WorldWideScience

Sample records for mice lacking adenosine

  1. Aberrant Bone Density in Aging Mice Lacking the Adenosine Transporter ENT1

    Science.gov (United States)

    Hinton, David J.; McGee-Lawrence, Meghan E.; Lee, Moonnoh R.; Kwong, Hoi K.; Westendorf, Jennifer J.; Choi, Doo-Sup

    2014-01-01

    Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1) is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months) compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP), an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density. PMID:24586402

  2. Aberrant bone density in aging mice lacking the adenosine transporter ENT1.

    Directory of Open Access Journals (Sweden)

    David J Hinton

    Full Text Available Adenosine is known to regulate bone production and resorption in humans and mice. Type 1 equilibrative nucleoside transporter (ENT1 is responsible for the majority of adenosine transport across the plasma membrane and is ubiquitously expressed in both humans and mice. However, the contribution of ENT1-mediated adenosine levels has not been studied in bone remodeling. With the recent identification of the importance of adenosine signaling in bone homeostasis, it is essential to understand the role of ENT1 to develop novel therapeutic compounds for bone disorders. Here we examined the effect of ENT1 deletion on bone density using X-ray, dual energy X-ray absorptiometry and micro-computerized tomography analysis. Our results show that bone density and bone mineral density is reduced in the lower thoracic and lumbar spine as well as the femur of old ENT1 null mice (>7 months compared to wild-type littermates. Furthermore, we found increased mRNA expression of tartrate-resistant acid phosphatase (TRAP, an osteoclast marker, in isolated long bones from 10 month old ENT1 null mice compared to wild-type mice. In addition, aged ENT1 null mice displayed severe deficit in motor coordination and locomotor activity, which might be attributed to dysregulated bone density. Overall, our study suggests that ENT1-regulated adenosine signaling plays an essential role in lumbar spine and femur bone density.

  3. Involvement of A1 adenosine receptors and neural pathways in adenosine-induced bronchoconstriction in mice.

    Science.gov (United States)

    Hua, Xiaoyang; Erikson, Christopher J; Chason, Kelly D; Rosebrock, Craig N; Deshpande, Deepak A; Penn, Raymond B; Tilley, Stephen L

    2007-07-01

    High levels of adenosine can be measured from the lungs of asthmatics, and it is well recognized that aerosolized 5'AMP, the precursor of adenosine, elicits robust bronchoconstriction in patients with this disease. Characterization of mice with elevated adenosine levels secondary to the loss of adenosine deaminase (ADA) expression, the primary metabolic enzyme for adenosine, further support a role for this ubiquitous mediator in the pathogenesis of asthma. To begin to identify pathways by which adenosine can alter airway tone, we examined adenosine-induced bronchoconstriction in four mouse lines, each lacking one of the receptors for this nucleoside. We show, using direct measures of airway mechanics, that adenosine can increase airway resistance and that this increase in resistance is mediated by binding the A(1) receptor. Further examination of this response using pharmacologically, surgically, and genetically manipulated mice supports a model in which adenosine-induced bronchoconstriction occurs indirectly through the activation of sensory neurons.

  4. Lack of adenosine A(3) receptors causes defects in mouse peripheral blood parameters

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2014-01-01

    Roč. 10, č. 3 (2014), s. 509-514 ISSN 1573-9538 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor * Adenosine A(3) receptor knockout mice * Hematopoiesis Subject RIV: BO - Biophysics Impact factor: 3.886, year: 2014

  5. Sustained Elevated Adenosine via ADORA2B Promotes Chronic Pain through Neuro-immune Interaction

    Directory of Open Access Journals (Sweden)

    Xia Hu

    2016-06-01

    Full Text Available The molecular mechanisms of chronic pain are poorly understood and effective mechanism-based treatments are lacking. Here, we report that mice lacking adenosine deaminase (ADA, an enzyme necessary for the breakdown of adenosine, displayed unexpected chronic mechanical and thermal hypersensitivity due to sustained elevated circulating adenosine. Extending from Ada−/− mice, we further discovered that prolonged elevated adenosine contributed to chronic pain behaviors in two additional independent animal models: sickle cell disease mice, a model of severe pain with limited treatment, and complete Freund’s adjuvant paw-injected mice, a well-accepted inflammatory model of chronic pain. Mechanistically, we revealed that activation of adenosine A2B receptors on myeloid cells caused nociceptor hyperexcitability and promoted chronic pain via soluble IL-6 receptor trans-signaling, and our findings determined that prolonged accumulated circulating adenosine contributes to chronic pain by promoting immune-neuronal interaction and revealed multiple therapeutic targets.

  6. Therapeutic effects of the joint administration of magnesium aspartate and adenosine monophosphate in gamma-irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Pipalova, I.; Kozubik, A.

    1990-01-01

    The joint administration of magnesium aspartate and adenosine monophosphate, injected on days 1 to 4 post radiation, has been found to exert stimulatory effects on the recovery of hemopoietic functions in sublethally gamma-irradiated mice. These therapeutical effects were enhanced in animals protected by peroral administration of cystamine. The treatment scheme used did not modify survival of lethally irradiated mice. The therapeutic effects of magnesium aspartate and adenosine monophosphate in sublethally irradiated mice are explained by the stimulatory action of these drugs on the cell adenylate cyclase system, which influences the erythropoietic functions. (author)

  7. Regulatory effects of adenosine A2A receptors on psychomotor ability and mood behavior of mice

    Directory of Open Access Journals (Sweden)

    Li JIANG

    2011-07-01

    Full Text Available Objective To explore the effects of gene knock-out,agonist or inhibitor of adenosine A2A receptor on the locomotor activity,and anxiety-or depression-like behavior of mice.Methods Male C57BL/6 mice,comprising those underwent gene knock-out of adenosine A2A receptor(A2AKO and their wild-type(WT littermates,were assigned into A2AKO group and WT group.Another batch of male C57BL/6,specific-pathogen-free(SPF mice,were assigned into SCH58261 group,CGS21680 group and control group.Mice of aforesaid 3 groups were transperitoneally administered with SCH58261,a specific inhibitor of adenosine A2A receptor at a dose of 2mg/kg,CGS21680,a specific agonist of adenosine A2A receptor at a dose of 0.5mg/kg,and vehicle(0.25ml,comprising DMSO and saline,respectively.Ten minutes after injection,mice of the 3 groups underwent open-field test,elevated plus-maze test and forced swimming test to detect their locomotor activity,anxiety-and depression-like behavior.Results a Compared with WT group,the total movement distance decreased(P 0.05.b Compared with control group,the total movement distance decreased and the stay time in the peripheral area increased significantly in the open field test(P 0.05.Conclusions The agonist of adenosine A2A receptor may depress the spontaneous motility and exploratory behavior,and exacerbate the anxiety and depression,and it simulates the effect induced by knock-out of A2A receptor gene,but it is opposite to the effect induced by A2A receptor inhibitor.

  8. Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice.

    Science.gov (United States)

    Adén, Ulrika; Halldner, Linda; Lagercrantz, Hugo; Dalmau, Ishar; Ledent, Catherine; Fredholm, Bertil B

    2003-03-01

    Cerebral hypoxic ischemia (HI) is an important cause of brain injury in the newborn infant. Adenosine is believed to protect against HI brain damage. However, the roles of the different adenosine receptors are unclear, particularly in young animals. We examined the role of adenosine A2A receptors (A2AR) using 7-day-old A2A knockout (A2AR(-/-)) mice in a model of HI. HI was induced in 7-day-old CD1 mice by exposure to 8% oxygen for 30 minutes after occlusion of the left common carotid artery. The resulting unilateral focal lesion was evaluated with the use of histopathological scoring and measurements of residual brain areas at 5 days, 3 weeks, and 3 months after HI. Behavioral evaluation of brain injury by locomotor activity, rotarod, and beam-walking test was made 3 weeks and 3 months after HI. Cortical cerebral blood flow, assessed by laser-Doppler flowmetry, and rectal temperature were measured during HI. Reduction in cortical cerebral blood flow during HI and rectal temperature did not differ between wild-type (A2AR(+/+)) and knockout mice. In the A2AR(-/-) animals, brain injury was aggravated compared with wild-type mice. The A2AR(-/-) mice subjected to HI displayed increased forward locomotion and impaired rotarod performance in adulthood compared with A2AR(+/+) mice subjected to HI, whereas beam-walking performance was similarly defective in both groups. These results suggest that, in contrast to the situation in adult animals, A2AR play an important protective role in neonatal HI brain injury.

  9. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262 ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.643, year: 2015

  10. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  11. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A.; Znojil, V.; Vacha, J.

    1998-01-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of 60 Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au)

  12. Adenosine induces vasoconstriction through Gi-dependent activation of phospholipase C in isolated perfused afferent arterioles of mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Castrop, Hayo; Briggs, Josie

    2003-01-01

    -induced vasoconstriction was stable for up to 30 min and was most pronounced in the most distal part of the afferent arterioles. Adenosine did not cause vasoconstriction in arterioles from A1AR-/- mice. Pretreatment with pertussis toxin (PTX) (400 ng/ml) for 2 h blocked the vasoconstricting action of adenosine or N(6...

  13. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  14. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J.

    1997-01-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 μg/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  15. Enhancement of radioprotective effectiveness of adenosine monophosphate by magnesium aspartate in mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Kozubik, A.; Chertkov, K.S.; Ministry of Health, Moscow

    1988-01-01

    The enhancing effect of magnesium aspartate on the radioprotective effectiveness of adenosine monophosphate (AMP) administered to whole-body gamma-irradiated mice was studied. Male (CBA x C57BL/10)F 1 hybrid mice of a mean body weight of 32 g were used. 5 mg AMP per mouse was injected i.p. 15 min before and 15 min after irradiation; magnesium aspartate (13.3 mg per mouse) was administered s.c. 35 min before irradiation. The benefical effect of the drug combination used was manifested when investigating hematological indices at the recovery phase of sublethally irradiated animals, as well as when observing the survival of lethally irradiated mice. The synergistic radioprotective effects of AMP and magnesium aspartate are explained by the stimulatory action of both these compounds on the cell adenylate cyclase system. (author)

  16. Emotional instability but intact spatial cognition in adenosine receptor 1 knock out mice.

    Science.gov (United States)

    Lang, Undine E; Lang, Florian; Richter, Kerstin; Vallon, Volker; Lipp, Hans-Peter; Schnermann, Jürgen; Wolfer, David P

    2003-10-17

    Several lines of evidence point to the involvement of adenosine in the regulation of important central mechanisms such as cognition, arousal, aggression and anxiety. In order to elucidate the involvement of the adenosine A1 receptor (A1AR) in spatial learning and the control of exploratory behaviour, we assessed A1AR knockout mice (A1AR-/-) and their wild-type littermates (A1AR+/+) in a place navigation task in the water maze and in a battery of forced and free exploration tests. In the water maze, A1AR-/- mice showed normal escape latencies and were indistinguishable from controls with respect to measures of spatial performance during both training and probe trial. But despite normal performance they showed increased wall hugging, most prominently after the relocation of the goal platform for reversal training. Quantitative analysis of strategy choices indicated that wall hugging was increased mainly at the expense of chaining and passive floating, whereas the frequency of trials characterised as direct swims or focal searching was normal in A1AR-/- mice. These results indicate intact spatial cognition, but mildly altered emotional reactions to the water maze environment. In line with this interpretation, A1AR-/- mice showed normal levels and patterns of activity, but a mild increase of some measures of anxiety in our battery of forced and free exploration paradigms. These results are in line with findings published using a genetically similar line, but demonstrate that the magnitude of the changes and the range of affected behavioural measures may vary considerably depending on the environmental conditions during testing.

  17. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  18. Long-term expression of human adenosine deaminase in mice transplanted with retrovirus-infected hematopoietic stem cells

    International Nuclear Information System (INIS)

    Lim, B.; Apperley, J.F.; Orkin, S.H.; Williams, D.A.

    1989-01-01

    Long-term stable expression of foreign genetic sequences transferred into hematopoietic stem cells by using retroviral vectors constitutes a relevant model for somatic gene therapy. Such stability of expression may depend on vector design, including the presence or absence of specific sequences within the vector, in combination with the nature and efficiency of infection of the hematopoietic target cells. The authors have previously reported successful transfer of human DNA encoding adenosine deaminase (ADA) into CFU-S (colony-forming unit-spleen) stem cells using simplified recombinant retroviral vectors. Human ADA was expressed in CFU-S-derived spleen colonies at levels near to endogenous enzyme. However, because of the lack of an efficient dominant selectable marker and low recombinant viral titers, stability of long-term expression of human ADA was not examined. They report here the development of an efficient method of infection of hematopoietic stem cells (HSC) without reliance on in vitro selection. Peripheral blood samples of 100% of mice transplanted with HSC infected by this protocol exhibit expression of human ADA 30 days after transplantation. Some mice (6 of 13) continue to express human ADA in all lineages after complete hematopoietic reconstitution (4 months). The use of recombinant retroviral vectors that efficiently transfer human ADA cDNA into HSC leading to stable expression of functional ADA in reconstituted mice, provides an experimental framework for future development of approaches to somatic gene therapy

  19. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    Science.gov (United States)

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  20. Detrimental effects of adenosine signaling in sickle cell disease

    Science.gov (United States)

    Zhang, Yujin; Dai, Yingbo; Wen, Jiaming; Zhang, Weiru; Grenz, Almut; Sun, Hong; Tao, Lijian; Lu, Guangxiu; Alexander, Danny C; Milburn, Michael V; Carter-Dawson, Louvenia; Lewis, Dorothy E; Zhang, Wenzheng; Eltzschig, Holger K; Kellems, Rodney E; Blackburn, Michael R; Juneja, Harinder S; Xia, Yang

    2016-01-01

    Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A2B receptor (A2BR)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A2BR has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease. PMID:21170046

  1. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Hillary Johnston-Cox

    Full Text Available High fat diet (HFD-induced type 2 diabetes continues to be an epidemic with significant risk for various pathologies. Previously, we identified the A2b adenosine receptor (A2bAR, an established regulator of inflammation, as a regulator of HFD-induced insulin resistance. In particular, HFD was associated with vast upregulation of liver A2bAR in control mice, and while mice lacking this receptor showed augmented liver inflammation and tissue insulin resistance. As the A2bAR is expressed in different tissues, here, we provide the first lead to cellular mechanism by demonstrating that the receptor's influence on tissue insulin sensitivity is mediated via its expression in macrophages. This was shown using a newly generated transgenic mouse model expressing the A2bAR gene in the macrophage lineage on an otherwise A2bAR null background. Reinstatement of macrophage A2bAR expression in A2bAR null mice fed HFD restored insulin tolerance and tissue insulin signaling to the level of control mice. The molecular mechanism for this effect involves A2bAR-mediated changes in cyclic adenosine monophosphate in macrophages, reducing the expression and release of inflammatory cytokines, which downregulate insulin receptor-2. Thus, our results illustrate that macrophage A2bAR signaling is needed and sufficient for relaying the protective effect of the A2bAR against HFD-induced tissue inflammation and insulin resistance in mice.

  2. Cognitive impairments associated with alterations in synaptic proteins induced by the genetic loss of adenosine A2A receptors in mice.

    Science.gov (United States)

    Moscoso-Castro, Maria; López-Cano, Marc; Gracia-Rubio, Irene; Ciruela, Francisco; Valverde, Olga

    2017-11-01

    The study of psychiatric disorders usually focuses on emotional symptoms assessment. However, cognitive deficiencies frequently constitute the core symptoms, are often poorly controlled and handicap individual's quality of life. Adenosine receptors, through the control of both dopamine and glutamate systems, have been implicated in the pathophysiology of several psychiatric disorders such as schizophrenia and attention deficit/hyperactivity disorder. Indeed, clinical data indicate that poorly responsive schizophrenia patients treated with adenosine adjuvants show improved treatment outcomes. The A 2A adenosine receptor subtype (A 2A R) is highly expressed in brain areas controlling cognition and motivational responses including the striatum, hippocampus and cerebral cortex. Accordingly, we study the role of A 2A R in the regulation of cognitive processes based on a complete cognitive behavioural analysis coupled with the assessment of neurogenesis and sub-synaptic protein expression in adult and middle-aged A 2A R constitutional knockout mice and wild-type littermates. Our results show overall cognitive impairments in A 2A R knockout mice associated with a decrease in new-born hippocampal neuron proliferation and concomitant changes in synaptic protein expression, in both the prefrontal cortex and the hippocampus. These results suggest a deficient adenosine signalling in cognitive processes, thus providing new opportunities for the therapeutic management of cognitive deficits associated with psychiatric disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  4. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    Science.gov (United States)

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  5. Extracellular adenosine controls NKT-cell-dependent hepatitis induction.

    Science.gov (United States)

    Subramanian, Meenakshi; Kini, Radhika; Madasu, Manasa; Ohta, Akiko; Nowak, Michael; Exley, Mark; Sitkovsky, Michail; Ohta, Akio

    2014-04-01

    Extracellular adenosine regulates inflammatory responses via the A2A adenosine receptor (A2AR). A2AR deficiency results in much exaggerated acute hepatitis, indicating nonredundancy of adenosine-A2AR pathway in inhibiting immune activation. To identify a critical target of immunoregulatory effect of extracellular adenosine, we focused on NKT cells, which play an indispensable role in hepatitis. An A2AR agonist abolished NKT-cell-dependent induction of acute hepatitis by concanavalin A (Con A) or α-galactosylceramide in mice, corresponding to downregulation of activation markers and cytokines in NKT cells and of NK-cell co-activation. These results show that A2AR signaling can downregulate NKT-cell activation and suppress NKT-cell-triggered inflammatory responses. Next, we hypothesized that NKT cells might be under physiological control of the adenosine-A2AR pathway. Indeed, both Con A and α-galactosylceramide induced more severe hepatitis in A2AR-deficient mice than in WT controls. Transfer of A2AR-deficient NKT cells into A2AR-expressing recipients resulted in exaggeration of Con A-induced liver damage, suggesting that NKT-cell activation is controlled by endogenous adenosine via A2AR, and this physiological regulatory mechanism of NKT cells is critical in the control of tissue-damaging inflammation. The current study suggests the possibility to manipulate NKT-cell activity in inflammatory disorders through intervention to the adenosine-A2AR pathway. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Involvement of adenosine in the antiinflammatory action of ketamine.

    Science.gov (United States)

    Mazar, Julia; Rogachev, Boris; Shaked, Gad; Ziv, Nadav Y; Czeiger, David; Chaimovitz, Cidio; Zlotnik, Moshe; Mukmenev, Igor; Byk, Gerardo; Douvdevani, Amos

    2005-06-01

    Ketamine is an anesthetic drug. Subanesthetic doses of ketamine have been shown to reduce interleukin-6 concentrations after surgery and to reduce mortality and the production of tumor necrosis factor alpha and interleukin 6 in septic animals. Similarly, adenosine was shown to reduce tumor necrosis factor alpha and mortality of septic animals. The aim of this study was to determine whether adenosine mediates the antiinflammatory effects of ketamine. Sepsis was induced in mice by lipopolysaccharide or Escherichia coli inoculation. Leukocyte recruitment and cytokine concentrations were used as inflammation markers. Adenosine concentrations were assayed by high-performance liquid chromatography, and the involvement of adenosine in the effects of ketamine was demonstrated by adenosine receptor agonists and antagonists. Ketamine markedly reduced mortality from sepsis, leukocyte recruitment, and tumor necrosis factor-alpha and interleukin-6 concentrations. Ketamine administration in mice and rats was associated with a surge at 20-35 min of adenosine in serum (up to 5 microm) and peritoneal fluid. The adenosine A2A receptor agonist CGS-21680 mimicked the effect of ketamine in peritonitis, whereas the A2A receptor antagonists DMPX and ZM 241385 blocked its antiinflammatory effects. In contrast, A1 and A3 receptor antagonists had no effect. ZM 241385 reversed the beneficial effect of ketamine on survival from bacterial sepsis. The current data suggest that the sepsis-protective antiinflammatory effects of ketamine are mediated by the release of adenosine acting through the A2A receptor.

  7. An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.

    Science.gov (United States)

    Bjorness, Theresa E; Dale, Nicholas; Mettlach, Gabriel; Sonneborn, Alex; Sahin, Bogachan; Fienberg, Allen A; Yanagisawa, Masashi; Bibb, James A; Greene, Robert W

    2016-03-30

    Sleep homeostasis reflects a centrally mediated drive for sleep, which increases during waking and resolves during subsequent sleep. Here we demonstrate that mice deficient for glial adenosine kinase (AdK), the primary metabolizing enzyme for adenosine (Ado), exhibit enhanced expression of this homeostatic drive by three independent measures: (1) increased rebound of slow-wave activity; (2) increased consolidation of slow-wave sleep; and (3) increased time constant of slow-wave activity decay during an average slow-wave sleep episode, proposed and validated here as a new index for homeostatic sleep drive. Conversely, mice deficient for the neuronal adenosine A1 receptor exhibit significantly decreased sleep drive as judged by these same indices. Neuronal knock-out of AdK did not influence homeostatic sleep need. Together, these findings implicate a glial-neuronal circuit mediated by intercellular Ado, controlling expression of homeostatic sleep drive. Because AdK is tightly regulated by glial metabolic state, our findings suggest a functional link between cellular metabolism and sleep homeostasis. The work presented here provides evidence for an adenosine-mediated regulation of sleep in response to waking (i.e., homeostatic sleep need), requiring activation of neuronal adenosine A1 receptors and controlled by glial adenosine kinase. Adenosine kinase acts as a highly sensitive and important metabolic sensor of the glial ATP/ADP and AMP ratio directly controlling intracellular adenosine concentration. Glial equilibrative adenosine transporters reflect the intracellular concentration to the extracellular milieu to activate neuronal adenosine receptors. Thus, adenosine mediates a glial-neuronal circuit linking glial metabolic state to neural-expressed sleep homeostasis. This indicates a metabolically related function(s) for this glial-neuronal circuit in the buildup and resolution of our need to sleep and suggests potential therapeutic targets more directly related to

  8. The antiviral drug tenofovir, an inhibitor of Pannexin-1-mediated ATP release, prevents liver and skin fibrosis by downregulating adenosine levels in the liver and skin.

    Directory of Open Access Journals (Sweden)

    Jessica L Feig

    Full Text Available Fibrosing diseases are a leading cause of morbidity and mortality worldwide and, therefore, there is a need for safe and effective antifibrotic therapies. Adenosine, generated extracellularly by the dephosphorylation of adenine nucleotides, ligates specific receptors which play a critical role in development of hepatic and dermal fibrosis. Results of recent clinical trials indicate that tenofovir, a widely used antiviral agent, reverses hepatic fibrosis/cirrhosis in patients with chronic hepatitis B infection. Belonging to the class of acyclic nucleoside phosphonates, tenofovir is an analogue of AMP. We tested the hypothesis that tenofovir has direct antifibrotic effects in vivo by interfering with adenosine pathways of fibrosis using two distinct models of adenosine and A2AR-mediated fibrosis.Thioacetamide (100mg/kg IP-treated mice were treated with vehicle, or tenofovir (75mg/kg, SubQ (n = 5-10. Bleomycin (0.25U, SubQ-treated mice were treated with vehicle or tenofovir (75mg/kg, IP (n = 5-10. Adenosine levels were determined by HPLC, and ATP release was quantitated as luciferase-dependent bioluminescence. Skin breaking strength was analysed and H&E and picrosirus red-stained slides were imaged. Pannexin-1expression was knocked down following retroviral-mediated expression of of Pannexin-1-specific or scrambled siRNA.Treatment of mice with tenofovir diminished adenosine release from the skin of bleomycin-treated mice and the liver of thioacetamide-treated mice, models of diffuse skin fibrosis and hepatic cirrhosis, respectively. More importantly, tenofovir treatment diminished skin and liver fibrosis in these models. Tenofovir diminished extracellular adenosine concentrations by inhibiting, in a dose-dependent fashion, cellular ATP release but not in cells lacking Pannexin-1.These studies suggest that tenofovir, a widely used antiviral agent, could be useful in the treatment of fibrosing diseases.

  9. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    Science.gov (United States)

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  10. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID

    Science.gov (United States)

    Sauer, Aisha V.; Brigida, Immacolata; Carriglio, Nicola; Jofra Hernandez, Raisa; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L.; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna

    2012-01-01

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)–mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA–treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA−/− Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA–treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA–treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID. Trials were registered at www.clinicaltrials.gov as NCT00598481/NCT00599781. PMID:22184407

  11. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    Science.gov (United States)

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  12. Traditional Acupuncture Triggers a Local Increase in Adenosine in Human Subjects

    OpenAIRE

    Takano, Takahiro; Chen, Xiaolin; Luo, Fang; Fujita, Takumi; Ren, Zeguang; Goldman, Nanna; Zhao, Yuanli; Markman, John D.; Nedergaard, Maiken

    2012-01-01

    Acupuncture is a form of Eastern medicine that has been practiced for centuries. Despite its long history and worldwide application, the biological mechanisms of acupuncture in relieving pain have been poorly defined. Recent studies in mice, however, demonstrate that acupuncture triggers increases in interstitial adenosine, which reduces the severity of chronic pain through adenosine A1 receptors, suggesting that adenosine-mediated antinociception contributes to the clinical benefits of acupu...

  13. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors.

    Science.gov (United States)

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E; Salamone, John D; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A 1 /A 2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A 1 and A 2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A 1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A 2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the

  14. Ethanol and Caffeine effects on social interaction and recognition in mice: Involvement of adenosine A2A and A1 receptors

    Directory of Open Access Journals (Sweden)

    Laura López-Cruz

    2016-11-01

    Full Text Available Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg increasing social contact and higher doses (1.0-1.5 g/kg reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg, and even blocked social preference at higher doses (30.0-60.0 mg/kg. The A1 antagonist CPT (3-9 mg/kg did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg. Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the formation of social

  15. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    Science.gov (United States)

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  16. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    Science.gov (United States)

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  17. Adenosine signaling promotes regeneration of pancreatic β-cells in vivo

    Science.gov (United States)

    Andersson, Olov; Adams, Bruce A.; Yoo, Daniel; Ellis, Gregory C.; Gut, Philipp; Anderson, Ryan M.; German, Michael S.; Stainier, Didier Y. R.

    2012-01-01

    Diabetes can be controlled with insulin injections, but a curative approach that restores the number of insulin-producing β-cells is still needed. Using a zebrafish model of diabetes, we screened ~7000 small molecules to identify enhancers of β-cell regeneration. The compounds we identified converge on the adenosine signaling pathway and include exogenous agonists and compounds that inhibit degradation of endogenously produced adenosine. The most potent enhancer of β-cell regeneration was the adenosine agonist 5′-N-Ethylcarboxamidoadenosine (NECA), which acting through the adenosine receptor A2aa increased β-cell proliferation and accelerated restoration of normoglycemia in zebrafish. Despite markedly stimulating β-cell proliferation during regeneration, NECA had only a modest effect during development. The proliferative and glucose-lowering effect of NECA was confirmed in diabetic mice, suggesting an evolutionarily conserved role for adenosine in β-cell regeneration. With this whole-organism screen, we identified components of the adenosine pathway that could be therapeutically targeted for the treatment of diabetes. PMID:22608007

  18. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    Science.gov (United States)

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  19. Transgenic overexpression of adenosine kinase in brain leads to multiple learning impairments and altered sensitivity to psychomimetic drugs.

    Science.gov (United States)

    Yee, Benjamin K; Singer, Philipp; Chen, Jiang-Fan; Feldon, Joram; Boison, Detlev

    2007-12-01

    The neuromodulator adenosine fulfills a unique role in the brain affecting glutamatergic neurotransmission and dopaminergic signaling via activation of adenosine A1 and A2A receptors, respectively. The adenosine system is thus ideally positioned to integrate glutamatergic and dopaminergic neurotransmission, which in turn could affect behavior and cognition. In the adult brain, adenosine levels are largely regulated by its key metabolic enzyme adenosine kinase (ADK), which may assume the role of an 'upstream regulator' of these two neurotransmitter pathways. To test this hypothesis, transgenic mice with an overexpression of ADK in brain (Adk-tg), and therefore reduced brain adenosine levels, were evaluated in a panel of behavioral and psychopharmacological assays to assess possible glutamatergic and dopaminergic dysfunction. In comparison to non-transgenic control mice, Adk-tg mice are characterized by severe learning deficits in the Morris water maze task and in Pavlovian conditioning. The Adk-tg mice also exhibited reduced locomotor reaction to systemic amphetamine, whereas their reaction to the non-competitive N-methyl-d-aspartate receptor antagonist MK-801 was enhanced. Our results confirmed that ADK overexpression could lead to functional concomitant alterations in dopaminergic and glutamatergic functions, which is in keeping with the hypothesized role of ADK in the balance and integration between glutamatergic and dopaminergic neurotransmission. The present findings are of relevance to current pathophysiological hypotheses of schizophrenia and its pharmacotherapy.

  20. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    Science.gov (United States)

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  1. Kidney failure in mice lacking the tetraspanin CD151

    NARCIS (Netherlands)

    Sachs, Norman; Kreft, Maaike; van den Bergh Weerman, Marius A.; Beynon, Andy J.; Peters, Theo A.; Weening, Jan J.; Sonnenberg, Arnoud

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  2. Kidney failure in mice lacking the tetraspanin CD151.

    NARCIS (Netherlands)

    Sachs, N.; Kreft, M.; Bergh Weerman, M. van der; Beynon, A.J.; Peters, T.A.; Weening, J.J.; Sonnenberg, A.

    2006-01-01

    The tetraspanin CD151 is a cell-surface molecule known for its strong lateral interaction with the laminin-binding integrin alpha3beta1. Patients with a nonsense mutation in CD151 display end-stage kidney failure associated with regional skin blistering and sensorineural deafness, and mice lacking

  3. Myocardial mitochondrial and contractile function are preserved in mice lacking adiponectin.

    Directory of Open Access Journals (Sweden)

    Martin Braun

    Full Text Available Adiponectin deficiency leads to increased myocardial infarct size following ischemia reperfusion and to exaggerated cardiac hypertrophy following pressure overload, entities that are causally linked to mitochondrial dysfunction. In skeletal muscle, lack of adiponectin results in impaired mitochondrial function. Thus, it was our objective to investigate whether adiponectin deficiency impairs mitochondrial energetics in the heart. At 8 weeks of age, heart weight-to-body weight ratios were not different between adiponectin knockout (ADQ-/- mice and wildtypes (WT. In isolated working hearts, cardiac output, aortic developed pressure and cardiac power were preserved in ADQ-/- mice. Rates of fatty acid oxidation, glucose oxidation and glycolysis were unchanged between groups. While myocardial oxygen consumption was slightly reduced (-24% in ADQ-/- mice in isolated working hearts, rates of maximal ADP-stimulated mitochondrial oxygen consumption and ATP synthesis in saponin-permeabilized cardiac fibers were preserved in ADQ-/- mice with glutamate, pyruvate or palmitoyl-carnitine as a substrate. In addition, enzymatic activity of respiratory complexes I and II was unchanged between groups. Phosphorylation of AMP-activated protein kinase and SIRT1 activity were not decreased, expression and acetylation of PGC-1α were unchanged, and mitochondrial content of OXPHOS subunits was not decreased in ADQ-/- mice. Finally, increasing energy demands due to prolonged subcutaneous infusion of isoproterenol did not differentially affect cardiac contractility or mitochondrial function in ADQ-/- mice compared to WT. Thus, mitochondrial and contractile function are preserved in hearts of mice lacking adiponectin, suggesting that adiponectin may be expendable in the regulation of mitochondrial energetics and contractile function in the heart under non-pathological conditions.

  4. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  6. Neuroprotection by caffeine in the MPTP model of parkinson's disease and its dependence on adenosine A2A receptors.

    Science.gov (United States)

    Xu, K; Di Luca, D G; Orrú, M; Xu, Y; Chen, J-F; Schwarzschild, M A

    2016-05-13

    Considerable epidemiological and laboratory data have suggested that caffeine, a nonselective adenosine receptor antagonist, may protect against the underlying neurodegeneration of parkinson's disease (PD). Although both caffeine and more specific antagonists of the A2A subtype of adenosine receptor (A2AR) have been found to confer protection in animal models of PD, the dependence of caffeine's neuroprotective effects on the A2AR is not known. To definitively determine its A2AR dependence, the effect of caffeine on 1-methyl-4-phenyl-1,2,3,6 tetra-hydropyridine (MPTP) neurotoxicity was compared in wild-type (WT) and A2AR gene global knockout (A2A KO) mice, as well as in central nervous system (CNS) cell type-specific (conditional) A2AR knockout (cKO) mice that lack the receptor either in postnatal forebrain neurons or in astrocytes. In WT and in heterozygous A2AR KO mice caffeine pretreatment (25mg/kgip) significantly attenuated MPTP-induced depletion of striatal dopamine. By contrast in homozygous A2AR global KO mice caffeine had no effect on MPTP toxicity. In forebrain neuron A2AR cKO mice, caffeine lost its locomotor stimulant effect, whereas its neuroprotective effect was mostly preserved. In astrocytic A2AR cKO mice, both caffeine's locomotor stimulant and protective properties were undiminished. Taken together, these results indicate that neuroprotection by caffeine in the MPTP model of PD relies on the A2AR, although the specific cellular localization of these receptors remains to be determined. Copyright © 2016 IBRO. All rights reserved.

  7. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Feed-Forward Inhibition of CD73 and Upregulation of Adenosine Deaminase Contribute to the Loss of Adenosine Neuromodulation in Postinflammatory Ileitis

    Directory of Open Access Journals (Sweden)

    Cátia Vieira

    2014-01-01

    Full Text Available Purinergic signalling is remarkably plastic during gastrointestinal inflammation. Thus, selective drugs targeting the “purinome” may be helpful for inflammatory gastrointestinal diseases. The myenteric neuromuscular transmission of healthy individuals is fine-tuned and controlled by adenosine acting on A2A excitatory receptors. Here, we investigated the neuromodulatory role of adenosine in TNBS-inflamed longitudinal muscle-myenteric plexus of the rat ileum. Seven-day postinflammation ileitis lacks adenosine neuromodulation, which may contribute to acceleration of gastrointestinal transit. The loss of adenosine neuromodulation results from deficient accumulation of the nucleoside at the myenteric synapse despite the fact that the increases in ATP release were observed. Disparity between ATP outflow and adenosine deficit in postinflammatory ileitis is ascribed to feed-forward inhibition of ecto-5′-nucleotidase/CD73 by high extracellular ATP and/or ADP. Redistribution of NTPDase2, but not of NTPDase3, from ganglion cell bodies to myenteric nerve terminals leads to preferential ADP accumulation from released ATP, thus contributing to the prolonged inhibition of muscle-bound ecto-5′-nucleotidase/CD73 and to the delay of adenosine formation at the inflamed neuromuscular synapse. On the other hand, depression of endogenous adenosine accumulation may also occur due to enhancement of adenosine deaminase activity. Both membrane-bound and soluble forms of ecto-5′-nucleotidase/CD73 and adenosine deaminase were detected in the inflamed myenteric plexus. These findings provide novel therapeutic targets for inflammatory gut motility disorders.

  9. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  10. Contributory role of adenosine deaminase in metabolic syndrome

    African Journals Online (AJOL)

    olayemitoyin

    Cytokine balance was also changed in diet induced obese mice (Mito and Hiyosin, 2002). Although Mito et al (2000) ... immunity in man (Sadasivudu et al, 1982) adenosine deaminase modulates cell growth (Lelieuve et al, .... Colgiuri, S. (2002) The Carnivore Connection- evolution aspect of insulin resistance. Eur. J. Clin.

  11. Adenosine Deaminase Inhibitor EHNA Exhibits a Potent Anticancer Effect Against Malignant Pleural Mesothelioma

    Directory of Open Access Journals (Sweden)

    Yasuhiro Nakajima

    2015-01-01

    Full Text Available Background/Aims: Malignant pleural mesothelioma (MPM is an aggressive malignant tumor and an effective therapy has been little provided as yet. The present study investigated the possibility for the adenosine deaminase (ADA inhibitor EHNA as a target of MPM treatment. Methods: MTT assay, TUNEL staining, monitoring of intracellular adenosine concentrations, and Western blotting were carried out in cultured human MPM cell lines without and with knocking-down ADA. The in vivo effect of EHNA was assessed in mice inoculated with NCI-H2052 MPM cells. Results: EHNA induced apoptosis of human MPM cell lines in a concentration (0.01-1 mM- and treatment time (24-48 h-dependent manner, but such effect was not obtained with another ADA inhibitor pentostatin. EHNA increased intracellular adenosine concentrations in a treatment time (3-9 h-dependent manner. EHNA-induced apoptosis of MPM cells was mimicked by knocking-down ADA, and the effect was neutralized by the adenosine kinase inhibitor ABT-702. EHNA clearly suppressed tumor growth in mice inoculated with NCI-H2052 MPM cells. Conclusion: The results of the present study show that EHNA induces apoptosis of MPM cells by increasing intracellular adenosine concentrations, to convert to AMP, and effectively prevents MPM cell proliferation. This suggests that EHNA may be useful for treatment of the tragic neoplasm MPM.

  12. Ischaemic tolerance in aged mouse myocardium: the role of adenosine and effects of A1 adenosine receptor overexpression

    Science.gov (United States)

    Headrick, John P; Willems, Laura; Ashton, Kevin J; Holmgren, Kirsten; Peart, Jason; Matherne, G Paul

    2003-01-01

    The genesis of the ischaemia intolerant phenotype in aged myocardium is poorly understood. We tested the hypothesis that impaired adenosine-mediated protection contributes to ischaemic intolerance, and examined whether this is countered by A1 adenosine receptor (A1AR) overexpression. Responses to 20 min ischaemia and 45 min reperfusion were assessed in perfused hearts from young (2–4 months) and moderately aged (16–18 months) mice. Post-ischaemic contractility was impaired by ageing with elevated ventricular diastolic (32 ± 2 vs. 18 ± 2 mmHg in young) and reduced developed (37 ± 3 vs. 83 ± 6 mmHg in young) pressures. Lactate dehydrogenase (LDH) loss was exaggerated (27 ± 2 vs. 16 ± 2 IU g−1in young) whereas the incidence of tachyarrhythmias was similar in young (15 ± 1 %) and aged hearts (16 ± 1 %). Functional analysis confirmed equipotent effects of 50 μm adenosine at A1 and A2 receptors in young and aged hearts. Nonetheless, while 50 μm adenosine improved diastolic (5 ± 1 mmHg) and developed pressures (134 ± 7 mmHg) and LDH loss (6 ± 2 IU g−1) in young hearts, it did not alter these variables in the aged group. Adenosine did attenuate arrhythmogenesis for both ages (to ∼10 %). In contrast to adenosine, 50 μm diazoxide reduced ischaemic damage and arrhythmogenesis for both ages. Contractile and anti-necrotic effects of adenosine were limited by 100 μm 5-hydroxydecanoate (5-HD) and 3 μm chelerythrine. Anti-arrhythmic effects were limited by 5-HD but not chelerythrine. Non-selective (100 μm 8-sulfophenyltheophylline) and A1-selective (150 nm 8-cyclopentyl-1,3-dipropylxanthine) adenosine receptor antagonism impaired ischaemic tolerance in young but not aged hearts. Quantitative real-time PCR and radioligand analysis indicated that impaired protection is unrelated to changes in A1AR mRNA transcription, or receptor density (∼8 fmol mg−1 protein in both age groups). However, A1AR overexpression improved tolerance for both ages, restoring

  13. Nicotine anxiogenic and rewarding effects are decreased in mice lacking beta-endorphin.

    Science.gov (United States)

    Trigo, José M; Zimmer, Andreas; Maldonado, Rafael

    2009-06-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, micro-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking beta-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking beta-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of beta-endorphin in these addictive related responses.

  14. Nicotine anxiogenic and rewarding effects are decreased in mice lacking β-endorphin

    Science.gov (United States)

    Trigo, José M.; Zimmer, Andreas; Maldonado, Rafael

    2009-01-01

    The endogenous opioid system plays an important role in the behavioral effects of nicotine. Thus, μ-opioid receptor and the endogenous opioids derived from proenkephalin are involved in the central effects of nicotine. However, the role played by the different endogenous opioid peptides in the acute and chronic effects of nicotine remains to be fully established. Mice lacking β-endorphin were acutely injected with nicotine at different doses to evaluate locomotor, anxiogenic and antinociceptive responses. The rewarding properties of nicotine were evaluated by using the conditioned place-preference paradigm. Mice chronically treated with nicotine were acutely injected with mecamylamine to study the behavioral expression of nicotine withdrawal. Mice lacking β-endorphin exhibited a spontaneous hypoalgesia and hyperlocomotion and a reduction on the anxiogenic and rewarding effects induced by nicotine. Nicotine induced similar antinociception and hypolocomotion in both genotypes and no differences were found in the development of physical dependence. The dissociation between nicotine rewarding properties and physical dependence suggests a differential implication of β-endorphin in these addictive related responses. PMID:19376143

  15. Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

    Science.gov (United States)

    Weber, Felix C.; Esser, Philipp R.; Müller, Tobias; Ganesan, Jayanthi; Pellegatti, Patrizia; Simon, Markus M.; Zeiser, Robert; Idzko, Marco; Jakob, Thilo

    2010-01-01

    Sensitization to contact allergens requires activation of the innate immune system by endogenous danger signals. However, the mechanisms through which contact allergens activate innate signaling pathways are incompletely understood. In this study, we demonstrate that mice lacking the adenosine triphosphate (ATP) receptor P2X7 are resistant to contact hypersensitivity (CHS). P2X7-deficient dendritic cells fail to induce sensitization to contact allergens and do not release IL-1β in response to lipopolysaccharide (LPS) and ATP. These defects are restored by pretreatment with LPS and alum in an NLRP3- and ASC-dependent manner. Whereas pretreatment of wild-type mice with P2X7 antagonists, the ATP-degrading enzyme apyrase or IL-1 receptor antagonist, prevents CHS, IL-1β injection restores CHS in P2X7-deficient mice. Thus, P2X7 is a crucial receptor for extracellular ATP released in skin in response to contact allergens. The lack of P2X7 triggering prevents IL-1β release, which is an essential step in the sensitization process. Interference with P2X7 signaling may be a promising strategy for the prevention of allergic contact dermatitis. PMID:21059855

  16. Erythrocytic Adenosine Monophosphate as an Alternative Purine Source in Plasmodium falciparum*

    Science.gov (United States)

    Cassera, María B.; Hazleton, Keith Z.; Riegelhaupt, Paul M.; Merino, Emilio F.; Luo, Minkui; Akabas, Myles H.; Schramm, Vern L.

    2008-01-01

    Plasmodium falciparum is a purine auxotroph, salvaging purines from erythrocytes for synthesis of RNA and DNA. Hypoxanthine is the key precursor for purine metabolism in Plasmodium. Inhibition of hypoxanthine-forming reactions in both erythrocytes and parasites is lethal to cultured P. falciparum. We observed that high concentrations of adenosine can rescue cultured parasites from purine nucleoside phosphorylase and adenosine deaminase blockade but not when erythrocyte adenosine kinase is also inhibited. P. falciparum lacks adenosine kinase but can salvage AMP synthesized in the erythrocyte cytoplasm to provide purines when both human and Plasmodium purine nucleoside phosphorylases and adenosine deaminases are inhibited. Transport studies in Xenopus laevis oocytes expressing the P. falciparum nucleoside transporter PfNT1 established that this transporter does not transport AMP. These metabolic patterns establish the existence of a novel nucleoside monophosphate transport pathway in P. falciparum. PMID:18799466

  17. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    Science.gov (United States)

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  18. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Science.gov (United States)

    Kataoka, Shinji; Baquero, Arian; Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C; Finger, Thomas E

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  19. TOR induced resistance to toxic adenosine analogs in Leishmania brought about by the internalization and degradation of the adenosine permease

    Science.gov (United States)

    Detke, Siegfried

    2007-01-01

    TOR is an atypical multidrug resistance protein present in the human protozoan parasite, Leishmania. Resistance to the toxic adenosine analog tubercidin was brought about by redirecting the adenosine permease from the plasma membrane to the multivesicular tubule lysosome. The cells became resistant to tubercidin because they were unable to take up and accumulate this toxic purine. The domain which was recognized by TOR in this internalization pathway was identified by expressing portions of this transporter in Leishmania and assessing whether they were capable of hindering the multidrug resistance capability of TOR. This approach identified the adenosine permease region spanning Met289 to Trp305. This region was also the epitope recognized by the internalization mechanism. An internal deletion mutant lacking Met289-Trp305 was functionally active but could no longer be internalized in cells with high TOR levels. The internalization and altered trafficking of the adenosine permease by TOR was observed in yeast and human embryonic kidney cells co-expressing these two Leishmania proteins indicating that the internalization process was conserved in evolutionary diverse organisms. The inability of Saccharomyces with a temperature sensitive ubiquitin ligase to internalize adenosine permease suggested that ubiquitination was involved in this altered trafficking. PMID:17428463

  20. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    Energy Technology Data Exchange (ETDEWEB)

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. (Univ. of Trieste (Italy))

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  1. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    International Nuclear Information System (INIS)

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R.

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-[ 3 H]adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system

  2. Activation of adenosine receptors and inhibition of cyclooxygenases: two recent pharmacological approaches to modulation of radiation suppressed hematopoiesis

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Vacek, A.; Hola, J.; Weiterova, L.; Streitova, D.; Znojil, V.

    2008-01-01

    Searching for drugs conforming to requirements for protection and/or treatment of radiation-induced damage belongs to the most important tasks of current radiobiology. In the Laboratory of Experimental Hematology, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Brno, Czech Republic, two original approaches for stimulation of radiation-suppressed hematopoiesis have been tested in recent years, namely activation of adenosine receptors and inhibition of cyclooxygenases. Non-selective activation of adenosine receptors, induced by combined administration of dipyridamole, a drug preventing adenosine uptake and supporting thus its extracellular receptor-mediated action, and adenosine monophosphate, an adenosine prodrug, has been found to stimulate hematopoiesis when the drugs were given either pre- or post-irradiation. When synthetic adenosine receptor agonists selective for individual adenosine receptor subtypes were tested, stimulatory effects in myelosuppressed mice have been found after administration of IB-MECA, a selective adenosine A3 receptor agonist. Non-selective cyclooxygenase inhibitors, inhibiting both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), indomethacin, diclofenac, or flurbiprofen, have been observed to act positively on radiation-perturbed hematopoiesis in sublethally irradiated mice. However, their undesirable gastrointestinal side effects have been found to negatively influence survival of lethally irradiated animals. Recently tested selective COX-2 inhibitor meloxicam, preserving protective action of COX-1-synthesized prostaglandins in the gastrointestinal tissues, has been observed to retain the hematopoiesis-stimulating effects of non-selective cyclooxygenase inhibitors and to improve the survival of animals exposed to lethal radiation doses. These findings bear evidence for the possibility to use selective adenosine A3 receptor agonists and selective COX-2 inhibitors in human practice for treatment of

  3. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Science.gov (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  4. Adenosine and preeclampsia.

    Science.gov (United States)

    Salsoso, Rocío; Farías, Marcelo; Gutiérrez, Jaime; Pardo, Fabián; Chiarello, Delia I; Toledo, Fernando; Leiva, Andrea; Mate, Alfonso; Vázquez, Carmen M; Sobrevia, Luis

    2017-06-01

    Adenosine is an endogenous nucleoside with pleiotropic effects in different physiological processes including circulation, renal blood flow, immune function, or glucose homeostasis. Changes in adenosine membrane transporters, adenosine receptors, and corresponding intracellular signalling network associate with development of pathologies of pregnancy, including preeclampsia. Preeclampsia is a cause of maternal and perinatal morbidity and mortality affecting 3-5% of pregnancies. Since the proposed mechanisms of preeclampsia development include adenosine-dependent biological effects, adenosine membrane transporters and receptors, and the associated signalling mechanisms might play a role in the pathophysiology of preeclampsia. Preeclampsia associates with increased adenosine concentration in the maternal blood and placental tissue, likely due to local hypoxia and ischemia (although not directly demonstrated), microthrombosis, increased catecholamine release, and platelet activation. In addition, abnormal expression and function of equilibrative nucleoside transporters is described in foetoplacental tissues from preeclampsia; however, the role of adenosine receptors in the aetiology of this disease is not well understood. Adenosine receptors activation may be related to abnormal trophoblast invasion, angiogenesis, and ischemia/reperfusion mechanisms in the placenta from preeclampsia. These mechanisms may explain only a low fraction of the associated abnormal transformation of spiral arteries in preeclampsia, triggering cellular stress and inflammatory mediators release from the placenta to the maternal circulation. Although increased adenosine concentration in preeclampsia may be a compensatory or adaptive mechanism favouring placental angiogenesis, a poor angiogenic state is found in preeclampsia. Thus, preeclampsia-associated complications might affect the cell response to adenosine due to altered expression and activity of adenosine receptors, membrane transporters

  5. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  6. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    Science.gov (United States)

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. A2BR adenosine receptor modulates sweet taste in circumvallate taste buds.

    Directory of Open Access Journals (Sweden)

    Shinji Kataoka

    Full Text Available In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3 on taste nerves as well as metabotropic (P2Y purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate, but not anterior (fungiform, palate taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields.

  8. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    Science.gov (United States)

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  10. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury

    OpenAIRE

    Winerdal, Max; Winerdal, Malin E.; Wang, Ying-Qing; Fredholm, Bertil B.; Winqvist, Ola; Ådén, Ulrika

    2015-01-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R−/−) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction siz...

  11. Impaired intestinal proglucagon processing in mice lacking prohormone convertase 1

    DEFF Research Database (Denmark)

    Ugleholdt, Randi; Zhu, Xiaorong; Deacon, Carolyn F

    2003-01-01

    proglucagon processing showed marked defects. Tissue proglucagon levels in null mice were elevated, and proglucagon processing to glicentin, oxyntomodulin, and glucagon-like peptide-1 and -2 (GLP-1 and GLP-2) was markedly decreased, indicating that PC1 is essential for the processing of all the intestinal...... proglucagon cleavage sites. This includes the monobasic site R(77) and, thereby, production of mature, biologically active GLP-1. We also found elevated glucagon levels, suggesting that factors other than PC1 that are capable of processing to mature glucagon are present in the secretory granules of the L cell......The neuroendocrine prohormone convertases 1 and 2 (PC1 and PC2) are expressed in endocrine intestinal L cells and pancreatic A cells, respectively, and colocalize with proglucagon in secretory granules. Mice lacking PC2 have multiple endocrinopathies and cannot process proglucagon to mature...

  12. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    NARCIS (Netherlands)

    Simeonova, I.; Jaber, S.; Draskovic, I.; Bardot, B.; Fang, M.; Bouarich-Bourimi, R.; Lejour, V.; Charbonnier, L.; Soudais, C.; Bourdon, J.C.; Huerre, M.; Londono-Vallejo, A.; Toledo, F.

    2013-01-01

    Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53(Delta31), a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis,

  13. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    Science.gov (United States)

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the presence of colony stimulating factor-1 and receptor activator of NF-κB ligand in the presence or absence of the A1R antagonist 1,3-dipropyl-8-cyclopentyl xanthine (DPCPX). Osteoclast morphology was analyzed in tartrate-resistant acid phosphatase or F-actin-stained samples, and bone resorption was evaluated by toluidine blue staining of dentin. BMCs from A1R-knockout mice form fewer osteoclasts than BMCs from WT mice, and the A1R antagonist DPCPX inhibits osteoclast formation (IC50=1 nM), with altered morphology and reduced ability to resorb bone. A1R blockade increased ubiquitination and degradation of TRAF6 in RAW264.7 cells induced to differentiate into osteoclasts. These studies suggest a critical role for adenosine in bone homeostasis via interaction with adenosine A1R and further suggest that A1R may be a novel pharmacologic target to prevent the bone loss associated with inflammatory diseases and menopause.—Kara, F. M., Chitu, V., Sloane, J., Axelrod, M., Fredholm, B. B., Stanley, R., Cronstein, B. N. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function. PMID:20181934

  14. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    International Nuclear Information System (INIS)

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H.

    1990-01-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-[ 3 H]ethylcarboxamidoadenosine [( 3 H]NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the [ 3 H]NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors

  15. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    Science.gov (United States)

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct

    Science.gov (United States)

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Li, Lijun; Ecelbarger, Carolyn M.; Staruschenko, Alexander

    2013-01-01

    The epithelial sodium channel (ENaC) is one of the central effectors involved in regulation of salt and water homeostasis in the kidney. To study mechanisms of ENaC regulation, we generated knockout mice lacking the insulin receptor (InsR KO) specifically in the collecting duct principal cells. Single-channel analysis in freshly isolated split-open tubules demonstrated that the InsR-KO mice have significantly lower ENaC activity compared to their wild-type (C57BL/6J) littermates when animals were fed either normal or sodium-deficient diets. Immunohistochemical and Western blot assays demonstrated no significant changes in expression of ENaC subunits in InsR-KO mice compared to wild-type littermates. Insulin treatment caused greater ENaC activity in split-open tubules isolated from wild-type mice but did not have this effect in the InsR-KO mice. Thus, these results suggest that insulin increases ENaC activity via its own receptor affecting the channel open probability. To further determine the mechanism of the action of insulin on ENaC, we used mouse mpkCCDc14 principal cells. Insulin significantly augmented amiloride-sensitive transepithelial flux in these cells. Pretreatment of the mpkCCDc14 cells with phosphatidylinositol 3-kinase (LY294002; 10 μM) or mTOR (PP242; 100 nM) inhibitors precluded this effect. This study provides new information about the importance of insulin receptors expressed in collecting duct principal cells for ENaC activity.—Pavlov, T. S., Ilatovskaya, D. V., Levchenko, V., Li, L., Ecelbarger, C. M., Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. PMID:23558339

  17. Selective reward deficit in mice lacking beta-endorphin and enkephalin.

    Science.gov (United States)

    Hayward, Michael D; Pintar, John E; Low, Malcolm J

    2002-09-15

    It has been impossible to unequivocally identify which endogenous opioids modulate the incentive value of rewarding stimuli because these peptides are not highly selective for any single opioid receptor subtype. Here, we present evidence based on the measurement of instrumental behavior of beta-endorphin and enkephalin knock-out mice that both opioid peptides play a positive role. A progressive ratio schedule was used to measure how hard an animal would work for food reinforcers. The loss of either opioid reduced responding under this schedule, regardless of the palatability of the three different formulas of reinforcers used. The phenotype of mice lacking both endogenous opioids was nearly identical to the phenotype of mice mutant for either individual opioid. Responses were tested in nondeprived and deprived feeding states but were reduced in beta-endorphin- and enkephalin-deficient mice only when they were maintained under nondeprived conditions. Other operant manipulations ruled out variables that might contribute nonspecifically to this result such as differences in acquisition, early satiation, motor performance deficit, and reduced resistance to extinction. In contrast to the effects on instrumental performance, the loss of either or both endogenous opioids did not influence preference for water flavored with sucrose or saccharin in a two-bottle free-choice drinking paradigm. We conclude that both beta-endorphin and enkephalin positively contribute to the incentive-motivation to acquire food reinforcers. Because the attenuation of operant responding was observed only during a nondeprived motivational state, the hedonics of feeding are likely altered rather than energy homeostasis.

  18. Multiple sleep alterations in mice lacking cannabinoid type 1 receptors.

    Directory of Open Access Journals (Sweden)

    Alessandro Silvani

    Full Text Available Cannabinoid type 1 (CB1 receptors are highly expressed in the brain and play a role in behavior control. Endogenous cannabinoid signaling is modulated by high-fat diet (HFD. We investigated the consequences of congenital lack of CB1 receptors on sleep in mice fed standard diet (SD and HFD. CB1 cannabinoid receptor knock-out (KO and wild-type (WT mice were fed SD or HFD for 4 months (n = 9-10 per group. Mice were instrumented with electroencephalographic (EEG and electromyographic electrodes. Recordings were performed during baseline (48 hours, sleep deprivation (gentle handling, 6 hours, sleep recovery (18 hours, and after cage switch (insomnia model paradigm, 6 hours. We found multiple significant effects of genotype on sleep. In particular, KO spent more time awake and less time in non-rapid-eye-movement sleep (NREMS and rapid-eye-movement sleep (REMS than WT during the dark (active period but not during the light (rest period, enhancing the day-night variation of wake-sleep amounts. KO had slower EEG theta rhythm during REMS. REMS homeostasis after sleep deprivation was less effective in KO than in WT. Finally, KO habituated more rapidly to the arousing effect of the cage-switch test than WT. We did not find any significant effects of diet or of diet x genotype interaction on sleep. The occurrence of multiple sleep alterations in KO indicates important roles of CB1 cannabinoid receptors in limiting arousal during the active period of the day, in sleep regulation, and in sleep EEG in mice.

  19. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ‡

    Science.gov (United States)

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1–20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8–14 days post-immunization, shortly before EAU expression, but ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses and this effect was γδ T cell-dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help improve the design of ADA- and AR-targeted therapies. PMID:26856700

  20. Adenosine A2A Receptors Mediate Anti-Inflammatory Effects of Electroacupuncture on Synovitis in Mice with Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Qi-hui Li

    2015-01-01

    Full Text Available To study the role of adenosine A2A receptor (A2AR in mediating the anti-inflammatory effect of electroacupuncture (EA on synovitis in collagen-induced arthritis (CIA, C57BL/6 mice were divided into five treatment groups: Sham-control, CIA-control, CIA-EA, CIA-SCH58261 (A2AR antagonist, and CIA-EA-SCH58261. All mice except those in the Sham-control group were immunized with collagen II for arthritis induction. EA treatment was administered using the stomach 36 and spleen 6 points, and stimulated with a continuous rectangular wave for 30 min daily. EA treatment and SCH58261 were administered daily from days 35 to 49 (n=10. After treatment, X-ray radiography of joint bone morphology was established at day 60 and mouse blood was collected for ELISA determination of tumor necrosis factor alpha (TNF-α levels. Mice were sacrificed and processed for histological examination of pathological changes of joint tissue, including hematoxylin-eosin staining and immunohistochemistry of A2AR expression. EA treatment resulted in significantly reduced pathological scores, TNF-α concentrations, and bone damage X-ray scores. Importantly, the anti-inflammatory and tissue-protective effect of EA treatment was reversed by coadministration of SCH58261. Thus, EA treatment exerts an anti-inflammatory effect resulting in significant protection of cartilage by activation of A2AR in the synovial tissue of CIA.

