WorldWideScience

Sample records for mice lacking functional

  1. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  2. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  3. Multiple alterations of platelet functions dominated by increased secretion in mice lacking Cdc42 in platelets

    DEFF Research Database (Denmark)

    Pleines, Irina; Eckly, Anita; Elvers, Margitta

    2010-01-01

    formation and exocytosis in various cell types, but its exact function in platelets is not established. Here, we show that the megakaryocyte/platelet-specific loss of Cdc42 leads to mild thrombocytopenia and a small increase in platelet size in mice. Unexpectedly, Cdc42-deficient platelets were able to form...

  4. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  5. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    International Nuclear Information System (INIS)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-01-01

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  7. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  8. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain of function mutations

    DEFF Research Database (Denmark)

    Galan-Diez, Marta; Isa, Adiba; Ponzetti, Marco

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation...... of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM...

  9. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  10. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    Science.gov (United States)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  11. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  12. Mice lacking major brain gangliosides develop parkinsonism.

    Science.gov (United States)

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  13. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    Science.gov (United States)

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  14. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  15. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  16. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  17. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  18. Kidney failure in mice lacking the tetraspanin CD151

    NARCIS (Netherlands)

    Sachs, Norman; Kreft, Maaike; van den Bergh Weerman, Marius A.; Beynon, Andy J.; Peters, Theo A.; Weening, Jan J.; Sonnenberg, Arnoud

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  19. Kidney failure in mice lacking the tetraspanin CD151.

    NARCIS (Netherlands)

    Sachs, N.; Kreft, M.; Bergh Weerman, M. van der; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A.

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  20. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  1. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  2. Generation of mice lacking DUF1220 protein domains

    DEFF Research Database (Denmark)

    Keeney, J G; O'Bleness, M S; Anderson, N

    2015-01-01

    associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise...... function, and potentially suggests a role in developmental metabolism. Finally, the substantially reduced fecundity we observe associated with KO mice argues that the ancestral DUF1220 domain provides an important biological functionthat is critical to survivability and reproductive success....

  3. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  4. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  5. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    Science.gov (United States)

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  8. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  9. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  10. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  11. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  13. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  14. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  15. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  16. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Holm, Anne Trommelholt; Wulf-Johansson, Helle; Hvidsten, Svend

    2015-01-01

    to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated...... were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss...... of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes....

  17. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    Science.gov (United States)

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  20. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  1. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  2. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  3. Remodeling of the Cervix and Parturition in Mice Lacking the Progesterone Receptor B Isoform1

    Science.gov (United States)

    Yellon, Steven M.; Oshiro, Bryan T.; Chhaya, Tejas Y.; Lechuga, Thomas J.; Dias, Rejane M.; Burns, Alexandra E.; Force, Lindsey; Apostolakis, Ede M.

    2011-01-01

    Withdrawal of progestational support for pregnancy is part of the final common pathways for parturition, but the role of nuclear progesterone receptor (PGR) isoforms in this process is not known. To determine if the PGR-B isoform participates in cervical remodeling at term, cervices were obtained from mice lacking PGR-B (PGR-BKO) and from wild-type (WT) controls before or after birth. PGR-BKO mice gave birth to viable pups at the same time as WT controls during the early morning of Day 19 postbreeding. Morphological analyses indicated that by the day before birth, cervices from PGR-BKO and WT mice had increased in size, with fewer cell nuclei/area as well as diminished collagen content and structure, as evidenced by optical density of picrosirius red-stained sections, compared to cervices from nonpregnant mice. Moreover, increased numbers of resident macrophages, but not neutrophils, were found in the prepartum cervix of PGR-BKO compared to nonpregnant mice, parallel to findings in WT mice. These results suggest that PGR-B does not contribute to the growth or degradation of the extracellular matrix or proinflammatory processes associated with recruitment of macrophages in the cervix leading up to birth. Rather, other receptors may contribute to the progesterone-dependent mechanism that promotes remodeling of the cervix during pregnancy and in the proinflammatory process associated with ripening before parturition. PMID:21613631

  4. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  5. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  6. Lack of Melanopsin Is Associated with Extreme Weight Loss in Mice upon Dietary Challenge.

    Directory of Open Access Journals (Sweden)

    Didem Göz Aytürk

    Full Text Available Metabolic disorders have been established as major risk factors for ocular complications and poor vision. However, little is known about the inverse possibility that ocular disease may cause metabolic dysfunction. To test this hypothesis, we assessed the metabolic consequences of a robust dietary challenge in several mouse models suffering from retinal mutations. To this end, mice null for melanopsin (Opn4-/-, the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs, were subjected to five weeks of a ketogenic diet. These mice lost significantly more weight than wild-type controls or mice lacking rod and cone photoreceptors (Pde6brd1/rd1. Although ipRGCs are critical for proper circadian entrainment, and circadian misalignment has been implicated in metabolic pathology, we observed no differences in entrainment between Opn4-/- and control mice. Additionally, we observed no differences in any tested metabolic parameter between these mouse strains. Further studies are required to establish the mechanism giving rise to this dramatic phenotype observed in melanopsin-null mice. We conclude that the causality between ocular disease and metabolic disorders merits further investigation due to the popularity of diets that rely on the induction of a ketogenic state. Our study is a first step toward understanding retinal pathology as a potential cause of metabolic dysfunction.

  7. A high-fat diet induces bone loss in mice lacking the Alox5 gene.

    Science.gov (United States)

    Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E; Horowitz, Mark C; Rosen, Clifford J

    2012-01-01

    5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5(-/-) mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5(-/-) mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5(-/-) gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5(-/-) showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5(-/-) mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5(-/-) than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5(-/-) mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD.

  8. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    Science.gov (United States)

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic

  10. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin.

    Science.gov (United States)

    Trigo, José M; Zimmer, Andreas; Maldonado, Rafael

    2009-06-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.

  11. Nicotine anxiogenic and rewarding effects are decreased in mice lacking β-endorphin

    Science.gov (United States)

    Trigo, José M.; Zimmer, Andreas; Maldonado, Rafael

    2009-01-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, μ-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking β-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking β-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of β-endorphin in these addictive related responses. PMID:19376143

  12. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  13. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  14. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  15. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  16. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  17. Defective thrombus formation in mice lacking endogenous factor VII activating protease (FSAP).

    Science.gov (United States)

    Subramaniam, Saravanan; Thielmann, Ina; Morowski, Martina; Pragst, Ingo; Sandset, Per Morten; Nieswandt, Bernhard; Etscheid, Michael; Kanse, Sandip M

    2015-04-01

    Factor VII (FVII) activating protease (FSAP) is a circulating protease with a putative function in blood coagulation and fibrinolysis. Genetic epidemiological studies have implied a role for FSAP in carotid stenosis, stroke and thrombosis. To date, no in vivo evidence is available to support these claims. We have, for the first time, used FSAP-/- mice to define its role in thrombosis and haemostasis in vivo and to characterise the molecular mechanisms involved. FeCl3-induced arterial thrombosis in carotid and mesenteric artery revealed that the occlusion time was significantly increased in FSAP-/- mice (pendogenous FSAP impaired the formation of stable, occlusive thrombi in mice. The underlying in vivo effect of FSAP is more likely to be related to the modulation of TFPI rather than FVIIa.

  18. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death

    OpenAIRE

    Ibdah, Jamal A.; Paul, Hyacinth; Zhao, Yiwen; Binford, Scott; Salleng, Ken; Cline, Mark; Matern, Dietrich; Bennett, Michael J.; Rinaldo, Piero; Strauss, Arnold W.

    2001-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer of four α and four β subunits that catalyzes the final three steps of mitochondrial long chain fatty acid β-oxidation. Human MTP deficiency causes Reye-like syndrome, cardiomyopathy, or sudden unexpected death. We used gene targeting to generate an MTP α subunit null allele and to produce mice that lack MTP α and β subunits. The Mtpa–/– fetuses accumulate long chain fatty acid metabolites and have low birth weight compared with the...

  19. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  20. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.

    Science.gov (United States)

    Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin

    2017-10-15

    Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    Science.gov (United States)

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  3. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  4. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  5. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Selective reward deficit in mice lacking beta-endorphin and enkephalin.

    Science.gov (United States)

    Hayward, Michael D; Pintar, John E; Low, Malcolm J

    2002-09-15

    It has been impossible to unequivocally identify which endogenous opioids modulate the incentive value of rewarding stimuli because these peptides are not highly selective for any single opioid receptor subtype. Here, we present evidence based on the measurement of instrumental behavior of beta-endorphin and enkephalin knock-out mice that both opioid peptides play a positive role. A progressive ratio schedule was used to measure how hard an animal would work for food reinforcers. The loss of either opioid reduced responding under this schedule, regardless of the palatability of the three different formulas of reinforcers used. The phenotype of mice lacking both endogenous opioids was nearly identical to the phenotype of mice mutant for either individual opioid. Responses were tested in nondeprived and deprived feeding states but were reduced in beta-endorphin- and enkephalin-deficient mice only when they were maintained under nondeprived conditions. Other operant manipulations ruled out variables that might contribute nonspecifically to this result such as differences in acquisition, early satiation, motor performance deficit, and reduced resistance to extinction. In contrast to the effects on instrumental performance, the loss of either or both endogenous opioids did not influence preference for water flavored with sucrose or saccharin in a two-bottle free-choice drinking paradigm. We conclude that both beta-endorphin and enkephalin positively contribute to the incentive-motivation to acquire food reinforcers. Because the attenuation of operant responding was observed only during a nondeprived motivational state, the hedonics of feeding are likely altered rather than energy homeostasis.

  7. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  8. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate.

    Science.gov (United States)

    Irie, Fumitoshi; Badie-Mahdavi, Hedieh; Yamaguchi, Yu

    2012-03-27

    Heparan sulfate regulates diverse cell-surface signaling events, and its roles in the development of the nervous system recently have been increasingly uncovered by studies using genetic models carrying mutations of genes encoding enzymes for its synthesis. On the other hand, the role of heparan sulfate in the physiological function of the adult brain has been poorly characterized, despite several pieces of evidence suggesting its role in the regulation of synaptic function. To address this issue, we eliminated heparan sulfate from postnatal neurons by conditionally inactivating Ext1, the gene encoding an enzyme essential for heparan sulfate synthesis. Resultant conditional mutant mice show no detectable morphological defects in the cytoarchitecture of the brain. Remarkably, these mutant mice recapitulate almost the full range of autistic symptoms, including impairments in social interaction, expression of stereotyped, repetitive behavior, and impairments in ultrasonic vocalization, as well as some associated features. Mapping of neuronal activation by c-Fos immunohistochemistry demonstrates that neuronal activation in response to social stimulation is attenuated in the amygdala in these mice. Electrophysiology in amygdala pyramidal neurons shows an attenuation of excitatory synaptic transmission, presumably because of the reduction in the level of synaptically localized AMPA-type glutamate receptors. Our results demonstrate that heparan sulfate is critical for normal functioning of glutamatergic synapses and that its deficiency mediates socio-communicative deficits and stereotypies characteristic for autism.

  9. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  10. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    2011-03-01

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  11. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    Science.gov (United States)

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  12. Functionally enhanced brown adipose tissue in Ames dwarf mice.

    Science.gov (United States)

    Darcy, Justin; Bartke, Andrzej

    2017-01-02

    Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1 df/df ) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.

  13. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    Science.gov (United States)

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  14. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  15. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  17. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  18. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis.

    Science.gov (United States)

    Besmer, Dahlia M; Curry, Jennifer M; Roy, Lopamudra D; Tinder, Teresa L; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y; Gendler, Sandra J; Mukherjee, Pinku

    2011-07-01

    MUC1 is overexpressed and aberrantly glycosylated in more than 60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In this study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared with both KC and KCM. Cell lines derived from KCKO tumors have significantly less tumorigenic capacity compared with cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared with mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor, platelet-derived growth factor, or matrix metalloproteinase 9. Further, significantly less KCKO cells entered the G(2)-M phase of the cell cycle compared with the KCM cells. Proteomics and Western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of mitogen-activated protein kinase (MAPK), as well as a significant decrease in nestin and tubulin-α2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. ©2011 AACR

  19. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR -/- ) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR -/- mice. We found that slow and fast subsets of muscles of the VDR -/- mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR -/- muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR -/- mice, we found that there was no significant deficit in SC numbers in VDR -/- muscles compared to the wild type. Unlike its expression within VDR -/- fibers, Myostatin levels in VDR -/- SCs from bulk muscles were similar to those of wild type. However, VDR -/- SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR -/- mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and rpS6

  20. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  1. Zebrafish Lacking Circadian Gene per2 Exhibit Visual Function Deficiency

    Directory of Open Access Journals (Sweden)

    Deng-feng Huang

    2018-03-01

    Full Text Available The retina has an intrinsic circadian clock, but the importance of this clock for vision is unknown. Zebrafish offer many advantages for studying vertebrate vision and circadian rhythm. Here, we explored the role of zebrafish per2, a light-regulated gene, in visual behavior and the underlying mechanisms. We observed that per2 mutant zebrafish larvae showed decreased contrast sensitivity and visual acuity using optokinetic response (OKR assays. Using a visual motor response (VMR assay, we observed normal OFF responses but abnormal ON responses in mutant zebrafish larvae. Immunofluorescence showed that mutants had a normal morphology of cone photoreceptor cells and retinal organization. However, electron microscopy showed that per2 mutants displayed abnormal and decreased photoreceptor ribbon synapses with arciform density, which resulted in retinal ON pathway defect. We also examined the expression of three cone opsins by quantitative real-time PCR (qRT-PCR, and the expression of long-wave-sensitive opsin (opn1lw and short-wave-sensitive opsin (opn1sw was reduced in mutant zebrafish larvae. qRT-PCR analyses also showed a down-regulation of the clock genes cry1ba and bmal1b in the adult eye of per2 mutant zebrafish. This study identified a mechanism by which a clock gene affects visual function and defined important roles of per2 in retinal information processing.

  2. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  3. Dwarfism in mice lacking collagen-binding integrins alpha 2 beta 1 and alpha 11 beta 1 is caused by severely diminished IGF-1 levels

    OpenAIRE

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W.A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggest...

  4. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Bissada Nagat

    2011-08-01

    Full Text Available Abstract Background Huntington Disease (HD is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2 activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/- to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

  5. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    Science.gov (United States)

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  6. Lack of caching of direct-seeded Douglas fir seeds by deer mice

    International Nuclear Information System (INIS)

    Sullivan, T.P.

    1978-01-01

    Seed caching by deer mice was investigated by radiotagging seeds in forest and clear-cut areas in coastal British Columbia. Deer mice tend to cache very few Douglas fir seeds in the fall when the seed is uniformly distributed and is at densities comparable with those used in direct-seeding programs. (author)

  7. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  9. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    Science.gov (United States)

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    Science.gov (United States)

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Milk Lacking α-Casein Leads to Permanent Reduction in Body Size in Mice

    Science.gov (United States)

    Kolb, Andreas F.; Huber, Reinhard C.; Lillico, Simon G.; Carlisle, Ailsa; Robinson, Claire J.; Neil, Claire; Petrie, Linda; Sorensen, Dorte B.; Olsson, I. Anna S.; Whitelaw, C. Bruce A.

    2011-01-01

    The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate. We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight. PMID:21789179

  12. Milk lacking α-casein leads to permanent reduction in body size in mice.

    Directory of Open Access Journals (Sweden)

    Andreas F Kolb

    Full Text Available The major physiological function of milk is the transport of amino acids, carbohydrates, lipids and minerals to mammalian offspring. Caseins, the major milk proteins, are secreted in the form of a micelle consisting of protein and calcium-phosphate.We have analysed the role of the milk protein α-casein by inactivating the corresponding gene in mice. Absence of α-casein protein significantly curtails secretion of other milk proteins and calcium-phosphate, suggesting a role for α-casein in the establishment of casein micelles. In contrast, secretion of albumin, which is not synthesized in the mammary epithelium, into milk is not reduced. The absence of α-casein also significantly inhibits transcription of the other casein genes. α-Casein deficiency severely delays pup growth during lactation and results in a life-long body size reduction compared to control animals, but has only transient effects on physical and behavioural development of the pups. The data support a critical role for α-casein in casein micelle assembly. The results also confirm lactation as a critical window of metabolic programming and suggest milk protein concentration as a decisive factor in determining adult body weight.

  13. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    OpenAIRE

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...

  15. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  16. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    Science.gov (United States)

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  17. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  18. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  19. Lack of functional specialization of neurons in the mouse primary visual cortex that have expressed calretinin

    Directory of Open Access Journals (Sweden)

    Daniela eCamillo

    2014-09-01

    Full Text Available Calretinin is a calcium-binding protein often used as a marker for a subset of inhibitory interneurons in the mammalian neocortex. We studied the labeled cells in offspring from a cross of a Cre-dependent reporter line with the CR-ires-Cre mice, which express Cre-recombinase in the same pattern as calretinin. We found that in the mature visual cortex, only a minority of the cells that have expressed calretinin and Cre-recombinase during their lifetime is GABAergic and only about 20% are immunoreactive for calretinin. The reason behind this is that calretinin is transiently expressed in many cortical pyramidal neurons during development. To determine whether neurons that express or have expressed calretinin share any distinct functional characteristics, we recorded their visual response properties using GCaMP6s calcium imaging. The average orientation selectivity, size tuning, and temporal and spatial frequency tuning of this group of cells, however, match the response profile of the general neuronal population, revealing the lack of functional specialization for the features studied.

  20. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf.

    Science.gov (United States)

    Baumgartner, F; Woess, C; Pedit, V; Tzankov, A; Labi, V; Villunger, A

    2013-01-31

    Proapoptotic Bcl-2 family members of the Bcl-2 homology (BH)3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress. On the basis of the biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition, as well as suppression of B-cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B-cell lineage. Long-term follow-up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be linked to the induction of lymphocyte apoptosis.

  1. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    Science.gov (United States)

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  2. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  3. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.

    Science.gov (United States)

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M; Cohen, Jonathan C; Hobbs, Helen H

    2013-10-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.

  4. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  5. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  6. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  7. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  8. Changes in resting-state functional connectivity after stroke in a mouse brain lacking extracellular matrix components.

    Science.gov (United States)

    Quattromani, Miriana Jlenia; Hakon, Jakob; Rauch, Uwe; Bauer, Adam Q; Wieloch, Tadeusz

    2018-04-01

    In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two

  9. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  10. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    Science.gov (United States)

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Dwarfism and early death in mice lacking C-type natriuretic peptide

    Science.gov (United States)

    Chusho, Hideki; Tamura, Naohisa; Ogawa, Yoshihiro; Yasoda, Akihiro; Suda, Michio; Miyazawa, Takashi; Nakamura, Kenji; Nakao, Kazuki; Kurihara, Tatsuya; Komatsu, Yasato; Itoh, Hiroshi; Tanaka, Kiyoshi; Saito, Yoshihiko; Katsuki, Motoya; Nakao, Kazuwa

    2001-01-01

    Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia. PMID:11259675

  12. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  13. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    Science.gov (United States)

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice.

  14. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation

    DEFF Research Database (Denmark)

    Chidgey, M; Brakebusch, C; Gustafsson, E

    2001-01-01

    epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human...

  15. Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis.

    Directory of Open Access Journals (Sweden)

    Catherine M Miller

    Full Text Available Oral infection of C57BL/6J mice with the protozoan parasite Toxoplasma gondii leads to a lethal inflammatory ileitis.Mice lacking the purinergic receptor P2X7R are acutely susceptible to toxoplasmic ileitis, losing significantly more weight than C57BL/6J mice and exhibiting much greater intestinal inflammatory pathology in response to infection with only 10 cysts of T. gondii. This susceptibility is not dependent on the ability of P2X7R-deficient mice to control the parasite, which they accomplish just as efficiently as C57BL/6J mice. Rather, susceptibility is associated with elevated ileal concentrations of pro-inflammatory cytokines, reactive nitrogen intermediates and altered regulation of elements of NFκB activation in P2X7R-deficient mice.Our data support the thesis that P2X7R, a well-documented activator of pro-inflammatory cytokine production, also plays an important role in the regulation of intestinal inflammation.

  16. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  17. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  18. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  19. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Sonia Martinez-Herrero

    2016-11-01

    Full Text Available The link between intestinal inflammation, microbiota, and colorectal cancer (CRC is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM in microbiota composition and its impact on colitis with an inducible knockout (KO mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT mice by pyrosequencing. Colitis was induced in mice by administration of azoxymethane (AOM followed by dextran sulfate sodium (DSS in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p<0.05 in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology.

  20. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    Science.gov (United States)

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  1. Lack of carcinogenicity of tragacanth gum in B6C3F1 mice.

    Science.gov (United States)

    Hagiwara, A; Boonyaphiphat, P; Kawabe, M; Naito, H; Shirai, T; Ito, N

    1992-08-01

    Tragacanth gum was administered at dietary levels of 0 (control), 1.25 and 5.0% to groups of 50 male and 50 female B6C3F1 mice for 96 wk after which all animals were maintained on a basal diet without tragacanth gum for a further 10 wk. Mean body weights of females in the 5.0% and 1.25% groups were lower than those of the controls after 11 and 16 wk, respectively. However, there were no treatment-related clinical signs or adverse effects on survival rate, urinalysis, haematology, blood biochemistry and organ weight. While detailed histopathology revealed the development of squamous cell hyperplasias, papillomas and one carcinoma in the forestomach, there was no significant treatment-related increase in the incidence of any preneoplastic or neoplastic lesion. Thus, under the experimental conditions used, tragacanth gum was not carcinogenic in B6C3F1 mice of either sex.

  2. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  3. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement.

    Science.gov (United States)

    Hamelet, Julien; Maurin, Nicole; Fulchiron, Romain; Delabar, Jean-Maurice; Janel, Nathalie

    2007-10-01

    Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To investigate the role of hyperhomocysteinemia in lung injury and pulmonary fibrosis, we analyzed the lung of CBS-deficient mice, a murine model of severe hyperhomocysteinemia. The degree of lung injury was assessed by histologic examination. Analysis of profibrogenic factors was performed by real-time quantitative reverse transcription-polymerase chain reaction. CBS-deficient mice develop fibrosis and air space enlargement in the lung, concomitant with an enhanced expression of heme oxygenase-1, pro(alpha)1 collagen type I, transforming growth factor-beta1 and alpha-smooth muscle actin. However, lung fibrosis was found in the absence of increased inflammatory cell infiltrates as determined by histology, without changes in gene expression of proinflammatory cytokines TNFalpha and interleukin 6. The increased expression of alpha-smooth muscle actin and transforming growth factor-beta1 emphasizes the role of myofibroblasts differentiation in case of lung fibrosis due to CBS deficiency in mice.

  4. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Effect of Yikangning on immunological function in mice

    International Nuclear Information System (INIS)

    Hou Fangyu; Xu Xiaoyi; Shi Yulu; Sheng Xuecheng; Zhao Liyan

    2001-01-01

    Objective: To investigate the effect of Yikangning oral liquid on immunological function in mice. Methods: 3 H-TdR incorporation was used to detect the lymphocyte transformation rate for Con A and LPS. Results: The drug increased the lymphocyte transformation rate in mice with lowed immunological function. Conclusion: Yikangning enhances immunological function in mice with lowered immunological function

  6. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  7. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  8. Dwarfism in Mice Lacking Collagen-binding Integrins α2β1 and α11β1 Is Caused by Severely Diminished IGF-1 Levels*

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772

  9. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  10. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pTSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pTSA and TSA groups than LACK group after challenge (pTSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  11. Ketamine Does Not Produce Relief of Neuropathic Pain in Mice Lacking the β-Common Receptor (CD131)

    Science.gov (United States)

    Swartjes, Maarten; Niesters, Marieke; Heij, Lara; Dunne, Ann; Aarts, Leon; Hand, Carla Cerami; Kim, Hyung-Suk; Brines, Michael; Cerami, Anthony; Dahan, Albert

    2013-01-01

    Neuropathic pain (NP) is a debilitating condition associated with traumatic, metabolic, autoimmune and neurological etiologies. Although the triggers for NP are diverse, there are common underlying pathways, including activation of immune cells in the spinal cord and up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Ketamine, a well-known NDMAR antagonist, reduces neuropathic pain in a sustained manner. Recent study has shown that the novel 11-amino acid peptide erythropoietin derivative ARA290 produces a similar, long-lasting relief of NP. Here, we show that both drugs also have similar effects on the expression of mRNA of the NMDAR, as well as that of microglia, astrocytes and chemokine (C-C motif) ligand 2, all-important contributors to the development of NP. Although the effects of ketamine and ARA 290 on NP and its molecular mediators suggest a common mechanism of action, ARA 290 has no affinity for the NMDAR and acts specifically via the innate repair receptor (IRR) involved in tissue protection. We speculated therefore, that the IRR might be critically involved in the action of ketamine on neuropathic pain. To evaluate this, we studied the effects of ketamine and ARA 290 on acute pain, side effects, and allodynia following a spared nerve injury model in mice lacking the β-common receptor (βcR), a structural component of the IRR. Ketamine (50 mg/kg) and ARA 290 (30 µg/kg) produced divergent effects on acute pain: ketamine produced profound antinociception accompanied with psychomotor side effects, but ARA290 did not, in both normal and knock out mice. In contrast, while both drugs were antiallodynic in WT mice, they had no effect on NP in mice lacking the βcR. Together, these results show that an intact IRR is required for the effective treatment of NP with either ketamine or ARA 290, but is not involved in ketamine’s analgesic and side effects. PMID:23936499

  12. Gene expression profiling of gastric mucosa in mice lacking CCK and gastrin receptors

    DEFF Research Database (Denmark)

    Zhao, Chun-Mei; Kodama, Yosuke; Flatberg, Arnar

    2014-01-01

    normalized, which was associated with an up-regulated pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1). The basal part of the gastric mucosa expressed parathyroid hormone-like hormone (PTHLH) in a subpopulation of likely ECL cells (and possibly other cells) and vitamin D3 1α...... suggest a possible link between gastric PTHLH and vitamin D and bone metabolism.......The stomach produces acid, which may play an important role in the regulation of bone homeostasis. The aim of this study was to reveal signaling pathways in the gastric mucosa that involve the acid secretion and possibly the bone metabolism in CCK1 and/or CCK2 receptor knockout (KO) mice. Gastric...

  13. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  14. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6

    International Nuclear Information System (INIS)

    Armand, Anne-Sophie; Lecolle, Sylvie; Launay, Thierry; Pariset, Claude; Fiore, Frederic; Della Gaspera, Bruno; Birnbaum, Daniel; Chanoine, Christophe; Charbonnier, Frederic

    2004-01-01

    Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis

  15. Mice Lacking the β2 Adrenergic Receptor Have a Unique Genetic Profile before and after Focal Brain Ischaemia

    Directory of Open Access Journals (Sweden)

    Robin E White

    2012-08-01

    Full Text Available The role of the β2AR (β2 adrenergic receptor after stroke is unclear as pharmacological manipulations of the β2AR have produced contradictory results. We previously showed that mice deficient in the β2AR (β2KO had smaller infarcts compared with WT (wild-type mice (FVB after MCAO (middle cerebral artery occlusion, a model of stroke. To elucidate mechanisms of this neuroprotection, we evaluated changes in gene expression using microarrays comparing differences before and after MCAO, and differences between genotypes. Genes associated with inflammation and cell deaths were enriched after MCAO in both genotypes, and we identified several genes not previously shown to increase following ischaemia (Ccl9, Gem and Prg4. In addition to networks that were similar between genotypes, one network with a central core of GPCR (G-protein-coupled receptor and including biological functions such as carbohydrate metabolism, small molecule biochemistry and inflammation was identified in FVB mice but not in β2KO mice. Analysis of differences between genotypes revealed 11 genes differentially expressed by genotype both before and after ischaemia. We demonstrate greater Glo1 protein levels and lower Pmaip/Noxa mRNA levels in β2KO mice in both sham and MCAO conditions. As both genes are implicated in NF-κB (nuclear factor κB signalling, we measured p65 activity and TNFα (tumour necrosis factor α levels 24 h after MCAO. MCAO-induced p65 activation and post-ischaemic TNFα production were both greater in FVB compared with β2KO mice. These results suggest that loss of β2AR signaling results in a neuroprotective phenotype in part due to decreased NF-κB signalling, decreased inflammation and decreased apoptotic signalling in the brain.

  16. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  17. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  18. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Kelly A Hamilton

    Full Text Available Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in

  19. Environmental enrichment reduces innate anxiety with no effect on depression-like behaviour in mice lacking the serotonin transporter.

    Science.gov (United States)

    Rogers, Jake; Li, Shanshan; Lanfumey, Laurence; Hannan, Anthony J; Renoir, Thibault

    2017-08-14

    Along with being the main target of many antidepressant medications, the serotonin transporter (5-HTT) is known to be involved in the pathophysiology of depression and anxiety disorders. In line with this, mice with varying 5-HTT genotypes are invaluable tools to study depression- and anxiety-like behaviours as well as the mechanisms mediating potential therapeutics. There is clear evidence that both genetic and environmental factors play a role in the aetiology of psychiatric disorders. In that regard, housing paradigms which seek to enhance cognitive stimulation and physical activity have been shown to exert beneficial effects in animal models of neuropsychiatric disorders. In the present study, we examined the effects of environmental enrichment on affective-like behaviours and sensorimotor gating function of 5-HTT knock-out (KO) mice. Using the elevated-plus maze and the light-dark box, we found that environmental enrichment ameliorated the abnormal innate anxiety of 5-HTT KO mice on both tests. In contrast, environmental enrichment did not rescue the depression-like behaviour displayed by 5-HTT KO mice in the forced-swim test. Finally, measuring pre-pulse inhibition, we found no effect of genotype or treatment on sensorimotor gating. In conclusion, our data suggest that environmental enrichment specifically reduces innate anxiety of 5-HTT KO mice with no amelioration of the depression-like behaviour. This has implications for the current use of clinical interventions for patients with symptoms of both anxiety and depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  1. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels.

    Science.gov (United States)

    Marics, Irène; Malapert, Pascale; Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz

    2014-01-01

    The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.

  2. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  3. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S.; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M.; Martínez, Agustín D.; Muñoz, Pablo; Ardiles, Álvaro O.

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes. PMID:29692709

  4. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Directory of Open Access Journals (Sweden)

    Ivana Gajardo

    2018-04-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1 is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO mice and wild type (WT littermates in a visual and hidden version of the Morris water maze (MWM. We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs, which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  5. [Psychosocial functioning in non-psychiatric acute and chronic inpatients: depression, alexithymia and lack of assertiveness].

    Science.gov (United States)

    Arancibia, Marcelo; Behar, Rosa; Marín, Sofía; Inzunza, Nicolás; Madrid, Eva

    2016-11-01

    Depression, alexithymia, and lack of assertiveness interfere with individual psychosocial functioning and may result in longer hospitalization stay and poorer therapeutic results. To analyze the psychosocial functioning in acute and chronic patients and its association with psychological, clinical and sociodemographic variables. We performed a cross-sectional study that included 80 inpatients of both sexes with organic pathology, aged between 18 to 70 years old, without any current psychiatric disorder. Clinical and sociodemographic data were collected from a semi-structured interview and hospital records. Beck Depression Inventory-IA, Toronto Alexithymia Scale-20 and Rathus Assertiveness Scale were administered. Fifty five percent of patients had some degree of depression, 33% alexithymia and 34% lack of assertiveness. The levels of depression, alexithymia and lack of assertiveness in chronic patients were significantly higher than those observed in acute patients. Women and participants older than 60 years exhibited the highest degrees of depression. Alexithymia and lack of assertiveness were associated with a lower educational level. A negative significant correlation between alexithymia and assertiveness scores was observed among acute patients. Participants with chronic diseases had a lower psychosocial functioning. Less educated patients showed more alexithymic and less assertive features. We emphasized the need of a better management of these aspects by the health team, since social functioning might interfere with the outcome of physical illnesses.

  6. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  7. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  8. Lack of the sodium-driven chloride bicarbonate exchanger NCBE impairs visual function in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Gerrit Hilgen

    Full Text Available Regulation of ion and pH homeostasis is essential for normal neuronal function. The sodium-driven chloride bicarbonate exchanger NCBE (Slc4a10, a member of the SLC4 family of bicarbonate transporters, uses the transmembrane gradient of sodium to drive cellular net uptake of bicarbonate and to extrude chloride, thereby modulating both intracellular pH (pH(i and chloride concentration ([Cl(-](i in neurons. Here we show that NCBE is strongly expressed in the retina. As GABA(A receptors conduct both chloride and bicarbonate, we hypothesized that NCBE may be relevant for GABAergic transmission in the retina. Importantly, we found a differential expression of NCBE in bipolar cells: whereas NCBE was expressed on ON and OFF bipolar cell axon terminals, it only localized to dendrites of OFF bipolar cells. On these compartments, NCBE colocalized with the main neuronal chloride extruder KCC2, which renders GABA hyperpolarizing. NCBE was also expressed in starburst amacrine cells, but was absent from neurons known to depolarize in response to GABA, like horizontal cells. Mice lacking NCBE showed decreased visual acuity and contrast sensitivity in behavioral experiments and smaller b-wave amplitudes and longer latencies in electroretinograms. Ganglion cells from NCBE-deficient mice also showed altered temporal response properties. In summary, our data suggest that NCBE may serve to maintain intracellular chloride and bicarbonate concentration in retinal neurons. Consequently, lack of NCBE in the retina may result in changes in pH(i regulation and chloride-dependent inhibition, leading to altered signal transmission and impaired visual function.

  9. Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I.

