyslaw; Zelek-Molik, Agnieszka; Nalepa, Irena; Rogóż, Zofia; Grochowalski, Adam; Wojtowicz, Anna K

    2017-07-01

    Several lines of evidence suggest that exposures to Endocrine Disrupting Chemicals (EDCs) such as pesticides increase the risks of neuropsychiatric disorders. Despite extended residual persistence of dichlorodiphenyltrichloroethane (DDT) in the environment, the mechanisms of perinatal actions of DDT that could account for adult-onset of depression are largely unknown. This study demonstrated the isomer-specific induction of depressive-like behavior and impairment of Htr1a/serotonin signaling in one-month-old mice that were prenatally exposed to DDT. The effects were reversed by the antidepressant citalopram as evidenced in the forced swimming (FST) and tail suspension (TST) tests in the male and female mice. Prenatally administered DDT accumulated in mouse brain as determined with gas chromatography and tandem mass spectrometry, led to global DNA hypomethylation, and altered the levels of methylated DNA in specific genes. The induction of depressive-like behavior and impairment of Htr1a/serotonin signaling were accompanied by p,p'-DDT-specific decrease in the levels of estrogen receptors i.e. ESR1 and/or GPER1 depending on sex. In contrast, o,p'-DDT did not induce depressive-like effects and exhibited quite distinct pattern of biochemical alterations that was related to aryl hydrocarbon receptor (AHR), its nuclear translocator ARNT, and ESR2. Exposure to o,p'-DDT increased AHR expression in male and female brains, and reduced expression levels of ARNT and ESR2 in the female brains. The evolution of p,p'-DDT-induced depressive-like behavior was preceded by attenuation of Htr1a and Gper1/GPER1 expression as observed in the 7-day-old mouse pups. Because p,p'-DDT caused sex- and age-independent attenuation of GPER1, we suggest that impairment of GPER1 signaling plays a key role in the propagation of DDT-induced depressive-like symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Menthol attenuates respiratory irritation and elevates blood cotinine in cigarette smoke exposed mice.

    Directory of Open Access Journals (Sweden)

    Michael A Ha

    Full Text Available Addition of menthol to cigarettes may be associated with increased initiation of smoking. The potential mechanisms underlying this association are not known. Menthol, likely due to its effects on cold-sensing peripheral sensory neurons, is known to inhibit the sensation of irritation elicited by respiratory irritants. However, it remains unclear whether menthol modulates cigarette smoke irritancy and nicotine absorption during initial exposures to cigarettes, thereby facilitating smoking initiation. Using plethysmography in a C57Bl/6J mouse model, we examined the effects of L-menthol, the menthol isomer added to cigarettes, on the respiratory sensory irritation response to primary smoke irritants (acrolein and cyclohexanone and smoke of Kentucky reference 2R4 cigarettes. We also studied L-menthol's effect on blood levels of the nicotine metabolite, cotinine, immediately after exposure to cigarette smoke. L-menthol suppressed the irritation response to acrolein with an apparent IC₅₀ of 4 ppm. Suppression was observed even at acrolein levels well above those necessary to produce a maximal response. Cigarette smoke, at exposure levels of 10 mg/m³ or higher, caused an immediate and marked sensory irritation response in mice. This response was significantly suppressed by L-menthol even at smoke concentrations as high as 300 mg/m³. Counterirritation by L-menthol was abolished by treatment with a selective inhibitor of Transient Receptor Potential Melastatin 8 (TRPM8, the neuronal cold/menthol receptor. Inclusion of menthol in the cigarette smoke resulted in roughly a 1.5-fold increase in plasma cotinine levels over those observed in mice exposed to smoke without added menthol. These findings document that, L-menthol, through TRPM8, is a strong suppressor of respiratory irritation responses, even during highly noxious exposures to cigarette smoke or smoke irritants, and increases blood cotinine. Therefore, L-menthol, as a cigarette additive, may

  9. Impact of Combined Prenatal Ethanol and Prenatal Stress Exposures on Markers of Activity-Dependent Synaptic Plasticity in Rat Dentate Gyrus

    OpenAIRE

    Staples, Miranda C.; Porch, Morgan W.; Savage, Daniel D.

    2014-01-01

    Prenatal ethanol exposure and prenatal stress can each cause long-lasting deficits in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms underlying these perturbations following a learning event are still poorly understood. We examined the effects of prenatal ethanol exposure and prenatal stress exposure, either alone or in combination, on the cytosolic expression of activity-regulated cytoskeletal (ARC) protein and the synaptosomal expression o...