  1. Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine

    Science.gov (United States)

    Zylka, Mark J.; Sowa, Nathaniel A.; Taylor-Blake, Bonnie; Twomey, Margaret A.; Herrala, Annakaisa; Voikar, Vootele; Vihko, Pirkko

    2008-01-01

    SUMMARY Thiamine monophosphatase (TMPase, also known as Fluoride-Resistant Acid Phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. The molecular identity of TMPase is currently unknown. We found that TMPase is identical to the transmembrane isoform of Prostatic Acid Phosphatase (PAP), an enzyme with unknown molecular and physiological functions. We then found that PAP knockout mice have normal acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain models. In gain-of-function studies, intraspinal injection of PAP protein has potent anti-nociceptive, anti-hyperalgesic and anti-allodynic effects that last longer than the opioid analgesic morphine. PAP suppresses pain by functioning as an ecto-5’-nucleotidase. Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal molecular and physiological functions for PAP in purine nucleotide metabolism and nociception and suggest a novel use for PAP in the treatment of chronic pain. PMID:18940592

  2. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study.

    Directory of Open Access Journals (Sweden)

    Robert Edward Sims

    Full Text Available Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K(+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.

  3. Lack of phosphatidylethanolamine N-methyltransferase in mice does not promote fatty acid oxidation in skeletal muscle.

    Science.gov (United States)

    Tasseva, Guergana; van der Veen, Jelske N; Lingrell, Susanne; Jacobs, René L; Vance, Dennis E; Vance, Jean E

    2016-02-01

    Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC) in the liver. Mice lacking PEMT are protected from high-fat diet-induced obesity and insulin resistance, and exhibit increased whole-body energy expenditure and oxygen consumption. Since skeletal muscle is a major site of fatty acid oxidation and energy utilization, we determined if rates of fatty acid oxidation/oxygen consumption in muscle are higher in Pemt(-/-) mice than in Pemt(+/+) mice. Although PEMT is abundant in the liver, PEMT protein and activity were undetectable in four types of skeletal muscle. Moreover, amounts of PC and PE in the skeletal muscle were not altered by PEMT deficiency. Thus, we concluded that any influence of PEMT deficiency on skeletal muscle would be an indirect consequence of lack of PEMT in liver. Neither the in vivo rate of fatty acid uptake by muscle nor the rate of fatty acid oxidation in muscle explants and cultured myocytes depended upon Pemt genotype. Nor did PEMT deficiency increase oxygen consumption or respiratory function in skeletal muscle mitochondria. Thus, the increased whole body oxygen consumption in Pemt(-/-) mice, and resistance of these mice to diet-induced weight gain, are not primarily due to increased capacity of skeletal muscle for utilization of fatty acids as an energy source. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Adenosine receptor desensitization and trafficking.

    Science.gov (United States)

    Mundell, Stuart; Kelly, Eamonn

    2011-05-01

    As with the majority of G-protein-coupled receptors, all four of the adenosine receptor subtypes are known to undergo agonist-induced regulation in the form of desensitization and trafficking. These processes can limit the ability of adenosine receptors to couple to intracellular signalling pathways and thus reduce the ability of adenosine receptor agonists as well as endogenous adenosine to produce cellular responses. In addition, since adenosine receptors couple to multiple signalling pathways, these pathways may desensitize differentially, while the desensitization of one pathway could even trigger signalling via another. Thus, the overall picture of adenosine receptor regulation can be complex. For all adenosine receptor subtypes, there is evidence to implicate arrestins in agonist-induced desensitization and trafficking, but there is also evidence for other possible forms of regulation, including second messenger-dependent kinase regulation, heterologous effects involving G proteins, and the involvement of non-clathrin trafficking pathways such as caveolae. In this review, the evidence implicating these mechanisms is summarized for each adenosine receptor subtype, and we also discuss those issues of adenosine receptor regulation that remain to be resolved as well as likely directions for future research in this field. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. AMP and adenosine are both ligands for adenosine 2B receptor signaling.

    Science.gov (United States)

    Holien, Jessica K; Seibt, Benjamin; Roberts, Veena; Salvaris, Evelyn; Parker, Michael W; Cowan, Peter J; Dwyer, Karen M

    2018-01-15

    Adenosine is considered the canonical ligand for the adenosine 2B receptor (A 2B R). A 2B R is upregulated following kidney ischemia augmenting post ischemic blood flow and limiting tubular injury. In this context the beneficial effect of A 2B R signaling has been attributed to an increase in the pericellular concentration of adenosine. However, following renal ischemia both kidney adenosine monophosphate (AMP) and adenosine levels are substantially increased. Using computational modeling and calcium mobilization assays, we investigated whether AMP could also be a ligand for A 2B R. The computational modeling suggested that AMP interacts with more favorable energy to A 2B R compared with adenosine. Furthermore, AMPαS, a non-hydrolyzable form of AMP, increased calcium uptake by Chinese hamster ovary (CHO) cells expressing the human A 2B R, indicating preferential signaling via the G q pathway. Therefore, a putative AMP-A 2B R interaction is supported by the computational modeling data and the biological results suggest this interaction involves preferential G q activation. These data provide further insights into the role of purinergic signaling in the pathophysiology of renal IRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice.

    Science.gov (United States)

    Irimia, Jose M; Meyer, Catalina M; Segvich, Dyann M; Surendran, Sneha; DePaoli-Roach, Anna A; Morral, Nuria; Roach, Peter J

    2017-06-23

    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  8. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  9. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    Science.gov (United States)

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  10. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice.

    Science.gov (United States)

    Liao, Hsien-Yin; Hsieh, Ching-Liang; Huang, Chun-Ping; Lin, Yi-Wen

    2017-02-13

    Pain is associated with several conditions, such as inflammation, that result from altered peripheral nerve properties. Electroacupuncture (EA) is a common Chinese clinical medical technology used for pain management. Using an inflammatory pain mouse model, we investigated the effects of EA on the regulation of neurons, microglia, and related molecules. Complete Freund's adjuvant (CFA) injections produced a significant mechanical and thermal hyperalgesia that was reversed by EA or a transient receptor potential V1 (TRPV1) gene deletion. The expression of the astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, receptor for advanced glycation end-products (RAGE), TRPV1, and other related molecules was dramatically increased in the dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) of CFA-treated mice. This effect was reversed by EA and TRPV1 gene deletion. In addition, endomorphin (EM) and N 6 -cyclopentyladenosine (CPA) administration reliably reduced mechanical and thermal hyperalgesia, thereby suggesting the involvement of opioid and adenosine receptors. Furthermore, blocking of opioid and adenosine A1 receptors reversed the analgesic effects of EA. Our study illustrates the substantial therapeutic effects of EA against inflammatory pain and provides a novel and detailed mechanism underlying EA-mediated analgesia via neuronal and non-neuronal pathways.

  11. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  12. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    Science.gov (United States)

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  13. Preclinical studies on [{sup 11}C]MPDX for mapping adenosine A{sub 1} receptors by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwata, Kiichi; Kimura, Yuichi; Oda, Keiichi; Kawamura, Kazunori; Ishii, Kenji; Senda, Michio [Tokyo Metropolitan Inst. of Gerontology (Japan). Positron Medical Center; Nariai, Tadashi; Wakabayashi, Shinichi [Tokyo Medical and Dental Univ. (Japan). School of Medicine; Shimada, Junichi [Kyowa Hakko Kogyo Co. Ltd., Tokyo (Japan). Pharmaceutical Research Inst.

    2002-09-01

    In previous in vivo studies with mice, rats and cats, we have demonstrated that [{sup 11}C]MPDX ([1-methyl-{sup 11}C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine) is a potential radioligand for mapping adenosine A{sub 1} receptors of the brain by positron emission tomography (PET). In the present study, we performed a preclinical study. The radiation absorbed-dose by [{sup 11}C]MPDX in humans estimated from the tissue distribution in mice was low enough for clinical use, and the acute toxicity and mutagenicity of MPDX were not found. The monkey brain was clearly visualized by PET with [{sup 11}C]MPDX. We have concluded that [{sup 11}C]MPDX is suitable for mapping adenosine A{sub 1} receptors in the human brain by PET. (author)

  14. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    Science.gov (United States)

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Erythropoiesis- and Thrombopoiesis-Characterizing Parameters in Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Weiterová, Lenka

    2013-01-01

    Roč. 62, č. 3 (2013), s. 305-311 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : ELEVATING EXTRACELLULAR ADENOSINE * COLONY-STIMULATING FACTOR * HEMATOPOIETIC PROGENITOR CELLS Subject RIV: BO - Biophysics Impact factor: 1.487, year: 2013

  16. Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging.

    Directory of Open Access Journals (Sweden)

    Christelle Bertrand

    Full Text Available Thyroid hormones (TH play an important regulatory role in energy expenditure regulation and are key regulators of mitochondrial activity. We have previously identified a mitochondrial triiodothyronine (T3 receptor (p43 which acts as a mitochondrial transcription factor of the organelle genome, which leads in vitro and in vivo, to a stimulation of mitochondrial biogenesis. Recently, we generated mice carrying a specific p43 invalidation. At 2 months of age, we reported that p43 depletion in mice induced a major defect in insulin secretion both in vivo and in isolated pancreatic islets, and a loss of glucose-stimulated insulin secretion. The present study was designed to determine whether p43 invalidation influences life expectancy and modulates blood glucose and insulin levels as well as glucose tolerance or insulin sensitivity during aging. We report that from 4 months old onwards, mice lacking p43 are leaner than wild-type mice. p43-/- mice also have a moderate reduction of life expectancy compared to wild type. We found no difference in blood glucose levels, excepted at 24 months old where p43-/- mice showed a strong hyperglycemia in fasting conditions compared to controls animals. However, the loss of glucose-stimulated insulin secretion was maintained whatever the age of mice lacking p43. If up to 12 months old, glucose tolerance remained unchanged, beyond this age p43-/- mice became increasingly glucose intolerant. In addition, if up to 12 months old p43 deficient animals were more sensitive to insulin, after this age we observed a loss of this capacity, culminating in 24 months old mice with a decreased sensitivity to the hormone. In conclusion, we demonstrated that during aging the depletion of the mitochondrial T3 receptor p43 in mice progressively induced an increased glycemia in the fasted state, glucose intolerance and an insulin-resistance several features of type-2 diabetes.

  17. DNA vaccination with a plasmid encoding LACK-TSA fusion against Leishmania major infection in BALB/c mice.

    Science.gov (United States)

    Maspi, N; Ghaffarifar, F; Sharifi, Z; Dalimi, A; Khademi, S Z

    2017-12-01

    Vaccination would be the most important strategy for the prevention and elimination of leishmaniasis. The aim of the present study was to compare the immune responses induced following DNA vaccination with LACK (Leishmania analogue of the receptor kinase C), TSA (Thiol-specific-antioxidant) genes alone or LACK-TSA fusion against cutaneous leishmaniasis (CL). Cellular and humoral immune responses were evaluated before and after challenge with Leishmania major (L. major). In addition, the mean lesion size was also measured from 3th week post-infection. All immunized mice showed a partial immunity characterized by higher interferon (IFN)-γ and Immunoglobulin G (IgG2a) levels compared to control groups (pTSA fusion. Mean lesion sizes reduced significantly in all immunized mice compared with control groups at 7th week post-infection (pTSA and TSA groups than LACK group after challenge (pTSA antigens against CL. Furthermore, this study demonstrated that a bivalent vaccine can induce stronger immune responses and protection against infectious challenge with L. major.

  18. Why do premature newborn infants display elevated blood adenosine levels?

    Science.gov (United States)

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW

  19. Lack of Melanopsin Is Associated with Extreme Weight Loss in Mice upon Dietary Challenge.

    Directory of Open Access Journals (Sweden)

    Didem Göz Aytürk

    Full Text Available Metabolic disorders have been established as major risk factors for ocular complications and poor vision. However, little is known about the inverse possibility that ocular disease may cause metabolic dysfunction. To test this hypothesis, we assessed the metabolic consequences of a robust dietary challenge in several mouse models suffering from retinal mutations. To this end, mice null for melanopsin (Opn4-/-, the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs, were subjected to five weeks of a ketogenic diet. These mice lost significantly more weight than wild-type controls or mice lacking rod and cone photoreceptors (Pde6brd1/rd1. Although ipRGCs are critical for proper circadian entrainment, and circadian misalignment has been implicated in metabolic pathology, we observed no differences in entrainment between Opn4-/- and control mice. Additionally, we observed no differences in any tested metabolic parameter between these mouse strains. Further studies are required to establish the mechanism giving rise to this dramatic phenotype observed in melanopsin-null mice. We conclude that the causality between ocular disease and metabolic disorders merits further investigation due to the popularity of diets that rely on the induction of a ketogenic state. Our study is a first step toward understanding retinal pathology as a potential cause of metabolic dysfunction.

  20. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  1. Adenosine Receptors and Wound Healing

    Directory of Open Access Journals (Sweden)

    Bruce N. Cronstein

    2004-01-01

    Full Text Available Recent studies have demonstrated that application of topical adenosine A2A receptor agonists promotes more rapid wound closure and clinical studies are currently underway to determine the utility of topical A2A adenosine receptor agonists in the therapy of diabetic foot ulcers. The effects of adenosine A2A receptors on the cells and tissues of healing wounds have only recently been explored. We review here the known effects of adenosine A2A receptor occupancy on the cells involved in wound healing.

  2. Spectral studies of lanthanide-nucleic acid component interaction: complexes of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di- and adenosine 5' tri-phosphates with praseodymium(III)

    International Nuclear Information System (INIS)

    Joseph, George; Anjaiah, K.; Misra, S.N.

    1990-01-01

    The interactions of adenine, adenosine, adenosine 5'-mono-, adenosine 5'-di-and adenosine 5'-tri-phosphates with praseodymium(III) have been studied in different stoichiometries and at varying hydrogen ion concentrations by absorption spectral studies. The sharp bands in the spectra have been individually analysed by Gaussian curve analysis, and various spectral parameters have been computed using partial and multiple regression methods on an HP-1000/45 computer. The changes in and the magnitudes of these parameters have been correlated with the degrees of outer- and inner-sphere coordination around praseodymium(III). Crystalline complexes of the type: Pr(nucleotide) 2 (H 2 O) 2 (where nucleotide = AMP, ADP and ATP) have been characterized on the basis of analytical, IR and 1 H NMR spectral data. These studies indicate that the binding of the nucleotide is through phosphoric oxygen. These complexes in aqueous medium show significant ionization which supports the observed weak 4f-4f bands, lower values of nephelauxetic effect and the parameters derived from coulombic and spin-orbit interactions. (author). 3 t abs., 28 refs

  3. Adenosine and sleep

    International Nuclear Information System (INIS)

    Yanik, G.M. Jr.

    1987-01-01

    Behavioral and biochemical approaches have been used to determine the relative contribution of endogenous adenosine and adenosine receptors to the sleep-wake cycle in the rat. Adenosine concentrations in specific areas of the rat brain were not affected by 24 hours of total sleep deprivation, or by 24 or 48 hours of REM sleep deprivation. In order to assess the effect of REM sleep deprivation on adenosine A 1 receptors, 3 H-L-PIA binding was measured. The Bmax values for 3 H-L-PIA binding to membrane preparations of the cortices and corpus striata from 48 hour REM sleep-deprived animals were increased 14.8% and 23%, respectively. These increases were not maintained following the cessation of sleep deprivation and recovered within 2 hours. The results of a 96 hour REM deprivation experiment were similar to those of the 48 hour REM sleep deprivation experiment. However, these increases were not evident in similar structures taken from stress control animals, and conclusively demonstrated that the changes in 3 H-L-PIA binding resulted from REM sleep deprivation and not from stress

  4. Lack of the Lysosomal Membrane Protein, GLMP, in Mice Results in Metabolic Dysregulation in Liver.

    Directory of Open Access Journals (Sweden)

    Xiang Yi Kong

    Full Text Available Ablation of glycosylated lysosomal membrane protein (GLMP, formerly known as NCU-G1 has been shown to cause chronic liver injury which progresses into liver fibrosis in mice. Both lysosomal dysfunction and chronic liver injury can cause metabolic dysregulation. Glmp gt/gt mice (formerly known as Ncu-g1gt/gt mice were studied between 3 weeks and 9 months of age. Body weight gain and feed efficiency of Glmp gt/gt mice were comparable to wild type siblings, only at the age of 9 months the Glmp gt/gt siblings had significantly reduced body weight. Reduced size of epididymal fat pads was accompanied by hepatosplenomegaly in Glmp gt/gt mice. Blood analysis revealed reduced levels of blood glucose, circulating triacylglycerol and non-esterified fatty acids in Glmp gt/gt mice. Increased flux of glucose, increased de novo lipogenesis and lipid accumulation were detected in Glmp gt/gt primary hepatocytes, as well as elevated triacylglycerol levels in Glmp gt/gt liver homogenates, compared to hepatocytes and liver from wild type mice. Gene expression analysis showed an increased expression of genes involved in fatty acid uptake and lipogenesis in Glmp gt/gt liver compared to wild type. Our findings are in agreement with the metabolic alterations observed in other mouse models lacking lysosomal proteins, and with alterations characteristic for advanced chronic liver injury.

  5. Nonobese Diabetic (NOD Mice Lack a Protective B-Cell Response against the “Nonlethal” Plasmodium yoelii 17XNL Malaria Protozoan

    Directory of Open Access Journals (Sweden)

    Mirian Mendoza

    2016-01-01

    Full Text Available Background. Plasmodium yoelii 17XNL is a nonlethal malaria strain in mice of different genetic backgrounds including the C57BL/6 mice (I-Ab/I-Enull used in this study as a control strain. We have compared the trends of blood stage infection with the nonlethal murine strain of P. yoelii 17XNL malaria protozoan in immunocompetent Nonobese Diabetic (NOD mice prone to type 1 diabetes (T1D and C57BL/6 mice (control mice that are not prone to T1D and self-cure the P. yoelii 17XNL infection. Prediabetic NOD mice could not mount a protective antibody response to the P. yoelii 17XNL-infected red blood cells (iRBCs, and they all succumbed shortly after infection. Our data suggest that the lack of anti-P. yoelii 17XNL-iRBCs protective antibodies in NOD mice is a result of parasite-induced, Foxp3+ T regulatory (Treg cells able to suppress the parasite-specific antibody secretion. Conclusions. The NOD mouse model may help in identifying new mechanisms of B-cell evasion by malaria parasites. It may also serve as a more accurate tool for testing antimalaria therapeutics due to the lack of interference with a preexistent self-curing mechanism present in other mouse strains.

  6. Adenosine metabolism in Toxoplasma gondii: potential targets for chemotherapy.

    Science.gov (United States)

    el Kouni, Mahmoud H

    2007-01-01

    Toxoplasma gondii is an intracellular parasitic protozoan that infects approximately a billion people worldwide. Infection with T. gondii represents a major health problem for immunocompromised individuals, such as AIDS patients, organ transplant recipients, and the unborn children of infected mothers. Currently available drugs usually do not eradicate infection and as many as 50% of the patients do not respond to this therapy. Furthermore, they are ineffective against T. gondii tissue cysts. In addition, prolonged exposure to these drugs induces serious host toxicity forcing the discontinuation of the therapy. Finally, there is no effective vaccine currently available for the treatment of toxoplasmosis. Therefore, it is necessary to develop new and effective drugs for the treatment and management of toxoplasmosis. The rational design of a drug depends on the exploitation of fundamental biochemical or physiological differences between pathogens and their host. Some of the most striking differences between T. gondii and their mammalian host are found in purine metabolism. T. gondii, like most parasites studied, lack the ability to synthesize purines do novo and depend on the salvage of purines from their host to satisfy their requirements of purines. In this respect, the salvage of adenosine is the major source of purines in T. gondii. Therefore, interference with adenosine uptake and metabolism in T. gondii can be selectively detrimental to the parasite. The host cells, on the other hand, can still obtain their purine requirements by their de novo pathways. This review will focus on the broad aspects of the adenosine transport and the enzyme adenosine kinase (EC 2.7.1.20) which are the two primary routes for adenosine utilization in T. gondii, in an attempt to illustrate their potentials as targets for chemotherapy against this parasite.

  7. Lack of bcr and abr promotes hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Min Yu

    Full Text Available Bcr and Abr are GTPase activating proteins that specifically downregulate activity of the small GTPase Rac in restricted cell types in vivo. Rac1 is expressed in smooth muscle cells, a critical cell type involved in the pathogenesis of pulmonary hypertension. The molecular mechanisms that underlie hypoxia-associated pulmonary hypertension are not well-defined.Bcr and abr null mutant mice were compared to wild type controls for the development of pulmonary hypertension after exposure to hypoxia. Also, pulmonary arterial smooth muscle cells from those mice were cultured in hypoxia and examined for proliferation, p38 activation and IL-6 production. Mice lacking Bcr or Abr exposed to hypoxia developed increased right ventricular pressure, hypertrophy and pulmonary vascular remodeling. Perivascular leukocyte infiltration in the lungs was increased, and under hypoxia bcr-/- and abr-/- macrophages generated more reactive oxygen species. Consistent with a contribution of inflammation and oxidative stress in pulmonary hypertension-associated vascular damage, Bcr and Abr-deficient animals showed elevated endothelial leakage after hypoxia exposure. Hypoxia-treated pulmonary arterial smooth muscle cells from Bcr- or Abr-deficient mice also proliferated faster than those of wild type mice. Moreover, activated Rac1, phosphorylated p38 and interleukin 6 were increased in these cells in the absence of Bcr or Abr. Inhibition of Rac1 activation with Z62954982, a novel Rac inhibitor, decreased proliferation, p38 phosphorylation and IL-6 levels in pulmonary arterial smooth muscle cells exposed to hypoxia.Bcr and Abr play a critical role in down-regulating hypoxia-induced pulmonary hypertension by deactivating Rac1 and, through this, reducing both oxidative stress generated by leukocytes as well as p38 phosphorylation, IL-6 production and proliferation of pulmonary arterial smooth muscle cells.

  8. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Circadian variations of adenosine and of its metabolism. Could adenosine be a molecular oscillator for circadian rhythms?

    Science.gov (United States)

    Chagoya de Sánchez, V

    1995-03-01

    The present review describes the biological implications of the periodic changes of adenosine concentrations in different tissues of the rat. Adenosine is a purine molecule that could have been formed in the prebiotic chemical evolution and has been preserved. The rhythmicity of this molecule, as well as its metabolism and even the presence of specific receptors, suggests a regulatory role in eukaryotic cells and in multicellular organisms. Adenosine may be considered a chemical messenger and its action could take place at the level of the same cell (autocrine), the same tissue (paracrine), or on separate organs (endocrine). Exploration of the circadian variations of adenosine was planned considering the liver as an important tissue for purine formation, the blood as a vehicle among tissues, and the brain as the possible acceptor for hepatic adenosine or its metabolites. The rats used in these studies were adapted to a dark-light cycle of 12 h with an unrestrained feeding and drinking schedule. The metabolic control of adenosine concentration in the different tissues studied through the 24-h cycle is related to the activity of adenosine-metabolizing enzyme: 5'-nucleotidase adenosine deaminase, adenosine kinase, and S-adenosylhomocysteine hydrolase. Some possibilities of the factors modulating the activity of these enzymes are commented upon. The multiphysiological action of adenosine could be mediated by several actions: (i) by interaction with extracellular and intracellular receptors and (ii) through its metabolism modulating the methylation pathway, possibly inducing physiological lipoperoxidation, or participating in the energetic homeostasis of the cell. The physiological meaning of the circadian variations of adenosine and its metabolism was focused on: maintenance of the energetic homeostasis of the tissues, modulation of membrane structure and function, regulation of fasting and feeding metabolic pattern, and its participation in the sleep-wake cycle. From

  10. ATP catabolism by tissue nonspecific alkaline phosphatase contributes to development of ARDS in influenza-infected mice.

    Science.gov (United States)

    Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C

    2018-01-01

    Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.

  11. Post-exposure vaccination with MP-12 lacking NSs protects mice against lethal Rift Valley fever virus challenge.

    Science.gov (United States)

    Gowen, Brian B; Bailey, Kevin W; Scharton, Dionna; Vest, Zachery; Westover, Jonna B; Skirpstunas, Ramona; Ikegami, Tetsuro

    2013-05-01

    Rift Valley fever virus (RVFV) causes severe disease in humans and livestock. There are currently no approved antivirals or vaccines for the treatment or prevention of RVF disease in humans. A major virulence factor of RVFV is the NSs protein, which inhibits host transcription including the interferon (IFN)-β gene and promotes the degradation of dsRNA-dependent protein kinase, PKR. We analyzed the efficacy of the live-attenuated MP-12 vaccine strain and MP-12 variants that lack the NSs protein as post-exposure vaccinations. Although parental MP-12 failed to elicit a protective effect in mice challenged with wild-type (wt) RVFV by the intranasal route, significant protection was demonstrated by vaccination with MP-12 strains lacking NSs when they were administered at 20-30 min post-exposure. Viremia and virus replication in liver, spleen and brain were also inhibited by post-exposure vaccination with MP-12 lacking NSs. The protective effect was mostly lost when vaccination was delayed 6 or 24 h after intranasal RVFV challenge. When mice were challenged subcutaneously, efficacy of MP-12 lacking NSs was diminished, most likely due to more rapid dissemination of wt RVFV. Our findings suggest that post-exposure vaccination with MP-12 lacking NSs may be developed as a novel post-exposure treatment to prevent RVF. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Mice lacking caspase-2 are protected from behavioral changes, but not pathology, in the YAC128 model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Bissada Nagat

    2011-08-01

    Full Text Available Abstract Background Huntington Disease (HD is a neurodegenerative disorder in which caspase activation and cleavage of substrates, including the huntingtin protein, has been invoked as a pathological mechanism. Specific changes in caspase-2 (casp2 activity have been suggested to contribute to the pathogenesis of HD, however unique casp2 cleavage substrates have remained elusive. We thus utilized mice completely lacking casp2 (casp2-/- to examine the role played by casp2 in the progression of HD. This 'substrate agnostic' approach allows us to query the effect of casp2 on HD progression without pre-defining proteolytic substrates of interest. Results YAC128 HD model mice lacking casp2 show protection from well-validated motor and cognitive features of HD, including performance on rotarod, swimming T-maze, pre-pulse inhibition, spontaneous alternation and locomotor tasks. However, the specific pathological features of the YAC128 mice including striatal volume loss and testicular degeneration are unaltered in mice lacking casp2. The application of high-resolution magnetic resonance imaging (MRI techniques validates specific neuropathology in the YAC128 mice that is not altered by ablation of casp2. Conclusions The rescue of behavioral phenotypes in the absence of pathological improvement suggests that different pathways may be operative in the dysfunction of neural circuitry in HD leading to behavioral changes compared to the processes leading to cell death and volume loss. Inhibition of caspase-2 activity may be associated with symptomatic improvement in HD.

  13. Entrainment and phase-shifting by centrifugation abolished in mice lacking functional vestibular input

    Science.gov (United States)

    Fuller, Charles; Ringgold, Kristyn

    The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.

  14. Remodeling of the Cervix and Parturition in Mice Lacking the Progesterone Receptor B Isoform1

    Science.gov (United States)

    Yellon, Steven M.; Oshiro, Bryan T.; Chhaya, Tejas Y.; Lechuga, Thomas J.; Dias, Rejane M.; Burns, Alexandra E.; Force, Lindsey; Apostolakis, Ede M.

    2011-01-01

    Withdrawal of progestational support for pregnancy is part of the final common pathways for parturition, but the role of nuclear progesterone receptor (PGR) isoforms in this process is not known. To determine if the PGR-B isoform participates in cervical remodeling at term, cervices were obtained from mice lacking PGR-B (PGR-BKO) and from wild-type (WT) controls before or after birth. PGR-BKO mice gave birth to viable pups at the same time as WT controls during the early morning of Day 19 postbreeding. Morphological analyses indicated that by the day before birth, cervices from PGR-BKO and WT mice had increased in size, with fewer cell nuclei/area as well as diminished collagen content and structure, as evidenced by optical density of picrosirius red-stained sections, compared to cervices from nonpregnant mice. Moreover, increased numbers of resident macrophages, but not neutrophils, were found in the prepartum cervix of PGR-BKO compared to nonpregnant mice, parallel to findings in WT mice. These results suggest that PGR-B does not contribute to the growth or degradation of the extracellular matrix or proinflammatory processes associated with recruitment of macrophages in the cervix leading up to birth. Rather, other receptors may contribute to the progesterone-dependent mechanism that promotes remodeling of the cervix during pregnancy and in the proinflammatory process associated with ripening before parturition. PMID:21613631

  15. Adenosine triphosphate hydrolysis reduces neutrophil infiltration and necrosis in partial-thickness scald burns in mice.

    Science.gov (United States)

    Bayliss, Jill; Delarosa, Sara; Wu, Jianfeng; Peterson, Jonathan R; Eboda, Oluwatobi N; Su, Grace L; Hemmila, Mark; Krebsbach, Paul H; Cederna, Paul S; Wang, Stewart C; Xi, Chuanwu; Levi, Benjamin

    2014-01-01

    Extracellular adenosine triphosphate (ATP), present in thermally injured tissue, modulates the inflammatory response and causes significant tissue damage. The authors hypothesize that neutrophil infiltration and ensuing tissue necrosis would be mitigated by removing ATP-dependent signaling at the burn site. Mice were subjected to 30% TBSA partial-thickness scald burn by dorsal skin immersion in a water bath at 60 or 20°C (nonburn controls). In the treatment arm, an ATP hydrolyzing enzyme, apyrase, was applied directly to the site immediately after injury. Skin was harvested after 24 hours and 5 days for hematoxylin and eosin stain, elastase, and Ki-67 staining. Tumor necrosis factor (TNF)-α and interferon (IFN)-β expression were measured through quantitative real-time polymerase chain reaction. At 24 hours, the amount of neutrophil infiltration was different between the burn and burn + apyrase groups (P burn group at 24 hours and 5 days. TNF-α and IFN-β expression at 24 hours in the apyrase group was lower than in the burn group (P burn site allays the neutrophil response to thermal injury and reduces tissue necrosis. This decrease in inflammation and tissue necrosis is at least partially because of TNF-α and IFN-β signaling. Apyrase could be used as topical inflammatory regulators to quell the injury caused by inflammation.

  16. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  17. Lack of mitochondrial trifunctional protein in mice causes neonatal hypoglycemia and sudden death

    OpenAIRE

    Ibdah, Jamal A.; Paul, Hyacinth; Zhao, Yiwen; Binford, Scott; Salleng, Ken; Cline, Mark; Matern, Dietrich; Bennett, Michael J.; Rinaldo, Piero; Strauss, Arnold W.

    2001-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer of four α and four β subunits that catalyzes the final three steps of mitochondrial long chain fatty acid β-oxidation. Human MTP deficiency causes Reye-like syndrome, cardiomyopathy, or sudden unexpected death. We used gene targeting to generate an MTP α subunit null allele and to produce mice that lack MTP α and β subunits. The Mtpa–/– fetuses accumulate long chain fatty acid metabolites and have low birth weight compared with the...

  18. Attenuated traumatic axonal injury and improved functional outcome after traumatic brain injury in mice lacking Sarm1.

    Science.gov (United States)

    Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H

    2016-04-01

    Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. A high-fat diet induces bone loss in mice lacking the Alox5 gene.

    Science.gov (United States)

    Le, Phuong; Kawai, Masanobu; Bornstein, Sheila; DeMambro, Victoria E; Horowitz, Mark C; Rosen, Clifford J

    2012-01-01

    5-Lipoxygenase catalyzes leukotriene generation from arachidonic acid. The gene that encodes 5-lipoxygenase, Alox5, has been identified in genome-wide association and mouse Quantitative Trait Locus studies as a candidate gene for obesity and low bone mass. Thus, we tested the hypothesis that Alox5(-/-) mice would exhibit metabolic and skeletal changes when challenged by a high-fat diet (HFD). On a regular diet, Alox5(-/-) mice did not differ in total body weight, percent fat mass, or bone mineral density compared with wild-type (WT) controls (P < 0.05). However, when placed on a HFD, Alox5(-/-) gained more fat mass and lost greater areal bone mass vs. WT (P < 0.05). Microarchitectural analyses revealed that on a HFD, WT showed increases in cortical area (P < 0.01) and trabecular thickness (P < 0.01), whereas Alox5(-/-) showed no change in cortical parameters but a decrease in trabecular number (P < 0.05) and bone volume fraction compared with WT controls (P < 0.05). By histomorphometry, a HFD did not change bone formation rates of either strain but produced an increase in osteoclast number per bone perimeter in Alox5(-/-) mice (P < 0.03). In vitro, osteoclastogenesis of marrow stromal cells was enhanced in mutant but not WT mice fed a HFD. Gene expression for Rankl, Pparg, and Cox-2 was greater in the femur of Alox5(-/-) than WT mice on a HFD (P < 0.01), but these increases were suppressed in the Alox5(-/-) mice after 8 wk of treatment with celecoxib, a cyclooxygenase-2 inhibitor. In sum, there is a strong gene by environmental interaction for bone mass when mice lacking the Alox5 gene are fed a HFD.

  20. Minor cell-death defects but reduced tumor latency in mice lacking the BH3-only proteins Bad and Bmf.

    Science.gov (United States)

    Baumgartner, F; Woess, C; Pedit, V; Tzankov, A; Labi, V; Villunger, A

    2013-01-31

    Proapoptotic Bcl-2 family members of the Bcl-2 homology (BH)3-only subgroup are critical for the establishment and maintenance of tissue homeostasis and can mediate apoptotic cell death in response to developmental cues or exogenously induced forms of cell stress. On the basis of the biochemical experiments as well as genetic studies in mice, the BH3-only proteins Bad and Bmf have been implicated in different proapoptotic events such as those triggered by glucose- or trophic factor-deprivation, glucocorticoids, or histone deacetylase inhibition, as well as suppression of B-cell lymphomagenesis upon aberrant expression of c-Myc. To address possible redundancies in cell death regulation and tumor suppression, we generated compound mutant mice lacking both genes. Our studies revealed lack of redundancy in most paradigms of lymphocyte apoptosis tested in tissue culture. Only spontaneous cell death of thymocytes kept in low glucose or that of pre-B cells deprived of cytokines was significantly delayed when both genes were lacking. Of note, despite these minor apoptosis defects we observed compromised lymphocyte homeostasis in vivo that affected mainly the B-cell lineage. Long-term follow-up revealed significantly reduced latency to spontaneous tumor formation in aged mice when both genes were lacking. Together our study suggests that Bad and Bmf co-regulate lymphocyte homeostasis and limit spontaneous transformation by mechanisms that may not exclusively be linked to the induction of lymphocyte apoptosis.

  1. Characterization of cardiac adenosine receptors using N6-phenyladenosines and a new radioligand, [125I]-(m-aminophenyl)adenosine

    International Nuclear Information System (INIS)

    Kwatra, M.M.; Hosey, M.M.; Green, R.

    1986-01-01

    The chick heart contains adenosine receptors with characteristics similar to the R adenosine receptors found in the CNS. They have synthesized several N 6 -phenyladenosines and tested their potencies for inhibiting the binding of [ 125 I](p-aminobenzyl)adenosine {[ 125 I]ABA) to chick heart membranes. Of the 12 compounds tested, N 6 -(p-aminobenzyl) adenosine (ABA) was the least potent (IC 50 ∼ 40 nM) while N 6 -(m-nitrophenyl)adenosine(MNPA) was the most potent (IC 50 ∼ 1 nM). The IC 50 of N 6 -(m-aminophenyl)adenosine(MAPA) was greater than that of N 6 -phenyladenosine(PA) while that of MNPA was less than that of PA. The effects of these electron-releasing (-NH 2 ) and electron-withdrawing (-NO 2 ) groups along with data obtained with other phenyl-substituted N 6 -phenyladenosines suggest that the electron density of the N 6 -nitrogen may affect the affinities of these compounds for the cardiac adenosine receptor. MAPA can be iodinated to produce a new ligand, [ 125 I]MAPA. This iodination, like that of ABA, increases the affinity of the compound and produces a ligand with good affinity and low nonspecific binding suitable for studies on tissues with low concentrations of adenosine receptors

  2. Increased brain damage after ischaemic stroke in mice lacking the chemokine receptor CCR5

    Science.gov (United States)

    Sorce, S; Bonnefont, J; Julien, S; Marq-Lin, N; Rodriguez, I; Dubois-Dauphin, M; Krause, KH

    2010-01-01

    Background and purpose: The chemokine receptor CCR5 is well known for its function in immune cells; however, it is also expressed in the brain, where its specific role remains to be elucidated. Because genetic factors may influence the risk of developing cerebral ischaemia or affect its clinical outcome, we have analysed the role of CCR5 in experimental stroke. Experimental approach: Permanent cerebral ischaemia was performed by occlusion of the middle cerebral artery in wild-type and CCR5-deficient mice. Locomotor behaviour, infarct size and histochemical alterations were analysed at different time points after occlusion. Key results: The cerebral vasculature was comparable in wild-type and CCR5-deficient mice. However, the size of the infarct and the motor deficits after occlusion were markedly increased in CCR5-deficient mice as compared with wild type. No differences between wild-type and CCR5-deficient mice were elicited by occlusion with respect to the morphology and abundance of astrocytes and microglia. Seven days after occlusion the majority of CCR5-deficient mice displayed neutrophil invasion in the infarct region, which was not observed in wild type. As compared with wild type, the infarct regions of CCR5-deficient mice were characterized by increased neuronal death. Conclusions and implications: Lack of CCR5 increased the severity of brain injury following occlusion of the middle cerebral artery. This is of particular interest with respect to the relatively frequent occurrence of CCR5 deficiency in the human population (1–2% of the Caucasian population) and the advent of CCR5 inhibitors as novel drugs. PMID:20423342

  3. Crystal structures of T. b. rhodesiense adenosine kinase complexed with inhibitor and activator: implications for catalysis and hyperactivation.

    Directory of Open Access Journals (Sweden)

    Sabine Kuettel

    2011-05-01

    Full Text Available BACKGROUND: The essential purine salvage pathway of Trypanosoma brucei bears interesting catalytic enzymes for chemotherapeutic intervention of Human African Trypanosomiasis. Unlike mammalian cells, trypanosomes lack de novo purine synthesis and completely rely on salvage from their hosts. One of the key enzymes is adenosine kinase which catalyzes the phosphorylation of ingested adenosine to form adenosine monophosphate (AMP utilizing adenosine triphosphate (ATP as the preferred phosphoryl donor. METHODS AND FINDINGS: Here, we present the first structures of Trypanosoma brucei rhodesiense adenosine kinase (TbrAK: the structure of TbrAK in complex with the bisubstrate inhibitor P(1,P(5-di(adenosine-5'-pentaphosphate (AP5A at 1.55 Å, and TbrAK complexed with the recently discovered activator 4-[5-(4-phenoxyphenyl-2H-pyrazol-3-yl]morpholine (compound 1 at 2.8 Å resolution. CONCLUSIONS: The structural details and their comparison give new insights into substrate and activator binding to TbrAK at the molecular level. Further structure-activity relationship analyses of a series of derivatives of compound 1 support the observed binding mode of the activator and provide a possible mechanism of action with respect to their activating effect towards TbrAK.

  4. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression

    Directory of Open Access Journals (Sweden)

    Laura López-Cruz

    2018-06-01

    Full Text Available Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.

  5. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors.

    Science.gov (United States)

    Jhang, Cian-Ling; Huang, Tzyy-Nan; Hsueh, Yi-Ping; Liao, Wenlin

    2017-10-15

    Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Adenosine A1 receptors (A1Rs) play a critical role in osteoclast formation and function

    OpenAIRE

    Kara, Firas M.; Chitu, Violeta; Sloane, Jennifer; Axelrod, Matthew; Fredholm, Bertil B.; Stanley, E. Richard; Cronstein, Bruce N.

    2010-01-01

    Adenosine regulates a wide variety of physiological processes via interaction with one or more G-protein-coupled receptors (A1R, A2AR, A2BR, and A3R). Because A1R occupancy promotes fusion of human monocytes to form giant cells in vitro, we determined whether A1R occupancy similarly promotes osteoclast function and formation. Bone marrow cells (BMCs) were harvested from C57Bl/6 female mice or A1R-knockout mice and their wild-type (WT) littermates and differentiated into osteoclasts in the pre...

  7. Spdef null mice lack conjunctival goblet cells and provide a model of dry eye.

    Science.gov (United States)

    Marko, Christina K; Menon, Balaraj B; Chen, Gang; Whitsett, Jeffrey A; Clevers, Hans; Gipson, Ilene K

    2013-07-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef(-/-) mice, we determined that Spdef is required for conjunctival goblet cell differentiation and that Spdef(-/-) mice, which lack conjunctival goblet cells, have significantly increased corneal surface fluorescein staining and tear volume, a phenotype consistent with dry eye. Microarray analysis of conjunctival epithelium in Spdef(-/-) mice revealed down-regulation of goblet cell-specific genes (Muc5ac, Tff1, Gcnt3). Up-regulated genes included epithelial cell differentiation/keratinization genes (Sprr2h, Tgm1) and proinflammatory genes (Il1-α, Il-1β, Tnf-α), all of which are up-regulated in dry eye. Interestingly, four Wnt pathway genes were down-regulated. SPDEF expression was significantly decreased in the conjunctival epithelium of Sjögren syndrome patients with dry eye and decreased goblet cell mucin expression. These data demonstrate that Spdef is required for conjunctival goblet cell differentiation and down-regulation of SPDEF may play a role in human dry eye with goblet cell loss. Spdef(-/-) mice have an ocular surface phenotype similar to that in moderate dry eye, providing a new, more convenient model for the disease. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  9. AMP is an adenosine A1 receptor agonist.

    Science.gov (United States)

    Rittiner, Joseph E; Korboukh, Ilia; Hull-Ryde, Emily A; Jin, Jian; Janzen, William P; Frye, Stephen V; Zylka, Mark J

    2012-02-17

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5'-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5'-monophosphonate, ACP) directly activated the adenosine A(1) receptor (A(1)R). In contrast, AMP only activated the adenosine A(2B) receptor (A(2B)R) after hydrolysis to adenosine by ecto-5'-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A(1)R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A(1)R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A(1)R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A(1)R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine.

  10. Lethal Cardiomyopathy in Mice Lacking Transferrin Receptor in the Heart

    Directory of Open Access Journals (Sweden)

    Wenjing Xu

    2015-10-01

    Full Text Available Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1 might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.

  11. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Szu-Ying; Shih, Ya-Chen [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China); Center for Stem Cell Research, Kaohsiung Medical University, Taiwan (China)

    2015-02-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  12. Tween 20-stabilized gold nanoparticles combined with adenosine triphosphate-BODIPY conjugates for the fluorescence detection of adenosine with more than 1000-fold selectivity

    International Nuclear Information System (INIS)

    Hung, Szu-Ying; Shih, Ya-Chen; Tseng, Wei-Lung

    2015-01-01

    Graphical abstract: A simple, enzyme-free, label-free, sensitive and selective system was developed for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles as an efficient quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate and as a recognition element for adenosine. - Highlights: • The proposed method can detect adenosine with more than 1000-fold selectivity. • The analysis of adenosine is rapid (∼6 min) using the proposed method. • This method provided better sensitivity for adenosine as compared to aptamer-based sensors. • This method can be applied for the determination of adenosine in urine. - Abstract: This study describes the development of a simple, enzyme-free, label-free, sensitive, and selective system for detecting adenosine based on the use of Tween 20-stabilized gold nanoparticles (Tween 20-AuNPs) as an efficient fluorescence quencher for boron dipyrromethene-conjugated adenosine 5′-triphosphate (BODIPY-ATP) and as a recognition element for adenosine. BODIPY-ATP can interact with Tween 20-AuNPs through the coordination between the adenine group of BODIPY-ATP and Au atoms on the NP surface, thereby causing the fluorescence quenching of BODIPY-ATP through the nanometal surface energy transfer (NSET) effect. When adenosine attaches to the NP surface, the attached adenosine exhibits additional electrostatic attraction to BODIPY-ATP. As a result, the presence of adenosine enhances the efficiency of AuNPs in fluorescence quenching of BODIPY-ATP. The AuNP-induced fluorescence quenching of BODIPY-ATP progressively increased with an increase in the concentration of adenosine; the detection limit at a signal-to-noise ratio of 3 for adenosine was determined to be 60 nM. The selectivity of the proposed system was more than 1000-fold for adenosine over any adenosine analogs and other nucleotides. The proposed system combined with a phenylboronic acid-containing column was successfully applied to the

  13. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    Science.gov (United States)

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  14. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum.

    Science.gov (United States)

    Górska, A M; Gołembiowska, K

    2015-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.

  15. AMP Is an Adenosine A1 Receptor Agonist*

    Science.gov (United States)

    Rittiner, Joseph E.; Korboukh, Ilia; Hull-Ryde, Emily A.; Jin, Jian; Janzen, William P.; Frye, Stephen V.; Zylka, Mark J.

    2012-01-01

    Numerous receptors for ATP, ADP, and adenosine exist; however, it is currently unknown whether a receptor for the related nucleotide adenosine 5′-monophosphate (AMP) exists. Using a novel cell-based assay to visualize adenosine receptor activation in real time, we found that AMP and a non-hydrolyzable AMP analog (deoxyadenosine 5′-monophosphonate, ACP) directly activated the adenosine A1 receptor (A1R). In contrast, AMP only activated the adenosine A2B receptor (A2BR) after hydrolysis to adenosine by ecto-5′-nucleotidase (NT5E, CD73) or prostatic acid phosphatase (PAP, ACPP). Adenosine and AMP were equipotent human A1R agonists in our real-time assay and in a cAMP accumulation assay. ACP also depressed cAMP levels in mouse cortical neurons through activation of endogenous A1R. Non-selective purinergic receptor antagonists (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid and suramin) did not block adenosine- or AMP-evoked activation. Moreover, mutation of His-251 in the human A1R ligand binding pocket reduced AMP potency without affecting adenosine potency. In contrast, mutation of a different binding pocket residue (His-278) eliminated responses to AMP and to adenosine. Taken together, our study indicates that the physiologically relevant nucleotide AMP is a full agonist of A1R. In addition, our study suggests that some of the physiological effects of AMP may be direct, and not indirect through ectonucleotidases that hydrolyze this nucleotide to adenosine. PMID:22215671

  16. CD73 Is Critical for the Resolution of Murine Colonic Inflammation

    Directory of Open Access Journals (Sweden)

    Margaret S. Bynoe

    2012-01-01

    Full Text Available CD73 is a glycosyl-phosphatidylinositol-(GPI- linked membrane protein that catalyzes the extracellular dephosphorylation of adenosine monophosphate (AMP to adenosine. Adenosine is a negative regulator of inflammation and prevents excessive cellular damage. We investigated the role of extracellular adenosine in the intestinal mucosa during the development of Dextran-Sulfate-Sodium-(DSS-salt-induced colitis in mice that lack CD73 (CD73−/− and are unable to synthesize extracellular adenosine. We have found that, compared to wild-type (WT mice, CD73−/− mice are highly susceptible to DSS-induced colitis. CD73−/− mice exhibit pronounced weight loss, slower weight recovery, an increase in gut permeability, a decrease in expression of tight junctional adhesion molecules, as well as unresolved inflammation following the removal of DSS. Moreover, colonic epithelia in CD73−/− mice exhibited increased TLR9 expression, high levels of IL-1β and TNF-α, and constitutive activation of NF-κB. We conclude that CD73 expression in the colon is critical for regulating the magnitude and the resolution of colonic immune responses.

  17. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  18. Anticonvulsant activity of B2, an adenosine analog, on chemical convulsant-induced seizures.

    Directory of Open Access Journals (Sweden)

    Min Li

    Full Text Available Epilepsy is a chronic neurological disorder characterized by recurrent seizures. However, approximately one-third of epilepsy patients still suffer from uncontrolled seizures. Effective treatments for epilepsy are yet to be developed. N (6-(3-methoxyl-4-hydroxybenzyl adenine riboside (B2 is a N(6-substitued adenosine analog. Here we describe an investigation of the effects and mechanisms of B2 on chemical convulsant-induced seizures. Seizures were induced in mice by administration of 4-aminopyridine (4-AP, pentylenetetrazol (PTZ, picrotoxin, kainite acid (KA, or strychnine. B2 has a dose-related anticonvulsant effect in these chemical-induced seizure models. The protective effects of B2 include increased latency of seizure onset, decreased seizure occurrence, shorter seizure duration and reduced mortality rate. Radioligand binding and cAMP accumulation assays indicated that B2 might be a functional ligand for both adenosine A1 and A2A receptors. Furthermore, DPCPX, a selective A1 receptor antagonist, but not SCH58261, a selective A2A receptor antagonist, blocked the anticonvulsant effect of B2 on PTZ-induced seizure. c-Fos is a cellular marker for neuronal activity. Immunohistochemical and western blot analyses indicated that B2 significantly reversed PTZ-induced c-Fos expression in the hippocampus. Together, these results indicate that B2 has significant anticonvulsant effects. The anticonvulsant effects of B2 may be attributed to adenosine A1 receptor activation and reduced neuronal excitability in the hippocampus. These observations also support that the use of adenosine receptor agonist may be a promising approach for the treatment of epilepsy.

  19. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase.

    Science.gov (United States)

    Gracia, Eduard; Pérez-Capote, Kamil; Moreno, Estefanía; Barkešová, Jana; Mallol, Josefa; Lluís, Carme; Franco, Rafael; Cortés, Antoni; Casadó, Vicent; Canela, Enric I

    2011-05-01

    A2ARs (adenosine A2A receptors) are highly enriched in the striatum, which is the main motor control CNS (central nervous system) area. BRET (bioluminescence resonance energy transfer) assays showed that A2AR homomers may act as cell-surface ADA (adenosine deaminase; EC 3.5.4.4)-binding proteins. ADA binding affected the quaternary structure of A2ARs present on the cell surface. ADA binding to adenosine A2ARs increased both agonist and antagonist affinity on ligand binding to striatal membranes where these proteins are co-expressed. ADA also increased receptor-mediated ERK1/2 (extracellular-signal-regulated kinase 1/2) phosphorylation. Collectively, the results of the present study show that ADA, apart from regulating the concentration of extracellular adenosine, may behave as an allosteric modulator that markedly enhances ligand affinity and receptor function. This powerful regulation may have implications for the physiology and pharmacology of neuronal A2ARs.

  20. Measurement of plasma adenosine concentration: methodological and physiological considerations

    International Nuclear Information System (INIS)

    Gewirtz, H.; Brown, P.; Most, A.S.

    1987-01-01

    This study tested the hypothesis that measurements of plasma adenosine concentration made on samples of blood obtained in dipyridamole and EHNA (i.e., stopping solution) may be falsely elevated as a result of ongoing in vitro production and accumulation of adenosine during sample processing. Studies were performed with samples of anticoagulated blood obtained from anesthesized domestic swine. Adenosine concentration of ultra filtrated plasma was determined by HPLC. The following parameters were evaluated: (i) rate of clearance of [ 3 H]adenosine added to plasma, (ii) endogenous adenosine concentration of matched blood samples obtained in stopping solution alone, stopping solution plus EDTA, and perchloric acid (PCA), (iii) plasma and erythrocyte endogenous adenosine concentration in nonhemolyzed samples, and (iv) plasma adenosine concentration of samples hemolyzed in the presence of stopping solution alone or stopping solution plus EDTA. We observed that (i) greater than or equal to 95% of [ 3 H]adenosine added to plasma is removed from it by formed elements of the blood in less than 20 s, (ii) plasma adenosine concentration of samples obtained in stopping solution alone is generally 10-fold greater than that of matched samples obtained in stopping solution plus EDTA, (iii) deliberate mechanical hemolysis of blood samples obtained in stopping solution alone resulted in substantial augmentation of plasma adenosine levels in comparison with matched nonhemolyzed specimens--addition of EDTA to stopping solution prevented this, and (iv) adenosine content of blood samples obtained in PCA agreed closely with the sum of plasma and erythrocyte adenosine content of samples obtained in stopping solution plus EDTA

  1. The impact of adenosine pharmacologic stress combined with low-level exercise in patients undergoing myocardial perfusion imaging (BIWAKO adenosine-Ex trial)

    International Nuclear Information System (INIS)

    Monzen, Hajime; Hara, Masatake; Hirata, Makoto

    2011-01-01

    The combination of adenosine infusion with low-level exercise has become a common approach for inducing stress during stress myocardial perfusion imaging (MPI). We investigated stress MPI performed by combined low-level exercise and adenosine infusion. This combined protocol can decrease adverse reactions and reduce the effect of scattered rays from the liver. Subjects were clinically referred for a 53-min rest-stress Tc-99m Sestamibi MPI procedure using BIWAKO PROTOCOL. Ninety-eight patients (44.5%) underwent adenosine infusion with ergometer exercise testing and 122 patients (55.5%) underwent adenosine infusion without exercise testing. We evaluated the liver/heart (L/H) uptake ratio, background activity in the upper mediastinum, and adverse reactions. The L/H ratio and background activity were lower in the adenosine-exercise group than in the adenosine-non-exercise group (1.8±0.54 vs. 2.1±0.62, P<0.0056; 43.1±12.2 vs. 61.5±15.4, P<0.0001). The adenosine-exercise group had fewer adverse reactions than the adenosine-non-exercise group (11.2 vs. 19.7%). All of the adverse reactions were minor, with the exception of severe back pain in one case. The incidence of adverse reactions in our study was lower than that in previous studies for unknown reason. Adenosine infusion in combination with low-level exercise seems to result in higher-quality images and fewer adverse reactions than adenosine infusion without exercise. The combined protocol decreases adverse reactions and improves the quality of myocardial perfusion images by decreasing background activity. (author)

  2. Time-place learning and memory persist in mice lacking functional Per1 and Per2 clock genes.

    Science.gov (United States)

    Mulder, C; Van Der Zee, E A; Hut, R A; Gerkema, M P

    2013-12-01

    With time-place learning, animals link a stimulus with the location and the time of day. This ability may optimize resource localization and predator avoidance in daily changing environments. Time-place learning is a suitable task to study the interaction of the circadian system and memory. Previously, we showed that time-place learning in mice depends on the circadian system and Cry1 and/or Cry2 clock genes. We questioned whether time-place learning is Cry specific or also depends on other core molecular clock genes. Here, we show that Per1/Per2 double mutant mice, despite their arrhythmic phenotype, acquire time-place learning similar to wild-type mice. As well as an established role in circadian rhythms, Per genes have also been implicated in the formation and storage of memory. We found no deficiencies in short-term spatial working memory in Per mutant mice compared to wild-type mice. Moreover, both Per mutant and wild-type mice showed similar long-term memory for contextual features of a paradigm (a mild foot shock), measured in trained mice after a 2-month nontesting interval. In contrast, time-place associations were lost in both wild-type and mutant mice after these 2 months, suggesting a lack of maintained long-term memory storage for this type of information. Taken together, Cry-dependent time-place learning does not require Per genes, and Per mutant mice showed no PER-specific short-term or long-term memory deficiencies. These results limit the functional role of Per clock genes in the circadian regulation of time-place learning and memory.

  3. Adenosine: a putative mediator of bronchoconstriction in asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.S.

    1987-01-01

    The protective effect of a muscarinic cholinergic antagonists, ipratropium bromide (IB) from inhaled adenosine- and methacholine-induced bronchoconstriction in asthma was studied. Inhaled IB protected from methacholine- but not adenosine-induced bronchoconstriction. Parasympathetically mediated bronchoconstriction is therefore unlikely to account for adenosine's airway effect in asthma. The capacity of theophylline, a bronchodilator and a competitive antagonist of adenosine at its cell surface receptors, to protect asthmatic subjects from adenosine- and histamine-induced bronchoconstriction was determined. Asthmatic airways are infiltrated with inflammatory cells. Human leucocytes prelabeled with (/sup 3/H)-adenine when activated with the calcium ionophore A23187 released labelled hypoxanthine, inosine and adenosine which was associated with a dose-related release of histamine. The chemotactic peptide f-MLP while inducing histamine release had an inconstant effect on release of label. In four of five experiments f-MLP produced a transient early increase in label release but in the remaining experiment no significant release was observed. Anti-human IgE failed to induce significant label release despite releasing histamine. Activated leucocytes are therefore a potential source of adenosine in asthma.

  4. Effects of ethanolic extract and naphthoquinones obtained from the bulbs of Cipura paludosa on short-term and long-term memory: involvement of adenosine A₁ and A₂A receptors.

    Science.gov (United States)

    Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D

    2013-04-01

    Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  5. Development of a Small Molecule P2X7R Antagonist as a Treatment for Acute SCI

    Science.gov (United States)

    2012-10-01

    increases during seizures, and it has been proposed that status epilepticus is a result of loss of adenosine signaling (4). Conversely, mice lacking A1...adenosine regulates excitability in the in vitro hippocampus. Epilepsia 21:541–548. 4. Young D, Dragunow M (1994) Status epilepticus may be caused by

  6. A High Affinity Adenosine Kinase from Anopheles gambiae

    Science.gov (United States)

    Cassera, María B.; Ho, Meng-Chiao; Merino, Emilio F.; Burgos, Emmanuel S.; Rinaldo-Matthis, Agnes; Almo, Steven C.; Schramm, Vern L.