    Science.gov (United States)

    Aro, Ellinoora; Salo, Antti M; Khatri, Richa; Finnilä, Mikko; Miinalainen, Ilkka; Sormunen, Raija; Pakkanen, Outi; Holster, Tiina; Soininen, Raija; Prein, Carina; Clausen-Schaumann, Hauke; Aszódi, Attila; Tuukkanen, Juha; Kivirikko, Kari I; Schipani, Ernestina; Myllyharju, Johanna

    2015-07-03

    Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  11. Pancreatic Ductal Adenocarcinoma (PDA) mice lacking Mucin 1 have a profound defect in tumor growth and metastasis

    Science.gov (United States)

    Besmer, Dahlia M.; Curry, Jennifer M.; Roy, Lopamudra D.; Tinder, Teresa L.; Sahraei, Mahnaz; Schettini, Jorge; Hwang, Sun-Il; Lee, Yong Y.; Gendler, Sandra J.; Mukherjee, Pinku

    2011-01-01

    MUC1 is over expressed and aberrantly glycosolated in >60% of pancreatic ductal adenocarcinomas. The functional role of MUC1 in pancreatic cancer has yet to be fully elucidated due to a dearth of appropriate models. In the present study, we have generated mouse models that spontaneously develop pancreatic ductal adenocarcinoma (KC), which are either Muc1-null (KCKO) or express human MUC1 (KCM). We show that KCKO mice have significantly slower tumor progression and rates of secondary metastasis, compared to both KC and KCM. Cell lines derived from KCKO tumors have significantly lower tumorigenic capacity compared to cells from KCM tumors. Therefore, mice with KCKO tumors had a significant survival benefit compared to mice with KCM tumors. In vitro, KCKO cells have reduced proliferation and invasion and failed to respond to epidermal growth factor (EGF), platelet-derived growth factor (PDGF), or matrix metalloproteinase-9 (MMP9). Further, significantly fewer KCKO cells entered the G2M phase of the cell cycle compared to the KCM cells. Proteomics and western blotting analysis revealed a complete loss of cdc-25c expression, phosphorylation of MAPK, as well as a significant decrease in Nestin and Tubulin α-2 chain expression in KCKO cells. Treatment with a MEK1/2 inhibitor, U0126, abrogated the enhanced proliferation of the KCM cells but had minimal effect on KCKO cells, suggesting that MUC1 is necessary for MAPK activity and oncogenic signaling. This is the first study to utilize a Muc1-null PDA mouse in order to fully elucidate the oncogenic role of MUC1, both in vivo and in vitro. PMID:21558393

  12. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice.

    Science.gov (United States)

    Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya; Mendus, Diana; Leu, Rose; Wangsawihardja, Felix; Johnson, Kenneth R; Mustapha, Mirna

    2014-01-01

    Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-K(b) and H2-D(b), and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-K(b) and H2-D(b) causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.

  13. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    Science.gov (United States)

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  14. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  15. Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.

    Directory of Open Access Journals (Sweden)

    Antje Brand

    Full Text Available Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP. In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1 SP, 2 an SP antagonist (GR-82334, and 3 an NMDA antagonist (APV on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.

  16. Functional neurokinin and NMDA receptor activity in an animal naturally lacking substance P: the naked mole-rat.

    Science.gov (United States)

    Brand, Antje; Smith, Ewan St J; Lewin, Gary R; Park, Thomas J

    2010-12-21

    Naked mole-rats are extremely unusual among mammals in that their cutaneous C-fibers lack the neuropeptide Substance P (SP). In other mammals, SP plays an important role in nociception: it is released from C-fibers onto spinal neurons where it facilitates NMDA receptor activity and causes sensitization that can last for minutes, hours or days. In the present study, we tested the effects of intrathecal application of: 1) SP, 2) an SP antagonist (GR-82334), and 3) an NMDA antagonist (APV) on heat-evoked foot withdrawal. In the naked mole-rat, at a high enough concentration, application of SP caused a large, immediate, and long-lasting sensitization of foot withdrawal latency that was transiently reversed by application of either antagonist. However, neither SP nor NMDA antagonists had an effect when administered alone to naïve animals. In contrast, both antagonists induced an increase in basal withdrawal latency in mice. These results indicate that spinal neurons in naked mole-rats have functional SP and NMDA receptors, but that these receptors do not participate in heat-evoked foot withdrawal unless SP is experimentally introduced. We propose that the natural lack of SP in naked mole-rat C-fibers may have resulted during adaptation to living in a chronically high carbon dioxide, high ammonia environment that, in other mammals, would stimulate C-fibers and evoke nocifensive behavior.

  17. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  18. Effect of Jiangzhi tablet on gastrointestinal propulsive function in mice

    Science.gov (United States)

    Wang, Xiangrong; Geng, Xiuli; Zhao, Jingsheng; Fan, Lili; Zhang, Zhengchen

    2018-04-01

    This paper aims to study the effect of lipid-lowering tablets on gastric emptying and small intestinal propulsion in mice. Mice were randomly divided into control group, Digestant Pill group, Jiangzhi tablet group, middle dose and small dose, the mice gastric emptying phenolsulfonphthalein, gastric residual rate of phenol red indicator to evaluate the gastric emptying rate, residual rate of detection in mouse stomach; small intestine propulsion and selection of carbon ink as the experimental index. Effects were observed to promote the function of normal mice gastric emptying and intestine. The gastric emptying and small intestinal motor function of normal mice were all promoted by each administration group, and the effect was most obvious in small dose group. The effect of reducing blood lipid on gastrointestinal motility of mice ware obviously enhanced.

  19. Hematopoietic stem cell function in motheaten mice

    International Nuclear Information System (INIS)

    Shultz, L.D.; Bailey, C.L.; Coman, D.R.

    1983-01-01

    Mice homozygous for the autosomal recessive mutation ''motheaten'' have normal numbers of multipotential hematopoietic stem cells in the bone marrow and spleen as determined by spleen colony assay. Histologic examination shows no qualitative abnormality in morphology of stem cell colonies in recipients of bone marrow or spleen cells from motheaten mice. Despite the apparently normal ontogeny, distribution, and differentiative capacity of CFU stem cells, bone marrow and spleen cells from motheaten mice fail to save congenic +/+ lethally gamma-irradiated hosts. This impaired lifesparing capacity is not due to defective self-renewal but appears to be due in part to pulmonary hemorrhage from alveolar capillaries in the gamma-irradiated hosts. Treatment of motheaten mice with 500 R gamma-irradiation followed by reconstitution with normal bone marrow cells increases the lifespan of this mutant to 10 months of age. The early onset of pneumonitis and subsequent short lifespan of motheaten mice is determined at the level of progenitor cells in the bone marrow

  20. Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses.

    NARCIS (Netherlands)

    Streijger, F.; Jost, C.R.; Oerlemans, F.T.J.J.; Ellenbroek, B.A.; Cools, A.R.; Wieringa, B.; Zee, C.E.E.M. van der

    2004-01-01

    Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform,

  1. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  2. Delayed contraction of the CD8+ T cell response toward lymphocytic choriomeningitis virus infection in mice lacking serglycin

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Christensen, Jan P; Sørensen, Maria R

    2008-01-01

    (-/-)) mice with lymphocytic choriomeningitis virus (LCMV). Wt and SG(-/-) mice cleared 10(3) PFU of highly invasive LCMV with the same kinetics, and the CD8(+) T lymphocytes from wt and SG(-/-) animals did not differ in GrB, perforin, IFN-gamma, or TNF-alpha content. However, when a less invasive LCMV strain...

  3. Altered Hematopoiesis in Mice Lacking DNA Polymerase μ Is Due to Inefficient Double-Strand Break Repair

    Science.gov (United States)

    Lucas, Daniel; Escudero, Beatriz; Ligos, José Manuel; Segovia, Jose Carlos; Estrada, Juan Camilo; Terrados, Gloria; Blanco, Luis; Samper, Enrique; Bernad, Antonio

    2009-01-01

    Polymerase mu (Polμ) is an error-prone, DNA-directed DNA polymerase that participates in non-homologous end-joining (NHEJ) repair. In vivo, Polμ deficiency results in impaired Vκ-Jκ recombination and altered somatic hypermutation and centroblast development. In Polμ−/− mice, hematopoietic development was defective in several peripheral and bone marrow (BM) cell populations, with about a 40% decrease in BM cell number that affected several hematopoietic lineages. Hematopoietic progenitors were reduced both in number and in expansion potential. The observed phenotype correlates with a reduced efficiency in DNA double-strand break (DSB) repair in hematopoietic tissue. Whole-body γ-irradiation revealed that Polμ also plays a role in DSB repair in non-hematopoietic tissues. Our results show that Polμ function is required for physiological hematopoietic development with an important role in maintaining early progenitor cell homeostasis and genetic stability in hematopoietic and non-hematopoietic tissues. PMID:19229323

  4. The brain functional connectome is robustly altered by lack of sleep.

    Science.gov (United States)

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

    Science.gov (United States)

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-Åke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

  6. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  7. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    Science.gov (United States)

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  8. Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule

    Science.gov (United States)

    Zalups, Rudolfs K.; Joshee, Lucy; Bridges, Christy C.

    2014-01-01

    The role of the multi-resistance protein 2 (Mrp2) in the nephropathy induced by inorganic mercuric mercury (Hg2+) was studied in rats (TR−) and mice (Mrp2−/−), which lack functional Mrp2, and control animals. Animals were exposed to nephrotoxic doses of HgCl2. Forty-eight or 24 hours after exposure, tissues were harvested and analyzed for Hg content and markers of injury. Histological analyses revealed that the proximal tubular segments affected pathologically by Hg2+ were significantly different between Mrp2-deficient animals and controls. In the absence of Mrp2, cellular injury localized almost exclusively in proximal tubular segments in the subcapsular (S1) to midcortical regions (early S2) of the kidney. In control animals, cellular death occurred mainly in the proximal tubular segments in the inner cortex (late S2) and outer stripe of the outer medulla (S3). These differences in renal pathology indicate that axial heterogeneity exists along the proximal tubule with respect to how mercuric ions are handled. Total renal and hepatic accumulation of mercury was also greater in animals lacking Mrp2 than in controls, indicating that Mrp2 normally plays a significant role in eliminating mercuric ions from within proximal tubular cells and hepatocytes. Analyses of plasma creatinine, BUN, and renal expression of Kim-1 and Ngal tend to support the severity of the nephropathies detected histologically. Collectively, our findings indicate that a fraction of mercuric ions is normally secreted by Mrp2 in early portions of proximal tubules into the lumen and then is absorbed downstream in straight portions, where mercuric species typically induce toxic effects. PMID:25145654

  9. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

    Science.gov (United States)

    Ng, Lily; Liu, Hong; St Germain, Donald L; Hernandez, Arturo; Forrest, Douglas

    2017-06-01

    Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

  10. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    Science.gov (United States)

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  11. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  12. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  13. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    Science.gov (United States)

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  14. Action potential generation in the small intestine of W mutant mice that lack interstitial cells of Cajal

    DEFF Research Database (Denmark)

    Malysz, J; Thuneberg, L; Mikkelsen, Hanne Birte

    1996-01-01

    significantly changed. Neither FLC nor MLC were part of a network nor did they form specialized junctions with neighboring cells as ICC do. Hence no cell type had replaced ICC at their normal morphological position associated with Auerbach's plexus. ICC were present in W/Wv mice at the deep muscular plexus...

  15. Loss of CDKL5 disrupts respiratory function in mice.

    Science.gov (United States)

    Lee, Kun-Ze; Liao, Wenlin

    2018-01-01

    Cyclin-dependent kinase-like 5 (CDKL5) is an X-linked gene encoding a serine-threonine kinase that is highly expressed in the central nervous system. Mutations in CDKL5 cause neurological and psychiatric symptoms, including early-onset seizures, motor dysfunction, autistic features and sleep breathing abnormalities in patients. It remains to be addressed whether loss of CDKL5 causes respiratory dysfunction in mice. Here, we examined the respiratory pattern of male Cdkl5 -/y mice at 1-3 months of age during resting breathing and respiratory challenge (i.e., hypoxia and hypercapnia) via whole body plethysmography. The results demonstrated that the resting respiratory frequency and tidal volume of Cdkl5 -/y mice was unaltered compared to that of WT mice at 1 month of age. However, these mutant mice exhibit transient reduction in tidal volume during respiratory challenge even the reduction was restored at 2 months of age. Notably, the sigh-breathing pattern was changed in Cdkl5 -/y mice, showing a transient reduction in sigh volume at 1-2 month of age and long-term attenuation of peak expiratory airflow from 1 to 3 month of age. Therefore, loss of CDKL5 causes breathing deficiency, supporting a CDKL5-mediated regulation of respiratory function in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Lack of the matricellular protein SPARC (secreted protein, acidic and rich in cysteine attenuates liver fibrogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Catalina Atorrasagasti

    Full Text Available INTRODUCTION: Secreted Protein, Acidic and Rich in Cysteine (SPARC is a matricellular protein involved in many biological processes and found over-expressed in cirrhotic livers. By mean of a genetic approach we herein provide evidence from different in vivo liver disease models suggesting a profibrogenic role for SPARC. METHODS: Two in vivo models of liver fibrosis, based on TAA administration and bile duct ligation, were developed on SPARC wild-type (SPARC(+/+ and knock-out (SPARC(-/- mice. Hepatic SPARC expression was analyzed by qPCR. Fibrosis was assessed by Sirius Red staining, and the maturation state of collagen fibers was analyzed using polarized light. Necroinflammatory activity was evaluated by applying the Knodell score and liver inflammatory infiltration was characterized by immunohistochemistry. Hepatic stellate cell activation was assessed by α-SMA immunohistochemistry. In addition, pro-fibrogenic genes and inflammatory cytokines were measured by qPCR and/or ELISA. Liver gene expression profile was analyzed in SPARC(-/- and SPARC(+/+ mice using Affymetrix Mouse Gene ST 1.0 array. RESULTS: SPARC expression was found induced in fibrotic livers of mouse and human. SPARC(-/- mice showed a reduction in the degree of inflammation, mainly CD4+ cells, and fibrosis. Consistently, collagen deposits and mRNA expression levels were decreased in SPARC(-/- mice when compared to SPARC(+/+ mice; in addition, MMP-2 expression was increased in SPARC(-/- mice. A reduction in the number of activated myofibroblasts was observed. Moreover, TGF-β1 expression levels were down-regulated in the liver as well as in the serum of TAA-treated knock-out animals. Ingenuity Pathway Analysis (IPA analysis suggested several gene networks which might involve protective mechanisms of SPARC deficiency against liver fibrogenesis and a better established machinery to repair DNA and detoxify from external chemical stimuli. CONCLUSIONS: Overall our data suggest that

  17. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Strausmanis, R; Hendrikson, I B; Holmberg, M; Roennbaeck, C [Research Inst. of National Defence, Sundbyberg (Sweden). Dept. 4

    1978-02-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones.

  18. Lack of effect on the chromosomal non-disjunction in aged female mice after low dose x-irradiation

    International Nuclear Information System (INIS)

    Strausmanis, R.; Hendrikson, I.-B.; Holmberg, M.; Roennbaeck, C.

    1978-01-01

    Karyotypes were determined in 1064 embryos of aged C57/BL mothers. The virgin female mice were irradiated with 0, 4, 8 or 16 R of X-rays, respectively, and placed with young untreated males 5 days after irradiation. 10.5-days old embryos were recovered from the uterus. Aneuploid embryos classified as alive (heart beats observed at the dissection) were 1 monosomic in the control group (496 embryos) and 2 trisomics in the irradiated group (568 embryos). The number of aneuploid embryos classified as dead was 4 trisomic cases in the control group and 3 trisomics in the irradiated group. The data indicate that trisomic embryos are not uncommon in the mouse but are eliminated in post-implantation death. In contrast to the results of Yamamoto et al. the present data do not demonstrate an increased frequency of chromosome abnormalities in embryos of aged mice X-irradiated before mating as compared to non-irradiated ones

  19. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  20. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    Science.gov (United States)

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  2. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development.

    Science.gov (United States)

    Goldie, Stephen J; Arhatari, Benedicta D; Anderson, Peter; Auden, Alana; Partridge, Darren D; Jane, Stephen M; Dworkin, Sebastian

    2016-10-18

    Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.

  3. Preserved otolith organ function in caspase-3-deficient mice with impaired horizontal semicircular canal function.

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-06-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: (1) horizontal angular vestibulo-ocular reflex (hVOR) to evaluate semicircular canal function and (2) otolith-ocular reflex (OOR) to evaluate otolith organ function and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo off-vertical axis rotation to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow-phase eye velocity and vertical eye position were evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 (-/-) mice had severely impaired hVOR gain, while Casp3 (+/-) mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low-to-mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ-related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function.

  4. Preserved otolith organ function in caspase-3 deficient mice with impaired horizontal semicircular canal function

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-01-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: 1) horizontal angular vestibular-ocular reflex (hVOR) to evaluate semicircular canal function, and 2) otolith-ocular reflex (OOR) to evaluate otolith organ function, and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo-off vertical axis rotation (pOVAR) to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow phase eye velocity (HEV) and vertical eye position (VEP) was evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 −/− mice had severely impaired hVOR gain, while Casp3 +/− mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low to mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function. PMID:25827332

  5. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  6. B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS

    Science.gov (United States)

    Pedersen, Gabriel K.; Àdori, Monika; Khoenkhoen, Sharesta; Dosenovic, Pia; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2014-01-01

    B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93+IgM+CD5+) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93+IgM+CD5− cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS. PMID:25228759

  7. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.

    Science.gov (United States)

    Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu

    2009-10-01

    Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.

  8. Anxiety- and depression-like behavior in mice lacking the CD157/BST1 gene, a risk factor for Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Olga eLopatina

    2014-04-01

    Full Text Available CD157, known as bone marrow stromal cell antigen-1, is a glycosylphosphatidylinositol-anchored ADP-ribosyl cyclase that supports the survival and function of B-lymphocytes and hematopoietic or intestinal stem cells. Although CD157/Bst1 is a risk locus in Parkinson’s disease (PD, little is known about the function of CD157 in the nervous system and contribution to PD progression. Here, we show that no apparent motor dysfunction was observed in young knockout (CD157-/- male mice under less aging-related effects on behaviors. CD157-/- mice exhibited anxiety-related and depression-like behaviors compared with wild-type mice. These behaviors were rescued through treatment with anti-psychiatric drugs and oxytocin. CD157 was weakly expressed in the amygdala and c-Fos immunoreactivity was less evident in CD157-/- mice than in wild-type mice. These results demonstrate for the first time that CD157 plays a role as a neuro-regulator and suggest a potential role in pre-motor symptoms in PD.

  9. Characterization of NGF, trkANGFR, and p75NTR in Retina of Mice Lacking Reelin Glycoprotein

    Directory of Open Access Journals (Sweden)

    Bijorn Omar Balzamino

    2014-01-01

    Full Text Available Both Reelin and Nerve Growth Factor (NGF exert crucial roles in retinal development. Retinogenesis is severely impaired in E-reeler mice, a model of Reelin deficiency showing specific Green Fluorescent Protein expression in Rod Bipolar Cells (RBCs. Since no data are available on Reelin and NGF cross-talk, NGF and trkANGFR/ p75NTR expression was investigated in retinas from E-reeler versus control mice, by confocal microscopy, Western blotting, and real time PCR analysis. A scattered increase of NGF protein was observed in the Ganglion Cell Layer and more pronounced in the Inner Nuclear Layer (INL. A selective increase of p75NTR was detected in most of RBCs and in other cell subtypes of INL. On the contrary, a slight trend towards a decrease was detected for trkANGFR, albeit not significant. Confocal data were validated by Western blot and real time PCR. Finally, the decreased trkANGFR/ p75NTR ratio, representative of p75NTR increase, significantly correlated with E-reeler versus E-control. These data indicate that NGF-trkANGFR/ p75NTR is affected in E-reeler retina and that p75NTR might represent the main NGF receptor involved in the process. This first NGF-trkANGFR/ p75NTR characterization suggests that E-reeler might be suitable for exploring Reelin-NGF cross-talk, representing an additional information source in those pathologies characterized by retinal degeneration.

  10. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  11. Functional consequences of integrin gene mutations in mice

    DEFF Research Database (Denmark)

    Bouvard, D; Brakebusch, C; Gustafsson, E

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...

  12. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Jenkins, Rosalind E. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  13. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    International Nuclear Information System (INIS)

    Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.; Bajt, Mary Lynn; Park, B. Kevin; Jaeschke, Hartmut

    2013-01-01

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  14. Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice

    Directory of Open Access Journals (Sweden)

    Lina M. Ruiz

    2015-01-01

    Full Text Available Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2∙- production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined.

  15. Curcumin Alleviates the Functional Gastrointestinal Disorders of Mice In Vivo.

    Science.gov (United States)

    Yu, Jing; Xu, Wen-Hua; Sun, Wei; Sun, Yi; Guo, Zhi-Li; Yu, Xiao-Ling

    2017-12-01

    Curcumin is a natural polyphenol extracted from the turmeric rhizome, which has a wide range of biological activities, but until now the effects of curcumin on the gastrointestinal peristalsis have not been fully understood. In vivo study, we observed the effects of curcumin on gastric emptying and intestinal propulsion rates of mice in normal state and in delayed state by atropine (ATR) or nitric oxide precursor L-arginine (L-Arg). An in vitro study explored the direct effects of curcumin on the intestinal contractility, but were studied through measuring spontaneous contraction of isolated jejunum of mice. Our results showed that intragastric administration of curcumin (200 mg/kg/day) for 10-20 days significantly improved gastric emptying and intestinal propulsion rates of mice delayed by ATR. Moreover, intragastric administration of curcumin (200 mg/kg/day) for 15 days also significantly improved mice gastric emptying and intestinal propulsion rates delayed by L-Arg. There was no significant effect on normal gastrointestinal propulsion of mice after intragastric administration of curcumin (200 mg/kg/day) for 1-20 days. When normal isolated jejunum of mice were incubated with curcumin in vitro, the amplitude of the spontaneous contractile waves of jejunum was reduced in a concentration-dependent manner. Moreover, curcumin reduced the amplitude of the contractile waves of jejunum in both contracted and relaxed state induced by acetylcholine or ATR individually. Taken together, our results suggest that curcumin has quite different effects on gastrointestinal peristalsis in vivo and in vitro. Moderate dose of curcumin by intragastric administration for more than 10 days can alleviate the functional gastrointestinal disorders of mice, but cannot affect normal gastrointestinal propulsion.

  16. The anti-hypercholesterolemic effect of low p53 expression protects vascular endothelial function in mice.

    Directory of Open Access Journals (Sweden)

    Francois Leblond

    Full Text Available To demonstrate that p53 modulates endothelial function and the stress response to a high-fat western diet (WD.Three-month old p53+/+ wild type (WT and p53+/- male mice were fed a regular or WD for 3 months. Plasma levels of total cholesterol (TC and LDL-cholesterol were significantly elevated (p<0.05 in WD-fed WT (from 2.1±0.2 mmol/L to 3.1±0.2, and from 0.64±0.09 mmol/L to 1.25±0.11, respectively but not in p53+/- mice. The lack of cholesterol accumulation in WD-fed p53+/- mice was associated with high bile acid plasma concentrations (p53+/- =  4.7±0.9 vs. WT =  3.3±0.2 μmol/L, p<0.05 concomitant with an increased hepatic 7-alpha-hydroxylase mRNA expression. While the WD did not affect aortic endothelial relaxant function in p53+/- mice (WD =  83±5 and RD =  82±4% relaxation, it increased the maximal response to acetylcholine in WT mice (WD =  87±2 vs. RD =  62±5% relaxation, p<0.05 to levels of p53+/-. In WT mice, the rise in TC associated with higher (p<0.05 plasma levels of pro-inflammatory keratinocyte-derived chemokine, and an over-activation (p<0.05 of the relaxant non-nitric oxide/non-prostacyclin endothelial pathway. It is likely that in WT mice, activations of these pathways are adaptive and contributed to maintain endothelial function, while the WD neither promoted inflammation nor affected endothelial function in p53+/- mice.Our data demonstrate that low endogenous p53 expression prevents the rise in circulating levels of cholesterol when fed a WD. Consequently, the endothelial stress of hypercholesterolemia is absent in young p53+/- mice as evidenced by the absence of endothelial adaptive pathway over-activation to minimize stress-related damage.

  17. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Science.gov (United States)

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  18. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Directory of Open Access Journals (Sweden)

    Nidhi Jain

    2017-02-01

    Full Text Available Following Japanese encephalitis virus (JEV infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null are highly susceptible and die over 10-18 day period as compared to the wild-type (WT mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB. Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  19. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  20. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities.

    Science.gov (United States)

    Wöhr, M; Orduz, D; Gregory, P; Moreno, H; Khan, U; Vörckel, K J; Wolfer, D P; Welzl, H; Gall, D; Schiffmann, S N; Schwaller, B

    2015-03-10

    Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV(-/-)) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV(+/-)) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV(-/-) and PV(+/-) mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus providing a

  1. Lack of TNF-alpha receptor type 2 protects motor neurons in a cellular model of amyotrophic lateral sclerosis and in mutant SOD1 mice but does not affect disease progression.

    Science.gov (United States)

    Tortarolo, Massimo; Vallarola, Antonio; Lidonnici, Dario; Battaglia, Elisa; Gensano, Francesco; Spaltro, Gabriella; Fiordaliso, Fabio; Corbelli, Alessandro; Garetto, Stefano; Martini, Elisa; Pasetto, Laura; Kallikourdis, Marinos; Bonetto, Valentina; Bendotti, Caterina

    2015-10-01

    Changes in the homeostasis of tumor necrosis factor α (TNFα) have been demonstrated in patients and experimental models of amyotrophic lateral sclerosis (ALS). However, the contribution of TNFα to the development of ALS is still debated. TNFα is expressed by glia and neurons and acts through the membrane receptors TNFR1 and TNFR2, which may have opposite effects in neurodegeneration. We investigated the role of TNFα and its receptors in the selective motor neuron death in ALS in vitro and in vivo. TNFR2 expressed by astrocytes and neurons, but not TNFR1, was implicated in motor neuron loss in primary SOD1-G93A co-cultures. Deleting TNFR2 from SOD1-G93A mice, there was partial but significant protection of spinal motor neurons, sciatic nerves, and tibialis muscles. However, no improvement of motor impairment or survival was observed. Since the sciatic nerves of SOD1-G93A/TNFR2-/- mice showed high phospho-TAR DNA-binding protein 43 (TDP-43) accumulation and low levels of acetyl-tubulin, two indices of axonal dysfunction, the lack of symptom improvement in these mice might be due to impaired function of rescued motor neurons. These results indicate the interaction between TNFR2 and membrane-bound TNFα as an innovative pathway involved in motor neuron death. Nevertheless, its inhibition is not sufficient to stop disease progression in ALS mice, underlining the complexity of this pathology. We show evidence of the involvement of neuronal and astroglial TNFR2 in the motor neuron degeneration in ALS. Both concur to cause motor neuron death in primary astrocyte/spinal neuron co-cultures. TNFR2 deletion partially protects motor neurons and sciatic nerves in SOD1-G93A mice but does not improve their symptoms and survival. However, TNFR2 could be a new target for multi-intervention therapies. © 2015 International Society for Neurochemistry.

  2. Evidence for dynamic network regulation of Drosophila photoreceptor function from mutants lacking the neurotransmitter histamine

    Directory of Open Access Journals (Sweden)

    An eDau

    2016-03-01

    Full Text Available Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdcJK910 mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdcJK910 photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdcJK910 photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdcJK910 R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdcJK910 mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

  3. Lack of functional benefit with glutamine versus placebo in Duchenne muscular dystrophy: a randomized crossover trial.

    Directory of Open Access Journals (Sweden)

    Elise Mok

    Full Text Available Oral glutamine decreases whole body protein breakdown in Duchenne muscular dystrophy (DMD. We evaluated the functional benefit of 4 months oral glutamine in DMD.30 ambulant DMD boys were included in this double-blind, randomized crossover trial with 2 intervention periods: glutamine (0.5 g/kg/d and placebo, 4 months each, separated by a 1-month wash-out, at 3 outpatient clinical investigation centers in France. Functional benefit was tested by comparing glutamine versus placebo on change in walking speed at 4 months. Secondary outcome measures were: 2-minute walk test, work, power, muscle mass (urinary creatinine, markers of myofibrillar protein breakdown (urinary 3-methyl-histidine/creatinine, serum creatine phospho-kinase, body composition (fat free mass, fat mass percentage, safety and oral nutrient intake. There was no improvement in the primary end point (walking speed or in secondary measures of muscle function (2-minute walk test, work, power in the glutamine group compared with placebo. However, subjects receiving glutamine or placebo showed no deterioration in functional measures over the course of the 9-month trial. No differences in muscle mass, markers of protein breakdown or serum creatine phosho-kinase were observed, except for a blunted increase in fat free mass in the glutamine group which led to a greater increase in fat mass percentage. Glutamine was safe and well-tolerated.This trial did not identify additional benefit of 4 months oral glutamine over placebo on muscle mass or function in ambulatory DMD boys. Although apparently safe, current data cannot support routine supplementation in this population as a whole, until further research proves otherwise.(ClinicalTrials.gov NCT00296621.

  4. Lack of functional relevance of isolated cell damage in transplants of Parkinson's disease patients

    DEFF Research Database (Denmark)

    Cooper, Oliver; Astradsson, Arnar; Hallett, Penny

    2009-01-01

    Postmortem analyses from clinical neural transplantation trials of several subjects with Parkinson's disease revealed surviving grafted dopaminergic neurons after more than a decade. A subset of these subjects displayed isolated dopaminergic neurons within the grafts that contained Lewy body......-like structures. In this review, we discuss why this isolated cell damage is unlikely to affect the overall graft function and how we can use these observations to help us to understand age-related neurodegeneration and refine our future cell replacement therapies....

  5. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    Science.gov (United States)

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  6. Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.

    2010-01-01

    Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191

  7. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    Science.gov (United States)

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.

  8. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Low calorie sweeteners: Evidence remains lacking for effects on human gut function.

    Science.gov (United States)

    Bryant, Charlotte; Mclaughlin, John

    2016-10-01

    The importance of nutrient induced gut-brain signalling in the regulation of human food intake has become an increasing focus of research. Much of the caloric excess consumed comes from dietary sugars, but our knowledge about the mechanisms mediating the physiological and appetitive effects of sweet tastants in the human gut and gut-brain axis is far from complete. The comparative effects of natural sugars vs low calorie sweeteners are also poorly understood. Research in animal and cellular models has suggested a key functional role in gut endocrine cells for the sweet taste receptors previously well described in oral taste. However human studies to date have very consistently failed to show that activation of the sweet taste receptor by low calorie sweeteners placed in the human gut fails to replicate any of the effects on gastric motility, gut hormones or appetitive responses evoked by caloric sugars. Copyright © 2016. Published by Elsevier Inc.

  10. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    Directory of Open Access Journals (Sweden)

    Xuan Wang-Kan

    2017-07-01

    Full Text Available AcrAB-TolC is the paradigm resistance-nodulation-division (RND multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.

  11. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway.

    Science.gov (United States)

    Garfinkel, Benjamin P; Arad, Shiri; Le, Phuong T; Bustin, Michael; Rosen, Clifford J; Gabet, Yankel; Orly, Joseph

    2015-12-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3(-/-) mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography analysis showed that Hp1bp3(-/-) mice present a dramatic impairment of their bone development and structure. By 3 weeks of age, mice of both sexes have severely impaired cortical and trabecular bone, and these defects persist into adulthood and beyond. Primary cultures of both osteoblasts and osteoclasts from Hp1bp3(-/-) bone marrow and splenocytes, respectively, showed normal differentiation and function, strongly suggesting that the impaired bone accrual is due to noncell autonomous systemic cues in vivo. One major endocrine pathway regulating both body growth and bone acquisition is the IGF regulatory system, composed of IGF-1, the IGF receptors, and the IGF-binding proteins (IGFBPs). At 3 weeks of age, Hp1bp3(-/-) mice exhibited a 60% reduction in circulating IGF-1 and a 4-fold increase in the levels of IGFBP-1 and IGFBP-2. These alterations were reflected in similar changes in the hepatic transcripts of the Igf1, Igfbp1, and Igfbp2 genes. Collectively, these results suggest that HP1BP3 plays a key role in normal growth and bone development by regulating transcription of endocrine IGF-1 components.

  12. Aquaporin-11: A channel protein lacking apparent transport function expressed in brain

    Directory of Open Access Journals (Sweden)

    Tsunenari Takashi

    2006-05-01

    Full Text Available Abstract Background The aquaporins are a family of integral membrane proteins composed of two subfamilies: the orthodox aquaporins, which transport only water, and the aquaglyceroporins, which transport glycerol, urea, or other small solutes. Two recently described aquaporins, numbers 11 and 12, appear to be more distantly related to the other mammalian aquaporins and aquaglyceroporins. Results We report on the characterization of Aquaporin-11 (AQP11. AQP11 RNA and protein is found in multiple rat tissues, including kidney, liver, testes and brain. AQP11 has a unique distribution in brain, appearing in Purkinje cell dendrites, hippocampal neurons of CA1 and CA2, and cerebral cortical neurons. Immunofluorescent staining of Purkinje cells indicates that AQP11 is intracellular. Unlike other aquaporins, Xenopus oocytes expressing AQP11 in the plasma membrane failed to transport water, glycerol, urea, or ions. Conclusion AQP11 is functionally distinct from other proteins of the aquaporin superfamily and could represent a new aquaporin subfamily. Further studies are necessary to elucidate the role of AQP11 in the brain.

  13. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  14. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    Science.gov (United States)

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  15. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    Science.gov (United States)

    Mossink, Marieke H; de Groot, Jan; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Scheffer, George L; Sonneveld, Pieter; Scheper, Rik J; Wiemer, Erik A C

    2003-09-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human DCs. To further investigate the role of vaults in DCs, we examined the effects of disruption of the major vault protein (MVP/LRP) on the development and antigen-presenting capacity of DCs, using our MVP/LRP knockout mouse model. Mononuclear bone marrow cells were isolated from wild-type and knockout mice and stimulated to differentiate to DCs. Like human DCs, the wild-type murine DC cultures strongly expressed MVP/LRP. Nevertheless, the MVP/LRP-deficient DCs developed normally and showed similar expression levels of several DC surface markers. No differences were observed in in vitro studies on the antigen uptake and presenting capacities of the wild-type and MVP/LRP knockout DCs. Moreover, immunization of the MVP/LRP-deficient mice with several T-cell antigens led to responses similar to those observed in the wild-type mice, indicating that the in vivo DC migration and antigen-presentation capacities are intact. Moreover, no differences were observed in the induction of the T cell-dependent humoral responses and orally induced peripheral T-cell tolerance. In conclusion, vaults are not required for primary DC functions. Their abundance in DCs may, however, still reflect basic roles in myeloid cell proliferation and DC development.