  10. Developmental exposure to trichloroethylene promotes CD4+ T cell differentiation and hyperactivity in association with oxidative stress and neurobehavioral deficits in MRL+/+ mice

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Doss, Jason C.; Hennings, Leah J.; Jernigan, Stefanie; Melnyk, Stepan; James, S. Jill

    2008-01-01

    The non adult immune system is particularly sensitive to perinatal and early life exposures to environmental toxicants. The common environmental toxicant, trichloroethylene (TCE), was shown to increase CD4+ T cell production of the proinflammatory cytokine IFN-γ following a period of prenatal and lifetime exposure in autoimmune-prone MRL+/+ mice. In the current study, MRL+/+ mice were used to further examine the impact of TCE on the immune system in the thymus and periphery. Since there is considerable cross-talk between the immune system and the brain during development, the potential relationship between TCE and neurobehavioral endpoints were also examined. MRL+/+ mice were exposed to 0.1 mg/ml TCE (∼ 31 mg/kg/day) via maternal drinking water or direct exposure via the drinking water from gestation day 1 until postnatal day (PD) 42. TCE exposure did not impact gross motor skills but instead significantly altered social behaviors and promoted aggression associated with indicators of oxidative stress in brain tissues in male mice. The immunoregulatory effects of TCE involved a redox-associated promotion of T cell differentiation in the thymus that preceded the production of proinflammatory cytokines, IL-2, TNF-α, and IFN-γ by mature CD4+ T cells. The results demonstrated that developmental and early life TCE exposure modulated immune function and may have important implications for neurodevelopmental disorders

  11. Modifying effect of prenatal care on the association between young maternal age and adverse birth outcomes.

    Science.gov (United States)

    Vieira, C L; Coeli, C M; Pinheiro, R S; Brandão, E R; Camargo, K R; Aguiar, F P

    2012-06-01

    The objectives were to investigate the prevalence of adverse birth outcomes according to maternal age range in the city of Rio de Janeiro, Brazil, in 2002, and to evaluate the association between maternal age range and adverse birth outcomes using additive interaction to determine whether adequate prenatal care can attenuate the harmful effect of young age on pregnancy outcomes. A cross-sectional analysis was performed in women up to 24 years of age who gave birth to live children in 2002 in the city of Rio de Janeiro. To evaluate adverse outcomes, the exposure variable was maternal age range, and the outcome variables were very preterm birth, low birth weight, prematurity, and low 5-minute Apgar score. The presence of interaction was investigated with the composite variable maternal age plus prenatal care. The proportions and respective 95% confidence intervals were calculated for adequate schooling, delivery in a public maternity hospital, and adequate prenatal care, and the outcomes according to maternal age range. The chi-square test was used. The association between age range and birth outcomes was evaluated with logistic models adjusted for schooling and type of hospital for each prenatal stratum and outcome. Attributable proportion was calculated in order to measure additive interaction. Of the 40,111 live births in the sample, 1.9% corresponded to children of mothers from 10-14 years of age, 38% from 15-19 years, and 59.9% from 20-24 years. An association between maternal age and adverse outcomes was observed only in adolescent mothers with inadequate prenatal care, and significant additive interaction was observed between prenatal care and maternal age for all the outcomes. Adolescent mothers and their newborns are exposed to greater risk of adverse outcomes when prenatal care fails to comply with current guidelines. Copyright © 2012 North American Society for Pediatric and Adolescent Gynecology. Published by Elsevier Inc. All rights reserved.

  12. The Antidepressant Agomelatine Improves Memory Deterioration and Upregulates CREB and BDNF Gene Expression Levels in Unpredictable Chronic Mild Stress (UCMS-Exposed Mice

    Directory of Open Access Journals (Sweden)

    Esen Gumuslu

    2014-01-01

    Full Text Available Agomelatine, a novel antidepressant with established clinical efficacy, acts as an agonist of melatonergic MT 1 and MT 2 receptors and as an antagonist of 5-HT 2C receptors. The present study was undertaken to investigate whether chronic treatment with agomelatine would block unpredictable chronic mild stress (UCMS-induced cognitive deterioration in mice in passive avoidance (PA, modified elevated plus maze (mEPM, novel object recognition (NOR, and Morris water maze (MWM tests. Moreover, the effects of stress and agomelatine on brain-derived neurotrophic factor (BDNF and cyclic adenosine monophosphate (cAMP response element binding protein (CREB messenger ribonucleic acid (mRNA levels in the hippocampus was also determined using quantitative real-time polymerase chain reaction (RT-PCR. Male inbred BALB/c mice were treated with agomelatine (10 mg/kg, i.p., melatonin (10 mg/kg, or vehicle daily for five weeks. The results of this study revealed that UCMS-exposed animals exhibited memory deterioration in the PA, mEPM, NOR, and MWM tests. The chronic administration of melatonin had a positive effect in the PA and +mEPM tests, whereas agomelatine had a partial effect. Both agomelatine and melatonin blocked stress-induced impairment in visual memory in the NOR test and reversed spatial learning and memory impairment in the stressed group in the MWM test. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in UCMS-exposed mice, and these alterations were reversed by chronic agomelatine or melatonin treatment. Thus, agomelatine plays an important role in blocking stress-induced hippocampal memory deterioration and activates molecular mechanisms of memory storage in response to a learning experience.