    2011-01-01

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (Km 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap4A (2.0 Å resolution) reveals interactions for adenosine, ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg2+ ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layered α/β/α sandwich, and a small cap domain in contact with adenosine. The specificity and tight-binding for adenosine arises from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168 and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64 and Asn68 and the ribosyl 2′- and 3′-hydroxyl groups. The structure is more similar to human adenosine kinase (48% identity) than to AK from Toxoplasma gondii (31% identity). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role of this enzyme to maintain the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects. PMID:21247194

  7. Mechanism-specific effects of adenosine on ventricular tachycardia.

    Science.gov (United States)

    Lerman, Bruce B; Ip, James E; Shah, Bindi K; Thomas, George; Liu, Christopher F; Ciaccio, Edward J; Wit, Andrew L; Cheung, Jim W; Markowitz, Steven M

    2014-12-01

    There is no universally accepted method by which to diagnose clinical ventricular tachycardia (VT) due to cAMP-mediated triggered activity. Based on cellular and clinical data, adenosine termination of VT is thought to be consistent with a diagnosis of triggered activity. However, a major gap in evidence mitigates the validity of this proposal, namely, defining the specificity of adenosine response in well-delineated reentrant VT circuits. To this end, we systematically studied the effects of adenosine in a model of canine reentrant VT and in human reentrant VT, confirmed by 3-dimensional, pace- and substrate mapping. Adenosine (12 mg [IQR 12-24]) failed to terminate VT in 31 of 31 patients with reentrant VT due to structural heart disease, and had no effect on VT cycle length (age, 67 years [IQR 53-74]); ejection fraction, 35% [IQR 20-55]). In contrast, adenosine terminated VT in 45 of 50 (90%) patients with sustained focal right or left outflow tract tachycardia. The sensitivity of adenosine for identifying VT due to triggered activity was 90% (95% CI, 0.78-0.97) and its specificity was 100% (95% CI, 0.89-1.0). Additionally, reentrant circuits were mapped in the epicardial border zone of 4-day-old infarcts in mongrel dogs. Adenosine (300-400 μg/kg) did not terminate sustained VT or have any effect on VT cycle length. These data support the concept that adenosine's effects on ventricular myocardium are mechanism specific, such that termination of VT in response to adenosine is diagnostic of cAMP-mediated triggered activity. © 2014 Wiley Periodicals, Inc.

  8. Good Laboratory Practice Preclinical Safety Studies for GSK2696273 (MLV Vector-Based Ex Vivo Gene Therapy for Adenosine Deaminase Deficiency Severe Combined Immunodeficiency) in NSG Mice.

    Science.gov (United States)

    Carriglio, Nicola; Klapwijk, Jan; Hernandez, Raisa Jofra; Vezzoli, Michela; Chanut, Franck; Lowe, Rhiannon; Draghici, Elena; Nord, Melanie; Albertini, Paola; Cristofori, Patrizia; Richards, Jane; Staton, Hazel; Appleby, Jonathan; Aiuti, Alessandro; Sauer, Aisha V

    2017-03-01

    GSK2696273 (autologous CD34+ cells transduced with retroviral vector that encodes for the human adenosine deaminase [ADA] enzyme) is a gamma-retroviral ex vivo gene therapy of bone marrow-derived CD34+ cells for the treatment of adenosine deaminase deficiency severe combined immunodeficiency (ADA-SCID). ADA-SCID is a severe monogenic disease characterized by immunologic and nonimmunologic symptoms. Bone-marrow transplant from a matched related donor is the treatment of choice, but it is available for only a small proportion of patients. Ex vivo gene therapy of patient bone-marrow CD34+ cells is an alternative treatment. In order to prepare for a marketing authorization application in the European Union, preclinical safety studies in mice were requested by the European Medicines Agency (EMA). A pilot study and a main biodistribution study were performed according to Good Laboratory Practice (GLP) at the San Raffaele Telethon Institute for Gene Therapy test facility. In the main study, human umbilical cord blood (UCB)-derived CD34+ cells were transduced with gamma-retroviral vector used in the production of GSK2696273. Groups of 10 male and 10 female NOD-SCID gamma (NSG) mice were injected intravenously with a single dose of transduced- or mock-transduced UCB CD34+ cells, and they were observed for 4 months. Engraftment and multilineage differentiation of blood cells was observed in the majority of animals in both groups. There was no significant difference in the level of chimerism between the two groups. In the gene therapy group, vector was detectable in lymphohemopoietic and nonlymphohemopoietic tissues, consistent with the presence of gene-modified human hematopoietic donor cells. Given the absence of relevant safety concerns in the data, the nonclinical studies and the clinical experience with GSK2696273 supported a successful application for market authorization in the European Union for the treatment of ADA-SCID patients, for whom no suitable human leukocyte

  9. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.

    Science.gov (United States)

    Day, Yuan-Ji; Huang, Liping; Ye, Hong; Li, Li; Linden, Joel; Okusa, Mark D

    2006-03-01

    A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.

  10. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    Science.gov (United States)

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  11. Mice lacking major brain gangliosides develop parkinsonism.

    Science.gov (United States)

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  12. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    International Nuclear Information System (INIS)

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-01-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, [ 3 H]NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine

  13. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic

  14. Role of adenosine receptors in caffeine tolerance

    International Nuclear Information System (INIS)

    Holtzman, S.G.; Mante, S.; Minneman, K.P.

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity

  15. Role of adenosine receptors in caffeine tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Holtzman, S.G.; Mante, S.; Minneman, K.P. (Emory Univ. School of Medicine, Atlanta, GA (USA))

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  16. Sociability Deficits and Altered Amygdala Circuits in Mice Lacking Pcdh10, an Autism Associated Gene.

    Science.gov (United States)

    Schoch, Hannah; Kreibich, Arati S; Ferri, Sarah L; White, Rachel S; Bohorquez, Dominique; Banerjee, Anamika; Port, Russell G; Dow, Holly C; Cordero, Lucero; Pallathra, Ashley A; Kim, Hyong; Li, Hongzhe; Bilker, Warren B; Hirano, Shinji; Schultz, Robert T; Borgmann-Winter, Karin; Hahn, Chang-Gyu; Feldmeyer, Dirk; Carlson, Gregory C; Abel, Ted; Brodkin, Edward S

    2017-02-01

    Behavioral symptoms in individuals with autism spectrum disorder (ASD) have been attributed to abnormal neuronal connectivity, but the molecular bases of these behavioral and brain phenotypes are largely unknown. Human genetic studies have implicated PCDH10, a member of the δ2 subfamily of nonclustered protocadherin genes, in ASD. PCDH10 expression is enriched in the basolateral amygdala, a brain region implicated in the social deficits of ASD. Previous reports indicate that Pcdh10 plays a role in axon outgrowth and glutamatergic synapse elimination, but its roles in social behaviors and amygdala neuronal connectivity are unknown. We hypothesized that haploinsufficiency of Pcdh10 would reduce social approach behavior and alter the structure and function of amygdala circuits. Mice lacking one copy of Pcdh10 (Pcdh10 +/- ) and wild-type littermates were assessed for social approach and other behaviors. The lateral/basolateral amygdala was assessed for dendritic spine number and morphology, and amygdala circuit function was studied using voltage-sensitive dye imaging. Expression of Pcdh10 and N-methyl-D-aspartate receptor (NMDAR) subunits was assessed in postsynaptic density fractions of the amygdala. Male Pcdh10 +/- mice have reduced social approach behavior, as well as impaired gamma synchronization, abnormal spine morphology, and reduced levels of NMDAR subunits in the amygdala. Social approach deficits in Pcdh10 +/- male mice were rescued with acute treatment with the NMDAR partial agonist d-cycloserine. Our studies reveal that male Pcdh10 +/- mice have synaptic and behavioral deficits, and establish Pcdh10 +/- mice as a novel genetic model for investigating neural circuitry and behavioral changes relevant to ASD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Turnover of adenosine in plasma of human and dog blood

    International Nuclear Information System (INIS)

    Moeser, G.H.S.; Schrader, J.; Deussen, A.

    1989-01-01

    To determine half-life and turnover of plasma adenosine, heparinized blood from healthy volunteers was incubated with radiolabeled adenosine in the physiological concentration range of 0.1-1 microM. Plasma levels of adenosine in vitro were 82 +/- 14 nM and were similar to those determined immediately after blood collection with a ''stopping solution.'' Dipyridamole (83 microM) and erythro-9(2-hydroxynon-3yl)-adenine (EHNA) (8 microM) did not measurably alter basal adenosine levels but completely blocked the uptake of added adenosine. Inhibition of ecto-5'-nucleotidase with 100 microM alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP) reduced plasma adenosine to 22 +/- 6 nM. For the determination of adenosine turnover, the decrease in specific radioactivity of added [ 3 H]adenosine was measured using a dipyridamole-containing stopping solution. Without altering basal adenosine levels, the half-life was estimated to be 0.6 s. Similar experiments were carried out with washed erythrocytes or in the presence of AOPCP, yielding half-lives of 0.7 and 0.9 s, respectively. When the initial adenosine concentration was 1 microM, its specific activity decreased by only 11% within 5 s, whereas total plasma adenosine exponentially decreased with a half-life of 1.5 s. Venous plasma concentrations were measured after relief of a 3-min forearm ischemia. Changes in plasma adenosine did not correlate well with changes in blood flow but were augmented in the presence of dipyridamole

  18. Mice lacking neuropeptide Y show increased sensitivity to cocaine

    DEFF Research Database (Denmark)

    Sørensen, Gunnar; Woldbye, David Paul Drucker

    2012-01-01

    There is increasing data implicating neuropeptide Y (NPY) in the neurobiology of addiction. This study explored the possible role of NPY in cocaine-induced behavior using NPY knockout mice. The transgenic mice showed a hypersensitive response to cocaine in three animal models of cocaine addiction...

  19. Adenosine contribution to normal renal physiology and chronic kidney disease.

    Science.gov (United States)

    Oyarzún, Carlos; Garrido, Wallys; Alarcón, Sebastián; Yáñez, Alejandro; Sobrevia, Luis; Quezada, Claudia; San Martín, Rody

    2017-06-01

    Adenosine is a nucleoside that is particularly interesting to many scientific and clinical communities as it has important physiological and pathophysiological roles in the kidney. The distribution of adenosine receptors has only recently been elucidated; therefore it is likely that more biological roles of this nucleoside will be unveiled in the near future. Since the discovery of the involvement of adenosine in renal vasoconstriction and regulation of local renin production, further evidence has shown that adenosine signaling is also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the adaptive response to acute insults, such as ischemia. However, the most interesting finding was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically increased its signaling via the adenosine receptors may change, switching to a state that induces renal damage and produces phenotypic changes in resident cells. This review discusses the physiological and pathophysiological roles of adenosine and pays special attention to the mechanisms associated with switching homeostatic nucleoside levels to increased adenosine production in kidneys affected by CKD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.); Determination radiochromatographique de l'adenosine deaminase (A.D.)

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J J; Depernet, D; Caen, J [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1970-07-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 {mu}M adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [French] Nous avons pu, en utilisant une methode radiochromatographique, mesurer une activite adenosine deaminasique dans le plasma humain pauvre en plaquettes heparine qui peut degrader 0,016 {mu}M d'adenosine. Cette activite qui est supprimee par chauffage a 56 degres pendant 30 minutes, est reduite par conservation a -20 C pendant une semaine, est inhibee par d'importantes concentrations d'uree et ne l'est pas, ni par le dipyridamol, ni par le pHMB. Cette activite est proportionnelle a la quantite de plasma, source d'enzyme, mise dans les differents systemes reactifs. (auteur)

  1. Decreased extracellular adenosine levels lead to loss of hypoxia-induced neuroprotection after repeated episodes of exposure to hypoxia.

    Directory of Open Access Journals (Sweden)

    Mei Cui

    Full Text Available Achieving a prolonged neuroprotective state following transient ischemic attacks (TIAs is likely to effectively reduce the brain damage and neurological dysfunction associated with recurrent stroke. HPC is a phenomenon in which advanced exposure to mild hypoxia reduces the stroke volume produced by a subsequent TIA. However, this neuroprotection is not long-lasting, with the effects reaching a peak after 3 days. Therefore, in this study, we investigated the use of multiple episodes of hypoxic exposure at different time intervals to induce longer-term protection in a mouse stroke model. C57BL/6 mice were subjected to different hypoxic preconditioning protocols: a single episode of HPC or five identical episodes at intervals of 3 days (E3d HPC or 6 days (E6d HPC. Three days after the last hypoxic exposure, temporary middle cerebral artery occlusion (MCAO was induced. The effects of these HPC protocols on hypoxia-inducible factor (HIF regulated gene mRNA expression were measured by quantitative PCR. Changes in extracellular adenosine concentrations, known to exert neuroprotective effects, were also measured using in vivo microdialysis and high pressure liquid chromatography (HPLC. Neuroprotection was provided by E6d HPC but not E3d HPC. HIF-regulated target gene expression increased significantly following all HPC protocols. However, E3d HPC significantly decreased extracellular adenosine and reduced cerebral blood flow in the ischemic region with upregulated expression of the adenosine transporter, equilibrative nucleoside transporter 1 (ENT1. An ENT1 inhibitor, propentofylline increased the cerebral blood flow and re-established neuroprotection in E3d HPC. Adenosine receptor specific antagonists showed that adenosine mainly through A1 receptor mediates HPC induced neuroprotection. Our data indicate that cooperation of HIF-regulated genes and extracellular adenosine is necessary for HPC-induced neuroprotection.

  2. Mice lacking the synaptic adhesion molecule Neph2/Kirrel3 display moderate hyperactivity and defective novel object preference

    Directory of Open Access Journals (Sweden)

    Su Yeon eChoi

    2015-07-01

    Full Text Available Synaptic adhesion molecules regulate diverse aspects of neuronal synapse development, including synapse specificity, formation, and maturation. Neph2, also known as Kirrel3, is an immunoglobulin superfamily adhesion molecule implicated in intellectual disability, neurocognitive delay associated with Jacobsen syndrome, and autism spectrum disorders. We here report mice lacking Neph2 (Neph2–/– mice display moderate hyperactivity in a familiar but not novel environment and novel object recognition deficit with normal performances in Morris water maze spatial learning and memory, contextual fear conditioning and extinction, and pattern separation tests. These mice show normal levels of anxiety-like behaviors, social interaction, and repetitive behaviors. At the synapse level, Neph2–/– dentate gyrus granule cells exhibit unaltered dendritic spine density and spontaneous excitatory synaptic transmission. These results suggest that Neph2 is important for normal locomotor activity and object recognition memory.

  3. Adenosine receptors and caffeine in retinopathy of prematurity.

    Science.gov (United States)

    Chen, Jiang-Fan; Zhang, Shuya; Zhou, Rong; Lin, Zhenlang; Cai, Xiaohong; Lin, Jing; Huo, Yuqing; Liu, Xiaoling

    2017-06-01

    Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A 1 R, A 2A R, A 2B R) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Application of the newly developed Japanese adenosine normal database for adenosine stress myocardial scintigraphy.

    Science.gov (United States)

    Harata, Shingo; Isobe, Satoshi; Morishima, Itsuro; Suzuki, Susumu; Tsuboi, Hideyuki; Sone, Takahito; Ishii, Hideki; Murohara, Toyoaki

    2015-10-01

    The currently available Japanese normal database (NDB) in stress myocardial perfusion scintigraphy recommended by the Japanese Society of Nuclear Medicine (JSNM-NDB) is created based on the data from exercise tests. The newly developed adenosine normal database (ADS-NDB) remains to be validated for patients undergoing adenosine stress test. We tested whether the diagnostic accuracy of adenosine stress test is improved by the use of ADS-NDB (Kanazawa University). Of 233 consecutive patients undergoing (99m)Tc-MIBI adenosine stress test, 112 patients were tested. The stress/rest myocardial (99m)Tc-MIBI single-photon emission computed tomography (SPECT) images were analyzed by AutoQUANT 7.2 with both ADS-NDB and JSNM-NDB. The summed stress score (SSS) and summed difference score (SDS) were calculated. The agreements of the post-stress defect severity between ADS-NDB and JSNM-NDB were assessed using a weighted kappa statistic. In all patients, mean SSSs of all, right coronary artery (RCA), left anterior descending (LAD), and left circumflex (LCx) territories were significantly lower with ADS-NDB than those with JSNM-NDB. Mean SDSs in all, RCA, and LAD territories were significantly lower with ADS-NDB than those with JSNM-NDB. In 28 patients with significant coronary stenosis, the mean SSS in the RCA territory was significantly lower with ADS-NDB than that with JSNM-NDB. In 84 patients without ischemia, both mean SSSs and SDSs in all, RCA, LAD, and LCx territories were significantly lower with ADS-NDB than those with JSNM-NDB. Weighted kappa values of all patients, patients with significant stenosis, and patients without ischemia were 0.89, 0.83, and 0.92, respectively. Differences were observed between results from ADS-NDB and JSNM-NDB. The diagnostic accuracy of adenosine stress myocardial perfusion scintigraphy may be improved by reducing false-positive results.

  5. Analgesic tone conferred by constitutively active mu opioid receptors in mice lacking β-arrestin 2

    Directory of Open Access Journals (Sweden)

    Hales Tim G

    2011-04-01

    Full Text Available Abstract Hedonic reward, dependence and addiction are unwanted effects of opioid analgesics, linked to the phasic cycle of μ opioid receptor activation, tolerance and withdrawal. In vitro studies of recombinant G protein coupled receptors (GPCRs over expressed in cell lines reveal an alternative tonic signaling mechanism that is independent of agonist. Such studies demonstrate that constitutive GPCR signaling can be inhibited by inverse agonists but not by neutral antagonists. However, ligand-independent activity has been difficult to examine in vivo, at the systems level, due to relatively low levels of constitutive activity of most GPCRs including μ receptors, often necessitating mutagenesis or pharmacological manipulation to enhance basal signaling. We previously demonstrated that the absence of β-arrestin 2 (β-arr2 augments the constitutive coupling of μ receptors to voltage-activated Ca2+ channels in primary afferent dorsal root ganglion neurons from β-arr2-/- mice. We used this in vitro approach to characterize neutral competitive antagonists and inverse agonists of the constitutively active wild type μ receptors in neurons. We administered these agents to β-arr2-/- mice to explore the role of constitutive μ receptor activity in nociception and hedonic tone. This study demonstrates that the induction of constitutive μ receptor activity in vivo in β-arr2-/- mice prolongs tail withdrawal from noxious heat, a phenomenon that was reversed by inverse agonists, but not by antagonists that lack negative efficacy. By contrast, the aversive effects of inverse agonists were similar in β-arr2-/- and β-arr2+/+ mice, suggesting that hedonic tone was unaffected.

  6. The Volatile Anesthetic Isoflurane Increases Endothelial Adenosine Generation via Microparticle Ecto-5′-Nucleotidase (CD73) Release

    Science.gov (United States)

    Kim, Mihwa; Ham, Ahrom; Kim, Katelyn Yu-Mi; Brown, Kevin M.; Lee, H. Thomas

    2014-01-01

    Endothelial dysfunction is common in acute and chronic organ injury. Isoflurane is a widely used halogenated volatile anesthetic during the perioperative period and protects against endothelial cell death and inflammation. In this study, we tested whether isoflurane induces endothelial ecto-5′-nucleotidase (CD73) and cytoprotective adenosine generation to protect against endothelial cell injury. Clinically relevant concentrations of isoflurane induced CD73 activity and increased adenosine generation in cultured human umbilical vein or mouse glomerular endothelial cells. Surprisingly, isoflurane-mediated induction of endothelial CD73 activity occurred within 1 hr and without synthesizing new CD73. We determined that isoflurane rapidly increased CD73 containing endothelial microparticles into the cell culture media. Indeed, microparticles isolated from isoflurane-treated endothelial cells had significantly higher CD73 activity as well as increased CD73 protein. In vivo, plasma from mice anesthetized with isoflurane had significantly higher endothelial cell-derived CD144+ CD73+ microparticles and had increased microparticle CD73 activity compared to plasma from pentobarbital-anesthetized mice. Supporting a critical role of CD73 in isoflurane-mediated endothelial protection, a selective CD73 inhibitor (APCP) prevented isoflurane-induced protection against human endothelial cell inflammation and apoptosis. In addition, isoflurane activated endothelial cells Rho kinase evidenced by myosin phosphatase target subunit-1 and myosin light chain phosphorylation. Furthermore, isoflurane-induced release of CD73 containing microparticles was significantly attenuated by a selective Rho kinase inhibitor (Y27632). Taken together, we conclude that the volatile anesthetic isoflurane causes Rho kinase-mediated release of endothelial microparticles containing preformed CD73 and increase adenosine generation to protect against endothelial apoptosis and inflammation. PMID:24945528

  7. Lack of tau proteins rescues neuronal cell death and decreases amyloidogenic processing of APP in APP/PS1 mice.

    Science.gov (United States)

    Leroy, Karelle; Ando, Kunie; Laporte, Vincent; Dedecker, Robert; Suain, Valérie; Authelet, Michèle; Héraud, Céline; Pierrot, Nathalie; Yilmaz, Zehra; Octave, Jean-Noël; Brion, Jean-Pierre

    2012-12-01

    Lack of tau expression has been reported to protect against excitotoxicity and to prevent memory deficits in mice expressing mutant amyloid precursor protein (APP) identified in familial Alzheimer disease. In APP mice, mutant presenilin 1 (PS1) enhances generation of Aβ42 and inhibits cell survival pathways. It is unknown whether the deficient phenotype induced by concomitant expression of mutant PS1 is rescued by absence of tau. In this study, we have analyzed the effect of tau deletion in mice expressing mutant APP and PS1. Although APP/PS1/tau(+/+) mice had a reduced survival, developed spatial memory deficits at 6 months and motor impairments at 12 months, these deficits were rescued in APP/PS1/tau(-/-) mice. Neuronal loss and synaptic loss in APP/PS1/tau(+/+) mice were rescued in the APP/PS1/tau(-/-) mice. The amyloid plaque burden was decreased by roughly 50% in the cortex and the spinal cord of the APP/PS1/tau(-/-) mice. The levels of soluble and insoluble Aβ40 and Aβ42, and the Aβ42/Aβ40 ratio were reduced in APP/PS1/tau(-/-) mice. Levels of phosphorylated APP, of β-C-terminal fragments (CTFs), and of β-secretase 1 (BACE1) were also reduced, suggesting that β-secretase cleavage of APP was reduced in APP/PS1/tau(-/-) mice. Our results indicate that tau deletion had a protective effect against amyloid induced toxicity even in the presence of mutant PS1 and reduced the production of Aβ. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  8. Ketamine Does Not Produce Relief of Neuropathic Pain in Mice Lacking the β-Common Receptor (CD131)

    Science.gov (United States)

    Swartjes, Maarten; Niesters, Marieke; Heij, Lara; Dunne, Ann; Aarts, Leon; Hand, Carla Cerami; Kim, Hyung-Suk; Brines, Michael; Cerami, Anthony; Dahan, Albert

    2013-01-01

    Neuropathic pain (NP) is a debilitating condition associated with traumatic, metabolic, autoimmune and neurological etiologies. Although the triggers for NP are diverse, there are common underlying pathways, including activation of immune cells in the spinal cord and up-regulation of the N-methyl-D-aspartate receptor (NMDAR). Ketamine, a well-known NDMAR antagonist, reduces neuropathic pain in a sustained manner. Recent study has shown that the novel 11-amino acid peptide erythropoietin derivative ARA290 produces a similar, long-lasting relief of NP. Here, we show that both drugs also have similar effects on the expression of mRNA of the NMDAR, as well as that of microglia, astrocytes and chemokine (C-C motif) ligand 2, all-important contributors to the development of NP. Although the effects of ketamine and ARA 290 on NP and its molecular mediators suggest a common mechanism of action, ARA 290 has no affinity for the NMDAR and acts specifically via the innate repair receptor (IRR) involved in tissue protection. We speculated therefore, that the IRR might be critically involved in the action of ketamine on neuropathic pain. To evaluate this, we studied the effects of ketamine and ARA 290 on acute pain, side effects, and allodynia following a spared nerve injury model in mice lacking the β-common receptor (βcR), a structural component of the IRR. Ketamine (50 mg/kg) and ARA 290 (30 µg/kg) produced divergent effects on acute pain: ketamine produced profound antinociception accompanied with psychomotor side effects, but ARA290 did not, in both normal and knock out mice. In contrast, while both drugs were antiallodynic in WT mice, they had no effect on NP in mice lacking the βcR. Together, these results show that an intact IRR is required for the effective treatment of NP with either ketamine or ARA 290, but is not involved in ketamine’s analgesic and side effects. PMID:23936499

  9. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain of function mutations

    DEFF Research Database (Denmark)

    Galan-Diez, Marta; Isa, Adiba; Ponzetti, Marco

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation...... of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM...

  10. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    Science.gov (United States)

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  11. Photoreaction of 4,5',8-trimethylpsoralen with adenosine

    International Nuclear Information System (INIS)

    Sangchul Shim; Seungju Choi

    1990-01-01

    The near-UV induced photoreaction of 4,5',8-trimethylpsoralen (TMP) with adenosine was investigated in a dry film state. Four major photoadducts were isolated and purified by reverse-phase liquid chromatography. The structures of the photoproducts were elucidated on the basis of spectroscopic methods, including UV, FT-IR, mass spectrometry (FAB and EI methods) and 1 H-NMR analysis. These photoproducts were characterized to be TMP-adenosine 1:1 adducts, which resulted from the covalent bond formation between the carbon C(4) of TMP and ribose 1' or 5' carbon of adenosine. Of the photoadducts, one photoadduct (V) was the major product, reflecting some selectivity in the photoreaction of TMP with adenosine in the solid state. (author)

  12. A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action

    Directory of Open Access Journals (Sweden)

    Shira Cohen

    2014-01-01

    Full Text Available The A3 adenosine receptor (A3AR is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.

  13. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    Energy Technology Data Exchange (ETDEWEB)

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding. Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.

  14. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  15. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Adenosine A₁ and A₂A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction.

    Science.gov (United States)

    Garcia, Neus; Priego, Mercedes; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Besalduch, Nuria; Lanuza, M Angel; Tomàs, Josep

    2013-07-01

    Immunocytochemistry shows that purinergic receptors (P1Rs) type A1 and A2A (A1 R and A2 A R, respectively) are present in the nerve endings at the P6 and P30 Levator auris longus (LAL) mouse neuromuscular junctions (NMJs). As described elsewhere, 25 μm adenosine reduces (50%) acetylcholine release in high Mg(2+) or d-tubocurarine paralysed muscle. We hypothesize that in more preserved neurotransmission machinery conditions (blocking the voltage-dependent sodium channel of the muscle cells with μ-conotoxin GIIIB) the physiological role of the P1Rs in the NMJ must be better observed. We found that the presence of a non-selective P1R agonist (adenosine) or antagonist (8-SPT) or selective modulators of A1 R or A2 A R subtypes (CCPA and DPCPX, or CGS-21680 and SCH-58261, respectively) does not result in any changes in the evoked release. However, P1Rs seem to be involved in spontaneous release (miniature endplate potentials MEPPs) because MEPP frequency is increased by non-selective block but decreased by non-selective stimulation, with A1 Rs playing the main role. We assayed the role of P1Rs in presynaptic short-term plasticity during imposed synaptic activity (40 Hz for 2 min of supramaximal stimuli). Depression is reduced by micromolar adenosine but increased by blocking P1Rs with 8-SPT. Synaptic depression is not affected by the presence of selective A1 R and A2 A R modulators, which suggests that both receptors need to collaborate. Thus, A1 R and A2 A R might have no real effect on neuromuscular transmission in resting conditions. However, these receptors can conserve resources by limiting spontaneous quantal leak of acetylcholine and may protect synaptic function by reducing the magnitude of depression during repetitive activity. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Hypothermia in mouse is caused by adenosine A1 and A3 receptor agonists and AMP via three distinct mechanisms.

    Science.gov (United States)

    Carlin, Jesse Lea; Jain, Shalini; Gizewski, Elizabeth; Wan, Tina C; Tosh, Dilip K; Xiao, Cuiying; Auchampach, John A; Jacobson, Kenneth A; Gavrilova, Oksana; Reitman, Marc L

    2017-03-01

    Small mammals have the ability to enter torpor, a hypothermic, hypometabolic state, allowing impressive energy conservation. Administration of adenosine or adenosine 5'-monophosphate (AMP) can trigger a hypothermic, torpor-like state. We investigated the mechanisms for hypothermia using telemetric monitoring of body temperature in wild type and receptor knock out (Adora1 -/- , Adora3 -/- ) mice. Confirming prior data, stimulation of the A 3 adenosine receptor (AR) induced hypothermia via peripheral mast cell degranulation, histamine release, and activation of central histamine H 1 receptors. In contrast, A 1 AR agonists and AMP both acted centrally to cause hypothermia. Commonly used, selective A 1 AR agonists, including N 6 -cyclopentyladenosine (CPA), N 6 -cyclohexyladenosine (CHA), and MRS5474, caused hypothermia via both A 1 AR and A 3 AR when given intraperitoneally. Intracerebroventricular dosing, low peripheral doses of Cl-ENBA [(±)-5'-chloro-5'-deoxy-N 6 -endo-norbornyladenosine], or using Adora3 -/- mice allowed selective stimulation of A 1 AR. AMP-stimulated hypothermia can occur independently of A 1 AR, A 3 AR, and mast cells. A 1 AR and A 3 AR agonists and AMP cause regulated hypothermia that was characterized by a drop in total energy expenditure, physical inactivity, and preference for cooler environmental temperatures, indicating a reduced body temperature set point. Neither A 1 AR nor A 3 AR was required for fasting-induced torpor. A 1 AR and A 3 AR agonists and AMP trigger regulated hypothermia via three distinct mechanisms. Published by Elsevier Ltd.

  18. Abnormal Cardiac Autonomic Regulation in Mice Lacking ASIC3

    Directory of Open Access Journals (Sweden)

    Ching-Feng Cheng

    2014-01-01

    Full Text Available Integration of sympathetic and parasympathetic outflow is essential in maintaining normal cardiac autonomic function. Recent studies demonstrate that acid-sensing ion channel 3 (ASIC3 is a sensitive acid sensor for cardiac ischemia and prolonged mild acidification can open ASIC3 and evoke a sustained inward current that fires action potentials in cardiac sensory neurons. However, the physiological role of ASIC3 in cardiac autonomic regulation is not known. In this study, we elucidate the role of ASIC3 in cardiac autonomic function using Asic3−/− mice. Asic3−/− mice showed normal baseline heart rate and lower blood pressure as compared with their wild-type littermates. Heart rate variability analyses revealed imbalanced autonomic regulation, with decreased sympathetic function. Furthermore, Asic3−/− mice demonstrated a blunted response to isoproterenol-induced cardiac tachycardia and prolonged duration to recover to baseline heart rate. Moreover, quantitative RT-PCR analysis of gene expression in sensory ganglia and heart revealed that no gene compensation for muscarinic acetylcholines receptors and beta-adrenalin receptors were found in Asic3−/− mice. In summary, we unraveled an important role of ASIC3 in regulating cardiac autonomic function, whereby loss of ASIC3 alters the normal physiological response to ischemic stimuli, which reveals new implications for therapy in autonomic nervous system-related cardiovascular diseases.

  19. Reentry Tachycardia in Children: Adenosine Can Make It Worse.

    Science.gov (United States)

    Hien, Maximilian D; Benito Castro, Fernando; Fournier, Philippe; Filleron, Anne; Tran, Tu-Anh

    2016-10-08

    We report on a rare but severe complication of adenosine use in a child with reentry tachycardia. Treatment with adenosine, which is the standard medical therapy of atrioventricular reentry tachycardia, led to the development of an irregular wide complex tachycardia, caused by rapid ventricular response to atrial fibrillation. The girl was finally stabilized with electrical cardioversion. We analyze the pathomechanism and discuss possible treatment options. Atrial fibrillation, as well as its conduction to the ventricles, can be caused by adenosine. Rapid ventricular response in children with Wolff-Parkinson-White syndrome is more frequent than previously believed. A patient history of atrial fibrillation is a contraindication for cardioversion with adenosine and needs to be assessed in children with reentry tachycardia. High-risk patients may potentially profit from prophylactic comedication with antiarrhythmic agents, such as flecainide, ibutilide, or vernakalant, before adenosine administration.

  20. IB-MECA, an Adenosine A(3) Receptor Agonist, Does Not Influence Survival of Lethally gamma-Irradiated Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2012-01-01

    Roč. 61, č. 6 (2012), s. 649-654 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/08/0158; GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : Mouse * IB-MECA * Adenosine A(3) receptor agonist Subject RIV: BO - Biophysics Impact factor: 1.531, year: 2012

  1. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  2. Insulin and adenosine regulate the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes.

    Science.gov (United States)

    Kiechle, F L; Sykes, E; Artiss, J D

    1995-01-01

    Blockade of adenosine receptors by 3-isobutyl-1-methylxanthine or degradation of endogenous adenosine with adenosine deaminase increased the phosphatidylcholine concentration in isolated rat adipocyte plasma membranes, an effect which was suppressed by the phosphatidylethanolamine methyltransferase inhibitor, S-adenosyl-L-homocysteine, and reversed by the adenosine analogue, N6-(L-phenylisopropyl)-adenosine. For example, the addition of N6-(L-phenylisopropyl)-adenosine to adenosine deaminase pretreated plasma membranes rapidly lowered the concentration of phosphatidylcholine by 171 nmol/mg at 30 seconds compared to control. Insulin-induced stimulation of phospholipid methylation in membranes treated with 3-isobutyl-1-methylxanthine or adenosine deaminase was achieved only after the addition of N6-(L-phenylisopropyl)-adenosine. These results suggest that adenosine receptor occupancy inhibits phospholipid methylation, is required for insulin stimulation of phospholipid methylation, and may perhaps activate a phosphatidylcholine-specific phospholipase C or phospholipase D.

  3. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  4. Loss of ATM kinase activity leads to embryonic lethality in mice

    DEFF Research Database (Denmark)

    Daniel, J.A.; Pellegrini, M.; Filsuf, D.

    2012-01-01

    whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice......, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate...

  5. Hepatic oxidative stress in ovariectomized transgenic mice expressing the hepatitis C virus polyprotein is augmented through suppression of adenosine monophosphate-activated protein kinase/proliferator-activated receptor gamma co-activator 1 alpha signaling.

    Science.gov (United States)

    Tomiyama, Yasuyuki; Nishina, Sohji; Hara, Yuichi; Kawase, Tomoya; Hino, Keisuke

    2014-10-01

    Oxidative stress plays an important role in hepatocarcinogenesis of hepatitis C virus (HCV)-related chronic liver diseases. Despite the evidence of an increased proportion of females among elderly patients with HCV-related hepatocellular carcinoma (HCC), it remains unknown whether HCV augments hepatic oxidative stress in postmenopausal women. The aim of this study was to determine whether oxidative stress was augmented in ovariectomized (OVX) transgenic mice expressing the HCV polyprotein and to investigate its underlying mechanisms. OVX and sham-operated female transgenic mice expressing the HCV polyprotein and non-transgenic littermates were assessed for the production of reactive oxygen species (ROS), expression of inflammatory cytokines and antioxidant potential in the liver. Compared with OVX non-transgenic mice, OVX transgenic mice showed marked hepatic steatosis and ROS production without increased induction of inflammatory cytokines, but there was no increase in ROS-detoxifying enzymes such as superoxide dismutase 2 and glutathione peroxidase 1. In accordance with these results, OVX transgenic mice showed less activation of peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α), which is required for the induction of ROS-detoxifying enzymes, and no activation of adenosine monophosphate-activated protein kinase-α (AMPKα), which regulates the activity of PGC-1α. Our study demonstrated that hepatic oxidative stress was augmented in OVX transgenic mice expressing the HCV polyprotein by attenuation of antioxidant potential through inhibition of AMPK/PGC-1α signaling. These results may account in part for the mechanisms by which HCV-infected women are at high risk for HCC development when some period has passed after menopause. © 2013 The Japan Society of Hepatology.

  6. Drugs elevating extracellular adenosine administered in vivo induce serum colony-stimulating activity and interleukin-6 in mice

    Czech Academy of Sciences Publication Activity Database

    Weiterová, Lenka; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Štreitová, Denisa

    2007-01-01

    Roč. 56, č. 4 (2007), s. 463-473 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP305/03/D050 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : extracellular adenosine * serum colony-stimulating activity * interleukin-6 Subject RIV: BO - Biophysics Impact factor: 1.505, year: 2007

  7. Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA)

    Science.gov (United States)

    2011-01-01

    Background Staphylococcus aureus is a human pathogen that produces extracellular adenosine to evade clearance by the host immune system, an activity attributed to the 5'-nucleotidase activity of adenosine synthase (AdsA). In mammals, conversion of adenosine triphosphate to adenosine is catalyzed in a two-step process: ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTDPases) hydrolyze ATP and ADP to AMP, whereas 5'-nucleotidases hydrolyze AMP to adenosine. NTPDases harbor apyrase conserved regions (ACRs) that are critical for activity. Results NTPDase ACR motifs are absent in AdsA, yet we report here that recombinant AdsA hydrolyzes ADP and ATP in addition to AMP. Competition assays suggest that hydrolysis occurs following binding of all three substrates at a unique site. Alanine substitution of two amino acids, aspartic acid 127 and histidine 196 within the 5'-nucleotidase signature sequence, leads to reduced AMP or ADP hydrolysis but does not affect the binding of these substrates. Conclusion Collectively, these results provide insight into the unique ability of AdsA to produce adenosine through the consecutive hydrolysis of ATP, ADP and AMP, thereby endowing S. aureus with the ability to modulate host immune responses. PMID:22035583

  8. Lack of adrenomedullin results in microbiota changes and aggravates azoxymethane and dextran sulfate sodium-induced colitis in mice

    Directory of Open Access Journals (Sweden)

    Sonia Martinez-Herrero

    2016-11-01

    Full Text Available The link between intestinal inflammation, microbiota, and colorectal cancer (CRC is intriguing and the potential underlying mechanisms remain unknown. Here we evaluate the influence of adrenomedullin (AM in microbiota composition and its impact on colitis with an inducible knockout (KO mouse model for AM. Microbiota composition was analyzed in KO and wild type (WT mice by pyrosequencing. Colitis was induced in mice by administration of azoxymethane (AOM followed by dextran sulfate sodium (DSS in the drinking water. Colitis was evaluated using a clinical symptoms index, histopathological analyses, and qRT-PCR. Abrogation of the adm gene in the whole body was confirmed by PCR and qRT-PCR. KO mice exhibit significant changes in colonic microbiota: higher proportion of δ-Proteobacteria class; of Coriobacteriales order; and of other families and genera was observed in KO feces. Meanwhile these mice had a lower proportion of beneficial bacteria, such as Lactobacillus gasseri and Bifidobacterium choerinum. TLR4 gene expression was higher (p<0.05 in KO animals. AM deficient mice treated with DSS exhibited a significantly worse colitis with profound weight loss, severe diarrhea, rectal bleeding, colonic inflammation, edema, infiltration, crypt destruction, and higher levels of pro-inflammatory cytokines. No changes were observed in the expression levels of adhesion molecules. In conclusion, we have shown that lack of AM leads to changes in gut microbiota population and in a worsening of colitis conditions, suggesting that endogenous AM is a protective mediator in this pathology.

  9. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  10. Ethanol-induced increase in portal blood glow: Role of adenosine

    International Nuclear Information System (INIS)

    Orrego, H.; Carmichael, F.J.; Saldivia, V.; Giles, H.G.; Sandrin, S.; Israel, Y.

    1988-01-01

    The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline. By itself, 8-phenyltheophylline was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow. This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% and 60%, respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels

  11. A rapid enzymatic assay for high-throughput screening of adenosine-producing strains

    Science.gov (United States)

    Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei

    2015-01-01

    Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842

  12. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    Science.gov (United States)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  13. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.

    Science.gov (United States)

    Oslovsky, Vladimir E; Drenichev, Mikhail S; Mikhailov, Sergey N

    2015-01-01

    Several methods for the preparation of some N(6)-substituted adenosines based on selective 1-N-alkylation with subsequent Dimroth rearrangement were developed. The proposed methods seem to be effective for the preparation of natural N(6)-isopentenyl- and N(6)-benzyladenosines, which are known to possess pronounced biological activities. Direct 1-N-alkylation of 2',3',5'-tri-O-acetyladenosine and 3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides in N,N-dimethylformamide (DMF) in the presence of BaCO3 and KI gave 1-N-substituted derivatives with quantitative yields, whereas 1-N-alkylation of adenosine was accompanied by significant O-alkylation. Moreover, the reaction of trimethylsilyl derivatives of N(6)-acetyl-2',3',5'-tri-O-acetyladenosine and N(6)-acetyl-3',5'-di-O-acetyl-2'-deoxyadenosine with alkyl halides leads to the formation of the stable 1-N-substituted adenosines. Dimroth rearrangement of 1-N-substituted adenosines in aqueous ammonia yields pure N(6)-substituted adenosines.

  14. Adenosine induced ventricular arrhythmias in the emergency room

    NARCIS (Netherlands)

    Tan, H. L.; Spekhorst, H. H.; Peters, R. J.; Wilde, A. A.

    2001-01-01

    While adenosine effectively terminates most supraventricular tachycardias (SVT), rare case reports have demonstrated its proarrhythmic potential, including induction of ventricular tachycardia (VT). The aim of this study was to define the proarrhythmic effects of adenosine in a large, unselected

  15. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism.

    Science.gov (United States)

    Eltzschig, Holger K; Thompson, Linda F; Karhausen, Jorn; Cotta, Richard J; Ibla, Juan C; Robson, Simon C; Colgan, Sean P

    2004-12-15

    Hypoxia is a well-documented inflammatory stimulus and results in tissue polymorphonuclear leukocyte (PMN) accumulation. Likewise, increased tissue adenosine levels are commonly associated with hypoxia, and given the anti-inflammatory properties of adenosine, we hypothesized that adenosine production via adenine nucleotide metabolism at the vascular surface triggers an endogenous anti-inflammatory response during hypoxia. Initial in vitro studies indicated that endogenously generated adenosine, through activation of PMN adenosine A(2A) and A(2B) receptors, functions as an antiadhesive signal for PMN binding to microvascular endothelia. Intravascular nucleotides released by inflammatory cells undergo phosphohydrolysis via hypoxia-induced CD39 ectoapyrase (CD39 converts adenosine triphosphate/adenosine diphosphate [ATP/ADP] to adenosine monophosphate [AMP]) and CD73 ecto-5'-nucleotidase (CD73 converts AMP to adenosine). Extensions of our in vitro findings using cd39- and cd73-null animals revealed that extracellular adenosine produced through adenine nucleotide metabolism during hypoxia is a potent anti-inflammatory signal for PMNs in vivo. These findings identify CD39 and CD73 as critical control points for endogenous adenosine generation and implicate this pathway as an innate mechanism to attenuate excessive tissue PMN accumulation.

  16. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    International Nuclear Information System (INIS)

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-01-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine [(R)-AHPIA] into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling

  17. Molecular vibration-activity relationship in the agonism of adenosine receptors.

    Science.gov (United States)

    Chee, Hyun Keun; Oh, S June

    2013-12-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  18. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    Science.gov (United States)

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  19. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Hyun Keun Chee

    2013-12-01

    Full Text Available The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine receptor agonism and antagonism. The tree that was produced by clustering analysis of molecular vibration patterns showed its potential for the functional classification of adenosine receptor ligands.

  20. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    Science.gov (United States)

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adenosine for postoperative analgesia: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Xin Jin

    Full Text Available Perioperative infusion of adenosine has been suggested to reduce the requirement for inhalation anesthetics, without causing serious adverse effects in humans. We conducted a meta-analysis of randomized controlled trials evaluating the effect of adenosine on postoperative analgesia.We retrieved articles in computerized searches of Scopus, Web of Science, PubMed, EMBASE, and Cochrane Library databases, up to July 2016. We used adenosine, postoperative analgesia, and postoperative pain(s as key words, with humans, RCT, and CCT as filters. Data of eligible studies were extracted, which included pain scores, cumulative opioid consumption, adverse reactions, and vital signs. Overall incidence rates, relative risk (RR, and 95% confidence intervals (CI were calculated employing fixed-effects or random-effects models, depending on the heterogeneity of the included trials.In total, 757 patients from 9 studies were included. The overall effect of adenosine on postoperative VAS/VRS scores and postoperative opioid consumption was not significantly different from that of controls (P >0.1. The occurrence of PONV and pruritus was not statistically significantly different between an adenosine and nonremifentanil subgroup (P >0.1, but the rate of PONV occurrence was greater in the remifentanil subgroup (P 0.1.Adenosine has no analgesic effect or prophylactic effect against PONV, but reduce systolic blood pressure and heart rates. Adenosine may benefit patients with hypertension, ischemic heart disease, and tachyarrhythmia, thereby improving cardiac function.

  2. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    Science.gov (United States)

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  3. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  4. Kinetic mechanism of Toxoplasma gondii adenosine kinase and the highly efficient utilization of adenosine

    Science.gov (United States)

    Naguib, Fardos N. M.; Rais, Reem H.; Al Safarjalani, Omar N.; el Kouni, Mahmoud H.

    2015-01-01

    Toxoplasma gondii has an extraordinarily ability to utilize adenosine (Ado) as the primary source of all necessary purines in this parasite which lacks de novo purine biosynthesis. The activity of T. gondii adenosine kinase (TgAK, EC 2.7.1.20) is responsible for this efficient salvage of Ado in T. gondii. To fully understand this remarkable efficiency of TgAK in the utilization of Ado, complete kinetic parameters of this enzyme are necessary. Initial velocity and product inhibition studies of TgAK demonstrated that the basic mechanism of this enzyme is a hybrid random bi-uni ping-pong uni-bi. Initial velocity studies showed an intersecting pattern, consistent with substrate-enzyme-co-substrate complex formation and a binding pattern indicating that binding of the substrate interferes with the binding of the co-substrate and vice versa. Estimated kinetic parameters were KAdo = 0.002 ± 0.0002 mM, KATP = 0.05 ± 0.008 mM, and Vmax = 920 ± 35 μmol/min/mg protein. Ado exhibited substrate inhibition suggesting the presence of more than one binding site for Ado on the enzyme. ATP relieved substrate inhibition by Ado. Thus, Ado also binds to the ATP binding site. AMP was competitive with ATP, inferring that AMP binds to the same site as ATP. AMP, ADP and ATP were non-competitive with Ado, therefore, none of these nucleotides binds to the Ado binding site. Combining ATP with ADP was additive. Therefore, the binding of either ATP or ADP does not interfere with the binding of the other. It is concluded that for every ATP consumed, TgAK generates three new AMPs. These findings along with the fact that a wide range of nucleoside 5′-mono, di, and triphosphates could substitute for ATP as phosphate donors in this reaction may explain the efficient and central role played by TgAK in the utilization of Ado as the major source from which all other purines can be synthesized in T. gondii. PMID:26112826

  5. Expression of human adenosine deaminase in mice reconstituted with retrovirus-transduced hematopoietic stem cells

    International Nuclear Information System (INIS)

    Wilson, J.M.; Danos, O.; Grossman, M.; Raulet, D.H.; Mulligan, R.C.

    1990-01-01

    Recombinant retroviruses encoding human adenosine deaminase have been used to infect murine hematopoietic stem cells. In bone marrow transplant recipients reconstituted with the genetically modified cells, human ADA was detected in peripheral blood mononuclear cells of the recipients for at least 6 months after transplantation. In animals analyzed in detail 4 months after transplantation, human ADA and proviral sequences were detected in all hematopoietic lineages; in several cases, human ADA activity exceeded the endogenous activity. These studies demonstrate the feasibility of introducing a functional human ADA gene into hematopoietic stem cells and obtaining expression in multiple hematopoietic lineages long after transplantation. This approach should be helpful in designing effective gene therapies for severe combined immunodeficiency syndromes in humans

  6. Primary adenosine monophosphate (AMP) deaminase deficiency in a hypotonic infant.

    Science.gov (United States)

    Castro-Gago, Manuel; Gómez-Lado, Carmen; Pérez-Gay, Laura; Eirís-Puñal, Jesús; Martínez, Elena Pintos; García-Consuegra, Inés; Martín, Miguel Angel

    2011-06-01

    The spectrum of the adenosine monophosphate (AMP) deaminase deficiency ranges from asymptomatic carriers to patients who manifest exercise-induced muscle pain, occasionally rhabdomyolysis, and idiopathic hyperCKemia. However, previous to the introduction of molecular techniques, rare cases with congenital weakness and hypotonia have also been reported. We report a 6-month-old girl with the association of congenital muscle weakness and hypotonia, muscle deficiency of adenosine monophosphate deaminase, and the homozygous C to T mutation at nucleotide 34 of the adenosine monophosphate deaminase-1 gene. This observation indicates the possible existence of a primary adenosine monophosphate deaminase deficiency manifested by congenital muscle weakness and hypotonia.

  7. Molecular Vibration-Activity Relationship in the Agonism of Adenosine Receptors

    OpenAIRE

    Chee, Hyun Keun; Oh, S. June

    2013-01-01

    The molecular vibration-activity relationship in the receptor-ligand interaction of adenosine receptors was investigated by structure similarity, molecular vibration, and hierarchical clustering in a dataset of 46 ligands of adenosine receptors. The resulting dendrogram was compared with those of another kind of fingerprint or descriptor. The dendrogram result produced by corralled intensity of molecular vibrational frequency outperformed four other analyses in the current study of adenosine ...

  8. Adar3 Is Involved in Learning and Memory in Mice

    Directory of Open Access Journals (Sweden)

    Dessislava Mladenova

    2018-04-01

    Full Text Available The amount of regulatory RNA encoded in the genome and the extent of RNA editing by the post-transcriptional deamination of adenosine to inosine (A-I have increased with developmental complexity and may be an important factor in the cognitive evolution of animals. The newest member of the A-I editing family of ADAR proteins, the vertebrate-specific ADAR3, is highly expressed in the brain, but its functional significance is unknown. In vitro studies have suggested that ADAR3 acts as a negative regulator of A-I RNA editing but the scope and underlying mechanisms are also unknown. Meta-analysis of published data indicates that mouse Adar3 expression is highest in the hippocampus, thalamus, amygdala, and olfactory region. Consistent with this, we show that mice lacking exon 3 of Adar3 (which encodes two double stranded RNA binding domains have increased levels of anxiety and deficits in hippocampus-dependent short- and long-term memory formation. RNA sequencing revealed a dysregulation of genes involved in synaptic function in the hippocampi of Adar3-deficient mice. We also show that ADAR3 transiently translocates from the cytoplasm to the nucleus upon KCl-mediated activation in SH-SY5Y cells. These results indicate that ADAR3 contributes to cognitive processes in mammals.

  9. Role of adenosine signalling and metabolism in β-cell regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Olov, E-mail: olov.andersson@ki.se

    2014-02-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?.

  10. Role of adenosine signalling and metabolism in β-cell regeneration

    International Nuclear Information System (INIS)

    Andersson, Olov

    2014-01-01

    Glucose homeostasis, which is controlled by the endocrine cells of the pancreas, is disrupted in both type I and type II diabetes. Deficiency in the number of insulin-producing β cells – a primary cause of type I diabetes and a secondary contributor of type II diabetes – leads to hyperglycemia and hence an increase in the need for insulin. Although diabetes can be controlled with insulin injections, a curative approach is needed. A potential approach to curing diabetes involves regenerating the β-cell mass, e.g. by increasing β-cell proliferation, survival, neogenesis or transdifferentiation. The nucleoside adenosine and its cognate nucleotide ATP have long been known to affect insulin secretion, but have more recently been shown to increase β-cell proliferation during homeostatic control and regeneration of the β-cell mass. Adenosine is also known to have anti-inflammatory properties, and agonism of adenosine receptors can promote the survival of β-cells in an inflammatory microenvironment. In this review, both intracellular and extracellular mechanisms of adenosine and ATP are discussed in terms of their established and putative effects on β-cell regeneration. - Highlights: • A potential way to cure diabetes is to regenerate the β-cell mass by promoting cell survival, proliferation or neogenesis. • Adenosine may promote β-cell regeneration through several cellular mechanisms. • Adenosine and its cognate nucleotide ATP can each promote β-cell proliferation. • Do adenosine and ATP interact in promoting β-cell proliferation?

  11. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development.

    Science.gov (United States)

    Goldie, Stephen J; Arhatari, Benedicta D; Anderson, Peter; Auden, Alana; Partridge, Darren D; Jane, Stephen M; Dworkin, Sebastian

    2016-10-18

    Increased apposition of the frontal and parietal bones of the skull during embryogenesis may be a risk factor for the subsequent development of premature skull fusion, or craniosynostosis. Human craniosynostosis is a prevalent, and often serious embryological and neonatal pathology. Other than known mutations in a small number of contributing genes, the aetiology of craniosynostosis is largely unknown. Therefore, the identification of novel genes which contribute to normal skull patterning, morphology and premature suture apposition is imperative, in order to fully understand the genetic regulation of cranial development. Using advanced imaging techniques and quantitative measurement, we show that genetic deletion of the highly-conserved transcription factor Grainyhead-like 3 (Grhl3) in mice (Grhl3 -/- ) leads to decreased skull size, aberrant skull morphology and premature apposition of the coronal sutures during embryogenesis. Furthermore, Grhl3 -/- mice also present with premature collagen deposition and osteoblast alignment at the sutures, and the physical interaction between the developing skull, and outermost covering of the brain (the dura mater), as well as the overlying dermis and subcutaneous tissue, appears compromised in embryos lacking Grhl3. Although Grhl3 -/- mice die at birth, we investigated skull morphology and size in adult animals lacking one Grhl3 allele (heterozygous; Grhl3 +/- ), which are viable and fertile. We found that these adult mice also present with a smaller cranial cavity, suggestive of post-natal haploinsufficiency in the context of cranial development. Our findings show that our Grhl3 mice present with increased apposition of the frontal and parietal bones, suggesting that Grhl3 may be involved in the developmental pathogenesis of craniosynostosis.

  12. Activation of Adenylyl Cyclase Causes Stimulation of Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Thomas Pleli

    2018-03-01

    Full Text Available Background/Aims: Signaling of Gs protein-coupled receptors (GsPCRs is accomplished by stimulation of adenylyl cyclase, causing an increase of the intracellular cAMP concentration, activation of the intracellular cAMP effectors protein kinase A (PKA and Epac, and an efflux of cAMP, the function of which is still unclear. Methods: Activation of adenylyl cyclase by GsPCR agonists or cholera toxin was monitored by measurement of the intracellular cAMP concentration by ELISA, anti-phospho-PKA substrate motif phosphorylation by immunoblotting, and an Epac-FRET assay in the presence and absence of adenosine receptor antagonists or ecto-nucleotide phosphodiesterase/pyrophosphatase2 (eNPP2 inhibitors. The production of AMP from cAMP by recombinant eNPP2 was measured by HPLC. Extracellular adenosine was determined by LC-MS/MS, extracellular ATP by luciferase and LC-MS/MS. The expression of eNPP isoenzymes 1-3 was examined by RT-PCR. The expression of multidrug resistance protein 4 was suppressed by siRNA. Results: Here we show that the activation of GsPCRs and the GsPCRs-independent activation of Gs proteins and adenylyl cyclase by cholera toxin induce stimulation of cell surface adenosine receptors (A2A or A2B adenosine receptors. In PC12 cells stimulation of adenylyl cyclase by GsPCR or cholera toxin caused activation of A2A adenosine receptors by an autocrine signaling pathway involving cAMP efflux through multidrug resistance protein 4 and hydrolysis of released cAMP to AMP by eNPP2. In contrast, in PC3 cells cholera toxin- and GsPCR-induced stimulation of adenylyl cyclase resulted in the activation of A2B adenosine receptors. Conclusion: Our findings show that stimulation of adenylyl cyclase causes a remarkable activation of cell surface adenosine receptors.

  13. Depressed levels of prostaglandin F2α in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity.

    Science.gov (United States)

    Volat, Fanny E; Pointud, Jean-Christophe; Pastel, Emilie; Morio, Béatrice; Sion, Benoit; Hamard, Ghislaine; Guichardant, Michel; Colas, Romain; Lefrançois-Martinez, Anne-Marie; Martinez, Antoine

    2012-11-01

    Negative regulators of white adipose tissue (WAT) expansion are poorly documented in vivo. Prostaglandin F(2α) (PGF(2α)) is a potent antiadipogenic factor in cultured preadipocytes, but evidence for its involvement in physiological context is lacking. We previously reported that Akr1b7, an aldo-keto reductase enriched in adipose stromal vascular fraction but absent from mature adipocytes, has antiadipogenic properties possibly supported by PGF(2α) synthase activity. To test whether lack of Akr1b7 could influence WAT homeostasis in vivo, we generated Akr1b7(-/-) mice in 129/Sv background. Akr1b7(-/-) mice displayed excessive basal adiposity resulting from adipocyte hyperplasia/hypertrophy and exhibited greater sensitivity to diet-induced obesity. Following adipose enlargement and irrespective of the diet, they developed liver steatosis and progressive insulin resistance. Akr1b7 loss was associated with decreased PGF(2α) WAT contents. Cloprostenol (PGF(2α) agonist) administration to Akr1b7(-/-) mice normalized WAT expansion by affecting both de novo adipocyte differentiation and size. Treatment of 3T3-L1 adipocytes and Akr1b7(-/-) mice with cloprostenol suggested that decreased adipocyte size resulted from inhibition of lipogenic gene expression. Hence, Akr1b7 is a major regulator of WAT development through at least two PGF(2α)-dependent mechanisms: inhibition of adipogenesis and lipogenesis. These findings provide molecular rationale to explore the status of aldo-keto reductases in dysregulations of adipose tissue homeostasis.