  16. Toxoplasma gondii Actively Inhibits Neuronal Function in Chronically Infected Mice

    Science.gov (United States)

    Haroon, Fahad; Händel, Ulrike; Angenstein, Frank; Goldschmidt, Jürgen; Kreutzmann, Peter; Lison, Holger; Fischer, Klaus-Dieter; Scheich, Henning; Wetzel, Wolfram; Schlüter, Dirk; Budinger, Eike

    2012-01-01

    Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii–infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca2+) imaging studies revealed that tachyzoites actively manipulated Ca2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host. PMID:22530040

  17. Toxoplasma gondii actively inhibits neuronal function in chronically infected mice.

    Directory of Open Access Journals (Sweden)

    Fahad Haroon

    Full Text Available Upon infection with the obligate intracellular parasite Toxoplasma gondii, fast replicating tachyzoites infect a broad spectrum of host cells including neurons. Under the pressure of the immune response, tachyzoites convert into slow-replicating bradyzoites, which persist as cysts in neurons. Currently, it is unclear whether T. gondii alters the functional activity of neurons, which may contribute to altered behaviour of T. gondii-infected mice and men. In the present study we demonstrate that upon oral infection with T. gondii cysts, chronically infected BALB/c mice lost over time their natural fear against cat urine which was paralleled by the persistence of the parasite in brain regions affecting behaviour and odor perception. Detailed immunohistochemistry showed that in infected neurons not only parasitic cysts but also the host cell cytoplasm and some axons stained positive for Toxoplasma antigen suggesting that parasitic proteins might directly interfere with neuronal function. In fact, in vitro live cell calcium (Ca(2+ imaging studies revealed that tachyzoites actively manipulated Ca(2+ signalling upon glutamate stimulation leading either to hyper- or hypo-responsive neurons. Experiments with the endoplasmatic reticulum Ca(2+ uptake inhibitor thapsigargin indicate that tachyzoites deplete Ca(2+ stores in the endoplasmatic reticulum. Furthermore in vivo studies revealed that the activity-dependent uptake of the potassium analogue thallium was reduced in cyst harbouring neurons indicating their functional impairment. The percentage of non-functional neurons increased over time In conclusion, both bradyzoites and tachyzoites functionally silence infected neurons, which may significantly contribute to the altered behaviour of the host.

  18. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    Science.gov (United States)

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  19. Increased Energy Expenditure, Ucp1 Expression, and Resistance to Diet-induced Obesity in Mice Lacking Nuclear Factor-Erythroid-2-related Transcription Factor-2 (Nrf2).

    Science.gov (United States)

    Schneider, Kevin; Valdez, Joshua; Nguyen, Janice; Vawter, Marquis; Galke, Brandi; Kurtz, Theodore W; Chan, Jefferson Y

    2016-04-01

    The NRF2 (also known as NFE2L2) transcription factor is a critical regulator of genes involved in defense against oxidative stress. Previous studies suggest thatNrf2plays a role in adipogenesisin vitro, and deletion of theNrf2gene protects against diet-induced obesity in mice. Here, we demonstrate that resistance to diet-induced obesity inNrf2(-/-)mice is associated with a 20-30% increase in energy expenditure. Analysis of bioenergetics revealed thatNrf2(-/-)white adipose tissues exhibit greater oxygen consumption. White adipose tissue showed a >2-fold increase inUcp1gene expression. Oxygen consumption is also increased nearly 2.5-fold inNrf2-deficient fibroblasts. Oxidative stress induced by glucose oxidase resulted in increasedUcp1expression. Conversely, antioxidant chemicals (such asN-acetylcysteine and Mn(III)tetrakis(4-benzoic acid)porphyrin chloride) and SB203580 (a known suppressor ofUcp1expression) decreasedUcp1and oxygen consumption inNrf2-deficient fibroblasts. These findings suggest that increasing oxidative stress by limitingNrf2function in white adipocytes may be a novel means to modulate energy balance as a treatment of obesity and related clinical disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Androgen Receptor (AR) Physiological Roles in Male and Female Reproductive Systems: Lessons Learned from AR-Knockout Mice Lacking AR in Selective Cells1

    Science.gov (United States)

    Chang, Chawnshang; Lee, Soo Ok; Wang, Ruey-Sheng; Yeh, Shuyuan; Chang, Ta-Min

    2013-01-01

    ABSTRACT Androgens/androgen receptor (AR) signaling is involved primarily in the development of male-specific phenotypes during embryogenesis, spermatogenesis, sexual behavior, and fertility during adult life. However, this signaling has also been shown to play an important role in development of female reproductive organs and their functions, such as ovarian folliculogenesis, embryonic implantation, and uterine and breast development. The establishment of the testicular feminization (Tfm) mouse model exploiting the X-linked Tfm mutation in mice has been a good in vivo tool for studying the human complete androgen insensitivity syndrome, but this mouse may not be the perfect in vivo model. Mouse models with various cell-specific AR knockout (ARKO) might allow us to study AR roles in individual types of cells in these male and female reproductive systems, although discrepancies are found in results between labs, probably due to using various Cre mice and/or knocking out AR in different AR domains. Nevertheless, no doubt exists that the continuous development of these ARKO mouse models and careful studies will provide information useful for understanding AR roles in reproductive systems of humans and may help us to develop more effective and more specific therapeutic approaches for reproductive system-related diseases. PMID:23782840

  1. Regulation of Reentrainment Function Is Dependent on a Certain Minimal Number of Intact Functional ipRGCs in rd Mice

    Directory of Open Access Journals (Sweden)

    Jingxue Zhang

    2017-01-01

    Full Text Available Purpose. To investigate the effect of partial ablation of melanopsin-containing retinal ganglion cells (mcRGCs on nonimage-forming (NIF visual functions in rd mice lacking rods. Methods. The rd mice were intravitreally injected with different doses (100 ng/μl, 200 ng/μl, and 400 ng/μl of immunotoxin melanopsin-SAP. And then, the density of ipRGCs was examined. After establishing the animal models with different degrees of ipRGC damage, a wheel-running system was used to evaluate their reentrainment response. Results. Intravitreal injection of melanopsin-SAP led to partial ablation of ipRGCs in a dose-dependent manner. The survival rates of ipRGCs in the 100 ng/μl, 200 ng/μl, and 400 ng/μl groups were 74.14% ± 4.15%, 39.25% ± 2.29%, and 38.38% ± 3.74%, respectively. The wheel-running experiments showed that more severe ipRGC loss was associated with a longer time needed for reentrainment. When the light/dark cycle was delayed by 8 h, the rd mice in the PBS control group took 4.67 ± 0.79 days to complete the synchronization with the shifted cycle, while those in the 100 ng/μl and 200 ng/μl groups required 7.90 ± 0.55 days and 11.00 ± 0.79 days to complete the synchronization with the new light/dark cycle, respectively. Conclusion. Our study indicates that the regulation of some NIF visual functions is dependent on a certain minimal number of intact functional ipRGCs.

  2. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  3. The effect of alcohol and hydrogen peroxide on liver hepcidin gene expression in mice lacking antioxidant enzymes, glutathione peroxidase-1 or catalase.

    Science.gov (United States)

    Harrison-Findik, Duygu Dee; Lu, Sizhao

    2015-05-06

    This study investigates the regulation of hepcidin, the key iron-regulatory molecule, by alcohol and hydrogen peroxide (H2O2) in glutathione peroxidase-1 (gpx-1(-/-)) and catalase (catalase(-/-)) knockout mice. For alcohol studies, 10% ethanol was administered in the drinking water for 7 days. Gpx-1(-/-) displayed significantly higher hepatic H2O2 levels than catalase(-/-) compared to wild-type mice, as measured by 2'-7'-dichlorodihydrofluorescein diacetate (DCFH-DA). The basal level of liver hepcidin expression was attenuated in gpx-1(-/-) mice. Alcohol increased H2O2 production in catalase(-/-) and wild-type, but not gpx-1(-/-), mice. Hepcidin expression was inhibited in alcohol-fed catalase(-/-) and wild-type mice. In contrast, alcohol elevated hepcidin expression in gpx-1(-/-) mice. Gpx-1(-/-) mice also displayed higher level of basal liver CHOP protein expression than catalase(-/-) mice. Alcohol induced CHOP and to a lesser extent GRP78/BiP expression, but not XBP1 splicing or binding of CREBH to hepcidin gene promoter, in gpx-1(-/-) mice. The up-regulation of hepatic ATF4 mRNA levels, which was observed in gpx-1(-/-) mice, was attenuated by alcohol. In conclusion, our findings strongly suggest that H2O2 inhibits hepcidin expression in vivo. Synergistic induction of CHOP by alcohol and H2O2, in the absence of gpx-1, stimulates liver hepcidin gene expression by ER stress independent of CREBH.

  4. Mice lacking Ras-GRF1 show contextual fear conditioning but not spatial memory impairments: convergent evidence from two independently generated mouse mutant lines

    Directory of Open Access Journals (Sweden)

    Raffaele ed'Isa

    2011-12-01

    Full Text Available Ras-GRF1 is a neuronal specific guanine exchange factor that, once activated by both ionotropic and metabotropic neurotransmitter receptors, can stimulate Ras proteins, leading to long-term phosphorylation of downstream signaling. The two available reports on the behavior of two independently generated Ras-GRF1 deficient mouse lines provide contrasting evidence on the role of Ras-GRF1 in spatial memory and contextual fear conditioning. These discrepancies may be due to the distinct alterations introduced in the mouse genome by gene targeting in the two lines that could differentially affect expression of nearby genes located in the imprinted region containing the Ras-grf1 locus. In order to determine the real contribution of Ras-GRF1 to spatial memory we compared in Morris Water Maze learning the Brambilla’s mice with a third mouse line (GENA53 in which a nonsense mutation was introduced in the Ras-GRF1 coding region without additional changes in the genome and we found that memory in this task is normal. Also, we measured both contextual and cued fear conditioning, which were previously reported to be affected in the Brambilla’s mice, and we confirmed that contextual learning but not cued conditioning is impaired in both mouse lines. In addition, we also tested both lines for the first time in conditioned place aversion in the Intellicage, an ecological and remotely controlled behavioral test, and we observed normal learning. Finally, based on previous reports of other mutant lines suggesting that Ras-GRF1 may control body weight, we also measured this non-cognitive phenotype and we confirmed that both Ras-GRF1 deficient mutants are smaller than their control littermates. In conclusion, we demonstrate that Ras-GRF1 has no unique role in spatial memory while its function in contextual fear conditioning is likely to be due not only to its involvement in amygdalar functions but possibly to some distinct hippocampal connections specific to

  5. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  6. Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2.

    Science.gov (United States)

    Furness, David N; Johnson, Stuart L; Manor, Uri; Rüttiger, Lukas; Tocchetti, Arianna; Offenhauser, Nina; Olt, Jennifer; Goodyear, Richard J; Vijayakumar, Sarath; Dai, Yuhai; Hackney, Carole M; Franz, Christoph; Di Fiore, Pier Paolo; Masetto, Sergio; Jones, Sherri M; Knipper, Marlies; Holley, Matthew C; Richardson, Guy P; Kachar, Bechara; Marcotti, Walter

    2013-08-20

    Mechanotransduction in the mammalian auditory system depends on mechanosensitive channels in the hair bundles that project from the apical surface of the sensory hair cells. Individual stereocilia within each bundle contain a core of tightly packed actin filaments, whose length is dynamically regulated during development and in the adult. We show that the actin-binding protein epidermal growth factor receptor pathway substrate 8 (Eps8)L2, a member of the Eps8-like protein family, is a newly identified hair bundle protein that is localized at the tips of stereocilia of both cochlear and vestibular hair cells. It has a spatiotemporal expression pattern that complements that of Eps8. In the cochlea, whereas Eps8 is essential for the initial elongation of stereocilia, Eps8L2 is required for their maintenance in adult hair cells. In the absence of both proteins, the ordered staircase structure of the hair bundle in the cochlea decays. In contrast to the early profound hearing loss associated with an absence of Eps8, Eps8L2 null-mutant mice exhibit a late-onset, progressive hearing loss that is directly linked to a gradual deterioration in hair bundle morphology. We conclude that Eps8L2 is required for the long-term maintenance of the staircase structure and mechanosensory function of auditory hair bundles. It complements the developmental role of Eps8 and is a candidate gene for progressive age-related hearing loss.

  7. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  8. Mice lacking NKT cells but with a complete complement of CD8+ T-cells are not protected against the metabolic abnormalities of diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Benjamin S Mantell

    Full Text Available The contribution of natural killer T (NKT cells to the pathogenesis of metabolic abnormalities of obesity is controversial. While the combined genetic deletion of NKT and CD8(+ T-cells improves glucose tolerance and reduces inflammation, interpretation of these data have been complicated by the recent observation that the deletion of CD8(+ T-cells alone reduces obesity-induced inflammation and metabolic dysregulation, leaving the issue of the metabolic effects of NKT cell depletion unresolved. To address this question, CD1d null mice (CD1d(-/-, which lack NKT cells but have a full complement of CD8(+ T-cells, and littermate wild type controls (WT on a pure C57BL/6J background were exposed to a high fat diet, and glucose intolerance, insulin resistance, dyslipidemia, inflammation, and obesity were assessed. Food intake (15.5±4.3 vs 15.3±1.8 kcal/mouse/day, weight gain (21.8±1.8 vs 22.8±1.4 g and fat mass (18.6±1.9 vs 19.5±2.1 g were similar in CD1d(-/- and WT, respectively. As would be expected from these data, metabolic rate (3.0±0.1 vs 2.9±0.2 ml O(2/g/h and activity (21.6±4.3 vs 18.5±2.6 beam breaks/min were unchanged by NKT cell depletion. Furthermore, the degree of insulin resistance, glucose intolerance, liver steatosis, and adipose and liver inflammatory marker expression (TNFα, IL-6, IL-10, IFN-γ, MCP-1, MIP1α induced by high fat feeding in CD1d(-/- were not different from WT. We conclude that deletion of NKT cells, in the absence of alterations in the CD8(+ T-cell population, is insufficient to protect against the development of the metabolic abnormalities of diet-induced obesity.

  9. CIITA promoter I CARD-deficient mice express functional MHC class II genes in myeloid and lymphoid compartments.

    Science.gov (United States)

    Zinzow-Kramer, W M; Long, A B; Youngblood, B A; Rosenthal, K M; Butler, R; Mohammed, A-U-R; Skountzou, I; Ahmed, R; Evavold, B D; Boss, J M

    2012-06-01

    Three distinct promoters control the master regulator of major histocompatibility complex (MHC) class II expression, class II transactivator (CIITA), in a cell type-specific manner. Promoter I (pI) CIITA, expressed primarily by dendritic cells (DCs) and macrophages, expresses a unique isoform that contains a caspase-recruitment domain (CARD). The activity and function of this isoform are not understood, but are believed to enhance the function of CIITA in antigen-presenting cells. To determine whether isoform I of CIITA has specific functions, CIITA mutant mice were created in which isoform I was replaced with isoform III sequences. Mice in which pI and the CARD-encoding exon were deleted were also created. No defect in the formation of CD4 T cells, the ability to respond to a model antigen or bacterial or viral challenge was observed in mice lacking CIITA isoform I. Although CIITA and MHC-II expression was decreased in splenic DCs, pI knockout animals expressed CIITA from downstream promoters, suggesting that control of pI activity is mediated by unknown distal elements that could act at pIII, the B-cell promoter. Thus, no critical function is linked to the CARD domain of CIITA isoform I with respect to basic immune system development, function and challenge.

  10. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2010-11-01

    Full Text Available FTO (fat mass and obesity associated was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth.

  11. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  12. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice.

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C

    2010-11-01

    Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

  13. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    Science.gov (United States)

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    Energy Technology Data Exchange (ETDEWEB)

    Kurhanewicz, Nicole [Curriculum in Toxicology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 (United States); McIntosh-Kastrinsky, Rachel [Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599 (United States); Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States); Hazari, Mehdi, E-mail: hazari.mehdi@epa.gov [Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711 (United States)

    2017-06-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  15. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  16. Endoglin haploinsufficiency attenuates radiation-induced deterioration of kidney function in mice

    International Nuclear Information System (INIS)

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S.; Coppes, Rob P.; Stewart, Fiona A.

    2013-01-01

    Background and Purpose: Endoglin is a transforming growth receptor beta (TGF-β) co-receptor, which plays a crucial role in the development of late normal tissue damage. Mice with halved endoglin levels (Eng +/- mice) develop less inflammation, vascular damage and fibrosis after kidney irradiation compared to their wild type littermates (Eng +/+ mice). This study was aimed at investigating whether reduced tissue damage in Eng +/- mice also results in superior kidney function. Material and Methods: Kidneys of Eng +/+ and Eng +/- mice were irradiated with a single dose of 14 Gy. Functional kidney parameters and kidney histology were analysed at 20, 30 and 40 weeks after irradiation. Results: Eng +/- mice displayed improved kidney parameters (haematocrit, BUN) compared to Eng +/+ mice at 40 weeks after irradiation. Irradiation of Eng +/+ kidneys damaged the vascular network and led to an increase in PDGFR-β positive cells, indicative of fibrosis-promoting myofibroblasts. Compared to Eng +/+ kidneys, vascular perfusion and number of PDGFR-β positive cells were reduced in Eng +/- control mice; however, this did not further deteriorate after irradiation. Conclusions: Taken together, we show that not only kidney morphology, but also kidney function is improved after irradiation in Eng +/- compared to Eng +/+ mice

  17. Selegiline Ameliorates Depression-Like Behavior in Mice Lacking the CD157/BST1 Gene, a Risk Factor for Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Satoka Kasai

    2017-05-01

    Full Text Available Parkinson’s disease (PD, a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg dose-dependently reduced immobility time in the forced swimming test (FST in CD157 KO mice, but not C57BL/6N wild-type (WT mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA D2/D3 receptor agonist or rasagiline (another MAO-B inhibitor, and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA, mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT content, cortical norepinephrine (NE content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT, repeated administration of mirtazapine had anxiolytic effects

  18. Protective effect of alkali extract of Huangmo (AEHM) on immunological function in X-irradiated mice

    International Nuclear Information System (INIS)

    Ye Fei; Wu Congmei; Su Shijie; Cao Ruimin

    1996-01-01

    The male mice were given ip AEHM 5 mg/kg, wt/d before irradiation with 2.0 Gy X-rays for 3 days, and the changes of several immunological indexes were observed 24 h after X-irradiation. The results showed that AEHM significantly increased the numbers of splenocytes and thymocytes, the reaction of splenocytes to ConA and the spontaneous proliferation of thymocytes in irradiated mice, and decreased the fall of spleen and thymus. In addition, a tendency of the increases in the above indexes in the intact mice treated with AEHM was observed. Meanwhile, AEHM possessed similar radioprotective effect on immunological functions to polysaccharides of Ginseng. The results suggest that AEHM has not only a radioprotective effect on immunological functions in the irradiated mice, but also an enhancing effect on the defence functions in the intact mice. It is very hopeful that AEHM acted as immune-enhanced drug should be used in the clinic

  19. Facilitated stimulus-response associative learning and long-term memory in mice lacking the NTAN1 amidase of the N-end rule pathway.

    Science.gov (United States)

    Balogh, S A; McDowell, C S; Tae Kwon, Y; Denenberg, V H

    2001-02-23

    The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. Inactivation of the NTAN1 gene encoding the asparagine-specific N-terminal amidase in mice results in impaired spatial memory [26]. The studies described here were designed to further characterize the effects upon learning and memory of inactivating the NTAN1 gene. NTAN1-deficient mice were found to be better than wild-type mice on black-white and horizontal-vertical discrimination learning. They were also better at 8-week Morris maze retention testing when a reversal trial was not included in the testing procedures. In all three tasks NTAN1-deficient mice appeared to use a strong win-stay strategy. It is concluded that inactivating the asparagine-specific branch of the N-end rule pathway in mice results in impaired spatial learning with concomitant compensatory restructuring of the nervous system in favor of non-spatial (stimulus-response) learning.

  20. Amphetamine sensitization in mice is sufficient to produce both manic- and depressive-related behaviors as well as changes in the functional connectivity of corticolimbic structures.

    Science.gov (United States)

    Pathak, G; Ibrahim, B A; McCarthy, S A; Baker, K; Kelly, M P

    2015-08-01

    It has been suggested that amphetamine abuse and withdrawal mimics the diverse nature of bipolar disorder symptomatology in humans. Here, we determined if a single paradigm of amphetamine sensitization would be sufficient to produce both manic- and depressive-related behaviors in mice. CD-1 mice were subcutaneously dosed for 5 days with 1.8 mg/kg d-amphetamine or vehicle. On days 6-31 of withdrawal, amphetamine-sensitized (AS) mice were compared to vehicle-treated (VT) mice on a range of behavioral and biochemical endpoints. AS mice demonstrated reliable mania- and depression-related behaviors from day 7 to day 28 of withdrawal. Relative to VT mice, AS mice exhibited long-lasting mania-like hyperactivity following either an acute 30-min restraint stress or a low-dose 1 mg/kg d-amphetamine challenge, which was attenuated by the mood-stabilizers lithium and quetiapine. In absence of any challenge, AS mice showed anhedonia-like decreases in sucrose preference and depression-like impairments in the off-line consolidation of motor memory, as reflected by the lack of spontaneous improvement across days of training on the rotarod. AS mice also demonstrated a functional impairment in nest building, an ethologically-relevant activity of daily living. Western blot analyses revealed a significant increase in methylation of histone 3 at lysine 9 (H3K9), but not lysine 4 (H3K4), in hippocampus of AS mice relative to VT mice. In situ hybridization for the immediate-early gene activity-regulated cytoskeleton-associated protein (Arc) further revealed heightened activation of corticolimbic structures, decreased functional connectivity between frontal cortex and striatum, and increased functional connectivity between the amygdala and hippocampus of AS mice. The effects of amphetamine sensitization were blunted in C57BL/6J mice relative to CD-1 mice. These results show that a single amphetamine sensitization protocol is sufficient to produce behavioral, functional, and biochemical

  1. Aging-associated changes in motor axon voltage-gated Na+ channel function in mice

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Rosberg, Mette Romer; Alvarez Herrero, Susana

    2016-01-01

    the functional impairment. The aim of the present study was to investigate the effect of regular aging on motor axon function with particular emphasis on Nav1.8. We compared tibial nerve conduction and excitability measures by threshold tracking in 12 months (mature) and 20 months (aged) wild-type (WT) mice...... expression was found by immunohistochemistry. The depolarizing excitability features were absent in Nav1.8 null mice, and they were counteracted in WT mice by a Nav1.8 blocker. Our data suggest that alteration in voltage-gated Na+ channel isoform expression contributes to changes in motor axon function...

  2. Lack of immunoglobulin M suppression by immunoglobulin G antibody in thymectomized, irradiated, and bone marrow-reconstituted mice infected with Toxoplasma gondii.

    Science.gov (United States)

    Aryanpour, J; Hafizi, A; Modabber, F

    1980-03-01

    Thymectomized, irradiated, bone marrow-reconstituted (T-deprived) mie infected with an avirulent strain of Toxoplasma gondii produced antibody titers comparable to those produced in intact syngeneic mice. Both immunoglobulin M (IgM) and IgG antibodies were produced in T-deprived animals; however, the IgM antibody remained constant in the presence of increasing amounts of IgG. In the intact animals, IgM became undetectable by day 50 postinfection as expected. Feedback inhibition of IgM by IgG seems to be dependent upon T-cells in Toxoplasma-infected mice.

  3. Upregulation of B7 molecules (CD80 and CD86) and exacerbated eosinophilic pulmonary inflammatory response in mice lacking the IFN-beta gene

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Navikas, Vaidrius

    2003-01-01

    . OBJECTIVE: We sought to define the differential role of endogenous IFN-beta in controlling the development of allergic inflammation. METHODS: We assessed whether deletion of the gene encoding IFN-beta (IFNB) with knockout mice participated in the development of allergic response in ovalbumin (OVA......BACKGROUND: IFN-beta has been shown to be effective as therapy for multiple sclerosis. Some reports attributed its beneficial effects to the capacity to induce a T(H)2 response. However, other studies have suggested that endogenous type I IFN might downregulate the allergic response in mice...

  4. Toxicity of palmitoyl glycerol to mice: depression of thyroid function

    International Nuclear Information System (INIS)

    Trumbo, P.R.; Meuten, D.J.; King, M.W.; Tove, S.B.

    1987-01-01

    Mice given propylthiouracil, a thyroid inhibitor, and fed a diet containing a nontoxic level of rac-1(3)-palmitoyl glycerol showed the hypothermia and mortality expected for a toxic dose, but did not show these signs when linoleate or oleate was added to the diet. Loss of radioiodine from the whole animal and thyroid gland was slower when mice were fed the toxic palmitoyl glycerol diet than when fed the same diet containing 4% safflower oil. However, mice fed the two diets did not differ in the extent of the incorporation of radioiodine, and essentially all was bound to protein in each case. Follicular thyroid cells from mice fed the potentially toxic diet that contained unsaturated fat were normal in appearance. Conversely, cells from mice fed the toxic diet were smaller and more densely stained, showing evidence of glycoprotein inside the cell. These findings show that the thyroid gland is affected by the palmitoyl glycerol diet. However, the thyroid is not the only organ affected, because giving either thyroxine or triiodothyronine had no effect on the toxicity of palmitoyl glycerol

  5. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  6. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  7. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micronucleus assay in mice.

    Science.gov (United States)

    Poul, Martine; Jarry, Gérard; Elhkim, Mostafa Ould; Poul, Jean-Michel

    2009-02-01

    The food dyes amaranth, sunset yellow and tartrazine were administered twice, at 24h intervals, by oral gavage to mice and assessed in the in vivo gut micronucleus test for genotoxic effects (frequency of micronucleated cells) and toxicity (apoptotic and mitotic cells). The concentrations of each compound and their main metabolites (sulfanilic acid and naphthionic acid) were measured in faeces during a 24-h period after single oral administrations of the food dyes to mice. Parent dye compounds and their main aromatic amine metabolites were detected in significant amounts in the environment of colonic cells. Acute oral exposure to food dye additives amaranth, sunset yellow and tartrazine did not induce genotoxic effect in the micronucleus gut assay in mice at doses up to 2000 mg/kg b.w. Food dyes administration increased the mitotic cells at all dose levels when compared to controls. These results suggest that the transient DNA damages previously observed in the colon of mice treated by amaranth and tartrazine by the in vivo comet assay [Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., Tsuda, S., 2002. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103-119] are unable to be fixed in stable genotoxic lesions and might be partly explained by local cytotoxicity of the dyes.

  8. The lack of therapeutic effects in mice of the combined gamma-irradiated Mycobacterium leprae and viable BCG against Mycobacterium leprae infection

    International Nuclear Information System (INIS)

    Saito, Hajime; Tomioka, Haruaki; Kitagawa, Toshiyuki

    1985-01-01

    Gamma-irradiated M. leprae in combination with BCG given once biweekly to mice from 2 weeks for up to 187 days after infection with M. leprae caused no significant growth inhibition of M. leprae, at the site of the infection. (author)

  9. Endothelial arginine resynthesis contributes to the maintenance of vasomotor function in male diabetic mice.

    Directory of Open Access Journals (Sweden)

    Ramesh Chennupati

    Full Text Available Argininosuccinate synthetase (ASS is essential for recycling L-citrulline, the by-product of NO synthase (NOS, to the NOS substrate L-arginine. Here, we assessed whether disturbed arginine resynthesis modulates endothelium-dependent vasodilatation in normal and diabetic male mice.Endothelium-selective Ass-deficient mice (Assfl/fl/Tie2Cretg/- = Ass-KOTie2 were generated by crossing Assfl/fl mice ( = control with Tie2Cre mice. Gene ablation in endothelial cells was confirmed by immunohistochemistry. Blood pressure (MAP was recorded in 34-week-old male mice. Vasomotor responses were studied in isolated saphenous arteries of 12- and 34-week-old Ass-KOTie2 and control animals. At the age of 10 weeks, diabetes was induced in control and Ass-KOTie2 mice by streptozotocin injections. Vasomotor responses of diabetic animals were studied 10 weeks later. MAP was similar in control and Ass-KOTie2 mice. Depletion of circulating L-arginine by arginase 1 infusion or inhibition of NOS activity with L-NAME resulted in an increased MAP (10 and 30 mmHg, respectively in control and Ass-KOTie2 mice. Optimal arterial diameter, contractile responses to phenylephrine, and relaxing responses to acetylcholine and sodium nitroprusside were similar in healthy control and Ass-KOTie2 mice. However, in diabetic Ass-KOTie2 mice, relaxation responses to acetylcholine and endothelium-derived NO (EDNO were significantly reduced when compared to diabetic control mice.Absence of endothelial citrulline recycling to arginine did not affect blood pressure and systemic arterial vasomotor responses in healthy mice. EDNO-mediated vasodilatation was significantly more impaired in diabetic Ass-KOTie2 than in control mice demonstrating that endothelial arginine recycling becomes a limiting endothelial function in diabetes.

  10. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  11. Functional evaluation of bone marrow derived DC of tumor bearing mice after immunotherapy

    International Nuclear Information System (INIS)

    Li Min; Chen Cheng; Gu Tao; Zhou Huan; Zhang Feng; Zhu Yibei; Yu Gehua; Zhang Xueguang; Gu Zongjiang

    2006-01-01

    Objective: To evaluate the function of bone marrow derived DC of tumor bearing mice after immunotherapy. Methods: Tumor bearing mice were immunized with DC vaccine plus injection of agonistic anti-4-1BB monoclonal antibody. The proliferation of T cells primed with bone marrow derived DC of tumor bearing mice after immunotherapy was tested by 3 H-TdR incorporation. ELISA was employed to determine the levels of IL-2, IFN-γ and IL-10 secreted by DC primed T cells. Results: Bone marrow derived DC of tumor bearing mice was less efficient in stimulating the proliferation of T cells and IL-2 and IFN-γ secretion made by T cells. After immunotherapy, the proliferation of cells and IL-2 and IFN-γ secretionmade by T cells were enhanced. Conclusion: The function of bone marrow derived DC of tumor bearing mice after immunotherapy was ameliorated. (authors)

  12. Reproductive function in mice exposed to ancestral and direct irradiation

    International Nuclear Information System (INIS)

    Nash, D.J.; Sprackling, L.S.

    1978-01-01

    Reproduction was studied in 13 inbred strains of mice that had been exposed continuously to 60 Co gamma radiation for varying numbers of generations. At weaning the mice were removed from the irradiation chamber and were tested for reproductive performance. Ancestral and direct levels of irradiation were determined for each animal. Each irradiated or control female was scored as fertile or sterile, and in utero litter counts were made in pregnant females that were dissected past the 10th day of pregnancy. The number of resorptions, dead embryos, and live embryos were counted, and the ratio of living embryos to the total number of embryos was determined for each litter. The overall fertility curves were sigmoid in the range of doses below those which caused complete sterility, which indicated some sort of cumulative damage. In 11 of the 13 strains studied, an increase in ancestral and/or direct irradiation led to significant decreases in fertility. The means of the number alive in the litters for the control and irradiated mice in each strain showed a definite trend toward fewer live mice in utero after irradiation. Least-squares analyses of variance were made to detect possible effects of any of six irradiation variables (ancestral linear, ancestral quadratic, ancestral cubic, direct linear, direct quadratic, or direct cubic) or of strain differences on total litter size and on ratio. Strain effects were significant in each instance. Litter size was more likely to be affected by radiation variables than ratios were

  13. Generation of mice harbouring a conditional loss-of-function allele of Gata6

    Directory of Open Access Journals (Sweden)

    Duncan Stephen A

    2006-04-01

    Full Text Available Abstract The zinc finger transcription factor GATA6 is believed to have important roles in the development of several organs including the liver, gastrointestinal tract and heart. However, analyses of the contribution of GATA6 toward organogenesis have been hampered because Gata6-/- mice fail to develop beyond gastrulation due to defects in extraembryonic endoderm function. We have therefore generated a mouse line harbouring a conditional loss-of-function allele of Gata6 using Cre/loxP technology. LoxP elements were introduced into introns flanking exon 2 of the Gata6 gene by homologous recombination in ES cells. Mice containing this altered allele were bred to homozygosity and were found to be viable and fertile. To assess the functional integrity of the loxP sites and to confirm that we had generated a Gata6 loss-of-function allele, we bred Gata6 'floxed' mice to EIIa-Cre mice in which Cre is ubiquitously expressed, and to Villin-Cre mice that express Cre in the epithelial cells of the intestine. We conclude that we have generated a line of mice in which GATA6 activity can be ablated in a cell type specific manner by expression of Cre recombinase. This line of mice can be used to establish the role of GATA6 in regulating embryonic development and various aspects of mammalian physiology.

  14. Effects of sulekang capsule in enhancement of resistance to radiation and regulating immunological function in mice

    International Nuclear Information System (INIS)

    Zhao Naikun; Zhou Ouliang; Du Weixia

    1990-01-01

    The effects of Sulekang capsule in enhancing the resistance to radiation and regulating the immunological function in mice were described. The results show that Sulekang capsule may lengthen the survival time (p 60 Co gamma rays. The experimental results of ANAE reaction show that the activety of T cells of normal or exposed mice may be enhanced by Sulekang capsule, which can control the decrease of both ANAE-positive cells and T cells in exposed mice. So it may enhance the immunological function on exposed animals

  15. Forced expression of laminin β1 in podocytes prevents nephrotic syndrome in mice lacking laminin β2, a model for Pierson syndrome

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G.; Miner, Jeffrey H.

    2011-01-01

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2−/− mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2−/− mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations. PMID:21876163

  16. Forced expression of laminin beta1 in podocytes prevents nephrotic syndrome in mice lacking laminin beta2, a model for Pierson syndrome.

    Science.gov (United States)

    Suh, Jung Hee; Jarad, George; VanDeVoorde, Rene G; Miner, Jeffrey H

    2011-09-13

    Pierson syndrome is a congenital nephrotic syndrome with ocular and neurological defects caused by mutations in LAMB2, the gene encoding the basement membrane protein laminin β2 (Lamβ2). It is the kidney glomerular basement membrane (GBM) that is defective in Pierson syndrome, as Lamβ2 is a component of laminin-521 (LM-521; α5β2γ1), the major laminin in the mature GBM. In both Pierson syndrome and the Lamb2(-/-) mouse model for this disease, laminin β1 (Lamβ1), a structurally similar homolog of Lamβ2, is marginally increased in the GBM, but it fails to fully compensate for the loss of Lamβ2, leading to the filtration barrier defects and nephrotic syndrome. Here we generated several lines of Lamβ1 transgenic mice and used them to show that podocyte-specific Lamβ1 expression in Lamb2(-/-) mice abrogates the development of nephrotic syndrome, correlating with a greatly extended lifespan. In addition, the more Lamβ1 was expressed, the less urinary albumin was excreted. Transgenic Lamβ1 expression increased the level of Lamα5 in the GBM of rescued mice, consistent with the desired increased deposition of laminin-511 (α5β1γ1) trimers. Ultrastructural analysis revealed occasional knob-like subepithelial GBM thickening but intact podocyte foot processes in aged rescued mice. These results suggest the possibility that up-regulation of LAMB1 in podocytes, should it become achievable, would likely lessen the severity of nephrotic syndrome in patients carrying LAMB2 mutations.