  13. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior.

    Science.gov (United States)

    Scully, C M; Estill, C T; Amodei, R; McKune, A; Gribbin, K P; Meaker, M; Stormshak, F; Roselli, C E

    2018-01-01

    Prenatal androgens are largely responsible for growth and differentiation of the genital tract and testis and for organization of the control mechanisms regulating male reproductive physiology and behavior. The aim of the present study was to evaluate the impact of inappropriate exposure to excess testosterone (T) during the first trimester of fetal development on the reproductive function, sexual behavior, and fertility potential of rams. We found that biweekly maternal T propionate (100 mg) treatment administered from Day 30-58 of gestation significantly decreased (P < 0.05) postpubertal scrotal circumference and sperm concentration. Prenatal T exposure did not alter ejaculate volume, sperm motility and morphology or testis morphology. There was, however, a trend for more T-exposed rams than controls to be classified as unsatisfactory potential breeders during breeding soundness examinations. Postnatal serum T concentrations were not affected by prenatal T exposure, nor was the expression of key testicular genes essential for spermatogenesis and steroidogenesis. Basal serum LH did not differ between treatment groups, nor did pituitary responsiveness to GnRH. T-exposed rams, like control males, exhibited vigorous libido and were sexually attracted to estrous females. In summary, these results suggest that exposure to exogenous T during the first trimester of gestation can negatively impact spermatogenesis and compromise the reproductive fitness of rams. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Prenatal Care: First Trimester Visits

    Science.gov (United States)

    ... care provider will discuss the importance of proper nutrition and prenatal vitamins. Your first prenatal visit is a good time to discuss exercise, sex during pregnancy and other lifestyle issues. You might also discuss your work environment and the use of medications during pregnancy. If ...

  15. Prenatal exposure to alcohol does not affect radial maze learning and hippocampal mossy fiber sizes in three inbred strains of mouse

    Directory of Open Access Journals (Sweden)

    Bertholet Jean-Yves

    2005-04-01

    Full Text Available Abstract Background The aim of this study was to investigate the effects of prenatal alcohol exposure on radial-maze learning and hippocampal neuroanatomy, particularly the sizes of the intra- and infrapyramidal mossy fiber (IIPMF terminal fields, in three inbred strains of mice (C57BL/6J, BALB/cJ, and DBA/2J. Results Although we anticipated a modification of both learning and IIPMF sizes, no such effects were detected. Prenatal alcohol exposure did, however, interfere with reproduction in C57BL/6J animals and decrease body and brain weight (in interaction with the genotype at adult age. Conclusion Prenatal alcohol exposure influenced neither radial maze performance nor the sizes of the IIPMF terminal fields. We believe that future research should be pointed either at different targets when using mouse models for Fetal Alcohol Syndrome (e.g. more complicated behavioral paradigms, different hippocampal substructures, or other brain structures or involve different animal models.

  16. Attitudes of pregnant women and male partners towards non-invasive prenatal testing and widening the scope of prenatal screening

    NARCIS (Netherlands)

    van Schendel, Rachèl V.; Kleinveld, Johanna H.; Dondorp, Wybo J.; Pajkrt, Eva; Timmermans, Danielle R. M.; Holtkamp, Kim C. A.; Karsten, Margreet; Vlietstra, Anne L.; Lachmeijer, Augusta M. A.; Henneman, Lidewij

    2014-01-01

    Non-invasive prenatal testing (NIPT) and its potential to test for multiple disorders has received much attention. This study explores attitudes of women and men towards NIPT, and their views on widening the scope of prenatal testing in a country with a low uptake of prenatal screening (The

  17. ACOG Committee Opinion No. 731: Group Prenatal Care.

    Science.gov (United States)