  14. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Treatment of out-of-hospital supraventricular tachycardia: adenosine vs verapamil.

    Science.gov (United States)

    Brady, W J; DeBehnke, D J; Wickman, L L; Lindbeck, G

    1996-06-01

    To compare the use of adenosine and the use of verapamil as out-of-hospital therapy for supraventricular tachycardia (SVT). A period of prospective adenosine use (March 1993 to February 1994) was compared with a historical control period of verapamil use (March 1990 to February 1991) for SVT. Data were obtained for SVT patients treated in a metropolitan, fire-department-based paramedic system serving a population of approximately 1 million persons. Standard drug protocols were used and patient outcomes (i.e., conversion rates, complications, and recurrences) were monitored. During the adenosine treatment period, 105 patients had SVT; 87 (83%) received adenosine, of whom 60 (69%) converted to a sinus rhythm (SR). Vagal maneuvers (VM) resulted in restoration of SR in 8 patients (7.6%). Some patients received adenosine for non-SVT rhythms: 7 sinus tachycardia, 18 atrial fibrilation, 7 wide-complex tachycardia (WCT), and 2 ventricular tachycardia; no non-SVT rhythm converted to SR and none of these patients experienced an adverse effect. Twenty-five patients were hemodynamically unstable (systolic blood pressure fibrillation). Recurrence of SVT was noted in 2 adenosine patients and 2 verapamil patients in the out-of-hospital setting and in 23 adenosine patients and 15 verapamil patients after ED arrival, necessitating additional therapy (p = 0.48 and 0.88, for recurrence rates and types of additional therapies, respectively). Hospital diagnoses, outcomes, and ED dispositions were similar for the 2 groups. Adenosine and verapamil were equally successful in converting out-of-hospital SVT in patients with similar etiologies responsible for the SVT. Recurrence of SVT occurred at similar rates for the 2 medications. Rhythm misidentification remains a common issue in out-of-hospital cardiac care in this emergency medical services system.

  16. Regulation of adenosine deaminase (ADA) on induced mouse experimental autoimmune uveitis (EAU) ?

    OpenAIRE

    Liang, Dongchun; Zuo, Aijun; Zhao, Ronglan; Shao, Hui; Kaplan, Henry J.; Sun, Deming

    2016-01-01

    Adenosine is an important regulator of the immune response and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies have shown that adenosine receptor (AR) agonists can be either anti- or pro-inflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoim...

  17. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice.

    Science.gov (United States)

    Su, Jing; Wu, Wei; Huang, Shan; Xue, Ruidan; Wang, Yi; Wan, Yun; Zhang, Lv; Qin, Lang; Zhang, Qiongyue; Zhu, Xiaoming; Zhang, Zhaoyun; Ye, Hongying; Wu, Xiaohui; Li, Yiming

    2017-03-01

    Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders. Copyright © 2017 by the Endocrine Society.

  18. Adenosine receptor modulation of seizure susceptibility in rats

    International Nuclear Information System (INIS)

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A 1 adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of 3 H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A 1 adenosine receptors in the cerebral cortex

  19. Safety of adenosine in stress cerebral perfusion imaging

    International Nuclear Information System (INIS)

    Hu Pengcheng; Gu Yushen; Liu Wenguan; Xiu Yan; Zhu Weimin; Chen Shuguang; Shi Hongcheng

    2009-01-01

    Objective: To evaluate the safety of adenosine as pharmacological stress agents in stress cerebral perfusion imaging. Methods: Eighty patients under investigation for suspected cerebral vessel disease were recruited. Each had a resting scan and a stress scan on different days. The adenosine stress protocol was as same as the protocol used in adenosine stress myocardial perfusion imaging. Subjective and objective side-effects were investigated during pharmacological stress procedure. Results: All patients completed the 6 min infusion protocol without premature termination on safety criteria or due to intolerable symptoms. 46 patients had mild side effects. 20 patients (25%) had dizziness, 12 patients (15%) had palpitation, 1 patient (1%) was hypotensive, 7 patients (9%) had dyspnoea, 4 patients (5%) felt hot, 3 patients (4%) had sweat, 4 patients (5%) had nausea, 6 patients (8%) had flushing, 19 patients (24%) had chest pain, 6 patients (8%) had abdomen pain, 3 patients (4%) had abnormal taste and 1 patient (1%) were thirsty. Transient ST change occurred in only 1 patient. Conclusion: Adenosine stress cerebral perfusion imaging is a safe diagnostic method with mild side effects. (authors)

  20. The Adverse Events and Hemodynamic Effects of Adenosine-Based Cardiac MRI

    International Nuclear Information System (INIS)

    Voigtlander, Thomas; Magedanz, Annett; Schmermund, Axel; Bramlage, Peter; Elsaesser, Amelie; Kauczor, Hans-Ulrich; Mohrs, Oliver K.

    2011-01-01

    We wanted to prospectively assess the adverse events and hemodynamic effects associated with an intravenous adenosine infusion in patients with suspected or known coronary artery disease and who were undergoing cardiac MRI. One hundred and sixty-eight patients (64 ± 9 years) received adenosine (140 μg/kg/min) during cardiac MRI. Before and during the administration, the heart rate, systemic blood pressure, and oxygen saturation were monitored using a MRI-compatible system. We documented any signs and symptoms of potential adverse events. In total, 47 out of 168 patients (28%) experienced adverse effects, which were mostly mild or moderate. In 13 patients (8%), the adenosine infusion was discontinued due to intolerable dyspnea or chest pain. No high grade atrioventricular block, bronchospasm or other life-threatening adverse events occurred. The hemodynamic measurements showed a significant increase in the heart rate during adenosine infusion (69.3 ± 11.7 versus 82.4 ± 13.0 beats/min, respectively; p < 0.001). A significant but clinically irrelevant increase in oxygen saturation occurred during adenosine infusion (96 ± 1.9% versus 97 ± 1.3%, respectively; p < 0.001). The blood pressure did not significantly change during adenosine infusion (systolic: 142.8 ± 24.0 versus 140.9 ± 25.7 mmHg; diastolic: 80.2 ± 12.5 mmHg versus 78.9 ± 15.6, respectively). This study confirms the safety of adenosine infusion during cardiac MRI. A considerable proportion of all patients will experience minor adverse effects and some patients will not tolerate adenosine infusion. However, all adverse events can be successfully managed by a radiologist. The increased heart rate during adenosine infusion highlights the need to individually adjust the settings according to the patient, e.g., the number of slices of myocardial perfusion imaging.

  1. Role of Adenosine Receptor A2A in Traumatic Optic Neuropathies (Addendum)

    Science.gov (United States)

    2016-03-01

    diabetic retinopathy . Life Sci. 2013 Jul 30;93(2-3):78-88. doi: 10.1016/j.lfs.2013.05.024. Epub 2013 Jun 12.PMID:23770229 7 AIMS: This study was...undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling...reported recently that adenosine kinase upregulated in retinal tissue of diabetic retinopathy (Elsherbiny et al., 2013). Adenosine kinase (ADK) converts

  2. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins.

    Science.gov (United States)

    Moreno, Estefanía; Canet, Júlia; Gracia, Eduard; Lluís, Carme; Mallol, Josefa; Canela, Enric I; Cortés, Antoni; Casadó, Vicent

    2018-01-01

    Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR)-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA) is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26) and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A 2A R present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A 2A R and a modification of the bioluminescence resonance energy transfer (BRET) technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET), we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A 2A R involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A 2A R-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26) and dendritic cells (expressing A 2A R). This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector) without partitioning these functions in different subunits.

  3. Molecular Evidence of Adenosine Deaminase Linking Adenosine A2A Receptor and CD26 Proteins

    Directory of Open Access Journals (Sweden)

    Estefanía Moreno

    2018-02-01

    Full Text Available Adenosine is an endogenous purine nucleoside that acts in all living systems as a homeostatic network regulator through many pathways, which are adenosine receptor (AR-dependent and -independent. From a metabolic point of view, adenosine deaminase (ADA is an essential protein in the regulation of the total intracellular and extracellular adenosine in a tissue. In addition to its cytosolic localization, ADA is also expressed as an ecto-enzyme on the surface of different cells. Dipeptidyl peptidase IV (CD26 and some ARs act as binding proteins for extracellular ADA in humans. Since CD26 and ARs interact with ADA at opposite sites, we have investigated if ADA can function as a cell-to-cell communication molecule by bridging the anchoring molecules CD26 and A2AR present on the surfaces of the interacting cells. By combining site-directed mutagenesis of ADA amino acids involved in binding to A2AR and a modification of the bioluminescence resonance energy transfer (BRET technique that allows detection of interactions between two proteins expressed in different cell populations with low steric hindrance (NanoBRET, we show direct evidence of the specific formation of trimeric complexes CD26-ADA-A2AR involving two cells. By dynamic mass redistribution assays and ligand binding experiments, we also demonstrate that A2AR-NanoLuc fusion proteins are functional. The existence of this ternary complex is in good agreement with the hypothesis that ADA could bridge T-cells (expressing CD26 and dendritic cells (expressing A2AR. This is a new metabolic function for ecto-ADA that, being a single chain protein, it has been considered as an example of moonlighting protein, because it performs more than one functional role (as a catalyst, a costimulator, an allosteric modulator and a cell-to-cell connector without partitioning these functions in different subunits.

  4. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    Science.gov (United States)

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  5. Purification and properties of adenosine kinase from rat brain.

    Science.gov (United States)

    Yamada, Y; Goto, H; Ogasawara, N

    1980-12-04

    Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to apparent homogeneity from rat brain by (NH4)2SO4 fractionation, affinity chromatography on AMP-Sepharose 4B, gel filtration with Sephadex G-100, and DE-52 cellulose column chromatography. The yield was 56% of the initial activity with a final specific activity of 7.8 mumol/min per mg protein. The molecular weight was estimated as 38 000 by gel filtration with Sephadex G-100 and 41 000 by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 20% that of adenosine phosphorylation. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad pH optimum at pH 7.5-8.5. The Km value for adenosine was 0.2 microM and the maximum activity was observed at 0.5 microM. At higher concentrations of adenosine, the activity was strongly inhibited. The Km value for ATP was 0.02 mM and that for Mg2+ was 0.1 mM. GTP, dGTP, dATP and UTP were also proved to be effective phosphate donors. Co2+ was as effective as Mg2+, and Ca2+, Mn2+ or Ni2+ showed about 50% of the activity for Mg2+. The kinase is quite unstable, but stable in the presence of a high concentration of salt; e.g., 0.15 M KCl.

  6. Dwarfism and early death in mice lacking C-type natriuretic peptide

    Science.gov (United States)

    Chusho, Hideki; Tamura, Naohisa; Ogawa, Yoshihiro; Yasoda, Akihiro; Suda, Michio; Miyazawa, Takashi; Nakamura, Kenji; Nakao, Kazuki; Kurihara, Tatsuya; Komatsu, Yasato; Itoh, Hiroshi; Tanaka, Kiyoshi; Saito, Yoshihiko; Katsuki, Motoya; Nakao, Kazuwa

    2001-01-01

    Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia. PMID:11259675

  7. Chronic and acute adenosine A2A receptor blockade prevents long-term episodic memory disruption caused by acute cannabinoid CB1 receptor activation.

    Science.gov (United States)

    Mouro, Francisco M; Batalha, Vânia L; Ferreira, Diana G; Coelho, Joana E; Baqi, Younis; Müller, Christa E; Lopes, Luísa V; Ribeiro, Joaquim A; Sebastião, Ana M

    2017-05-01

    Cannabinoid-mediated memory impairment is a concern in cannabinoid-based therapies. Caffeine exacerbates cannabinoid CB 1 receptor (CB 1 R)-induced memory deficits through an adenosine A 1 receptor-mediated mechanism. We now evaluated how chronic or acute blockade of adenosine A 2A receptors (A 2A Rs) affects long-term episodic memory deficits induced by a single injection of a selective CB 1 R agonist. Long-term episodic memory was assessed by the novel object recognition (NOR) test. Mice received an intraperitoneal (i.p.) injection of the CB 1 /CB 2 receptor agonist WIN 55,212-2 (1 mg/kg) immediately after the NOR training, being tested for novelty recognition 24 h later. Anxiety levels were assessed by the Elevated Plus Maze test, immediately after the NOR. Mice were also tested for exploratory behaviour at the Open Field. For chronic A 2A R blockade, KW-6002 (istradefylline) (3 mg/kg/day) was administered orally for 30 days; acute blockade of A 2A Rs was assessed by i.p. injection of SCH 58261 (1 mg/kg) administered either together with WIN 55,212-2 or only 30 min before the NOR test phase. The involvement of CB 1 Rs was assessed by using the CB 1 R antagonist, AM251 (3 mg/kg, i.p.). WIN 55,212-2 caused a disruption in NOR, an action absent in mice also receiving AM251, KW-6002 or SCH 58261 during the encoding/consolidation phase; SCH 58251 was ineffective if present during retrieval only. No effects were detected in the Elevated Plus maze or Open Field Test. The finding that CB 1 R-mediated memory disruption is prevented by antagonism of adenosine A 2A Rs, highlights a possibility to prevent cognitive side effects when therapeutic application of CB 1 R drugs is desired. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cyclic adenosine 3:5-monophosphate binding proteins in Hartmannella culbertsoni

    International Nuclear Information System (INIS)

    Verma, A.K.; Krishna Murti, C.R.

    1976-01-01

    When 100, 000 g supernatant fractions of homogenates of Hartmannella culbertsoni were incubated with ('- 3 H)-cyclic adenosine 3 : 5 monophosphate and passed through a sephadex G-100 column, radioactivity appeared with protein fractions eluted after the void colume. About 75% radioactivity bound to these fractions was recovered as cyclic adenosine 3 : 5 monophosphate. Unlabelled cAMP diluted the amount of radioactivity bound. Adenosine, deoxyadenosine, 5-AMP, 3-AMP, ADP and ATP did not inhibit binding. (author)

  9. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Šefc, L.; Dušek, L.; Vacek, Antonín; Holá, Jiřina; Hoferová, Zuzana; Štreitová, Denisa

    2010-01-01

    Roč. 86, č. 8 (2010), s. 649-656 ISSN 0955-3002 R&D Projects: GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : ionising radiation * hematopoiesis * adenosine A3 receptors Subject RIV: BO - Biophysics Impact factor: 1.861, year: 2010

  10. Evidence for evoked release of adenosine and glutamate from cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Schousboe, A.; Frandsen, A.; Drejer, J.

    1989-01-01

    Evoked release of [ 3 H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10-100 microM glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 microM kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP

  11. Niemann-Pick C1-deficient mice lacking sterol O-acyltransferase 2 have less hepatic cholesterol entrapment and improved liver function.

    Science.gov (United States)

    Lopez, Adam M; Jones, Ryan Dale; Repa, Joyce J; Turley, Stephen D

    2018-06-07

    Cholesteryl esters are generated at multiple sites in the body by sterol O-acyltransferase 1 (SOAT1) or sterol O-acyltransferase 2 (SOAT2) in various cell types, and lecithin cholesterol acyltransferase (LCAT) in plasma. Esterified cholesterol (EC) and triacylglycerol (TAG) contained in lipoproteins cleared from the circulation via receptor-mediated or bulk-phase endocytosis are hydrolyzed by lysosomal acid lipase (LAL) within the late endosomal/lysosomal (E/L) compartment. Then, through the successive actions of Niemann-Pick C2 (NPC2) and Niemann-Pick C1 (NPC1), unesterified cholesterol (UC) is exported from the E/L compartment to the cytosol. Mutations in either NPC1 or NPC2 lead to continuing entrapment of UC in all organs, resulting in multisystem disease which includes hepatic dysfunction and in some cases liver failure. These studies investigated primarily whether elimination of SOAT2 in NPC1-deficient mice impacted hepatic UC sequestration, inflammation, and transaminase activities. Measurements were made in 7 wk-old mice fed a low-cholesterol chow diet or one enriched with cholesterol starting 2 wk before study. In the chow-fed mice, NPC1:SOAT2 double knockouts, compared to their littermates lacking only NPC1, had 20% less liver mass, 28% lower hepatic UC concentrations, and plasma ALT and AST activities that were decreased by 48% and 36%, respectively. mRNA expression levels for several markers of inflammation were all significantly lower in the NPC1 mutants lacking SOAT2. The existence of a new class of potent and selective SOAT2 inhibitors provides an opportunity for exploring if suppression of this enzyme could potentially become an adjunctive therapy for liver disease in NPC1 deficiency.

  12. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors

    DEFF Research Database (Denmark)

    Gnad, Thorsten; Scheibler, Saskia; von Kügelgen, Ivar

    2014-01-01

    hamster or rat. However, the role of adenosine in human BAT is unknown. Here we show that adenosine activates human and murine brown adipocytes at low nanomolar concentrations. Adenosine is released in BAT during stimulation of sympathetic nerves as well as from brown adipocytes. The adenosine A2A...

  13. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  14. Mice lacking the UbCKmit isoform of creatine kinase reveal slower spatial learning acquisition, diminished exploration and habituation, and reduced acoustic startle reflex responses.

    NARCIS (Netherlands)

    Streijger, F.; Jost, C.R.; Oerlemans, F.T.J.J.; Ellenbroek, B.A.; Cools, A.R.; Wieringa, B.; Zee, C.E.E.M. van der

    2004-01-01

    Brain-type creatine kinases B-CK (cytosolic) and UbCKmit (mitochondrial) are considered important for the maintenance and distribution of cellular energy in the central nervous system. Previously, we have demonstrated an abnormal behavioral phenotype in mice lacking the B-CK creatine kinase isoform,

  15. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose

    Science.gov (United States)

    Scharbarg, Emeric; Daenens, Marion; Lemaître, Frédéric; Geoffroy, Hélène; Guille-Collignon, Manon; Gallopin, Thierry; Rancillac, Armelle

    2016-01-01

    Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity. PMID:26755200

  16. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao, E-mail: li@sri.org [Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama 35205 (United States)

    2005-06-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3{sub 1}21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme.

  17. Overexpression, purification and crystallographic analysis of a unique adenosine kinase from Mycobacterium tuberculosis

    International Nuclear Information System (INIS)

    Wang, Yimin; Long, Mary C.; Ranganathan, Senthil; Escuyer, Vincent; Parker, William B.; Li, Rongbao

    2005-01-01

    Adenosine kinase from M. tuberculosis has been overexpressed, purified and crystallized in the presence of adenosine. Structure determination using molecular replacement with diffraction data collected at 2.2 Å reveals a dimeric structure. Adenosine kinase from Mycobacterium tuberculosis is the only prokaryotic adenosine kinase that has been isolated and characterized. The enzyme catalyzes the phosphorylation of adenosine to adenosine monophosphate and is involved in the activation of 2-methyladenosine, a compound that has demonstrated selective activity against M. tuberculosis. The mechanism of action of 2-methyladenosine is likely to be different from those of current tuberculosis treatments and this compound (or other adenosine analogs) may prove to be a novel therapeutic intervention for this disease. The M. tuberculosis adenosine kinase was overexpressed in Escherichia coli and the enzyme was purified with activity comparable to that reported previously. The protein was crystallized in the presence of adenosine using the vapour-diffusion method. The crystals diffracted X-rays to high resolution and a complete data set was collected to 2.2 Å using synchrotron radiation. The crystal belonged to space group P3 1 21, with unit-cell parameters a = 70.2, c = 111.6 Å, and contained a single protein molecule in the asymmetric unit. An initial structural model of the protein was obtained by the molecular-replacement method, which revealed a dimeric structure. The monomers of the dimer were related by twofold crystallographic symmetry. An understanding of how the M. tuberculosis adenosine kinase differs from the human homolog should aid in the design of more potent and selective antimycobacterial agents that are selectively activated by this enzyme

  18. Deletion of the distal COOH-terminus of the A2B adenosine receptor switches internalization to an arrestin- and clathrin-independent pathway and inhibits recycling.

    Science.gov (United States)

    Mundell, S J; Matharu, A-L; Nisar, S; Palmer, T M; Benovic, J L; Kelly, E

    2010-02-01

    We have investigated the effect of deletions of a postsynaptic density, disc large and zo-1 protein (PDZ) motif at the end of the COOH-terminus of the rat A(2B) adenosine receptor on intracellular trafficking following long-term exposure to the agonist 5'-(N-ethylcarboxamido)-adenosine. The trafficking of the wild type A(2B) adenosine receptor and deletion mutants expressed in Chinese hamster ovary cells was studied using an enzyme-linked immunosorbent assay in combination with immunofluorescence microscopy. The wild type A(2B) adenosine receptor and deletion mutants were all extensively internalized following prolonged treatment with NECA. The intracellular compartment through which the Gln(325)-stop receptor mutant, which lacks the Type II PDZ motif found in the wild type receptor initially trafficked was not the same as the wild type receptor. Expression of dominant negative mutants of arrestin-2, dynamin or Eps-15 inhibited internalization of wild type and Leu(330)-stop receptors, whereas only dominant negative mutant dynamin inhibited agonist-induced internalization of Gln(325)-stop, Ser(326)-stop and Phe(328)-stop receptors. Following internalization, the wild type A(2B) adenosine receptor recycled rapidly to the cell surface, whereas the Gln(325)-stop receptor did not recycle. Deletion of the COOH-terminus of the A(2B) adenosine receptor beyond Leu(330) switches internalization from an arrestin- and clathrin-dependent pathway to one that is dynamin dependent but arrestin and clathrin independent. The presence of a Type II PDZ motif appears to be essential for arrestin- and clathrin-dependent internalization, as well as recycling of the A(2B) adenosine receptor following prolonged agonist addition.

  19. Contraction induced secretion of VEGF from skeletal muscle cells is mediated by adenosine

    DEFF Research Database (Denmark)

    Høier, Birgitte; Olsen, Karina; Nyberg, Michael Permin

    2010-01-01

    and that the contraction induced secretion of VEGF is partially mediated via adenosine acting on A(2B) adenosine receptors. Moreover, the contraction induced secretion of VEGF protein from muscle is dependent on both PKA and MAPK activation, but only the MAPK pathway appears to be adenosine dependent.......The role of adenosine and contraction for secretion of VEGF in skeletal muscle was investigated in human subjects and rat primary skeletal muscle cells. Microdialysis probes were inserted into the thigh muscle of seven male subjects and dialysate was collected at rest, during infusion of adenosine...... and contraction caused secretion of VEGF (pcontraction induced secretion of VEGF protein was abolished by the A(2B) antagonist enprofyllin and markedly reduced by inhibition of PKA or MAPK. The results demonstrate that adenosine causes secretion of VEGF from human skeletal muscle cells...

  20. Oral tremor induced by the muscarinic agonist pilocarpine is suppressed by the adenosine A2A antagonists MSX-3 and SCH58261, but not the adenosine A1 antagonist DPCPX.

    Science.gov (United States)

    Collins, Lyndsey E; Galtieri, Daniel J; Brennum, Lise T; Sager, Thomas N; Hockemeyer, Jörg; Müller, Christa E; Hinman, James R; Chrobak, James J; Salamone, John D

    2010-02-01

    Tremulous jaw movements in rats, which can be induced by dopamine (DA) antagonists, DA depletion, and cholinomimetics, have served as a useful model for studies of tremor. Although adenosine A(2A) antagonists can reduce the tremulous jaw movements induced by DA antagonists and DA depletion, there are conflicting reports about the interaction between adenosine antagonists and cholinomimetic drugs. The present studies investigated the ability of adenosine antagonists to reverse the tremorogenic effect of the muscarinic agonist pilocarpine. While the adenosine A(2A) antagonist MSX-3 was incapable of reversing the tremulous jaw movements induced by the 4.0mg/kg dose of pilocarpine, both MSX-3 and the adenosine A(2A) antagonist SCH58261 reversed the tremulous jaw movements elicited by 0.5mg/kg pilocarpine. Systemic administration of the adenosine A(1) antagonist DPCPX failed to reverse the tremulous jaw movements induced by either an acute 0.5mg/kg dose of the cholinomimetic pilocarpine or the DA D2 antagonist pimozide, indicating that the tremorolytic effects of adenosine antagonists may be receptor subtype specific. Behaviorally active doses of MSX-3 and SCH 58261 showed substantial in vivo occupancy of A(2A) receptors, but DPCPX did not. The results of these studies support the use of adenosine A(2A) antagonists for the treatment of tremor. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Holm, Anne Trommelholt; Wulf-Johansson, Helle; Hvidsten, Svend

    2015-01-01

    to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated...... were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss...... of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes....

  2. Dwarfism in Mice Lacking Collagen-binding Integrins α2β1 and α11β1 Is Caused by Severely Diminished IGF-1 Levels*

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W. A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis. PMID:22210772

  3. Dwarfism in mice lacking collagen-binding integrins α2β1 and α11β1 is caused by severely diminished IGF-1 levels.

    Science.gov (United States)

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F; Ehlen, Harald W A; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-02-24

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggesting a systemic cause for the overall size reduction. In accordance with a critical role of insulin-like growth factor (IGF)-1 in growth control and bone mineralization, circulating IGF-1 levels in the sera of mice lacking either α2β1 or α11β1 or both integrins were sharply reduced by 39%, 64%, or 81% of normal levels, respectively. Low hepatic IGF-1 production resulted from diminished growth hormone-releasing hormone expression in the hypothalamus and, subsequently, reduced growth hormone expression in the pituitary glands of these mice. These findings point out a novel role of collagen-binding integrin receptors in the control of growth hormone/IGF-1-dependent biological activities. Thus, coupling hormone secretion to extracellular matrix signaling via integrins represents a novel concept in the control of endocrine homeostasis.

  4. Adenosine monophosphate is elevated in the bronchoalveolar lavage fluid of mice with acute respiratory toxicity induced by nanoparticles with high surface hydrophobicity.

    Science.gov (United States)

    Dailey, Lea Ann; Hernández-Prieto, Raquel; Casas-Ferreira, Ana Maria; Jones, Marie-Christine; Riffo-Vasquez, Yanira; Rodríguez-Gonzalo, Encarnación; Spina, Domenico; Jones, Stuart A; Smith, Norman W; Forbes, Ben; Page, Clive; Legido-Quigley, Cristina

    2015-02-01

    Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.e. pegylated lipid nanocapsules, polyvinyl acetate nanoparticles and polystyrene beads; listed in order of increasing hydrophobicity). Broncho-alveolar lavage (BAL) fluid was collected from mice exposed to nanoparticles at a surface area dose of 220 cm(2) and metabolite fingerprints were acquired via ultra pressure liquid chromatography-mass spectrometry-based metabolomics. Particles with high surface hydrophobicity were pro-inflammatory. Multivariate analysis of the resultant small molecule fingerprints revealed clear discrimination between the vehicle control and polystyrene beads (p < 0.05), as well as between nanoparticles of different surface hydrophobicity (p < 0.0001). Further investigation of the metabolic fingerprints revealed that adenosine monophosphate (AMP) concentration in BAL correlated with neutrophilia (p < 0.01), CXCL1 levels (p < 0.05) and nanoparticle surface hydrophobicity (p < 0.001). Our results suggest that extracellular AMP is an intermediary metabolite involved in adenine nucleotide-regulated neutrophilic inflammation as well as tissue damage, and could potentially be used to monitor nanoparticle-induced responses in the lung following pulmonary administration.

  5. Synthesis of carbon-11 labelled cyclopentyltheophylline: A radioligand for PET studies of adenosine receptors

    International Nuclear Information System (INIS)

    Yorke, J.C.; Prenant, C.; Crouzel, C.

    1990-01-01

    Adenosine is presently considered as a neuromodulator, and an adenosine system has been described including secretory neurons, with a diffused distribution, specific receptors and a re-uptake system distributed heterogeneously in different anatomic areas. In order to localize the adenosine receptors in vivo by PET, the authors have synthesized the carbon-11 labelled 8-cyclopentyltheophylline, a known adenosine antagonist of A 1 receptors

  6. The fruit of Acanthopanax senticosus (Rupr. et Maxim.) Harms improves insulin resistance and hepatic lipid accumulation by modulation of liver adenosine monophosphate-activated protein kinase activity and lipogenic gene expression in high-fat diet-fed obese mice.

    Science.gov (United States)

    Saito, Tetsuo; Nishida, Miyako; Saito, Masafumi; Tanabe, Akari; Eitsuka, Takahiro; Yuan, Shi-Hua; Ikekawa, Nobuo; Nishida, Hiroshi

    2016-10-01

    Obesity-associated insulin resistance is a major risk factor for most metabolic diseases, including dyslipidemia and type 2 diabetes. Acanthopanax senticosus (Rupr. et Maxim.) Harms (Goka) root has been used in traditional Chinese medicine for treatment of diabetes and other conditions; however, little is known about the effects of Goka fruit (GF). Goka fruit is rich in anthocyanin, which has beneficial effects on obesity and insulin resistance via activation of adenosine monophosphate-activated protein kinase (AMPK). We hypothesized that GF can improve obesity-associated insulin resistance. The aim of the present study was to investigate whether GF improves insulin resistance in high-fat diet (HFD)-induced obese mice. High-fat diet mice treated with GF (500 and 1000 mg/kg) for 12 weeks showed an improved glucose tolerance and insulin sensitivity, as well as reduced plasma insulin and liver lipid accumulation. Moreover, GF administration to HFD mice resulted in down-regulation of fatty acid synthase expression and up-regulation of cholesterol 7-alpha-hydroxylase expression in the liver. Notably, AMPK phosphorylation in the liver increased after GF administration. In summary, GF supplementation improved obesity-associated insulin resistance and hepatic lipid accumulation through modulation of AMPK activity and lipid metabolism-associated gene expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury

    Science.gov (United States)

    Gaudin, Alice; Yemisci, Müge; Eroglu, Hakan; Lepetre-Mouelhi, Sinda; Turkoglu, Omer Faruk; Dönmez-Demir, Buket; Caban, Seçil; Sargon, Mustafa Fevzi; Garcia-Argote, Sébastien; Pieters, Grégory; Loreau, Olivier; Rousseau, Bernard; Tagit, Oya; Hildebrandt, Niko; Le Dantec, Yannick; Mougin, Julie; Valetti, Sabrina; Chacun, Hélène; Nicolas, Valérie; Desmaële, Didier; Andrieux, Karine; Capan, Yilmaz; Dalkara, Turgay; Couvreur, Patrick

    2014-12-01

    There is an urgent need to develop new therapeutic approaches for the treatment of severe neurological trauma, such as stroke and spinal cord injuries. However, many drugs with potential neuropharmacological activity, such as adenosine, are inefficient upon systemic administration because of their fast metabolization and rapid clearance from the bloodstream. Here, we show that conjugation of adenosine to the lipid squalene and the subsequent formation of nanoassemblies allows prolonged circulation of this nucleoside, providing neuroprotection in mouse stroke and rat spinal cord injury models. The animals receiving systemic administration of squalenoyl adenosine nanoassemblies showed a significant improvement of their neurologic deficit score in the case of cerebral ischaemia, and an early motor recovery of the hindlimbs in the case of spinal cord injury. Moreover, in vitro and in vivo studies demonstrated that the nanoassemblies were able to extend adenosine circulation and its interaction with the neurovascular unit. This Article shows, for the first time, that a hydrophilic and rapidly metabolized molecule such as adenosine may become pharmacologically efficient owing to a single conjugation with the lipid squalene.

  8. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  9. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  10. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  11. Female mice lacking cholecystokinin 1 receptors have compromised neurogenesis, and fewer dopaminergic cells in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Yi eSui

    2013-03-01

    Full Text Available Neurogenesis in the adult rodent brain is largely restricted to the subependymal zone (SVZ of the lateral ventricle and subgranular zone (SGZ of the dentate gyrus (DG. We examined whether cholecystokinin (CCK through actions mediated by CCK1 receptors (CCK1R is involved in regulating neurogenesis. Proliferating cells in the SVZ, measured by 5-bromo-2-deoxyuridine (BrdU injected 2 hours prior to death or by immunoreactivity against Ki67, were reduced by 37% and 42%, respectively, in female (but not male mice lacking CCK1Rs (CCK1R-/- compared to wild-type (WT. Generation of neuroblasts in the SVZ and rostral migratory stream was also affected, since the number of doublecortin (DCX-immunoreactive (ir neuroblasts in these regions decreased by 29%. In the SGZ of female CCK1R-/- mice, BrdU-positive (+ and Ki67-ir cells were reduced by 38% and 56%, respectively, while DCX-ir neuroblasts were down 80%. Subsequently, the effect of reduced SVZ/SGZ proliferation on the generation and survival of mature adult-born cells in female CCK1R-/- mice was examined. In the OB granule cell layer (GCL, the number of neuronal nuclei (NeuN-ir and calretinin-ir cells was stable compared to WT, and 42 days after BrdU injections, the number of BrdU+ cells co-expressing GABA- or NeuN-like immunoreactivity (LI was similar. Compared to WT, the granule cell layer of the DG in female CCK1R-/- mice had a similar number of calbindin-ir cells and BrdU+ cells co-expressing calbindin-LI 42 days after BrdU injections. However, the OB glomerular layer (GL of CCK1R-/- female mice had 11% fewer NeuN-ir cells, 23% less TH-ir cells, and a 38% and 29% reduction in BrdU+ cells that co-expressed TH-LI or GABA-LI, respectively. We conclude that CCK, via CCK1Rs, is involved in regulating the generation of proliferating cells and neuroblasts in the adult female mouse brain, and mechanisms are in place to maintain steady neuronal populations in the OB and DG when the rate of proliferation is

  12. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  13. Endogenous Parathyroid Hormone Promotes Fracture Healing by Increasing Expression of BMPR2 through cAMP/PKA/CREB Pathway in Mice

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-06-01

    Full Text Available Background/Aims: Endogenous parathyroid hormone (PTH plays an important role in fracture healing. This study investigated whether endogenous PTH regulates fracture healing by bone morphogenetic protein (BMP and/or the transforming growth factor-β (TGF-β signaling pathway. Methods: Eight-week-old wild-type (WT and PTH-knockout (PTH KO male mice were selected, and models of open right-femoral fracture were constructed. Fracture healing and callus characteristics of mice in the two groups were compared by X-ray, micro-computed tomography, histological, and immunohistochemical examinations. Bone marrow mesenchymal stem cells (BMMSCs of 8-week-old WT and PTHKO male mice were obtained and induced into osteoblasts and chondrocytes. Results: We found that expression levels of Runt-related transcription factor (RUNX2, bone morphogenetic protein-receptor-type Ⅱ (BMPR2, phosphorylated Smad 1/5/8, and phosphorylated cyclic adenosine monophosphate-responsive element binding protein (CREB in the callus of PTHKO mice were significantly decreased, whereas no significant difference in expression of SOX9, TGF-βR2,or pSMAD2/3 was observed between PTHKO and WT mice. Additionally, the activity of osteoblast alkaline phosphatase was low at 7 days post-induction, and was upregulated by addition of PTH or dibutyryl cyclic adenosine monophosphate (dbcAMP to the cell culture. Furthermore, H89 (protein kinase A inhibitoreliminated the simulating effects of PTH and dbcAMP, and a low concentration of cyclic adenosine monophosphate (cAMP was observed in PTHKO mouse BMMSCs. Conclusion: These results suggested that endogenous PTH enhanced BMPR2 expression by a cAMP/PKA/CREB pathway in osteoblasts, and increased RUNX2 expression through transduction of the BMP/pSMAD1/5/8 signaling pathway.

  14. Acute hyperammonemia and systemic inflammation is associated with increased extracellular brain adenosine in rats

    DEFF Research Database (Denmark)

    Bjerring, Peter Nissen; Dale, Nicholas; Larsen, Fin Stolze

    2015-01-01

    ) and cerebral blood flow (CBF). We measured the adenosine concentration with biosensors in rat brain slices exposed to ammonia and in a rat model with hyperammonemia and systemic inflammation. Exposure to ammonia in concentrations from 0.15-10 mM led to increases in the cortical adenosine concentration up to 18......Acute liver failure (ALF) can lead to brain edema, cerebral hyperperfusion and intracranial hypertension. These complications are thought to be mediated by hyperammonemia and inflammation leading to altered brain metabolism. As increased levels of adenosine degradation products have been found...... in brain tissue of patients with ALF we investigated whether hyperammonemia could induce adenosine release in brain tissue. Since adenosine is a potent vasodilator and modulator of cerebral metabolism we furthermore studied the effect of adenosine receptor ligands on intracranial pressure (ICP...

  15. Effects of high doses of intracoronary adenosine on the assessment of fractional flow reserve

    Directory of Open Access Journals (Sweden)

    Ahmed Khashaba

    2014-03-01

    Conclusions: Intracoronary adenosine, at doses higher than currently suggested, lows obtaining FFR values similar to IV adenosine. Intravenous adenosine, which remains the gold standard, might thus be reserved for those lesions with equivocal FFR values.

  16. Restoration of adenosine deaminase-deficient human thymocyte development in vitro by inhibition of deoxynucleoside kinases.

    Science.gov (United States)

    Joachims, Michelle L; Marble, Patrick A; Laurent, Aletha B; Pastuszko, Peter; Paliotta, Marco; Blackburn, Michael R; Thompson, Linda F

    2008-12-01

    Mutations in the gene encoding adenosine deaminase (ADA), a purine salvage enzyme, lead to immunodeficiency in humans. Although ADA deficiency has been analyzed in cell culture and murine models, information is lacking concerning its impact on the development of human thymocytes. We have used chimeric human/mouse fetal thymic organ culture to study ADA-deficient human thymocyte development in an "in vivo-like" environment where toxic metabolites accumulate in situ. Inhibition of ADA during human thymocyte development resulted in a severe reduction in cellular expansion as well as impaired differentiation, largely affecting mature thymocyte populations. Thymocyte differentiation was not blocked at a discrete stage; rather, the paucity of mature thymocytes was due to the induction of apoptosis as evidenced by activation of caspases and was accompanied by the accumulation of intracellular dATP. Inhibition of adenosine kinase and deoxycytidine kinase prevented the accumulation of dATP and restored thymocyte differentiation and proliferation. Our work reveals that multiple deoxynucleoside kinases are involved in the phosphorylation of deoxyadenosine when ADA is absent, and suggests an alternate therapeutic strategy for treatment of ADA-deficient patients.

  17. Radio-chromatographic determination of plasmatic adenosine deaminase (A.D.)

    International Nuclear Information System (INIS)

    Chivot, J.J.; Depernet, D.; Caen, J.

    1970-01-01

    We were able, by using a radio-chromatographic method, to measure an adenosine deaminase activity in normal human heparinized platelet-poor plasma, which can degrade 0.016 μM adenosine. This activity suppressed by heating 56 C for 30 minutes is inhibited by high concentrations of urea and is proportional to the amount of plasma, source of enzyme, in the systems. (authors) [fr

  18. Lack of caching of direct-seeded Douglas fir seeds by deer mice

    International Nuclear Information System (INIS)

    Sullivan, T.P.

    1978-01-01

    Seed caching by deer mice was investigated by radiotagging seeds in forest and clear-cut areas in coastal British Columbia. Deer mice tend to cache very few Douglas fir seeds in the fall when the seed is uniformly distributed and is at densities comparable with those used in direct-seeding programs. (author)

  19. Amyotrophic Lateral Sclerosis (ALS and Adenosine Receptors

    Directory of Open Access Journals (Sweden)

    Ana M. Sebastião

    2018-04-01

    Full Text Available In the present review we discuss the potential involvement of adenosinergic signaling, in particular the role of adenosine receptors, in amyotrophic lateral sclerosis (ALS. Though the literature on this topic is not abundant, the information so far available on adenosine receptors in animal models of ALS highlights the interest to continue to explore the role of these receptors in this neurodegenerative disease. Indeed, all motor neurons affected in ALS are responsive to adenosine receptor ligands but interestingly, there are alterations in pre-symptomatic or early symptomatic stages that mirror those in advanced disease stages. Information starts to emerge pointing toward a beneficial role of A2A receptors (A2AR, most probably at early disease states, and a detrimental role of caffeine, in clear contrast with what occurs in other neurodegenerative diseases. However, some evidence also exists on a beneficial action of A2AR antagonists. It may happen that there are time windows where A2AR prove beneficial and others where their blockade is required. Furthermore, the same changes may not occur simultaneously at the different synapses. In line with this, it is not fully understood if ALS is a dying back disease or if it propagates in a centrifugal way. It thus seems crucial to understand how motor neuron dysfunction occurs, how adenosine receptors are involved in those dysfunctions and whether the early changes in purinergic signaling are compensatory or triggers for the disease. Getting this information is crucial before starting the design of purinergic based strategies to halt or delay disease progression.

  20. Fractional Flow Reserve: Intracoronary versus intravenous adenosine induced maximal coronary hyperemia

    Directory of Open Access Journals (Sweden)

    P.S. Sandhu

    2013-03-01

    Conclusions: This study suggests that IC adenosine is equivalent to IV infusion for the determination of FFR. The administration of IC adenosine is easy to use, cost effective, safe and associated with fewer systemic events.

  1. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  2. Generation of mice lacking DUF1220 protein domains

    DEFF Research Database (Denmark)

    Keeney, J G; O'Bleness, M S; Anderson, N

    2015-01-01

    associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise...... function, and potentially suggests a role in developmental metabolism. Finally, the substantially reduced fecundity we observe associated with KO mice argues that the ancestral DUF1220 domain provides an important biological functionthat is critical to survivability and reproductive success....

  3. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  4. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  5. Role of adenosine as adjunctive therapy in acute myocardial infarction.

    Science.gov (United States)

    Forman, Mervyn B; Stone, Gregg W; Jackson, Edwin K

    2006-01-01

    Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.

  6. Human adenosine deaminase: properties and turnover in cultured T and B lymphoblasts

    International Nuclear Information System (INIS)

    Daddona, P.E.

    1981-01-01

    In this study, the properties and rate of turnover of adenosine deaminase are compared in cultured human T and B lymphoblast cell lines. 1) Relative to B lymphoblasts, the level of adenosine deaminase activity in extracts of T lymphoblast cell lines (MOLT-4, RPMI-8402, CCRF-CEM, and CCRF-HSB-2) is elevated 7-14-fold and differs by 2-fold between the C cell lines. 2) In both T and B lymphoblast extracts, the enzyme is apparently identical, based on K/sub m/ for adenosine and deoxyadenosine, K/sub i/ for inosine, V/sub max/ for adenosine, /sub S20,w/, isoelectric pH, and heat stability. Furthermore, by radioimmunoassay, the quantity of adenosine deaminase-immunocreative protein is proportional to the level of enzyme activity in all cell lines studies. 3) Using a purification and selective immunoprecipitation technique, the enzyme turnover could be assessed in cell lines labeled with [ 35 S]methionine. The apparent rate of adenosine deaminase synthesis, relative to total protein, is 2-fold faster in both T cell lines (RPMI-8402 and CCRF-CEM) than in the B cell lines (MGL-8 and GM-130). The apparent half-life (tsub1/2) for the enzyme degradation is 19 and 39 h, respectively, in CCFR-CEM and RPMI-8402, while the tsub1/2 in both B cell lines is 7-9 h. From the net rate of synthesis and degradation, the T cell lines, respectively, exhibit approximately a 6- and 12-fold difference in adenosine deaminase turnover relative to B cells, consistent with the observed differences in enzyme activity. This study suggests that while adenosine deaminase is apparently identical in both T and B lymphoblast cell lines, alterations in both the rate of enzyme synthesis and degradation contribute to its high steady state level in T cells

  7. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola [Cornell University, Ithaca, NY 14853-1301 (United States); Università di Sassari, (Italy); Zhang, Yang [Cornell University, Ithaca, NY 14853-1301 (United States); Allegrini, Simone [Università di Sassari, (Italy); Tozzi, Maria Grazia [Università di Pisa, (Italy); Sgarrella, Francesco [Università di Sassari, (Italy); Ealick, Steven E., E-mail: see3@cornell.edu [Cornell University, Ithaca, NY 14853-1301 (United States)

    2012-03-01

    Adenosine phosphorylase from B. cereus shows a strong preference for adenosine over other 6-oxopurine nucleosides. Mutation of Asp204 to asparagine reduces the efficiency of adenosine cleavage but does not affect inosine cleavage, effectively reversing the substrate specificity. The structures of D204N complexes explain these observations. Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2′-deoxy)nucleosides, generating the corresponding free base and (2′-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2–1.4 Å). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  8. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    ...) that are leading candidate modulators of PD risk. In Year 4 we have obtained and reported evidence that the adenosine receptor blocker caffeine as well as specific genetic depletion of the A2A subtype of adenosine receptor...

  9. Isoflurane produces sustained cardiac protection after ischemia-reperfusion injury in mice.

    Science.gov (United States)

    Tsutsumi, Yasuo M; Patel, Hemal H; Lai, N Chin; Takahashi, Toshiyuki; Head, Brian P; Roth, David M

    2006-03-01

    Isoflurane reduces myocardial ischemia-reperfusion injury within hours to days of reperfusion. Whether isoflurane produces sustained cardiac protection has never been examined. The authors studied isoflurane-induced cardiac protection in the intact mouse after 2 h and 2 weeks of reperfusion and determined the dependence of this protection on adenosine triphosphate-dependent potassium channels and the relevance of this protection to myocardial function and apoptosis. Mice were randomly assigned to receive oxygen or isoflurane for 30 min with 15 min of washout. Some mice received mitochondrial (5-hydroxydecanoic acid) or sarcolemmal (HMR-1098) adenosine triphosphate-dependent potassium channel blockers with or without isoflurane. Mice were then subjected to a 30-min coronary artery occlusion followed by 2 h or 2 weeks of reperfusion. Infarct size was determined at 2 h and 2 weeks of reperfusion. Cardiac function and apoptosis were determined 2 weeks after reperfusion. Isoflurane did not change hemodynamics. Isoflurane reduced infarct size after reperfusion when compared with the control groups (27.7 +/- 6.3 vs. 41.7 +/- 6.4% at 2 h and 19.6 +/- 5.9 vs. 28.8 +/- 9.0% at 2 weeks). Previous administration of 5-hydroxydecanoic acid, but not HMR-1098, abolished isoflurane-induced cardiac protection. At 2 weeks, left ventricular end-diastolic diameter was decreased significantly and end-systolic pressure and maximum and minimum dP/dt were improved by isoflurane. Isoflurane-treated mice subjected to ischemia and 2 weeks of reperfusion showed less expression of proapoptotic genes, significantly decreased expression of cleaved caspase-3, and significantly decreased deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling-positive nuclei compared with the control group. Cardiac protection induced by isoflurane against necrotic and apoptotic cell death is associated with an acute memory period that is sustained and functionally relevant 2 weeks after

  10. Topical adenosine increases thick hair ratio in Japanese men with androgenetic alopecia.

    Science.gov (United States)

    Watanabe, Y; Nagashima, T; Hanzawa, N; Ishino, A; Nakazawa, Y; Ogo, M; Iwabuchi, T; Tajima, M

    2015-12-01

    Hair thickness is more important than hair density in the appearance of baldness in male with androgenetic alopecia (AGA). Adenosine improves hair loss by stimulating hair growth and by thickening hair shafts in women. The objective of this study was to evaluate the hair growth efficacy and safety of topical adenosine in men with AGA. A lotion containing either adenosine or niacinamide was administered to the scalps of 102 Japanese men twice daily for 6 months in a double-blind, randomized study. Efficacy was evaluated by dermatologists who assessed the quality of the hair and by calculating the percentages of vellus-like and thick hairs among the vertex hairs, as well as hair density. Adenosine was significantly (P < 0.05) superior to niacinamide in terms of global improvement of AGA, increase in the percentage of thick hairs (at least 60 μm) and self-assessment of hair thickness by the study participants. No causal adverse event due to the adenosine lotion was observed. These data indicate that adenosine increases thick hair ratio in Japanese men with AGA, and this compound is useful for the improvement of AGA. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Time Window Is Important for Adenosine Preventing Cold-induced Injury to the Endothelium.

    Science.gov (United States)

    Li, Yan; Hu, Xiao-Xia; Fu, Li; Chen, Jing; Lu, Li-He; Liu, Xiang; Xu, Zhe; Zhou, Li; Wang, Zhi-Ping; Zhang, Xi; Ou, Zhi-Jun; Ou, Jing-Song

    2017-06-01

    Cold cardioplegia is used to induce heart arrest during cardiac surgery. However, endothelial function may be compromised after this procedure. Accordingly, interventions such as adenosine, that mimic the effects of preconditioning, may minimize endothelial injury. Herein, we investigated whether adenosine prevents cold-induced injury to the endothelium. Cultured human cardiac microvascular endothelial cells were treated with adenosine for different durations. Phosphorylation and expression of endothelial nitric oxide synthase (eNOS), p38MAPK, ERK1/2, and p70S6K6 were measured along with nitric oxide (NO) production using diaminofluorescein-2 diacetate (DAF-2DA) probe. Cold-induced injury by hypothermia to 4°C for 45 minutes to mimic conditions of cold cardioplegia during open heart surgery was induced in human cardiac microvascular endothelial cells. Under basal conditions, adenosine stimulated NO production, eNOS phosphorylation at serine 1177 from 5 minutes to 4 hours and inhibited eNOS phosphorylation at threonine 495 from 5 minutes to 6 hours, but increased phosphorylation of ERK1/2, p38MAPK, and p70S6K only after exposure for 5 minutes. Cold-induced injury inhibited NO production and the phosphorylation of the different enzymes. Importantly, adenosine prevented these effects of hypothermic injury. Our data demonstrated that adenosine prevents hypothermic injury to the endothelium by activating ERK1/2, eNOS, p70S6K, and p38MAPK signaling pathways at early time points. These findings also indicated that 5 minutes after administration of adenosine or release of adenosine is an important time window for cardioprotection during cardiac surgery.

  12. Adenosine-loaded dissolving microneedle patches to improve skin wrinkles, dermal density, elasticity and hydration.

    Science.gov (United States)

    Kang, G; Tu, T N T; Kim, S; Yang, H; Jang, M; Jo, D; Ryu, J; Baek, J; Jung, H

    2018-04-01

    Although dissolving microneedle patches have been widely studied in the cosmetics field, no comparisons have been drawn with the topical applications available for routine use. In this study, two wrinkle-improving products, adenosine-loaded dissolving microneedle patches and an adenosine cream, were evaluated for efficacy, with respect to skin wrinkling, dermal density, elasticity, and hydration, and safety in a clinical test on the crow's feet area. Clinical efficacy and safety tests were performed for 10 weeks on 22 female subjects with wrinkles around their eyes. The adenosine-loaded dissolving microneedle patch was applied once every 3 days, in the evening, for 8 weeks to the designated crow's feet area. The adenosine cream was applied two times per day, in the morning and evening, for 8 weeks to the other crow's feet area. Skin wrinkling, dermal density, elasticity, and hydration were measured by using PRIMOS ® premium, Dermascan ® C, Cutometer ® MPA580, and Corneometer ® CM 825, respectively. In addition, subjective skin irritation was evaluated by self-observation, and objective skin irritation was assessed through expert interviews. The adenosine-loaded dissolving microneedle patches had a similar or better efficacy than the adenosine cream. Both groups showed statistically significant efficacy for almost all parameters (P hydration efficacy (P skin-improvement parameters, adenosine-loaded dissolving microneedle patches showed the same or better effect than the adenosine cream, although the weekly adenosine dose was 140 times lower. The dissolving microneedle patches caused no adverse reactions. These adenosine-loaded dissolving microneedle patches are expected to be safe, effective, and novel cosmetics for skin improvement. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  13. Defective thrombus formation in mice lacking endogenous factor VII activating protease (FSAP).

    Science.gov (United States)

    Subramaniam, Saravanan; Thielmann, Ina; Morowski, Martina; Pragst, Ingo; Sandset, Per Morten; Nieswandt, Bernhard; Etscheid, Michael; Kanse, Sandip M

    2015-04-01

    Factor VII (FVII) activating protease (FSAP) is a circulating protease with a putative function in blood coagulation and fibrinolysis. Genetic epidemiological studies have implied a role for FSAP in carotid stenosis, stroke and thrombosis. To date, no in vivo evidence is available to support these claims. We have, for the first time, used FSAP-/- mice to define its role in thrombosis and haemostasis in vivo and to characterise the molecular mechanisms involved. FeCl3-induced arterial thrombosis in carotid and mesenteric artery revealed that the occlusion time was significantly increased in FSAP-/- mice (pendogenous FSAP impaired the formation of stable, occlusive thrombi in mice. The underlying in vivo effect of FSAP is more likely to be related to the modulation of TFPI rather than FVIIa.

  14. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Science.gov (United States)

    Gajardo, Ivana; Salazar, Claudia S.; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M.; Martínez, Agustín D.; Muñoz, Pablo; Ardiles, Álvaro O.

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes. PMID:29692709

  15. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice

    Directory of Open Access Journals (Sweden)

    Ivana Gajardo

    2018-04-01

    Full Text Available Long-term potentiation (LTP and long-term depression (LTD are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1 is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO mice and wild type (WT littermates in a visual and hidden version of the Morris water maze (MWM. We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs, which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  16. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial.

    Science.gov (United States)

    Mahaffey, K W; Puma, J A; Barbagelata, N A; DiCarli, M F; Leesar, M A; Browne, K F; Eisenberg, P R; Bolli, R; Casas, A C; Molina-Viamonte, V; Orlandi, C; Blevins, R; Gibbons, R J; Califf, R M; Granger, C B

    1999-11-15

    The Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial was designed to test the hypothesis that adenosine as an adjunct to thrombolysis would reduce myocardial infarct size. Reperfusion therapy for acute myocardial infarction (MI) has been shown to reduce mortality, but reperfusion itself also may have deleterious effects. The AMISTAD trial was a prospective, open-label trial of thrombolysis with randomization to adenosine or placebo in 236 patients within 6 h of infarction onset. The primary end point was infarct size as determined by Tc-99 m sestamibi single-photon emission computed tomography (SPECT) imaging 6+/-1 days after enrollment based on multivariable regression modeling to adjust for covariates. Secondary end points were myocardial salvage index and a composite of in-hospital clinical outcomes (death, reinfarction, shock, congestive heart failure or stroke). In all, 236 patients were enrolled. Final infarct size was assessed in 197 (83%) patients. There was a 33% relative reduction in infarct size (p = 0.03) with adenosine. There was a 67% relative reduction in infarct size in patients with anterior infarction (15% in the adenosine group vs. 45.5% in the placebo group) but no reduction in patients with infarcts located elsewhere (11.5% for both groups). Patients randomized to adenosine tended to reach the composite clinical end point more often than those assigned to placebo (22% vs. 16%; odds ratio, 1.43; 95% confidence interval, 0.71 to 2.89). Many agents thought to attenuate reperfusion injury have been unsuccessful in clinical investigation. In this study, adenosine resulted in a significant reduction in infarct size. These data support the need for a large clinical outcome trial.

  17. Adenosine A(2A) receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC.

    Science.gov (United States)

    Brand, Frank; Klutz, Athena M; Jacobson, Kenneth A; Fredholm, Bertil B; Schulte, Gunnar

    2008-08-20

    G protein-coupled receptors, such as the adenosine A(2A) receptor, are dynamic proteins, which undergo agonist-dependent redistribution from the cell surface to intracellular membranous compartments, such as endosomes. In order to study the kinetics of adenosine A(2A) receptor redistribution in living cells, we synthesized a novel fluorescent agonist, Alexa488-APEC. Alexa488-APEC binds to adenosine A(2A) (K(i)=149+/-27 nM) as well as A(3) receptors (K(i)=240+/-160 nM) but not to adenosine A(1) receptors. Further, we characterized the dose-dependent increase in Alexa488-APEC-induced cAMP production as well as cAMP response element binding (CREB) protein phosphorylation, verifying the ligand's functionality at adenosine A(2A) but not A(2B) receptors. In live-cell imaging studies, Alexa488-APEC-induced adenosine A(2A) receptor internalization, which was blocked by the competitive reversible antagonist ZM 241385 and hyperosmolaric sucrose. Further, internalized adenosine A(2A) receptors co-localized with clathrin and Rab5, indicating that agonist stimulation promotes adenosine A(2A) receptor uptake through a clathrin-dependent mechanism to Rab5-positive endosomes. The basic characterization of Alexa488-APEC described here showed that it provides a useful tool for tracing adenosine A(2A) receptors in vitro.

  18. Adenosine: an activity-dependent axonal signal regulating MAP kinase and proliferation in developing Schwann cells.

    Science.gov (United States)

    Stevens, Beth; Ishibashi, Tomoko; Chen, Jiang-Fan; Fields, R Douglas

    2004-02-01

    Nonsynaptic release of ATP from electrically stimulated dorsal root gangion (DRG) axons inhibits Schwann cell (SC) proliferation and arrests SC development at the premyelinating stage, but the specific types of purinergic receptor(s) and intracellular signaling pathways involved in this form of neuron-glia communication are not known. Recent research shows that adenosine is a neuron-glial transmitter between axons and myelinating glia of the CNS. The present study investigates the possibility that adenosine might have a similar function in communicating between axons and premyelinating SCs. Using a combination of pharmacological and molecular approaches, we found that mouse SCs in culture express functional adenosine receptors and ATP receptors, a far more complex array of purinergic receptors than thought previously. Adenosine, but not ATP, activates ERK/MAPK through stimulation of cAMP-linked A2(A) adenosine receptors. Both ATP and adenosine inhibit proliferation of SCs induced by platelet-derived growth factor (PDGF), via mechanisms that are partly independent. In contrast to ATP, adenosine failed to inhibit the differentiation of SCs to the O4+ stage. This indicates that, in addition to ATP, adenosine is an activity-dependent signaling molecule between axons and premyelinating Schwann cells, but that electrical activity, acting through adenosine, has opposite effects on the differentiation of myelinating glia in the PNS and CNS.