  17. Proportionate Dwarfism in Mice Lacking Heterochromatin Protein 1 Binding Protein 3 (HP1BP3) Is Associated With Alterations in the Endocrine IGF-1 Pathway

    OpenAIRE

    Garfinkel, Benjamin P.; Arad, Shiri; Le, Phuong T.; Bustin, Michael; Rosen, Clifford J.; Gabet, Yankel; Orly, Joseph

    2015-01-01

    Heterochromatin protein 1 binding protein 3 (HP1BP3) is a recently described histone H1-related protein with roles in chromatin structure and transcriptional regulation. To explore the potential physiological role of HP1BP3, we have previously described an Hp1bp3?/? mouse model with reduced postnatal viability and growth. We now find that these mice are proportionate dwarfs, with reduction in body weight, body length, and organ weight. In addition to their small size, microcomputed tomography...

  18. Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2.

    Science.gov (United States)

    Le Bacquer, Olivier; Petroulakis, Emmanuel; Paglialunga, Sabina; Poulin, Francis; Richard, Denis; Cianflone, Katherine; Sonenberg, Nahum

    2007-02-01

    The most common pathology associated with obesity is insulin resistance, which results in the onset of type 2 diabetes mellitus. Several studies have implicated the mammalian target of rapamycin (mTOR) signaling pathway in obesity. Eukaryotic translation initiation factor 4E-binding (eIF4E-binding) proteins (4E-BPs), which repress translation by binding to eIF4E, are downstream effectors of mTOR. We report that the combined disruption of 4E-BP1 and 4E-BP2 in mice increased their sensitivity to diet-induced obesity. Increased adiposity was explained at least in part by accelerated adipogenesis driven by increased expression of CCAAT/enhancer-binding protein delta (C/EBPdelta), C/EBPalpha, and PPARgamma coupled with reduced energy expenditure, reduced lipolysis, and greater fatty acid reesterification in the adipose tissue of 4E-BP1 and 4E-BP2 double KO mice. Increased insulin resistance in 4E-BP1 and 4E-BP2 double KO mice was associated with increased ribosomal protein S6 kinase (S6K) activity and impairment of Akt signaling in muscle, liver, and adipose tissue. These data clearly demonstrate the role of 4E-BPs as a metabolic brake in the development of obesity and reinforce the idea that deregulated mTOR signaling is associated with the development of the metabolic syndrome.

  19. Low transformation growth factor-β1 production and collagen synthesis correlate with the lack of hepatic periportal fibrosis development in undernourished mice infected with Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Andreia Ferreira Barros

    2014-04-01

    Full Text Available Undernourished mice infected (UI submitted to low and long-lasting infections by Schistosoma mansoni are unable to develop the hepatic periportal fibrosis that is equivalent to Symmers’ fibrosis in humans. In this report, the effects of the host’s nutritional status on parasite (worm load, egg viability and maturation and host (growth curves, biology, collagen synthesis and characteristics of the immunological response were studied and these are considered as interdependent factors influencing the amount and distribution of fibrous tissue in hepatic periovular granulomas and portal spaces. The nutritional status of the host influenced the low body weight and low parasite burden detected in UI mice as well as the number, viability and maturation of released eggs. The reduced oviposition and increased number of degenerated or dead eggs were associated with low protein synthesis detected in deficient hosts, which likely induced the observed decrease in transformation growth factor (TGF-β1 and liver collagen. Despite the reduced number of mature eggs in UI mice, the activation of TGF-β1 and hepatic stellate cells occurred regardless of the unviability of most miracidia, due to stimulation by fibrogenic proteins and eggshell glycoproteins. However, changes in the repair mechanisms influenced by the nutritional status in deficient animals may account for the decreased liver collagen detected in the present study.

  20. Cholesterol reduction and lack of genotoxic or toxic effects in mice after repeated 21-day oral intake of lemongrass (Cymbopogon citratus) essential oil.

    Science.gov (United States)

    Costa, Celso A R A; Bidinotto, Lucas T; Takahira, Regina K; Salvadori, Daisy M F; Barbisan, Luís F; Costa, Mirtes

    2011-09-01

    Cymbopogon citratus (lemongrass) is currently used in traditional folk medicine. Although this species presents widespread use, there are no scientific data on its efficacy or safety after repeated treatments. Therefore, this work investigated the toxicity and genotoxicity of this lemongrass's essential oil (EO) in male Swiss mice. The single LD(50) based on a 24h acute oral toxicity study was found to be around 3500 mg/kg. In a repeated-dose 21-day oral toxicity study, mice were randomly assigned to two control groups, saline- or Tween 80 0.01%-treated groups, or one of the three experimental groups receiving lemongrass EO (1, 10 or 100mg/kg). No significant changes in gross pathology, body weight, absolute or relative organ weights, histology (brain, heart, kidneys, liver, lungs, stomach, spleen and urinary bladder), urinalysis or clinical biochemistry were observed in EO-treated mice relative to the control groups. Additionally, blood cholesterol was reduced after EO-treatment at the highest dose tested. Similarly, data from the comet assay in peripheral blood cells showed no genotoxic effect from the EO. In conclusion, our findings verified the safety of lemongrass intake at the doses used in folk medicine and indicated the beneficial effect of reducing the blood cholesterol level. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.

    Science.gov (United States)

    Nikonorova, Inna A; Al-Baghdadi, Rana J T; Mirek, Emily T; Wang, Yongping; Goudie, Michael P; Wetstein, Berish B; Dixon, Joseph L; Hine, Christopher; Mitchell, James R; Adams, Christopher M; Wek, Ronald C; Anthony, Tracy G

    2017-04-21

    Obesity increases risk for liver toxicity by the anti-leukemic agent asparaginase, but the mechanism is unknown. Asparaginase activates the integrated stress response (ISR) via sensing amino acid depletion by the eukaryotic initiation factor 2 (eIF2) kinase GCN2. The goal of this work was to discern the impact of obesity, alone versus alongside genetic disruption of the ISR, on mechanisms of liver protection during chronic asparaginase exposure in mice. Following diet-induced obesity, biochemical analysis of livers revealed that asparaginase provoked hepatic steatosis that coincided with activation of another eIF2 kinase PKR-like endoplasmic reticulum kinase (PERK), a major ISR transducer to ER stress. Genetic loss of Gcn2 intensified hepatic PERK activation to asparaginase, yet surprisingly, mRNA levels of key ISR gene targets such as Atf5 and Trib3 failed to increase. Instead, mechanistic target of rapamycin complex 1 (mTORC1) signal transduction was unleashed, and this coincided with liver dysfunction reflected by a failure to maintain hydrogen sulfide production or apolipoprotein B100 (ApoB100) expression. In contrast, obese mice lacking hepatic activating transcription factor 4 ( Atf4 ) showed an exaggerated ISR and greater loss of endogenous hydrogen sulfide but normal inhibition of mTORC1 and maintenance of ApoB100 during asparaginase exposure. In both genetic mouse models, expression and phosphorylation of Sestrin2, an ATF4 gene target, was increased by asparaginase, suggesting mTORC1 inhibition during asparaginase exposure is not driven via eIF2-ATF4-Sestrin2. In conclusion, obesity promotes a maladaptive ISR during asparaginase exposure. GCN2 functions to repress mTORC1 activity and maintain ApoB100 protein levels independently of Atf4 expression, whereas hydrogen sulfide production is promoted via GCN2-ATF4 pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Protective effect study of polysaccharides from tremella fuciformis on hematopoietic function in radiation-injured mice

    International Nuclear Information System (INIS)

    Xu Wenqing; Chinese Academy of Medical Sciences, Tianjin; Gao Wenyuan; Shen Xiu; Wang Yueying; Liu Peixun

    2006-01-01

    Objective: To study the protective effects of polysaccharides of Tremella fuciformis on hematopoietic function in radiation-injured mice. Methods; Colony-forming unit of spleen (CFU-S), number of nucleated cells in bone marrow (BMNC) and spleen index were used to investigated the effect of polysacharides from tremella fuciformis at 6 mg/kg, 12 mg/kg, 24 mg/kg on hematopoietic function of mice irradiated with 7.5 Gy 137 Cs γ-rays. Results: On the 9 the day after irradiation compared with the negative control group number of nucleated cells in bone marrow, colony-forming unit of spleen and spleen index of mice have treated with polysaccharides from Tremella fuciformis intraperitoneally for three days prior to irradiation increased markedly. Conclusion: Polysaccharides of tremella fuciformis have protective effect on hematopoietic function of radiation-injured mice. (authors)

  3. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  4. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Science.gov (United States)

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  5. Brown Adipose Tissue Function Is Enhanced in Long-Lived, Male Ames Dwarf Mice

    Science.gov (United States)

    McFadden, Samuel; Fang, Yimin; Huber, Joshua A.; Zhang, Chi; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Ames dwarf mice (Prop1df/df) are long-lived due to a loss of function mutation, resulting in deficiency of GH, TSH, and prolactin. Along with a marked extension of longevity, Ames dwarf mice have improved energy metabolism as measured by an increase in their oxygen consumption and heat production, as well as a decrease in their respiratory quotient. Along with alterations in energy metabolism, Ames dwarf mice have a lower core body temperature. Moreover, Ames dwarf mice have functionally altered epididymal white adipose tissue (WAT) that improves, rather than impairs, their insulin sensitivity due to a shift from pro- to anti-inflammatory cytokine secretion. Given the unique phenotype of Ames dwarf epididymal WAT, their improved energy metabolism, and lower core body temperature, we hypothesized that Ames dwarf brown adipose tissue (BAT) may function differently from that of their normal littermates. Here we use histology and RT-PCR to demonstrate that Ames dwarf mice have enhanced BAT function. We also use interscapular BAT removal to demonstrate that BAT is necessary for Ames dwarf energy metabolism and thermogenesis, whereas it is less important for their normal littermates. Furthermore, we show that Ames dwarf mice are able to compensate for loss of interscapular BAT by using their WAT depots as an energy source. These findings demonstrate enhanced BAT function in animals with GH and thyroid hormone deficiencies, chronic reduction of body temperature, and remarkably extended longevity. PMID:27740871

  6. Mice Lacking Free Fatty Acid Receptor 1 (GPR40/FFAR1) are Protected Against Conjugated Linoleic Acid-Induced Fatty Liver but Develop Inflammation and Insulin Resistance in the Brain.

    Science.gov (United States)

    Sartorius, Tina; Drescher, Andrea; Panse, Madhura; Lastovicka, Petr; Peter, Andreas; Weigert, Cora; Kostenis, Evi; Ullrich, Susanne; Häring, Hans-Ulrich

    2015-01-01

    Conjugated linoleic acids (CLAs) affect body fat distribution, induce insulin resistance and stimulate insulin secretion. The latter effect is mediated through the free fatty acid receptor-1 (GPR40/FFAR1). This study examines whether GPR40/FFAR1 interacts with tissue specific metabolic changes induced by CLAs. After chronic application of CLAs C57BL/6J wild type (WT) and GPR40/FFAR1 (Ffar1(-/-)) knockout mice developed insulin resistance. Although CLAs accumulated in liver up to 46-fold genotype-independently, hepatic triglycerides augmented only in WT mice. This triglyceride deposition was not associated with increased inflammation. In contrast, in brain of CLA fed Ffar1(-/-) mice mRNA levels of TNF-α were 2-fold higher than in brain of WT mice although CLAs accumulated genotype-independently in brain up to 4-fold. Concomitantly, Ffar1(-/-) mice did not respond to intracerebroventricular (i.c.v.) insulin injection with an increase in cortical activity while WT mice reacted as assessed by radiotelemetric electrocorticography (ECoG) measurements. In vitro incubation of primary murine astrocytes confirmed that CLAs stimulate neuronal inflammation independent of GPR40/FFAR1. This study discloses that GPR40/FFAR1 indirectly modulates organ-specific effects of CLAs: the expression of functional GPR40/FFAR1 counteracts CLA-induced inflammation and insulin resistance in the brain, but favors the development of fatty liver. © 2015 S. Karger AG, Basel.

  7. Lack of macrophage migration inhibitory factor in mice does not affect hallmarks of the inflammatory/immune response during the first week after stroke

    Directory of Open Access Journals (Sweden)

    Deierborg Tomas

    2011-06-01

    Full Text Available Abstract Background Macrophage migration inhibitory factor (MIF has been proposed to play a detrimental role in stroke. We recently showed that MIF promotes neuronal death and aggravates neurological deficits during the first week after experimental stroke, in mice. Since MIF regulates tissue inflammation, we studied the putative role of MIF in post-stroke inflammation. Methods We subjected C57BL/6 mice, Mif-/- (MIF-KO or Mif+/+ (WT, to a transient occlusion of the right middle cerebral artery (tMCAo or sham-surgery. We studied MIF expression, GFAP expression and the number of CD74-positive cells in the ischemic brain hemisphere 7 days after tMCAo using primarily immunohistochemistry. We determined IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, KC/CXCL-1 and TNF-α protein levels in the brain (48 h after surgery and serum (48 h and 7 days after surgery by a multiplex immunoassay. Results We observed that MIF accumulates in neurons and astrocytes of the peri-infarct region, as well as in microglia/macrophages of the infarct core up to 7 days after stroke. Among the inflammatory mediators analyzed, we found a significant increase in cerebral IL-12 and KC levels after tMCAo, in comparison to sham-surgery. Importantly, the deletion of Mif did not significantly affect the levels of the cytokines evaluated, in the brain or serum. Moreover, the spleen weight 48 h and 7 days subsequent to tMCAo was similar in WT and MIF-KO mice. Finally, the extent of GFAP immunoreactivity and the number of MIF receptor (CD74-positive cells within the ischemic brain hemisphere did not differ significantly between WT and MIF-KO mice subjected to tMCAo. Conclusions We conclude that MIF does not affect major components of the inflammatory/immune response during the first week after experimental stroke. Based on present and previous evidence, we propose that the deleterious MIF-mediated effects in stroke depend primarily on an intraneuronal and/or interneuronal action.

  8. Lack of immunoglobulin M suppression by immunoglobulin G antibody in thymectomized, irradiated, and bone marrow-reconstituted mice infected with Toxoplasma gondii.

    OpenAIRE

    Aryanpour, J; Hafizi, A; Modabber, F

    1980-01-01

    Thymectomized, irradiated, bone marrow-reconstituted (T-deprived) mie infected with an avirulent strain of Toxoplasma gondii produced antibody titers comparable to those produced in intact syngeneic mice. Both immunoglobulin M (IgM) and IgG antibodies were produced in T-deprived animals; however, the IgM antibody remained constant in the presence of increasing amounts of IgG. In the intact animals, IgM became undetectable by day 50 postinfection as expected. Feedback inhibition of IgM by IgG ...

  9. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    Directory of Open Access Journals (Sweden)

    Rhett L. Peterson

    2016-01-01

    Full Text Available Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.

  10. Generation of Novel Traj18-Deficient Mice Lacking Vα14 Natural Killer T Cells with an Undisturbed T Cell Receptor α-Chain Repertoire.

    Directory of Open Access Journals (Sweden)

    Nyambayar Dashtsoodol

    Full Text Available Invariant Vα14 natural killer T (NKT cells, characterized by the expression of a single invariant T cell receptor (TCR α chain encoded by rearranged Trav11 (Vα14-Traj18 (Jα18 gene segments in mice, and TRAV10 (Vα24-TRAJ18 (Jα18 in humans, mediate adjuvant effects to activate various effector cell types in both innate and adaptive immune systems that facilitates the potent antitumor effects. It was recently reported that the Jα18-deficient mouse described by our group in 1997 harbors perturbed TCRα repertoire, which raised concerns regarding the validity of some of the experimental conclusions that have been made using this mouse line. To resolve this concern, we generated a novel Traj18-deficient mouse line by specifically targeting the Traj18 gene segment using Cre-Lox approach. Here we showed the newly generated Traj18-deficient mouse has, apart from the absence of Traj18, an undisturbed TCRα chain repertoire by using next generation sequencing and by detecting normal generation of Vα19Jα33 expressing mucosal associated invariant T cells, whose development was abrogated in the originally described Jα18-KO mice. We also demonstrated here the definitive requirement for NKT cells in the protection against tumors and their potent adjuvant effects on antigen-specific CD8 T cells.

  11. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8).

    Science.gov (United States)

    Rodrigues, Tiago B; Ceballos, Ainhoa; Grijota-Martínez, Carmen; Nuñez, Barbara; Refetoff, Samuel; Cerdán, Sebastian; Morte, Beatriz; Bernal, Juan

    2013-01-01

    Mutations of the monocarboxylate transporter 8 (MCT8) cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3) transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13)C) glucose and brain extracts prepared and analyzed by (13)C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.

  12. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  13. Multiparametric Functional MRI: Non-Invasive Imaging of Inflammation and Edema Formation after Kidney Transplantation in Mice.

    Directory of Open Access Journals (Sweden)

    Katja Hueper

    Full Text Available Kidney transplantation (ktx in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used.Here we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI and mapping of T2-relaxation time (T2-mapping to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry.DWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment.Functional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx.

  14. The (lack of) relation between straylight and visual acuity. Two domains of the point-spread-function

    NARCIS (Netherlands)

    van den Berg, Thomas J T P

    2017-01-01

    PURPOSE: The effect of cataract and other media opacities on functional vision is typically assessed clinically using visual acuity. In both clinical and basic research, straylight (the functional result of light scattering in the eye) is commonly measured. The purpose of the present study was to

  15. Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice.

    Science.gov (United States)

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2018-02-01

    In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.

  16. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Vandenberg, Laura N

    2017-10-01

    Ethinyl estradiol (EE) is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ER)α were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017).

  17. Data describing lack of effects of 17α-ethinyl estradiol on mammary gland morphology in female mice exposed during pregnancy and lactation

    Directory of Open Access Journals (Sweden)

    Charlotte D. LaPlante

    2017-10-01

    Full Text Available Ethinyl estradiol (EE is a synthetic estrogen used in pharmaceutical contraceptives. In many studies evaluating estrogenic endocrine disruptors, EE is used as a positive control for estrogenicity. However, the effects of EE often differ from the effects of other xenoestrogens, suggesting that these other compounds might act via distinct mechanisms. Reported here are data describing the effect of low doses of EE during pregnancy and lactation on the morphology of the lactating mammary gland in CD-1 mice. The data suggest that these low doses have few if any discernable effects on mammary gland morphology. Alterations to cell proliferation and the expression of estrogen receptor (ERα were also not observed. These companion data were collected from the same females analyzed for effects of EE on maternal behavior and brain recently published in Reproductive Toxicology (Catanese & Vandenberg, 2017.

  18. Increased oxidative metabolism and neurotransmitter cycling in the brain of mice lacking the thyroid hormone transporter SLC16A2 (MCT8.

    Directory of Open Access Journals (Sweden)

    Tiago B Rodrigues

    Full Text Available Mutations of the monocarboxylate transporter 8 (MCT8 cause a severe X-linked intellectual deficit and neurological impairment. MCT8 is a specific thyroid hormone (T4 and T3 transporter and the patients also present unusual abnormalities in the serum profile of thyroid hormone concentrations due to altered secretion and metabolism of T4 and T3. Given the role of thyroid hormones in brain development, it is thought that the neurological impairment is due to restricted transport of thyroid hormones to the target neurons. In this work we have investigated cerebral metabolism in mice with Mct8 deficiency. Adult male mice were infused for 30 minutes with (1-(13C glucose and brain extracts prepared and analyzed by (13C nuclear magnetic resonance spectroscopy. Genetic inactivation of Mct8 resulted in increased oxidative metabolism as reflected by increased glutamate C4 enrichment, and of glutamatergic and GABAergic neurotransmissions as observed by the increases in glutamine C4 and GABA C2 enrichments, respectively. These changes were distinct to those produced by hypothyroidism or hyperthyroidism. Similar increments in glutamate C4 enrichment and GABAergic neurotransmission were observed in the combined inactivation of Mct8 and D2, indicating that the increased neurotransmission and metabolic activity were not due to increased production of cerebral T3 by the D2-encoded type 2 deiodinase. In conclusion, Mct8 deficiency has important metabolic consequences in the brain that could not be correlated with deficiency or excess of thyroid hormone supply to the brain during adulthood.

  19. Longitudinal assessment of endothelial function in the microvasculature of mice in-vivo.

    Science.gov (United States)

    Belch, Jill J F; Akbar, Naveed; Alapati, Venkateswara; Petrie, John; Arthur, Simon; Khan, Faisel

    2013-01-01

    Endothelial dysfunction is associated with early development of cardiovascular disease, making longitudinal measurements desirable. We devised a protocol using laser Doppler imaging (LDI) and iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to assess the skin microcirculation longitudinally in mice every 4 weeks for 24 weeks in two groups of C57BL/6 mice, chow versus high-cholesterol diet(known to induce endothelial dysfunction). LDI measurements were compared with vascular function (isometric tension) measured using wire myography in the tail artery in response to ACh and SNP. Microvascular responses to ACh were significantly reduced in cholesterol-fed versus chow-fed mice from week 4 onwards (Phydrochloride (L-NAME) showed a significant reduction in ACh response compared with vehicle-treated animals (P<0.05) at baseline and at 12 weeks. In cholesterol-fed mice, ACh responses were 226 ± 21 and 180 ± 21 AU (P=0.03) before and after L-NAME, respectively. A reduction in ex-vivo ACh response was detected in the tail artery in cholesterol-fed mice, and a significant correlation found between peak microvascular ACh response and maximum ACh response in the tail artery (r=0.699, P=0.017). No changes were found in SNP responses in the microvasculature or tail artery. Using this protocol, we have shown longitudinal decreases in microvascular endothelial function to cholesterol feeding. L-NAME studies confirm that the reduced vasodilatation to ACh in cholesterol-fed mice was mediated partly through reduced NO bioavailability. Wire myography of tail arteries confirmed that in-vivo measurements of microvascular function reflect ex-vivo vascular function in other beds. Longitudinal assessments of skin microvascular function in mice could provide a useful translatable model for assessing early endothelial dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Joint dysfunction and functional decline in middle age myostatin null mice.

    Science.gov (United States)

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. The blind brain: how (lack of) vision shapes the morphological and functional architecture of the human brain.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Pietrini, Pietro

    2014-11-01

    Since the early days, how we represent the world around us has been a matter of philosophical speculation. Over the last few decades, modern neuroscience, and specifically the development of methodologies for the structural and the functional exploration of the brain have made it possible to investigate old questions with an innovative approach. In this brief review, we discuss the main findings from a series of brain anatomical and functional studies conducted in sighted and congenitally blind individuals by our's and others' laboratories. Historically, research on the 'blind brain' has focused mainly on the cross-modal plastic changes that follow sensory deprivation. More recently, a novel line of research has been developed to determine to what extent visual experience is truly required to achieve a representation of the surrounding environment. Overall, the results of these studies indicate that most of the brain fine morphological and functional architecture is programmed to develop and function independently from any visual experience. Distinct cortical areas are able to process information in a supramodal fashion, that is, independently from the sensory modality that carries that information to the brain. These observations strongly support the hypothesis of a modality-independent, i.e. more abstract, cortical organization, and may contribute to explain how congenitally blind individuals may interact efficiently with an external world that they have never seen. © 2014 by the Society for Experimental Biology and Medicine.

  3. Laterality in Metaphor Processing: Lack of Evidence from Functional Magnetic Resonance Imaging for the Right Hemisphere Theory

    Science.gov (United States)

    Rapp, Alexander M.; Leube, Dirk T.; Erb, Michael; Grodd, Wolfgang; Kircher, Tilo T. J.

    2007-01-01

    We investigated processing of metaphoric sentences using event-related functional magnetic resonance imaging (fMRI). Seventeen healthy subjects (6 female, 11 male) read 60 novel short German sentence pairs with either metaphoric or literal meaning and performed two different tasks: judging the metaphoric content and judging whether the sentence…

  4. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport

    NARCIS (Netherlands)

    Stapleton, Nigel M.; Armstrong-Fisher, Sylvia S.; Andersen, Jan Terje; van der Schoot, C. Ellen; Porter, Charlene; Page, Kenneth R.; Falconer, Donald; de Haas, Masja; Williamson, Lorna M.; Clark, Michael R.; Vidarsson, Gestur; Armour, Kathryn L.

    2018-01-01

    We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the

  5. Octreotide in Intestinal Lymphangiectasia: Lack of a Clinical Response and Failure to Alter Lymphatic Function in a Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    S Makhija

    2004-01-01

    Full Text Available Intestinal lymphangiectasia, which can be classified as primary or secondary, is an unusual cause of protein-losing enteropathy. The main clinical features include edema, fat malabsorption, lymphopenia and hypoalbuminemia. Clinical management generally includes a low-fat diet and supplementation with medium chain triglycerides. A small number of recent reports advocate the use of octreotide in intestinal lymphangiectasia. It is unclear why octreotide was used in these studies; although octreotide can alter splanchnic blood flow and intestinal motility, its actions on lymphatic function has never been investigated. A case of a patient with intestinal lymphangiectasia who required a shunt procedure after failing medium chain triglycerides and octreotide therapy is presented. During the management of this case, all existing literature on intestinal lymphangiectasia and all the known actions of octreotide were reviewed. Because some of the case reports suggested that octreotide may improve the clinical course of intestinal lymphangiectasia by altering lymphatic function, a series of experiments were undertaken to assess this. In an established guinea pig model, the role of octreotide in lymphatic function was examined. In this model system, the mesenteric lymphatic vessels responded to 5-hydroxytryptamine with a decrease in constriction frequency, while histamine administration markedly increased lymphatic constriction frequency. Octreotide failed to produce any change in lymphatic function when a wide range of concentrations were applied to the mesenteric lymphatic vessel preparation. In conclusion, in this case, octreotide failed to induce a clinical response and laboratory studies showed that octreotide did not alter lymphatic function. Thus, the mechanisms by which octreotide induced clinical responses in the cases reported elsewhere in the literature remain unclear, but the present study suggests that it does not appear to act via increasing

  6. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  7. The impact of socioeconomic inequalities and lack of health insurance on physical functioning among middle-aged and older adults in the United States.

    Science.gov (United States)

    Kim, Jinhyun; Richardson, Virginia

    2012-01-01

    Socioeconomic inequalities and lack of private health insurance have been viewed as significant contributors to health disparities in the United States. However, few studies have examined their impact on physical functioning over time, especially in later life. The current study investigated the impact of socioeconomic inequalities and lack of private health insurance on individuals' growth trajectories in physical functioning, as measured by activities of daily living. Data from the Health and Retirement Study (1994-2006) were used for this study, 6519 black and white adults who provided in-depth information about health, socioeconomic, financial and health insurance information were analysed. Latent growth curve modelling was used to estimate the initial level of physical functioning and its rate of change over time. Results showed that higher level of income and assets and having private health insurance significantly predicted better physical functioning. In particular, decline in physical functioning was slower among those who had private health insurance. Interestingly, changes in economic status, such as decreases in income and assets, had a greater impact on women's physical functioning than on men's. Black adults did not suffer more rapid declines in physical functioning than white adults after controlling for socioeconomic status. The current longitudinal study suggested that anti-poverty and health insurance policies should be enhanced to reduce the negative impact of socioeconomic inequalities on physical functioning throughout an individual's life course. © 2011 Blackwell Publishing Ltd.

  8. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP) gene and ischemic stroke

    OpenAIRE

    Liao, Yi-Chu; Lin, Hsiu-Fen; Guo, Yuh-Cherng; Chen, Chung-Hung; Huang, Zhi-Zhang; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2013-01-01

    Abstract Background Atherosclerosis shares common pathogenic features with myocardial infarction (MI) and ischemic stroke. BRCA-1 associated protein (BRAP), a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. Methods A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, t...

  9. Normal function of immunologic stem cells from aged mice

    International Nuclear Information System (INIS)

    Harrison, D.E.; Doubleday, J.W.

    1975-01-01

    Marrow or spleen grafts from aged donor mice produced antibody-forming cells as effectively as did grafts from younger controls in recipients tested 3 to 10 months after the transplantation. All recipients were lethally irradiated, and the T6 chromosome marker was used to demonstrate that they were populated by donor cell lines. Recipients of aged or younger control grafts gave similar responses when stimulated with varying doses of antigen and when tested at different times after the transplantation except in two cases. Recipients of aged spleen grafts gave significantly lower responses than younger controls for the first few weeks after the transplantation. If recipients had been thymectomized before lethal irradiation, aged cell lines (pooled marrow and spleen cells) gave only 37 percent of the responses of younger controls. Given sufficient time and intact young recipients, immunologic stem cell lines from old donors populated recipients with cells having normal immune responses. These results suggest that age-related immunologic defects are not intrinsically timed in the precursor cell lines that populate the immune system. (U.S.)

  10. Dengue envelope-based 'four-in-one' virus-like particles produced using Pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice.

    Science.gov (United States)

    Rajpoot, Ravi Kant; Shukla, Rahul; Arora, Upasana; Swaminathan, Sathyamangalam; Khanna, Navin

    2018-06-05

    Dengue is a significant public health problem worldwide, caused by four antigenically distinct mosquito-borne dengue virus (DENV) serotypes. Antibodies to any given DENV serotype which can afford protection against that serotype tend to enhance infection by other DENV serotypes, by a phenomenon termed antibody-dependent enhancement (ADE). Antibodies to the viral pre-membrane (prM) protein have been implicated in ADE. We show that co-expression of the envelope protein of all four DENV serotypes, in the yeast Pichia pastoris, leads to their co-assembly, in the absence of prM, into tetravalent mosaic VLPs (T-mVLPs), which retain the serotype-specific antigenic integrity and immunogenicity of all four types of their monomeric precursors. Following a three-dose immunisation schedule, the T-mVLPs elicited EDIII-directed antibodies in mice which could neutralise all four DENV serotypes. Importantly, anti-T-mVLP antibodies did not augment sub-lethal DENV-2 infection of dengue-sensitive AG129 mice, based on multiple parameters. The 'four-in-one' tetravalent T-mVLPs possess multiple desirable features which may potentially contribute to safety (non-viral, prM-lacking and ADE potential-lacking), immunogenicity (induction of virus-neutralising antibodies), and low cost (single tetravalent immunogen produced using P. pastoris, an expression system known for its high productivity using simple inexpensive media). These results strongly warrant further exploration of this vaccine candidate.

  11. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  12. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    Science.gov (United States)

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  13. Functional motor recovery from motoneuron axotomy is compromised in mice with defective corticospinal projections.

    Directory of Open Access Journals (Sweden)

    Yuetong Ding

    Full Text Available Brachial plexus injury (BPI and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST is genetically absent. In adult mice, we tore off right C5-C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs and reduced peak-to-peak amplitudes in electromyogram (EMG, than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI.

  14. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration.

    Science.gov (United States)

    Vessey, Kirstan A; Gu, Ben J; Jobling, Andrew I; Phipps, Joanna A; Greferath, Ursula; Tran, Mai X; Dixon, Michael A; Baird, Paul N; Guymer, Robyn H; Wiley, James S; Fletcher, Erica L

    2017-08-01

    Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Lack of P2Y(13) in mice fed a high cholesterol diet results in decreased hepatic cholesterol content, biliary lipid secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Lichtenstein, Laeticia; Serhan, Nizar; Annema, Wijtske; Combes, Guillaume; Robaye, Bernard; Boeynaems, Jean-Marie; Perret, Bertrand; Tietge, Uwe J. F.; Laffargue, Muriel; Martinez, Laurent O.

    2013-01-01

    Background: The protective effect of HDL is mostly attributed to their metabolic function in reverse cholesterol transport (RCT), a process whereby excess cellular cholesterol is taken up from peripheral cells, processed in HDL particles, and later delivered to the liver for further metabolism and

  16. Acute Systemic Infection with Dengue Virus Leads to Vascular Leakage and Death through Tumor Necrosis Factor-α and Tie2/Angiopoietin Signaling in Mice Lacking Type I and II Interferon Receptors.

    Science.gov (United States)

    Phanthanawiboon, Supranee; Limkittikul, Kriengsak; Sakai, Yusuke; Takakura, Nobuyuki; Saijo, Masayuki; Kurosu, Takeshi

    2016-01-01

    Severe dengue is caused by host responses to viral infection, but the pathogenesis remains unknown. This is, in part, due to the lack of suitable animal models. Here, we report a non-mouse-adapted low-passage DENV-3 clinical isolate, DV3P12/08, derived from recently infected patients. DV3P12/08 caused a lethal systemic infection in type I and II IFN receptor KO mice (IFN-α/β/γR KO mice), which have the C57/BL6 background. Infection with DV3P12/08 induced a cytokine storm, resulting in severe vascular leakage (mainly in the liver, kidney and intestine) and organ damage, leading to extensive hemorrhage and rapid death. DV3P12/08 infection triggered the release of large amounts of TNF-α, IL-6, and MCP-1. Treatment with a neutralizing anti-TNF-α antibody (Ab) extended survival and reduced liver damage without affecting virus production. Anti-IL-6 neutralizing Ab partly prolonged mouse survival. The anti-TNF-α Ab suppressed IL-6, MCP-1, and IFN-γ levels, suggesting that the severe response to infection was triggered by TNF-α. High levels of TNF-α mRNA were expressed in the liver and kidneys, but not in the small intestine, of infected mice. Conversely, high levels of IL-6 mRNA were expressed in the intestine. Importantly, treatment with Angiopoietin-1, which is known to stabilize blood vessels, prolonged the survival of DV3P12/08-infected mice. Taken together, the results suggest that an increased level of TNF-α together with concomitant upregulation of Tie2/Angiopoietin signaling have critical roles in severe dengue infection.

