WorldWideScience

Sample records for mice exhibited phenotypes

  1. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C.; Wang, Tong

    2016-01-01

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk−/− mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1−/− mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1+/+ and Romk1−/− mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1+/+, but such regulation by high K intake was diminished with significant hyperkalemia in Romk1−/− mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K+ secretion in the collecting tubule. PMID:26728465

  2. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C; Wang, Tong

    2016-03-04

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3-/- mice, but not wildtype mice.

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R

    2017-01-10

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3 -/- mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3 -/- ) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3 -/- mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3 -/- nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3 -/- phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light.

  4. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  5. Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3−/− mice, but not wildtype mice

    Science.gov (United States)

    Martynhak, Bruno Jacson; Hogben, Alexandra L.; Zanos, Panos; Georgiou, Polymnia; Andreatini, Roberto; Kitchen, Ian; Archer, Simon N.; von Schantz, Malcolm; Bailey, Alexis; van der Veen, Daan R.

    2017-01-01

    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are ‘direct’ effects of light on affect, an ‘indirect’ pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3−/− mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3−/−) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2–3 of dim light at night, whereas WT mice did not. Per3−/− mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3−/− nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3−/− phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light. PMID:28071711

  6. Stabilization of the wheel running phenotype in mice.

    Science.gov (United States)

    Bowen, Robert S; Cates, Brittany E; Combs, Eric B; Dillard, Bryce M; Epting, Jessica T; Foster, Brittany R; Patterson, Shawnee V; Spivey, Thomas P

    2016-03-01

    Increased physical activity is well known to improve health and wellness by modifying the risks for many chronic diseases. Rodent wheel running behavior is a beneficial surrogate model to evaluate the biology of daily physical activity in humans. Upon initial exposure to a running wheel, individual mice differentially respond to the experience, which confounds the normal activity patterns exhibited in this otherwise repeatable phenotype. To promote phenotypic stability, a minimum seven-day (or greater) acclimation period is utilized. Although phenotypic stabilization is achieved during this 7-day period, data to support acclimation periods of this length are not currently available in the literature. The purpose of this project is to evaluate the wheel running response in C57BL/6j mice immediately following exposure to a running wheel. Twenty-eight male and thirty female C57BL/6j mice (Jackson Laboratory, Bar Harbor, ME) were acquired at eight weeks of age and were housed individually with free access to running wheels. Wheel running distance (km), duration (min), and speed (m∙min(-1)) were measured daily for fourteen days following initial housing. One-way ANOVAs were used to evaluate day-to-day differences in each wheel running character. Limits of agreement and mean difference statistics were calculated between days 1-13 (acclimating) and day 14 (acclimated) to assess day-to-day agreement between each parameter. Wheel running distance (males: F=5.653, p=2.14 × 10(-9); females: F=8.217, p=1.20 × 10(-14)), duration (males: F=2.613, p=0.001; females: F=4.529, p=3.28 × 10(-7)), and speed (males: F=7.803, p=1.22 × 10(-13); females: F=13.140, p=2.00 × 10(-16)) exhibited day-to-day differences. Tukey's HSD post-hoc testing indicated differences between early (males: days 1-3; females: days 1-6) and later (males: days >3; females: days >6) wheel running periods in distance and speed. Duration only exhibited an anomalous difference between wheel running on day 13

  7. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  8. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    Science.gov (United States)

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  9. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  10. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  11. Body Temperature Measurements for Metabolic Phenotyping in Mice

    Science.gov (United States)

    Meyer, Carola W.; Ootsuka, Youichirou; Romanovsky, Andrej A.

    2017-01-01

    Endothermic organisms rely on tightly balanced energy budgets to maintain a regulated body temperature and body mass. Metabolic phenotyping of mice, therefore, often includes the recording of body temperature. Thermometry in mice is conducted at various sites, using various devices and measurement practices, ranging from single-time probing to continuous temperature imaging. Whilst there is broad agreement that body temperature data is of value, procedural considerations of body temperature measurements in the context of metabolic phenotyping are missing. Here, we provide an overview of the various methods currently available for gathering body temperature data from mice. We explore the scope and limitations of thermometry in mice, with the hope of assisting researchers in the selection of appropriate approaches, and conditions, for comprehensive mouse phenotypic analyses. PMID:28824441

  12. Early Detection of Apathetic Phenotypes in Huntington's Disease Knock-in Mice Using Open Source Tools.

    Science.gov (United States)