  19. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization.

    Science.gov (United States)

    Alam, M Samiul; Costales, Matthew G; Cavanaugh, Christopher; Williams, Kristina

    2015-05-05

    Adenosine, an immunomodulatory biomolecule, is produced by the ecto-enzymes CD39 (nucleoside triphosphate dephosphorylase) and CD73 (ecto-5'-nucleotidase) by dephosphorylation of extracellular ATP. CD73 is expressed by many cell types during injury, infection and during steady-state conditions. Besides host cells, many bacteria also have CD39-CD73-like machinery, which helps the pathogen subvert the host inflammatory response. The major function for adenosine is anti-inflammatory, and most recent research has focused on adenosine's control of inflammatory mechanisms underlying various autoimmune diseases (e.g., colitis, arthritis). Although adenosine generated through CD73 provides a feedback to control tissue damage mediated by a host immune response, it can also contribute to immunosuppression. Thus, inflammation can be a double-edged sword: it may harm the host but eventually helps by killing the invading pathogen. The role of adenosine in dampening inflammation has been an area of active research, but the relevance of the CD39/CD73-axis and adenosine receptor signaling in host defense against infection has received less attention. Here, we review our recent knowledge regarding CD73 expression during murine Salmonellosis and Helicobacter-induced gastric infection and its role in disease pathogenesis and bacterial persistence. We also explored a possible role for the CD73/adenosine pathway in regulating innate host defense function during infection.

  20. Alterations in electrocardiogram of adenosine test for 99Tcm-MIBI myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Xie Boqia; Tian Yueqin; Zheng Lihui

    2011-01-01

    Objective: To analyze alterations in electrocardiogram (ECG) of adenosine test in 99 Tc m -MIBI myocardial perfusion imaging(MPI)SPECT study. Methods: A total of 641 patients were included in the study. The patients each underwent 99 Tc m -MIBI MPI with adenosine test. The ECGs were taken before, during, and after adenosine infusion. Results: In all, abnormal ECGs were found in 205(32.0%) patients. During adenosine infusion, 20.6%(132/641) of patients suffered from arrhythmia, 29.5%(39/132) had atrial premature beats, 34.1% (45/132) had premature ventricular beats, and 6.1% (8/132) had sinoatrial block. In addition, 5.3% (7/132) had first-, 24.2% (32/132) had second-, and 0.8% (1/132) had third-degree atrioventricular block (AVB). After adenosine infusion, 4.4%( 28/641) of patients suffered from arrhythmia, 57.1% (16/28) had atrial premature beats, 39.3% (11/28) had premature ventricular beats, and 3.6% (1/28) had sinoatrial block. The perfusion images showed ischemia in 36 patients and infarction in 8 patients. Adenosine infusion was terminated in 39 patients (6.1%) because of poorly tolerated side effects. However, no death or acute myocardial infarction occurred in the study. Conclusions: Adenosine pharmacologic test for 99 Tc m -MIBI MPI may result in relatively high incidence of arrhythmia in ECG monitoring. (authors)

  1. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  2. The Biology of Autoimmune Response in the Scurfy Mice that Lack the CD4+Foxp3+ Regulatory T-Cells.

    Science.gov (United States)

    Ju, Shyr-Te; Sharma, Rahul; Gaskin, Felicia; Kung, John T; Fu, Shu Man

    2012-04-04

    Due to a mutation in the Foxp3 transcription factor, Scurfy mice lack regulatory T-cells that maintain self-tolerance of the immune system. They develop multi-organ inflammation (MOI) and die around four weeks old. The affected organs are skin, tail, lungs and liver. In humans, endocrine and gastrointestinal inflammation are also observed, hence the disease is termed IPEX (Immunodysregulation, Polyendocrinopathy, Enteropathy, X-linked) syndrome. The three week period of fatal MOI offers a useful autoimmune model in which the controls by genetics, T-cell subsets, cytokines, and effector mechanisms could be efficiently investigated. In this report, we will review published work, summarize our recent studies of Scurfy double mutants lacking specific autoimmune-related genes, discuss the cellular and cytokine controls by these genes on MOI, the organ-specificities of the MOI controlled by environments, and the effector mechanisms regulated by specific Th cytokines, including several newly identified control mechanisms for organ-specific autoimmune response.

  3. Age-dependent changes of presynaptic neuromodulation via A1-adenosine receptors in rat hippocampal slices.

    Science.gov (United States)

    Sperlágh, B; Zsilla, G; Baranyi, M; Kékes-Szabó, A; Vizi, E S

    1997-10-01

    The presynaptic neuromodulation of stimulation-evoked release of [3H]-acetylcholine by endogenous adenosine, via A1-adenosine receptors, was studied in superfused hippocampal slices taken from 4-, 12- and 24-month-old rats. 8-Cyclopentyl-1,3-dimethylxanthine (0.25 microM), a selective A1-receptor antagonist, increased significantly the electrical field stimulation-induced release of [3H]-acetylcholine in slices prepared from 4- and 12-month-old rats, showing a tonic inhibitory action of endogenous adenosine via stimulation of presynaptic A1-adenosine receptors. In contrast, 8-cyclopentyl-1,3-dimethylxanthine had no effect in 24-month-old rats. 2-Chloroadenosine (10 microM), an adenosine receptor agonist decreased the release of [3H]-acetylcholine in slices taken from 4- and 12-month-old rats, and no significant change was observed in slices taken from 24-month-old rats. In order to show whether the number/or affinity of the A1-receptors was affected in aged rats, [3H]-8-cyclopentyl-1,3-dimethylxanthine binding was studied in hippocampal membranes prepared from rats of different ages. Whereas the Bmax value was significantly lower in 2-year-old rats than in younger counterparts, the dissociation constant (Kd) was not affected by aging, indicating that the density rather than the affinity of adenosine receptors was altered. Endogenous adenosine levels present in the extracellular space were also measured in the superfusate by high performance liquid chromatography (HPLC) coupled with ultraviolet detection, and an age-related increase in the adenosine level was found. In summary, our results indicate that during aging the level of adenosine in the extracellular fluid is increased in the hippocampus. There is a downregulation and reduced responsiveness of presynaptic adenosine A1-receptors, and it seems likely that these changes are due to the enhanced adenosine level in the extracellular space.

  4. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine

    Czech Academy of Sciences Publication Activity Database

    Žurovec, Michal; Doležal, Tomáš; Gaži, Michal; Pavlová, Eva; Bryant, P. J.

    2002-01-01

    Roč. 99, č. 7 (2002), s. 4403-4408 ISSN 0027-8424 R&D Projects: GA ČR GA204/01/1022; GA AV ČR IAA5007107 Institutional research plan: CEZ:AV0Z5007907 Keywords : adenosine daminase * minimal medium Subject RIV: CE - Biochemistry Impact factor: 10.701, year: 2002

  5. Differentially expressed genes in embryonic cardiac tissues of mice lacking Folr1 gene activity

    Directory of Open Access Journals (Sweden)

    Schwartz Robert J

    2007-11-01

    Full Text Available Abstract Background Heart anomalies are the most frequently observed among all human congenital defects. As with the situation for neural tube defects (NTDs, it has been demonstrated that women who use multivitamins containing folic acid peri-conceptionally have a reduced risk for delivering offspring with conotruncal heart defects 123. Cellular folate transport is mediated by a receptor or binding protein and by an anionic transporter protein system. Defective function of the Folr1 (also known as Folbp1; homologue of human FRα gene in mice results in inadequate transport, accumulation, or metabolism of folate during cardiovascular morphogenesis. Results We have observed cardiovascular abnormalities including outflow tract and aortic arch arterial defects in genetically compromised Folr1 knockout mice. In order to investigate the molecular mechanisms underlying the failure to complete development of outflow tract and aortic arch arteries in the Folr1 knockout mouse model, we examined tissue-specific gene expression difference between Folr1 nullizygous embryos and morphologically normal heterozygous embryos during early cardiac development (14-somite stage, heart tube looping (28-somite stage, and outflow track septation (38-somite stage. Microarray analysis was performed as a primary screening, followed by investigation using quantitative real-time PCR assays. Gene ontology analysis highlighted the following ontology groups: cell migration, cell motility and localization of cells, structural constituent of cytoskeleton, cell-cell adhesion, oxidoreductase, protein folding and mRNA processing. This study provided preliminary data and suggested potential candidate genes for further description and investigation. Conclusion The results suggested that Folr1 gene ablation and abnormal folate homeostasis altered gene expression in developing heart and conotruncal tissues. These changes affected normal cytoskeleton structures, cell migration and

  6. The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices.

    Science.gov (United States)

    Bennett, G C; Boarder, M R

    2000-10-01

    Evidence has previously been presented that P1 receptors for adenosine, and P2 receptors for nucleotides such as ATP, regulate stimulus-evoked release of biogenic amines from nerve terminals in the brain. Here we investigated whether adenosine and nucleotides exert presynaptic control over depolarisation-elicited glutamate release. Slices of rat brain cortex were perfused and stimulated with pulses of 46 mM K(+) in the presence of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (0.2 mM). High K(+) substantially increased efflux of glutamate from the slices. Basal glutamate release was unchanged by the presence of nucleotides or adenosine at concentrations of 300 microM. Adenosine, ATP, ADP and adenosine 5'-O-(3-thiotriphoshate) at 300 microM attenuated depolarisation-evoked release of glutamate. However UTP, 2-methylthio ATP, 2-methylthio ADP, and alpha,beta-methylene ATP at 300 microM had no effect on stimulated glutamate efflux. Adenosine deaminase blocked the effect of adenosine, but left the response to ATP unchanged. The A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine antagonised the inhibitory effect of both adenosine and ATP. Cibacron blue 3GA inhibited stimulus-evoked glutamate release when applied alone. When cibacron blue 3GA was present with ATP, stimulus-evoked glutamate release was almost eliminated. However, this P2 antagonist had no effect on the inhibition by adenosine. These results show that the release of glutamate from depolarised nerve terminals of the rat cerebral cortex is inhibited by adenosine and ATP. ATP appears to act directly and not through conversion to adenosine.

  7. Artificial oxygen carrier with pharmacologic actions of adenosine-5'-triphosphate, adenosine, and reduced glutathione formulated to treat an array of medical conditions.

    Science.gov (United States)

    Simoni, Jan; Simoni, Grace; Moeller, John F; Feola, Mario; Wesson, Donald E

    2014-08-01

    Effective artificial oxygen carriers may offer a solution to tackling current transfusion medicine challenges such as blood shortages, red blood cell storage lesions, and transmission of emerging pathogens. These products, could provide additional therapeutic benefits besides oxygen delivery for an array of medical conditions. To meet these needs, we developed a hemoglobin (Hb)-based oxygen carrier, HemoTech, which utilizes the concept of pharmacologic cross-linking. It consists of purified bovine Hb cross-linked intramolecularly with open ring adenosine-5'-triphosphate (ATP) and intermolecularly with open ring adenosine, and conjugated with reduced glutathione (GSH). In this composition, ATP prevents Hb dimerization, and adenosine promotes formation of Hb polymers as well as counteracts the vasoconstrictive and pro-inflammatory properties of Hb via stimulation of adenosine receptors. ATP also serves as a regulator of vascular tone through activation of purinergic receptors. GSH blocks Hb's extravasation and glomerular filtration by lowering the isoelectric point, as well as shields heme from nitric oxide and reactive oxygen species. HemoTech and its manufacturing technology have been broadly tested, including viral and prion clearance validation studies and various nonclinical pharmacology, toxicology, genotoxicity, and efficacy tests. The clinical proof-of-concept was carried out in sickle cell anemia subjects. The preclinical and clinical studies indicate that HemoTech works as a physiologic oxygen carrier and has efficacy in treating: (i) acute blood loss anemia by providing a temporary oxygen bridge while stimulating an endogenous erythropoietic response; (ii) sickle cell disease by counteracting vaso-occlusive/inflammatory episodes and anemia; and (iii) ischemic vascular diseases particularly thrombotic and restenotic events. The pharmacologic cross-linking of Hb with ATP, adenosine, and GSH showed usefulness in designing an artificial oxygen carrier for

  8. In vivo effects of adenosine 5´-triphosphate on rat preneoplastic liver

    Directory of Open Access Journals (Sweden)

    Ana V. Frontini

    2011-04-01

    Full Text Available The utilization of adenosine 5´-triphosphate (ATP infusions to inhibit the growth of some human and animals tumors was based on the anticancer activity observed in in vitro and in vivo experiments, but contradictory results make the use of ATP in clinical practice rather controversial. Moreover, there is no literature regarding the use of ATP infusions to treat hepatocarcinomas. The purpose of this study was to investigate whether ATP prevents in vivo oncogenesis in very-early-stage cancer cells in a well characterized two-stage model of hepatocarcinogenesis in the rat. As we could not preclude the possible effect due to the intrinsic properties of adenosine, a known tumorigenic product of ATP hydrolysis, the effect of the administration of adenosine was also studied. Animals were divided in groups: rats submitted to the two stage preneoplasia initiation/promotion model of hepatocarcinogenesis, rats treated with intraperitoneal ATP or adenosine during the two phases of the model and appropriate control groups. The number and volume of preneoplastic foci per liver identified by the expression of glutathione S-transferase placental type and the number of proliferating nuclear antigen positive cells significantly increased in ATP and adenosine treated groups. Taken together, these results indicate that in this preneoplastic liver model, ATP as well as adenosine disturb the balance between apoptosis and proliferation contributing to malignant transformation.

  9. Effect of limb demand ischemia on autophagy and morphology in mice.

    Science.gov (United States)

    Albadawi, Hassan; Oklu, Rahmi; Milner, John D; Uong, Thuy P; Yoo, Hyung-Jin; Austen, William G; Watkins, Michael T

    2015-10-01

    Obesity is a major risk factor for diabetes and peripheral arterial disease, which frequently leads to lower limb demand ischemia. Skeletal muscle autophagy and mitochondrial biogenesis are important processes for proper oxidative capacity and energy metabolism, which are compromised in diabetes. This study compares autophagy, mitochondrial biogenesis, energy metabolism, and morphology in the hind limbs of obese diabetic mice subjected to demand or sedentary ischemia. Unilateral hind limb demand ischemia was created in a group of diet-induced obese mice after femoral artery ligation and 4 wk of daily exercise. A parallel group of mice underwent femoral artery ligation but remained sedentary for 4 wk. Hind limb muscles were analyzed for markers of autophagy, mitochondrial biogenesis, adenosine triphosphate, and muscle tissue morphology. At the end of the 4-wk exercise period, demand ischemia increased the autophagy mediator Beclin-1, but it did not alter the autophagy indicator, LC3B-II/I ratio, or markers of mitochondrial biogenesis, optic atrophy/dynamin-related protein. In contrast, exercise significantly increased the level of mitochondrial protein-succinate dehydrogenase subunit-A and reduced adipocyte accumulation and the percentage of centrally nucleated myofibers in the demand ischemia limb. In addition, demand ischemia resulted in decreased uncoupling protein-3 levels without altering muscle adenosine triphosphate or pS473-Akt levels. Limb demand ischemia markedly decreased adipocyte accumulation and enhanced muscle regeneration in obese mice, but it did not appear to enhance autophagy, mitochondrial biogenesis, energy metabolism, or insulin sensitivity. Future studies aimed at evaluating novel therapies that enhance autophagy and mitochondrial biogenesis in diabetes with peripheral arterial disease are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Adenosine A2A Receptor Modulates the Activity of Globus Pallidus Neurons in Rats

    Directory of Open Access Journals (Sweden)

    Hui-Ling Diao

    2017-11-01

    Full Text Available The globus pallidus is a central nucleus in the basal ganglia motor control circuit. Morphological studies have revealed the expression of adenosine A2A receptors in the globus pallidus. To determine the modulation of adenosine A2A receptors on the activity of pallidal neurons in both normal and parkinsonian rats, in vivo electrophysiological and behavioral tests were performed in the present study. The extracellular single unit recordings showed that micro-pressure administration of adenosine A2A receptor agonist, CGS21680, regulated the pallidal firing activity. GABAergic neurotransmission was involved in CGS21680-induced modulation of pallidal neurons via a PKA pathway. Furthermore, application of two adenosine A2A receptor antagonists, KW6002 or SCH442416, mainly increased the spontaneous firing of pallidal neurons, suggesting that endogenous adenosine system modulates the activity of pallidal neurons through adenosine A2A receptors. Finally, elevated body swing test (EBST showed that intrapallidal microinjection of adenosine A2A receptor agonist/antagonist induced ipsilateral/contralateral-biased swing, respectively. In addition, the electrophysiological and behavioral findings also revealed that activation of dopamine D2 receptors by quinpirole strengthened KW6002/SCH442416-induced excitation of pallidal activity. Co-application of quinpirole with KW6002 or SCH442416 alleviated biased swing in hemi-parkinsonian rats. Based on the present findings, we concluded that pallidal adenosine A2A receptors may be potentially useful in the treatment of Parkinson's disease.

  11. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  12. Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy.

    Science.gov (United States)

    Tang, Z; Diamond, M A; Chen, J-M; Holly, T A; Bonow, R O; Dasgupta, A; Hyslop, T; Purzycki, A; Wagner, J; McNamara, D M; Kukulski, T; Wos, S; Velazquez, E J; Ardlie, K; Feldman, A M

    2007-10-01

    The goal of this experiment was to identify the presence of genetic variants in the adenosine receptor genes and assess their relationship to infarct size in a population of patients with ischemic cardiomyopathy. Adenosine receptors play an important role in protecting the heart during ischemia and in mediating the effects of ischemic preconditioning. We sequenced DNA samples from 273 individuals with ischemic cardiomyopathy and from 203 normal controls to identify the presence of genetic variants in the adenosine receptor genes. Subsequently, we analyzed the relationship between the identified genetic variants and infarct size, left ventricular size, and left ventricular function. Three variants in the 3'-untranslated region of the A(1)-adenosine gene (nt 1689 C/A, nt 2206 Tdel, nt 2683del36) and an informative polymorphism in the coding region of the A3-adenosine gene (nt 1509 A/C I248L) were associated with changes in infarct size. These results suggest that genetic variants in the adenosine receptor genes may predict the heart's response to ischemia or injury and might also influence an individual's response to adenosine therapy.

  13. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Gopinath, G.; Naojee, S.A.; Croasdale, J.; Johnson, G.; Hilson, A.J.W.; Buscombe, J.R.

    2003-01-01

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  14. Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1.

    Science.gov (United States)

    Mitani, Takakazu; Watanabe, Shun; Yoshioka, Yasukiyo; Katayama, Shigeru; Nakamura, Soichiro; Ashida, Hitoshi

    2017-12-01

    Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4week-old) were administered with theobromine (0.1g/kg) for 7days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBPβ protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1 (AR1), and AR1 knockdown inhibited theobromine-induced C/EBPβ degradation. Theobromine increased sumoylation of C/EBPβ at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPβ degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBPβ degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  16. Extracellular adenosine-induced Rac1 activation in pulmonary endothelium: Molecular mechanisms and barrier-protective role.

    Science.gov (United States)

    Kovacs-Kasa, Anita; Kim, Kyung Mi; Cherian-Shaw, Mary; Black, Stephen M; Fulton, David J; Verin, Alexander D

    2018-08-01

    We have previously shown that Gs-coupled adenosine receptors (A2a) are primarily involved in adenosine-induced human pulmonary artery endothelial cell (HPAEC) barrier enhancement. However, the downstream events that mediate the strengthening of the endothelial cell (EC) barrier via adenosine signaling are largely unknown. In the current study, we tested the overall hypothesis that adenosine-induced Rac1 activation and EC barrier enhancement is mediated by Gs-dependent stimulation of cAMP-dependent Epac1-mediated signaling cascades. Adenoviral transduction of HPAEC with constitutively-active (C/A) Rac1 (V12Rac1) significantly increases transendothelial electrical resistance (TER) reflecting an enhancement of the EC barrier. Conversely, expression of an inactive Rac1 mutant (N17Rac1) decreases TER reflecting a compromised EC barrier. The adenosine-induced increase in TER was accompanied by activation of Rac1, decrease in contractility (MLC dephosphorylation), but not Rho inhibition. Conversely, inhibition of Rac1 activity attenuates adenosine-induced increase in TER. We next examined the role of cAMP-activated Epac1 and its putative downstream targets Rac1, Vav2, Rap1, and Tiam1. Depletion of Epac1 attenuated the adenosine-induced Rac1 activation and the increase in TER. Furthermore, silencing of Rac1 specific guanine nucleotide exchange factors (GEFs), Vav2 and Rap1a expression significantly attenuated adenosine-induced increases in TER and activation of Rac1. Depletion of Rap1b only modestly impacted adenosine-induced increases in TER and Tiam1 depletion had no effect on adenosine-induced Rac1 activation and TER. Together these data strongly suggest that Rac1 activity is required for adenosine-induced EC barrier enhancement and that the activation of Rac1 and ability to strengthen the EC barrier depends, at least in part, on cAMP-dependent Epac1/Vav2/Rap1-mediated signaling. © 2017 Wiley Periodicals, Inc.

  17. Altered sarco(endo)plasmic reticulum calcium adenosine triphosphatase 2a content: Targets for heart failure therapy.

    Science.gov (United States)

    Liu, Gang; Li, Si Qi; Hu, Ping Ping; Tong, Xiao Yong

    2018-05-01

    Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is responsible for transporting cytosolic calcium into the sarcoplasmic reticulum and endoplasmic reticulum to maintain calcium homeostasis. Sarco(endo)plasmic reticulum calcium adenosine triphosphatase is the dominant isoform expressed in cardiac tissue, which is regulated by endogenous protein inhibitors, post-translational modifications, hormones as well as microRNAs. Dysfunction of sarco(endo)plasmic reticulum calcium adenosine triphosphatase is associated with heart failure, which makes sarco(endo)plasmic reticulum calcium adenosine triphosphatase a promising target for heart failure therapy. This review summarizes current approaches to ameliorate sarco(endo)plasmic reticulum calcium adenosine triphosphatase function and focuses on phospholamban, an endogenous inhibitor of sarco(endo)plasmic reticulum calcium adenosine triphosphatase, pharmacological tools and gene therapies.

  18. Variations of L- and D-amino acid levels in the brain of wild-type and mutant mice lacking D-amino acid oxidase activity.

    Science.gov (United States)

    Du, Siqi; Wang, Yadi; Weatherly, Choyce A; Holden, Kylie; Armstrong, Daniel W

    2018-05-01

    D-amino acids are now recognized to be widely present in organisms and play essential roles in biological processes. Some D-amino acids are metabolized by D-amino acid oxidase (DAO), while D-Asp and D-Glu are metabolized by D-aspartate oxidase (DDO). In this study, levels of 22 amino acids and the enantiomeric compositions of the 19 chiral proteogenic entities have been determined in the whole brain of wild-type ddY mice (ddY/DAO +/+ ), mutant mice lacking DAO activity (ddY/DAO -/- ), and the heterozygous mice (ddY/DAO +/- ) using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). No significant differences were observed for L-amino acid levels among the three strains except for L-Trp which was markedly elevated in the DAO +/- and DAO -/- mice. The question arises as to whether this is an unknown effect of DAO inactivity. The three highest levels of L-amino acids were L-Glu, L-Asp, and L-Gln in all the three strains. The lowest L-amino acid level was L-Cys in ddY/DAO +/- and ddY/DAO -/- mice, while L-Trp showed the lowest level in ddY/DAO +/+ mice. The highest concentration of D-amino acid was found to be D-Ser, which also had the highest % D value (~ 25%). D-Glu had the lowest % D value (~ 0.01%) in all the three strains. Significant differences of D-Leu, D-Ala, D-Ser, D-Arg, and D-Ile were observed in ddY/DAO +/- and ddY/DAO -/- mice compared to ddY/DAO +/+ mice. This work provides the most complete baseline analysis of L- and D-amino acids in the brains of ddY/DAO +/+ , ddY/DAO +/- , and ddY/DAO -/- mice yet reported. It also provides the most effective and efficient analytical approach for measuring these analytes in biological samples. This study provides fundamental information on the role of DAO in the brain and may be relevant for future development involving novel drugs for DAO regulation.

  19. Safety of adenosine stress myocardial perfusion imaging by a one-route infusion protocol

    International Nuclear Information System (INIS)

    Kawai, Yuko; Kishino, Koh

    2006-01-01

    When adenosine stress testing is performed, a vein is generally accessed in each arm. To determine whether the one-route infusion protocol, that is, infusion via one upper arm vein, is safe, myocardial perfusion imaging was performed during adenosine stress testing in patients with angina pectoris. Sixty-six consecutive patients (43 men, 68±11 years of age) with suspected coronary artery disease were enrolled in this study. For the stress test, adenosine was injected at 120 μg/kg/min for 6 minutes. Systolic blood pressure, diastolic blood pressure, and heart rate did not show any significant changes after injection of the adenosine and radioisotope (RI) tracer. Adverse events during infusion of the adenosine were seen in 42 (64%) patients and included chest discomfort/oppression in 17 (26%) and dyspnea/throat discomfort in 15 (23%). On the other hand, adverse events just after infusion of the RI tracer occurred in 5 (8%) patients and included chest oppression in 2 (3%) and dyspnea in 1 (2%). Almost all adverse events disappeared quickly without treatment. Therefore, we concluded that adenosine stress myocardial perfusion imaging using a one-route infusion protocol is safe and useful to do for patients unable to secure veins in both arms. (author)

  20. Ethanol-induced increase in portal blood flow: Role of acetate and A1- and A2-adenosine receptors

    International Nuclear Information System (INIS)

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H.

    1988-01-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A 1 -adenosine receptor agonist N-6-cyclohexyl adenosine and the A 2 -agonist 5'-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A 2 -subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues

  1. Adenosine receptors in rat and human pancreatic ducts stimulate chloride transport

    DEFF Research Database (Denmark)

    Novak, Ivana; Hede, Susanne; Hansen, Mette

    2007-01-01

    , it was found that 58% of PANC-1 cells responded to adenosine, whereas only 9% of CFPAC-1 cells responded. Adenosine elicited Ca(2+) signals only in a few rat and human duct cells, which did not seem to correlate with Cl(-) signals. A(2A) receptors were localized in the luminal membranes of rat pancreatic ducts......, plasma membrane of many PANC-1 cells, but only a few CFPAC-1 cells. Taken together, our data indicate that A(2A) receptors open Cl(-) channels in pancreatic ducts cells with functional CFTR. We propose that adenosine can stimulate pancreatic secretion and, thereby, is an active player in the acini...

  2. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders

    NARCIS (Netherlands)

    Calker, D; Biber, K

    2005-01-01

    Adenosine receptors were classified into A(1)- and A(2)-receptors in the laboratory of Bernd Hamprecht more than 25 years ago. Adenosine receptors are instrumental to the neurotrophic effects of glia cells. Both microglia and astrocytes release after stimulation via adenosine receptors factors that

  3. Caffeine May Reduce Perceived Sweet Taste in Humans, Supporting Evidence That Adenosine Receptors Modulate Taste.

    Science.gov (United States)

    Choo, Ezen; Picket, Benjamin; Dando, Robin

    2017-09-01

    Multiple recent reports have detailed the presence of adenosine receptors in sweet sensitive taste cells of mice. These receptors are activated by endogenous adenosine in the plasma to enhance sweet signals within the taste bud, before reporting to the primary afferent. As we commonly consume caffeine, a powerful antagonist for such receptors, in our daily lives, an intriguing question we sought to answer was whether the caffeine we habitually consume in coffee can inhibit the perception of sweet taste in humans. 107 panelists were randomly assigned to 2 groups, sampling decaffeinated coffee supplemented with either 200 mg of caffeine, about the level found in a strong cup of coffee, or an equally bitter concentration of quinine. Participants subsequently performed sensory testing, with the session repeated in the alternative condition in a second session on a separate day. Panelists rated both the sweetened coffee itself and subsequent sucrose solutions as less sweet in the caffeine condition, despite the treatment having no effect on bitter, sour, salty, or umami perception. Panelists were also unable to discern whether they had consumed the caffeinated or noncaffeinated coffee, with ratings of alertness increased equally, but no significant improvement in reaction times, highlighting coffee's powerful placebo effect. This work validates earlier observations in rodents in a human population. © 2017 Institute of Food Technologists®.

  4. Effects of adenosine on pressure-flow relationships in an in vitro model of compartment syndrome.

    Science.gov (United States)

    Shrier, I; Baratz, A; Magder, S

    1997-03-01

    Blood flow through skeletal muscle is best modeled with a vascular waterfall at the arteriolar level. Under these conditions, flow is determined by the difference between perfusion pressure (Pper) and the waterfall pressure (Pcrit), divided by the arterial resistance (Ra). By pump perfusing an isolated canine gastrocnemius muscle (n = 6) after it was placed within an airtight box, with and without adenosine infusion, we observed an interaction between the pressure surrounding a muscle (as occurs in compartment syndrome) and baseline vascular tone. We titrated adenosine concentration to double baseline flow. We measured Pcrit and Ra at box pressures (Pbox), which resulted in 100 (Pbox = 0), 90, 75, and 50% flow without adenosine; and 200, 180, 150, 100, and 50% flow with adenosine. Without adenosine, each 10% decline in flow was associated with a 5.7 mmHg increase in Pcrit (P 0.9). We conclude that increases in pressure surrounding a muscle limit flow primarily through changes in Pcrit with and without adenosine-induced vasodilation. The interaction between Pbox and adenosine with respect to Pcrit but not Ra suggests that Pbox affects the tone of the vessels responsible for Pcrit but not Ra.

  5. Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis

    Science.gov (United States)

    2015-10-01

    Chemother 6:98–101. Bukoski RD, Sparks HV, and Mela -Riker LM (1986) A role for mitochondria in myocardial adenosine production. Adv Exp Med Biol 194:157–167...Bukoski RD, Sparks HV, and Mela LM (1983) Rat heart mitochondria release adenosine. Biochem Biophys Res Commun 113:990–995. Burnstock G, Fredholm BB

  6. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.

    Science.gov (United States)

    Wang, Yan; Quagliarini, Fabiana; Gusarova, Viktoria; Gromada, Jesper; Valenzuela, David M; Cohen, Jonathan C; Hobbs, Helen H

    2013-10-01

    Angiopoietin-like protein (ANGPTL)8 (alternatively called TD26, RIFL, Lipasin, and Betatrophin) is a newly recognized ANGPTL family member that has been implicated in both triglyceride (TG) and glucose metabolism. Hepatic overexpression of ANGPTL8 causes hypertriglyceridemia and increased insulin secretion. Here we examined the effects of inactivating Angptl8 on TG and glucose metabolism in mice. Angptl8 knockout (Angptl8(-/-)) mice gained weight more slowly than wild-type littermates due to a selective reduction in adipose tissue accretion. Plasma levels of TGs of the Angptl8(-/-) mice were similar to wild-type animals in the fasted state but paradoxically decreased after refeeding. The lower TG levels were associated with both a reduction in very low density lipoprotein secretion and an increase in lipoprotein lipase (LPL) activity. Despite the increase in LPL activity, the uptake of very low density lipoprotein-TG is markedly reduced in adipose tissue but preserved in hearts of fed Angptl8(-/-) mice. Taken together, these data indicate that ANGPTL8 plays a key role in the metabolic transition between fasting and refeeding; it is required to direct fatty acids to adipose tissue for storage in the fed state. Finally, glucose and insulin tolerance testing revealed no alterations in glucose homeostasis in mice fed either a chow or high fat diet. Thus, although absence of ANGPTL8 profoundly disrupts TG metabolism, we found no evidence that it is required for maintenance of glucose homeostasis.

  7. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    Science.gov (United States)

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  8. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    Science.gov (United States)

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Effects of adenosine on the organ injury and dysfunction caused by hemorrhagic shock

    International Nuclear Information System (INIS)

    Soliman, M.M.

    2009-01-01

    Objectives: Adenosine has been shown in animal and human studies to decrease the post-ischemic myocardial injury by lowering the levels of tumor necrosis factor-a. The objectives of the study was to examine the protective effects of adenosine on the organ injury (liver, kidney, pancreas) associated with hemorrhagic shock in rats. Methodology: The study was conducted at Cardiovascular Physiology laboratory, King Saud University, Riyadh in 2007-2008. Anesthetized male Sprague- Dawley rats were assigned to hemorrhage and resuscitation treated with 20mM adenosine , untreated, or similar time matched control groups (n=6 per group). Rats were hemorrhaged for one hour using a reservoir model. Arterial blood pressure was monitored for one hour, and maintained at a mean arterial blood pressure of 40 mmHg. Adenosine 20mM was injected intra-arterially, before resuscitation in the adenosine treated group. Resuscitation was performed by re infusion of the sheded blood for 30 minutes. Arterial blood samples were analyzed for biochemical indicators of multiple organ injury: 1) liver function: aspartate aminotransferase (AST), alanine aminotransferase (ALT), 2) renal function: urea and creatinine, 3) pancreatic function: amylase. Results: In the control group there was no significant rise in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. While in the adenosine treated group, resuscitation from one hour of hemorrhagic shock resulted in significant rises in the serum levels of (i) urea and creatinine, (ii) aspartate aminotransferase (AST) and alanine aminotransferase (ALT), (iii) amylase. Treatment of rats with 20mM adenosine before resuscitation following one hour of hemorrhagic shock decreased the multiple organ injury and dysfunction caused by hemorrhagic shock. Conclusion: Adenosine attenuated the renal, liver and pancreatic injury caused by hemorrhagic shock and resuscitation in rats. Thus

  10. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice.

    Science.gov (United States)

    Pfalzer, Anna C; Nesbeth, Paula-Dene C; Parnell, Laurence D; Iyer, Lakshmanan K; Liu, Zhenhua; Kane, Anne V; Chen, C-Y Oliver; Tai, Albert K; Bowman, Thomas A; Obin, Martin S; Mason, Joel B; Greenberg, Andrew S; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (pmetabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation.

  11. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  12. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor.

    Science.gov (United States)

    Gopinath, Suchitra D

    2017-01-25

    Although skeletal muscle wasting has long been observed as a clinical outcome of impaired vitamin D signaling, precise molecular mechanisms that mediate the loss of muscle mass in the absence of vitamin D signaling are less clear. To determine the molecular consequences of vitamin D signaling, we analyzed the role of signal transducer and activator of transcription 3 (Stat3) signaling, a known contributor to various muscle wasting pathologies, in skeletal muscles. We isolated soleus (slow) and tibialis anterior (fast) muscles from mice lacking the vitamin D receptor (VDR -/- ) and used western blot analysis, quantitative RTPCR, and pharmacological intervention to analyze muscle atrophy in VDR -/- mice. We found that slow and fast subsets of muscles of the VDR -/- mice displayed elevated levels of phosphorylated Stat3 accompanied by an increase in Myostatin expression and signaling. Consequently, we observed reduced activity of mammalian target of rapamycin (mTOR) signaling components, ribosomal S6 kinase (p70S6K) and ribosomal S6 protein (rpS6), that regulate protein synthesis and cell size, respectively. Concomitantly, we observed an increase in atrophy regulators and a block in autophagic gene expression. An examination of the upstream regulation of Stat3 levels in VDR -/- muscles revealed an increase in IL-6 protein expression in the soleus, but not in the tibialis anterior muscles. To investigate the involvement of satellite cells (SCs) in atrophy in VDR -/- mice, we found that there was no significant deficit in SC numbers in VDR -/- muscles compared to the wild type. Unlike its expression within VDR -/- fibers, Myostatin levels in VDR -/- SCs from bulk muscles were similar to those of wild type. However, VDR -/- SCs induced to differentiate in culture displayed increased p-Stat3 signaling and Myostatin expression. Finally, VDR -/- mice injected with a Stat3 inhibitor displayed reduced Myostatin expression and function and restored active p70S6K and rpS6

  13. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model

    Directory of Open Access Journals (Sweden)

    Gabriele Pizzino

    2017-09-01

    Full Text Available Glucocorticoid-induced osteoporosis (GIO is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN, an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist, or vehicle (0.9% NaCl. Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist, or zoledronate (as control for gold standard treatment, or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  14. High fetal plasma adenosine concentration: a role for the fetus in preeclampsia?

    LENUS (Irish Health Repository)

    Espinoza, Jimmy

    2012-02-01

    OBJECTIVE: Clinical observations suggest a role for the fetus in the maternal manifestations of preeclampsia, but the possible signaling mechanisms remain unclear. This study compares the fetal plasma concentrations of adenosine from normal pregnancies with those from preeclampsia. STUDY DESIGN: This secondary data analysis included normal pregnancies (n = 27) and patients with preeclampsia (n = 39). Patients with preeclampsia were subclassified into patients with (n = 25) and without (n = 14) abnormal uterine artery Doppler velocimetry (UADV). RESULTS: Fetal plasma concentrations of adenosine were significantly higher in patients with preeclampsia (1.35 +\\/- 0.09 mumol\\/L) than in normal pregnancies (0.52 +\\/- 0.06 mumol\\/L; P < .0001). Fetal plasma concentrations of adenosine in patients with preeclampsia with abnormal UADV (1.78 +\\/- 0.15 mumol\\/L), but not with normal UADV (0.58 +\\/- 0.14 mumol\\/L), were significantly higher than in normal pregnancies (P < .0001). CONCLUSION: Patients with preeclampsia with sonographic evidence of chronic uteroplacental ischemia have high fetal plasma concentrations of adenosine.

  15. Adenosine deaminase organic effect in normal and abnormal cerebrospinal fluid

    International Nuclear Information System (INIS)

    Hamad, A.M.; Samarai, M.A.

    2007-01-01

    To study the effect of the organic substances on adenosine deaminase (ADA) activity in normal and abnormal cerebrospinal fluid (CSF). Various concentrations of 2-mercaptopurine, Ame-tycine, Adenosine analogues (Guanine, Thymine) and ATP were tested to see their effect on ADA activity in normal and abnormal CSF. ADA activity in normal and abnormal CSF was remarkably decreased with the increasing of concentrations of substances tested. These effects may have important therapeutic implications. (author)

  16. Analysis of larger than tetrameric poly(adenosine diphosphoribose) by a radioimmunoassay in nuclei separated in organic solvents

    International Nuclear Information System (INIS)

    Ferro, A.M.; Minaga, T.; Piper, W.N.; Kun, E.

    1978-01-01

    Antibodies were prepared against poly(adenosine diphosphoribose) of an average chain length of 40 adenosine diphosphoribose units by repeated injection of the polymer mixed with methylated albumin and adjuvants into rabbits. The antibody was present mainly in the 7 S fraction of the immunoglobulins. A membrane binding assay was developed, and its specificity determined for the detection of (adenosine diphosphoribose) (n>4) in organs. The method is suitable for the study of the variation of the polymer content of nuclei. The size recognition of the anti-poly(adenosine diphosphoribose) globulin fraction was the same for polymers composed of 4-40 adenosine diphosphoribose units, but smaller oligomers were not detectible. A quantitative extraction technique was developed and applied for radioimmunoassay of nuclear (adenosine diphosphoribose) n>4. Organs were freeze-clamped, freeze dried, broken into subcellular fragments in a colloid mill, and the nuclear fraction was subsequently separated in organic solvents in order to preserve the polymer. Nicotinamide and nicotinic acid, when administered in vivo, augmented the (adenosine diphosphoribose) (n>4) content of rat liver and heart. Tissues of infant pigeons contained larger quantities of (adenosine diphosphoribose) (n>4) than tissues of adult rates. (Auth.)

  17. Modulation of short-term social memory in rats by adenosine A1 and A(2A) receptors.

    Science.gov (United States)

    Prediger, Rui D S; Takahashi, Reinaldo N

    2005-03-16

    The recognition of an unfamiliar juvenile rat by an adult rat has been shown to imply short-term memory processes. The present study was designed to examine the role of adenosine receptors in the short-term social memory of rats using the social recognition paradigm. Adenosine (5.0-10.0 mg/kg), the selective adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.025-0.05 mg/kg) and the selective adenosine A(2A) receptor agonist N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine (DPMA, 1.0-5.0 mg/kg), given by i.p. route 30 min before the test, disrupted the juvenile recognition ability of adult rats. This negative effect of adenosine (5.0 mg/kg, i.p.) on social memory was prevented by pretreatment with the non-selective adenosine receptor antagonist caffeine (10.0 mg/kg, i.p.), the adenosine A1 antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1.0 mg/kg, i.p.) and the adenosine A(2A) antagonist 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, 1.0 mg/kg, i.p.). Furthermore, acute administration of caffeine (10.0-30.0 mg/kg, i.p.), DPCPX (1.0-3.0 mg/kg, i.p.) or ZM241385 (0.5-1.0 mg/kg, i.p.) improved the short-term social memory in a specific manner. These results indicate that adenosine modulates the short-term social memory in rats by acting on both A1 and A(2A) receptors, with adenosine receptor agonists and antagonists, respectively, disrupting and enhancing the social memory.

  18. Epithelial cell stretching and luminal acidification lead to a retarded development of stria vascularis and deafness in mice lacking pendrin.

    Directory of Open Access Journals (Sweden)

    Hyoung-Mi Kim

    2011-03-01

    Full Text Available Loss-of-function mutations of SLC26A4/pendrin are among the most prevalent causes of deafness. Deafness and vestibular dysfunction in the corresponding mouse model, Slc26a4(-/-, are associated with an enlargement and acidification of the membranous labyrinth. Here we relate the onset of expression of the HCO(3 (- transporter pendrin to the luminal pH and to enlargement-associated epithelial cell stretching. We determined expression with immunocytochemistry, cell stretching by digital morphometry and pH with double-barreled ion-selective electrodes. Pendrin was first expressed in the endolymphatic sac at embryonic day (E 11.5, in the cochlear hook-region at E13.5, in the utricle and saccule at E14.5, in ampullae at E16.5, and in the upper turn of the cochlea at E17.5. Epithelial cell stretching in Slc26a4(-/- mice began at E14.5. pH changes occurred first in the cochlea at E15.5 and in the endolymphatic sac at E17.5. At postnatal day 2, stria vascularis, outer sulcus and Reissner's membrane epithelial cells, and utricular and saccular transitional cells were stretched, whereas sensory cells in the cochlea, utricle and saccule did not differ between Slc26a4(+/- and Slc26a4(-/- mice. Structural development of stria vascularis, including vascularization, was retarded in Slc26a4(-/- mice. In conclusion, the data demonstrate that the enlargement and stretching of non-sensory epithelial cells precedes luminal acidification in the cochlea and the endolymphatic sac. Stretching and luminal acidification may alter cell-to-cell communication and lead to the observed retarded development of stria vascularis, which may be an important step on the path to deafness in Slc26a4(-/- mice, and possibly in humans, lacking functional pendrin expression.

  19. Investigations into the origin of the molecular recognition of several adenosine deaminase inhibitors.

    Science.gov (United States)

    Gillerman, Irina; Fischer, Bilha

    2011-01-13

    Inhibitors of adenosine deaminase (ADA, EC 3.5.4.4) are potential therapeutic agents for the treatment of various health disorders. Several highly potent inhibitors were previously identified, yet they exhibit unacceptable toxicities. We performed a SAR study involving a series of C2 or C8 substituted purine-riboside analogues with a view to discover less potent inhibitors with a lesser toxicity. We found that any substitution at C8 position of nebularine resulted in total loss of activity toward calf intestinal ADA. However, several 2-substituted-adenosine, 8-aza-adenosine, and nebularine analogues exhibited inhibitory activity. Specifically, 2-Cl-purine riboside, 8-aza-2-thiohexyl adenosine, 2-thiohexyl adenosine, and 2-MeS-purine riboside were found to be competitive inhibitors of ADA with K(i) values of 25, 22, 6, and 3 μM, respectively. We concluded that electronic parameters are not major recognition determinants of ADA but rather steric parameters. A C2 substituent which fits ADA hydrophobic pocket and improves H-bonding with the enzyme makes a good inhibitor. In addition, a gg rotamer about C4'-C5' bond is apparently an important recognition determinant.

  20. Signaling pathways underlying the antidepressant-like effect of inosine in mice.

    Science.gov (United States)

    Gonçalves, Filipe Marques; Neis, Vivian Binder; Rieger, Débora Kurrle; Lopes, Mark William; Heinrich, Isabella A; Costa, Ana Paula; Rodrigues, Ana Lúcia S; Kaster, Manuella P; Leal, Rodrigo Bainy

    2017-06-01

    Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A 1 and A 2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca 2+ /calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine

  1. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine

    DEFF Research Database (Denmark)

    Hansen, Pernille B. Lærkegaard; Friis, Ulla Glenert; Uhrenholt, Torben Rene

    2007-01-01

    of calcium from the sarcoplasmic reticulum (SR), stimulated presumably by IP(3), is involved in the adenosine contraction mechanism of the afferent arteriole. In agreement with this notion is the observation that 2 aminoethoxydiphenyl borate (100 microM) blocked the adenosine-induced constriction whereas...... was abolished by IAA-94. Furthermore, the vasoconstriction caused by adenosine was significantly inhibited by 5 microM nifedipine (control 8.3 +/- 0.2 microM, ado 3.6 +/- 0.6 microM, ado + nifedipine 6.8 +/- 0.2 microM) suggesting involvement of voltage-dependent calcium channels. CONCLUSION: We conclude...

  2. Effects of targeted deletion of A1 adenosine receptors on postischemic cardiac function and expression of adenosine receptor subtypes.

    Science.gov (United States)

    Morrison, R Ray; Teng, Bunyen; Oldenburg, Peter J; Katwa, Laxmansa C; Schnermann, Jurgen B; Mustafa, S Jamal

    2006-10-01

    To examine ischemic tolerance in the absence of A(1) adenosine receptors (A(1)ARs), isolated wild-type (WT) and A(1)AR knockout (A(1)KO) murine hearts underwent global ischemia-reperfusion, and injury was measured in terms of functional recovery and efflux of lactate dehydrogenase (LDH). Hearts were analyzed by real-time RT-PCR both at baseline and at intervals during ischemia-reperfusion to determine whether compensatory expression of other adenosine receptor subtypes occurs with either A(1)AR deletion and/or ischemia-reperfusion. A(1)KO hearts had higher baseline coronary flow (CF) and left ventricular developed pressure (LVDP) than WT hearts, whereas heart rate was unchanged by A(1)AR deletion. After 20 min of ischemia, CF was attenuated in A(1)KO compared with WT hearts, and this reduction persisted throughout reperfusion. Final recovery of LVDP was decreased in A(1)KO hearts (54.4 +/- 5.1 vs. WT 81.1 +/- 3.4% preischemic baseline) and correlated with higher diastolic pressure during reperfusion. Postischemic efflux of LDH was greater in A(1)KO compared with WT hearts. Real-time RT-PCR demonstrated the absence of A(1)AR transcript in A(1)KO hearts, and the message for A(2A), A(2B), and A(3) adenosine receptors was similar in uninstrumented A(1)KO and WT hearts. Ischemia-reperfusion increased A(2B) mRNA expression 2.5-fold in both WT and A(1)KO hearts without changing A(1) or A(3) expression. In WT hearts, ischemia transiently doubled A(2A) mRNA, which returned to preischemic level upon reperfusion, a pattern not observed in A(1)KO hearts. Together, these data affirm the cardioprotective role of A(1)ARs and suggest that induced expression of other adenosine receptor subtypes may participate in the response to ischemia-reperfusion in isolated murine hearts.

  3. Lack of metformin effect on mouse embryo AMPK activity: implications for metformin treatment during pregnancy.

    Science.gov (United States)

    Lee, Hyung-Yul; Wei, Dan; Loeken, Mary R

    2014-01-01

    Adenosine monophosphate-activated protein kinase (AMPK) is stimulated in embryos during diabetic pregnancy by maternal hyperglycaemia-induced embryo oxidative stress. Stimulation of AMPK disrupts embryo gene expression and causes neural tube defects. Metformin, which may be taken during early pregnancy, has been reported to stimulate AMPK activity. Thus, the benefits of improved glycaemic control could be offset by stimulated embryo AMPK activity. Here, we investigated whether metformin can stimulate AMPK activity in mouse embryos and can adversely affect embryo gene expression and neural tube defects. Pregnant nondiabetic mice were administered metformin beginning on the first day of pregnancy. Activation of maternal and embryo AMPK [phospho-AMPK α (Thr172) relative to total AMPK], expression of Pax3, a gene required for neural tube closure, and neural tube defects were studied. Mouse embryonic stem cells were used as a cell culture model of embryonic neuroepithelium to study metformin effects on AMPK and Pax3 expression. Metformin had no effect on AMPK in embryos or maternal skeletal muscle but increased activated AMPK in maternal liver. Metformin did not inhibit Pax3 expression or increase neural tube defects. However, metformin increased activated AMPK and inhibited Pax3 expression by mouse embryonic stem cells. Mate1/Slc47a1 and Oct3/Slc22a, which encode metformin transporters, were expressed at barely detectable levels by embryos. Although metformin can have effects associated with diabetic embryopathy in vitro, the lack of effects on mouse embryos in vivo may be due to lack of metformin transporters and indicates that the benefits of metformin on glycaemic control are not counteracted by stimulation of embryo AMPK activity and consequent embryopathy. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Ability of γδ T cells to modulate the Foxp3 T cell response is dependent on adenosine.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available Whether γδ T cells inhibit or enhance the Foxp3 T cell response depends upon their activation status. The critical enhancing effector in the supernatant is adenosine. Activated γδ T cells express adenosine receptors at high levels, which enables them to deprive Foxp3+ T cells of adenosine, and to inhibit their expansion. Meanwhile, cell-free supernatants of γδ T cell cultures enhance Foxp3 T cell expansion. Thus, inhibition and enhancement by γδ T cells of Foxp3 T cell response are a reflection of the balance between adenosine production and absorption by γδ T cells. Non-activated γδ T cells produce adenosine but bind little, and thus enhance the Foxp3 T cell response. Activated γδ T cells express high density of adenosine receptors and have a greatly increased ability to bind adenosine. Extracellular adenosine metabolism and expression of adenosine receptor A2ARs by γδ T cells played a major role in the outcome of γδ and Foxp3 T cell interactions. A better understanding of the functional conversion of γδ T cells could lead to γδ T cell-targeted immunotherapies for related diseases.

  5. Mice lacking cystathionine beta synthase have lung fibrosis and air space enlargement.

    Science.gov (United States)

    Hamelet, Julien; Maurin, Nicole; Fulchiron, Romain; Delabar, Jean-Maurice; Janel, Nathalie

    2007-10-01

    Cystathionine beta synthase (CBS) is a crucial regulator of plasma concentrations of homocysteine. Severe hyperhomocysteinemia due to CBS deficiency confers diverse clinical manifestations, notably pulmonary thrombotic disease. However, the association between hyperhomocysteinemia and chronic obstructive pulmonary disease is not well understood. To investigate the role of hyperhomocysteinemia in lung injury and pulmonary fibrosis, we analyzed the lung of CBS-deficient mice, a murine model of severe hyperhomocysteinemia. The degree of lung injury was assessed by histologic examination. Analysis of profibrogenic factors was performed by real-time quantitative reverse transcription-polymerase chain reaction. CBS-deficient mice develop fibrosis and air space enlargement in the lung, concomitant with an enhanced expression of heme oxygenase-1, pro(alpha)1 collagen type I, transforming growth factor-beta1 and alpha-smooth muscle actin. However, lung fibrosis was found in the absence of increased inflammatory cell infiltrates as determined by histology, without changes in gene expression of proinflammatory cytokines TNFalpha and interleukin 6. The increased expression of alpha-smooth muscle actin and transforming growth factor-beta1 emphasizes the role of myofibroblasts differentiation in case of lung fibrosis due to CBS deficiency in mice.

  6. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    International Nuclear Information System (INIS)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-01-01

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  7. Sympathetic activity induced by naloxone-precipitated morphine withdrawal is blocked in genetically engineered mice lacking functional CRF1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    García-Carmona, Juan-Antonio; Martínez-Laorden, Elena; Milanés, María-Victoria; Laorden, María-Luisa

    2015-02-15

    There is large body evidence indicating that stress can lead to cardiovascular disease. However, the exact brain areas and the mechanisms involved remain to be revealed. Here, we performed a series of experiments to characterize the role of CRF1 receptor (CRF1R) in the stress response induced by naloxone-precipitated morphine withdrawal. The experiments were performed in the hypothalamic paraventricular nucleus (PVN) ventrolateral medulla (VLM), brain regions involved in the regulation of cardiovascular activity, and in the right ventricle by using genetically engineered mice lacking functional CRF1R levels (KO). Mice were treated with increasing doses of morphine and withdrawal was precipitated by naloxone administration. Noradrenaline (NA) turnover, c-Fos, expression, PKA and TH phosphorylated at serine 40, was evaluated by high-performance liquid chromatography (HPLC), immunohistochemistry and immunoblotting. Morphine withdrawal induced an enhancement of NA turnover in PVN in parallel with an increase in TH neurons expressing c-Fos in VLM in wild-type mice. In addition we have demonstrated an increase in NA turnover, TH phosphorylated at serine 40 and PKA levels in heart. The main finding of the present study was that NA turnover, TH positive neurons that express c-Fos, TH phosphorylated at serine 40 and PKA expression observed during morphine withdrawal were significantly inhibited in CRF1R KO mice. Our results demonstrate that CRF/CRF1R activation may contribute to the adaptive changes induced by naloxone-precipitated withdrawal in the heart and in the brain areas which modulate the cardiac sympathetic function and suggest that CRF/CRF1R pathways could be contributing to cardiovascular disease associated to opioid addiction. - Highlights: • Naloxone-precipitated morphine withdrawal increases sympathetic activity in the PVN and heart. • Co-localization of TH phosphorylated at serine 40/c-Fos in the VLM after morphine withdrawal • Naloxone

  8. Evaluation of usefulness of pleural fluid adenosine deaminase in diagnosing tuberculous pleural effusion from empyema

    Directory of Open Access Journals (Sweden)

    Vijetha Shenoy

    2014-02-01

    Full Text Available Objective: To evaluate the utility of adenosine deaminase activity in the pleural fluid for the diagnosis of tuberculous pleural effusion from empyema of non-tubercular origin. Method: A retrospective analysis of data was performed on patients who were diagnosed to have tuberculous pleural effusion and empyema of non tubercular origin. Among 46 patients at Kasturba Hospital, Manipal University, Manipal, Karnataka, India, from November 201 2 to February 2013 who underwent pleural fluid adenosine deaminase estimation, 25 patients with tuberculous pleural effusion and 21 patients with empyema were diagnosed respectively. Adenosine deaminase in pleural fluid is estimated using colorimetric, Galanti and Guisti method. Results: Pleural fluid Adenosine Deaminase levels among tuberculous pleural effusion(109.38依 53.83 , empyema (141.20依71.69 with P=0.27. Conclusion: Pleural fluid adenosine deaminase alone cannot be used as a marker for the diagnosis of tuberculous pleural effusion.

  9. Adenosine Receptor Heteromers and their Integrative Role in Striatal Function

    Directory of Open Access Journals (Sweden)

    Sergi Ferré

    2007-01-01

    Full Text Available By analyzing the functional role of adenosine receptor heteromers, we review a series of new concepts that should modify our classical views of neurotransmission in the central nervous system (CNS. Neurotransmitter receptors cannot be considered as single functional units anymore. Heteromerization of neurotransmitter receptors confers functional entities that possess different biochemical characteristics with respect to the individual components of the heteromer. Some of these characteristics can be used as a “biochemical fingerprint” to identify neurotransmitter receptor heteromers in the CNS. This is exemplified by changes in binding characteristics that are dependent on coactivation of the receptor units of different adenosine receptor heteromers. Neurotransmitter receptor heteromers can act as “processors” of computations that modulate cell signaling, sometimes critically involved in the control of pre- and postsynaptic neurotransmission. For instance, the adenosine A1-A2A receptor heteromer acts as a concentration-dependent switch that controls striatal glutamatergic neurotransmission. Neurotransmitter receptor heteromers play a particularly important integrative role in the “local module” (the minimal portion of one or more neurons and/or one or more glial cells that operates as an independent integrative unit, where they act as processors mediating computations that convey information from diverse volume-transmitted signals. For instance, the adenosine A2A-dopamine D2 receptor heteromers work as integrators of two different neurotransmitters in the striatal spine module.

  10. A comparison of adenosine and arbutamine for myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Anagnostopoulos, C.; Pennell, D.; Francis, J.; Serup-Hansen, K.; Davies, G.; Underwood, R.

    1998-01-01

    We have compared our standard stress protocol (adenosine combined with exercise) with the new stress agent arbutamine, for thallium-201 myocardial perfusion imaging (MPI) in order to assess the comparative value of arbutamine. We studied 23 patients referred for MPI, and each patient had two studies (18 males, median age 66 years, five with previous myocardial infarction). Uptake scores were assigned to each of nine segments, and the extent and severity of defects were measured using a polar plot. Haemodynamic changes were greater with arbutamine (rate-pressure product increase 78% vs 51%, P = 0.003). Symptoms were experienced by 21 patients with arbutamine and 16 with adenosine (P = 0.07). Agreement between the techniques for classification of patients as normal or as having reversible, fixed or mixed defects was good (19 of 23 studies, 83%, κ = 0.76). Agreement for similar classification of segments was also good (82%, κ = 0.71). Segmental agreement for stress scores was good (86%, κ = 0.77). However, mean size of stress defect was larger with adenosine (83±52 pixels vs 65±48 pixels, P<0.05), though severity and reversibility were similar (P = NS). We conclude that arbutamine provides comparable results to those obtained with adenosine and exercise and that the observed differences are not clinically significant. (orig.)