  17. Mitochondrial electron transport chain functions in long-lived Ames dwarf mice

    Science.gov (United States)

    Choksi, Kashyap B.; Nuss, Jonathan E.; DeFord, James H.; Papaconstantinou, John

    2011-01-01

    The age-associated decline in tissue function has been attributed to ROS-mediated oxidative damage due to mitochondrial dysfunction. The long-lived Ames dwarf mouse exhibits resistance to oxidative stress, a physiological characteristic of longevity. It is not known, however, whether there are differences in the electron transport chain (ETC) functions in Ames tissues that are associated with their longevity. In these studies we analyzed enzyme activities of ETC complexes, CI-CV and the coupled CI-CII and CII-CIII activities of mitochondria from several tissues of young, middle aged and old Ames dwarf mice and their corresponding wild type controls to identify potential mitochondrial prolongevity functions. Our studies indicate that post-mitotic heart and skeletal muscle from Ames and wild-type mice show similar changes in ETC complex activities with aging, with the exception of complex IV. Furthermore, the kidney, a slowly proliferating tissue, shows dramatic differences in ETC functions unique to the Ames mice. Our data show that there are tissue specific mitochondrial functions that are characteristic of certain tissues of the long-lived Ames mouse. We propose that this may be a factor in the determination of extended lifespan of dwarf mice. PMID:21934186

  18. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport.

    Science.gov (United States)

    Stapleton, Nigel M; Armstrong-Fisher, Sylvia S; Andersen, Jan Terje; van der Schoot, C Ellen; Porter, Charlene; Page, Kenneth R; Falconer, Donald; de Haas, Masja; Williamson, Lorna M; Clark, Michael R; Vidarsson, Gestur; Armour, Kathryn L

    2018-03-01

    We have previously generated human IgG1 antibodies that were engineered for reduced binding to the classical Fcγ receptors (FcγRI-III) and C1q, thereby eliminating their destructive effector functions (constant region G1Δnab). In their potential use as blocking agents, favorable binding to the neonatal Fc receptor (FcRn) is important to preserve the long half-life typical of IgG. An ability to cross the placenta, which is also mediated, at least in part, by FcRn is desirable in some indications, such as feto-maternal alloimmune disorders. Here, we show that G1Δnab mutants retain pH-dependent binding to human FcRn but that the amino acid alterations reduce the affinity of the IgG1:FcRn interaction by 2.0-fold and 1.6-fold for the two antibodies investigated. The transport of the modified G1Δnab mutants across monolayers of human cell lines expressing FcRn was approximately 75% of the wild-type, except that no difference was observed with human umbilical vein endothelial cells. G1Δnab mutation also reduced transport in an ex vivo placenta model. In conclusion, we demonstrate that, although the G1Δnab mutations are away from the FcRn-binding site, they have long-distance effects, modulating FcRn binding and transcellular transport. Our findings have implications for the design of therapeutic human IgG with tailored effector functions. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide.

    Science.gov (United States)

    Vijayakumar, Sarath; Depreux, Frederic F; Jodelka, Francine M; Lentz, Jennifer J; Rigo, Frank; Jones, Timothy A; Hastings, Michelle L

    2017-09-15

    Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Role of Fyn-mediated NMDA receptor function in prediabetic neuropathy in mice

    Science.gov (United States)

    Suo, Meng; Wang, Ping

    2016-01-01

    Diabetic neuropathy is a common complication of diabetes. This study evaluated the role of Fyn kinase and N-methyl-d-aspartate receptors (NMDARs) in the spinal cord in diabetic neuropathy using an animal model of high-fat diet-induced prediabetes. We found that prediabetic wild-type mice exhibited tactile allodynia and thermal hypoalgesia after a 16-wk high-fat diet, relative to normal diet-fed wild-type mice. Furthermore, prediabetic wild-type mice exhibited increased tactile allodynia and thermal hypoalgesia at 24 wk relative to 16 wk. Such phenomena were correlated with increased expression and activation of NR2B subunit of NMDARs, as well as Fyn-NR2B interaction in the spinal cord. Fyn−/− mice developed prediabetes after 16-wk high-fat diet treatment and exhibited thermal hypoalgesia, without showing tactile allodynia or altered expression and activation of NR2B subunit, relative to normal diet-fed Fyn−/− mice. Finally, intrathecal administrations of Ro 25-6981 (selective NR2B subunit-containing NMDAR antagonist) dose-dependently alleviated tactile allodynia, but not thermal hypoalgesia, at 16 and 24 wk in prediabetic wild-type mice. Our results suggested that Fyn-mediated NR2B signaling plays a critical role in regulation of prediabetic neuropathy and that the increased expression/function of NR2B subunit-containing NMDARs may contribute to the progression of neuropathy in type 2 diabetes. PMID:27146985

  1. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function.

    Science.gov (United States)

    Gaier, Eric D; Eipper, Betty A; Mains, Richard E

    2014-05-01

    Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function. © 2014 New York Academy of Sciences.

  2. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits.

    Science.gov (United States)

    Rossi, Pia Irene Anna; Musante, Ilaria; Summa, Maria; Pittaluga, Anna; Emionite, Laura; Ikehata, Masami; Rastaldi, Maria Pia; Ravazzolo, Roberto; Puliti, Aldamaria

    2013-09-01

    The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.

  3. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    Science.gov (United States)

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired

  4. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    NARCIS (Netherlands)

    Mossink, MH; Groot, de J.; Zon, van A; Franzel-Luiten, E; Schoester, M.; Scheffer, G.L.; Sonneveld, P.; Scheper, R.J.; Wiemer, EA

    2003-01-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human

  5. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice.

    Directory of Open Access Journals (Sweden)

    Anna Fiorentini

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. METHODOLOGY/PRINCIPAL FINDINGS: The double transgenic (Tg CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein, aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. CONCLUSIONS: Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.

  6. Lack of the central nervous system- and neural crest-expressed forkhead gene Foxs1 affects motor function and body weight.

    Science.gov (United States)

    Heglind, Mikael; Cederberg, Anna; Aquino, Jorge; Lucas, Guilherme; Ernfors, Patrik; Enerbäck, Sven

    2005-07-01

    To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-beta-galactosidase reporter gene "knock-in" (Foxs1beta-gal/beta-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a beta-galactosidase reporter gene. Staining for beta-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1beta-gal/beta-gal mice perform significantly better (P fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1beta-gal/beta-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.

  7. Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction.

    Science.gov (United States)

    Lentz, Trevor A; Zeppieri, Giorgio; George, Steven Z; Tillman, Susan M; Moser, Michael W; Farmer, Kevin W; Chmielewski, Terese L

    2015-02-01

    Fear of reinjury and lack of confidence influence return-to-sport outcomes after anterior cruciate ligament (ACL) reconstruction. The physical, psychosocial, and functional recovery of patients reporting fear of reinjury or lack of confidence as their primary barrier to resuming sports participation is unknown. To compare physical impairment, functional, and psychosocial measures between subgroups based on return-to-sport status and fear of reinjury/lack of confidence in the return-to-sport stage and to determine the association of physical impairment and psychosocial measures with function for each subgroup at 6 months and 1 year after surgery. Case-control study; Level of evidence, 3. Physical impairment (quadriceps index [QI], quadriceps strength/body weight [QSBW], hamstring:quadriceps strength ratio [HQ ratio], pain intensity), self-report of function (International Knee Documentation Committee [IKDC]), and psychosocial (Tampa Scale for Kinesiophobia-shortened form [TSK-11]) measures were collected at 6 months and 1 year after surgery in 73 patients with ACL reconstruction. At 1 year, subjects were divided into "return-to-sport" (YRTS) or "not return-to-sport" (NRTS) subgroups based on their self-reported return to preinjury sport status. Patients in the NRTS subgroup were subcategorized as NRTS-Fear/Confidence if fear of reinjury/lack of confidence was the primary reason for not returning to sports, and all others were categorized as NRTS-Other. A total of 46 subjects were assigned to YRTS, 13 to NRTS-Other, and 14 to NRTS-Fear/Confidence. Compared with the YRTS subgroup, the NRTS-Fear/Confidence subgroup was older and had lower QSBW, lower IKDC score, and higher TSK-11 score at 6 months and 1 year; however, they had similar pain levels. In the NRTS-Fear/Confidence subgroup, the IKDC score was associated with QSBW and pain at 6 months and QSBW, QI, pain, and TSK-11 scores at 1 year. Elevated pain-related fear of movement/reinjury, quadriceps weakness, and

  8. Reduced striatal dopamine DA D2 receptor function in dominant-negative GSK-3 transgenic mice.

    Science.gov (United States)

    Gomez-Sintes, Raquel; Bortolozzi, Analia; Artigas, Francesc; Lucas, José J

    2014-09-01

    Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase with constitutive activity involved in cellular architecture, gene expression, cell proliferation, fate decision and apoptosis, among others. GSK-3 expression is particularly high in brain where it may be involved in neurological and psychiatric disorders such as Alzheimer׳s disease, bipolar disorder and major depression. A link with schizophrenia is suggested by the antipsychotic drug-induced GSK-3 regulation and by the involvement of the Akt/GSK-3 pathway in dopaminergic neurotransmission. Taking advantage of the previous development of dominant negative GSK-3 transgenic mice (Tg) showing a selective reduction of GSK-3 activity in forebrain neurons but not in dopaminergic neurons, we explored the relationship between GSK-3 and dopaminergic neurotransmission in vivo. In microdialysis experiments, local quinpirole (DA D2-R agonist) in dorsal striatum reduced dopamine (DA) release significantly less in Tg mice than in wild-type (WT) mice. However, local SKF-81297 (selective DA D1-R agonist) in dorsal striatum reduced DA release equally in both control and Tg mice indicating a comparable function of DA D1-R in the direct striato-nigral pathway. Likewise, systemic quinpirole administration - acting preferentially on presynaptic DA D2- autoreceptors to modulate DA release-reduced striatal DA release similarly in both control and Tg mice. Quinpirole reduced locomotor activity and induced c-fos expression in globus pallidus (both striatal DA D2-R-mediated effects) significantly more in WT than in Tg mice. Taking together, the present results show that dominant negative GSK-3 transgenic mice show reduced DA D2-R-mediated function in striatum and further support a link between dopaminergic neurotransmission and GSK-3 activity. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  9. Sim1 Neurons Are Sufficient for MC4R-Mediated Sexual Function in Male Mice.

    Science.gov (United States)

    Semple, Erin; Hill, Jennifer W

    2018-01-01

    Sexual dysfunction is a poorly understood condition that affects up to one-third of men around the world. Existing treatments that target the periphery do not work for all men. Previous studies have shown that central melanocortins, which are released by pro-opiomelanocortin neurons in the arcuate nucleus of the hypothalamus, can lead to male erection and increased libido. Several studies specifically implicate the melanocortin 4 receptor (MC4R) in the central control of sexual function, but the specific neural circuitry involved is unknown. We hypothesized that single-minded homolog 1 (Sim1) neurons play an important role in the melanocortin-mediated regulation of male sexual behavior. To test this hypothesis, we examined the sexual behavior of mice expressing MC4R only on Sim1-positive neurons (tbMC4Rsim1 mice) in comparison with tbMC4R null mice and wild-type controls. In tbMC4Rsim1 mice, MC4R reexpression was found in the medial amygdala and paraventricular nucleus of the hypothalamus. These mice were paired with sexually experienced females, and their sexual function and behavior was scored based on mounting, intromission, and ejaculation. tbMC4R null mice showed a longer latency to mount, a reduced intromission efficiency, and an inability to reach ejaculation. Expression of MC4R only on Sim1 neurons reversed the sexual deficits seen in tbMC4R null mice. This study implicates melanocortin signaling via the MC4R on Sim1 neurons in the central control of male sexual behavior. Copyright © 2018 Endocrine Society.

  10. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP) gene and ischemic stroke.

    Science.gov (United States)

    Liao, Yi-Chu; Lin, Hsiu-Fen; Guo, Yuh-Cherng; Chen, Chung-Hung; Huang, Zhi-Zhang; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2013-01-28

    Atherosclerosis shares common pathogenic features with myocardial infarction (MI) and ischemic stroke. BRCA-1 associated protein (BRAP), a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, the rare allele of this SNP has been repeatedly shown to exert a recessive effect. Therefore, in the current study, we tested for the same recessive model. First, the genotype distributions between all the controls and all the stroke cases were compared. Then to reduce heterogeneity, we explored several population subsets by selecting young stroke subjects (using 45 years of age as the cutoff point), age- and sex-comparable controls, plaque-free controls, and stroke subtypes. We did not find any significant association for the entire data set (OR = 0.94, p = 0.74) or for the subset analyses using age- and sex-comparable controls (p = 0.70) and plaque-free controls (p = 0.91). Analyses of the four stroke subtypes also failed to show any significant associations (p = 0.42 - 0.98). For both young and old subjects, the GG genotype of rs11066001 was similar in the stroke cases and unmatched controls (8.1% vs. 9.4% in young subjects and 8.0% vs. 7.8% in old subjects). Comparing stroke cases with plaque-free controls also failed to find any significant association. The BRAP polymorphism may not play an important role in ischemic stroke in the studied population.

  11. Lack of association between a functional variant of the BRCA-1 related associated protein (BRAP gene and ischemic stroke

    Directory of Open Access Journals (Sweden)

    Liao Yi-Chu

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis shares common pathogenic features with myocardial infarction (MI and ischemic stroke. BRCA-1 associated protein (BRAP, a newly identified risk gene for MI, aggravates the inflammatory response in atherosclerosis. The aim of this study was to test the association between the BRAP gene and stroke in a Taiwanese population. Methods A total of 1,074 stroke patients and 1,936 controls were genotyped for the functional SNP rs11066001. In our previous studies, the rare allele of this SNP has been repeatedly shown to exert a recessive effect. Therefore, in the current study, we tested for the same recessive model. First, the genotype distributions between all the controls and all the stroke cases were compared. Then to reduce heterogeneity, we explored several population subsets by selecting young stroke subjects (using 45 years of age as the cutoff point, age- and sex-comparable controls, plaque-free controls, and stroke subtypes. Results We did not find any significant association for the entire data set (OR = 0.94, p = 0.74 or for the subset analyses using age- and sex-comparable controls (p = 0.70 and plaque-free controls (p = 0.91. Analyses of the four stroke subtypes also failed to show any significant associations (p = 0.42 – 0.98. For both young and old subjects, the GG genotype of rs11066001 was similar in the stroke cases and unmatched controls (8.1% vs. 9.4% in young subjects and 8.0% vs. 7.8% in old subjects. Comparing stroke cases with plaque-free controls also failed to find any significant association. Conclusions The BRAP polymorphism may not play an important role in ischemic stroke in the studied population.

  12. Lack of protection following passive transfer of polyclonal highly functional low-dose non-neutralizing antibodies.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Dugast

    Full Text Available Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC, are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC, we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.

  13. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    Directory of Open Access Journals (Sweden)

    Carol L Murray

    Full Text Available Interleukin-1 (IL-1 is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI. IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/- mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/- animals. Therefore, in the current study we compared wildtype (WT mice to IL-1RI(-/- mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/- mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/- mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/- mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/- mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/- mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal

  14. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  15. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  16. Using "Mighty Mouse" to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function.

    Science.gov (United States)

    Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W

    2008-09-01

    Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.

  17. Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Hultberg, Jeanette Göransdotter; Wang, JunYang

    2015-01-01

    -causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused...

  18. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  19. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  20. Amiloride Improves Endothelial Function and Reduces Vascular Stiffness in Female Mice Fed a Western Diet

    Directory of Open Access Journals (Sweden)

    Luis A. Martinez-Lemus

    2017-06-01

    Full Text Available Obese premenopausal women lose their sex related cardiovascular disease protection and develop greater arterial stiffening than age matched men. In female mice, we have shown that consumption of a Western diet (WD, high in fat and refined sugars, is associated with endothelial dysfunction and vascular stiffening, which occur via activation of mineralocorticoid receptors and associated increases in epithelial Na+ channel (ENaC activity on endothelial cells (EnNaC. Herein our aim was to determine the effect that reducing EnNaC activity with a very-low-dose of amiloride would have on decreasing endothelial and arterial stiffness in young female mice consuming a WD. To this end, we fed female mice either a WD or control diet and treated them with or without a very-low-dose of the ENaC-inhibitor amiloride (1 mg/kg/day in the drinking water for 20 weeks beginning at 4 weeks of age. Mice consuming a WD were heavier and had greater percent body fat, proteinuria, and aortic stiffness as assessed by pulse-wave velocity than those fed control diet. Treatment with amiloride did not affect body weight, body composition, blood pressure, urinary sodium excretion, or insulin sensitivity, but significantly reduced the development of endothelial and aortic stiffness, aortic fibrosis, aortic oxidative stress, and mesenteric resistance artery EnNaC abundance and proteinuria in WD-fed mice. Amiloride also improved endothelial-dependent vasodilatory responses in the resistance arteries of WD-fed mice. These results indicate that a very-low-dose of amiloride, not affecting blood pressure, is sufficient to improve endothelial function and reduce aortic stiffness in female mice fed a WD, and suggest that EnNaC-inhibition may be sufficient to ameliorate the pathological vascular stiffening effects of WD-induced obesity in females.

  1. Functional and morphological recovery of the T-cell compartment in lethally irradiated and reconstituted mice

    International Nuclear Information System (INIS)

    Kraal, G.; Hilst, B. van der; Boden, D.

    1979-01-01

    The recovery of the T-cell compartment in mice after lethal irradiation and reconstitution was studied using functional and morphological parameters. T-helper cell activity, determined by the direct SRBC-plaque-forming cell (PFC) response, recovered in a similar fashion as T-memory function which was studied by adoptive transfer of carrier-primed cells. Both functions returned to control levels in 2.5 to 3 months. Using immunoperoxidase staining of frozen sections with anti-T cell serum, the morphological recovery of the T-cell dependent areas in the white pulp of the spleen could be studied and compared with the functional recovery. (author)

  2. Omega-3 polyunsaturated fatty acids preserve retinal function in type 2 diabetic mice.

    Science.gov (United States)

    Sapieha, P; Chen, J; Stahl, A; Seaward, M R; Favazza, T L; Juan, A M; Hatton, C J; Joyal, J-S; Krah, N M; Dennison, R J; Tang, J; Kern, T S; Akula, J D; Smith, L E H

    2012-07-23

    Diabetic retinopathy (DR) is associated with hyperglycemia-driven microvascular pathology and neuronal compromise in the retina. However, DR is also linked to dyslipidemia. As omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) are protective in proliferative retinopathy, we investigated the capacity of ω-3PUFAs to preserve retinal function in a mouse model of type 2 diabetes mellitus (T2DM). Male leptin-receptor-deficient (db/db) mice were maintained for 22 weeks (4 weeks-26 weeks of life) on calorically and compositionally matched diets, except for 2% enrichment in either ω-3 or ω-6PUFAs. Visual function was assessed at 9, 14 and 26 weeks by electroretinography. Retinal capillary and neuronal integrity, as well as glucose challenge responses, were assessed on each diet. The ω-3PUFA diet significantly preserved retinal function in the mouse model of T2DM to levels similar to those observed in nondiabetic control mice on normal chow. Conversely, retinal function gradually deteriorated in db/db mice on a ω-6PUFA-rich diet. There was also an enhanced ability of ω-3PUFA-fed mice to respond to glucose challenge. The protection of visual function appeared to be independent of cytoprotective or anti-inflammatory effects of ω-3PUFAs. This study identifies beneficial effects of dietary ω-3PUFAs on visual function in T2DM. The data are consistent with dyslipidemia negatively impacting retinal function. As ω-3PUFA lipid dietary interventions are readily available, safe and inexpensive, increasing ω-3PUFA intake in diabetic patients may slow the progression of vision loss in T2DM.

  3. Alteration of intestinal barrier function during activity-based anorexia in mice.

    Science.gov (United States)

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  4. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  5. Anomalous baroreflex functionality inherent in floxed and Cre-Lox mice: an overlooked physiological phenotype.

    Science.gov (United States)

    Tsai, Ching-Yi; Poon, Yan-Yuen; Chen, Chang-Han; Chan, Samuel H H

    2017-10-01

    The last two decades have seen the emergence of Cre-Lox recombination as one of the most powerful and versatile technologies for cell-specific genetic engineering of mammalian cells. Understandably, the primary concerns in the practice of Cre-Lox recombination are whether the predicted genome has been correctly modified and the targeted phenotypes expressed. Rarely are the physiological conditions of the animals routinely examined because the general assumption is that they are normal. Based on corroborative results from radiotelemetric recording, power spectral analysis, and magnetic resonance imaging/diffusion tensor imaging in brain-derived neurotrophic factor-floxed mice, the present study revealed that this assumption requires amendment. We found that despite comparable blood pressure and heart rate with C57BL/6 or Cre mice under the conscious state, floxed and Cre-Lox mice exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex. We further found that the capacity and plasticity of baroreflex of these two strains of mice under isoflurane anesthesia were retarded, as reflected by reduced connectivity between the nucleus tractus solitarii and rostral ventrolateral medulla or nucleus ambiguus. The identification of anomalous baroreflex functionality inherent in floxed and Cre-Lox mice points to the importance of incorporating physiological phenotypes into studies that engage gene manipulations such as Cre-Lox recombination. NEW & NOTEWORTHY We established that anomalous baroreflex functionality is inherent in floxed and Cre-Lox mice. These two mouse strains exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex under the conscious state, retarded capacity and plasticity of baroreflex under isoflurane anesthesia, and reduced connectivity between key nuclei in the baroreflex neural circuits. Copyright © 2017 the American Physiological Society.

  6. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  7. Stimulatory effect of low dose radiation on the immune function in tumor-bearing mice

    International Nuclear Information System (INIS)

    Zhang Ying; Li Xiujuan; Li Xiuyi; Liu Shuzheng

    1999-01-01

    Objective: The author aims at investigating the effect of whole body irradiation (WBI) with low dose radiation on immune function in tumor-bearing mice. Methods: C57BL/6J mine implanted with Lewis lung carcinoma cells in the right thighs were used as an experimental animal model. WBI with 75 mGy X-rays was given at the 10 th day after implantation and immunological parameters were detected 18 hours after irradiation. The immunological parameters included the spontaneous incorporation of 3 H-TdR into thymocytes, the number of splenocytes, the reaction of splenocytes to ConA and LPS, the splenic production of IL-2, the cytotoxic activities of natural killer (NK) and lymphokine activated killer cells (LAK) as well as specific cytotoxic T lymphocytes (CTL). Results: The immunological parameters of irradiated tumor-bearing mice were significantly increased compared with those of sham-irradiated tumor-bearing mice (P<0.05∼0.01). Conclusion: Low dose radiation could significantly increase the immune function of tumor-bearing mice, and this stimulatory effect may be of some potential significance in tumor therapy

  8. A simple behavioral test for locomotor function after brain injury in mice.

    Science.gov (United States)

    Tabuse, Masanao; Yaguchi, Masae; Ohta, Shigeki; Kawase, Takeshi; Toda, Masahiro

    2010-11-01

    To establish a simple and reliable test for assessing locomotor function in mice with brain injury, we developed a new method, the rotarod slip test, in which the number of slips of the paralytic hind limb from a rotarod is counted. Brain injuries of different severity were created in adult C57BL/6 mice, by inflicting 1-point, 2-point and 4-point cryo-injuries. These mice were subjected to the rotarod slip test, the accelerating rotarod test and the elevated body swing test (EBST). Histological analyses were performed to assess the severity of the brain damage. Significant and consistent correlations between test scores and severity were observed for the rotarod slip test and the EBST. Only the rotarod slip test detected the mild hindlimb paresis in the acute and sub-acute phase after injury. Our results suggest that the rotarod slip test is the most sensitive and reliable method for assessing locomotor function after brain damage in mice. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. PROTECTIVE EFFECT OF TETRAMETHYLPYRAZINE ON LEARNING AND MEMORY FUNCTION IN D-GALACTOSE-LESIONED MICE

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Shi-zhen Wang; Ping-ping Zuo; Xu Cui; Jiong Cai

    2004-01-01

    Objective To explore the protective effect of tetramethylpyrazine (TMP) on the learning and memory function in D-galactose (D-gal)-lesioned mice.zine A were respectively given by intragastric administration in different groups from the third week. Learning and memory ability was tested with Morris water maze for 5 days at the sixth week. After completion of behavioral test, the mice were sacrificed by decapitation. The brain was rapidly removed, and the cortex and hippocampus were separated. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the cortex were determined. At the same time, the activity of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), the binding sites (Bmax) and the affinity (KD) of M-cholinergic receptor in the cortex, and Bmax and KD of N-methyl-D-aspartate (NMDA) receptor in the hippocampus were determined.Results In this model group, (1) The deficit of learning and memory ability, (2) elevated MDA content and lowered SOD activity, (3) decreased AChE activity and M-cholinergic receptor binding sites in the cortex, and (4) lowered NMDA receptor binding sites were observed in the hippocampus, as compared with the normal control. TMP could markedly (1)attenuate cognitive dysfunction, (2) lower MDA content and elevate SOD activity, (3) increase the activity of ChAT and AChE, and M-cholinergic receptor binding sites in the cortex in the mice treated with D-gal. NMDA receptor binding sites were also increased in the hippocampus in the treated mice.Conclusion TMP can significantly strengthen antioxidative function, improve central cholinergic system function, protect NMDA receptor activity, and thus enhance the learning and memory ability in D-gal-lesioned mice.

  10. Effects of low dose radiation on kidney function and morphology of diabetic mice

    International Nuclear Information System (INIS)

    Zhang Chi; Li Xiaokun; Gong Shouliang; Meng Tao; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effect of low dose radiation (LDR) on the kidney function and morphology in C57BL/6J mice with diabetic nephropathy (DN) induced by streptozotocin (STZ) and illuminate the protective function of LDR on kidney damage caused by diabetes mellitus (DM). Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with STZ to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy X-rays every other day for 4 weeks. The changes of blood glucose level, urine index level and the morphology of glomerular were detected at 2, 4, 8, 12, 16 weeks after radiation. Results: The blood glucose levels of mice in DM and DM/LDR groups after STZ-induced DM model preparation were higher than those in LDR and control groups (P<0.05). After treated with LDR for 2 weeks, the blood glucose level in DM/LDR group was supressed and significantly lower than that in DM group (P<0.05). Moreover the the change had been kept to 16 weeks. In addition, compared with DM group, the level of urine micro albumin(MALB) in DM/LDR group was decreased and the urine creatinine (Cre) level was increased. Compared with DM group, the morphological results showed that the glomerular mesangial expansion and mesangial cell proliferation were significantly supressed in DM/LDR group (P<0.05). Conclusion: LDR can promote the decease of blood glucose level efficiently, relief the change of kidney function, supress and delay the pathological changes of DN. (authors)

  11. Function and expression of cystic fibrosis transmembrane conductance regulator after small intestinal transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Penghong Song

    Full Text Available The secretion function of intestinal graft is one of the most important factors for successful intestinal transplantation. Cystic fibrosis transmembrane conductance regulator (CFTR mediates HCO3(- and Cl(- secretions in intestinal epithelial cells. In this study, we made investigation on the expression and function of CFTR in an experimental model of murine small intestinal transplantation. Heterotopic intestinal transplantations were performed in syngeneic mice. The mRNA and protein expressions of CFTR were analyzed by real time PCR and western blot. Murine intestinal mucosal HCO3(- and Cl(- secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (I(sc techniques. The results showed that forskolin, an activator of CFTR, stimulated jejunal mucosal epithelial HCO3(- and Cl(- secretions in mice, but forskolin-stimulated HCO3(- and Cl(- secretions in donor and recipient jejunal mucosae of mice after heterotopic jejunal transplantation were markedly decreased, compared with controls (P<0.001. The mRNA and protein expression levels of CFTR in donor and recipient jejunal mucosae of mice were also markedly lower than those in controls (P<0.001, and the mRNA and protein expression levels of tumor necrosis factor α (TNFα were markedly increased in donor jejunal mucosae of mice (P<0.001, compared with controls. Further experiments showed that TNFα down-regulated the expression of CFTR mRNA in murine jejunal mucosa. In conclusion, after intestinal transplantation, the function of CFTR was impaired, and its mRNA and protein expressions were down-regulated, which may be induced by TNFα.

  12. A self-made, low-cost infrared system for evaluating the sciatic functional index in mice

    Directory of Open Access Journals (Sweden)

    Lukas Fricker

    2016-01-01

    Full Text Available The sciatic functional index (SFI is a popular parameter for peripheral nerve evaluation that relies on footprints obtained with ink and paper. Drawbacks include smearing artefacts and a lack of dynamic information during measurement. Modern applications use digitized systems that can deliver results with less analytical effort and fewer mice. However, the systems are expensive (€40,000. This study aimed to evaluate the applicability and precision of a self-made, low-cost infrared system for evaluating SFI in mice. Mice were subjected to unilateral sciatic nerve crush injury (crush group; n = 7 and sham operation (sham group; n = 4. They were evaluated on the day before surgery, the 2 nd , 4 th and 6 th days after injury, and then every day up to the 23 rd day after injury. We compared two SFI evaluation methods, i.e., conventional ink-and-paper SFI (C-SFI and our infrared system (I-SFI. Our apparatus visualized footprints with totally internally reflected infrared light (950 nm and a camera that can only detect this wavelength. Additionally we performed an analysis with the ladder beam walking test (LBWT as a reference test. I-SFI assessment reduced the standard deviation by about 33 percent, from 11.6 to 7.8, and cut the variance around the baseline to 21 percent. The system thus requires fewer measurement repetitions and fewer animals, and cuts the cost of keeping the animals. The apparatus cost €321 to build. Our results show that the process of obtaining the SFI can be made more precise via digitization with a self-made, low-cost infrared system.

  13. A self-made, low-cost infrared system for evaluating the sciatic functional index in mice.

    Science.gov (United States)

    Fricker, Lukas; Penna, Vincenzo; Lampert, Florian; Stark, G Bjoern; Witzel, Christian; Koulaxouzidis, Georgios

    2016-05-01

    The sciatic functional index (SFI) is a popular parameter for peripheral nerve evaluation that relies on footprints obtained with ink and paper. Drawbacks include smearing artefacts and a lack of dynamic information during measurement. Modern applications use digitized systems that can deliver results with less analytical effort and fewer mice. However, the systems are expensive (€40,000). This study aimed to evaluate the applicability and precision of a self-made, low-cost infrared system for evaluating SFI in mice. Mice were subjected to unilateral sciatic nerve crush injury (crush group; n = 7) and sham operation (sham group; n = 4). They were evaluated on the day before surgery, the 2(nd), 4(th) and 6(th) days after injury, and then every day up to the 23(rd) day after injury. We compared two SFI evaluation methods, i.e., conventional ink-and-paper SFI (C-SFI) and our infrared system (I-SFI). Our apparatus visualized footprints with totally internally reflected infrared light (950 nm) and a camera that can only detect this wavelength. Additionally we performed an analysis with the ladder beam walking test (LBWT) as a reference test. I-SFI assessment reduced the standard deviation by about 33 percent, from 11.6 to 7.8, and cut the variance around the baseline to 21 percent. The system thus requires fewer measurement repetitions and fewer animals, and cuts the cost of keeping the animals. The apparatus cost €321 to build. Our results show that the process of obtaining the SFI can be made more precise via digitization with a self-made, low-cost infrared system.

  14. Effect of Cistanche Desertica Polysaccharides on Learning and Memory Functions and Ultrastructure of Cerebral Neurons in Experimental Aging Mice

    Institute of Scientific and Technical Information of China (English)

    孙云; 邓杨梅; 王德俊; 沈春锋; 刘晓梅; 张洪泉

    2001-01-01

    To observe the effects of Cistanche desertica polysaccharides (CDP) on the learning and memory functions and cerebral ultrastructure in experimental aging mice. Methods: CDP was administrated intragastrically 50 or 100 mg/kg per day for 64 successive days to experimental aging model mice induced by D-galactose, then the learning and memory functions of mice were estimated by step-down test and Y-maze test; organelles of brain tissue and cerebral ultrastructure were observed by transmission electron microscope and physical strength was determined by swimming test. Results: CDP could obviously enhance the learning and memory functions (P<0.01) and prolong the swimming time (P<0.05), decrease the number of lipofuscin and slow down the degeneration of mitochondria in neurons(P<0.05), and improve the degeneration of cerebral ultra-structure in aging mice. Conclusion: CDP could improve the impaired physiological function and alleviate cerebral morphological change in experimental aging mice.

  15. Optimization of a Clinically Relevant Model of White Matter Stroke in Mice: Histological and Functional Evidences

    Science.gov (United States)

    Ahmad, Abdullah S.; Satriotomo, Irawan; Fazal, Jawad A.; Nadeau, Stephen E.; Doré, Sylvain

    2015-01-01

    Background and Purpose White matter (WM) injury during stroke increases the risk of disability and gloomy prognosis of post-stroke rehabilitation. However, modeling of WM loss in rodents has proven to be challenging. Methods We report improved WM injury models in male C57BL/6 mice. Mice were given either endothelin-1 (ET-1) or L-N5-(1-iminoethyl)ornitine (L-NIO) into the periventricular white matter (PVWM), in the corpus callosum (CC), or in the posterior limb of internal capsule (PLIC). Anatomical and functional outcomes were quantified on day 7 post injection. Results Injection of ET-1 or L-NIO caused a small focal lesion in the injection site in the PVWM. No significant motor function deficits were observed in the PVWM lesion model. We next targeted the PLIC by using single or double injections of L-NIO and found that this strategy induced small focal infarction. Interestingly, injection of L-NIO in the PLIC also resulted in gliosis, and significant motor function deficits. Conclusions By employing different agents, doses, and locations, this study shows the feasibility of inducing brain WM injury accompanied with functional deficits in mice. Selective targeting of the injury location, behavioral testing, and the agents chosen to induce WM injury are all keys to successfully develop a mouse model and subsequent testing of therapeutic interventions against WM injury. PMID:27512724

  16. Restoration of Endothelial Function in Pparα−/− Mice by Tempol

    Directory of Open Access Journals (Sweden)

    Neerupma Silswal

    2015-01-01

    Full Text Available Peroxisome proliferator activated receptor alpha (PPARα is one of the PPAR isoforms belonging to the nuclear hormone receptor superfamily that regulates genes involved in lipid and lipoprotein metabolism. PPARα is present in the vascular wall and is thought to be involved in protection against vascular disease. To determine if PPARα contributes to endothelial function, conduit and cerebral resistance arteries were studied in Pparα−/− mice using isometric and isobaric tension myography, respectively. Aortic contractions to PGF2α and constriction of middle cerebral arteries to phenylephrine were not different between wild type (WT and Pparα−/−; however, relaxation/dilation to acetylcholine (ACh was impaired. There was no difference in relaxation between WT and Pparα−/− aorta to treatment with a nitric oxide (NO surrogate indicating impairment in endothelial function. Endothelial NO levels as well as NO synthase expression were reduced in Pparα−/− aortas, while superoxide levels were elevated. Two-week feeding with the reactive oxygen species (ROS scavenger, tempol, normalized ROS levels and rescued the impaired endothelium-mediated relaxation in Pparα−/− mice. These results suggest that Pparα−/− mice have impaired endothelial function caused by decreased NO bioavailability. Therefore, activation of PPARα receptors may be a therapeutic target for maintaining endothelial function and protection against cardiovascular disease.