    2018-03-01

    Individual prenatal care is intended to prevent poor perinatal outcomes and provide education to women throughout pregnancy, childbirth, and the postpartum period through a series of one-on-one encounters between a woman and her obstetrician or other obstetric care provider. Concerns regarding increasing health care costs, health care provider availability, dissatisfaction with wait times, and the minimal opportunity for education and support associated with the individual care model have given rise to interest in alternative models of prenatal care. One alternative model, group prenatal care, may be beneficial or preferred for some practice settings and patient populations, although individual prenatal care remains standard practice. Group prenatal care models are designed to improve patient education and include opportunities for social support while maintaining the risk screening and physical assessment of individual prenatal care. Bringing patients with similar needs together for health care encounters increases the time available for the educational component of the encounter, improves efficiency, and reduces repetition. Evidence suggests patients have better prenatal knowledge, feel more ready for labor and delivery, are more satisfied with care in prenatal care groups, and initiate breastfeeding more often. There is no evidence that suggests that group prenatal care causes harm. Individual and group care models warrant additional study with a goal of demonstrating differences in outcomes and identifying populations that benefit most from specific care models.

  18. Prenatal cocaine exposure decreases parvalbumin-immunoreactive neurons and GABA-to-projection neuron ratio in the medial prefrontal cortex.

    Science.gov (United States)

    McCarthy, Deirdre M; Bhide, Pradeep G

    2012-01-01

    Cocaine abuse during pregnancy produces harmful effects not only on the mother but also on the unborn child. The neurotransmitters dopamine and serotonin are known as the principal targets of the action of cocaine in the fetal and postnatal brain. However, recent evidence suggests that cocaine can impair cerebral cortical GABA neuron development and function. We sought to analyze the effects of prenatal cocaine exposure on the number and distribution of GABA and projection neurons (inhibitory interneurons and excitatory output neurons, respectively) in the mouse cerebral cortex. We found that the prenatal cocaine exposure decreased GABA neuron numbers and GABA-to-projection neuron ratio in the medial prefrontal cortex of 60-day-old mice. The neighboring prefrontal cortex did not show significant changes in either of these measures. However, there was a significant increase in projection neuron numbers in the prefrontal cortex but not in the medial prefrontal cortex. Thus, the effects of cocaine on GABA and projection neurons appear to be cortical region specific. The population of parvalbumin-immunoreactive GABA neurons was decreased in the medial prefrontal cortex following the prenatal cocaine exposure. The cocaine exposure also delayed the developmental decline in the volume of the medial prefrontal cortex. Thus, prenatal cocaine exposure produced persisting and region-specific effects on cortical cytoarchitecture and impaired the physiological balance between excitatory and inhibitory neurotransmission. These structural changes may underlie the electrophysiological and behavioral effects of prenatal cocaine exposure observed in animal models and human subjects. Copyright © 2012 S. Karger AG, Basel.

  19. Prenatal Testing: MedlinePlus Health Topic

    Science.gov (United States)

    ... Dept. of Health and Human Services Office on Women's Health Start Here Prenatal Tests (Nemours Foundation) Also in Spanish Prenatal Tests (March of Dimes Birth Defects Foundation) Also in Spanish ...

  20. Evaluation of micronuclei in mice bone marrow and antioxidant systems in erythrocytes exposed to α-amanitin.

    Science.gov (United States)

    Marciniak, B; Lopaczyńska, D; Kowalczyk, E; Skośkiewicz, J; Witczak, M; Majczyk, M; Grabowicz, W; Ferenc, T

    2013-03-01

    α-Amanitin, the main toxic substance from mushroom species (Amanita genus), blocks the activity of RNA polymerase II (Pol II) in mammalian cells causing inhibition of transcription and subsequent synthesis of structural and enzymatic proteins. It has been postulated that α-amanitin generates the increase of reactive oxygen species (ROS) concentration. The micronucleus (MN) test was used on an animal experimental model to evaluate possible potential genotoxic effect of α-amanitin on mice bone marrow cells. At the same time the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) as well as concentration of thiobarbituric acid reactive substance (TBARS) were investigated in the lysate of mice erythrocytes. α-Amanitin was administered intraperitoneally at the doses: 0.1, 0.15, and 0.25 mg/kg bw (LD(50) for mice) 48 h prior to sacrification. A statistically significant increase of SOD activity was observed in the hemolysate for all the investigated α-amanitin doses as compared to the negative control (p activity for α-amanitin doses 0.1 and 0.15 mg/kg was higher in comparison to the negative control but the differences were not statistically significant (p > 0.05). However, for the dose 0.25 mg/kg the activity of CAT was statistically significantly higher (p  0.05). A statistically significant increase of mean values of MN percent was found in polychromatic erythrocytes (PCEs) as compared to the negative control for α-amanitin dose 0.1 and 0.25 mg/kg (p  0.1). The observed disturbances in the activity of the examined antioxidant enzymes in cells exposed in vivo to α-amanitin suggest indirect genotoxic effect of α-amanitin through ROS generation. Copyright © 2012 Elsevier Ltd. All rights reserved.