  11. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    Science.gov (United States)

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  12. Lack of skeletal muscle IL-6 influences hepatic glucose metabolism in mice during prolonged exercise

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Schwartz, Camilla Lindgren

    2017-01-01

    The liver is essential in maintaining and regulating glucose homeostasis during prolonged exercise. IL-6 has been shown to be secreted from skeletal muscle during exercise and has been suggested to signal to the liver. Therefore, the aim of this study was to investigate the role of skeletal muscle...... IL-6 on hepatic glucose regulation and substrate choice during prolonged exercise. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice (age, 12-14 wk) and littermate lox/lox (Control) mice were either rested (Rest) or completed a single bout of exercise for 10, 60, or 120 min, and the liver....... Furthermore, IL-6 MKO mice had higher hepatic pyruvate dehydrogenase (PDH)Ser232 and PDHSer300 phosphorylation than control mice at rest. In conclusion, hepatic gluconeogenic capacity in mice is increased during prolonged exercise independent of muscle IL-6. Furthermore, Skeletal muscle IL-6 influences...

  13. Comparative Assessment of Induced Immune Responses Following Intramuscular Immunization with Fusion and Cocktail of LeIF, LACK and TSA Genes Against Cutaneous Leishmaniasis in BALB/c Mice.

    Science.gov (United States)

    Maspi, Nahid; Ghaffarifar, Fatemeh; Sharifi, Zohreh; Dalimi, Abdolhossein; Dayer, Mohammad Saaid

    2018-02-01

    In the present study, we evaluated induced immune responses following DNA vaccine containing cocktail or fusion of LeIF, LACK and TSA genes or each gene alone. Mice were injected with 100 µg of each plasmid containing the gene of insert, plasmid DNA alone as the first control group or phosphate buffer saline as the second control group. Then, cellular and humoral responses, lesion size were measured for all groups. All vaccinated mice induced Th1 immune responses against Leishmania characterized by higher IFN-γ and IgG2a levels compared with control groups (p < 0.05). In addition, IFN-γ levels increased in groups immunized with fusion and cocktail vaccines in comparison with LACK (p < 0.001) and LeIF (p < 0.01) groups after challenge. In addition, fusion and cocktail groups produced higher IgG2a values than groups vaccinated with a gene alone (p < 0.05). Lesion progression delayed for all immunized groups compared with control groups from 5th week post-infection (p < 0.05). Mean lesion size decreased in immunized mice with fusion DNA than three groups vaccinated with one gene alone (p < 0.05). While, lesion size decreased significantly in cocktail recipient group than LeIF recipient group (p < 0.05). There was no difference in lesion size between fusion and cocktail groups. Overall, immunized mice with cocktail and fusion vaccines showed stronger Th1 response by production of higher IFN-γ and IgG2a and showed smaller mean lesion size. Therefore, use of multiple antigens can improve induced immune responses by DNA vaccination.

  14. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A; Kwizera, Chantal; Sijbesma, Jurgen W A; Ishiwata, Kiichi; Willemsen, Antoon T M; Elsinga, Philip H; Dierckx, Rudi A J O; van Waarde, Aren

    2011-08-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX) and PET. This study aims to test whether (11)C-MPDX can be used for quantitative studies of cerebral A(1)R in rodents. (11)C-MPDX was injected (intravenously) into isoflurane-anesthetized male Wistar rats (300 g). A dynamic scan of the central nervous system was obtained, using a small-animal PET camera. A cannula in a femoral artery was used for blood sampling. Three groups of animals were studied: group 1, controls (saline-treated); group 2, animals pretreated with the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg, intraperitoneally); and group 3, animals pretreated (intraperitoneally) with a 20% solution of ethanol in saline (2 mL) plus the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine dihydrochloride (ABT-702) (1 mg). DPCPX is known to occupy cerebral A(1)R, whereas ethanol and ABT-702 increase extracellular adenosine. In groups 1 and 3, the brain was clearly visualized. High uptake of (11)C-MPDX was noted in striatum, hippocampus, and cerebellum. In group 2, tracer uptake was strongly suppressed and regional differences were abolished. The treatment of group 3 resulted in an unexpected 40%-45% increase of the cerebral uptake of radioactivity as indicated by increases of PET standardized uptake value, distribution volume from Logan plot, nondisplaceable binding potential from 2-tissue-compartment model fit, and standardized uptake value from a biodistribution study performed after the PET scan. The partition coefficient of the tracer (K(1)/k(2) from the model fit) was not altered under the study conditions. (11)C-MPDX shows a regional distribution in rat brain consistent with binding to A(1)R. Tracer binding is blocked by the selective A

  15. ADENOSINE DEAMINASE ACTIVITY IN TYPE 2 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Farija Peruvankuzhiyil

    2017-01-01

    Full Text Available BACKGROUND Altered blood levels of adenosine deaminase may help in predicting immunological dysfunction in diabetic individuals. But very few studies exist on ADA activity in type 2 diabetes mellitus. Aim of this study is to compare serum adenosine deaminase activity in type 2 diabetic patients with non-diabetic control. MATERIALS AND METHODS A comparative study design was used in data collection process. The study was conducted in 40 type 2 diabetes mellitus patients attending diabetic clinic or admitted in the medicine ward for metabolic control of diabetes in medical college, Calicut from January 2011 to January 2012. The adenosine deaminase (ADA level in the serum is measured by endpoint method in these patients. The results were expressed as mean and standard deviation. The statistical significance of the differences between the values was assessed by ANOVA. RESULTS Among 40 diabetic patients, mean ADA level in the serum is 38.56, SD±6.72 (min 30, max 53. Mean ADA level in the serum in the control group is 22.04±4.625 (min 13, max 29. CONCLUSION ADA level in the serum is found to be increased indicating its role as an important immunoenzyme marker in the aetiopathology of type 2 diabetes mellitus.

  16. Targeting Adenosine Signaling in Parkinson's Disease: From Pharmacological to Non-pharmacological Approaches

    Directory of Open Access Journals (Sweden)

    Luiza R. Nazario

    2017-11-01

    Full Text Available Parkinson's disease (PD is one of the most prevalent neurodegenerative disease displaying negative impacts on both the health and social ability of patients and considerable economical costs. The classical anti-parkinsonian drugs based in dopaminergic replacement are the standard treatment, but several motor side effects emerge during long-term use. This mini-review presents the rationale to several efforts from pre-clinical and clinical studies using adenosine receptor antagonists as a non-dopaminergic therapy. As several studies have indicated that the monotherapy with adenosine receptor antagonists reaches limited efficacy, the usage as a co-adjuvant appeared to be a promising strategy. The formulation of multi-targeted drugs, using adenosine receptor antagonists and other neurotransmitter systems than the dopaminergic one as targets, have been receiving attention since Parkinson's disease presents a complex biological impact. While pharmacological approaches to cure or ameliorate the conditions of PD are the leading strategy in this area, emerging positive aspects have arisen from non-pharmacological approaches and adenosine function inhibition appears to improve both strategies.

  17. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia-induced vasodilatation.

    Science.gov (United States)

    Frøbert, Ole; Haink, Gesine; Simonsen, Ulf; Gravholt, Claus H; Levin, Max; Deussen, Andreas

    2006-01-15

    We tested whether hypoxia-induced coronary artery dilatation could be mediated by an increase in adenosine concentration within the coronary artery wall or by an increase in adenosine sensitivity. Porcine left anterior descendent coronary arteries, precontracted with prostaglandin F(2alpha) (10(-5) M), were mounted in a pressure myograph and microdialysis catheters were inserted into the tunica media. Dialysate adenosine concentrations were analysed by HPLC. Glucose, lactate and pyruvate were measured by an automated spectrophotometric kinetic enzymatic analyser. The exchange fraction of [(14)C]adenosine over the microdialysis membrane increased from 0.32 +/- 0.02 to 0.46 +/- 0.02 (n = 4, P lactate/pyruvate ratio was significantly increased in hypoxic arteries but did not correlate with adenosine concentration. We conclude that hypoxia-induced coronary artery dilatation is not mediated by increased adenosine produced within the artery wall but might be facilitated by increased adenosine sensitivity at the A(2A) receptor level.

  18. Structural Mapping of Adenosine Receptor Mutations

    DEFF Research Database (Denmark)

    Jespers, Willem; Schiedel, Anke C; Heitman, Laura H

    2018-01-01

    The four adenosine receptors (ARs), A1, A2A, A2B, and A3, constitute a subfamily of G protein-coupled receptors (GPCRs) with exceptional foundations for structure-based ligand design. The vast amount of mutagenesis data, accumulated in the literature since the 1990s, has been recently supplemente...

  19. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  20. Limitation of Infarct Size and No-Reflow by Intracoronary Adenosine Depends Critically on Dose and Duration.

    Science.gov (United States)

    Yetgin, Tuncay; Uitterdijk, André; Te Lintel Hekkert, Maaike; Merkus, Daphne; Krabbendam-Peters, Ilona; van Beusekom, Heleen M M; Falotico, Robert; Serruys, Patrick W; Manintveld, Olivier C; van Geuns, Robert-Jan M; Zijlstra, Felix; Duncker, Dirk J

    2015-12-28

    In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Inhibition of synaptically evoked cortical acetylcholine release by adenosine: an in vivo microdialysis study in the rat.

    Science.gov (United States)

    Materi, L M; Rasmusson, D D; Semba, K

    2000-01-01

    The release of cortical acetylcholine from the intracortical axonal terminals of cholinergic basal forebrain neurons is closely associated with electroencephalographic activity. One factor which may act to reduce cortical acetylcholine release and promote sleep is adenosine. Using in vivo microdialysis, we examined the effect of adenosine and selective adenosine receptor agonists and antagonists on cortical acetylcholine release evoked by electrical stimulation of the pedunculopontine tegmental nucleus in urethane anesthetized rats. All drugs were administered locally within the cortex by reverse dialysis. None of the drugs tested altered basal release of acetylcholine in the cortex. Adenosine significantly reduced evoked cortical acetylcholine efflux in a concentration-dependent manner. This was mimicked by the adenosine A(1) receptor selective agonist N(6)-cyclopentyladenosine and blocked by the selective A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). The A(2A) receptor agonist 2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoadenosi ne hydrochloride (CGS 21680) did not alter evoked cortical acetylcholine release even in the presence of DPCPX. Administered alone, neither DPCPX nor the non-selective adenosine receptor antagonist caffeine affected evoked cortical acetylcholine efflux. Simultaneous delivery of the adenosine uptake inhibitors dipyridamole and S-(4-nitrobenzyl)-6-thioinosine significantly reduced evoked cortical acetylcholine release, and this effect was blocked by the simultaneous administration of caffeine. These data indicate that activation of the A(1) adenosine receptor inhibits acetylcholine release in the cortex in vivo while the A(2A) receptor does not influence acetylcholine efflux. Such inhibition of cortical acetylcholine release by adenosine may contribute to an increased propensity to sleep during prolonged wakefulness.

  2. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    Science.gov (United States)

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.

  3. Adenosine inhibits neutrophil vascular endothelial growth factor release and transendothelial migration via A2B receptor activation.

    LENUS (Irish Health Repository)

    Wakai, A

    2012-02-03

    The effects of adenosine on neutrophil (polymorphonuclear neutrophils; PMN)-directed changes in vascular permeability are poorly characterized. This study investigated whether adenosine modulates activated PMN vascular endothelial growth factor (vascular permeability factor; VEGF) release and transendothelial migration. PMN activated with tumour necrosis factor-alpha (TNF-alpha, 10 ng\\/mL) were incubated with adenosine and its receptor-specific analogues. Culture supernatants were assayed for VEGF. PMN transendothelial migration across human umbilical vein endothelial cell (HUVEC) monolayers was assessed in vitro. Adhesion molecule receptor expression was assessed flow cytometrically. Adenosine and some of its receptor-specific analogues dose-dependently inhibited activated PMN VEGF release. The rank order of potency was consistent with the affinity profile of human A2B receptors. The inhibitory effect of adenosine was reversed by 3,7-dimethyl-1-propargylxanthine, an A2 receptor antagonist. Adenosine (100 microM) or the A2B receptor agonist 5\\'-N-ethylcarboxamidoadenosine (NECA, 100 microM) significantly reduced PMN transendothelial migration. However, expression of activated PMN beta2 integrins and HUVEC ICAM-1 were not significantly altered by adenosine or NECA. Adenosine attenuates human PMN VEGF release and transendothelial migration via the A2B receptor. This provides a novel target for the modulation of PMN-directed vascular hyperpermeability in conditions such as the capillary leak syndrome.

  4. Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum.

    Science.gov (United States)

    Melani, Alessia; Corti, Francesca; Stephan, Holger; Müller, Christa E; Donati, Chiara; Bruni, Paola; Vannucchi, Maria Giuliana; Pedata, Felicita

    2012-01-01

    In the central nervous system (CNS) ATP and adenosine act as transmitters and neuromodulators on their own receptors but it is still unknown which part of extracellular adenosine derives per se from cells and which part is formed from the hydrolysis of released ATP. In this study extracellular concentrations of adenosine and ATP from the rat striatum were estimated by the microdialysis technique under in vivo physiological conditions and after focal ischemia induced by medial cerebral artery occlusion. Under physiological conditions, adenosine and ATP concentrations were in the range of 130 nmol/L and 40 nmol/L, respectively. In the presence of the novel ecto-ATPase inhibitor, PV4 (100 nmol/L), the extracellular concentration of ATP increased 12-fold to ~360 nmol/L but the adenosine concentration was not altered. This demonstrates that, under physiological conditions, adenosine is not a product of extracellular ATP. In the first 4h after ischemia, adenosine increased to ~690 nmol/L and ATP to ~50 nmol/L. In the presence of PV4 the extracellular concentration of ATP was in the range of 450 nmol/L and a significant decrease in extracellular adenosine (to ~270 nmol/L) was measured. The contribution of extracellular ATP to extracellular adenosine was maximal in the first 20 min after ischemia onset. Furthermore we demonstrated, by immunoelectron microscopy, the presence of the concentrative nucleoside transporter CNT2 on plasma and vesicle membranes isolated from the rat striatum. These results are in favor that adenosine is transported in vesicles and is released in an excitation-secretion manner under in vivo physiological conditions. Early after ischemia, extracellular ATP is hydrolyzed by ecto-nucleotidases which significantly contribute to the increase in extracellular adenosine. To establish the contribution of extracellular ATP to adenosine might constitute the basis for devising a correct putative purinergic strategy aimed at protection from ischemic damage

  5. Early signs of pathological cognitive aging in mice lacking high-affinity nicotinic receptors.

    Directory of Open Access Journals (Sweden)

    Eleni eKonsolaki

    2016-04-01

    Full Text Available In order to address pathological cognitive decline effectively, it is critical to adopt early preventive measures in individuals considered at risk. It is therefore essential to develop approaches that identify such individuals before the onset of irreversible dementia. Α deficient cholinergic system has been consistently implicated as one of the main factors associated with a heightened vulnerability to the aging process. In the present study we used mice lacking high affinity nicotinic receptors (β2-/-, which have been proposed as an animal model of accelerated/premature cognitive aging. Our aim was to identify behavioural signs that could serve as indicators or predictors of impending cognitive decline. We used test batteries in order to assess cognitive functions and additional tasks to investigate spontaneous behaviours, such as species-specific activities and exploration/locomotion in a novel environment. Our data confirm and extend the hypothesis that β2-/- animals exhibit age-related cognitive impairments, manifested in both spatial learning and recognition memory tasks. In addition, we reveal deficits in spontaneous behaviour and habituation processes earlier in life. To our knowledge, this is the first study to perform an extensive behavioural examination of an animal model of premature cognitive aging, and our results suggest that β2-nAChR dependent cognitive deterioration progressively evolves from initial subtle behavioural changes to global dementia due to the combined effect of the neuropathology and aging.

  6. A comparison of N-methyl-D-aspartate-evoked release of adenosine and [3H]norepinephrine from rat cortical slices

    International Nuclear Information System (INIS)

    Hoehn, K.; Craig, C.G.; White, T.D.

    1990-01-01

    Tetrodotoxin reduced N-methyl-D-aspartate (NMDA)-evoked release of adenosine by 35% but virtually abolished [3H]norepinephrine release. Although [3H]norepinephrine release from rat cortical slices evoked by 500 microM NMDA was abolished by 1.2 mM Mg++, which produces a voltage-sensitive, uncompetitive block of NMDA-channels, adenosine release was increased in the presence of Mg++. Partial depolarization with 12 mM K+ relieved the Mg++ block of 500 microM NMDA-evoked [3H]norepinephrine release but did not affect adenosine release, indicating that a Mg++ requirement for the adenosine release process per se cannot account for this discrepancy. NMDA was 33 times more potent in releasing adenosine than [3H]norepinephrine. At submaximal concentrations of NMDA (10 and 20 microM), adenosine release was augmented in Mg+(+)-free medium. Although a high concentration of the uncompetitive NMDA antagonist MK-801 [(+)-5-methyl-10,11,dihydro-5H-dibenzo[a,d]cyclohepten-5-10-imine maleate] (3 microM) blocked NMDA-evoked release of [3H]norepinephrine and adenosine, a lower concentration (300 nM) decreased NMDA-evoked [3H]norepinephrine release by 66% without affecting adenosine release. These findings suggest that maximal adenosine release occurs when relatively few NMDA receptors are activated, raising the possibility that spare receptors exist for NMDA-evoked adenosine release. Rather than acting as a protectant against excessive NMDA excitation, released adenosine might provide an inhibitory threshold which must be overcome for NMDA-mediated neurotransmission to proceed

  7. Adenosine as a signaling molecule in the retina: biochemical and developmental aspects

    Directory of Open Access Journals (Sweden)

    ROBERTO PAES-DE-CARVALHO

    2002-09-01

    Full Text Available The nucleoside adenosine plays an important role as a neurotransmitter or neuromodulator in the central nervous system, including the retina. In the present paper we review compelling evidence showing that adenosine is a signaling molecule in the developing retina. In the chick retina, adenosine transporters are present since early stages of development before the appearance of adenosine A1 receptors modulating dopamine-dependent adenylate cyclase activity or A2 receptors that directly activate the enzyme. Experiments using retinal cell cultures revealed that adenosine is taken up by specific cell populations that when stimulated by depolarization or neurotransmitters such as dopamine or glutamate, release the nucleoside through calcium-dependent transporter-mediated mechanisms. The presence of adenosine in the extracellular medium and the long-term activation of adenosine receptors is able to regulate the survival of retinal neurons and blocks glutamate excitoxicity. Thus, adenosine besides working as a neurotransmitter or neuromodulator in the mature retina, is considered as an important signaling molecule during retinal development having important functions such as regulation of neuronal survival and differentiation.O nucleosídeo adenosina apresenta um importante papel como neurotransmissor ou neuromodulador no sistema nervoso central, inclusive na retina. Neste artigo apresentamos uma revisão das evidências que mostram que a adenosina é uma molécula sinalizadora na retina em desenvolvimento. Na retina de pinto, transportadores de adenosina estão presentes desde estágios precoces do desenvolvimento, antes do aparecimento dos receptores A1 que modulam a atividade adenilato ciclase dependente de dopamina ou dos receptores A2 que ativam diretamente a enzima. Experimentos usando culturas de células de retina revelaram que a adenosina é captada por populações celulares específicas que, quando estimuladas por despolarização ou por

  8. Influence of infection by Toxoplasma gondii on purine levels and E-ADA activity in the brain of mice experimentally infected mice.

    Science.gov (United States)

    Tonin, Alexandre A; Da Silva, Aleksandro S; Casali, Emerson A; Silveira, Stephanie S; Moritz, Cesar E J; Camillo, Giovana; Flores, Mariana M; Fighera, Rafael; Thomé, Gustavo R; Morsch, Vera M; Schetinger, Maria Rosa C; Rue, Mario De La; Vogel, Fernanda S F; Lopes, Sonia T A

    2014-07-01

    The aim of this study was to assess the purine levels and E-ADA activity in the brain of mice (BALB/c) experimentally infected with Toxoplasma gondii. In experiment I (n=24) the mice were infected with RH strain of T. gondii, while in experiment II (n=36) they were infected with strain ME-49 of T. gondii. Our results showed that, for RH strain (acute phase), an increase in both periods in the levels of ATP, ADP, AMP, adenosine, hypoxanthine, xanthine (only on day 6 PI) and uric acid (only on day 6 PI). By the other hand, the RH strain led, on days 4 and 6 PI, to a reduction in the concentration of inosine. ME-49, a cystogenic strain, showed some differences in acute and chronic phase, since on day 6 PI the levels of ATP and ADP were increased, while on day 30 these same nucleotides were reduced. On day 60 PI, ME-49 induced a reduction in the levels of ATP, ADP, AMP, adenosine, inosine and xanthine, while uric acid was increased. A decrease of E-ADA activity was observed in brain on days 4 and 6 PI (RH), and 30 PI (ME-49); however on day 60 PI E-ADA activity was increased for infection by ME-49 strain. Therefore, it was possible to conclude that infection with T. gondii changes the purine levels and the activity of E-ADA in brain, which may be associated with neurological signs commonly observed in this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Adenosine 5'-Monophosphate Aerosol Challenge Does Not Provoke Airflow Limitation in Healthy Cats

    Directory of Open Access Journals (Sweden)

    K. Vondráková

    2006-01-01

    Full Text Available The purpose of our study was to investigate the effects of nebulized adenosine 5'- monophosphate on airflow limitation in healthy cats determined by barometric whole body plethysmography (BWBP, in comparison to the effects of carbachol. Ten healthy 4- to 6-year-old domestic shorthair cats were included in the study. Each cat was placed in a BWBP plexiglass chamber (volume 38 l. Changes in box pressure were measured at baseline and after nebulization of vehicle and increasing concentrations of carbachol and adenosine 5'- monophosphate. Airway responsiveness was monitored as increases in enhanced pause (PENH, a unitless variable derived from dose-response curves estimating airflow limitation. The chosen endpoint was the agonist concentration which increased PENH to 300% of the value obtained after saline nebulization (PCPENH 300. Inter-day repeatability of measurements was assessed by repeated bronchoprovocations with both agonists 2-3 days apart. For carbachol, PCPENH300 was reached in all cats and correlated significantly between days (mean ± SD; 0.54 ± 0.42 mg/ml and 0.64 ± 0.45 mg/ml respectively; r = 0.58, p < 0.05 In contrast, we found no reaction to adenosine 5'- monophosphate even with the highest concentration nebulized during both measurements. At baseline, mean ± SD PENH was 0.47 ± 0.18 and 0.58 ± 0.24 (measurements 1 and 2, whereas PENH after 500 mg/ml adenosine 5'- monophosphate was 0.46 ± 0.20 and 0.71 ± 0.37. All bronchoprovocation tests were well tolerated by the cats. We conclude that healthy airways in cats do not demonstrate airway responsiveness to inhaled adenosine 5'- monophosphate. This is in agreement with observations in humans as well as our previous findings in dogs, where adenosine 5'- monophosphate had no effect on healthy canine airways, but caused significant airflow limitation after induction of acute bronchitis. To define the value of bronchoprovocation testing with adenosine 5'- monophosphate in the feline

  10. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    Science.gov (United States)

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  11. Dwarfism in mice lacking collagen-binding integrins alpha 2 beta 1 and alpha 11 beta 1 is caused by severely diminished IGF-1 levels

    OpenAIRE

    Blumbach, Katrin; Niehoff, Anja; Belgardt, Bengt F.; Ehlen, Harald W.A.; Schmitz, Markus; Hallinger, Ralf; Schulz, Jan-Niklas; Brüning, Jens C.; Krieg, Thomas; Schubert, Markus; Gullberg, Donald; Eckes, Beate

    2012-01-01

    Mice with a combined deficiency in the α2β1 and α11β1 integrins lack the major receptors for collagen I. These mutants are born with inconspicuous differences in size but develop dwarfism within the first 4 weeks of life. Dwarfism correlates with shorter, less mineralized and functionally weaker bones that do not result from growth plate abnormalities or osteoblast dysfunction. Besides skeletal dwarfism, internal organs are correspondingly smaller, indicating proportional dwarfism and suggest...

  12. Acute rejection after kidney transplantation promotes graft fibrosis with elevated adenosine level in rat.

    Directory of Open Access Journals (Sweden)

    Mingliang Li

    Full Text Available Chronic allograft nephropathy is a worldwide issue with the major feature of progressive allograft fibrosis, eventually ending with graft loss. Adenosine has been demonstrated to play an important role in process of fibrosis. Our study aimed to investigate the relationship between adenosine and fibrosis in renal allograft acute rejection in rat.Wistar rats and SD rats were selected as experimental animals. Our study designed two groups. In the allograft transplantation group, kidneys of Wistar rats were orthotopically transplanted into SD rat recipients, the same species but not genetically identical, to induce acute rejection. Kidney transplantations of SD rats to SD rats which were genetically identical were served as the control. We established rat models and detected a series of indicators. All data were analyzed statistically. P<0.05 was considered statistically significant.Compared with the control group, levels of adenosine increased significantly in the allograft transplantation group, in which acute rejection was induced (P<0.05. Progressive allograft fibrosis as well as collagen deposition were observed.These findings suggested that level of adenosine was upregulated in acute rejection after kidney allograft transplantation in rat. Acute rejection may promote renal allograft fibrosis via the adenosine signaling pathways.

  13. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  14. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  15. A cell wall-bound adenosine nucleosidase is involved in the salvage of extracellular ATP in Solanum tuberosum.

    Science.gov (United States)

    Riewe, David; Grosman, Lukasz; Fernie, Alisdair R; Zauber, Henrik; Wucke, Cornelia; Geigenberger, Peter

    2008-10-01

    Extracellular ATP (eATP) has recently been demonstrated to play a crucial role in plant development and growth. To investigate the fate of eATP within the apoplast, we used intact potato (Solanum tuberosum) tuber slices as an experimental system enabling access to the apoplast without interference of cytosolic contamination. (i) Incubation of intact tuber slices with ATP led to the formation of ADP, AMP, adenosine, adenine and ribose, indicating operation of apyrase, 5'-nucleotidase and nucleosidase. (ii) Measurement of apyrase, 5'-nucleotidase and nucleosidase activities in fractionated tuber tissue confirmed the apoplastic localization for apyrase and phosphatase in potato and led to the identification of a novel cell wall-bound adenosine nucleosidase activity. (iii) When intact tuber slices were incubated with saturating concentrations of adenosine, the conversion of adenosine into adenine was much higher than adenosine import into the cell, suggesting a potential bypass of adenosine import. Consistent with this, import of radiolabeled adenine into tuber slices was inhibited when ATP, ADP or AMP were added to the slices. (iv) In wild-type plants, apyrase and adenosine nucleosidase activities were found to be co-regulated, indicating functional linkage of these enzymes in a shared pathway. (v) Moreover, adenosine nucleosidase activity was reduced in transgenic lines with strongly reduced apoplastic apyrase activity. When taken together, these results suggest that a complete ATP salvage pathway is present in the apoplast of plant cells.

  16. Antibody response against Betaferon® in immune tolerant mice: involvement of marginal zone B-cells and CD4+ T-cells and apparent lack of immunological memory.

    Science.gov (United States)

    Sauerborn, Melody; van Beers, Miranda M C; Jiskoot, Wim; Kijanka, Grzegorz M; Boon, Louis; Schellekens, Huub; Brinks, Vera

    2013-01-01

    The immunological processes underlying immunogenicity of recombinant human therapeutics are poorly understood. Using an immune tolerant mouse model we previously demonstrated that aggregates are a major trigger of the antidrug antibody (ADA) response against recombinant human interferon beta (rhIFNβ) products including Betaferon®, and that immunological memory seems to be lacking after a rechallenge with non-aggregated rhIFNβ. The apparent absence of immunological memory indicates a CD4+ T-cell independent (Tind) immune response underlying ADA formation against Betaferon®. This hypothesis was tested. Using the immune tolerant mouse model we first validated that rechallenge with highly aggregated rhIFNβ (Betaferon®) does not lead to a subsequent fast increase in ADA titers, suggesting a lack of immunological memory. Next we assessed whether Betaferon® could act as Tind antigen by inactivation of marginal zone (MZ) B-cells during treatment. MZ B-cells are major effector cells involved in a Tind immune response. In a following experiment we depleted the mice from CD4+ T-cells to test their involvement in the ADA response against Betaferon®. Inactivation of MZ B-cells at the start of Betaferon® treatment drastically lowered ADA levels, suggesting a Tind immune response. However, persistent depletion of CD4+ T-cells before and during Betaferon® treatment abolished the ADA response in almost all mice. The immune response against rhIFNβ in immune tolerant mice is neither a T-cell independent nor a classical T-cell dependent immune response. Further studies are needed to confirm absence of immunological memory (cells).

  17. Determination of adenosine phosphates in rat gastrocnemius at various postmortem intervals using high performance liquid chromatography.

    Science.gov (United States)

    Huang, Hong; Yan, Youyi; Zuo, Zhong; Yang, Lin; Li, Bin; Song, Yu; Liao, Linchuan

    2010-09-01

    Although the change in adenosine phosphate levels in muscles may contribute to the development of rigor mortis, the relationship between their levels and the onset and development of rigor mortis has not been well elucidated. In the current study, levels of the adenosine phosphates including adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in gastrocnemius at various postmortem intervals of 180 rats from different death modes were detected by high performance liquid chromatography. The results showed that the levels of ATP and ADP significantly decreased along with the postmortem period of rats from different death mode whereas the AMP level remained the same. In addition, it was found that changes in the ATP levels in muscles after death correlated well with the development of rigor mortis. Therefore, the ATP level could serve as a reference parameter for the deduction of rigor mortis in forensic science.

  18. Dengue envelope-based 'four-in-one' virus-like particles produced using Pichia pastoris induce enhancement-lacking, domain III-directed tetravalent neutralising antibodies in mice.

    Science.gov (United States)

    Rajpoot, Ravi Kant; Shukla, Rahul; Arora, Upasana; Swaminathan, Sathyamangalam; Khanna, Navin

    2018-06-05

    Dengue is a significant public health problem worldwide, caused by four antigenically distinct mosquito-borne dengue virus (DENV) serotypes. Antibodies to any given DENV serotype which can afford protection against that serotype tend to enhance infection by other DENV serotypes, by a phenomenon termed antibody-dependent enhancement (ADE). Antibodies to the viral pre-membrane (prM) protein have been implicated in ADE. We show that co-expression of the envelope protein of all four DENV serotypes, in the yeast Pichia pastoris, leads to their co-assembly, in the absence of prM, into tetravalent mosaic VLPs (T-mVLPs), which retain the serotype-specific antigenic integrity and immunogenicity of all four types of their monomeric precursors. Following a three-dose immunisation schedule, the T-mVLPs elicited EDIII-directed antibodies in mice which could neutralise all four DENV serotypes. Importantly, anti-T-mVLP antibodies did not augment sub-lethal DENV-2 infection of dengue-sensitive AG129 mice, based on multiple parameters. The 'four-in-one' tetravalent T-mVLPs possess multiple desirable features which may potentially contribute to safety (non-viral, prM-lacking and ADE potential-lacking), immunogenicity (induction of virus-neutralising antibodies), and low cost (single tetravalent immunogen produced using P. pastoris, an expression system known for its high productivity using simple inexpensive media). These results strongly warrant further exploration of this vaccine candidate.

  19. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate.

    Science.gov (United States)

    Irie, Fumitoshi; Badie-Mahdavi, Hedieh; Yamaguchi, Yu

    2012-03-27

    Heparan sulfate regulates diverse cell-surface signaling events, and its roles in the development of the nervous system recently have been increasingly uncovered by studies using genetic models carrying mutations of genes encoding enzymes for its synthesis. On the other hand, the role of heparan sulfate in the physiological function of the adult brain has been poorly characterized, despite several pieces of evidence suggesting its role in the regulation of synaptic function. To address this issue, we eliminated heparan sulfate from postnatal neurons by conditionally inactivating Ext1, the gene encoding an enzyme essential for heparan sulfate synthesis. Resultant conditional mutant mice show no detectable morphological defects in the cytoarchitecture of the brain. Remarkably, these mutant mice recapitulate almost the full range of autistic symptoms, including impairments in social interaction, expression of stereotyped, repetitive behavior, and impairments in ultrasonic vocalization, as well as some associated features. Mapping of neuronal activation by c-Fos immunohistochemistry demonstrates that neuronal activation in response to social stimulation is attenuated in the amygdala in these mice. Electrophysiology in amygdala pyramidal neurons shows an attenuation of excitatory synaptic transmission, presumably because of the reduction in the level of synaptically localized AMPA-type glutamate receptors. Our results demonstrate that heparan sulfate is critical for normal functioning of glutamatergic synapses and that its deficiency mediates socio-communicative deficits and stereotypies characteristic for autism.

  20. Progress towards novel adenosine receptor therapeutics gleaned from the recent patent literature.

    Science.gov (United States)

    Press, Neil J; Fozard, John R

    2010-08-01

    The principle of treating disease with selective adenosine receptor ligands has been demonstrated with drugs on the market, while the lesser understood receptor subtypes are still being probed with new and drug-like pharmaceutical tools. The field of adenosine receptor research is, therefore, highly important as an emerging and proven point of intervention in disease. From 2008 to 2009, > 120 primary patent applications have claimed adenosine receptor ligands, which we analyze by applicant and target. Particularly significant disclosures are described in detail, paying particular attention to the biological data marshalled to support the case. The first published disclosure of new compounds, compound uses or drug targets is often in the patent literature, which can be difficult to trawl, interpret and verify as it is not subject to peer review. We have critically reviewed this area and share our conclusions regarding progress, trends and identification of early tool compounds or compounds of potential clinical significance ahead of peer-reviewed publication. Adenosine receptor research is a thriving field with continuing claims of exciting new compounds with high specificity and intriguing examples of new uses for such ligands.

  1. Mechanism of adenylate kinase. Dose adenosine 5'-triphosphate bind to the adenosine 5'-monophosphate site

    Energy Technology Data Exchange (ETDEWEB)

    Shyy, Y.J.; Tian, G.; Tsai, M.D.

    1987-10-06

    Although the subtrate binding properties of adenylate kinase (AK) have been studied extensively by various biochemical and biophysical techniques, it remains controversial whether uncomplexed adenosine 5'-triphosphate (ATP) binds to the adenosine 5'-monophosphate (AMP) site of AK. The authors present two sets of experiments which argue against binding of ATP to the AMP site. (a) /sup 31/P nuclear magnetic resonance titration of ATP with AK indicated a 1:1 stoichiometry on the basis of changes in coupling constants and line widths. This ruled out binding of ATP to both sites. (b) ATP and MgATP were found to behave similarly by protecting AK from spontaneous inactivation while AMP showed only a small degree of protection. Such inactivation could also be protected or reversed by dithioerythritol and is most likely due to oxidation of sulfhydryl groups, one of which (cysteine-25) is located near the MgATP site. The results support binding of ATP to the MgATP site predominantly, instead of the AMP site, in the absence of Mg/sup 2 +/.

  2. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    Science.gov (United States)

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Oral sucrose for heel lance enhances adenosine triphosphate use in preterm neonates with respiratory distress.

    Science.gov (United States)

    Angeles, Danilyn M; Asmerom, Yayesh; Boskovic, Danilo S; Slater, Laurel; Bacot-Carter, Sharon; Bahjri, Khaled; Mukasa, Joseph; Holden, Megan; Fayard, Elba

    2015-01-01

    To examine the effects of oral sucrose on procedural pain, and on biochemical markers of adenosine triphosphate utilization and oxidative stress in preterm neonates with mild to moderate respiratory distress. Preterm neonates with a clinically required heel lance that met study criteria (n = 49) were randomized into three groups: (1) control (n = 24), (2) heel lance treated with placebo and non-nutritive sucking (n = 15) and (3) heel lance treated with sucrose and non-nutritive sucking (n = 10). Plasma markers of adenosine triphosphate degradation (hypoxanthine, xanthine and uric acid) and oxidative stress (allantoin) were measured before and after the heel lance. Pain was measured using the Premature Infant Pain Profile. Data were analyzed using repeated measures analysis of variance, chi-square and one-way analysis of variance. We found that in preterm neonates who were intubated and/or were receiving ⩾30% FiO2, a single dose of oral sucrose given before a heel lance significantly increased markers of adenosine triphosphate use. We found that oral sucrose enhanced adenosine triphosphate use in neonates who were intubated and/or were receiving ⩾30% FiO2. Although oral sucrose decreased pain scores, our data suggest that it also increased energy use as evidenced by increased plasma markers of adenosine triphosphate utilization. These effects of sucrose, specifically the fructose component, on adenosine triphosphate metabolism warrant further investigation.

  4. Tolerance and diagnostic accuracy of an abbreviated adenosine infusion for myocardial scintigraphy: a randomized, prospective study.

    Science.gov (United States)

    Treuth, M G; Reyes, G A; He, Z X; Cwajg, E; Mahmarian, J J; Verani, M S

    2001-01-01

    The objectives of this study were 2-fold: (1) to determine the tolerance of adenosine perfusion tomography with the use of an abbreviated (3-minute) infusion in comparison to the standard (6-minute) infusion, and (2) to assess the relative diagnostic accuracy of a 3-minute adenosine infusion in patients referred for arteriography. An abbreviated adenosine infusion may decrease the frequency and duration of side effects and be a more cost-effective alternative. We prospectively randomized 599 patients undergoing adenosine myocardial perfusion tomography to either a 3-minute or 6-minute adenosine infusion at 140 microg/kg per minute. Among the 599 enrolled patients, 142 subsequently underwent coronary angiography. Patients randomized to the 3-minute adenosine infusion tolerated the procedure better than those randomized to the standard infusion (P <.01). Flushing, headache, neck pain, and atrioventricular block were all significantly less frequent (P <.01) with the abbreviated infusion. Moreover, patients receiving the abbreviated infusion had less hypotension and tachycardia (P <.05). The sensitivity of the test for detection of coronary artery disease was 88% for both the 3- and 6-minute infusions. In patients with abnormal scan results, perfusion defect size was slightly larger in those receiving a 6-minute infusion versus those receiving a 3-minute infusion (P =.05). An abbreviated 3-minute adenosine infusion, in combination with perfusion tomography, has similar sensitivity for detection of coronary artery disease and is better tolerated than the standard 6-minute infusion.

  5. Prospective Study of Adenosine on Atrioventricular Nodal Conduction in Pediatric and Young Adult Patients After Heart Transplantation.

    Science.gov (United States)

    Flyer, Jonathan N; Zuckerman, Warren A; Richmond, Marc E; Anderson, Brett R; Mendelsberg, Tamar G; McAllister, Jennie M; Liberman, Leonardo; Addonizio, Linda J; Silver, Eric S

    2017-06-20

    Supraventricular tachycardia is common after heart transplantation. Adenosine, the standard therapy for treating supraventricular tachycardia in children and adults without transplantation, is relatively contraindicated after transplantation because of a presumed risk of prolonged atrioventricular block in denervated hearts. This study tested whether adenosine caused prolonged asystole after transplantation and if it was effective in blocking atrioventricular nodal conduction in these patients. This was a single-center prospective clinical study including healthy heart transplant recipients 6 months to 25 years of age presenting for routine cardiac catheterization during 2015 to 2016. After catheterization, a transvenous pacing catheter was placed and adenosine was given following a dose-escalation protocol until atrioventricular block was achieved. The incidence of clinically significant asystole (≥12 seconds after adenosine) was quantified. The effects of patient characteristics on adenosine dose required to produce atrioventricular block and duration of effect were also measured. Eighty patients completed adenosine testing. No patient (0%; 95% confidence interval, 0-3) required rescue ventricular pacing. Atrioventricular block was observed in 77 patients (96%; 95% confidence interval, 89-99). The median longest atrioventricular block was 1.9 seconds (interquartile range, 1.4-3.2 seconds), with a mean duration of adenosine effect of 4.3±2.0 seconds. No patient characteristic significantly predicted the adenosine dose to produce atrioventricular block or duration of effect. Results were similar across patient weight categories. Adenosine induces atrioventricular block in healthy pediatric and young adult heart transplant recipients with minimal risk when low initial doses are used (25 μg/kg; 1.5 mg if ≥60 kg) and therapy is gradually escalated. URL: http://www.clinicaltrials.gov. Unique identifier: NCT02462941. © 2017 American Heart Association, Inc.

  6. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  7. 2′-O Methylation of Internal Adenosine by Flavivirus NS5 Methyltransferase

    Science.gov (United States)

    Dong, Hongping; Chang, David C.; Hua, Maggie Ho Chia; Lim, Siew Pheng; Chionh, Yok Hian; Hia, Fabian; Lee, Yie Hou; Kukkaro, Petra; Lok, Shee-Mei; Dedon, Peter C.; Shi, Pei-Yong

    2012-01-01

    RNA modification plays an important role in modulating host-pathogen interaction. Flavivirus NS5 protein encodes N-7 and 2′-O methyltransferase activities that are required for the formation of 5′ type I cap (m7GpppAm) of viral RNA genome. Here we reported, for the first time, that flavivirus NS5 has a novel internal RNA methylation activity. Recombinant NS5 proteins of West Nile virus and Dengue virus (serotype 4; DENV-4) specifically methylates polyA, but not polyG, polyC, or polyU, indicating that the methylation occurs at adenosine residue. RNAs with internal adenosines substituted with 2′-O-methyladenosines are not active substrates for internal methylation, whereas RNAs with adenosines substituted with N6-methyladenosines can be efficiently methylated, suggesting that the internal methylation occurs at the 2′-OH position of adenosine. Mass spectroscopic analysis further demonstrated that the internal methylation product is 2′-O-methyladenosine. Importantly, genomic RNA purified from DENV virion contains 2′-O-methyladenosine. The 2′-O methylation of internal adenosine does not require specific RNA sequence since recombinant methyltransferase of DENV-4 can efficiently methylate RNAs spanning different regions of viral genome, host ribosomal RNAs, and polyA. Structure-based mutagenesis results indicate that K61-D146-K181-E217 tetrad of DENV-4 methyltransferase forms the active site of internal methylation activity; in addition, distinct residues within the methyl donor (S-adenosyl-L-methionine) pocket, GTP pocket, and RNA-binding site are critical for the internal methylation activity. Functional analysis using flavivirus replicon and genome-length RNAs showed that internal methylation attenuated viral RNA translation and replication. Polymerase assay revealed that internal 2′-O-methyladenosine reduces the efficiency of RNA elongation. Collectively, our results demonstrate that flavivirus NS5 performs 2′-O methylation of internal adenosine of

  8. Spdef Null Mice Lack Conjunctival Goblet Cells and Provide a Model of Dry Eye

    OpenAIRE

    Marko, Christina K.; Menon, Balaraj B.; Chen, Gang; Whitsett, Jeffrey A.; Clevers, Hans; Gipson, Ilene K.

    2013-01-01

    Goblet cell numbers decrease within the conjunctival epithelium in drying and cicatrizing ocular surface diseases. Factors regulating goblet cell differentiation in conjunctival epithelium are unknown. Recent data indicate that the transcription factor SAM-pointed domain epithelial-specific transcription factor (Spdef) is essential for goblet cell differentiation in tracheobronchial and gastrointestinal epithelium of mice. Using Spdef−/− mice, we determined that Spdef is required for conjunct...

  9. The transient outward current in mice lacking the potassium channel gene Kv1.4

    Science.gov (United States)

    London, Barry; Wang, Dao W; Hill, Joseph A; Bennett, Paul B

    1998-01-01

    The transient outward current (Ito) plays a prominent role in the repolarization phase of the cardiac action potential. Several K+ channel genes, including Kv1.4, are expressed in the heart, produce rapidly inactivating currents when heterologously expressed, and may be the molecular basis of Ito.We engineered mice homozygous for a targeted disruption of the K+ channel gene Kv1.4 and compared Ito in wild-type (Kv1.4+/+), heterozygous (Kv1.4+/-) and homozygous ‘knockout’ (Kv1.4−/−) mice. Kv1.4 RNA was truncated in Kv1.4−/− mice and protein expression was absent.Adult myocytes isolated from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice had large rapidly inactivating outward currents. The peak current densities at 60 mV (normalized by cellular capacitance, in pA pF−1; means ± s.e.m.) were 53.8 ± 5.3, 45.3 ± 2.2 and 44.4 ± 2.8 in cells from Kv1.4+/+, Kv1.4+/− and Kv1.4−/− mice, respectively (P mice.The voltage dependence and time course of inactivation were not changed by targeted disruption of Kv1.4. The mean best-fitting V½ (membrane potential at 50 % inactivation) values for myocytes from Kv1.4 +/+, Kv1.4+/− and Kv1.4−/− mice were -53.5 ± 3.7, -51.1 ± 2.6 and -54.2 ± 2.4 mV, respectively. The slope factors (k) were -10.1 ± 1.4, -8.8 ± 1.4 and -9.5 ± 1.2 mV, respectively. The fast time constants for development of inactivation at -30 mV were 27.8 ± 2.2, 26.2 ± 5.1 and 19.6 ± 2.1 ms in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes, respectively. At +30 mV, they were 35.5 ± 2.6, 30.0 ± 2.1 and 28.7 ± 1.6 ms, respectively. The time constants for the rapid phase of recovery from inactivation at -80 mV were 32.5 ± 8.2, 23.3 ± 1.8 and 39.0 ± 3.7 ms, respectively.Nearly the entire inactivating component as well as more than 60 % of the steady-state outward current was eliminated by 1 mm 4-aminopyridine in Kv1.4+/+, Kv1.4+/− and Kv1.4−/− myocytes.Western blot analysis of heart membrane extracts showed no significant

  10. Comparison of adenosine and treadmill exercise thallium-201 stress tests for the detection of coronary artery disease

    International Nuclear Information System (INIS)

    Abe, Shinya; Takeishi, Yasuchika; Chiba, Junya; Ikeda, Kozue; Tomoike, Hitonobu

    1993-01-01

    To determine the clinical usefulness of adenosine Tl-201 imaging for the evaluation of coronary artery disease, 22 patients with suspected coronary artery disease who underwent adenosine and exercise Tl-201 single photon emission computed tomography (SPECT) were studied. The peak levels of heart rate (83 vs 123 bpm, p<0.001), systolic blood pressure (124 vs 164 mmHg, p<0.001), diastolic blood pressure (70 vs 86 mmHg, p<0.01) and rate pressure products (10220 vs 20410 bpm x mmHg, p<0.001) were markedly smaller during adenosine infusion than during exercise. Segmental agreements between adenosine and exercise tests were 90% (218 of 242 segments) regarding the presence of perfusion defects and 89% (215 of 242 segments) regarding the presence of redistribution. Regional Tl-201 uptake (r=0.85, p<0.001) and the extent (r=0.75, p<0.001) and intensity (r=0.83, p<0.001) of Tl-201 defects during adenosine testing were closely correlated with those of exercise testing. Adenosine and exercise tests showed similar sensitivities for the identification of individual coronary stenosis (85% vs 78%). However, in patients who were unable to perform adequate exercise (maximal heart rate<120 bpm), the sensitivity of adenosine imaging tended to be higher than that of exercise imaging (92% vs 69%, p=0.07). Adenosine Tl-201 imaging is an alternative to the exercise test for assessing the severity and loci of coronary artery disease, especially in patients who are unable to perform adequate physical exercise. (author)

  11. Characteristics of high affinity and low affinity adenosine binding sites in human cerebral cortex

    International Nuclear Information System (INIS)

    John, D.; Fox, I.V.

    1986-01-01

    The binding characteristics of human brain cortical membrane fractions were evaluated to test the hypothesis that there are A 1 and A 2 adenosine binding sites. The ligands used were 2-chloro(8- 3 H) adenosine and N 6 -(adenine-2, 8- 3 H) cyclohexayladenosine. Binding of chloroadenosine to human brain cortical membranes was time dependent, reversible and concentration dependent. The kinetic constant determinations from binding studies of the adenosine receptor are presented. Utilizing tritium-cyclohexyladenosine as ligand the authors observed evidence for a high affinity binding site in human brain cortical membranes with a kd of 5 nM

  12. A new s-adenosylhomocysteine hydrolase-linked method for adenosine detection based on DNA-templated fluorescent Cu/Ag nanoclusters.

    Science.gov (United States)

    Ahn, Jun Ki; Kim, Hyo Yong; Baek, Songyi; Park, Hyun Gyu

    2017-07-15

    We herein describe a novel fluorescent method for the rapid and selective detection of adenosine by utilizing DNA-templated Cu/Ag nanoclusters (NCs) and employing s-adenosylhomocysteine hydrolase (SAHH). SAHH is allowed to promote hydrolysis reaction of s-adenosylhomocysteine (SAH) and consequently produces homocysteine, which would quench the fluorescence signal from DNA-templated Cu/Ag nanoclusters employed as a signaling probe in this study. On the other hand, adenosine significantly inhibits the hydrolysis reaction and prevent the formation of homocysteine. Consequently, highly enhanced fluorescence signal from DNA-Cu/Ag NCs is retained, which could be used to identify the presence of adenosine. By employing this design principle, adenosine was sensitively detected down to 19nM with high specificity over other adenosine analogs such as AMP, ADP, ATP, cAMP, guanosine, cytidine, and urine. Finally, the diagnostic capability of this method was successfully verified by reliably detecting adenosine present in a real human serum sample. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Lack of Cytotoxic Effect and Radioadaptive Response in Splenocytes of Mice Exposed to Low Level Internal β-Particle Irradiation through Tritiated Drinking Water in Vivo

    Directory of Open Access Journals (Sweden)

    Matthew Flegal

    2013-12-01

    Full Text Available Health effects of tritium, a β-emitter and a by-product of the nuclear industry, is a subject of significant controversy. This mouse in vivo study was undertaken to monitor biological effects of low level tritium exposure. Mice were exposed to tritiated drinking water (HTO at 10 KBq/L, 1 MBq/L and 20 MBq/L concentrations for one month. The treatment did not result in a significant increase of apoptosis in splenocytes. To examine if this low level tritium exposure alters radiosensitivity, the extracted splenocytes were challenged in vitro with 2 Gy γ-radiation, and apoptotic responses at 1 and 24 h were measured. No alterations in the radiosensitivity were detected in cells from mice exposed to tritium compared to sham-treated mice. In contrast, low dose γ-irradiation at 20 or 100 mGy, resulted in a significant increase in resistance to apoptotic cell death after 2 Gy irradiation; an indication of the radioadaptive response. Overall, our data suggest that low concentrations of tritium given to mice as HTO in drinking water do not exert cytotoxic effect in splenocytes, nor do they change cellular sensitivity to additional high dose γ-radiation. The latter may be considered as the lack of a radioadaptive response, typically observed after low dose γ-irradiation.

  14. Adenosine deaminase complexing protein (ADCP) expression and metastatic potential in prostatic adenocarcinomas.

    Science.gov (United States)

    Dinjens, W N; Ten Kate, J; Kirch, J A; Tanke, H J; Van der Linden, E P; Van den Ingh, H F; Van Steenbrugge, G J; Meera Khan, P; Bosman, F T

    1990-03-01

    The expression of the adenosine deaminase complexing protein (ADCP) was investigated by immunohistochemistry in the normal and hyperplastic human prostate, in 30 prostatic adenocarcinomas, and in seven human prostatic adenocarcinoma cell lines grown as xenografts in athymic nude mice. In the normal and hyperplastic prostate, ADCP was localized exclusively in the apical membrane and the apical cytoplasm of the glandular epithelial cells. In prostatic adenocarcinomas, four distinct ADCP expression patterns were observed: diffuse cytoplasmic, membranous, both cytoplasmic and membranous, and no ADCP expression. The expression patterns were compared with the presence of metastases. We found an inverse correlation between membranous ADCP immunoreactivity and metastatic propensity. Exclusively membranous ADCP immunoreactivity occurred only in non-metastatic tumours. In contrast, the metastatic tumours showed no or diffuse cytoplasmic ADCP immunoreactivity. This suggests that immunohistochemical detection of ADCP might predict the biological behaviour of prostatic cancer. However, the occurrence of membranous ADCP immunoreactivity in the xenograft of a cell line (PC-EW), derived from a prostatic carcinoma metastasis, indicates that not only the tendency to metastasize modulates ADCP expression.

  15. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat.

    Science.gov (United States)

    Smith, S J; Cases, S; Jensen, D R; Chen, H C; Sande, E; Tow, B; Sanan, D A; Raber, J; Eckel, R H; Farese, R V

    2000-05-01

    Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.

  16. The adenosine A2B receptor is involved in anion secretion in human pancreatic duct Capan-1 epithelial cells

    DEFF Research Database (Denmark)

    Hayashi, M.; Inagaki, A.; Novak, Ivana

    2016-01-01

    Adenosine modulates a wide variety of biological processes via adenosine receptors. In the exocrine pancreas, adenosine regulates transepithelial anion secretion in duct cells and is considered to play a role in acini-to-duct signaling. To identify the functional adenosine receptors and Cl......− channels important for anion secretion, we herein performed experiments on Capan-1, a human pancreatic duct cell line, using open-circuit Ussing chamber and gramicidin-perforated patch-clamp techniques. The luminal addition of adenosine increased the negative transepithelial potential difference (Vte......) in Capan-1 monolayers with a half-maximal effective concentration value of approximately 10 μM, which corresponded to the value obtained on whole-cell Cl− currents in Capan-1 single cells. The effects of adenosine on Vte, an equivalent short-circuit current (Isc), and whole-cell Cl− currents were inhibited...

  17. Utility of humanized BLT mice for analysis of dengue virus infection and antiviral drug testing.

    Science.gov (United States)

    Frias-Staheli, Natalia; Dorner, Marcus; Marukian, Svetlana; Billerbeck, Eva; Labitt, Rachael N; Rice, Charles M; Ploss, Alexander

    2014-02-01

    Dengue virus (DENV) is the cause of a potentially life-threatening disease that affects millions of people worldwide. The lack of a small animal model that mimics the symptoms of DENV infection in humans has slowed the understanding of viral pathogenesis and the development of therapies and vaccines. Here, we investigated the use of humanized "bone marrow liver thymus" (BLT) mice as a model for immunological studies and assayed their applicability for preclinical testing of antiviral compounds. Human immune system (HIS) BLT-NOD/SCID mice were inoculated intravenously with a low-passage, clinical isolate of DENV-2, and this resulted in sustained viremia and infection of leukocytes in lymphoid and nonlymphoid organs. In addition, DENV infection increased serum cytokine levels and elicited DENV-2-neutralizing human IgM antibodies. Following restimulation with DENV-infected dendritic cells, in vivo-primed T cells became activated and acquired effector function. An adenosine nucleoside inhibitor of DENV decreased the circulating viral RNA when administered simultaneously or 2 days postinfection, simulating a potential treatment protocol for DENV infection in humans. In summary, we demonstrate that BLT mice are susceptible to infection with clinical DENV isolates, mount virus-specific adaptive immune responses, and respond to antiviral drug treatment. Although additional refinements to the model are required, BLT mice are a suitable platform to study aspects of DENV infection and pathogenesis and for preclinical testing of drug and vaccine candidates. IMPORTANCE Infection with dengue virus remains a major medical problem. Progress in our understanding of the disease and development of therapeutics has been hampered by the scarcity of small animal models. Here, we show that humanized mice, i.e., animals engrafted with components of a human immune system, that were infected with a patient-derived dengue virus strain developed clinical symptoms of the disease and mounted

  18. Adenosine A1 receptor mRNA expression and the effects of systemic theophylline administration on respiratory function 4 months after C2 hemisection.

    Science.gov (United States)

    Nantwi, Kwaku D; Basura, Gregory J; Goshgarian, Harry G

    2003-01-01

    and sham-operated animals. The blockade or attenuation of spontaneously recovered respiratory activity following theophylline administration cannot be attributed to changes in adenosine A1 receptors because there were no significant differences in adenosine A1 mRNA expression with sham-operated animals. Lack of alteration in A1 mRNA expression 4 months after cervical SCI suggests that A1 receptor plasticity is not activated by chronic injury. Obliteration of spontaneous recovery with theophylline most likely involves a separate unknown mechanism. These findings suggest that there may be a limited therapeutic window for the clinical application of theophylline in SCI patients with respiratory deficits. Theophylline may be more effective clinically in the acute phase of injury rather than in the chronic phase.

  19. Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain

    Science.gov (United States)

    Pacheco-Costa, Rafael; Davis, Hannah M.; Sorenson, Chad; Hon, Mary C.; Hassan, Iraj; Reginato, Rejane D.; Allen, Matthew R.; Bellido, Teresita; Plotkin, Lilian I.

    2015-01-01

    Connexin43 (Cx43) forms gap junction channels and hemichannels that allow the communication among osteocytes, osteoblasts, and osteoclasts. Cx43 carboxy-terminal (CT) domain regulates channel opening and intracellular signaling by acting as a scaffold for structural and signaling proteins. To determine the role of Cx43 CT domain in bone, mice in which one allele of full length Cx43 was replaced by a mutant lacking the CT domain (Cx43ΔCT/fl) were studied. Cx43ΔCT/fl mice exhibit lower cancellous bone volume but higher cortical thickness than Cx43fl/fl controls, indicating that the CT domain is involved in normal cancellous bone gain but opposes cortical bone acquisition. Further, Cx43ΔCT is able to exert the functions of full length osteocytic Cx43 on cortical bone geometry and mechanical properties, demonstrating that domains other than the CT are responsible for Cx43 function in cortical bone. In addition, parathyroid hormone (PTH) failed to increase endocortical bone formation or energy to failure, a mechanical property that indicates resistance to fracture, in cortical bone in Cx43ΔCT mice with or without osteocytic full length Cx43. On the other hand, bone mass and bone formation markers were increased by the hormone in all mouse models, regardless of whether full length or Cx43ΔCT were or not expressed. We conclude that Cx43 CT domain is involved in proper bone acquisition; and that Cx43 expression in osteocytes is dispensable for some but not all PTH anabolic actions. PMID:26409319

  20. Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Directory of Open Access Journals (Sweden)

    De Gendt Karl

    2009-08-01

    Full Text Available Abstract Background Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM. Methods This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs on the Sertoli cells (SCARKO, mice with a ubiquitous loss of androgen ARs (ARKO, hypogonadal (hpg mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO and ARKO (hpg.ARKO mice. Results Microscopic TM was seen in 94% of hpg.ARKO mice (n = 16 and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n = 11 of hpg testes (mean 2 +/- 0.5 per testis and 30% (n = 10 of hpg.SCARKO testes (mean 8 +/- 6 per testis. No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice. Conclusion We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression.