  17. Effect of α7 nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    International Nuclear Information System (INIS)

    Welch, Kevin D.; Pfister, James A.; Lima, Flavia G.; Green, Benedict T.; Gardner, Dale R.

    2013-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChRs located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The toxicity and teratogenicity of many plants (which results in millions of dollars in losses annually to the livestock industry) are due to various toxins that bind to nAChRs including deltaline and methyllycaconitine (MLA) from larkspur (Delphinium) species, and nicotine and anabasine from tobacco (Nicotiana) species. The primary result of the actions of these alkaloids at nAChRs is neuromuscular paralysis and respiratory failure. The objective of this study was to further characterize the motor coordination deficiencies that occur upon exposure to a non-lethal dose of nAChR antagonists MLA and deltaline as well as nAChR agonists nicotine and anabasine. We evaluated the effect of nAChR agonists and antagonists on the motor function and coordination in mice using a balance beam, grip strength meter, rotarod, open field analysis and tremor monitor. These analyses demonstrated that within seconds after treatment the mice had significant loss of motor function and coordination that lasted up to 1 min, followed by a short period of quiescence. Recovery to normal muscle coordination was rapid, typically within approximately 10 min post-dosing. However, mice treated with the nAChR agonist nicotine and anabasine required a slightly longer time to recover some aspects of normal muscle function in comparison to mice treated with the nAChR antagonist MLA or deltaline. -- Highlights: ► Mice treated with nAChR agonists and antagonists have a loss in motor function. ► These deficits are temporary as near normal motor function returns within 10 min. ► There are compound-specific differences in the effects on motor function.

  18. Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice.

    Science.gov (United States)

    Qiao, Yanhua; Wang, Xingyue; Ma, Lian; Li, Shengguang; Liang, Jing

    2017-10-01

    Deficits in behavioral flexibility and recognition memory are commonly observed in mental illnesses and neurodegenerative diseases. Abnormality of the striatum has been implicated in an association with the pathology of these diseases. However, the exact roles of striatal heterogeneous structures in these cognitive functions are still unknown. In the present study, we investigated the effects of suppressing neuronal activity in the dorsomedial striatum (DMStr) and nucleus accumbens core (NAcC) on reversal learning and novelty recognition in mice. In addition, the locomotor activity, anxiety-like behavior and social interaction were analyzed. Neuronal inactivation was performed by expressing lentivirus-mediated tetanus toxin (TeNT) in the target regions. The results showed that reversal learning was facilitated by neuronal inactivation in the DMStr but not the NAcC, which was attributable to accelerated extinction of acquired strategy but not to impaired memory retention. Furthermore, mice with NAcC inactivation spent more time exploring a novel object than a familiar one, comparable to control mice. In contrast, mice with DMStr inactivation exhibited no preference to a novel environment during the novel object or place recognition test. The DMStr mice also exhibited decreased anxiety level. No phenotypic effect was observed in the locomotion or social interaction in mice with either DMStr or NAcC inactivation. Altogether, these findings suggest that the DMStr but not the ventral area of the striatum plays a crucial role in learning and memory by coordinating spatial exploration as well as mediating information updating. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. ADAM10 regulates Notch function in intestinal stem cells of mice.

    Science.gov (United States)

    Tsai, Yu-Hwai; VanDussen, Kelli L; Sawey, Eric T; Wade, Alex W; Kasper, Chelsea; Rakshit, Sabita; Bhatt, Riha G; Stoeck, Alex; Maillard, Ivan; Crawford, Howard C; Samuelson, Linda C; Dempsey, Peter J

    2014-10-01

    A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  20. Deficiency of C5L2 increases macrophage infiltration and alters adipose tissue function in mice.

    Directory of Open Access Journals (Sweden)

    Danny Gauvreau

    Full Text Available BACKGROUND: Obesity is considered as a systemic chronic low grade inflammation characterized by increased serum pro-inflammatory proteins and accumulation of macrophages within white adipose tissue (WAT of obese patients. C5L2, a 7-transmembrane receptor, serves a dual function, binding the lipogenic hormone acylation stimulating protein (ASP, and C5a, involved in innate immunity. AIM: We evaluated the impact of C5L2 on macrophage infiltration in WAT of wildtype (Ctl and C5L2 knock-out (C5L2(-/- mice over 6, 12 and 24 weeks on a chow diet and moderate diet-induced obesity (DIO conditions. RESULTS: In Ctl mice, WAT C5L2 and C5a receptor mRNA increased (up to 10-fold both over time and with DIO. By contrast, in C5L2(-/-, there was no change in C5aR in WAT. C5L2(-/- mice displayed higher macrophage content in WAT, varying by time, fat depot and diet, associated with altered systemic and WAT cytokine patterns compared to Ctl mice. However, in all cases, the M1 (pro- vs M2 (anti-inflammatory macrophage proportion was unchanged but C5L2(-/- adipose tissue secretome appeared to be more chemoattractant. Moreover, C5L2(-/- mice have increased food intake, increased WAT, and altered WAT lipid gene expression, which is reflected systemically. Furthermore, C5L2(-/- mice have altered glucose/insulin metabolism, adiponectin and insulin signalling gene expression in WAT, which could contribute to development of insulin resistance. CONCLUSION: Disruption of C5L2 increases macrophage presence in WAT, contributing to obesity-associated pathologies, and further supports a dual role of complement in WAT. Understanding this effect of the complement system pathway could contribute to targeting treatment of obesity and its comorbidities.

  1. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Science.gov (United States)

    Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong

    2017-01-01

    Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542

  2. Enzymatically modified isoquercitrin supplementation intensifies plantaris muscle fiber hypertrophy in functionally overloaded mice.

    Science.gov (United States)

    Kohara, Akiko; Machida, Masanao; Setoguchi, Yuko; Ito, Ryouichi; Sugitani, Masanori; Maruki-Uchida, Hiroko; Inagaki, Hiroyuki; Ito, Tatsuhiko; Omi, Naomi; Takemasa, Tohru

    2017-01-01

    Enzymatically modified isoquercitrin (EMIQ) is produced from rutin using enzymatic hydrolysis followed by treatment with glycosyltransferase in the presence of dextrin to add glucose residues. EMIQ is absorbed in the same way as quercetin, a powerful antioxidant reported to prevent disused muscle atrophy by targeting mitochondria and to have ergogenic effects. The present study investigated the effect of EMIQ on skeletal muscle hypertrophy induced by functional overload. In Study 1, 6-week-old ICR male mice were divided into 4 groups: sham-operated control, sham-operated EMIQ, overload-operated control, and overload-operated EMIQ groups. In Study 2, mice were divided into 3 groups: overload-operated whey control, overload-operated whey/EMIQ (low dose), and overload-operated whey/EMIQ (high dose) groups. The functional overload of the plantaris muscle was induced by ablation of the synergist (gastrocnemius and soleus) muscles. EMIQ and whey protein were administered with food. Three weeks after the operation, the cross-sectional area and minimal fiber diameter of the plantaris muscle fibers were measured. In Study 1, functional overload increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ supplementation significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle in both the sham-operated and overload-operated groups. In Study 2, EMIQ supplementation combined with whey protein administration significantly increased the cross-sectional area and minimal fiber diameter of the plantaris muscle. EMIQ, even when administered as an addition to whey protein supplementation, significantly intensified the fiber hypertrophy of the plantaris muscle in functionally overloaded mice. EMIQ supplementation also induced fiber hypertrophy of the plantaris in sham-operated mice.

  3. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Directory of Open Access Journals (Sweden)

    Siming Yang

    2017-08-01

    Full Text Available Blood–brain barrier (BBB dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy under 1.4% isoflurane anesthesia (anesthesia/surgery for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification, and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.

  4. Restoring the secretory function of irradiation-damaged salivary gland by administrating deferoxamine in mice.

    Directory of Open Access Journals (Sweden)

    Junye Zhang

    Full Text Available One of the major side effects of radiotherapy for treatments of the head and neck cancer is the radiation-induced dysfunction of salivary glands. The aim of the present study is to investigate the efficacy of deferoxamine (DFO to restore the secretory function of radiation-damaged salivary glands in mice.DFO (50 mg/kg/d was administered intraperitoneally in C57BL/6 mice for 3 days before and/or after point-fixed irradiation (18 Gy of submandibular glands. The total 55 mice were randomly divided into: (1 Normal group: mice received no treatment (n = 5; (2 Irradiation group (IR: mice only received irradiation (n = 5; (3 Pre-DFO group (D+IR (n = 10; (4 Pre+Post DFO group (D+IR+D (n = 10; (5 Post-DFO group (IR+D (n = 10; (6 For each DFO-treated group, the mice were intraperitoneally injected with 0.1 ml sterilized water alone (by which DFO was dissolved for 3 days before and/or after irradiation, and served as control. Sham1: Pre-sterilized water group (n = 5; sham2: Pre+Post sterilized water group (n = 5; sham3: Post-sterilized water group (n = 5. The salivary flow rate (SFR was assessed at 30th, 60th and 90th day after irradiation, respectively. After 90 days, all mice were sacrificed and their submandibular glands were removed for further examinations.The salivary glands showed remarkable dysfunction and tissue damage after irradiation. DFO restored SFR in the irradiated glands to a level comparable to that in normal glands and angiogenesis in damaged tissue was greatly increased. DFO also increased the expression levels of HIF-1α and VEGF while reduced apoptotic cells. Furthermore, Sca-1+cells were preserved in the salivary glands treated with DFO before IR.Our results indicate DFO could prevent the radiation-induced dysfunction of salivary glands in mice. The mechanism of this protective effect may involve increased angiogenesis, reduced apoptosis of acinar cells and more preserved stem cells.

  5. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Wang, Dongmei; Yan, Junqiang; Chen, Jing; Wu, Wenlan; Zhu, Xiaoying; Wang, Yong

    2015-10-01

    The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin

  6. Silk amino acids improve physical stamina and male reproductive function of mice.

    Science.gov (United States)

    Shin, Sunhee; Yeon, Seongho; Park, Dongsun; Oh, Jiyoung; Kang, Hyomin; Kim, Sunghyun; Joo, Seong Soo; Lim, Woo-Taek; Lee, Jeong-Yong; Choi, Kyung-Chul; Kim, Ki Yon; Kim, Seung Up; Kim, Jong-Choon; Kim, Yun-Bae

    2010-01-01

    The effects of a silk amino acid (SAA) preparation on the physical stamina and male reproductive function of mice were investigated. Eight-week-old male ICR mice (29-31 g) were orally administered SAA (50, 160 or 500 mg/kg) for 44 d during 30-min daily swimming exercise. The mice were subjected to a weight-loaded (5% of body weight) forced swimming on the 14th, 28th and 42nd day to determine maximum swimming time, and after a 2-d recovery period (treated with SAA without swimming exercise), parameters related to fatigue and reproductive function were analyzed from blood, muscles and reproductive organs. Repeated swimming exercise increased the maximum swimming time to some extent, in spite of a marked reduction in body weight gain, and SAA further enhanced the stamina in a dose-dependent manner. Forced swimming exercises increased blood parameters of tissue injury, but depleted blood glucose and tissue glycogen, which were substantially prevented by SAA treatment. In addition, SAA significantly reduced the muscular thiobarbituric acid-reactive substances and blood corticosterone content increased by forced swimming. Swimming exercise decreased the blood testosterone level, which was recovered by SAA, leading to enhanced sperm counts. These combined results indicate that SAA not only enhances physical stamina by minimizing damage to tissues, including muscles, as well as preventing energy depletion caused by swimming stress, but also improves male reproductive function by increasing testosterone and sperm counts.

  7. Obesity-induced oxidative stress, accelerated functional decline with age and increased mortality in mice.

    Science.gov (United States)

    Zhang, Yiqiang; Fischer, Kathleen E; Soto, Vanessa; Liu, Yuhong; Sosnowska, Danuta; Richardson, Arlan; Salmon, Adam B

    2015-06-15

    Obesity is a serious chronic disease that increases the risk of numerous co-morbidities including metabolic syndrome, cardiovascular disease and cancer as well as increases risk of mortality, leading some to suggest this condition represents accelerated aging. Obesity is associated with significant increases in oxidative stress in vivo and, despite the well-explored relationship between oxidative stress and aging, the role this plays in the increased mortality of obese subjects remains an unanswered question. Here, we addressed this by undertaking a comprehensive, longitudinal study of a group of high fat-fed obese mice and assessed both their changes in oxidative stress and in their performance in physiological assays known to decline with aging. In female C57BL/6J mice fed a high-fat diet starting in adulthood, mortality was significantly increased as was oxidative damage in vivo. High fat-feeding significantly accelerated the decline in performance in several assays, including activity, gait, and rotarod. However, we also found that obesity had little effect on other markers of function and actually improved performance in grip strength, a marker of muscular function. Together, this first comprehensive assessment of longitudinal, functional changes in high fat-fed mice suggests that obesity may induce segmental acceleration of some of the aging process. Published by Elsevier Inc.

  8. Genetic recombination is directed away from functional genomic elements in mice.

    Science.gov (United States)

    Brick, Kevin; Smagulova, Fatima; Khil, Pavel; Camerini-Otero, R Daniel; Petukhova, Galina V

    2012-05-13

    Genetic recombination occurs during meiosis, the key developmental programme of gametogenesis. Recombination in mammals has been recently linked to the activity of a histone H3 methyltransferase, PR domain containing 9 (PRDM9), the product of the only known speciation-associated gene in mammals. PRDM9 is thought to determine the preferred recombination sites--recombination hotspots--through sequence-specific binding of its highly polymorphic multi-Zn-finger domain. Nevertheless, Prdm9 knockout mice are proficient at initiating recombination. Here we map and analyse the genome-wide distribution of recombination initiation sites in Prdm9 knockout mice and in two mouse strains with different Prdm9 alleles and their F(1) hybrid. We show that PRDM9 determines the positions of practically all hotspots in the mouse genome, with the exception of the pseudo-autosomal region (PAR)--the only area of the genome that undergoes recombination in 100% of cells. Surprisingly, hotspots are still observed in Prdm9 knockout mice, and as in wild type, these hotspots are found at H3 lysine 4 (H3K4) trimethylation marks. However, in the absence of PRDM9, most recombination is initiated at promoters and at other sites of PRDM9-independent H3K4 trimethylation. Such sites are rarely targeted in wild-type mice, indicating an unexpected role of the PRDM9 protein in sequestering the recombination machinery away from gene-promoter regions and other functional genomic elements.

  9. End-systolic stress-velocity relation and circumferential fiber velocity shortening for analysing left ventricular function in mice

    Energy Technology Data Exchange (ETDEWEB)

    Fayssoil, A. [Cardiologie, Hopital europeen Georges Pompidou, 20, rue le blanc, Paris (France)], E-mail: fayssoil2000@yahoo.fr; Renault, G. [CNRS UMR 8104, Inserm, U567, Institut Cochin, Universite Paris Descartes, Paris (France); Fougerousse, F. [Genethon, RD, Evry (France)

    2009-08-15

    Traditionally, analysing left ventricular (LV) performance relies on echocardiography by evaluating shortening fraction (SF) in mice. SF is influenced by load conditions. End-systolic stress-velocity (ESSV) relation and circumferential fiber velocity (VcF) shortening are more relevant parameters for evaluating systolic function regardless load conditions particularly in mice's models of heart failure.

  10. Commonly Employed African Neonatal Skin Care Products Compromise Epidermal Function in Mice.

    Science.gov (United States)

    Man, Mao-Qiang; Sun, Richard; Man, George; Lee, Dale; Hill, Zelee; Elias, Peter M

    2016-09-01

    Neonatal mortality is much higher in the developing world than in developed countries. Infections are a major cause of neonatal death, particularly in preterm infants, in whom defective epidermal permeability barrier function facilitates transcutaneous pathogen invasion. The objective was to determine whether neonatal skin care products commonly used in Africa benefit or compromise epidermal functions in murine skin. After twice-daily treatment of 6- to 8-week-old hairless mice with each skin care product for 3 days, epidermal permeability barrier function, skin surface pH, stratum corneum hydration, and barrier recovery were measured using a multiprobe adapter system physiology monitor. For products showing some benefits in these initial tests, the epidermal permeability barrier homeostasis was assessed 1 and 5 hours after a single application to acutely disrupted skin. All of the skin care products compromised basal permeability barrier function and barrier repair kinetics. Moreover, after 3 days of treatment, most of the products also reduced stratum corneum hydration while elevating skin surface pH to abnormal levels. Some neonatal skin care products that are widely used in Africa perturb important epidermal functions, including permeability barrier homeostasis in mice. Should these products have similar effects on newborn human skin, they could cause a defective epidermal permeability barrier, which can increase body fluid loss, impair thermoregulation, and contribute to the high rates of neonatal morbidity and mortality seen in Africa. Accordingly, alternative products that enhance permeability barrier function should be identified, particularly for use in preterm infants. © 2016 Wiley Periodicals, Inc.

  11. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  12. Functional antigen binding by the defective B cells of CBA/N mice.

    Science.gov (United States)

    Snippe, H; Merchant, B; Lizzio, E F; Inman, J K

    1982-01-01

    CBA/N mice have an X-linked B cell defect which prevents them from responding to nonmitogenic thymic independent (TI-2) antigens such as dinitrophenylated DNP-Ficoll (1,2). The F1 male progeny of CBA/N female mice express the same defect. Spleen cell suspensions from such defective mice (CBA/N X C3H/HeN F1 males) could not respond to DNP-Ficoll following in vitro immunization and subsequent transfer into irradiated, syngeneic, F1 male recipients as expected. In contrast, normal CBA/N X C3H/HeN F1 female spleen cells could respond and effect a "rescue"; they mounted strong plaque-forming cell responses 7 days after in vitro exposure to DNP-Ficoll and subsequent transfer into irradiated F1 male recipients. Defective F1 male spleen cells, however, could bind significant quantities of 125I-DNP-Ficoll after in vitro exposure. Extensive washing of these spleen cells could not reverse this binding. Such DNP-Ficoll-exposed and washed F1 male spleen cells could, after transfer, aid normal untreated F1 female cells in their rescue function. The defective F1 male spleen cells could convey immunogenic quantities of DNP-Ficoll to the "rescuing" F1 female cells. Mitomycin treatment of F1 male cells did not interfere with their conveyor function. Goat anti-mouse mu serum impeded the passive antigen conveyor function of defective F1 male cells as did prior exposure to high concentrations of free DNP hapten. Our data support the view that the B cell defect of CBA/N X C3H/HeN F1 male mice does not relate to antigen binding, but rather to an inability to be effectively triggered by certain cell-bound polymeric antigens.

  13. MRI evaluation and functional assessment of brain injury after hypoxic ischemia in neonatal mice.

    Science.gov (United States)

    Adén, Ulrika; Dahlberg, Viktoria; Fredholm, Bertil B; Lai, Li-Ju; Chen, Zhengguan; Bjelke, Börje

    2002-05-01

    Severe perinatal asphyxia is an important cause of brain injury in the newborn infant. We examined early events after hypoxic ischemia (HI) in the 7-day-old mouse brain by MRI and related them to long-term functional effects and histopathology in the same animals at 4 to 5 weeks of age. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated in vivo by MRI (T2 maps and apparent diffusion coefficient maps) at 3, 6, and 24 hours and 5 days after hypoxia. Locomotion and sensorimotor function were analyzed after 3 weeks. Four weeks after HI, the mice were killed, and cresyl violet-stained brain sections were examined morphologically. A decrease in apparent diffusion coefficient values in cortex on the affected side was found at 3 hours after HI. T2 values were significantly increased after 6 hours and remained so for 5 days. Maximal size of the lesion was attained at 3 to 6 hours after HI and declined thereafter. Animals with MRI-detected lesions had decreased forward locomotion, performed worse than controls in the beam-walking test, and showed a unilateral hypotrophy in the cresyl violet-stained brain sections 4 weeks later. The temporal progression of the damage after HI in 7-day-old mice differs from that of the adult brain as judged by MRI. The early lesions detected by MRI were related to functional impairments for these mice in near-adult life.

  14. Utility and reliability of non-invasive muscle function tests in high-fat-fed mice.

    Science.gov (United States)

    Martinez-Huenchullan, Sergio F; McLennan, Susan V; Ban, Linda A; Morsch, Marco; Twigg, Stephen M; Tam, Charmaine S

    2017-07-01

    What is the central question of this study? Non-invasive muscle function tests have not been validated for use in the study of muscle performance in high-fat-fed mice. What is the main finding and its importance? This study shows that grip strength, hang wire and four-limb hanging tests are able to discriminate the muscle performance between chow-fed and high-fat-fed mice at different time points, with grip strength being reliable after 5, 10 and 20 weeks of dietary intervention. Non-invasive tests are commonly used for assessing muscle function in animal models. The value of these tests in obesity, a condition where muscle strength is reduced, is unclear. We investigated the utility of three non-invasive muscle function tests, namely grip strength (GS), hang wire (HW) and four-limb hanging (FLH), in C57BL/6 mice fed chow (chow group, n = 48) or a high-fat diet (HFD group, n = 48) for 20 weeks. Muscle function tests were performed at 5, 10 and 20 weeks. After 10 and 20 weeks, HFD mice had significantly reduced GS (in newtons; mean ± SD: 10 weeks chow, 1.89 ± 0.1 and HFD, 1.79 ± 0.1; 20 weeks chow, 1.99 ± 0.1 and HFD, 1.75 ± 0.1), FLH [in seconds per gram body weight; median (interquartile range): 10 weeks chow, 2552 (1337-4964) and HFD, 1230 (749-1994); 20 weeks chow, 2048 (765-3864) and HFD, 1036 (717-1855)] and HW reaches [n; median (interquartile range): 10 weeks chow, 4 (2-5) and HFD, 2 (1-3); 20 weeks chow, 3 (1-5) and HFD, 1 (0-2)] and higher falls [n; median (interquartile range): 10 weeks chow, 0 (0-2) and HFD, 3 (1-7); 20 weeks chow, 1 (0-4) and HFD, 8 (5-10)]. Grip strength was reliable in both dietary groups [intraclass correlation coefficient (ICC) = 0.5-0.8; P tests are valuable and reliable tools for assessment of muscle strength and function in high-fat-fed mice. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  15. Diminished mental- and physical function and lack of social support are associated with shorter survival in community dwelling older persons of Botswana

    Directory of Open Access Journals (Sweden)

    Molebatsi Robert M

    2007-07-01

    Full Text Available Abstract Background Mortality rates for older persons in Botswana have been unavailable and little is known of predictors of mortality in old age. This study may serve as a precursor for more detailed assessments. The objective was to assess diminished function and lack of social support as indicators of short term risk of death. Methods A national population based prospective survey was undertaken in Botswana; twelve rural areas and three urban centers were included. 372 community-dwelling persons aged sixty years and over, were included; 265 were followed-up. Sixteen subjects were deceased at follow-up. Subjects were interviewed and clinically assessed at home. Measures of cognitive function, depression and physical function and sociodemographic information were collected. Subjects were followed-up at average 6.8 months after baseline. Results Overall mortality rate was 10.9 per 100 person years. Age-adjusted odds ratios (OR for death during follow-up were; 4.2 (CI 1.4–12.5 and 3.6 (CI 1.0–12.7 for those with diminished physical- and cognitive function, respectively. Indicators of limited social support; household with only 1 or 2 persons and eating alone, yielded age adjusted ORs of 4.3 (CI 1.5–12.5 and 6.7 (CI 2.2–20, respectively, for death during follow-up. Conclusion Older community dwelling persons with diminished cognitive- or physical function, solitary daily meals and living in a small household have a significantly increased risk of rapid deterioration and death. Health policy should include measures to strengthen informal support and expand formal service provisions to older persons with poor function and limited social networks in order to prevent premature deaths.

  16. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice.

    Science.gov (United States)

    Ling, Wei Chih; Liu, Jian; Lau, Chi Wai; Murugan, Dharmani Devi; Mustafa, Mohd Rais; Huang, Yu

    2017-07-15

    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT 1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT 1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT 1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Enhanced growth and improved vascular function in offspring from successive pregnancies in endothelial nitric oxide synthase knockout mice

    NARCIS (Netherlands)

    Longo, M; Jain, [No Value; Langenveld, J; Vedernikov, YP; Garfield, RE; Hankins, GDV; Anderson, GD; Saade, GR

    2004-01-01

    Objective: Transgenic mice that lack endothelial nitric oxide synthase have offspring with growth deficiency and abnormal vascular reactivity in later life. Our objective was to evaluate the role of parity in the modulation of the fetal programming of growth and vascular responses in these

  18. Antigen-primed helper T cell function in CBA/N mice is radiosensitive

    International Nuclear Information System (INIS)

    Phillips, N.E.; Campbell, P.A.

    1981-01-01

    CBA/N mice have an X-linked immunodeficiency that includes a deficient humoral response to sheep red blood cells (SRBC). In order to study the cellular mechanisms of this deficiency we have examined helper T cell function to SRBC in an adoptive transfer system by using 2 different sources of helper T cells. When thymocytes were used as the source of helper T cell precursors in an adoptive transfer system, CBA/N thymocytes were as effective as CBA/Ca thymocytes in inducing CBA/Ca bone marrow cells to develop into both direct and indirect anti-SRBC plaque-forming cells (PFC). However, when SRBC-primed, irradiated recipient mice were used as the source of helper T cells, primed and irradiated CBA/N recipiets developed significantly fewer direct and indirect anti-SRBC PFC than similarly treated CBA/CA recipients when reconstituted with CBA/Ca bone marrow cells and challenged with SRBC. We conclude that antigen-primed helper T cell function in CBA/N mice is radiosensitive. Possible reasons for this are evaluated and discussed

  19. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  20. Dietary Chlorella vulgaris Ameliorates Altered Immunomodulatory Functions in Cyclophosphamide-Induced Immunosuppressive Mice

    Science.gov (United States)

    Cheng, Dai; Wan, Zhaodong; Zhang, Xinyu; Li, Jian; Li, He; Wang, Chunling

    2017-01-01

    Based on the well-known toxicity of cyclophosphamide (CYP) on the immune system, this research investigated the modulating effects of the long-term dietary Chlorella vulgaris (CV) supplementation on the immunosuppression induced by CYP in mice, in order to provide a novel dietary design to mitigate the side effects of CYP therapy. Control, CYP-treated, CYP + CV (6%), CYP + CV (12%) and CYP + CV (24%) were used for 6 weeks, CV supplement in diet recovered the significantly reduced immunological function in CYP treated mice. As CV may have a modulating function through the inducible expression of cytokines, we assayed the expressions of interleukin-2 (IL-2), interleukin-12 (IL-12), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Our results suggested that CYP significantly reduced the lymphocytes proliferation and phagocytic activities of macrophages, and stimulated the production of IL-2, IL-12, TNF-α and IFN-γ and that this impairment has been successfully adjusted by CV supplementation. Treatment with the algae also enhanced the natural killer (NK) cells cytotoxicity, and ameliorate histological changes of the spleen in CYP-treated mice. Therefore, as we found in this study, a diet supplemented with whole CV has beneficial effects on CVP-induced immunosuppression, through its immunomodulatory potential. PMID:28684674

  1. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  2. Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice.

    Science.gov (United States)

    Takeshita, Hikari; Yamamoto, Koichi; Nozato, Satoko; Inagaki, Tadakatsu; Tsuchimochi, Hirotsugu; Shirai, Mikiyasu; Yamamoto, Ryohei; Imaizumi, Yuki; Hongyo, Kazuhiro; Yokoyama, Serina; Takeda, Masao; Oguro, Ryosuke; Takami, Yoichi; Itoh, Norihisa; Takeya, Yasushi; Sugimoto, Ken; Fukada, So-Ichiro; Rakugi, Hiromi

    2017-02-08

    The conventional forelimb grip strength test is a widely used method to assess skeletal muscle function in rodents; in this study, we modified this method to improve its variability and consistency. The modified test had lower variability among trials and days than the conventional test in young C57BL6 mice, especially by improving the variabilities in male. The modified test was more sensitive than the conventional test to detect a difference in motor function between female and male mice, or between young and old male mice. When the modified test was performed on male mice during the aging process, reduction of grip strength manifested between 18 and 24 months of age at the group level and at the individual level. The modified test was similar to the conventional test in detecting skeletal muscle dysfunction in young male dystrophic mice. Thus, the modified forelimb grip strength test, with its improved validity and reliability may be an ideal substitute for the conventional method.

  3. Dual role of betel leaf extract on thyroid function in male mice.

    Science.gov (United States)

    Panda, S; Kar, A

    1998-12-01

    The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.

  4. Consequences of bisphenol a perinatal exposure on immune responses and gut barrier function in mice.

    Science.gov (United States)

    Malaisé, Yann; Ménard, Sandrine; Cartier, Christel; Lencina, Corinne; Sommer, Caroline; Gaultier, Eric; Houdeau, Eric; Guzylack-Piriou, Laurence

    2018-01-01

    The potent immunomodulatory effect of the endocrine disruptor bisphenol A during development and consequences during life span are of increasing concern. Particular interests have been raised from animal studies regarding the risk of developing food intolerance and infection. We aimed to identify immune disorders in mice triggered by perinatal exposure to bisphenol A. Gravid mice were orally exposed to bisphenol (50 μg/kg body weight/day) from day 15 of pregnancy until weaning. Gut barrier function, local and systemic immunity were assessed in adult female offspring. Mice perinatally exposed to bisphenol showed a decrease in ileal lysozyme expression and a fall of fecal antimicrobial activity. In offspring mice exposed to bisphenol, an increase in colonic permeability was observed associated with an increase in interferon-γ level and a drop of colonic IgA + cells and fecal IgA production. Interestingly, altered frequency of innate lymphoid cells type 3 occurred in the small intestine, with an increase in IgG response against commensal bacteria in sera. These effects were related to a defect in dendritic cell maturation in the lamina propria and spleen. Activated and regulatory T cells were decreased in the lamina propria. Furthermore, perinatal exposure to bisphenol promoted a sharp increase in interferon-γ and interleukin-17 production in the intestine and elicited a T helper 17 profile in the spleen. To conclude, perinatal exposure to bisphenol weakens protective and regulatory immune functions in the intestine and at systemic level in adult offspring. The increased susceptibility to inflammatory response is an interesting lead supporting bisphenol-mediated adverse consequences on food reactions and infections.

  5. Functional hypothalamic amenorrhea due to increased CRH tone in melanocortin receptor 2-deficient mice.

    Science.gov (United States)

    Matsuwaki, Takashi; Nishihara, Masugi; Sato, Tsuyoshi; Yoda, Tetsuya; Iwakura, Yoichiro; Chida, Dai

    2010-11-01

    Exposure to chronic stressors results in dysregulation of the hypothalamic-pituitary-adrenal axis and a disruption in reproduction. CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis induces the secretion of ACTH from the pituitary, which stimulates adrenal steroidogenesis via the specific cell-surface melanocortin 2 receptor (MC2R). Previously, we demonstrated that MC2R(-/-) mice had undetectable levels of corticosterone despite high ACTH levels. Here, we evaluated the reproductive functions of female MC2R(-/-) mice and analyzed the mechanism of the disrupted cyclicity of these mice. The expression of CRH in the paraventricular nucleus was significantly increased in MC2R(-/-) mice under nonstressed conditions. Although MC2R(-/-) females were fertile, they showed a prolonged estrous cycle. After hormonal stimulation, MC2R(-/-) females produced nearly-normal numbers of eggs, but slightly less than MC2R(+/-) females, and showed near-normal ovarian histology. During diestrus, the number of GnRH-positive cells in the medial preoptic area was significantly reduced in MC2R(-/-) females. CRH type 1 receptor antagonist restored estrous cyclicity in MC2R(-/-) females. Kisspeptin-positive areas in the arcuate nucleus were comparable, whereas kisspeptin-positive areas in the anteroventral periventricular nucleus in MC2R(-/-) females were significantly reduced compared with MC2R(+/-) females, suggesting that arcuate nucleus kisspeptin is not involved, but anteroventral periventricular nucleus kisspeptin may be involved, in the maintenance of estrous cyclicity. Our findings show that high levels of hypothalamic CRH disturb estrous cyclicity in the female animals and that the MC2R(-/-) female is a unique animal model of functional hypothalamic amenorrhea.

  6. Protective effect study of polysaccharides from tremella fuciformis on hematopoietic function in radiation-injured mice

    International Nuclear Information System (INIS)

    Xu, Wen-qing; Yang, Fu-jun; Shen, Xiu; Wang, Yue-ying; Liu, Pei-xun

    2008-01-01

    A kind of water-soluble homogeneous polysaccharide named as TFB was isolated and purified from Tremella Fuciformis by DEAE-Sephadex A-25 and Sephadex G-150. Its chemical and physical characteristics was determined by chemical methods, gas chromatography, mass spectrum and size exclusion chromatography. Colony-forming unit of spleen(CFU-S), number of nucleated cells in bone marrow (BMNC) and spleen index were adopted to investigate the effect on hematopoietic function of TFB at 6 mg/kg, 12 mg/kg, 24 mg/kg in mice irradiated with 7.5 Gy 137 Cs γ-rays. The results indicated that TFB is composed of glucose, mannose and serine in closely molar ratios of 8:2:0.1. Its relative molecular weight is estimated to be 68,000 by HPGPC. Its main chain is comprised of 1,4 linked glucose and 1,2,3,4,6 linked mannose, the branch point is at the site of mannose. Side chain is comprised of terminal glucose, Serine, H 2 N-1,4,6 linked mannose. Glucose uronic acid may be in main chain because of its 32.88 % content. The numbers of nucleated cells in bone marrow, colony-forming unit of spleen and spleen index increased markedly compared with the negative control group in mice treated with WTF-B administered 6 mg/kg ip. for three days prior to 137 Cs-γray irradiation, and the number of nucleated cells in bone marrow increased markedly but the CFU-S manifested no difference in mice treated with WTF-B administered 12 mg/kg and 24 mg/kg ip. compared with the negative control group. We can make conclusion that Polysaccharides of Tremella fuciformis has protective effects on hematopoietic function in radiation-injured mice, its optimal dose is 6 mg/kg. (author)

  7. Exercise training-induced different improvement profile of endothelial progenitor cells function in mice with or without myocardial infarction.