    Minnig, Shawn; Bragg, Robert M; Tiwana, Hardeep S; Solem, Wes T; Hovander, William S; Vik, Eva-Mari S; Hamilton, Madeline; Legg, Samuel R W; Shuttleworth, Dominic D; Coffey, Sydney R; Cantle, Jeffrey P; Carroll, Jeffrey B

    2018-02-02

    Apathy is one of the most prevalent and progressive psychiatric symptoms in Huntington's disease (HD) patients. However, preclinical work in HD mouse models tends to focus on molecular and motor, rather than affective, phenotypes. Measuring behavior in mice often produces noisy data and requires large cohorts to detect phenotypic rescue with appropriate power. The operant equipment necessary for measuring affective phenotypes is typically expensive, proprietary to commercial entities, and bulky which can render adequately sized mouse cohorts as cost-prohibitive. Thus, we describe here a home-built, open-source alternative to commercial hardware that is reliable, scalable, and reproducible. Using off-the-shelf hardware, we adapted and built several of the rodent operant buckets (ROBucket) to test Htt Q111/+ mice for attention deficits in fixed ratio (FR) and progressive ratio (PR) tasks. We find that, despite normal performance in reward attainment in the FR task, Htt Q111/+ mice exhibit reduced PR performance at 9-11 months of age, suggesting motivational deficits. We replicated this in two independent cohorts, demonstrating the reliability and utility of both the apathetic phenotype, and these ROBuckets, for preclinical HD studies.

  13. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  14. Anomalous baroreflex functionality inherent in floxed and Cre-Lox mice: an overlooked physiological phenotype.

    Science.gov (United States)

    Tsai, Ching-Yi; Poon, Yan-Yuen; Chen, Chang-Han; Chan, Samuel H H

    2017-10-01

    The last two decades have seen the emergence of Cre-Lox recombination as one of the most powerful and versatile technologies for cell-specific genetic engineering of mammalian cells. Understandably, the primary concerns in the practice of Cre-Lox recombination are whether the predicted genome has been correctly modified and the targeted phenotypes expressed. Rarely are the physiological conditions of the animals routinely examined because the general assumption is that they are normal. Based on corroborative results from radiotelemetric recording, power spectral analysis, and magnetic resonance imaging/diffusion tensor imaging in brain-derived neurotrophic factor-floxed mice, the present study revealed that this assumption requires amendment. We found that despite comparable blood pressure and heart rate with C57BL/6 or Cre mice under the conscious state, floxed and Cre-Lox mice exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex. We further found that the capacity and plasticity of baroreflex of these two strains of mice under isoflurane anesthesia were retarded, as reflected by reduced connectivity between the nucleus tractus solitarii and rostral ventrolateral medulla or nucleus ambiguus. The identification of anomalous baroreflex functionality inherent in floxed and Cre-Lox mice points to the importance of incorporating physiological phenotypes into studies that engage gene manipulations such as Cre-Lox recombination. NEW & NOTEWORTHY We established that anomalous baroreflex functionality is inherent in floxed and Cre-Lox mice. These two mouse strains exhibited diminished baroreflex-mediated sympathetic vasomotor tone and cardiac vagal baroreflex under the conscious state, retarded capacity and plasticity of baroreflex under isoflurane anesthesia, and reduced connectivity between key nuclei in the baroreflex neural circuits. Copyright © 2017 the American Physiological Society.

  15. Social defeat stress induces a depression-like phenotype in adolescent male c57BL/6 mice.

    Science.gov (United States)

    Iñiguez, Sergio D; Riggs, Lace M; Nieto, Steven J; Dayrit, Genesis; Zamora, Norma N; Shawhan, Kristi L; Cruz, Bryan; Warren, Brandon L