  1. Adenosine deaminase production by an endophytic bacterium (Lysinibacillus sp.) from Avicennia marina.

    Science.gov (United States)

    Kathiresan, Kandasamy; Saravanakumar, Kandasamy; Sahu, Sunil Kumar; Sivasankaran, Muthu

    2014-06-01

    The present study was carried out with the following objectives: (1) to isolate the endophytic bacilli strains from the leaves of mangrove plant Avicennia marina, (2) to screen the potential strains for the production of adenosine deaminase, (3) to statistically optimize the factors that influence the enzyme activity in the potent strain, and (4) to identify the potent strain using 16S rRNA sequence and construct its phylogenetic tree. The bacterial strains isolated from the fresh leaves of a mangrove A. marina were assessed for adenosine deaminase activity by plating method. Optimization of reaction process was carried out using response surface methodology of central composite design. The potent strain was identified based on 16S rRNA sequencing and phylogeny. Of five endophytic strains, EMLK1 showed a significant deaminase activity over other four strains. The conditions for maximum activity of the isolated adenosine deaminase are described. The potent strain EMLK1 was identified as Lysinibacillus sp. (JQ710723) being the first report as a mangrove endophyte. Mangrove-derived endophytic bacillus strain Lysinibacillus sp. EMLK1 is proved to be a promising source for the production of adenosine deaminase and this enzyme deserves further studies for purification and its application in disease diagnosis.

  2. Adenosine Monophosphate (AMP)-Activated Protein Kinase: A New Target for Nutraceutical Compounds.

    Science.gov (United States)

    Marín-Aguilar, Fabiola; Pavillard, Luis E; Giampieri, Francesca; Bullón, Pedro; Cordero, Mario D

    2017-01-29

    Adenosine monophosphate-activated protein kinase (AMPK) is an important energy sensor which is activated by increases in adenosine monophosphate (AMP)/adenosine triphosphate (ATP) ratio and/or adenosine diphosphate (ADP)/ATP ratio, and increases different metabolic pathways such as fatty acid oxidation, glucose transport and mitochondrial biogenesis. In this sense, AMPK maintains cellular energy homeostasis by induction of catabolism and inhibition of ATP-consuming biosynthetic pathways to preserve ATP levels. Several studies indicate a reduction of AMPK sensitivity to cellular stress during aging and this could impair the downstream signaling and the maintenance of the cellular energy balance and the stress resistance. However, several diseases have been related with an AMPK dysfunction. Alterations in AMPK signaling decrease mitochondrial biogenesis, increase cellular stress and induce inflammation, which are typical events of the aging process and have been associated to several pathological processes. In this sense, in the last few years AMPK has been identified as a very interesting target and different nutraceutical compounds are being studied for an interesting potential effect on AMPK induction. In this review, we will evaluate the interaction of the different nutraceutical compounds to induce the AMPK phosphorylation and the applications in diseases such as cancer, type II diabetes, neurodegenerative diseases or cardiovascular diseases.

  3. The adenosine-triphosphatase system responsible for cation transport in electric organ: exclusion of phospholipids as intermediates

    Science.gov (United States)

    Glynn, I. M.; Slayman, Carolyn W.; Eichberg, J.; Dawson, R. M. C.

    1965-01-01

    1. Subcellular fractions were prepared from the electric organs of Electrophorus and Torpedo and assayed for adenosine-triphosphatase activity. 2. Treatment of the `low-speed' fraction from Torpedo with m-urea gave an adenosine-triphosphatase preparation that was almost completely (98%) inhibited by ouabain (0·1mg./ml.) and dependent on the simultaneous presence of Na+ and K+. 3. The adenosine-triphosphatase preparations were exposed to [γ-32P]ATP for 30sec. in the presence of (i) Na+, (ii) K+, (iii) Na++K+ and (iv) Na++K++ouabain. No significant labelling of phosphatidic acid, triphosphoinositide or any other phospholipid was observed. 4. The results suggest that phospholipids do not act as phosphorylated intermediates in the `transport adenosine-triphosphatase' system of electric organ. PMID:14340060

  4. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  5. Adenosine formation in contracting primary rat skeletal muscle cells and endothelial cells in culture

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik

    1997-01-01

    1. The present study examined the capacity for adenosine formation, uptake and metabolism in contracting primary rat muscle cells and in microvascular endothelial cells in culture. 2. Strong and moderate electrical simulation of skeletal muscle cells led to a significantly greater increase....... 3. Addition of microvascular endothelial cells to the cultured skeletal muscle cells enhanced the contraction-induced accumulation of extracellular adenosine (P Skeletal muscle cells were...... in the extracellular adenosine concentration (421 +/- 91 and 235 +/- 30 nmol (g protein)-1, respectively; P muscle cells (161 +/- 20 nmol (g protein)-1). The ATP concentration was lower (18%; P contracted, but not in the moderately contracted muscle cells...

  6. Control of blood pressure, appetite, and glucose by leptin in mice lacking leptin receptors in proopiomelanocortin neurons.

    Science.gov (United States)

    do Carmo, Jussara M; da Silva, Alexandre A; Cai, Zhengwei; Lin, Shuying; Dubinion, John H; Hall, John E

    2011-05-01

    Although the central nervous system melanocortin system is an important regulator of energy balance, the role of proopiomelanocortin (POMC) neurons in mediating the chronic effects of leptin on appetite, blood pressure, and glucose regulation is unknown. Using Cre/loxP technology we tested whether leptin receptor deletion in POMC neurons (LepR(flox/flox)/POMC-Cre mice) attenuates the chronic effects of leptin to increase mean arterial pressure (MAP), enhance glucose use and oxygen consumption, and reduce appetite. LepR(flox/flox)/POMC-Cre, wild-type, LepR(flox/flox), and POMC-Cre mice were instrumented for MAP and heart rate measurement by telemetry and venous catheters for infusions. LepR(flox/flox)/POMC-Cre mice were heavier, hyperglycemic, hyperinsulinemic, and hyperleptinemic compared with wild-type, LepR(flox/flox), and POMC-Cre mice. Despite exhibiting features of metabolic syndrome, LepR(flox/flox)/POMC-Cre mice had normal MAP and heart rate compared with LepR(flox/flox) but lower MAP and heart rate compared with wild-type mice. After a 5-day control period, leptin was infused (2 μg/kg per minute, IV) for 7 days. In control mice, leptin increased MAP by ≈5 mm Hg despite decreasing food intake by ≈35%. In contrast, leptin infusion in LepR(flox/flox)/POMC-Cre mice reduced MAP by ≈3 mm Hg and food intake by ≈28%. Leptin significantly decreased insulin and glucose levels in control mice but not in LepR(flox/flox)/POMC-Cre mice. Leptin increased oxygen consumption in LepR(flox/flox)/POMC-Cre and wild-type mice. Activation of POMC neurons is necessary for the chronic effects of leptin to raise MAP and reduce insulin and glucose levels, whereas leptin receptors in other areas of the brain other than POMC neurons appear to play a key role in mediating the chronic effects of leptin on appetite and oxygen consumption.

  7. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  8. Structural basis of the substrate specificity of Bacillus cereus adenosine phosphorylase

    Energy Technology Data Exchange (ETDEWEB)

    Dessanti, Paola; Zhang, Yang; Allegrini, Simone; Tozzi, Maria Grazia; Sgarrella, Francesco; Ealick, Steven E. (Cornell); (Sassari); (Pisa)

    2012-10-08

    Purine nucleoside phosphorylases catalyze the phosphorolytic cleavage of the glycosidic bond of purine (2{prime}-deoxy)nucleosides, generating the corresponding free base and (2{prime}-deoxy)ribose 1-phosphate. Two classes of PNPs have been identified: homotrimers specific for 6-oxopurines and homohexamers that accept both 6-oxopurines and 6-aminopurines. Bacillus cereus adenosine phosphorylase (AdoP) is a hexameric PNP; however, it is highly specific for 6-aminopurines. To investigate the structural basis for the unique substrate specificity of AdoP, the active-site mutant D204N was prepared and kinetically characterized and the structures of the wild-type protein and the D204N mutant complexed with adenosine and sulfate or with inosine and sulfate were determined at high resolution (1.2-1.4 {angstrom}). AdoP interacts directly with the preferred substrate through a hydrogen-bond donation from the catalytically important residue Asp204 to N7 of the purine base. Comparison with Escherichia coli PNP revealed a more optimal orientation of Asp204 towards N7 of adenosine and a more closed active site. When inosine is bound, two water molecules are interposed between Asp204 and the N7 and O6 atoms of the nucleoside, thus allowing the enzyme to find alternative but less efficient ways to stabilize the transition state. The mutation of Asp204 to asparagine led to a significant decrease in catalytic efficiency for adenosine without affecting the efficiency of inosine cleavage.

  9. Thallium-201 myocardial perfusion imaging during adenosine-induced coronary vasodilation in patients with ischemic heart disease

    International Nuclear Information System (INIS)

    Takeishi, Yasuchika; Chiba, Junya; Abe, Shinya

    1992-01-01

    Thallium-201 ( 201 Tl) myocardial perfusion imaging during adenosine infusion was performed in consecutive 55 patients with suspected coronary artery disease. Adenosine was infused intravenously at a rate of 0.14 mg/kg/min for 6 minutes and a dose of 111 MBq of 201 Tl was administered in a separate vein at the end of third minutes of infusion. Myocardial SPECT imaging was begun 5 minutes and 3 hours after the end of adenosine infusion. For evaluating the presence of perfusion defects, 2 short axis images at the basal and spical levels and a vertical long axis image at the mid left ventricle were used. The regions with decreased 201 Tl uptake were assessed semi-quantitatively. Adenosine infusion caused a slight reduction in systolic blood pressure and an increase in heart rate. The rate pressure products increased slightly (9314±2377 vs. 10360±2148, p 201 Tl myocardial imaging during adenosine infusion was considered to be safe and useful for evaluating the patients with ischemic heart disease. (author)

  10. Biochemistry of an olfactory purinergic system: dephosphorylation of excitatory nucleotides and uptake of adenosine

    Energy Technology Data Exchange (ETDEWEB)

    Trapido-Rosenthal, H G; Carr, W E; Gleeson, R A

    1987-10-01

    The olfactory organ of the spiny lobster, Panulirus argus, is composed of chemosensory sensilla containing the dendrites of primary chemosensory neurons. Receptors on these dendrites are activated by the nucleotides AMP, ADP, and ATP but not by the nucleoside adenosine. It is shown here that the lobster chemosensory sensilla contain enzymes that dephosphorylate excitatory nucleotides and an uptake system that internalizes the nonexcitatory dephosphorylated product adenosine. The uptake of (/sup 3/H)-adenosine is saturable with increasing concentration, linear with time for up to 3 h, sodium dependent, insensitive to moderate pH changes and has a Km of 7.1 microM and a Vmax of 5.2 fmol/sensillum/min (573 fmol/micrograms of protein/min). Double-label experiments show that sensilla dephosphorylate nucleotides extracellularly; /sup 3/H from adenine-labeled AMP or ATP is internalized, whereas 32P from phosphate-labeled nucleotides is not. The dephosphorylation of AMP is very rapid; /sup 3/H from AMP is internalized at the same rate as /sup 3/H from adenosine. Sensillar 5'-ectonucleotidase activity is inhibited by ADP and the ADP analog alpha, beta-methylene ADP. Collectively, these results indicate that the enzymes and the uptake system whereby chemosensory sensilla of the lobster inactivate excitatory nucleotides and clear adenosine from extracellular spaces are very similar to those present in the internal tissues of vertebrates, where nucleotides have many neuroactive effects.

  11. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    Science.gov (United States)

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  12. Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors.

    Science.gov (United States)

    zur Nedden, Stephanie; Hawley, Simon; Pentland, Naomi; Hardie, D Grahame; Doney, Alexander S; Frenguelli, Bruno G

    2011-04-20

    The extent to which brain slices reflect the energetic status of the in vivo brain has been a subject of debate. We addressed this issue to investigate the recovery of energetic parameters and adenine nucleotides in rat hippocampal slices and the influence this has on synaptic transmission and plasticity. We show that, although adenine nucleotide levels recover appreciably within 10 min of incubation, it takes 3 h for a full recovery of the energy charge (to ≥ 0.93) and that incubation of brain slices at 34°C results in a significantly higher ATP/AMP ratio and a threefold lower activity of AMP-activated protein kinase compared with slices incubated at room temperature. Supplementation of artificial CSF with d-ribose and adenine (Rib/Ade) increased the total adenine nucleotide pool of brain slices, which, when corrected for the influence of the dead cut edges, closely approached in vivo values. Rib/Ade did not affect basal synaptic transmission or paired-pulse facilitation but did inhibit long-term potentiation (LTP) induced by tetanic or weak theta-burst stimulation. This decrease in LTP was reversed by strong theta-burst stimulation or antagonizing the inhibitory adenosine A(1) receptor suggesting that the elevated tissue ATP levels had resulted in greater activity-dependent adenosine release during LTP induction. This was confirmed by direct measurement of adenosine release with adenosine biosensors. These observations provide new insight into the recovery of adenine nucleotides after slice preparation, the sources of loss of such compounds in brain slices, the means by which to restore them, and the functional consequences of doing so.

  13. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. The Use of Adenosine Agonists to Treat Nerve Agent-Induced Seizure and Neuropathology

    Science.gov (United States)

    2016-09-01

    not be cited for purposes of advertisement . REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this...survivability. That was an important step to clinical relevancy as it was feared that ADO’s depression of cardiovascular output would exacerbate...kainate, adenosine and neuropeptide Y receptors. Neurochemical Research. 28: 1501-1515. 23. Bjorness, T. E. & R. W. Greene . 2009. Adenosine and sleep

  15. Autoradiographic localization of adenosine receptors in rat brain using [3H]cyclohexyladenosine

    International Nuclear Information System (INIS)

    Goodman, R.R.; Synder, S.H.

    1982-01-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of [ 3 H]N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine

  16. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  17. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    International Nuclear Information System (INIS)

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L.

    1989-01-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-[4-(2-[2-[(4- aminophenyl)methylcarbonylamino]ethylaminocarbonyl]- ethyl)phenyl]ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-[(R)-1-methyl- 2-phenylethyl]adenosine (R-PIA) greater than (+)-N6-[(S)-1-methyl-2- phenylethyl]adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-[beta, gamma-imido]triphosphate

  18. Adenosine-deaminase (ADA activity in Psoriasis (A Preliminary Study

    Directory of Open Access Journals (Sweden)

    S D Chaudhry

    1988-01-01

    Full Text Available Study of adenosine-deaminase activity ′in 23 patients hav-mg psoriasis compared with an equal number of healthy controls revealed significantly high ADA-activity in the psotiatic patients.

  19. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  20. Colonic motor dysfunctions in a mouse model of high-fat diet-induced obesity: an involvement of A2B adenosine receptors.

    Science.gov (United States)

    Antonioli, Luca; Pellegrini, Carolina; Fornai, Matteo; Tirotta, Erika; Gentile, Daniela; Benvenuti, Laura; Giron, Maria Cecilia; Caputi, Valentina; Marsilio, Ilaria; Orso, Genny; Bernardini, Nunzia; Segnani, Cristina; Ippolito, Chiara; Csóka, Balázs; Németh, Zoltán H; Haskó, György; Scarpignato, Carmelo; Blandizzi, Corrado; Colucci, Rocchina

    2017-12-01

    Adenosine A 2B receptors (A 2B R) regulate several enteric functions. However, their implication in the pathophysiology of intestinal dysmotility associated with high-fat diet (HFD)-induced obesity has not been elucidated. We investigated the expression of A 2B R in mouse colon and their role in the mechanisms underlying the development of enteric dysmotility associated with obesity. Wild-type C57BL/6J mice were fed with HFD (60% kcal from fat) or normocaloric diet (NCD; 18% kcal from fat) for 8 weeks. Colonic A 2B R localization was examined by immunofluorescence. The role of A 2B R in the control of colonic motility was examined in functional experiments on longitudinal muscle preparations (LMPs). In NCD mice, A 2B R were predominantly located in myenteric neurons; in HFD animals, their expression increased throughout the neuromuscular layer. Functionally, the A 2B R antagonist MRS1754 enhanced electrically induced NK 1 -mediated tachykininergic contractions in LMPs from HFD mice, while it was less effective in tissues from NCD mice. The A 2B receptor agonist BAY 60-6583 decreased colonic tachykininergic contractions in LMPs, with higher efficacy in preparations from obese mice. Both A 2B R ligands did not affect contractions elicited by exogenous substance P. Obesity is related with a condition of colonic inflammation, leading to an increase of A 2B R expression. A 2B R, modulating the activity of excitatory tachykininergic nerves, participate to the enteric dysmotility associated with obesity.

  1. Comparative study of adenosine and exercise 201Tl myocardial perfusion tomographic imaging for detection of coronary heart disease

    International Nuclear Information System (INIS)

    Wang Xiong

    1997-01-01

    To compare diagnostic accuracy of adenosine and exercise 201 Tl myocardial perfusion tomographic imaging for detection of coronary heart disease (CHD) in patients with a normal rest ECG and no history of myocardial infarction, 81 patients with CHD and 10 normal control subjects underwent adenosine myocardial perfusion imaging, exercise nuclide myocardial perfusion imaging was performed in 117 patients with CHD and 16 normal control subjects, two groups also had coronary arteriography. Both exercise and adenosine testing parameters were analysed. It is shown: 1) The sensitivity and specificity for detection of CHD were 79% vs 80% for adenosine group and 81% vs 81% for exercise myocardial perfusion imaging group respectively. There was no significant difference in comparison with two matched groups (χ 2 = 1.13, χ 2 = 0.18, χ 2 = 0.12, P>0.05). 2) Side effects induced by adenosine accounted for 89% of patients, all symptoms were mild and disappeared quickly after the termination of the study except in 2 cases withdrawal of infusion needed because of severe angina pectoris. Adenosine myocardial perfusion imaging is a safe and sensitive method for detection of CHD. The diagnostic value of adenosine test is similar to that of exercise myocardial perfusion imaging and particularly useful in evaluating patients unable to perform exercise test or achieve adequate level of exercise

  2. Contributory role of adenosine deaminase in metabolic syndrome ...

    African Journals Online (AJOL)

    Adenosine deaminase (ADA) is an enzyme of purine metabolism commonly associated with severe combined immunodeficiency disease and believed to modulate bioactivity of insulin. Its contributory role in patients with metabolic syndrome (having features such as obesity, insulin resistance, fasting hyperglycaemia, lipid ...

  3. Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia

    DEFF Research Database (Denmark)

    Ejlerskov, Patrick; Hultberg, Jeanette Göransdotter; Wang, JunYang

    2015-01-01

    -causing mutant proteins. Mice lacking Ifnb function exhibited motor and cognitive learning impairments with accompanying α-synuclein-containing Lewy bodies in the brain, as well as a reduction in dopaminergic neurons and defective dopamine signaling in the nigrostriatal region. Lack of IFN-β signaling caused...

  4. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    Science.gov (United States)

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-05

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A3 Adenosine Receptors Modulate Hypoxia-inducible Factor-1a Expression in Human A375 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Stefania Merighi

    2005-10-01

    Full Text Available Hypoxia-inducible factor-1 (HIF-1 is a key regulator of genes crucial to many aspects of cancer biology. The purine nucleoside, adenosine, accumulates within many tissues under hypoxic conditions, including that of tumors. Because the levels of both HIF-1 and adenosine are elevated within the hypoxic environment of solid tumors, we investigated whether adenosine may regulate HIF-1. Here we show that, under hypoxic conditions (< 2% 02, adenosine upregulates HIF-1α protein expression in a dose-dependent and timedependent manner, exclusively through the A3 receptor subtype. The response to adenosine was generated at the cell surface because the inhibition of A3 receptor expression, by using small interfering RNA, abolished nucleoside effects. A3 receptor stimulation in hypoxia also increases angiopoietin-2 (Ang-2 protein accumulation through the induction of HIF-1α. In particular, we found that A3 receptor stimulation activates p44/p42 and p38 mitogen-activated protein kinases, which are required for A3-induced increase of HIF-1a and Ang-2. Collectively, these results suggest a cooperation between hypoxic and adenosine signals that ultimately may lead to the increase in HIF-1-mediated effects in cancer cells.

  6. Dietary antioxidants prevent age-related retinal pigment epithelium actin damage and blindness in mice lacking αvβ5 integrin

    Science.gov (United States)

    Yu, Chia-Chia; Nandrot, Emeline F.; Dun, Ying; Finnemann, Silvia C.

    2011-01-01

    In the aging human eye, oxidative damage and accumulation of pro-oxidant lysosomal lipofuscin cause functional decline of the retinal pigment epithelium (RPE), which contributes to age-related macular degeneration. In mice with an RPE-specific phagocytosis defect due to lack of αvβ5 integrin receptors, RPE accumulation of lipofuscin suggests that the age-related blindness we previously described in this model may also result from oxidative stress. Cellular and molecular targets of oxidative stress in the eye remain poorly understood. Here we identify actin among 4-hydroxynonenal (HNE) adducts formed specifically in β5−/− RPE but not neural retina with age. HNE modification directly correlated with loss of resistance of actin to detergent extraction, suggesting cytoskeletal damage in aging RPE. Dietary enrichment with natural antioxidants grapes or marigold extract containing macular pigments lutein/zeaxanthin was sufficient to prevent HNE-adduct formation, actin solubility, lipofuscin accumulation, and age-related cone and rod photoreceptor dysfunction in β5−/− mice. Acute generation of HNE-adducts directly destabilized actin but not tubulin cytoskeletal elements of RPE cells. These findings identify destabilization of the actin cytoskeleton as a consequence of physiological, sublethal oxidative burden of RPE cells in vivo that is associated with age-related blindness and that can be prevented by consuming an antioxidant-rich diet. PMID:22178979

  7. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.; Rubinstein, M.; Suchland, K.L.; Wang, G.-J.; Grandy, D.K.; Volkow, N.D.

    2010-05-01

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with the therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant drugs

  8. Abnormalities in the Polysomnographic, Adenosine and Metabolic Response to Sleep Deprivation in an Animal Model of Hyperammonemia

    Directory of Open Access Journals (Sweden)

    Selena Marini

    2017-08-01

    Full Text Available Patients with liver cirrhosis can develop hyperammonemia and hepatic encephalopathy (HE, accompanied by pronounced daytime sleepiness. Previous studies with healthy volunteers show that experimental increase in blood ammonium levels increases sleepiness and slows the waking electroencephalogram. As ammonium increases adenosine levels in vitro, and adenosine is a known regulator of sleep/wake homeostasis, we hypothesized that the sleepiness-inducing effect of ammonium is mediated by adenosine. Eight adult male Wistar rats were fed with an ammonium-enriched diet for 4 weeks; eight rats on standard diet served as controls. Each animal was implanted with electroencephalography/electromyography (EEG/EMG electrodes and a microdialysis probe. Sleep EEG recording and cerebral microdialysis were carried out at baseline and after 6 h of sleep deprivation. Adenosine and metabolite levels were measured by high-performance liquid chromatography (HPLC and targeted LC/MS metabolomics, respectively. Baseline adenosine and metabolite levels (12 of 16 amino acids, taurine, t4-hydroxy-proline, and acetylcarnitine were lower in hyperammonemic animals, while putrescine was higher. After sleep deprivation, hyperammonemic animals exhibited a larger increase in adenosine levels, and a number of metabolites showed a different time-course in the two groups. In both groups the recovery period was characterized by a significant decrease in wakefulness/increase in NREM and REM sleep. However, while control animals exhibited a gradual compensatory effect, hyperammonemic animals showed a significantly shorter recovery phase. In conclusion, the adenosine/metabolite/EEG response to sleep deprivation was modulated by hyperammonemia, suggesting that ammonia affects homeostatic sleep regulation and its metabolic correlates.

  9. Comparison of exogenous adenosine and voluntary exercise on human skeletal muscle perfusion and perfusion heterogeneity

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H.A.; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    Adenosine is a widely used pharmacological agent to induce a 'high flow' control condition to study the mechanisms of exercise hyperemia, but it is not known how well adenosine infusion depicts exercise-induced hyperemia especially in terms of blood flow distribution at the capillary level in hum...

  10. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  11. Antitumor effect of cordycepin (3'-deoxyadenosine) on mouse melanoma and lung carcinoma cells involves adenosine A3 receptor stimulation.

    Science.gov (United States)

    Nakamura, Kazuki; Yoshikawa, Noriko; Yamaguchi, Yu; Kagota, Satomi; Shinozuka, Kazumasa; Kunitomo, Masaru

    2006-01-01

    An attempt was made to elucidate the molecular targetfor the antitumor effects of cordycepin (3'-deoxyadenosine) using non-selective and selective adenosine A1, A2a, A2b and A3 receptor agonists and antagonists. Although adenosine and 2'-deoxyadenosine (up to 100 microM) had no effect, cordycepin showed remarkable inhibitory effects on the growth curves of B16-BL6 mouse melanoma (IC50= 39 microM) and mouse Lewis lung carcinoma (IC50 = 48 microM) cell lines in vitro. Among the adenosine receptor agonists and antagonists used (up to 100 microM), only 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA), a selective adenosine A3 receptor agonist, notably inhibited the growth of both mouse tumor cell lines (B16-BL6; IC50 = 5 microM, LLC; 14 microM). In addition, the tumor growth inhibitory effect of cordycepin was antagonized by 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191), a selective adenosine A3 receptor antagonist. These results suggest that cordycepin exerts inhibitory effects on the growth of mouse melanoma and lung carcinoma cells by stimulating adenosine A3 receptors on tumor cells.

  12. Poly(adenosine 5'-diphosphate) ribose polymerase activation as a cause of metabolic dysfunction in critical illness.

    Science.gov (United States)

    Liaudet, Lucas

    2002-03-01

    Poly(adenosine 5'-diphosphate) ribose polymerase is a nuclear enzyme activated in response to genotoxic stress induced by a variety of DNA damaging agents. Several oxygen and nitrogen-centered free radicals, notably peroxynitrite, are strong inducers of DNA damage and poly(adenosine 5'-diphosphate) ribose polymerase activation in vitro and in vivo. Activation of this nuclear enzyme depletes the intracellular stores of its substrate nicotinamide adenine dinucleotide, slowing the rate of glycolysis, mitochondrial electron transport and adenosine triphosphate formation. This process triggers a severe energetic crisis within the cell, leading to acute cell dysfunction and cell necrosis. Poly(adenosine 5'-diphosphate) ribose polymerase also plays an important role in the regulation of inflammatory cascades, through a functional association with various transcription factors and transcription co-activators. Recent works identified this enzyme as a critical mediator of cellular metabolic dysfunction, inflammatory injury, and organ damage in conditions associated with overwhelming oxidative stress, including systemic inflammation, circulatory shock, and ischemia-reperfusion. Accordingly, pharmacological inhibitors of poly(adenosine 5'-diphosphate) ribose polymerase protect against cell death and tissue injury in such conditions, and may therefore represent novel therapeutic tools to limit multiple organ damage and dysfunction in critically ill patients.

  13. Value of adenosine infusion for infarct size determination using real-time myocardial contrast echocardiography

    Directory of Open Access Journals (Sweden)

    da Luz Protásio

    2006-02-01

    Full Text Available Abstract Background Myocardial contrast echocardiography has been used for determination of infarct size (IS in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE. Methods Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC staining. Results IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004, with good correlation between measurements (r = 0.91; p 2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p Conclusion RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.

  14. Roles of the adenosine receptor and CD73 in the regulatory effect of γδ T cells.

    Directory of Open Access Journals (Sweden)

    Dongchun Liang

    Full Text Available The adenosine A2A receptor (A2AR, the main functional adenosine receptor on murine T cells, plays a unique role in the attenuation of inflammation and tissue damage in vivo. Here, we showed that, of the immune cell types tested, activated γδ T cells expressed the highest levels of A2AR mRNA and that A2AR ligation inhibited αβ T cell activation, but enhanced γδ T cell activation. We also showed that the inhibitory effect of an adenosine receptor agonist on autoreactive T cells was prevented by addition of a low percentage of activated γδ T cells. Furthermore, compared to resting cells, activated γδ T cells expressed significantly lower levels of CD73, an enzyme involved in the generation of extracellular adenosine. Exogenous AMP had a significant inhibitory effect on autoreactive T cell responses, but only in the presence of CD73+ γδ T cells, and this effect was abolished by a CD73 inhibitor. Our results show that expression of increased amounts of A2AR allows γδ T cells to bind adenosine and thereby attenuate its suppressive effect, while decreased expression of CD73 results in less generation of adenosine in the inflammatory site. Together, these events allow activated γδ T cells to acquire increased proinflammatory activity, leading to augmented autoimmune responses.

  15. Comparison of effects of ATP-MgCl2 and adenosine-MgCl2 on renal function following ischemia

    International Nuclear Information System (INIS)

    Sumpio, B.E.; Hull, M.J.; Baue, A.E.; Chaudry, I.H.

    1987-01-01

    ATO-MgCl 2 administration had been shown to accelerate the recovery of renal function following warm ischemia. However, since the major breakdown product of ATP is adenosine, the relative contribution of ATP vs. adenosine in improving renal function following ischemia remains to be determined. To study this, kidneys were subjected to 45 min of normothermic ischemia and then perfused at 100 mmHg with oxygenated Krebs-HCO 3 buffer containing albumin, [ 3 H]inulin, substrates, and either 0.3 mM ATP-MgCl 2 or adenosine-MgCl 2 for 110 min. Perfusate and timed urine samples were collected and analyzed for radioactivity and [Na + ]. The functional parameters indicated that although adenosine-MgCl 2 treatment provided a transient improvement, it failed to provided a sustained improvement in renal function or attain control valued compared with ATP-MgCl 2 treatment. Thus, the salutary effects of ATP-MgCl 2 following warm ischemia in the kidney are not mediated by adenosine

  16. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  17. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    Science.gov (United States)

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice.

  18. Comparison of fractional flow reserve measurements using intracoronary adenosine versus intracoronary sodium nitroprusside infusions in moderately stenotic coronary artery lesions

    Energy Technology Data Exchange (ETDEWEB)

    Safi, Morteza; Namazi, Mohammad Hasan; Fooladi, Esfandiar; Vakili, Hossein; Parsa, Saeed Alipour; Khaheshi, Isa [Cardiovascular Research Center, Modarres hospital, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Abbasi, Mohammad Amin [Department of Internal Medicine, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Movahed, Mohammad Reza, E-mail: rmova@aol.com [CareMore, Arizona, Tucson, AZ (United States); University of Arizona, Sarver Heart Center, Tucson, AZ (United States)

    2016-10-15

    Introduction: The aim of this study was to investigate the efficacy and safety of intracoronary (IC) sodium nitroprusside infusion in comparison to IC adenosine for fractional flow reserve (FFR) measurement in moderately diseased coronary artery lesions for functional assessment. Methods: During a nine month period, a consecutive of 98 patients with suspected or known coronary artery disease with moderate stenosis found during angiography (40% to 70% stenosis), were enrolled in this study. Hyperemia was induced by bolus doses of IC adenosine followed by sodium nitroprusside for FFR measurement. Results: Both IC adenosine and IC sodium nitroprusside induced similar and significant reduction in FFR. There was no statistically difference in FFR values between adenosine vs sodium nitroprusside infusions (mean FFR 84.3 ± 6.3 vs 85.7 ± 6.2, p = 0.1) respectively. Furthermore, comparing different FFR cut-off points between the groups (FFR < 0.75, 0.75–0.8 and > 0.8) showed no significant differences (p value = 0.7). Conclusion: An IC bolus of sodium nitroprusside (0.6 μg/kg) infusion induces a similar degree of hyperemia to IC bolus of 100–300 μg of adenosine. Therefore, IC sodium nitroprusside could be considered as an alternative drug to adenosine for FFR measurement with lower side effect profile. - Highlights: • Intracoronary (IC) sodium nitroprusside was compared with IC adenosine for FFR test. • IC adenosine and IC sodium nitroprusside induced similar reduction in FFR. • Different FFR cut-off points between the groups showed no significant differences. • IC sodium nitroprusside could be considered as an alternative to adenosine for FFR.

  19. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  20. Plasma Adenosine Deaminase Enzyme Reduces with Treatment of ...

    African Journals Online (AJOL)

    olayemitoyin

    Plasma Adenosine Deaminase Enzyme Reduces with Treatment of Pulmonary Tuberculosis in Nigerian Patients: Indication for. Diagnosis and Treatment Monitoring. Ige O.a, Edem V.F.b and Arinola O.G.b,*. aDepartment of Medicine, University of Ibadan, Ibadan, Nigeria b Department of Chemical Pathology,. University of ...

  1. 21 CFR 864.7040 - Adenosine triphosphate release assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adenosine triphosphate release assay. 864.7040 Section 864.7040 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7040...

  2. Moonlighting adenosine deaminase: a target protein for drug development.

    Science.gov (United States)

    Cortés, Antoni; Gracia, Eduard; Moreno, Estefania; Mallol, Josefa; Lluís, Carme; Canela, Enric I; Casadó, Vicent

    2015-01-01

    Interest in adenosine deaminase (ADA) in the context of medicine has mainly focused on its enzymatic activity. This is justified by the importance of the reaction catalyzed by ADA not only for the intracellular purine metabolism, but also for the extracellular purine metabolism as well, because of its capacity as a regulator of the concentration of extracellular adenosine that is able to activate adenosine receptors (ARs). In recent years, other important roles have been described for ADA. One of these, with special relevance in immunology, is the capacity of ADA to act as a costimulator, promoting T-cell proliferation and differentiation mainly by interacting with the differentiation cluster CD26. Another role is the ability of ADA to act as an allosteric modulator of ARs. These receptors have very general physiological implications, particularly in the neurological system where they play an important role. Thus, ADA, being a single chain protein, performs more than one function, consistent with the definition of a moonlighting protein. Although ADA has never been associated with moonlighting proteins, here we consider ADA as an example of this family of multifunctional proteins. In this review, we discuss the different roles of ADA and their pathological implications. We propose a mechanism by which some of their moonlighting functions can be coordinated. We also suggest that drugs modulating ADA properties may act as modulators of the moonlighting functions of ADA, giving them additional potential medical interest. © 2014 Wiley Periodicals, Inc.

  3. Comparison of adenosine and exercise stress 201Tl myocardial perfusion imaging for diagnosing coronary heart disease in women

    International Nuclear Information System (INIS)

    Li Jiangjin; Ma Shuren; Meng Tao; Bao Zhi; Cui Jianhe

    2011-01-01

    Objective: To compare the diagnostic value of adenosine and exercise stress myocardial perfusion imaging (MPI) for detecting coronary heart disease (CHD) in women. Methods: One hundred and thirty-eight patients with CHD were randomly divided into two groups: adenosine stress group (n=69)and exercise stress group (n=69). All patients underwent myocardial SPECT evaluation. Coronary angiography (CAG), referred as 'gold standard' , was performed in each patient within 1 week before or after MPI. The diagnostic value of the two stress MPI was compared with χ 2 test or Fisher's exact test. Results: In adenosine stress group, the sensitivity, negative predictive value and accuracy were 88.2% (45/51), 72.7% (16/22), 88.4% (61/69), respectively, which were not significantly different from those of the exercise stress group (91.7% (44/48), 66.7% (8/12), 81.2% (52/64); χ 2 =0.571, 0.714, 0.249, P>0.05). However, the false positive rate of adenosine stress (11.1%, 2/18) was significantly lower than that of exercise stress (50.0%, 8/16), P=0.023. Conclusions: Adenosine and exercise stress MPI have similar value for CHD diagnosis in women, however, adenosine stress MPI may have an advantage of low false positive rate. (authors)

  4. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  5. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    International Nuclear Information System (INIS)

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-01-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects

  6. No Effect of Nutritional Adenosine Receptor Antagonists on Exercise Performance in the Heat

    Science.gov (United States)

    2008-11-01

    358–363, 1996. 11. Cook NC, Samman S. Flavonoids —chemistry, metabolism, cardiopro- tective effects, and dietary sources. Nutr Biochem 7: 66–76, 1996...metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305–310, 1997. R400 ADENOSINE RECEPTOR ANTAGONISM AND EXERCISE IN THE HEAT...Interactions of flavonoids with adenosine receptors. J Med Chem 39: 781–788, 1996. 35. MacRae HS, Mefferd KM. Dietary antioxidant supplementation com

  7. Cerebral A1 adenosine receptors (A1AR) in liver cirrhosis

    International Nuclear Information System (INIS)

    Boy, Christian; Meyer, Philipp T.; Kircheis, Gerald; Haussinger, Dieter; Holschbach, Marcus H.; Coenen, Heinz H.; Herzog, Hans; Elmenhorst, David; Kaiser, Hans J.; Zilles, Karl; Bauer, Andreas

    2008-01-01

    The cerebral mechanisms underlying hepatic encephalopathy (HE) are poorly understood. Adenosine, a neuromodulator that pre- and postsynaptically modulates neuronal excitability and release of classical neurotransmitters via A 1 adenosine receptors (A 1 AR), is likely to be involved. The present study investigates changes of cerebral A 1 AR binding in cirrhotic patients by means of positron emission tomography (PET) and [ 18 F]CPFPX, a novel selective A 1 AR antagonist. PET was performed in cirrhotic patients (n = 10) and healthy volunteers (n = 10). Quantification of in vivo receptor density was done by Logan's non-invasive graphical analysis (pons as reference region). The outcome parameter was the apparent binding potential (aBP, proportional to B max /K D ). Cortical and subcortical regions showed lower A 1 AR binding in cirrhotic patients than in controls. The aBP changes reached statistical significance vs healthy controls (p 1 AR binding may further aggravate neurotransmitter imbalance at the synaptic cleft in cirrhosis and hepatic encephalopathy. Different pathomechanisms may account for these alterations including decrease of A 1 AR density or affinity, as well as blockade of the A 1 AR by endogenous adenosine or exogenous xanthines. (orig.)

  8. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

    Science.gov (United States)

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-Åke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

  9. Adenosine Receptors Differentially Regulate the Expression of Regulators of G-Protein Signalling (RGS 2, 3 and 4 in Astrocyte-Like Cells.

    Directory of Open Access Journals (Sweden)

    Till Nicolas Eusemann

    Full Text Available The "regulators of g-protein signalling" (RGS comprise a large family of proteins that limit by virtue of their GTPase accelerating protein domain the signal transduction of G-protein coupled receptors. RGS proteins have been implicated in various neuropsychiatric diseases such as schizophrenia, drug abuse, depression and anxiety and aggressive behaviour. Since conditions associated with a large increase of adenosine in the brain such as seizures or ischemia were reported to modify the expression of some RGS proteins we hypothesized that adenosine might regulate RGS expression in neural cells. We measured the expression of RGS-2,-3, and -4 in both transformed glia cells (human U373 MG astrocytoma cells and in primary rat astrocyte cultures stimulated with adenosine agonists. Expression of RGS-2 mRNA as well as RGS2 protein was increased up to 30-fold by adenosine agonists in astrocytes. The order of potency of agonists and the blockade by the adenosine A2B-antagonist MRS1706 indicated that this effect was largely mediated by adenosine A2B receptors. However, a smaller effect was observed due to activation of adenosine A2A receptors. In astrocytoma cells adenosine agonists elicited an increase in RGS-2 expression solely mediated by A2B receptors. Expression of RGS-3 was inhibited by adenosine agonists in both astrocytoma cells and astrocytes. However while this effect was mediated by A2B receptors in astrocytoma cells it was mediated by A2A receptors in astrocytes as assessed by the order of potency of agonists and selective blockade by the specific antagonists MRS1706 and ZM241385 respectively. RGS-4 expression was inhibited in astrocytoma cells but enhanced in astrocytes by adenosine agonists.

  10. The Role of Adenosine Receptors in Psychostimulant Addiction

    Directory of Open Access Journals (Sweden)

    Inmaculada Ballesteros-Yáñez

    2018-01-01

    Full Text Available Adenosine receptors (AR are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS, adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC, through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A, as well as with other subtypes (e.g., A2A/D2, opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are

  11. PET imaging of adenosine A2A receptors

    NARCIS (Netherlands)

    Zhou, Xiaoyun

    2017-01-01

    This thesis describes the development and evaluation of [11C]preladenant as a novel radioligand for in vivo imaging of adenosine A2A receptors in the brain with positron-emission tomography (PET). The 11C-labeled drug [11C]preladenant was produced with high radiochemical yield and specific activity.

  12. Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I.

    Science.gov (United States)

    Aro, Ellinoora; Salo, Antti M; Khatri, Richa; Finnilä, Mikko; Miinalainen, Ilkka; Sormunen, Raija; Pakkanen, Outi; Holster, Tiina; Soininen, Raija; Prein, Carina; Clausen-Schaumann, Hauke; Aszódi, Attila; Tuukkanen, Juha; Kivirikko, Kari I; Schipani, Ernestina; Myllyharju, Johanna

    2015-07-03

    Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Utility of Exercise Testing and Adenosine Response for Risk Assessment in Children with Wolff-Parkinson-White Syndrome.

    Science.gov (United States)

    Ergul, Yakup; Ozturk, Erkut; Ozyilmaz, Isa; Unsal, Serkan; Carus, Hayat; Tola, Hasan Tahsin; Tanidir, Ibrahim Cansaran; Guzeltas, Alper

    2015-01-01

    We aimed to determine the correlation between noninvasive testing (exercise stress testing [EST] and adenosine responsiveness of accessory pathway [AP] ) and invasive electrophysiology study (EPS) for assessment antegrade conduction of the AP in Wolff-Parkinson-White syndrome. This prospective, observational study enrolled 40 children (58% male children, median age of 13 years, and median weight of 47.5 kg) with Wolff-Parkinson-White syndrome. Conduction through the AP to a cycle length of ≤250 ms was considered rapid or high-risk; otherwise, patients were nonrapid or low-risk. The sudden disappearance of the delta-wave was seen in 10 cases (25%) during EST. Accessory pathway was found to be high-risk in 13 cases (13/40, 32.5%) while the accessory path was identified as low-risk in 27 cases; however, six patients (15%) had blocked AP conduction with adenosine during EPS. Low-risk classification by EST alone to identify patients with nonrapid conduction in baseline EPS had a specificity of 93% and a positive predictive value of 90% (accuracy 54%). Blocked AP conduction with adenosine as a marker of nonrapid baseline AP conduction had a specificity of 93% and a positive predictive value of 84%. Finally, AP was adenosine nonresponsive in the majority of patients (28/30, 93%) with persistent delta-waves, 40% of those who had a sudden disappearance of delta-waves had an adenosine-responsive AP (P value: .028). Abrupt loss of preexcitation during EST and blocked AP conduction with adenosine had high specificity and positive predictive value for nonrapid and low-risk antegrade conduction during baseline invasive EPS. Successful risk stratification of pediatric patients with Wolff-Parkinson-White is possible through the use of EST and the adenosine responsiveness of AP. © 2015 Wiley Periodicals, Inc.

  14. A lack of immune system genes causes loss in high frequency hearing but does not disrupt cochlear synapse maturation in mice.

    Science.gov (United States)

    Calton, Melissa A; Lee, Dasom; Sundaresan, Srividya; Mendus, Diana; Leu, Rose; Wangsawihardja, Felix; Johnson, Kenneth R; Mustapha, Mirna

    2014-01-01

    Early cochlear development is marked by an exuberant outgrowth of neurites that innervate multiple targets. The establishment of mature cochlear neural circuits is, however, dependent on the pruning of inappropriate axons and synaptic connections. Such refinement also occurs in the central nervous system (CNS), and recently, genes ordinarily associated with immune and inflammatory processes have been shown to play roles in synaptic pruning in the brain. These molecules include the major histocompatibility complex class I (MHCI) genes, H2-K(b) and H2-D(b), and the complement cascade gene, C1qa. Since the mechanisms involved in synaptic refinement in the cochlea are not well understood, we investigated whether these immune system genes may be involved in this process and whether they are required for normal hearing function. Here we report that these genes are not necessary for normal synapse formation and refinement in the mouse cochlea. We further demonstrate that C1qa expression is not necessary for normal hearing in mice but the lack of expression of H2-K(b) and H2-D(b) causes hearing impairment. These data underscore the importance of the highly polymorphic family of MHCI genes in hearing in mice and also suggest that factors and mechanisms regulating synaptic refinement in the cochlea may be distinct from those in the CNS.

  15. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    Directory of Open Access Journals (Sweden)

    Felicita Pedata

    2014-01-01

    Full Text Available The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes. Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke.

  16. Gene expression profiles in adenosine-treated human mast cells ...

    African Journals Online (AJOL)

    Gene expression profiles in adenosine-treated human mast cells. ... SW Kang, JE Jeong, CH Kim, SH Choi, SH Chae, SA Jun, HJ Cha, JH Kim, YM Lee, YS ... beta 4, ring finger protein, high-mobility group, calmodulin 2, RAN binding protein, ...

  17. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  18. Feasibility and safety of adenosine cardiovascular magnetic resonance in patients with MR conditional pacemaker systems at 1.5 Tesla.

    Science.gov (United States)

    Klein-Wiele, Oliver; Garmer, Marietta; Urbien, Rhyan; Busch, Martin; Kara, Kaffer; Mateiescu, Serban; Grönemeyer, Dietrich; Schulte-Hermes, Michael; Garbrecht, Marc; Hailer, Birgit

    2015-12-22

    Cardiovascular Magnetic Resonance (CMR) with adenosine stress is a valuable diagnostic tool in coronary artery disease (CAD). However, despite the development of MR conditional pacemakers CMR is not yet established in clinical routine for pacemaker patients with known or suspected CAD. A possible reason is that adenosine stress perfusion for ischemia detection in CMR has not been studied in patients with cardiac conduction disease requiring pacemaker therapy. Other than under resting conditions it is unclear whether MR safe pacing modes (paused pacing or asynchronous mode) can be applied safely because the effect of adenosine on heart rate is not precisely known in this entity of patients. We investigate for the first time feasibility and safety of adenosine stress CMR in pacemaker patients in clinical routine and evaluate a pacing protocol that considers heart rate changes under adenosine. We retrospectively analyzed CMR scans of 24 consecutive patients with MR conditional pacemakers (mean age 72.1 ± 11.0 years) who underwent CMR in clinical routine for the evaluation of known or suspected CAD. MR protocol included cine imaging, adenosine stress perfusion and late gadolinium enhancement. Pacemaker indications were sinus node dysfunction (n = 18) and second or third degree AV block (n = 6). Under a pacing protocol intended to avoid competitive pacing on the one hand and bradycardia due to AV block on the other no arrhythmia occurred. Pacemaker stimulation was paused to prevent competitive pacing in sinus node dysfunction with resting heart rate >45 bpm. Sympatho-excitatory effect of adenosine led to a significant acceleration of heart rate by 12.3 ± 8.3 bpm (p pacemakers. Heart rate response to adenosine has to be considered for the choice of pacing modes during CMR.

  19. Stimulant effects of adenosine antagonists on operant behavior: differential actions of selective A2A and A1 antagonists

    Science.gov (United States)

    Randall, Patrick A.; Nunes, Eric J.; Janniere, Simone L.; Stopper, Colin M.; Farrar, Andrew M.; Sager, Thomas N.; Baqi, Younis; Hockemeyer, Jörg; Müller, Christa E.

    2012-01-01

    Rationale Adenosine A2A antagonists can reverse many of the behavioral effects of dopamine antagonists, including actions on instrumental behavior. However, little is known about the effects of selective adenosine antagonists on operant behavior when these drugs are administered alone. Objective The present studies were undertaken to investigate the potential for rate-dependent stimulant effects of both selective and nonselective adenosine antagonists. Methods Six drugs were tested: two nonselective adenosine antagonists (caffeine and theophylline), two adenosine A1 antagonists (DPCPX and CPT), and two adenosine A2A antagonists (istradefylline (KW6002) and MSX-3). Two schedules of reinforcement were employed; a fixed interval 240-s (FI-240 sec) schedule was used to generate low baseline rates of responding and a fixed ratio 20 (FR20) schedule generated high rates. Results Caffeine and theophylline produced rate-dependent effects on lever pressing, increasing responding on the FI-240 sec schedule but decreasing responding on the FR20 schedule. The A2A antagonists MSX-3 and istradefylline increased FI-240 sec lever pressing but did not suppress FR20 lever pressing in the dose range tested. In fact, there was a tendency for istradefylline to increase FR20 responding at a moderate dose. A1 antagonists failed to increase lever pressing rate, but DPCPX decreased FR20 responding at higher doses. Conclusions These results suggest that adenosine A2A antagonists enhance operant response rates, but A1 antagonists do not. The involvement of adenosine A2A receptors in regulating aspects of instrumental response output and behavioral activation may have implications for the treatment of effort-related psychiatric dysfunctions, such as psychomotor slowing and anergia in depression. PMID:21347642

  20. The stimulatory effects of caffeine with oseltamivir (Tamiflu) on light-dark behavior and open-field behavior in mice.

    Science.gov (United States)

    Uchiyama, Hidemori; Toda, Akihisa; Imoto, Masumi; Nishimura, Satoko; Kuroki, Hiroaki; Soeda, Shinji; Shimeno, Hiroshi; Watanabe, Shigenori; Eyanagi, Reiko

    2010-01-22

    Abnormal behaviors and death associated with the use of oseltamivir (Tamiflu) have emerged as a major issue in influenza patients taking the drug. Here, we investigated the mechanisms underlying the effects of oseltamivir on the behavior of mice using light-dark and open-field preference tests. Oseltamivir (75 and 150 mg/kg, intraperitoneally (i.p.)) alone affected neither time spent in the open area in the light-dark preference test nor ambulation in the open-field test at 2h post-injection. However, a non-selective adenosine A(1)/A(2) receptor antagonist, caffeine (10mg/kg, i.p.) in combination with oseltamivir (150 mg/kg, i.p.) increased time spent in the open area in the light-dark preference test. This enhancement was not inhibited by a benzodiazepine receptor antagonist, flumazenil (10-20mg/kg, subcutaneously (s.c.)). Enhancement of ambulation in the open-field test was also observed when caffeine (10mg/kg, i.p.) was combined with oseltamivir (150 mg/kg, i.p.). This enhancement was inhibited by a dopamine D(2) receptor antagonist, haloperidol (0.1mg/kg, s.c.). Furthermore, an adenosine A(2) receptor antagonist, SCH58261 (3mg/kg, i.p.) in combination with oseltamivir (150 mg/kg, i.p.) increased ambulation in the open-field test, while an adenosine A(1) receptor antagonist, DPCPX (1-3mg/kg, i.p.) did not. These findings suggest that the actions of oseltamivir may involve the dopamine and adenosine systems. Our findings suggest that due to the interaction between central blockade of adenosine A(2) receptors by caffeine, and oseltamivir-induced behavioral changes, patients being treated with oseltamivir should be closely monitored. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  1. Extracellular 2′,3′-cAMP Is a Source of Adenosine*

    OpenAIRE

    Jackson, Edwin K.; Ren, Jin; Mi, Zaichuan

    2009-01-01

    We discovered that renal injury releases 2′,3′-cAMP (positional isomer of 3′,5′-cAMP) into the interstitium. This finding motivated a novel hypothesis: renal injury leads to activation of an extracellular 2′,3′-cAMP-adenosine pathway (i.e. metabolism of extracellular 2′,3′-cAMP to 3′-AMP and 2′-AMP, which are metabolized to adenosine, a retaliatory metabolite). In isolated rat kidneys, arterial infusions of 2′,3′-cAMP (30 μmol/liter) increased the mean venous secretion of 3′-AMP (3,400-fold),...

  2. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    The concept of reperfusion injury, although first recognized from animal studies, is now recognized as a clinical phenomenon that may result in microvascular damage, no-reflow phenomenon, myocardial stunning, myocardial hibernation and ischemic preconditioning. The final consequence of this event is left ventricular (LV) systolic dysfunction leading to increased morbidity and mortality. The typical clinical case of reperfusion injury occurs in acute myocardial infarction (MI) with ST segment elevation in which an occlusion of a major epicardial coronary artery is followed by recanalization of the artery. This may occur either spontaneously or by means of thrombolysis and/or by primary percutaneous coronary intervention (PCI) with efficient platelet inhibition by aspirin (acetylsalicylic acid), clopidogrel and glycoprotein IIb/IIIa inhibitors. Although the pathophysiology of reperfusion injury is complex, the major role that neutrophils play in this process is well known. Neutrophils generate free radicals, degranulation products, arachidonic acid metabolites and platelet-activating factors that interact with endothelial cells, inducing endothelial injury and neutralization of nitrous oxide vasodilator capacity. Adenosine, through its multi-targeted pharmacological actions, is able to inhibit some of the above-mentioned detrimental effects. The net protective of adenosine in in vivo models of reperfusion injury is the reduction of the infarct size, the improvement of the regional myocardial blood flow and of the regional function of the ischemic area. Additionally, adenosine preserves the post-ischemic coronary flow reserve, coronary blood flow and the post-ischemic regional contractility. In small-scale studies in patients with acute MI, treatment with adenosine has been associated with smaller infarcts, less no-reflow phenomenon and improved LV function. During elective PCI adenosine reduced ST segment shifts, lactate production and ischemic symptoms. During the

  3. Adenosine derived from Staphylococcus aureus-engulfed macrophages functions as a potent stimulant for the induction of inflammatory cytokines in mast cells

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Kim, Chan-Hee; Ryu, Kyoung-Hwa

    2011-01-01

    In this study, we attempted to isolate novel mast cell-stimulating molecules from Staphylococcus aureus. Water-soluble extract of S. aureus cell lysate strongly induced human interleukin- 8 in human mast cell line-1 and mouse interleukin-6 in mouse bone marrow-derived mast cells. The active...... adenosine receptor blocker, verified that purified adenosine can induce interleukin-8 production via adenosine receptors on mast cells. Moreover, adenosine was purified from S. aureusengulfed RAW264.7 cells, a murine macrophage cell line, used to induce phagocytosis of S. aureus. These results show a novel...

  4. Non-enzymolytic adenosine barcode-mediated dual signal amplification strategy for ultrasensitive protein detection using LC-MS/MS.

    Science.gov (United States)

    Yang, Wen; Li, Tengfei; Shu, Chang; Ji, Shunli; Wang, Lei; Wang, Yan; Li, Duo; Mtalimanja, Michael; Sun, Luning; Ding, Li

    2018-05-10

    A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%. Graphical abstract Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.

  5. Normal autophagic activity in macrophages from mice lacking Gαi3, AGS3, or RGS19.

    Directory of Open Access Journals (Sweden)

    Ali Vural

    Full Text Available In macrophages autophagy assists antigen presentation, affects cytokine release, and promotes intracellular pathogen elimination. In some cells autophagy is modulated by a signaling pathway that employs Gαi3, Activator of G-protein Signaling-3 (AGS3/GPSM1, and Regulator of G-protein Signaling 19 (RGS19. As macrophages express each of these proteins, we tested their importance in regulating macrophage autophagy. We assessed LC3 processing and the formation of LC3 puncta in bone marrow derived macrophages prepared from wild type, Gnai3(-/-, Gpsm1(-/-, or Rgs19(-/- mice following amino acid starvation or Nigericin treatment. In addition, we evaluated rapamycin-induced autophagic proteolysis rates by long-lived protein degradation assays and anti-autophagic action after rapamycin induction in wild type, Gnai3(-/-, and Gpsm1(-/- macrophages. In similar assays we compared macrophages treated or not with pertussis toxin, an inhibitor of GPCR (G-protein couple receptor triggered Gαi nucleotide exchange. Despite previous findings, the level of basal autophagy, autophagic induction, autophagic flux, autophagic degradation and the anti-autophagic action in macrophages that lacked Gαi3, AGS3, or RGS19; or had been treated with pertussis toxin, were similar to controls. These results indicate that while Gαi signaling may impact autophagy in some cell types it does not in macrophages.

  6. Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor.

    Science.gov (United States)

    Daly, J W; Caceres, J; Moni, R W; Gusovsky, F; Moos, M; Seamon, K B; Milton, K; Myers, C W

    1992-11-15

    A frog used for "hunting magic" by several groups of Panoan-speaking Indians in the borderline between Brazil and Peru is identified as Phyllomedusa bicolor. This frog's skin secretion, which the Indians introduce into the body through fresh burns, is rich in peptides. These include vasoactive peptides, opioid peptides, and a peptide that we have named adenoregulin, with the sequence GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV as determined from mass spectrometry and Edman degradation. The natural peptide may contain a D amino acid residue, since it is not identical in chromatographic properties to the synthetic peptide. Adenoregulin enhances binding of agonists to A1 adenosine receptors; it is accompanied in the skin secretion by peptides that inhibit binding. The vasoactive peptide sauvagine, the opioid peptides, and adenoregulin and related peptides affect behavior in mice and presumably contribute to the behavioral sequelae observed in humans.

  7. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats.