    Science.gov (United States)

    Guo, Yuan; Peng, Ran; Liu, Qiong; Xu, Danyan

    2016-10-15

    Neovascularization in response to ischemia after myocardial infarction (MI) has been widely considered as being initiated by endothelial progenitor cells (EPCs). Well-documented evidences in recent years have proved exercise training (ET) improving EPC function. However, whether ET-induced improvement of EPC function under or without ischemic state is different has not been reported. Mice performed ET following an exercise prescription 1week after MI or non-MI surgery respectively. Bone marrow-derived EPCs were isolated at 0day, 3days, 1week, 2weeks, 4weeks, and 8weeks of ET. After 7days cultivation, EPC functions including proliferation, adhesion, migration, and in vitro angiogenesis were measured. AKT/glycogen synthase kinase 3β (GSK3β) signaling pathway was tested by western blotting. EPC function in mice underwent non-MI surgery was attenuated overtime, while ET ameliorated this tendency. EPC function was peaked at 4weeks ET in non-MI surgery mice and maintained with an extended exercise time. Besides, simple ischemia was sufficient to enhanced EPC function, with a maximum at 2weeks of MI surgery. In MI mice, ET further improved EPC function and achieved peak at 2weeks exercise. Furthermore, AKT/GSK3β signaling pathway activation was consistent with EPC function change after ischemia, which was further promoted by 4weeks exercise. ET significantly increased EPC function in mice both with and without MI, but the time points of peak function were different. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  9. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  10. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM.

    Science.gov (United States)

    Park, Hae-Ran; Jo, Sung-Kee; Jung, Uhee; Yee, Sung-Tae

    2008-01-01

    The effect of a new herbal composition, HemoHIM, on immune functions was examined in aged mice, in which various immune responses had been impaired. The composition HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Supplementation to the aged mice with HemoHIM restored the proliferative response and cytokine production of splenocytes with a response to ConA. Also, HemoHIM recovered the NK cell activity which had been impaired in the aged mice. Meanwhile aging is known to reduce the Th1-like function, but not the Th2-like function, resulting in a Th1/Th2 imbalance. HemoHIM restored the Th1/Th2 balance in the aged mice through enhanced IFN-gamma and IgG2a production, and conversely a reduced IL-4 and IgG1 production. It was found that one factor for the Th1/Th2 imbalance in the aged mice was a lower production of IL-12p70. However, HemoHIM restored the IL-12p70 production in the aged mice. These results suggested that HemoHIM was effective for the restoration of impaired immune functions of the aged mice and therefore could be a good recommendation for immune restoration in elderly humans. Copyright (c) 2007 John Wiley & Sons, Ltd.

  11. Human CD4 restores normal T cell development and function in mice deficient in murine CD4

    OpenAIRE

    1994-01-01

    The ability of a human coreceptor to function in mice was investigated by generating human CD4 (hCD4)-expressing transgenic mice on a mouse CD4-deficient (mCD4-/-) background. From developing thymocyte to matured T lymphocyte functions, hCD4 was shown to be physiologically active. By examining the expansion and deletion of specific V beta T cell families in mutated mice with and without hCD4, it was found that hCD4 can participate in positive and negative selection. Mature hCD4 single positiv...

  12. Crucial roles of Nox2-derived oxidative stress in deteriorating the function of insulin receptors and endothelium in dietary obesity of middle-aged mice.

    Science.gov (United States)

    Du, Junjie; Fan, Lampson M; Mai, Anna; Li, Jian-Mei

    2013-11-01

    Systemic oxidative stress associated with dietary calorie overload plays an important role in the deterioration of vascular function in middle-aged patients suffering from obesity and insulin resistance. However, effective therapy is still lacking. In this study, we used a mouse model of middle-aged obesity to investigate the therapeutic potential of pharmaceutical inhibition (apocynin, 5 mM supplied in the drinking water) or knockout of Nox2, an enzyme generating reactive oxygen species (ROS), in high-fat diet (HFD)-induced obesity, oxidative stress, insulin resistance and endothelial dysfunction. Littermates of C57BL/6J wild-type (WT) and Nox2 knockout (KO) mice (7 months old) were fed with a HFD (45% kcal fat) or normal chow diet (NCD, 12% kcal fat) for 16 weeks and used at 11 months of age. Compared to NCD WT mice, HFD WT mice developed obesity, insulin resistance, dyslipidaemia and hypertension. Aortic vessels from these mice showed significantly increased Nox2 expression and ROS production, accompanied by significantly increased ERK1/2 activation, reduced insulin receptor expression, decreased Akt and eNOS phosphorylation and impaired endothelium-dependent vessel relaxation to acetylcholine. All these HFD-induced abnormalities (except the hyperinsulinaemia) were absent in apocynin-treated WT or Nox2 KO mice given the same HFD. In conclusion, Nox2-derived ROS played a key role in damaging insulin receptor and endothelial function in dietary obesity after middle-age. Targeting Nox2 could represent a valuable therapeutic strategy in the metabolic syndrome. © 2013 The British Pharmacological Society.

  13. Oil palm phenolics confer neuroprotective effects involving cognitive and motor functions in mice

    Science.gov (United States)

    Leow, Soon-Sen; Sekaran, Shamala Devi; Tan, YewAi; Sundram, Kalyana; Sambanthamurthi, Ravigadevi

    2013-01-01

    Objectives Phenolics are important phytochemicals which have positive effects on chronic diseases, including neurodegenerative ailments. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics. This study was carried out to discover the effects of administering oil palm phenolics (OPP) to mice, with the aim of identifying whether these compounds possess significant neuroprotective properties. Methods OPP was given to BALB/c mice on a normal diet as fluids for 6 weeks while the controls were given distilled water. These animals were tested in a water maze and on a rotarod weekly to assess the effects of OPP on cognitive and motor functions, respectively. Using Illumina microarrays, we further explored the brain gene expression changes caused by OPP in order to determine the molecular mechanisms involved. Real-time quantitative reverse transcription-polymerase chain reaction experiments were then carried out to validate the microarray data. Results We found that mice given OPP showed better cognitive function and spatial learning when tested in a water maze, and their performance also improved when tested on a rotarod, possibly due to better motor function and balance. Microarray gene expression analysis showed that these compounds up-regulated genes involved in brain development and activity, such as those under the regulation of the brain-derived neurotrophic factor. OPP also down-regulated genes involved in inflammation. Discussion These results suggest that the improvement of mouse cognitive and motor functions by OPP is caused by the neuroprotective and anti-inflammatory effects of the extract. PMID:23433062

  14. Less is More: unveiling the functional core of hematopoietic stem cells through knockout mice

    Science.gov (United States)

    Rossi, Lara; Lin, Kuanyin K.; Boles, Nathan C.; Yang, Liubin; King, Katherine Y.; Jeong, Mira; Mayle, Allison; Goodell, Margaret A.

    2012-01-01

    Summary Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cells. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, TGF-β signaling, Pten/AKT signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology. In the field of design, the minimalist movement stripped down buildings and objects to their most basic features, a sentiment that architect Ludwig Mies van der Rohe summarized in his motto “less is more”. By depleting HSCs of specific genes, knockout studies transpose the minimalist approach into research biology, providing insights into the essential core of genetic features that is indispensable for a well-functioning hematopoietic system. PMID:22958929

  15. Metaproteomics of Colonic Microbiota Unveils Discrete Protein Functions among Colitic Mice and Control Groups.

    Science.gov (United States)

    Moon, Clara; Stupp, Gregory S; Su, Andrew I; Wolan, Dennis W

    2018-02-01

    Metaproteomics can greatly assist established high-throughput sequencing methodologies to provide systems biological insights into the alterations of microbial protein functionalities correlated with disease-associated dysbiosis of the intestinal microbiota. Here, the authors utilize the well-characterized murine T cell transfer model of colitis to find specific changes within the intestinal luminal proteome associated with inflammation. MS proteomic analysis of colonic samples permitted the identification of ≈10 000-12 000 unique peptides that corresponded to 5610 protein clusters identified across three groups, including the colitic Rag1 -/- T cell recipients, isogenic Rag1 -/- controls, and wild-type mice. The authors demonstrate that the colitic mice exhibited a significant increase in Proteobacteria and Verrucomicrobia and show that such alterations in the microbial communities contributed to the enrichment of specific proteins with transcription and translation gene ontology terms. In combination with 16S sequencing, the authors' metaproteomics-based microbiome studies provide a foundation for assessing alterations in intestinal luminal protein functionalities in a robust and well-characterized mouse model of colitis, and set the stage for future studies to further explore the functional mechanisms of altered protein functionalities associated with dysbiosis and inflammation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  17. Rescue of heart lipoprotein lipase-knockout mice confirms a role for triglyceride in optimal heart metabolism and function.

    Science.gov (United States)

    Khan, Raffay S; Lin, Yan; Hu, Yunying; Son, Ni-Huiping; Bharadwaj, Kalyani G; Palacios, Carla; Chokshi, Aalap; Ji, Ruiping; Yu, Shuiqing; Homma, Sunichi; Schulze, P Christian; Tian, Rong; Goldberg, Ira J

    2013-12-01

    Hearts utilize fatty acids as a primary source of energy. The sources of those lipids include free fatty acids and lipoprotein triglycerides. Deletion of the primary triglyceride-hydrolyzing enzyme lipoprotein lipase (LPL) leads to cardiac dysfunction. Whether heart LPL-knockout (hLPL0) mice are compromised due a deficiency in energetic substrates is unknown. To test whether alternative sources of energy will prevent cardiac dysfunction in hLPL0 mice, two different models were used to supply nonlipid energy. 1) hLPL0 mice were crossed with mice transgenically expressing GLUT1 in cardiomyocytes to increase glucose uptake into the heart; this cross-corrected cardiac dysfunction, reduced cardiac hypertrophy, and increased myocardial ATP. 2) Mice were randomly assigned to a sedentary or training group (swimming) at 3 mo of age, which leads to increased skeletal muscle production of lactate. hLPL0 mice had greater expression of the lactate transporter monocarboxylate transporter-1 (MCT-1) and increased cardiac lactate uptake. Compared with hearts from sedentary hLPL0 mice, hearts from trained hLPL0 mice had adaptive hypertrophy and improved cardiac function. We conclude that defective energy intake and not the reduced uptake of fat-soluble vitamins or cholesterol is responsible for cardiac dysfunction in hLPL0 mice. In addition, our studies suggest that adaptations in cardiac metabolism contribute to the beneficial effects of exercise on the myocardium of patients with heart failure.

  18. Effects of 12-Week’s Tai Chi Chuan Practice on the Immune Function of Female College Students Who Lack Physical Exercise

    Directory of Open Access Journals (Sweden)

    M-Y. Wang

    2011-03-01

    Full Text Available Objective: The present study investigated the effects of 12 weeks’ tai chi chuan (TCC practice on the immune function of female college students. Method: 60 female college students (19.3 ± 1.8 years were recruited and were randomly assigned to either the TCC training (n=30 or the control group (n=30. In the TCC group, the exercise duration was 45 minutes per day and 5 days a week for 12 weeks. The TCC group performed TCC under the teaching of a TCC master. Immunoglobulin G (IgG, IgA, IgM, Cluster of differentiation 3 (CD3, CD4 , CD8 , interferon γ (IFN-γ, interleukin 4 (IL-4 and IL-12 were measured before and after 12 weeks of TCC practice. Results: The TCC group had significantly higher plasma levels of IgG (P=0.000, IgM (P=0.05 and CD4 (P=0.032 after practice compared with their respective pre-practice levels. There were no significant differences in IgA, CD3, IFN-γ, IL-4 or IL-12, but IgA and IFN-γ levels increased and IL-12 decreased within the normal range. Conclusion: The results suggest that regular long-term TCC practice might be a potential method to improve the cellular immune function (anti-virus and anti-infection of people who lack physical exercise. Further studies concerning other immune aspects are needed.

  19. Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice.

    Science.gov (United States)

    Dotolo, Raffaele; Kim, Jung Dae; Pariante, Paolo; Minucci, Sergio; Diano, Sabrina

    2016-03-01

    Prolyl endopeptidase (PREP) is a serine protease which has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides, learning and memory, cell proliferation and differentiation, and glucose metabolism. A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes. In the present work, we examined PREP distribution in male germ cells and studied the effects of its knockdown (Prep(gt/gt)) on testis and sperm in adult mice. The protein is expressed and localized in elongating spermatids and luminal spermatozoa of wild type (wt) mice, as well as Sertoli, Leydig, and peritubular cells. PREP is also expressed in the head and midpiece of epididymal spermatozoa, whereas the remaining tail region shows a weaker signal. Furthermore, testis weight, histology of seminiferous tubules, and epididymal sperm parameters were assessed in wt and Prep(gt/gt) mice: wild type testes have larger average tubule and lumen diameter; in addition, lumenal composition of seminiferous tubules is dissimilar between wt and Prep(gt/gt), as the percentage of spermiated tubules is much higher in wt. Finally, total sperm count, sperm motility, and normal morphology are also higher in wt than in Prep(gt/gt). These results show for the first time that the expression of PREP could be necessary for a correct reproductive function, and suggest that the enzyme may play a role in mouse spermatogenesis and sperm physiology. © 2015 Wiley Periodicals, Inc.

  20. In vivo functional and morphological characterization of bone and striated muscle microcirculation in NSG mice.

    Directory of Open Access Journals (Sweden)

    Haider Mussawy

    Full Text Available Organ-specific microcirculation plays a central role in tumor growth, tumor cell homing, tissue engineering, and wound healing. Mouse models are widely used to study these processes; however, these mouse strains often possess unique microhemodynamic parameters, making it difficult to directly compare experiments. The full functional characterization of bone and striated muscle microcirculatory parameters in non-obese diabetic-severe combined immunodeficiency/y-chain; NOD-Prkds IL2rg (NSG mice has not yet been reported. Here, we established either a dorsal skinfold chamber or femur window in NSG mice (n = 23, allowing direct analysis of microcirculatory parameters in vivo by intravital fluorescence microscopy at 7, 14, 21, and 28 days after chamber preparation. Organ-specific differences were observed. Bone had a significantly lower vessel density but a higher vessel diameter than striated muscle. Bone also showed higher effective vascular permeability than striated muscle. The centerline velocity values were similar in the femur window and dorsal skinfold chamber, with a higher volumetric blood flow in bone. Interestingly, bone and striated muscle showed similar tissue perfusion rates. Knowledge of physiological microhemodynamic values of bone and striated muscle in NSG mice makes it possible to analyze pathophysiological processes at these anatomic sites, such as tumor growth, tumor metastasis, and tumor microcirculation, as well as the response to therapeutic agents.

  1. Opioid microinjection into raphe magnus modulates cardiorespiratory function in mice and rats.

    Science.gov (United States)

    Hellman, Kevin M; Mendelson, Scott J; Mendez-Duarte, Marco A; Russell, James L; Mason, Peggy

    2009-11-01

    The raphe magnus (RM) participates in opioid analgesia and contains pain-modulatory neurons with respiration-related discharge. Here, we asked whether RM contributes to respiratory depression, the most prevalent lethal effect of opioids. To investigate whether opioidergic transmission in RM produces respiratory depression, we microinjected a mu-opioid receptor agonist, DAMGO, or morphine into the RM of awake rodents. In mice, opioid microinjection produced sustained decreases in respiratory rate (170 to 120 breaths/min), as well as heart rate (520 to 400 beats/min). Respiratory sinus arrhythmia, indicative of enhanced parasympathetic activity, was prevalent in mice receiving DAMGO microinjection. We performed similar experiments in rats but observed no changes in breathing rate or heart rate. Both rats and mice experienced significantly more episodes of bradypnea, indicative of impaired respiratory drive, after opioid microinjection. During spontaneous arousals, rats showed less tachycardia after opioid microinjection than before microinjection, suggestive of an attenuated sympathetic tone. Thus, activation of opioidergic signaling within RM produces effects beyond analgesia, including the unwanted destabilization of cardiorespiratory function. These adverse effects on homeostasis consequent to opioid microinjection imply a role for RM in regulating the balance of sympathetic and parasympathetic tone.

  2. Estrogen-related receptor gamma and hearing function: evidence of a role in humans and mice.

    Science.gov (United States)

    Nolan, Lisa S; Maier, Hannes; Hermans-Borgmeyer, Irm; Girotto, Giorgia; Ecob, Russell; Pirastu, Nicola; Cadge, Barbara A; Hübner, Christian; Gasparini, Paolo; Strachan, David P; Davis, Adrian; Dawson, Sally J

    2013-08-01

    Since estrogen is thought to protect pre-menopausal women from age-related hearing loss, we investigated whether variation in estrogen-signalling genes is linked to hearing status in the 1958 British Birth Cohort. This analysis implicated the estrogen-related receptor gamma (ESRRG) gene in determining adult hearing function and was investigated further in a total of 6134 individuals in 3 independent cohorts: (i) the 1958 British Birth Cohort; (ii) a London ARHL case-control cohort; and (iii) a cohort from isolated populations of Italy and Silk Road countries. Evidence of an association between the minor allele of single nucleotide polymorphism (SNP) rs2818964 and hearing status was found in females, but not in males in 2 of these cohorts: p = 0.0058 (London ARHL) and p = 0.0065 (Carlantino, Italy). Furthermore, assessment of hearing in Esrrg knock-out mice revealed a mild 25-dB hearing loss at 5 weeks of age. At 12 weeks, average hearing thresholds in female mice((-/-)) were 15 dB worse than in males((-/-)). Together these data indicate ESRRG plays a role in maintenance of hearing in both humans and mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  4. Cardiac Morphology and Function, and Blood Gas Transport in Aquaporin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Samer eAl-Samir

    2016-05-01

    Full Text Available We have studied cardiac and respiratory functions of aquaporin- 1-deficient mice by the Pressure-Volume-loop technique and by blood gas analysis. In addition, the morphological properties of the animals’ hearts were analysed. In anesthesia under maximal dobutamine stimulation, the mice exhibit a moderately elevated heart rate of < 600 min-1 and an O2 consumption of ~0.6 ml/min/g, which is about twice the basal rate. In this state, which is similar to the resting state of the conscious animal, all cardiac functions including stroke volume and cardiac output exhibited resting values and were identical between deficient and wildtype animals. Likewise, pulmonary and peripheral exchange of O2 and CO2 were normal. In contrast, several morphological parameters of the heart tissue of deficient mice were altered: 1 left ventricular wall thickness was reduced by 12%, 2 left ventricular mass, normalized to tibia length, was reduced by 10-20%, 3 cardiac muscle fiber cross sectional area was decreased by 17%, and 4 capillary density was diminished by 10%. As the P-V-loop technique yielded normal end-diastolic and end-systolic left ventricular volumes, the deficient hearts are characterized by thin ventricular walls in combination with normal intraventricular volumes. The aquaporin-1-deficient heart thus seems to be at a disadvantage compared to the wildtype heart by a reduced left-ventricular wall thickness and an increased diffusion distance between blood capillaries and muscle mitochondria. While under the present quasi-resting conditions these morphological alterations have no consequences for cardiac function, we expect that the deficient hearts will show a reduced maximal cardiac output.

  5. Early cannabinoid exposure influences neuroendocrine and reproductive functions in male mice: I. Prenatal exposure.

    Science.gov (United States)

    Dalterio, S; Steger, R; Mayfield, D; Bartke, A

    1984-01-01

    Maternal exposure to delta 9-tetrahydrocannabinol (THC), the major psychoactive constituent in marihuana, or to the non-psychoactive cannabinol (CBN) or cannabidiol (CBD) alters endocrine functions and concentrations of brain biogenic amines in their male offspring. Prenatal CBN exposure on day 18 of gestation resulted in decreased plasma FSH levels, testicular testosterone (T) concentrations, and seminal vesicles weights, but increased plasma levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) post-castration in adulthood. Prenatal exposure to THC significantly enhanced the responsiveness of the testes to intratesticular LH injection in vivo and tended to increase human chorionic gonadotropin (hCG)-stimulated T production by decapsulated testes in vitro. In the CBN-exposed mice, hCG-stimulated T production was enhanced, while CBD exposure had no effect. Prenatal THC exposure altered the negative feedback effects of exogenous gonadal steroids in castrated adults, with lower plasma T and FSH levels after 20 micrograms T than in castrated controls. In contrast, CBD-exposed mice had higher levels of LH in plasma post-castration. In CBN-exposed adults, two weeks post-castration the concentration of norepinephrine (NE) and dopamine (DA) in hypothalamus and remaining brain were reduced, while levels of serotonin (5-HT) and its metabolite, 5-HIAA, were elevated compared to that in castrated OIL-controls. Prenatal CBD-exposure also reduced NE and elevated 5-HT and 5-HIAA, but did not affect DA levels post-castration. Concentrations of brain biogenic amines were not influenced by prenatal THC exposure in the present study. A single prenatal exposure to psychoactive or non-psychoactive components of marihuana results in long term alterations in the function of the hypothalamo-pituitary-gonadal axis. Changes in the concentrations of brain biogenic amines may be related to these effects of prenatal cannabinoids on endocrine function in adult male mice.

  6. [Effect of electromagnetic pulse irradiation on structure and function of Leydig cells in mice].

    Science.gov (United States)

    Wang, Shui-Ming; Wang, De-Wen; Peng, Rui-Yun; Gao, Ya-Bing; Yang, Yi; Hu, Wen-Hua; Chen, Hao-Yu; Zhang, You-Ren; Gao, Yan

    2003-08-01

    To explore the effect of electromagnetic pulse (EMP) irradiation on structure and function of Leydig cells in mice. One hundred and fourteen male Kunming mice were randomly divided into irradiated and control group, the former radiated generally by 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP respectively five times within two minutes. Pathological changes of Leydig cells were observed by light and electron microscope. Serum testosterone (T), luteinizing hormone (LH) and estradiol (E2) were measured dynamically by radioimmunoassay at 6 h, 1 d, 3 d, 7 d, 14 d and 28 d after irradiation. Main pathological changes were edema and vacuolation, swelling of cytoplasmic mitochondria, reduce of lipid droplets, pale staining of most of lipid droplets, and partial or complete cavitation of lipid droplets in Leydig cells within 28 days after EMP radiation. Compared with normal controls, serum T decreased in all in different degrees within 28 days, and dropped significantly at 6 h-14 d, 6 h-7 d and 1 d-28 d after 8 x 10(3) V/m, 2 x 10(4) V/m and 6 x 10(4) V/m EMP irradiation(P < 0.05 or P < 0.01). EMP irradiation caused no significant changes in serum LH and E2. Leydig cells are among those that are the most susceptible to EMP irradiation. EMP irradiation may cause significant injury in structure and function of Leydig cells in mice, whose earlier and continuous effect is bound to affect sexual function and sperm production.

  7. Restoring Ovarian Endocrine Function with Encapsulated Ovarian Allograft in Immune Competent Mice.

    Science.gov (United States)

    David, Anu; Day, James Ronald; Cichon, Alexa Leigh; Lefferts, Adam; Cascalho, Marilia; Shikanov, Ariella

    2017-07-01

    Premature ovarian insufficiency (POI) is a major complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. In pediatric cancer patients modern therapy has improved the long-term survival to over 80% in the United States. However, these cancer survivors face long-term health problems related to treatment toxicity. In female cancer survivors POI leads to sterility, along with the consequences of estrogen deficiency such as premature osteopenia, muscle wasting, accelerated cardiovascular diseases and a vast array of other health and developmental problems. These long-lasting effects are particularly significant for young girls reaching puberty. As such, restoring ovarian endocrine function is paramount in this population. In the present study, we evaluated the feasibility of restoring ovarian endocrine function in ovariectomized mice by transplanting syngeneic and allogeneic ovarian tissue encapsulated in alginate capsules or TheraCyte ® . Histological analysis of the implants retrieved after 7 and 30 days' post implantation showed follicular development up to the secondary and antral stages in both syngeneic and allogeneic implants. Implantation of syngeneic and allogeneic ovarian grafts encapsulated in TheraCyte devices restored ovarian endocrine function, which was confirmed by decreased serum FSH levels from 60 to 70 ng/mL in ovariectomized mice to 30-40 ng/mL 30 days after implantation. Absence of allo-MHC-specific IgG and IgM antibodies in the sera of implanted mice with allogeneic ovarian tissue encapsulated in TheraCyte indicate that the implants did not evoke an allo-immune response, while the allogeneic controls were rejected 21 days after implantation. Our results show that TheraCyte effectively isolates the graft from immune recognition but also supports follicular growth.

  8. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young; Crooks, Daniel R.; Wilson-Ollivierre, Hayden; Ghosh, Manik C.; Sougrat, Rachid; Lee, Jaekwon; Cooperman, Sharon; Mitchell, James B.; Beaumont, Carole; Rouault, Tracey A.

    2011-01-01

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  9. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice

    KAUST Repository

    Jeong, Suh Young

    2011-10-07

    Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2), which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  10. Iron insufficiency compromises motor neurons and their mitochondrial function in Irp2-null mice.

    Directory of Open Access Journals (Sweden)

    Suh Young Jeong

    Full Text Available Genetic ablation of Iron Regulatory Protein 2 (Irp2, Ireb2, which post-transcriptionally regulates iron metabolism genes, causes a gait disorder in mice that progresses to hind-limb paralysis. Here we have demonstrated that misregulation of iron metabolism from loss of Irp2 causes lower motor neuronal degeneration with significant spinal cord axonopathy. Mitochondria in the lumbar spinal cord showed significantly decreased Complex I and II activities, and abnormal morphology. Lower motor neurons appeared to be the most adversely affected neurons, and we show that functional iron starvation due to misregulation of iron import and storage proteins, including transferrin receptor 1 and ferritin, may have a causal role in disease. We demonstrated that two therapeutic approaches were beneficial for motor neuron survival. First, we activated a homologous protein, IRP1, by oral Tempol treatment and found that axons were partially spared from degeneration. Secondly, we genetically decreased expression of the iron storage protein, ferritin, to diminish functional iron starvation. These data suggest that functional iron deficiency may constitute a previously unrecognized molecular basis for degeneration of motor neurons in mice.

  11. Combining MRI with PET for partial volume correction improves image-derived input functions in mice

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Eleanor; Buonincontri, Guido [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Izquierdo, David [Athinoula A Martinos Centre, Harvard University, Cambridge, MA (United States); Methner, Carmen [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Hawkes, Rob C [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Ansorge, Richard E [Department of Physics, University of Cambridge, Cambridge (United Kingdom); Kreig, Thomas [Department of Medicine, University of Cambridge, Cambridge (United Kingdom); Carpenter, T Adrian [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Sawiak, Stephen J [Wolfson Brain Imaging Centre, University of Cambridge, Cambridge (United Kingdom); Behavioural and Clinical Neurosciences Institute, University of Cambridge, Cambridge (United Kingdom)

    2014-07-29

    Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.

  12. Combining MRI with PET for partial volume correction improves image-derived input functions in mice

    International Nuclear Information System (INIS)

    Evans, Eleanor; Buonincontri, Guido; Izquierdo, David; Methner, Carmen; Hawkes, Rob C; Ansorge, Richard E; Kreig, Thomas; Carpenter, T Adrian; Sawiak, Stephen J

    2014-01-01

    Kinetic modelling in PET requires the arterial input function (AIF), defined as the time-activity curve (TAC) in plasma. This measure is challenging to obtain in mice due to low blood volumes, resulting in a reliance on image-based methods for AIF derivation. We present a comparison of PET- and MR-based region-of-interest (ROI) analysis to obtain image-derived AIFs from the left ventricle (LV) of a mouse model. ROI-based partial volume correction (PVC) was performed to improve quantification.

  13. Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice

    Science.gov (United States)

    Zhang, Danying; Deng, Xiaoyong; Ji, Zongfei; Shen, Xizhong; Dong, Ling; Wu, Minghong; Gu, Taoying; Liu, Yuanfang

    2010-04-01

    The toxicity of polyethylene-glycol functionalized (PEGylated) multi-walled carbon nanotubes (MWCNTs) and non-PEGylated MWCNTs in vivo was evaluated and compared. Mice were exposed to MWCNTs by intravenous injection. The activity level of glutathione, superoxide dismutase and gene expression in liver, as well as some biochemical parameters and the tumor necrosis factor alpha level in blood were measured over 2 months. The pathological and electron micrographic observations of liver evidently indicate that the damage caused by non-PEGylated MWCNTs is slightly more severe than that of PEGylated MWCNTs, which means that PEGylation can partly, but not substantially, improve the in vivo biocompatibility of MWCNTs.

  14. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice

    DEFF Research Database (Denmark)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang

    2017-01-01

    feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF......Background: It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those......-induced obesity, but in Sv129 mice accentuates obesity.Results: Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF...

  15. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice.

    Science.gov (United States)

    Xiao, Liang; Sonne, Si Brask; Feng, Qiang; Chen, Ning; Xia, Zhongkui; Li, Xiaoping; Fang, Zhiwei; Zhang, Dongya; Fjære, Even; Midtbø, Lisa Kolden; Derrien, Muriel; Hugenholtz, Floor; Tang, Longqing; Li, Junhua; Zhang, Jianfeng; Liu, Chuan; Hao, Qin; Vogel, Ulla Birgitte; Mortensen, Alicja; Kleerebezem, Michiel; Licht, Tine Rask; Yang, Huanming; Wang, Jian; Li, Yingrui; Arumugam, Manimozhiyan; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2017-04-08

    It is well known that the microbiota of high-fat (HF) diet-induced obese mice differs from that of lean mice, but to what extent, this difference reflects the obese state or the diet is unclear. To dissociate changes in the gut microbiota associated with high HF feeding from those associated with obesity, we took advantage of the different susceptibility of C57BL/6JBomTac (BL6) and 129S6/SvEvTac (Sv129) mice to diet-induced obesity and of their different responses to inhibition of cyclooxygenase (COX) activity, where inhibition of COX activity in BL6 mice prevents HF diet-induced obesity, but in Sv129 mice accentuates obesity. Using HiSeq-based whole genome sequencing, we identified taxonomic and functional differences in the gut microbiota of the two mouse strains fed regular low-fat or HF diets with or without supplementation with the COX-inhibitor, indomethacin. HF feeding rather than obesity development led to distinct changes in the gut microbiota. We observed a robust increase in alpha diversity, gene count, abundance of genera known to be butyrate producers, and abundance of genes involved in butyrate production in Sv129 mice compared to BL6 mice fed either a LF or a HF diet. Conversely, the abundance of genes involved in propionate metabolism, associated with increased energy harvest, was higher in BL6 mice than Sv129 mice. The changes in the composition of the gut microbiota were predominantly driven by high-fat feeding rather than reflecting the obese state of the mice. Differences in the abundance of butyrate and propionate producing bacteria in the gut may at least in part contribute to the observed differences in obesity propensity in Sv129 and BL6 mice.

  16. Decreased proteasomal function accelerates cigarette smoke-induced pulmonary emphysema in mice.

    Science.gov (United States)

    Yamada, Yosuke; Tomaru, Utano; Ishizu, Akihiro; Ito, Tomoki; Kiuchi, Takayuki; Ono, Ayako; Miyajima, Syota; Nagai, Katsura; Higashi, Tsunehito; Matsuno, Yoshihiro; Dosaka-Akita, Hirotoshi; Nishimura, Masaharu; Miwa, Soichi; Kasahara, Masanori

    2015-06-01

    Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.

  17. Hexane extracts of Polygonum multiflorum improve tissue and functional outcome following focal cerebral ischemia in mice.

    Science.gov (United States)

    Lee, Soo Vin; Choi, Kyung Ha; Choi, Young Whan; Hong, Jin Woo; Baek, Jin Ung; Choi, Byung Tae; Shin, Hwa Kyoung

    2014-04-01

    Polygonum multiflorum is a traditional Korean medicine that has been utilized widely in East Asian countries as a longevity agent. Clinical studies have demonstrated that Polygonum multiflorum improves hypercholesterolemia, coronary heart disease, neurosis and other diseases commonly associated with aging. However, scientific evidence defining the protective effects and mechanisms of Polygonum multiflorum against ischemic stroke is incomplete. In the present study, we investigated the cerebrovascular protective effects of Polygonum multiflorum against ischemic brain injury using an in vivo photothrombotic mouse model. To examine the underlying mechanism of action, we utilized an in vitro human brain microvascular endothelial cell (HBMEC) culture system. Hexane extracts (HEPM), ethyl acetate extracts (EAEPM) and methanol extracts (MEPM) of Polygonum multiflorum (100 mg/kg) were administered intraperitoneally 30 min prior to ischemic insult. Focal cerebral ischemia was induced in C57BL/6J mice and endothelial nitric oxide synthase knockout (eNOS KO) mice by photothrombotic cortical occlusion. We evaluated the infarct volume, as well as neurological and motor function, 24 h after ischemic brain injury. Following ischemic insult, HEPM induced a significant reduction in infarct volume and subsequent neurological deficits, compared with EAEPM and MEPM. HEPM significantly decreased infarct size and improved neurological and motor function, which was not observed in eNOS KO mice, suggesting that this cerebroprotective effect is primarily an eNOS-dependent mechanism. In vitro, HEPM effectively promoted NO production, however these effects were inhibited by the NOS inhibitor, L-NAME and the PI3K/Akt inhibitor, LY-294002. Furthermore, HEPM treatment resulted in increased phosphorylation-dependent activation of Akt and eNOS in HBMEC, suggesting that HEPM increased NO production via phosphorylation-dependent activation of Akt and eNOS. In conclusion, HEPM prevents cerebral

  18. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  19. UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor

    DEFF Research Database (Denmark)

    Cohen, A; Shainberg, Asher; Hochhauser, E

    2011-01-01

    Pyrimidine nucleotides are signaling molecules, which activate G protein-coupled membrane receptors of the P2Y family. P2Y(2) and P2Y(4) receptors are part of the P2Y family, which is composed of 8 subtypes that have been cloned and functionally defined. We have previously found that uridine-5......'-triphosphate (UTP) reduces infarct size and improves cardiac function following myocardial infarct (MI). The aim of the present study was to determine the role of P2Y(2) receptor in cardiac protection following MI using knockout (KO) mice, in vivo and wild type (WT) for controls. In both experimental groups...... used (WT and P2Y(2)(-/-) receptor KO mice) there were 3 subgroups: sham, MI, and MI+UTP. 24h post MI we performed echocardiography and measured infarct size using triphenyl tetrazolium chloride (TTC) staining on all mice. Fractional shortening (FS) was higher in WT UTP-treated mice than the MI group...