    2014-05-01

    Abstract Exposure to stress is highly correlated with the emergence of mood-related illnesses. Because major depressive disorder often emerges in adolescence, we assessed the effects of social defeat stress on responses to depressive-like behaviors in juvenile mice. To do this, postnatal day (PD) 35 male c57BL/6 mice were exposed to 10 days of social defeat stress (PD35-44), while control mice were handled daily. Twenty-four hours after the last episode of defeat (PD45), separate groups of mice were tested in the social interaction, forced swimming, sucrose preference, and elevated plus-maze behavioral assays (n = 7-12 per group). Also, we examined body weight gain across days of social defeat and levels of blood serum corticosterone 40 min after the last episode of defeat stress. Our data indicates that defeated mice exhibited a depressive-like phenotype as inferred from increased social avoidance, increased immobility in the forced swim test, and reduced sucrose preference (a measure of anhedonia), when compared to non-defeated controls. Defeated mice also displayed an anxiogenic-like phenotype when tested on the elevated plus-maze. Lastly, stressed mice displayed lower body weight gain, along with increased blood serum corticosterone levels, when compared to non-stressed controls. Overall, we show that in adolescent male c57BL/6 mice, social defeat stress induces a depression- and anxiety-like phenotype 24 h after the last episode of stress. These data suggest that the social defeat paradigm may be used to examine the etiology of stress-induced mood-related disorders during adolescence.

  16. Early phenotypical diagnoses in Trembler-J mice model.

    Science.gov (United States)

    Rosso, Gonzalo; Cal, Karina; Canclini, Lucía; Damián, Juan Pablo; Ruiz, Paul; Rodríguez, Héctor; Sotelo, José Roberto; Vazquez, Cristina; Kun, Alejandra

    2010-06-30

    Pmp-22 mutant mice (Trembler-J: B6.D2-Pmp22/J), are used as a model to study Charcot-Marie-Tooth type 1A (CMT1A). The identification of individual genotypes is a routine in the management of the Tr(J) colony. The earliest phenotypic manifestation of the pmp-22 mutation is just about 20th postnatal days, when pups begin to tremble. In this study, a rapid and simple diagnostic method was developed by modifying the Tail Suspension Test (MTST) to determine the difference between the Tr(J) and the wild-type mice phenotype. The animal behavioral phenotypes generated during the test were consistent with the specific genotype of each animal. The MTST allowed us to infer the heterozygous genotype in early postnatal stages, at 11 days after birth. The motor impairment of Tr(J) mice was also analyzed by a Fixed Bar Test (FBT), which revealed the disease evolution according to age. The main advantages of MTST are its objectivity, simplicity, and from the viewpoint of animal welfare, it is a non-invasive technique that combined with his rapidity show its very well applicability for use from an early age in these mice. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  18. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  19. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  20. The effects of graded levels of calorie restriction: IV. Non-linear change in behavioural phenotype of mice in response to short-term calorie restriction.

    Science.gov (United States)

    Lusseau, David; Mitchell, Sharon E; Barros, Ceres; Derous, Davina; Green, Cara; Chen, Luonan; Han, Jing-Dong Jackie; Wang, Yingchun; Promislow, Daniel E L; Douglas, Alex; Speakman, John R

    2015-08-25

    Animals have to adjust their activities when faced with caloric restriction (CR) to deal with reduced energy intake. If CR is pronounced, allostasis can push individuals into alternate physiological states which can result in important health benefits across a wide range of taxa. Here we developed a new approach to determine the changes in behavioural phenotype associated with different levels of CR. We exposed C57BL/6 male mice to graded CR (from 0 to 40%) for three months and defined their behavioural phenotype using hidden Markov models of their movement and body temperature. All 40% CR mice exhibited a state-shift in behavioural phenotype and only some exposed to 30% CR did. We show for the first time that mice changed their activity characteristics rather than changed their activities. This new phenotyping approach provides an avenue to determine the mechanisms linking CR to healthspan.

  1. Senescent intervertebral disc cells exhibit perturbed matrix homeostasis phenotype.

    Science.gov (United States)

    Ngo, Kevin; Patil, Prashanti; McGowan, Sara J; Niedernhofer, Laura J; Robbins, Paul D; Kang, James; Sowa, Gwendolyn; Vo, Nam

    2017-09-01

    Aging greatly increases the risk for intervertebral disc degeneration (IDD) as a result of proteoglycan loss due to reduced synthesis and enhanced degradation of the disc matrix proteoglycan (PG). How disc matrix PG homeostasis becomes perturbed with age is not known. The goal of this study is to determine whether cellular senescence is a source of this perturbation. We demonstrated that disc cellular senescence is dramatically increased in the DNA repair-deficient Ercc1 -/Δ mouse model of human progeria. In these accelerated aging mice, increased disc cellular senescence is closely associated with the rapid loss of disc PG. We also directly examine PG homeostasis in oxidative damage-induced senescent human cells using an in vitro cell culture model system. Senescence of human disc cells treated with hydrogen peroxide was confirmed by growth arrest, senescence-associated β-galactosidase activity, γH2AX foci, and acquisition of senescence-associated secretory phenotype. Senescent human disc cells also exhibited perturbed matrix PG homeostasis as evidenced by their decreased capacity to synthesize new matrix PG and enhanced degradation of aggrecan, a major matrix PG. of the disc. Our in vivo and in vitro findings altogether suggest that disc cellular senescence is an important driver of PG matrix homeostatic perturbation and PG loss. Published by Elsevier B.V.