    Science.gov (United States)

    Hu, Zhenzhen; Lee, Chung-Il; Shah, Vikash Kumar; Oh, Eun-Hye; Han, Jin-Yi; Bae, Jae-Ryong; Lee, Kinam; Chong, Myong-Soo; Hong, Jin Tae; Oh, Ki-Wan

    2013-01-01

    Cordycepin (3'-deoxyadenosine) is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs), like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs). Sleep was recorded using electroencephalogram (EEG) for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM) sleep. Interestingly, cordycepin increased θ (theta) waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B) were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  8. Cordycepin Increases Nonrapid Eye Movement Sleep via Adenosine Receptors in Rats

    Directory of Open Access Journals (Sweden)

    Zhenzhen Hu

    2013-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine is a naturally occurring adenosine analogue and one of the bioactive constituents isolated from Cordyceps militaris/Cordyceps sinensis, species of the fungal genus Cordyceps. It has traditionally been a prized Chinese folk medicine for the human well-being. Because of similarity of chemical structure of adenosine, cordycepin has been focused on the diverse effects of the central nervous systems (CNSs, like sleep regulation. Therefore, this study was undertaken to know whether cordycepin increases the natural sleep in rats, and its effect is mediated by adenosine receptors (ARs. Sleep was recorded using electroencephalogram (EEG for 4 hours after oral administration of cordycepin in rats. Sleep architecture and EEG power spectra were analyzed. Cordycepin reduced sleep-wake cycles and increased nonrapid eye movement (NREM sleep. Interestingly, cordycepin increased θ (theta waves power density during NREM sleep. In addition, the protein levels of AR subtypes (A1, A2A, and A2B were increased after the administration of cordycepin, especially in the rat hypothalamus which plays an important role in sleep regulation. Therefore, we suggest that cordycepin increases theta waves power density during NREM sleep via nonspecific AR in rats. In addition, this experiment can provide basic evidence that cordycepin may be helpful for sleep-disturbed subjects.

  9. Antidepressive and BDNF effects of enriched environment treatment across ages in mice lacking BDNF expression through promoter IV

    Science.gov (United States)

    Jha, S; Dong, B E; Xue, Y; Delotterie, D F; Vail, M G; Sakata, K

    2016-01-01

    Reduced promoter IV-driven expression of brain-derived neurotrophic factor (BDNF) is implicated in stress and major depression. We previously reported that defective promoter IV (KIV) caused depression-like behavior in young adult mice, which was reversed more effectively by enriched environment treatment (EET) than antidepressants. The effects of promoter IV-BDNF deficiency and EET over the life stages remain unknown. Since early-life development (ED) involves dynamic epigenetic processes, we hypothesized that EET during ED would provide maximum antidepressive effects that would persist later in life due to enhanced, long-lasting BDNF induction. We tested this hypothesis by determining EET effects across three life stages: ED (0–2 months), young adult (2–4 months), and old adult (12–14 months). KIV mice at all life stages showed depression-like behavior in the open-field and tail-suspension tests compared with wild-type mice. Two months of EET reduced depression-like behavior in ED and young adult, but not old adult mice, with the largest effect in ED KIV mice. This effect lasted for 1 month after discontinuance of EET only in ED mice. BDNF protein induction by EET in the hippocampus and frontal cortex was also the largest in ED mice and persisted only in the hippocampus of ED KIV mice after discontinuance of EET. No gender-specific effects were observed. The results suggest that defective promoter IV causes depression-like behavior, regardless of age and gender, and that EET during ED is particularly beneficial to individuals with promoter IV-BDNF deficiency, while additional treatment may be needed for older adults. PMID:27648918

  10. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    Science.gov (United States)

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  11. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    Science.gov (United States)

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  12. Outcome of Patients With Adenosine-Induced ST Segment Depression and Normal Myocardial Perfusion

    International Nuclear Information System (INIS)

    El-Refaei, S.; Selim, M.

    2011-01-01

    The aim of the present study was to determine the outcome of patients with normal MPS and adenosine-induced ST segment depression. A total of 1867 patients underwent adenosine Tc99m-tetrofosmin MPS in nuclear medicine unit in Saudi German Hospital, Saudi Arabia, between January 2004 and May 2008. Their ECGs were checked for ST segment depression during adenosine infusion. All patients with ≥ 1 mm horizontal or down-sloping ST segment depression or≥ 1.5 mm up-sloping ST segment depression were included in the study. Fifty-six patients met our inclusion criteria, of which 45 (80%) were females. During the follow-up period, a total of 15 of patients ended up doing coronary angiography, either for high clinical suspicion or following a second positive MPS performed 6-18 months after the first study. Seven of them were positive for coronary artery disease and were subsequently treated with revascularization procedure, and 8 returned either normal angiography or non-obstructive coronary artery disease. Male diabetic smoking patients were more prevalent and underwent revascularization. The patients were followed up for a mean of 22.8 ±7.8 months. No cardiac deaths or myocardial infarctions were reported. It could be concluded that adenosine-induced ST segment depression in patients with normal myocardial perfusion was a benign finding and did not increase the very low risk of cardiac events in those patients. However, male smokers and/or diabetics might need further investigation. This suggestion needs further evaluation

  13. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    Science.gov (United States)

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Pooled comparison of regadenoson versus adenosine for measuring fractional flow reserve and coronary flow in the catheterization laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stolker, Joshua M., E-mail: jstolker@yahoo.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Lim, Michael J., E-mail: limmj@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Shavelle, David M., E-mail: david.shavelle@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Morris, D. Lynn, E-mail: morrisdl@einstein.edu [Albert Einstein Medical Center, 5501 Old York Rd, Philadelphia, PA 19141 (United States); Angiolillo, Dominick J., E-mail: dominick.angiolillo@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Guzman, Luis A., E-mail: luis.guzman@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States); Kennedy, Kevin F., E-mail: kfkennedy@saint-lukes.org [Saint Luke' s Mid America Heart Institute, 4401 Wornall Road, Kansas City, MO 64111 (United States); Weber, Elizabeth, E-mail: eweber1@slu.edu [Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zareh, Meena, E-mail: meena.zareh@med.usc.edu [University of Southern California, 1510 San Pablo St, Suite 322, Los Angeles, CA 90033 (United States); Neumayr, Robert H., E-mail: robneumayr@gmail.com [Mercy Heart and Vascular, 901 Patients First Drive, Washington, MO 63090 (United States); Saint Louis University, 3635 Vista Ave, St. Louis, MO 63110 (United States); Zenni, Martin M., E-mail: martin.zenni@jax.ufl.edu [University of Florida Health-Jacksonville, 655 West 8th St, Jacksonville, FL 32209 (United States)

    2015-07-15

    Background: Adenosine is the gold standard for augmenting coronary flow during fractional flow reserve (FFR) testing of intermediate coronary stenoses. However, intravenous infusion is time-consuming and intracoronary injection is subject to variability. Regadenoson is a newer adenosine alternative administered as a single intravenous bolus during nuclear stress testing, but its efficacy and safety during FFR testing have been evaluated only in small, single-center studies. Methods: We pooled data from 5 academic hospitals, in which patients undergoing clinically-indicated FFR prospectively underwent comparison of intravenous adenosine infusion (140–175 mcg/kg/min) versus regadenoson bolus (400 mcg). Hemodynamics and symptoms with adenosine were recorded until maximal hyperemia occurred, and after returning to baseline hemodynamics, regadenoson was administered and monitoring was repeated. In a subset of patients with coronary flow data, average peak velocity (APV) at the distal flow sensor was recorded. Results: Of 149 patients enrolled, mean age was 59 ± 9 years, 76% were male, and 54% underwent testing of the left anterior descending artery. Mean adenosine-FFR and regadenoson-FFR were identical (0.82 ± 0.10) with excellent correlation of individual values (r = 0.96, p < 0.001) and no difference in patient-reported symptoms. Four patients (2.6%) had discrepancies between the 2 drugs for the clinical decision-making cutoff of FFR ≤ 0.80. Coronary flow responses to adenosine and regadenoson were similar (APV at maximal hyperemia 36 cm/s for both, p = 0.81). Conclusions: Regadenoson single-bolus administration has comparable FFR, symptoms, and coronary flow augmentation when compared with standard intravenous adenosine infusion. With its greater ease of administration, regadenoson may be a more “user-friendly” option for invasive ischemic testing.

  15. Anti-hypoxic activity of the ethanol extract from Portulaca oleracea in mice.

    Science.gov (United States)

    Chen, Cheng-Jie; Wang, Wan-Yin; Wang, Xiao-Li; Dong, Li-Wei; Yue, Yi-Tian; Xin, Hai-Liang; Ling, Chang-Quan; Li, Min

    2009-07-15

    To investigate the effects of the ethanol extract from Portulaca oleracea (EEPO) on hypoxia models mice and to find the possible mechanism of its anti-hypoxic actions so as to elucidate the anti-hypoxia activity and provide scientific basis for the clinical use of Portulaca oleracea. EEPO was evaluated on anti-hypoxic activity in several hypoxia mice models, including closed normobaric hypoxia and sodium nitrite or potassium cyanide toxicosis. To verify the possible mechanism(s), we detected the activities of pyruvate kinase (PK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and the level of adenosine triphosphate (ATP) in mice cortices. Given orally, the EEPO at doses of 100, 200, 400 mg/kg could dose-dependently enhance the survival time of mice in both of the normobaric and chemical hypoxia models. The activity of the glycolysis enzymes and the level of ATP were higher than those of the control. In the pentobarbital sodium-induced sleeping time test and the open-field test, EEPO neither significantly enhanced the pentobarbital sodium-induced sleeping time nor impaired the motor performance, indicating that the observed anti-hypoxic activity was unlikely due to sedation or motor abnormality. These results demonstrated that the EEPO possessed notable anti-hypoxic activity, which might be related to promoting the activity of the key enzymes in glycolysis and improving the level of ATP in hypoxic mice.

  16. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.

  17. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v1; ref status: indexed, http://f1000r.es/3rm

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-07-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  18. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord [v2; ref status: indexed, http://f1000r.es/4dl

    Directory of Open Access Journals (Sweden)

    Eric McCoy

    2014-09-01

    Full Text Available Ectonucleotidases are membrane-bound or secreted proteins that hydrolyze extracellular nucleotides.  Recently, we identified three ectonucleotidases that hydrolyze extracellular adenosine 5’-monophosphate (AMP to adenosine in primary somatosensory neurons.  Currently, it is unclear which ectonucleotidases hydrolyze ATP and ADP in these neurons.  Ectonucleoside triphosphate diphosphohydrolases (ENTPDs comprise a class of enzymes that dephosphorylate extracellular ATP and ADP.  Here, we found that ENTPD3 (also known as NTPDase3 or CD39L3 was located in nociceptive and non-nociceptive neurons of the dorsal root ganglion (DRG, in the dorsal horn of the spinal cord, and in free nerve endings in the skin.  To determine if ENTPD3 contributes directly to ATP and ADP hydrolysis in these tissues, we generated and characterized an Entpd3 knockout mouse.  This mouse lacks ENTPD3 protein in all tissues examined, including the DRG, spinal cord, skin, and bladder.  However, DRG and spinal cord tissues from Entpd3-/- mice showed no reduction in histochemical staining when ATP, ADP, AMP, or UTP were used as substrates.  Additionally, using fast-scan cyclic voltammetry (FSCV, adenosine production was not impaired in the dorsal spinal cord of Entpd3-/- mice when the substrate ADP was applied.  Further, Entpd3-/- mice did not differ in nociceptive behaviors when compared to wild-type mice, although Entpd3-/- mice showed a modest reduction in β-alanine-mediated itch.  Taken together, our data indicate that deletion of Entpd3 does not impair ATP or ADP hydrolysis in primary somatosensory neurons or in dorsal spinal cord.  Moreover, our data suggest there could be multiple ectonucleotidases that act redundantly to hydrolyze nucleotides in these regions of the nervous system.

  19. Secondary deuterium isotope effects for acid-catalyzed hydrolysis of inosine and adenosine

    International Nuclear Information System (INIS)

    Romero, R.; Stein, R.; Bull, H.G.; Cordes, E.H.

    1978-01-01

    Kinetic α deuterium isotope effects have been measured for acid-catalyzed hydrolysis of inosine and adenosine. For inosine hydrolysis, values of k/sub H/k/sub D/ follow: in 1.0 M HCl, 1.21 and 1.20 at 25 and 50 0 C, respectively; in 0.1 M HCl, 1.19 and 1.18 at 25 and 50 0 C, respectively. For adenosine hydrolysis, k/sub H/k/sub D/ is 1.23 in 0.1 M HCl at 25 0 C. The values require that the transition states for hydrolysis of both the monocation and dication of inosine and the dication of adenosine have marked oxocarbonium ion character. Detailed mechanisms which accord with this and other experimental observations include (1) a classical Al mechanism in which the C--N bond is largely cleaved in the transition state; (2) a mechanism involving some form of nucleophilic participation by solvent in which bond cleavage is advanced relative to bond formation in the transition state; or (3) complete C--N bond cleavage with rate-determining diffusion apart of oxocarbonium ion and purine base. 53 references, 1 figure, 2 tables

  20. Loss of ATM kinase activity leads to embryonic lethality in mice.

    Science.gov (United States)

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  1. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  2. Evaluation of hemodynamic effects of extracranial carotid stenoses by adenosine-induced vasodilatation in combination with 99mTc-HMPAO SPECT

    International Nuclear Information System (INIS)

    Ussov, V.Yu.; Plotnikov, M.P.; Yaroshevsky, S.P.; Shipulin, V.M.; Sokolov, AA.

    1999-01-01

    Methods: Adenosine was evaluated in combination with 99mTc-HMPAO SPECT as an intravenous agent for the pharmacological stress-test of the regional cerebral blood flow (rCBF) in 12 patients with internal carotid artery (ICA) stenosis without neurologic deficit (8 subjects) or with minimal deficit (4 subjects). Also, the adenosine-induced effects on rCBF were correlated with the anatomic severity of ICA stenosis. Six normal age-matched volunteers served as control. Results: The rest 99mTc-HMPAO SPECT data did not reveal any significant interhemispheric asymmetry of perfusion either in ICA stenosis patients or in control subjects. No interhemispheric asymmetry was observed in control subjects during adenosine infusion either. In ICA stenosis the adenosine test did induce interhemispheric asymmetry of perfusion, which ranged between 0.73 and 0.96 when quantified as an interhemispheric ratio of 99mTc-HMPAO uptake. In 5 of the 12 patients with ICA stenosis, adenosine also elicited a short - term muscular weakness and/or skin paresthesia consistent with cerebral location of the related cortical zones in the stenosis - dependent hemisphere. No correlation was noted between the interhemispheric anatomic planimetric asymmetry of stenosis (as ratio of patent ICA vessel lumen areas) and perfusion asymmetry at rest. The planimetric asymmetry of stenosis correlated significantly with the adenosine-induced asymmetry of rCBF in ICA - dependent areas (r = 0.78, p < 0.02). The correlation could be observed beginning from the magnitude of 70-75% relatively to the cross-sectional area of the contralateral intact vessel, equivalent to 45-50% decrease in the arterial diameter as compared to the intact artery. Conclusion: Therefore, the conclusion can be drawn that adenosine as a potent cerebral vasodilatator may be employed as a challenging agent for functional tests of rCBF and that the adenosine test facilitates detection of the hemodynamic effects of ''minor'' stenoses. (author)

  3. Monoolein-alginate beads as a platform to promote adenosine cutaneous localization and wound healing.

    Science.gov (United States)

    Ng, Wing Y; Migotto, Amanda; Ferreira, Thamyres Soares; Lopes, Luciana B

    2017-09-01

    Alginate beads containing the polar lipid monoolein were developed as a strategy to manage wet wounds by providing improved uptake of excess exudate while releasing adenosine locally for promotion of healing. To obtain monoolein-containing beads, the lipid was mixed with almond oil (2:1w/w), and emulsified within the alginate aqueous dispersion, followed by ionotropic gelation in CaCl 2 solution. Compared to alginate-only, monoolein-alginate systems were 1.44-fold larger, their swelling ability was 1.40-fold higher and adenosine cumulative release was approximately 1.30-fold lower (at 24h). Monoolein-alginate beads were considered safe for topical application as demonstrated by the absence of changes on the viability of reconstructed skin equivalents compared to PBS. Smaller amounts of adenosine were delivered by the beads into and across damaged porcine skin (created by an incisional wound) compared to the drug aqueous solution, and cutaneous localization was favored. More specifically, the beads increased the viable skin layer/receptor phase delivery ratio by approximately 4-fold at 12h post-application. Considering the wide range of adenosine physiological effects and the importance of skin localization for its use in wound healing, these results demonstrate the potential of monoolein-containing beads for localized drug delivery and management of wet wounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Evaluation of adenosine preconditioning with 99mTc-His10-annexin V in a porcine model of myocardium ischemia and reperfusion injury: preliminary study

    International Nuclear Information System (INIS)

    Ye Fei; Fang Wei; Wang Feng; Hua Zichun; Wang Zizheng; Yang Xiang

    2011-01-01

    Purpose: The goal of this study was to evaluate the feasibility of 99m Tc-His 10 -annexin V for the detection of acute myocardial cell death and to assess the effect of adenosine preconditioning in a porcine model of myocardium ischemia and reperfusion injury (RI). Materials and Methods: 99m Tc-His 10 -annexin V was prepared by one-step direct labeling, and RCP and radiostability were tested. The binding of 99m Tc-His 10 -annexin V to apoptosis was validated in vitro using camptothecin-induced Jurkat cells. In vivo biodistribution was determined in mice by the dissection method. Ischemia of 20-30 min was induced by balloon occlusion of the epicardial coronary artery of the porcine model (n=14). Adenosine was infused intravenously in six pigs before coronary occlusion. 99m Tc-His 10 -annexin V (n=12) was injected intravenously at 1 h after reperfusion. SPECT/CT was acquired at 3 h postinjection. Myocardial perfusion imaging (MPI) with 99m Tc-MIBI was also performed 1 day after His 10 -annexin V imaging. Cardiac tissues were analyzed postmortem using hematoxylin-and-eosin and TUNEL staining. Caspase-3 activity was measured to confirm the presence of apoptosis. Results: 99m Tc-His 10 -annexin V had a RCP >98% and high stability 2 h after radiolabeling; it could bind to apoptotic cells with high affinity. Biodistribution of 99m Tc-His 10 -annexin V showed a predominant uptake in the kidney and relatively low uptake in the myocardium, liver and gastrointestinal tract; rapid clearance from blood and kidney was observed. In the untreated group, intense uptake of His 10 -annexin V was visualized in the defect which was shown in MPI, whereas in the adenosine group a mild uptake of 99m Tc-His 10 -annexin was found in the risk area which showed no defects in the 99m Tc-MIBI image. TUNEL staining and activated caspase-3 confirmed the ongoing apoptosis in RI. Adenosine preconditioning significantly diminished the level of apoptosis. Uptake of His 10 -annexin V in RI correlated

  5. The Neuroprotective Benefits of Central Adenosine Receptor Stimulation in a Soman Nerve Agent Rat Model

    Science.gov (United States)

    2014-04-01

    where treatment is delayed and nerve agent-induced status epilepticus develops. New therapeutic targets are required to improve survivability and...Exp Ther 304(3): 1307-1313. Compton, J. R. (2004). Adenosine Receptor Agonist Pd 81,723 Protects Against Seizure/ Status Epilepticus and...Dragunow (1994). " Status epilepticus may be caused by loss of adenosine anticonvulsant mechanisms." Neuroscience 58(2): 245-261. Youssef, A. F. and B. W

  6. Adenosine deaminase activity of erythrocytes in hyperuricemia

    International Nuclear Information System (INIS)

    Krueger, W.; Richter, V.; Beenken, O.; Weinhold, D.; Hirschberg, K.; Rotzsch, W.; Akademie der Wissenschaften der DDR, Leipzig. Zentralinstitut fuer Isotopen- und Strahlenforschung)

    1982-01-01

    Erythrocytic adenosine deaminase (ADA) activity was determined in 55 patients with primary hyperuricemia and in 37 healthy control persons. Unlike the controls, the ADA activity in the patient group showed a two-peak response. Hyperuricemia patients with high ADA activity also exhibited increased uric acid excretion and elevated 15 N incorporation into uric acid. High activity values of erythrocytic ADA can be interpreted as an uric acid overproduction, giving hints for a therapeutic plan. (author)

  7. IGF-II is up-regulated and myofibres are hypertrophied in regenerating soleus of mice lacking FGF6

    International Nuclear Information System (INIS)

    Armand, Anne-Sophie; Lecolle, Sylvie; Launay, Thierry; Pariset, Claude; Fiore, Frederic; Della Gaspera, Bruno; Birnbaum, Daniel; Chanoine, Christophe; Charbonnier, Frederic

    2004-01-01

    Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the use of FGF6(-/-) mutant mice gave contradictory results and the role of FGF6 during myogenesis remains largely unclear. Using FGF6(-/-) mice, we first analysed the morphology of the regenerated soleus following cardiotoxin injection and showed hypertrophied myofibres in soleus of the mutant mice as compared to wild-type mice. Secondly, to examine the function of the IGF family in the hypertrophy process, we used semiquantitative and real-time RT-PCR assays and Western blots to monitor the expression of the insulin-like growth factors (IGF-I and IGF-II), their receptors [type I IGF receptor (IGF1R) and IGF-II receptor (IGF2R)], and of a binding protein IGFBP-5 in regenerating soleus muscles of FGF6(-/-) knockout mice vs. wild-type mice. In the mutant, both IGF-II and IGF2R, but not IGF-I and IGF1R, were strongly up-regulated, whereas IGFBP5 was down-regulated, strongly suggesting that, in the absence of FGF6, the mechanisms leading to myofibre hypertrophy were mediated specifically by an IGF-II/IGF2R signalling pathway distinct from the classic mechanism involving IGF-I and IGF1R previously described for skeletal muscle hypertrophy. The potential regulating role of IGFBP5 on IGF-II expression is also discussed. This report shows for the first time a specific role for FGF6 in the regulation of myofibre size during a process of in vivo myogenesis

  8. Therapeutic cloning in individual parkinsonian mice

    Science.gov (United States)

    Tabar, Viviane; Tomishima, Mark; Panagiotakos, Georgia; Wakayama, Sayaka; Menon, Jayanthi; Chan, Bill; Mizutani, Eiji; Al-Shamy, George; Ohta, Hiroshi; Wakayama, Teruhiko; Studer, Lorenz

    2009-01-01

    Cell transplantation with embryonic stem (ES) cell progeny requires immunological compatibility with host tissue. ‘Therapeutic cloning’ is a strategy to overcome this limitation by generating nuclear transfer (nt)ES cells that are genetically matched to an individual. Here we establish the feasibility of treating individual mice via therapeutic cloning. Derivation of 187 ntES cell lines from 24 parkinsonian mice, dopaminergic differentiation, and transplantation into individually matched host mice showed therapeutic efficacy and lack of immunological response. PMID:18376409

  9. In adenosine A2B knockouts acute treatment with inorganic nitrate improves glucose disposal, oxidative stress and AMPK signaling in the liver

    Directory of Open Access Journals (Sweden)

    Maria ePeleli

    2015-08-01

    Full Text Available Rationale: Accumulating studies suggest that nitric oxide (NO deficiency and oxidative stress are central pathological mechanisms in type 2 diabetes. Recent findings demonstrate therapeutic effects by boosting a nitrate-nitrite-NO pathway, an alternative pathway for NO formation. This study aimed at investigating the acute effects of inorganic nitrate on glucose and insulin signaling in adenosine A2B receptor knockout mice (A2B-/-, a genetic model of impaired metabolic regulation.Methods: Acute effects of nitrate treatment were investigated in aged wild-type (WT and A2B-/- mice. One hour after injection with nitrate or placebo, metabolic regulation was evaluated by glucose and insulin tolerance tests. NADPH oxidase-mediated superoxide production and AMPK phosphorylation were measured in livers obtained from non-treated or glucose-treated mice, with or without prior nitrate injection. Plasma was used to determine insulin resistance (HOMA-IR and NO signaling.Results: A2B-/- displayed increased body weight, reduced glucose clearance and attenuated overall insulin responses compared with age-matched WT. Nitrate treatment increased circulating levels of nitrate, nitrite and cGMP in A2B-/-, and improved glucose clearance. In WT mice, however, nitrate treatment did not influence glucose clearance. HOMA-IR increased following glucose injection in A2B-/-, but remained at basal levels in mice pretreated with nitrate. NADPH oxidase activity in livers from A2B-/-, but not WT mice, was reduced by nitrate. Livers from A2B-/- displayed reduced AMPK phosphorylation compared with WT mice, and this was increased by nitrate treatment. Injection with the anti-diabetic agent metformin induced similar therapeutic effects in the A2B-/- as observed with nitrate. Conclusion: The A2B-/- mouse is a genetic model of metabolic syndrome. Acute treatment with nitrate improved the metabolic profile, at least partly via reduction in oxidative stress and improved AMPK signaling

  10. Chronic caffeine exposure attenuates blast-induced memory deficit in mice.

    Science.gov (United States)

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Zhao, Zi-Ai; Zhang, Xiu-Zhu; Chen, Xing-Yun; Li, Ping; Zhao, Yan; Zhou, Yuan-Guo

    2015-01-01

    To investigate the effects of three different ways of chronic caffeine administration on blast- induced memory dysfunction and to explore the underlying mechanisms. Adult male C57BL/6 mice were used and randomly divided into five groups: control: without blast exposure, con-water: administrated with water continuously before and after blast-induced traumatic brain injury (bTBI), con-caffeine: administrated with caffeine continuously for 1 month before and after bTBI, pre-caffeine: chronically administrated with caffeine for 1 month before bTBI and withdrawal after bTBI, post-caffeine: chronically administrated with caffeine after bTBI. After being subjected to moderate intensity of blast injury, mice were recorded for learning and memory performance using Morris water maze (MWM) paradigms at 1, 4, and 8 weeks post-blast injury. Neurological deficit scoring, glutamate concentration, proinflammatory cytokines production, and neuropathological changes at 24 h, 1, 4, and 8 weeks post-bTBI were examined to evaluate the brain injury in early and prolonged stages. Adenosine A1 receptor expression was detected using qPCR. All of the three ways of chronic caffeine exposure ameliorated blast-induced memory deficit, which is correlated with the neuroprotective effects against excitotoxicity, inflammation, astrogliosis and neuronal loss at different stages of injury. Continuous caffeine treatment played positive roles in both early and prolonged stages of bTBI; pre-bTBI and post-bTBI treatment of caffeine tended to exert neuroprotective effects at early and prolonged stages of bTBI respectively. Up-regulation of adenosine A1 receptor expression might contribute to the favorable effects of chronic caffeine consumption. Since caffeinated beverages are widely consumed in both civilian and military personnel and are convenient to get, the results may provide a promising prophylactic strategy for blast-induced neurotrauma and the consequent cognitive impairment.

  11. Therapeutic efficiency of nucleotides and nucleosides in UV radiation edema of mice

    Energy Technology Data Exchange (ETDEWEB)

    Kutta, I

    1973-01-01

    The influence of several nucleotides and nucleosides on UV radiation edemas of mice was studied with the aid of a staining test. In the first test series, amounts equimolar to 20 mg thymidine were injected i.p. It was found that thymidine, ATP, ADP and A5'MP had a significant influence which uridine did not have. The NAD dose of 54.8 mg was lethal in all 10 animals and the ATP dose of 42 mg in three out of 10 animals, while ADP and A5'MP had the effect of a reversible retardation of movements. The most effective substances of this series were ATP and ADP. In the second test series, the substances were equimolar to 1.8 mg thymidine. All substances tested, i.e. thymidine, adenosin, adenosin-cyclophosphate, NAD, NADH, ATP, ADP and A5'MP had a significant effect. Except for NAD, to which the animals reacted with a slight retardation, all substances were well tolerated. NAD and ADP were the most effective. In a third test series, dose-efficiency curves were established for thymidine and ATP. ATP was significantly more effective in equimolar doses. This finding is discussed.

  12. Antidepressant Effects of Aripiprazole Augmentation for Cilostazol-Treated Mice Exposed to Chronic Mild Stress after Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2017-02-01

    Full Text Available The aim of this study was to determine the effects and underlying mechanism of aripiprazole (APZ augmentation for cilostazol (CLS-treated post-ischemic stroke mice that were exposed to chronic mild stress (CMS. Compared to treatment with either APZ or CLS alone, the combined treatment resulted in a greater reduction in depressive behaviors, including anhedonia, despair-like behaviors, and memory impairments. This treatment also significantly reduced atrophic changes in the striatum, cortex, and midbrain of CMS-treated ischemic mice, and inhibited neuronal cell apoptosis, particularly in the striatum and the dentate gyrus of the hippocampus. Greater proliferation of neuronal progenitor cells was also observed in the ipsilateral striatum of the mice receiving combined treatment compared to mice receiving either drug alone. Phosphorylation of the cyclic adenosine monophosphate response element binding protein (CREB was increased in the striatum, hippocampus, and midbrain of mice receiving combined treatment compared to treatment with either drug alone, particularly in the neurons of the striatum and hippocampus, and dopaminergic neurons of the midbrain. Our results suggest that APZ may augment the antidepressant effects of CLS via co-regulation of the CREB signaling pathway, resulting in the synergistic enhancement of their neuroprotective effects.

  13. Radiochromatographic determination of activity of adenosine deaminase and purine nucleoside phosphorylase in blood cells

    International Nuclear Information System (INIS)

    Pechan, I.; Rendekova, V.; Pechanova, E.; Krizko, J.

    1982-01-01

    Expeditious and sensitive methods are described for determining the activities of adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP) in human lymphocytes and erythrocytes. ADA and PNP activity is determined on the basis of the reaction of (U- 14 C)adenosine or (8- 14 C)inosine with the lysate of human blood cells. Reaction products are separated using paper chromatography. Following the measurement of the radioactivity of spots of adenosine, inosine and hypoxanthine, a calculation is made of ADA and PNP activity from the results of the said measurements. On a sample of 52 clinically healthy people average ADA and PNP activity in isolated lymphocytes was found to be (51.6+-18.8) and (185.6+-94.7) pcat/10 6 cells and in erythrocytes (9.8+-2.98) and (17.1+-3.19) pcat/mg of proteins, respectively. The advantage of the method is the small amount of sample needed (1 to 2 ml) which allows its application in pediatrics. (Ha)

  14. The adenosine A2A receptor agonist CGS 21680 exhibits antipsychotic-like activity in Cebus apella monkeys

    DEFF Research Database (Denmark)

    Andersen, M B; Fuxe, K; Werge, T

    2002-01-01

    and lack of EPS in rodents could also be observed in non-human primates. We investigated the effects of CGS 21680 on behaviours induced by D-amphetamine and (-)-apomorphine in EPS-sensitized Cebus apella monkeys. CGS 21680 was administered s.c. in doses of 0.01, 0.025 and 0.05 mg/kg, alone...... and in combination with D-amphetamine and (-)-apomorphine. The monkeys were videotaped after drug administration and the tapes were rated for EPS and psychosis-like symptoms. CGS 21680 decreased apomorphine-induced behavioural unrest, arousal (0.01-0.05 mg/kg) and stereotypies (0.05 mg/kg) while amphetamine...... showed a functional anti-dopaminergic effect in Cebus apella monkeys without production of EPS. This further substantiates that adenosine A2A receptor agonists may have potential as antipsychotics with atypical profiles....

  15. Non-linear quantitative structure-activity relationship for adenine derivatives as competitive inhibitors of adenosine deaminase

    International Nuclear Information System (INIS)

    Sadat Hayatshahi, Sayyed Hamed; Abdolmaleki, Parviz; Safarian, Shahrokh; Khajeh, Khosro

    2005-01-01

    Logistic regression and artificial neural networks have been developed as two non-linear models to establish quantitative structure-activity relationships between structural descriptors and biochemical activity of adenosine based competitive inhibitors, toward adenosine deaminase. The training set included 24 compounds with known k i values. The models were trained to solve two-class problems. Unlike the previous work in which multiple linear regression was used, the highest of positive charge on the molecules was recognized to be in close relation with their inhibition activity, while the electric charge on atom N1 of adenosine was found to be a poor descriptor. Consequently, the previously developed equation was improved and the newly formed one could predict the class of 91.66% of compounds correctly. Also optimized 2-3-1 and 3-4-1 neural networks could increase this rate to 95.83%

  16. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  17. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    Science.gov (United States)

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Effects of adenosine on renin release from isolated rat glomeruli and kidney slices

    DEFF Research Database (Denmark)

    Skøtt, O; Baumbach, L

    1985-01-01

    was used. The specificity of the renin release process was validated by measuring adenylate kinase as a marker for cytoplasmatic leak. Adenosine (10 micrograms/ml) halved basal renin release from incubated KS as compared to controls (P less than 0.001, n = 8, 8). Renin release from LAG stimulated...... by calcium depletion was also inhibited (P less than 0.05, n = 8, 9) whereas basal release was not affected (n = 6, 12). No effect was detected neither on basal nor on calcium stimulated renin release from SAG. We conclude that adenosine inhibits renin release in vitro by a mechanism independent...

  19. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Schwarzschild, Michael A; Xu, Kui

    2008-01-01

    Continued progress has been made toward each of the Specific Aims (SAs) 1 and 2 (SA 3 completed) of our research project, Caffeine, adenosine receptors and estrogen in toxin models of Parkinson's disease...

  20. Adenosine A2B Receptors: An Optional Target for the Management of Irritable Bowel Syndrome with Diarrhea?

    Directory of Open Access Journals (Sweden)

    Teita Asano

    2017-11-01

    Full Text Available Irritable bowel syndrome (IBS is a functional gastrointestinal disorder, with the characteristic symptoms of chronic abdominal pain and altered bowel habits (diarrhea, constipation, or both. IBS is a highly prevalent condition, which negatively affects quality of life and is a significant burden on global healthcare costs. Although many pharmacological medicines have been proposed to treat IBS, including those targeting receptors, channels, and chemical mediators related to visceral hypersensitivity, successful pharmacotherapy for the disease has not been established. Visceral hypersensitivity plays an important role in IBS pathogenesis. Immune activation is observed in diarrhea-predominant patients with IBS and contributes to the development of visceral hypersensitivity. Adenosine is a chemical mediator that regulates many physiological processes, including inflammation and nociception. Among its receptors, the adenosine A2B receptor regulates intestinal secretion, motor function, and the immune response. We recently demonstrated that the adenosine A2B receptor is involved in visceral hypersensitivity in animal models of IBS. In this review, we discuss the possibility of the adenosine A2B receptor as a novel therapeutic target for IBS.

  1. Adenosine A2b receptor promotes progression of human oral cancer

    International Nuclear Information System (INIS)

    Kasama, Hiroki; Sakamoto, Yosuke; Kasamatsu, Atsushi; Okamoto, Atsushi; Koyama, Tomoyoshi; Minakawa, Yasuyuki; Ogawara, Katsunori; Yokoe, Hidetaka; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2015-01-01

    Adenosine A2b receptor (ADORA2B) encodes an adenosine receptor that is a member of the G protein-coupled receptor superfamily. This integral membrane protein stimulates adenylate cyclase activity in the presence of adenosine. Little is known about the relevance of ADORA2B to human malignancy including oral squamous cell carcinoma (OSCC). We aimed to characterize the expression state and function of ADORA2B in OSCC. The ADORA2B expression levels in nine OSCC-derived cells were analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting analyses. Using an ADORA2B knockdown model, we assessed cellular proliferation and expression of hypoxia-inducible factor1α (HIF-1α). We examined the adenosine receptor expression profile under both normoxic and hypoxic conditions in the OSCC-derived cells. In addition to in vitro data, the clinical correlation between the ADORA2B expression levels in primary OSCCs (n = 100 patients) and the clinicopathological status by immunohistochemistry (IHC) also was evaluated. ADORA2B mRNA and protein were up-regulated significantly (p < 0.05) in seven OSCC-derived cells compared with human normal oral keratinocytes. Suppression of ADORA2B expression with shRNA significantly (p < 0.05) inhibited cellular proliferation compared with the control cells. HIF-1α also was down-regulated in ADORA2B knockdown OSCC cells. During hypoxia, ADORA2B expression was induced significantly (p < 0.05) in the mRNA and protein after 24 hours of incubation in OSCC-derived cells. IHC showed that ADORA2B expression in primary OSCCs was significantly (p < 0.05) greater than in the normal oral counterparts and that ADORA2B-positive OSCCs were correlated closely (p < 0.05) with tumoral size. Our results suggested that ADORA2B controls cellular proliferation via HIF-1α activation, indicating that ADORA2B may be a key regulator of tumoral progression in OSCCs. The online version of this article (doi:10.1186/s12885-015-1577-2) contains

  2. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    Science.gov (United States)

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  3. Lack of Glycogenin Causes Glycogen Accumulation and Muscle Function Impairment.

    Science.gov (United States)

    Testoni, Giorgia; Duran, Jordi; García-Rocha, Mar; Vilaplana, Francisco; Serrano, Antonio L; Sebastián, David; López-Soldado, Iliana; Sullivan, Mitchell A; Slebe, Felipe; Vilaseca, Marta; Muñoz-Cánoves, Pura; Guinovart, Joan J

    2017-07-05

    Glycogenin is considered essential for glycogen synthesis, as it acts as a primer for the initiation of the polysaccharide chain. Against expectations, glycogenin-deficient mice (Gyg KO) accumulate high amounts of glycogen in striated muscle. Furthermore, this glycogen contains no covalently bound protein, thereby demonstrating that a protein primer is not strictly necessary for the synthesis of the polysaccharide in vivo. Strikingly, in spite of the higher glycogen content, Gyg KO mice showed lower resting energy expenditure and less resistance than control animals when subjected to endurance exercise. These observations can be attributed to a switch of oxidative myofibers toward glycolytic metabolism. Mice overexpressing glycogen synthase in the muscle showed similar alterations, thus indicating that this switch is caused by the excess of glycogen. These results may explain the muscular defects of GSD XV patients, who lack glycogenin-1 and show high glycogen accumulation in muscle. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The emerging role of adenosine deaminases in insects

    Czech Academy of Sciences Publication Activity Database

    Doleželová, Eva; Žurovec, Michal; Doležal, T.; Šimek, Petr; Bryant, P. J.

    2005-01-01

    Roč. 35, č. 5 (2005), s. 381-389 ISSN 0965-1748 R&D Projects: GA ČR(CZ) GA204/04/1205; GA AV ČR(CZ) IAA5007107 Grant - others:United States National Science Foundation(US) 440860-21565 Institutional research plan: CEZ:AV0Z50070508 Keywords : adenosine deaminase * ADA * growth factor Subject RIV: ED - Physiology Impact factor: 2.733, year: 2005

  5. A turn-on chemiluminescence biosensor for selective and sensitive detection of adenosine based on HKUST-1 and QDs-luminol-aptamer conjugates.

    Science.gov (United States)

    Lin, Yanna; Dai, Yuxue; Sun, Yuanling; Ding, Chaofan; Sun, Weiyan; Zhu, Xiaodong; Liu, Hao; Luo, Chuannan

    2018-05-15

    In this work, HKUST-1 and QDs-luminol-aptamer conjugates were prepared. The QDs-luminol-aptamer conjugates can be adsorbed by graphene oxide through π-π conjugation. When the adenosine was added, the QDs-luminol-aptamer conjugates were released from magnetic graphene oxide (MGO), the chemiluminescent switch was turned on. It was reported that HKUST-1 can catalyze the chemiluminescence reaction of luminol-H 2 O 2 system in an alkaline medium, and improve the chemiluminescence resonance energy transfer (CRET) between chemiluminescence and QDs indirectly. Thus, the adenosine can be detected sensitively. Based on this phenomenon, the excellent platform for detection of adenosine was established. Under the optimized conditions, the linear detection range for adenosine was 1.0 × 10 -12 -2.2 × 10 -10 mol/L with a detection limit of 2.1 × 10 -13 mol/L. The proposed method was successfully used for adenosine detection in biological samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. PERCEPTION OF SWEET TASTE IS IMPORTANT FOR VOLUNTARY ALCOHOL CONSUMPTION IN MICE

    OpenAIRE

    Blednov, Y.A.; Walker, D.; Martinez, M.; Levine, M.; Damak, S.; Margolskee, R.F.

    2007-01-01

    To directly evaluate the association between taste perception and alcohol intake, we used three different mutant mice, each lacking a gene expressed in taste buds and critical to taste transduction: α-gustducin (Gnat3), Tas1r3 or Trpm5. Null mutant mice lacking any of these three genes showed lower preference score for alcohol and consumed less alcohol in a two-bottle choice test, as compared with wild-type littermates. These null mice also showed lower preference score for saccharin solution...

  7. Adenosine-induced coronary flow reserve in Watanabe heritable hyperlipidemic rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Kazuhiro; Yoshida, Katsuya [Chiba Univ. (Japan). School of Medicine; Tadokoro, Hiroyuki [and others

    2000-12-01

    The Watanabe heritable hyperlipidemic (WHHL) rabbit develops coronary atherosclerosis and hypercholesterolemia because of a genetic deficiency of low-density lipoprotein receptors and is therefore a good animal model for studying the relationships of coronary atherosclerosis, hypercholesterolemia and coronary flow reserve. The aim of the present study was to assess myocardial perfusion at baseline and during adenosine infusion (0.2 mg{center_dot}kg{sup -1}{center_dot}min{sup -1}) in 8 WHHL rabbits (13.8{+-}0.5 months) with {sup 13}N-ammonia, small-animal positron emission tomography (PET) and colored microspheres. Results were compared with those from 6 age-matched Japanese white rabbits. Plaque distribution was also examined in the extramural coronary arteries. All 8 WHHL rabbits had coronary plaques, with 6 showing multiple plaques. Mean global myocardial blood flow (ml{center_dot}min{sup -1}{center_dot}g{sup -1}) did not differ significantly between control and WHHL groups both at baseline (3.67{+-}0.72 vs 4.26{+-}1.12 ml{center_dot}min{sup -1}{center_dot}g{sup -1}, p=NS) and with adenosine (7.92{+-}2.00 vs 9.27{+-}2.91 ml{center_dot}min{sup -1}{center_dot}g{sup -1}, p=NS), nor did coronary flow reserve (2.16{+-}0.37 vs 2.18{+-}0.41, p=NS). None showed evidence of regional perfusion abnormalities by visual and semiquantitative analyses of PET images. It was concluded that WHHL rabbits preserve adenosine-induced coronary flow reserve despite coronary atherosclerosis and hypercholesterolemia, suggesting that a compensatory mechanism develops in this animal model. (author)

  8. Adenosine-induced coronary flow reserve in Watanabe heritable hyperlipidemic rabbits

    International Nuclear Information System (INIS)

    Shimada, Kazuhiro; Yoshida, Katsuya; Tadokoro, Hiroyuki

    2000-01-01

    The Watanabe heritable hyperlipidemic (WHHL) rabbit develops coronary atherosclerosis and hypercholesterolemia because of a genetic deficiency of low-density lipoprotein receptors and is therefore a good animal model for studying the relationships of coronary atherosclerosis, hypercholesterolemia and coronary flow reserve. The aim of the present study was to assess myocardial perfusion at baseline and during adenosine infusion (0.2 mg·kg -1 ·min -1 ) in 8 WHHL rabbits (13.8±0.5 months) with 13 N-ammonia, small-animal positron emission tomography (PET) and colored microspheres. Results were compared with those from 6 age-matched Japanese white rabbits. Plaque distribution was also examined in the extramural coronary arteries. All 8 WHHL rabbits had coronary plaques, with 6 showing multiple plaques. Mean global myocardial blood flow (ml·min -1 ·g -1 ) did not differ significantly between control and WHHL groups both at baseline (3.67±0.72 vs 4.26±1.12 ml·min -1 ·g -1 , p=NS) and with adenosine (7.92±2.00 vs 9.27±2.91 ml·min -1 ·g -1 , p=NS), nor did coronary flow reserve (2.16±0.37 vs 2.18±0.41, p=NS). None showed evidence of regional perfusion abnormalities by visual and semiquantitative analyses of PET images. It was concluded that WHHL rabbits preserve adenosine-induced coronary flow reserve despite coronary atherosclerosis and hypercholesterolemia, suggesting that a compensatory mechanism develops in this animal model. (author)

  9. Clinical value of atropine-four minutes adenosine stressed 99Tcm-MIBI myocardial perfusion imaging in the diagnosis of coronary artery disease

    International Nuclear Information System (INIS)

    Peng Xulan; Zhang Baoniu; Jiang Sufang; Liang Hongwei; Liu Jun; Gao Guizhu; Ding Minghui; Hou Junfu

    2008-01-01

    Objective: The aim of this study was to compare the diagnostic efficacy of atropine-4 min adenosine stressed 99 Tc m -methoxyisobutylisonitrile (MIBI) myocardial perfusion imaging in the diagnosis of coronary artery disease (CAD). Methods: A total of 56 patients were divided into atropine-4 min adenosine stress (research group) and 6 min adenosine infusion (control group). The sex, age, the severity of CAD (judged by coronary, angiography) and associated symptoms were matched between the 2 groups. In research group, 0.5 mg atropine was injected intravenously 10 min before adenosine infusion. Adenosine was infused at a rate of 0.14 mg·kg -1 ·min -1 intravenously for 4 min and 6 min in research and control groups. At 3 min after adenosine infusion, 740 MBq 99 Tc m -MIBI was injected. SPECT myocardial imaging was obtained 1.5 h later. A rest myocardial perfusion imaging was performed on the following day. Results: (1) In research group and control group, the sensitivity, specificity, diagnostic accuracy was 85%, 6/8, 82% and 86%, 5/7, 82%, respectively (χ 2 0.05). (2)The sensitivity of the adenosine test for detection of single vessel, two vessels, three vessels disease were 6/7, 8/9, 3/4 and 7/8, 7/8, 4/5 in research group and control group, respectively(χ 2 0.05). (3) Side affects occurred in 82% of the patients in the research group and in 89% of the patients in the control group. The incidence of side effects in the two groups was not significantly different besides chest depression (43% and 68%, χ 2 =4.000, <0.05). Conclusions: Atropine-4 min adenosine infusion, in combination with perfusion tomography, has similar diagnostic efficacy for CAD to the 6 min protocol, and has lower incidence of chest depression than the standard 6 min infusion. (authors)

  10. Pharmacokinetic Properties of Adenosine Amine Congener in Cochlear Perilymph after Systemic Administration

    Directory of Open Access Journals (Sweden)

    Hao Chang

    2017-01-01

    Full Text Available Noise-induced hearing loss (NIHL is a global health problem affecting over 5% of the population worldwide. We have shown previously that acute noise-induced cochlear injury can be ameliorated by administration of drugs acting on adenosine receptors in the inner ear, and a selective A1 adenosine receptor agonist adenosine amine congener (ADAC has emerged as a potentially effective treatment for cochlear injury and resulting hearing loss. This study investigated pharmacokinetic properties of ADAC in rat perilymph after systemic (intravenous administration using a newly developed liquid chromatography-tandem mass spectrometry detection method. The method was developed and validated in accordance with the USA FDA guidelines including accuracy, precision, specificity, and linearity. Perilymph was sampled from the apical turn of the cochlea to prevent contamination with the cerebrospinal fluid. ADAC was detected in cochlear perilymph within two minutes following intravenous administration and remained in perilymph above its minimal effective concentration for at least two hours. The pharmacokinetic pattern of ADAC was significantly altered by exposure to noise, suggesting transient changes in permeability of the blood-labyrinth barrier and/or cochlear blood flow. This study supports ADAC development as a potential clinical otological treatment for acute sensorineural hearing loss caused by exposure to traumatic noise.

  11. Mice lacking desmocollin 1 show epidermal fragility accompanied by barrier defects and abnormal differentiation

    DEFF Research Database (Denmark)

    Chidgey, M; Brakebusch, C; Gustafsson, E

    2001-01-01

    epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human...

  12. Cerebral adenosine A1 receptors are upregulated in rodent encephalitis

    NARCIS (Netherlands)

    Paul, Souman; Khanapur, Shivashankar; Boersma, Wytske; Sijbesma, Jurgen W.; Ishiwata, Kiichi; Elsinga, Philip H.; Meerlo, Peter; Doorduin, Janine; Dierckx, Rudi A.; van Waarde, Aren

    2014-01-01

    Adenosine A(1) receptors (A(1) Rs) are implied in the modulation of neuroinflammation. Activation of cerebral A(1) Rs acts as a brake on the microglial response after traumatic brain injury and has neuroprotective properties in animal models of Parkinson's disease and multiple sclerosis.

  13. Severe acute intermittent hypoxia elicits phrenic long-term facilitation by a novel adenosine-dependent mechanism

    Science.gov (United States)

    Nichols, Nicole L.; Dale, Erica A.

    2012-01-01

    Acute intermittent hypoxia [AIH; 3, 5-min episodes; 35–45 mmHg arterial Po2 (PaO2)] elicits serotonin-dependent phrenic long-term facilitation (pLTF), a form of phrenic motor facilitation (pMF) initiated by Gq protein-coupled metabotropic 5-HT2 receptors. An alternate pathway to pMF is induced by Gs protein-coupled metabotropic receptors, including adenosine A2A receptors. AIH-induced pLTF is dominated by the serotonin-dependent pathway and is actually restrained via inhibition from the adenosine-dependent pathway. Here, we hypothesized that severe AIH shifts pLTF from a serotonin-dependent to an adenosine-dependent form of pMF. pLTF induced by severe (25–30 mmHg PaO2) and moderate (45–55 mmHg PaO2) AIH were compared in anesthetized rats, with and without intrathecal (C4) spinal A2A (MSX-3, 130 ng/kg, 12 μl) or 5-HT receptor antagonist (methysergide, 300 μg/kg, 15 μl) injections. During severe, but not moderate AIH, progressive augmentation of the phrenic response during hypoxic episodes was observed. Severe AIH (78% ± 8% 90 min post-AIH, n = 6) elicited greater pLTF vs. moderate AIH (41% ± 12%, n = 8; P MSX-3 (28% ± 6%; n = 6; P 0.05). Thus severe AIH shifts pLTF from a serotonin-dependent to an adenosine-dependent mechanism; the adenosinergic pathway inhibits the serotonergic pathway following moderate AIH. Here we demonstrate a novel adenosine-dependent pathway to pLTF following severe AIH. Shifts in the mechanisms of respiratory plasticity provide the ventilatory control system greater flexibility as challenges that differ in severity are confronted. PMID:22403346

  14. [Features of influence adenosine, AMP and hyperadrenalinemiya on the immune status, metabolic enzymes of purine nucleotides and the antioxidant defense system].

    Science.gov (United States)

    Tapbergenov, S O; Sovetov, B S; Tapbergenov, A T

    2016-11-01

    Administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) increased blood levels of total leukocytes, lymphocytes, decreased T-cell suppressors, leukocyte migration inhibition reaction (LMIR) and NBT test, but increased the level of conjugated dienes (CD). Administration of AMPand adenosine increased levels of total leukocytes, lymphocytes, T- lymphocytes, T-helpers, decreased the level of malondialdehyde (MDA), LMIR, and T-cell suppressors. Sympathetic hyperactivation induced by administration of a large dose of adrenaline (4 mg/kg 60 min before analysis) was accompanied by an increase in heart and liver activities of glutathione peroxidase (GPx), catalase, AMP deaminase (AMPD), and adenosine deaminase (AD). Administration of AMP or adenosine caused a decrease in activities of glutathione reductase (GR), GPx, catalase, a decrease in the MDA level and an increase in activities of AMPD and AD in the heart. In the liver AMP and adenosine also caused a decrease in activities of glutathione reductase (GR), GPx, a decrease in the MDA level and an increase in activities of AMPD and AD. The data obtained suggest that administration of adrenaline, AMP, and adenosine influences activity of enzymes involved in purine nucleotide metabolism. However, in contrast to adrenaline, administration of AMP or adenosine does not provoke stress reaction.

  15. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  16. Theophylline and adenosine modulate the inflammatory functions of the human neutrophil by exerting an opposing influence on the stimulus-induced increase in intracellular calcium

    International Nuclear Information System (INIS)

    Schmeichel Morley, C.J.

    1988-01-01

    Based on evidence that endogenously-produced adenosine inhibited neutrophil responses, the influence of methylxanthine bronchodilators on neutrophil responses stimulated in vitro by n-formyl-methionyl-leucyl-phenylalanine (fMLP) was examined. At concentrations between 10/sup /minus/5/ M and 10/sup /minus/4/ M, theophylline potentiated lysosomal enzyme release by 30 to 50%, superoxide anion formation by 30 to 60%, and neutrophil aggregation. Theophylline at concentrations >10/sup /minus/4/ M inhibited the same responses by >90%. Adenosine deaminase mimicked, whereas adenosine reversed the theophylline potentiation. A potential role for calcium in the modulation of the neutrophil responses by theophylline and adenosine was explored. Theophylline enhanced by >150% the fMLP-stimulated increase in cytoplasmic calcium concentration ([Ca 2+ ]/sub i/) at time points between 5 and 90 sec as measured by Fura-2. Adenosine deaminase induced a comparable enhancement, whereas 3 /times/ 10/sup /minus/7/ M adenosine and 10/sup /minus/7/ M N-ethylcarboxamideadenosine decreased the [Ca 2+ ]/sub i/ in fMLP-stimulated neutrophils. Extracellular calcium was not required for the opposing influences of theophylline and adenosine and neither compound altered fMLP-stimulated 45 Ca uptake at the early time points

  17. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    Science.gov (United States)

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Protective effect of preconditioning and adenosine pretreatment in experimental skeletal muscle reperfusion injury.

    Science.gov (United States)

    Papanastasiou, S; Estdale, S E; Homer-Vanniasinkam, S; Mathie, R T

    1999-07-01

    Prolonged ischaemia followed by reperfusion (I/R) of skeletal muscle results in significant tissue injury. Ischaemic preconditioning (IPC), achieved by repeated brief periods of I/R before prolonged ischaemia or adenosine pretreatment, can prevent I/R injury in cardiac muscle. The aim of this study was to ascertain in a rodent model if damage to skeletal muscle due to global hindlimb tourniquet-induced I/R could be similarly attenuated. Anaesthetized rats were randomized (n = 6-10 per group) to five groups: sham-operated controls; I/R (4 h of ischaemia, 2 h of reperfusion); IPC (three cycles of 10 min of ischaemia/10 min of reperfusion) alone; IPC immediately preceding I/R; or adenosine 1000 microg/kg immediately before I/R. At the end of reperfusion, biopsies were taken from the left gastrocnemius muscle for measurement of myeloperoxidase (MPO) and reduced glutathione (GSH). Before ischaemia and at the end of reperfusion, blood samples were taken for measurement of nitric oxide metabolites, tumour necrosis factor (TNF) alpha and macrophage inflammatory protein (MIP) 2. IPC before I/R resulted in lower levels of MPO (P < 0.001) and TNF-alpha (P = 0.004), and higher levels of GSH (P < 0.001) and nitric oxide metabolites (P = 0.002) than I/R alone. Adenosine had effects comparable to IPC pretreatment (P < 0.001 for MPO, P = 0.002 for GSH, P = 0.02 for nitric oxide metabolites and P = 0.001 for TNF-alpha). There was no difference in the blood pressure or the MIP-2 concentration among the groups. IPC or pretreatment with adenosine ameliorates the I/R injury of skeletal muscle.

  19. Lack of carcinogenicity of tragacanth gum in B6C3F1 mice.

    Science.gov (United States)

    Hagiwara, A; Boonyaphiphat, P; Kawabe, M; Naito, H; Shirai, T; Ito, N

    1992-08-01

    Tragacanth gum was administered at dietary levels of 0 (control), 1.25 and 5.0% to groups of 50 male and 50 female B6C3F1 mice for 96 wk after which all animals were maintained on a basal diet without tragacanth gum for a further 10 wk. Mean body weights of females in the 5.0% and 1.25% groups were lower than those of the controls after 11 and 16 wk, respectively. However, there were no treatment-related clinical signs or adverse effects on survival rate, urinalysis, haematology, blood biochemistry and organ weight. While detailed histopathology revealed the development of squamous cell hyperplasias, papillomas and one carcinoma in the forestomach, there was no significant treatment-related increase in the incidence of any preneoplastic or neoplastic lesion. Thus, under the experimental conditions used, tragacanth gum was not carcinogenic in B6C3F1 mice of either sex.

  20. Not So Giants: Mice Lacking Both Somatostatin and Cortistatin Have High GH Levels but Show No Changes in Growth Rate or IGF-1 Levels.

    Science.gov (United States)

    Pedraza-Arévalo, S; Córdoba-Chacón, J; Pozo-Salas, A I; L-López, F; de Lecea, L; Gahete, M D; Castaño, J P; Luque, R M

    2015-06-01

    Somatostatin (SST) and cortistatin (CORT) are two highly related neuropeptides involved in the regulation of various endocrine secretions. In particular, SST and CORT are two primary negative regulators of GH secretion. Consequently, single SST or CORT knockout mice exhibit elevated GH levels; however, this does not lead to increased IGF-1 levels or somatic growth. This apparent lack of correspondence has been suggested to result from compensatory mechanisms between both peptides. To test this hypothesis, in this study we explored, for the first time, the consequences of simultaneously deleting endogenous SST and CORT by generating a double SST/CORT knockout mouse model and exploring its endocrine and metabolic phenotype. Our results demonstrate that simultaneous deletion of SST and CORT induced a drastic elevation of endogenous GH levels, which, surprisingly, did not lead to changes in growth rate or IGF-1 levels, suggesting the existence of additional factors/systems that, in the absence of endogenous SST and CORT, could counteract GH actions. Notably, elevation in circulating GH levels were not accompanied by changes in pituitary GH expression or by alterations in the expression of its main regulators (GHRH and ghrelin) or their receptors (GHRH receptor, GHS receptor, or SST/CORT receptors) at the hypothalamic or pituitary level. However, although double-SST/CORT knockout male mice exhibited normal glucose and insulin levels, they had improved insulin sensitivity compared with the control mice. Therefore, these results suggest the existence of an intricate interplay among the known (SST/CORT), and likely unknown, inhibitory components of the GH/IGF-1 axis to regulate somatic growth and glucose/insulin homeostasis.