  20. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    International Nuclear Information System (INIS)

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N.

    2005-01-01

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice

  1. Impairment of visual function and retinal ER stress activation in Wfs1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Delphine Bonnet Wersinger

    Full Text Available Wolfram syndrome is an early onset genetic disease (1/180,000 featuring diabetes mellitus and optic neuropathy, associated to mutations in the WFS1 gene. Wfs1-/- mouse model shows pancreatic beta cell atrophy, but its visual performance has not been investigated, prompting us to study its visual function and histopathology of the retina and optic nerve. Electroretinogram and visual evoked potentials (VEPs were performed in Wfs1-/- and Wfs1+/+ mice at 3, 6, 9 and 12 months of age. Fundi were pictured with Micron III apparatus. Retinal ganglion cell (RGC abundance was determined from Brn3a immunolabeling of retinal sections. RGC axonal loss was quantified by electron microscopy in transversal optic nerve sections. Endoplasmic reticulum stress was assessed using immunoglobulin binding protein (BiP, protein disulfide isomerase (PDI and inositol-requiring enzyme 1 alpha (Ire1α markers. Electroretinograms amplitudes were slightly reduced and latencies increased with time in Wfs1-/- mice. Similarly, VEPs showed decreased N+P amplitudes and increased N-wave latency. Analysis of unfolded protein response signaling revealed an activation of endoplasmic reticulum stress in Wfs1-/- mutant mouse retinas. Altogether, progressive VEPs alterations with minimal neuronal cell loss suggest functional alteration of the action potential in the Wfs1-/- optic pathways.

  2. Genetic targeting of NRXN2 in mice unveils role in excitatory cortical synapse function and social behaviors

    Directory of Open Access Journals (Sweden)

    Gesche eBorn

    2015-02-01

    Full Text Available Human genetics has identified rare copy number variations and deleterious mutations for all neurexin genes (NRXN1-3 in patients with neurodevelopmental diseases, and electrophysiological recordings in animal brains have shown that Nrxns are important for synaptic transmission. While several mouse models for Nrxn1α inactivation have previously been studied for behavioral changes, very little information is available for other variants. Here, we validate that mice lacking Nrxn2α exhibit behavioral abnormalities, characterized by social interaction deficits and increased anxiety-like behavior, which partially overlap, partially differ from Nrxn1α mutant behaviors. Using patch-clamp recordings in Nrxn2α knockout brains, we observe reduced spontaneous transmitter release at excitatory synapses in the neocortex. We also analyse at this cellular level a novel NRXN2 mouse model that carries a combined deletion of Nrxn2α and Nrxn2β. Electrophysiological analysis of this Nrxn2-mutant mouse shows surprisingly similar defects of excitatory release to Nrxn2α, indicating that the β-variant of Nrxn2 has no strong function in basic transmission at these synapses. Inhibitory transmission as well as synapse densities and ultrastructure remain unchanged in the neocortex of both models. Furthermore, at Nrxn2α and Nrxn2-mutant excitatory synapses we find an altered facilitation and N-methyl-D-aspartate receptor (NMDAR function because NMDAR-dependent decay time and NMDAR-mediated responses are reduced. As Nrxn can indirectly be linked to NMDAR via neuroligin and PSD-95, the trans-synaptic nature of this complex may help to explain occurrence of presynaptic and postsynaptic effects. Since excitatory/inhibitory imbalances and impairment of NMDAR function are alledged to have a role in autism and schizophrenia, our results support the idea of a related pathomechanism in these disorders.

  3. Impact of high-fat diet and voluntary running on body weight and endothelial function in LDL receptor knockout mice.

    Science.gov (United States)

    Langbein, Heike; Hofmann, Anja; Brunssen, Coy; Goettsch, Winfried; Morawietz, Henning

    2015-05-01

    Obesity and physical inactivity are important cardiovascular risk factors. Regular physical exercise has been shown to mediate beneficial effects in the prevention of cardiovascular diseases. However, the impact of physical exercise on endothelial function in proatherosclerotic low-density lipoprotein receptor deficient (LDLR(-/-)) mice has not been studied so far. Six-week-old male LDLR(-/-) mice were fed a standard diet or a high-fat diet (39 kcal% fat diet) for 20 weeks. The impact of high-fat diet and voluntary running on body weight and amount of white adipose tissue was monitored. Basal tone and endothelial function was investigated in aortic rings using a Mulvany myograph. LDLR(-/-) mice on high-fat diet had increased cumulative food energy intake, but also higher physical activity compared to mice on control diet. Body weight and amount of visceral and retroperitoneal white adipose tissue of LDLR(-/-) mice were significantly increased by high-fat diet and partially reduced by voluntary running. Endothelial function in aortae of LDLR(-/-) mice was impaired after 20 weeks on standard and high-fat diet and could not be improved by voluntary running. Basal tone showed a trend to be increased by high-fat diet. Voluntary running reduced body weight and amount of white adipose tissue in LDLR(-/-) mice. Endothelial dysfunction in LDLR(-/-) mice could not be improved by voluntary running. In a clinical context, physical exercise alone might not have an influence on functional parameters and LDL-C levels in patients with familial hypercholesterolemia. However, physical activity in these patients may be in general beneficial and should be performed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    OpenAIRE

    Kiran Chaudhari; Jessica M. Wong; Philip H. Vann; Nathalie Sumien

    2014-01-01

    Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the co...

  5. The effects of low dose radiation (LDR) on mice of immune function

    International Nuclear Information System (INIS)

    Feng Li; Deng Daping

    2007-01-01

    Objective: To find out the Effects of Low Dose Radiation(LDR) on mice of immune function. Methods: Through flow cytometry to observe and analyse the effects of the leukomonocyte. Through immunohistochemistry to study IL-2, TNF-α. Results: At dose of 100mGy the stimulative effect on CD 4 + cells, CD 8 + cells and NK activity was higher than that at other doses. At dose of 500mGy leukomonocyte activity was lower. At dose of 100mGy, the colorations about IL-2, TNF-α deepen. Conclusion: LDR could stimulate immune function, especially at dose of 100mGy. while at dose of 500mGy, radiation could restrain the leukomonocyte activity. (authors)

  6. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    Science.gov (United States)

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  7. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    Science.gov (United States)

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  8. Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis

    NARCIS (Netherlands)

    Frank, Deborah U.; Carter, Kandis L.; Thomas, Kirk R.; Burr, R. Michael; Bakker, Martijn L.; Coetzee, William A.; Tristani-Firouzi, Martin; Bamshad, Michael J.; Christoffels, Vincent M.; Moon, Anne M.

    2012-01-01

    TBX3 is critical for human development: mutations in TBX3 cause congenital anomalies in patients with ulnar-mammary syndrome. Data from mice and humans suggest multiple roles for Tbx3 in development and function of the cardiac conduction system. The mechanisms underlying the functional development,

  9. Dexrazoxane Diminishes Doxorubicin-Induced Acute Ovarian Damage and Preserves Ovarian Function and Fecundity in Mice.

    Directory of Open Access Journals (Sweden)

    Jenna Kropp

    Full Text Available Advances in cancer treatment utilizing multiple chemotherapies have dramatically increased cancer survivorship. Female cancer survivors treated with doxorubicin (DXR chemotherapy often suffer from an acute impairment of ovarian function, which can persist as long-term, permanent ovarian insufficiency. Dexrazoxane (Dexra pretreatment reduces DXR-induced insult in the heart, and protects in vitro cultured murine and non-human primate ovaries, demonstrating a drug-based shield to prevent DXR insult. The present study tested the ability of Dexra pretreatment to mitigate acute DXR chemotherapy ovarian toxicity in mice through the first 24 hours post-treatment, and improve subsequent long-term fertility throughout the reproductive lifespan. Adolescent CD-1 mice were treated with Dexra 1 hour prior to DXR treatment in a 1:1 mg or 10:1 mg Dexra:DXR ratio. During the acute injury period (2-24 hours post-injection, Dexra pretreatment at a 1:1 mg ratio decreased the extent of double strand DNA breaks, diminished γH2FAX activation, and reduced subsequent follicular cellular demise caused by DXR. In fertility and fecundity studies, dams pretreated with either Dexra:DXR dose ratio exhibited litter sizes larger than DXR-treated dams, and mice treated with a 1:1 mg Dexra:DXR ratio delivered pups with birth weights greater than DXR-treated females. While DXR significantly increased the "infertility index" (quantifying the percentage of dams failing to achieve pregnancy through 6 gestations following treatment, Dexra pretreatment significantly reduced the infertility index following DXR treatment, improving fecundity. Low dose Dexra not only protected the ovaries, but also bestowed a considerable survival advantage following exposure to DXR chemotherapy. Mouse survivorship increased from 25% post-DXR treatment to over 80% with Dexra pretreatment. These data demonstrate that Dexra provides acute ovarian protection from DXR toxicity, improving reproductive health

  10. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    Science.gov (United States)

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  11. In vivo intracellular recordings from spinal lumbar motoneurones in P0-deficient mice indicate an activity-dependent axonal conduction failure in otherwise functional motoneurones

    DEFF Research Database (Denmark)

    Lehnhoff, Janna; Moldovan, Mihai; Hedegaard, Anne

    2014-01-01

    Mice deficient for the peripheral myelin binding protein zero (P0-/-) show a progressive dysmyelinating neuropathy phenotypically resembling severe forms of Charcot-Marie-Tooth (CMT) disease. Traditionally, the progression of the disease was attributed to axonal loss, but the effect of chronic...... dysmyelination remains poorly understood. In this study, in vivo electrophysiological recordings were used to assess the function of both central and axonal components of spinal lumbar motoneurones in adult P0-/- mice.Three month old P0-/- mice (n=7) and wild type (WT) littermate controls (n=5) were...... anaesthetized with Hypnorm (0.315 mg/mL fentanyl-citrate + 10 mg/mL fluanisone), Midazolam (5 mg/mL), and sterile water, mixed in the ratio 1:1:2 (induction: 0.15mL/25g, maintenance: 0.05 mL/20 minutes, S.C.). Anaesthesia during surgery was assessed by the lack of reflexes to a short noxious pinch on the hind...

  12. CISH has no non-redundant functions in glucose homeostasis or beta cell proliferation during pregnancy in mice.

    Science.gov (United States)

    Jiao, Yang; Rieck, Sebastian; Le Lay, John; Kaestner, Klaus H

    2013-11-01

    Increased beta cell proliferation during pregnancy is mediated by the Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signalling pathway in response to increased lactogen levels. Activation of the pathway leads to transcriptional upregulation of Cish (encoding cytokine-inducible SH2 domain-containing protein), a member of the suppressor of cytokine signalling (SOCS) family of genes, forming a negative-feedback loop. Here, we examined whether conditional gene ablation of Cish in the pancreas improves beta cell proliferation and beta cell function during pregnancy in mice. We derived mice with a novel, conditional loxP allele for Cish. Pancreas-specific ablation of Cish was achieved by crossing Cish (loxP/loxP) mice with Pdx1-Cre (Early) mice. Beta cell proliferation was quantified by BrdU labelling. Glucose homeostasis was examined with glucose tolerance tests and determination of plasma insulin levels. The expression of other Socs genes and target genes of p-STAT5 related to beta cell function and beta cell proliferation was determined by quantitative PCR. There was no difference in beta cell proliferation or glucose homeostasis between the Cish mutant group and the control group. The p-STAT5 protein level was the same in Cish mutant and control mice. Socs2 gene expression was higher in Cish mutant than control mice at pregnancy day 9.5. The expression of other Socs genes was the same between control and mutant mice. Our results show that CISH has no non-redundant functions in beta cell proliferation or glucose homeostasis during pregnancy in mice. Socs2 might compensate for the loss of Cish during pregnancy.

  13. Altered behaviour and cognitive function following combined deletion of Toll-like receptors 2 and 4 in mice.

    Science.gov (United States)

    Too, Lay Khoon; McGregor, Iain S; Baxter, Alan G; Hunt, Nicholas H

    2016-04-15

    Activation of the immune system due to infection or aging is increasingly linked to impaired neuropsychological function. Toll-like receptors 2 and 4 (TLR2, TLR4) are well-characterised for their role in inflammatory events, and their combined activation has been implicated in neurological diseases. We therefore determined whether TLR2 and TLR4 double gene knockout (GKO) mice showed modified behaviour and cognitive function during a 16-day test sequence that employed the automated IntelliCage test system. The IntelliCage features a home cage environment in which groups of mice live and where water reward is gained through performing various tasks centred on drinking stations in each corner of the apparatus. All mice were tested twice, one month apart (the first sequence termed "R1"and the second "R2"). There were fewer corner visits and nosepokes in TLR2/4 GKO compared to wild-type mice during early exploration in R1, suggesting elevated neophobia in GKO mice. Reduced exploration persisted over subsequent test modules during the dark phase. TLR2/4 GKO mice also displayed increased corner visits during drinking sessions compared to non-drinking sessions, but this was not associated with increased drinking. In subsequent, more complex test modules, TLR2/4 GKO mice had unimpaired spatial learning, but showed markedly poorer performance in a visual discrimination reversal task compared to wild-type mice. These results indicated subtle impairments in behaviour and cognitive functions due to double deficiency in TLR2 and TLR4. These finding are highly relevant to understanding the combined actions of TLR2 and TLR4 on neurological status in a range of different disease conditions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  14. Abnormal megakaryocyte development and platelet function in Nbeal2−/− mice

    Science.gov (United States)

    Lo, Richard W.; Li, Ling; Pluthero, Fred G.; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E.; Weyrich, Andrew S.; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L.

    2013-01-01

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2−/− mouse. As in GPS, Nbeal2−/− mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2−/− platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2−/− platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2−/− bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2−/− mice has deleterious effects on megakaryocyte survival, development, and platelet production. PMID:23861251

  15. IGF-1 delivery to CNS attenuates motor neuron cell death but does not improve motor function in type III SMA mice.

    Science.gov (United States)

    Tsai, Li-Kai; Chen, Yi-Chun; Cheng, Wei-Cheng; Ting, Chen-Hung; Dodge, James C; Hwu, Wuh-Liang; Cheng, Seng H; Passini, Marco A

    2012-01-01

    The efficacy of administering a recombinant adeno-associated virus (AAV) vector encoding human IGF-1 (AAV2/1-hIGF-1) into the deep cerebellar nucleus (DCN) of a type III SMA mouse model was evaluated. High levels of IGF-1 transcripts and protein were detected in the spinal cord at 2 months post-injection demonstrating that axonal connections between the cerebellum and spinal cord were able to act as conduits for the viral vector and protein to the spinal cord. Mice treated with AAV2/1-hIGF-1 and analyzed 8 months later showed changes in endogenous Bax and Bcl-xl levels in spinal cord motor neurons that were consistent with IGF-1-mediated anti-apoptotic effects on motor neurons. However, although AAV2/1-hIGF-1 treatment reduced the extent of motor neuron cell death, the majority of rescued motor neurons were non-functional, as they lacked axons that innervated the muscles. Furthermore, treated SMA mice exhibited abnormal muscle fibers, aberrant neuromuscular junction structure, and impaired performance on motor function tests. These data indicate that although CNS-directed expression of IGF-1 could reduce motor neuron cell death, this did not translate to improvements in motor function in an adult mouse model of type III SMA. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Impact of β-hydroxy β-methylbutyrate (HMB) on age-related functional deficits in mice.

    Science.gov (United States)

    Munroe, Michael; Pincu, Yair; Merritt, Jennifer; Cobert, Adam; Brander, Ryan; Jensen, Tor; Rhodes, Justin; Boppart, Marni D

    2017-01-01

    β-Hydroxy β-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine. Recent studies demonstrate a decline in plasma HMB concentrations in humans across the lifespan, and HMB supplementation may be able to preserve muscle mass and strength in older adults. However, the impact of HMB supplementation on hippocampal neurogenesis and cognition remains largely unexplored. The purpose of this study was to simultaneously evaluate the impact of HMB on muscle strength, neurogenesis and cognition in young and aged mice. In addition, we evaluated the influence of HMB on muscle-resident mesenchymal stem/stromal cell (Sca-1 + CD45 - ; mMSC) function to address these cells potential to regulate physiological outcomes. Three month-old (n=20) and 24 month-old (n=18) female C57BL/6 mice were provided with either Ca-HMB or Ca-Lactate in a sucrose solution twice per day for 5.5weeks at a dose of 450mg/kg body weight. Significant decreases in relative peak and mean force, balance, and neurogenesis were observed in aged mice compared to young (age main effects, p≤0.05). Short-term HMB supplementation did not alter activity, balance, neurogenesis, or cognitive function in young or aged mice, yet HMB preserved relative peak force in aged mice. mMSC gene expression was significantly reduced with age, but HMB supplementation was able to recover expression of select growth factors known to stimulate muscle repair (HGF, LIF). Overall, our findings demonstrate that while short-term HMB supplementation does not appear to affect neurogenesis or cognitive function in young or aged mice, HMB may maintain muscle strength in aged mice in a manner dependent on mMSC function. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability.

    Science.gov (United States)

    Bumstead, Jonathan R; Bauer, Adam Q; Wright, Patrick W; Culver, Joseph P

    2017-02-01

    Resting-state functional connectivity is a growing neuroimaging approach that analyses the spatiotemporal structure of spontaneous brain activity, often using low-frequency (Mayer waves. Despite how close in frequency these phenomena exist, there is little research on how vasomotion and Mayer waves are related to or affect resting-state functional connectivity. In this study, we analyze spontaneous hemodynamic fluctuations over the mouse cortex using optical intrinsic signal imaging. We found spontaneous occurrence of oscillatory hemodynamics ∼0.2 Hz consistent with the properties of Mayer waves reported in the literature. Across a group of mice (n = 19), there was a large variability in the magnitude of Mayer waves. However, regardless of the magnitude of Mayer waves, functional connectivity patterns could be recovered from hemodynamic signals when filtered to the lower frequency band, 0.01-0.08 Hz. Our results demonstrate that both Mayer waves and resting-state functional connectivity patterns can co-exist simultaneously, and that they can be separated by applying bandpass filters.

  18. Effect of Zi Gui decoction on immune function in {sup 60}Co {gamma}-ray irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Qiujun, Lu; Shafei, Huang; Xipeng, Zhou; Jiayun, Song; Zhongxiong, Tang [Dept. of Pharmacology, Institute of Radiation Medicine, Beijing (China)

    1995-02-01

    Zi Gui decoction (ZG), a complex preparation of traditional Chinese herbal medicine, mainly consists of Radix Angelicae and Radix Astragali. The effects of ZG on mitogen induced proliferation IL-1 and -2 production, natural killer (NK) cell activity in {sup 60}Co {gamma}-ray irradiated mice is investigated. After 5 Gy whole body irradiation. mice were treated i.g. with ZG (1.2, 1.8 g/kg/day) for 20 days. An enhancement in Con A- and LPS-induced proliferations of splenocytes from the two dosage groups were observed. There were marked increases in IL-1 activity in peritoneal macrophage culturesa and IL-2 activity in splenocyte cultures from irradiated mice treated with ZG. The two dosage groups also showed significant potentiation of NK cell activity against YAC-1 target cells. The above results indicated that ZG could promote the recovery of immune functions in {gamma}-ray irradiated mice.

  19. Cannabidiol improves brain and liver function in a fulminant hepatic failure-induced model of hepatic encephalopathy in mice.

    Science.gov (United States)

    Avraham, Y; Grigoriadis, Nc; Poutahidis, T; Vorobiev, L; Magen, I; Ilan, Y; Mechoulam, R; Berry, Em

    2011-04-01

    Hepatic encephalopathy is a neuropsychiatric disorder of complex pathogenesis caused by acute or chronic liver failure. We investigated the effects of cannabidiol, a non-psychoactive constituent of Cannabis sativa with anti-inflammatory properties that activates the 5-hydroxytryptamine receptor 5-HT(1A) , on brain and liver functions in a model of hepatic encephalopathy associated with fulminant hepatic failure induced in mice by thioacetamide. Female Sabra mice were injected with either saline or thioacetamide and were treated with either vehicle or cannabidiol. Neurological and motor functions were evaluated 2 and 3 days, respectively, after induction of hepatic failure, after which brains and livers were removed for histopathological analysis and blood was drawn for analysis of plasma liver enzymes. In a separate group of animals, cognitive function was tested after 8 days and brain 5-HT levels were measured 12 days after induction of hepatic failure. Neurological and cognitive functions were severely impaired in thioacetamide-treated mice and were restored by cannabidiol. Similarly, decreased motor activity in thioacetamide-treated mice was partially restored by cannabidiol. Increased plasma levels of ammonia, bilirubin and liver enzymes, as well as enhanced 5-HT levels in thioacetamide-treated mice were normalized following cannabidiol administration. Likewise, astrogliosis in the brains of thioacetamide-treated mice was moderated after cannabidiol treatment. Cannabidiol restores liver function, normalizes 5-HT levels and improves brain pathology in accordance with normalization of brain function. Therefore, the effects of cannabidiol may result from a combination of its actions in the liver and brain. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  20. Mutation of the key residue for extraribosomal function of ribosomal protein S19 cause increased grooming behaviors in mice.

    Science.gov (United States)

    Chen, Jun; Kaitsuka, Taku; Fujino, Rika; Araki, Kimi; Tomizawa, Kazuhito; Yamamoto, Tetsuro

    2016-08-26

    Ribosomal protein S19 (RP S19) possesses ribosomal function as RP S19 monomer and extraribosomal function as cross-linked RP S19 oligomers which function as a ligand of the complement 5a (C5a) receptor (CD88). We have generated a Gln137Glu-RP S19 knock-in (KI) mouse, which is shown to possess the weakened extraribosomal function of RP S19. Because whether the extraribosomal function of RP S19 has a role in brain function had been unclear, we performed behavioral analysis on these mice and demonstrated that KI mice displayed an increased grooming behavior during open-field test and elevated plus maze test and an enhanced freezing behavior in contextual fear conditioning test. These results suggest an involvement of RP S19 oligomers in some anxiety-like behavior, especially grooming behavior. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.

    Science.gov (United States)

    Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter

    2017-12-06

    The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright

  2. AHAPS-functionalized silica nanoparticles do not modulate allergic contact dermatitis in mice

    Science.gov (United States)

    Ostrowski, Anja; Nordmeyer, Daniel; Mundhenk, Lars; Fluhr, Joachim W.; Lademann, Jürgen; Graf, Christina; Rühl, Eckart; Gruber, Achim D.

    2014-09-01

    Allergic contact dermatitis (ACD) is a common skin disease in people and may become a potential site of exposure to nanoparticles (NP). Silica nanoparticles (SiO2-NP) possess a promising potential for various medical and non-medical applications, including normal and diseased skin as target organs. However, it has been shown that negatively charged SiO2-NP may act as proinflammatory adjuvant in allergic diseases. The effect of topical SiO2-NP exposure on preexisting ACD has not been studied to date although this reflects a common in vivo situation. Of particular interest are the potential effects of positively charged N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS)-functionalized SiO2-NP which are promising candidates for delivery systems, including gene delivery into the skin. Here, the effects of such AHAPS-functionalized SiO2-NP (55 ± 6 nm in diameter) were studied in an oxazolone-induced ACD model in SKH1 mice and compared to ACD mice treated with vehicle only. The clinical course of the disease was assessed by monitoring of the transepidermal water loss (TEWL) and the erythema. In histologic and morphometric analyses, the distribution of particles, the degree of inflammation, epidermal thickness, and the inflammatory infiltrate were characterized and quantified by standard and special histological stains as well as immunohistochemistry for CD3+ lymphocytes. To assess possible systemic effects, serum immunoglobulin E (IgE) was determined by enzyme-linked immunosorbent assay. Following administration of AHAPS-SiO2-NP for five consecutive days, no effects were observed in all clinical, histologic, morphometric, and molecular parameters investigated. In conclusion, positively charged AHAPS-SiO2-NP seem not to affect the course of ACD during exposure for 5 days.

  3. Corticosterone response to gestational stress and postpartum memory function in mice.

    Science.gov (United States)

    Jafari, Zahra; Mehla, Jogender; Afrashteh, Navvab; Kolb, Bryan E; Mohajerani, Majid H

    2017-01-01

    Maternal stress is a common adversity during pregnancy. Gestational corticosterone alternations are thought to contribute to the etiology of postpartum behavioral disturbances. However, the impact of stress during pregnancy, in particular noise exposure, on gestational corticosterone fluctuations and spatial cognition in postpartum mice has not been fully understood yet. We hypothesized that noise exposure during pregnancy negatively affects gestational corticosterone levels and postpartum memory function in the dams similar to the physical stressors. Pregnant C57BL/6 mice were randomly assigned to either one of two stress conditions or a control condition. The noise stress (NS) was induced by presenting a loud intermittent 3000 Hz frequency on gestational days (GDs) 12, 14, and 16 for 24 hours, whereas the physical stress (PS) consisted of restraint and exposure to an elevated platform on GDs 12-16. Plasma corticosterone level was collected on GDs 11 and 17, and Morris water task (MWT) was carried out 30 days after parturition. Compared to the control group, the level of corticosterone in the stressed groups was significantly increased on GD17 relative to GD11. Significantly longer swim time and lower swim speed were observed in both stressed groups relative to the control group. Probe time was significantly shorter in the NS group than the other groups. The delta corticosterone level was significantly correlated with the swim time as well as the probe time in the three groups. Given the results, the adverse effects of gestational noise exposure on the hypothalamic pituitary-adrenal (HPA) axis activation and postpartum spatial learning and memory function were as large as/ or a bit stronger than the physical stresses. The findings suggest the significance of conservation against loud noise exposure in daily living, as well as need to further notice to the different aspects of gestational stress in mothers' behavior like offspring.

  4. Aggravated restenosis and atherogenesis in ApoCIII transgenic mice but lack of protection in ApoCIII knockouts: the effect of authentic triglyceride-rich lipoproteins with and without ApoCIII.

    Science.gov (United States)

    Li, Haibo; Han, Yingchun; Qi, Rong; Wang, Yuhui; Zhang, Xiaohong; Yu, Maomao; Tang, Yin; Wang, Mengyu; Shu, Ya-Nan; Huang, Wei; Liu, Xinfeng; Rodrigues, Brian; Han, Mei; Liu, George

    2015-09-01

    Previously, our group and others have demonstrated a causative relationship between severe hypertriglyceridaemia and atherogenesis in mice. Furthermore, clinical investigations have shown high levels of plasma Apolipoprotein C-III (ApoCIII) associated with hypertriglyceridaemia and even cardiovascular disease. However, it remains unclear whether ApoCIII affects restenosis in vivo, and whether such an effect is mediated by ApoCIII alone, or in combination with hypertriglyceridaemia. We sought to investigate ApoCIII in restenosis and clarify how smooth muscle cells (SMCs) respond to authentic triglyceride-rich lipoproteins (TRLs) with or without ApoCIII (TRLs ± ApoCIII). ApoCIII transgenic (ApoCIIItg) and knockout (ApoCIII-/-) mice underwent endothelial denudation to model restenosis. Here, ApoCIIItg mice displayed severe hypertriglyceridaemia and increased neointimal formation compared with wild-type (WT) or ApoCIII-/- mice. Furthermore, increased proliferating cell nuclear antigen (PCNA)-positive cells, Mac-3, and vascular cell adhesion protein-1 (VCAM-1) expression, and 4-hydroxynonenal (4HNE) production were found in lesion sites. ApoCIIItg and ApoCIII-/- mice were then crossed to low-density lipoprotein receptor-deficient (Ldlr-/-) mice and fed an atherogenic diet. ApoCIIItg/Ldlr-/- mice had significantly increased atherosclerotic lesions. However, there was no statistical difference in restenosis between ApoCIII-/- and WT mice, and in atherosclerosis between ApoCIII/Ldlr double knockout and Ldlr-/- mice. SMCs were then incubated in vitro with authentic TRLs ± ApoCIII isolated from extreme hypertriglyceridaemia glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1-deficient (GPIHBP1-/-) mice crossed with ApoCIIItg or ApoCIII-/- mice. It was shown that TRLs + ApoCIII promoted SMC proliferation, VCAM-1 expression, and reactive oxygen species (ROS) production, and activated the Akt pathway. Scavenging ROS significantly reduced SMC

  5. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  6. Cancer resistance of SR/CR mice in the genetic knockout backgrounds of leukocyte effector mechanisms: determinations for functional requirements.

    Science.gov (United States)

    Sanders, Anne M; Stehle, John R; Blanks, Michael J; Riedlinger, Gregory; Kim-Shapiro, Jung W; Monjazeb, Arta M; Adams, Jonathan M; Willingham, Mark C; Cui, Zheng

    2010-03-31

    Spontaneous Regression/Complete Resistant (SR/CR) mice are a colony of cancer-resistant mice that can detect and rapidly destroy malignant cells with innate cellular immunity, predominately mediated by granulocytes. Our previous studies suggest that several effector mechanisms, such as perforin, granzymes, or complements, may be involved in the killing of cancer cells. However, none of these effector mechanisms is known as critical for granulocytes. Additionally, it is unclear which effector mechanisms are required for the cancer killing activity of specific leukocyte populations and the survival of SR/CR mice against the challenges of lethal cancer cells. We hypothesized that if any of these effector mechanisms was required for the resistance to cancer cells, its functional knockout in SR/CR mice should render them sensitive to cancer challenges. This was tested by cross breeding SR/CR mice into the individual genetic knockout backgrounds of perforin (Prf-/-), superoxide (Cybb-/), or inducible nitric oxide (Nos2-/). SR/CR mice were bred into individual Prf-/-, Cybb-/-, or Nos2-/- genetic backgrounds and then challenged with sarcoma 180 (S180). Their overall survival was compared to controls. The cancer killing efficiency of purified populations of macrophages and neutrophils from these immunodeficient mice was also examined. When these genetically engineered mice were challenged with cancer cells, the knockout backgrounds of Prf-/-, Cybb-/-, or Nos2-/- did not completely abolish the SR/CR cancer resistant phenotype. However, the Nos2-/- background did appear to weaken the resistance. Incidentally, it was also observed that the male mice in these immunocompromised backgrounds tended to be less cancer-resistant than SR/CR controls. Despite the previously known roles of perforin, superoxide or nitric oxide in the effector mechanisms of innate immune responses, these effector mechanisms were not required for cancer-resistance in SR/CR mice. The resistance was

  7. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    International Nuclear Information System (INIS)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang; Li, Yue

    2016-01-01

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  8. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Geraniol improves endothelial function by inhibiting NOX-2 derived oxidative stress in high fat diet fed mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoyu; Zhao, Shiqi; Su, Mengqi; Sun, Li; Zhang, Song; Wang, Dingyu; Liu, Zhaorui; Yuan, Yue; Liu, Yang [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Li, Yue, E-mail: ly99ly@vip.163.com [Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province (China); Key Laboratory of Cardiac Diseases and Heart Failure, Harbin Medical University, Harbin, 150001, Heilongjiang Province (China)

    2016-05-20

    Endothelial dysfunction occurs in obese patients and high-fat diet (HFD) fed experimental animals. While geraniol has been reported to ameliorate inflammation and oxidative stress, inhibit tumor cell proliferation, and improve atherosclerosis, its direct effect on endothelial function remains uncharacterized. The present study therefore investigated the effect of geraniol on endothelial function in HFD mice and its underlying mechanisms. C57 BL/6 mice were fed an HFD (n = 40) or a normal diet (n = 20) for 8 weeks. HFD fed mice then were randomized to intraperitoneal treatment with geraniol (n = 20) or vehicle (n = 20) for another 6 weeks. Acetylcholine (Ach)-induced endothelial dependent vasorelaxation was measured on wire myography; reactive oxygen species (ROS) generation was assessed by fluorescence imaging, and NADPH oxidases (NOXs) and adhesive molecules VCAM-1 and ICAM-1 protein expression by western blotting. Geraniol improved endothelial function in HFD fed mice, as evidenced by its: 1. restoring endothelial dependent vasorelaxation induced by Ach, and reversing increased VCAM-1 and ICAM-1 expression; 2. attenuating HFD induced increased serum TBARS and aortic ROS generation; and 3. downregulating aortic NOX-2 expression in both HFD fed mice and in palmitic acid treated endothelial cells. Geraniol therefore protects against endothelial dysfunction induced by HFD through reducing NOX-2 associated ROS generation. -- Highlights: •Geraniol improved endothelial dependent relaxation in high fat diet fed mice. •Geraniol alleviated vascular injury in high fat diet fed mice. •Geraniol inhibited ROS generation through downregulating NOX-2 expression.

  10. Slow angled-descent forepaw grasping (SLAG): an innate behavioral task for identification of individual experimental mice possessing functional vision.

    Science.gov (United States)

    Gil-Pagés, Macarena; Stiles, Robert J; Parks, Christopher A; Neier, Steven C; Radulovic, Maja; Oliveros, Alfredo; Ferrer, Alejandro; Reed, Brendan K; Wilton, Katelynn M; Schrum, Adam G

    2013-08-23

    There is significant interest in the generation of improved assays to clearly identify experimental mice possessing functional vision, a property that could qualify mice for inclusion in behavioral and neuroscience studies. Widely employed current methods rely on mouse responses to visual cues in assays of reflexes, depth perception, or cognitive memory. However, commonly assessed mouse reflexes can sometimes be ambiguous in their expression, while depth perception assays are sometimes confounded by variation in anxiety responses and exploratory conduct. Furthermore, in situations where experimental groups vary in their cognitive memory capacity, memory assays may not be ideal for assessing differences in vision. We have optimized a non-invasive behavioral assay that relies on an untrained, innate response to identify individual experimental mice possessing functional vision: slow angled-descent forepaw grasping (SLAG). First, we verified that SLAG performance depends on vision and not olfaction. Next, all members of an age-ranged cohort of 158 C57BL/6 mice (57 wild-type, 101 knockout, age range 44-241 days) were assessed for functional vision using the SLAG test without training or conditioning. Subjecting the population to a second innate behavioral test, Dark Chamber preference, corroborated tha