  2. Contribution of neural cell death to depressive phenotypes of streptozotocin-induced diabetic mice

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-06-01

    Full Text Available Major depression disorder (MDD or depression is highly prevalent in individuals with diabetes, and the depressive symptoms are more severe and less responsive to antidepressant therapies in these patients. The underlying mechanism is little understood. We hypothesized that the pathophysiology of comorbid depression was more complex than that proposed for MDD and that neural cell death played a role in the disease severity. To test this hypothesis, we generated streptozotocin (STZ-induced diabetic mice. These mice had blood glucose levels threefold above controls and exhibited depressive phenotypes as judged by a battery of behavioral tests, thus confirming the comorbidity in mice. Immunohistological studies showed markedly increased TUNEL-positive cells in the frontal cortex and hippocampus of the comorbid mice, indicating apoptosis. This finding was supported by increased caspase-3 and decreased Bcl-2 proteins in these brain regions. In addition, the serum brain-derived neurotrophic factor (BDNF level of comorbid mice was reduced compared with controls, further supporting the neurodegenerative change. Mechanistic analyses showed an increased expression of mitochondrial fission genes fission protein 1 (Fis1 and dynamin-related protein 1 (Drp1, and a decreased expression of mitochondrial fusion genes mitofusin 1 (Mfn1, mitofusin 2 (Mfn2 and optical atrophy 1 (Opa1. Representative assessment of the proteins Drp1 and Mfn2 mirrored the mRNA changes. The data demonstrated that neural cell death was associated with the depressive phenotype of comorbid mice and that a fission-dominant expression of genes and proteins mediating mitochondrial dynamics played a role in the hyperglycemia-induced cell death. The study provides new insight into the disease mechanism and could aid the development of novel therapeutics aimed at providing neuroprotection by modulating mitochondrial dynamics to treat comorbid depression with diabetes.

  3. Phenotypic plasticity in blood–oxygen transport in highland and lowland deer mice

    Science.gov (United States)

    Tufts, Danielle M.; Revsbech, Inge G.; Cheviron, Zachary A.; Weber, Roy E.; Fago, Angela; Storz, Jay F.

    2013-01-01

    SUMMARY In vertebrates living at high altitude, arterial hypoxemia may be ameliorated by reversible changes in the oxygen-carrying capacity of the blood (regulated by erythropoiesis) and/or changes in blood–oxygen affinity (regulated by allosteric effectors of hemoglobin function). These hematological traits often differ between taxa that are native to different elevational zones, but it is often unknown whether the observed physiological differences reflect fixed, genetically based differences or environmentally induced acclimatization responses (phenotypic plasticity). Here, we report measurements of hematological traits related to blood–O2 transport in populations of deer mice (Peromyscus maniculatus) that are native to high- and low-altitude environments. We conducted a common-garden breeding experiment to assess whether altitude-related physiological differences were attributable to developmental plasticity and/or physiological plasticity during adulthood. Under conditions prevailing in their native habitats, high-altitude deer mice from the Rocky Mountains exhibited a number of pronounced hematological differences relative to low-altitude conspecifics from the Great Plains: higher hemoglobin concentrations, higher hematocrits, higher erythrocytic concentrations of 2,3-diphosphoglycerate (an allosteric regulator of hemoglobin–oxygen affinity), lower mean corpuscular hemoglobin concentrations and smaller red blood cells. However, these differences disappeared after 6 weeks of acclimation to normoxia at low altitude. The measured traits were also indistinguishable between the F1 progeny of highland and lowland mice, indicating that there were no persistent differences in phenotype that could be attributed to developmental plasticity. These results indicate that the naturally occurring hematological differences between highland and lowland mice are environmentally induced and are largely attributable to physiological plasticity during adulthood. PMID

  4. Prenatal lipopolysaccharide exposure affects sexual dimorphism in different germlines of mice with a depressive phenotype.

    Science.gov (United States)

    Reis-Silva, Thiago M; Cohn, Daniel W H; Sandini, Thaísa M; Udo, Mariana S B; Teodorov, Elizabeth; Bernardi, Maria Martha

    2016-03-15

    The objective of the present study was to investigate whether prenatal lipopolysaccharide (LPS) administration modifies the expression of depressive and non-depressive-like behavior in male and female mice across two generations. The sexual dimorphism of these mice was also examined in the open-field test. Male and female mice of the parental (F0) generation were selected for depressive- or non-depressive-like behavioral profiles using the tail suspension test (TST). Animals with similar profiles were matched for further mating. On gestation day (GD) 15, pregnant F0 mice received LPS (100μg/kg, i.p.) and were allowed to nurture their offspring freely. Adult male and female of the F1 generation were then selected according to behavioral profiles and observed in the open field. Male and female mice of the two behavioral profiles were then mated to obtain the F2 generation. Adults from the F2 generation were also behaviorally phenotyped, and open field behavior was assessed. Male mice that were selected for depressive- and non-depressive-like behaviors and treated or not with LPS in the parental generation exhibited similar proportions of behavioral profiles in both filial lines, but LPS exposure increased the number of depressive-like behavior. An effect of gender was observed in the F1 and F2 generations, in which male mice were more sensitive to the intergenerational effects of LPS in the TST. These data indicate that prenatal LPS exposure on GD15 in the F0 generation influenced the transmission of depressive- and non-depressive-like behavior across filial lines, with sexual dimorphism between phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  6. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice.

    Science.gov (United States)

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; Köhrle, Josef; Zwanziger, Denise; Führer, Dagmar

    2016-01-01

    Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 (-) or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N = 8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver. Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue

  7. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  8. Influenza A facilitates sensitization to house dust mite in infant mice leading to an asthma phenotype in adulthood

    KAUST Repository

    Al-Garawi, A

    2011-08-31

    The origins of allergic asthma, particularly in infancy, remain obscure. Respiratory viral infections and allergen sensitization in early life have been associated with asthma in young children. However, a causal link has not been established. We investigated whether an influenza A infection in early life alters immune responses to house dust mite (HDM) and promotes an asthmatic phenotype later in life. Neonatal (8-day-old) mice were infected with influenza virus and 7 days later, exposed to HDM for 3 weeks. Unlike adults, neonatal mice exposed to HDM exhibited negligible immune responsiveness to HDM, but not to influenza A. HDM responsiveness in adults was associated with distinct Ly6c + CD11b + inflammatory dendritic cell and CD8α + plasmacytoid (pDC) populations that were absent in HDM-exposed infant mice, suggesting an important role in HDM-mediated inflammation. Remarkably, HDM hyporesponsiveness was overcome when exposure occurred concurrently with an acute influenza infection; young mice now displayed robust allergen-specific immunity, allergic inflammation, and lung remodeling. Remodeling persisted into early adulthood, even after prolonged discontinuation of allergen exposure and was associated with marked impairment of lung function. Our data demonstrate that allergen exposure coincident with acute viral infection in early life subverts constitutive allergen hyporesponsiveness and imprints an asthmatic phenotype in adulthood.

  9. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Daiju Oba

    2018-01-01

    Full Text Available Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.

  10. G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses

    Science.gov (United States)

    Tarrant, Teresa K.; Billard, Matthew J.; Timoshchenko, Roman G.; McGinnis, Marcus W.; Serafin, D. Stephen; Foreman, Oded; Esserman, Denise A.; Chao, Nelson J.; Lento, William E.; Lee, David M.; Patel, Dhavalkumar; Siderovski, David P.

    2013-01-01

    Chemokine receptor interactions coordinate leukocyte migration in inflammation. Chemokine receptors are GPCRs that when activated, are phosphorylated by GRKs to turn off G protein-mediated signaling yet recruit additional signaling machinery. Recently, GRK3 was identified as a negative regulator of CXCL12/CXCR4 signaling that is defective in human WHIM syndrome. Here, we report that GRK3−/− mice exhibit numerous features of human WHIM, such as impaired CXCL12-mediated desensitization, enhanced CXCR4 signaling to ERK activation, altered granulocyte migration, and a mild myelokathexis. Moreover, GRK3−/− protects mice from two acute models of inflammatory arthritis (K/BxN serum transfer and CAIA). In these granulocyte-dependent disease models, protection of GRK3−/− mice is mediated by retention of cells in the marrow, fewer circulating granulocytes in the peripheral blood, and reduced granulocytes in the joints during active inflammation. In contrast to WHIM, GRK3−/− mice have minimal hypogammaglobulinemia and a peripheral leukocytosis with increased lymphocytes and absent neutropenia. Thus, we conclude that the loss of GRK3-mediated regulation of CXCL12/CXCR4 signaling contributes to some, but not all, of the complete WHIM phenotype and that GRK3 inhibition may be beneficial in the treatment of inflammatory arthritis. PMID:23935208

  11. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice

    Directory of Open Access Journals (Sweden)

    Allison R. Rogala

    2018-02-01

    Full Text Available Crohn's disease (CD represents a chronic inflammatory disorder of the intestinal tract. Several susceptibility genes have been linked to CD, though their precise role in the pathogenesis of this disorder remains unclear. Immunity-related GTPase M (IRGM is an established risk allele in CD. We have shown previously that conventionally raised (CV mice lacking the IRGM ortholog, Irgm1 exhibit abnormal Paneth cells (PCs and increased susceptibility to intestinal injury. In the present study, we sought to utilize this model system to determine if environmental conditions impact these phenotypes, as is thought to be the case in human CD. To accomplish this, wild-type and Irgm1−/− mice were rederived into specific pathogen-free (SPF and germ-free (GF conditions. We next assessed how these differential housing environments influenced intestinal injury patterns, and epithelial cell morphology and function in wild-type and Irgm1−/− mice. Remarkably, in contrast to CV mice, SPF Irgm1−/− mice showed only a slight increase in susceptibility to dextran sodium sulfate-induced inflammation. SPF Irgm1−/− mice also displayed minimal abnormalities in PC number and morphology, and in antimicrobial peptide expression. Goblet cell numbers and epithelial proliferation were also unaffected by Irgm1 in SPF conditions. No microbial differences were observed between wild-type and Irgm1−/− mice, but gut bacterial communities differed profoundly between CV and SPF mice. Specifically, Helicobacter sequences were significantly increased in CV mice; however, inoculating SPF Irgm1−/− mice with Helicobacter hepaticus was not sufficient to transmit a pro-inflammatory phenotype. In summary, our findings suggest the impact of Irgm1-deficiency on susceptibility to intestinal inflammation and epithelial function is critically dependent on environmental influences. This work establishes the importance of Irgm1−/− mice as a model to elucidate host

  12. Accumulation of pathogenic ΔmtDNA induced deafness but not diabetic phenotypes in mito-mice

    International Nuclear Information System (INIS)

    Nakada, Kazuto; Sato, Akitsugu; Sone, Hideyuki; Kasahara, Atsuko; Ikeda, Katsuhisa; Kagawa, Yasuo; Yonekawa, Hiromichi; Hayashi, Jun-Ichi

    2004-01-01

    Mito-mice carrying various proportions of deletion mutant mtDNA (ΔmtDNA) were generated by introduction of the ΔmtDNA from cultured cells into fertilized eggs of C57BL/6J (B6) strain mice. Great advantages of mito-mice are that they share exactly the same nuclear-genome background, and that their genetic variations are restricted to proportions of pathogenic ΔmtDNA. Since accumulation of ΔmtDNA to more than 75% induced respiration defects, the disease phenotypes observed exclusively in mito-mice carrying more than 75% ΔmtDNA should be due to accumulated ΔmtDNA. In this study, we focused on the expressions of hearing loss and diabetic phenotypes, since these common age-associated abnormalities have sometimes been reported to be inherited maternally and to be associated with pathogenic mutant mtDNAs. The results showed that accumulation of exogenously introduced ΔmtDNA was responsible for hearing loss, but not for expression of diabetic phenotypes in mito-mice

  13. A link between thrifty phenotype and maternal care across two generations of intercrossed mice.

    Directory of Open Access Journals (Sweden)

    Bruno Sauce

    Full Text Available Maternal effects are causal influences from mother to offspring beyond genetic information, and have lifelong consequences for multiple traits. Previously, we reported that mice whose mothers did not nurse properly had low birth weight followed by rapid fat accumulation and disturbed development of some organs. That pattern resembles metabolic syndromes known collectively as the thrifty phenotype, which is believed to be an adaptation to a stressful environment which prepares offspring for reduced nutrient supply. The potential link between maternal care, stress reactivity, and the thrifty phenotype, however, has been poorly explored in the human and animal literature: only a couple of studies even mention (much less, test these concepts under a cohesive framework. Here, we explored this link using mice of the parental inbred strains SM/J and LG/J-who differ dramatically in their maternal care-and the intercrossed generations F1 and F2. We measured individual differences in 15 phenotypes and used structural equation modeling to test our hypotheses. We found a remarkable relationship between thrifty phenotype and lower quality of maternal behaviors, including nest building, pup retrieval, grooming/licking, and nursing. To our knowledge, this is the first study to show, in any mammal, a clear connection between the natural variation in thrifty phenotype and maternal care. Both traits in the mother also had a substantial effect on survival rate in the F3 offspring. To our surprise, however, stress reactivity seemed to play no role in our models. Furthermore, the strain of maternal grandmother, but not of paternal grandmother, affected the variation of maternal care in F2 mice, and this effect was mediated by thrifty phenotype in F2. Since F1 animals were all genetically identical, this finding suggests that maternal effects pass down both maternal care and thrifty phenotype in these mice across generations via epigenetic transmission.

  14. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice.

    Science.gov (United States)

    Bernhards, R C; Cote, C K; Amemiya, K; Waag, D M; Klimko, C P; Worsham, P L; Welkos, S L

    2017-03-01

    Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3-180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.

  15. Vagal innervation is required for pulmonary function phenotype in Htr4-/- mice.

    Science.gov (United States)

    House, John S; Nichols, Cody E; Li, Huiling; Brandenberger, Christina; Virgincar, Rohan S; DeGraff, Laura M; Driehuys, Bastiaan; Zeldin, Darryl C; London, Stephanie J

    2017-04-01

    Human genome-wide association studies have identified over 50 loci associated with pulmonary function and related phenotypes, yet follow-up studies to determine causal genes or variants are rare. Single nucleotide polymorphisms in serotonin receptor 4 ( HTR4 ) are associated with human pulmonary function in genome-wide association studies and follow-up animal work has demonstrated that Htr4 is causally associated with pulmonary function in mice, although the precise mechanisms were not identified. We sought to elucidate the role of neural innervation and pulmonary architecture in the lung phenotype of Htr4 -/- animals. We report here that the Htr4 -/- phenotype in mouse is dependent on vagal innervation to the lung. Both ex vivo tracheal ring reactivity and in vivo flexiVent pulmonary functional analyses demonstrate that vagotomy abrogates the Htr4 -/- airway hyperresponsiveness phenotype. Hyperpolarized 3 He gas magnetic resonance imaging and stereological assessment of wild-type and Htr4 -/- mice reveal no observable differences in lung volume, inflation characteristics, or pulmonary microarchitecture. Finally, control of breathing experiments reveal substantive differences in baseline breathing characteristics between mice with/without functional HTR4 in breathing frequency, relaxation time, flow rate, minute volume, time of inspiration and expiration and breathing pauses. These results suggest that HTR4's role in pulmonary function likely relates to neural innervation and control of breathing. Copyright © 2017 the American Physiological Society.

  16. Dystrophic phenotype improvement in the diaphragm muscle of mdx mice by diacerhein.

    Directory of Open Access Journals (Sweden)

    Rafael Dias Mâncio

    Full Text Available Chronic inflammation and oxidative stress are striking features of Duchenne muscular dystrophy disease. Diacerhein is an anthraquinone, which exhibits anti-inflammatory and antioxidant properties. Based on their actions, the present study evaluated the effects of diacerhein against myonecrosis, oxidative stress and inflammatory response in the diaphragm muscle of mdx mice and compared these results to current treatment widely used in DMD patients, with a main focus on the impact of prednisone. The results demonstrated that diacerhein treatment prevented muscle damage indicated by a decrease in the IgG uptake by muscle fibers, lower CK levels in serum, reduction of fibers with central nuclei with a concomitant increase in fibers with peripheral nuclei. It also had an effect on the inflammatory process, decreasing the inflammatory area, macrophage staining and TNF-α and IL-1β content. Regarding oxidative stress, diacerhein treatment was effective in reducing the ROS and lipid peroxidation in the diaphragm muscle from mdx mice. Compared to prednisone treatment, our findings demonstrated that diacerhein treatment improved the dystrophic phenotype in the diaphragm muscle of mdx mice similar to that of glucocorticoid therapy. In this respect, this work suggests that diacerhein has a potential use as an alternative drug in dystrophinopathy treatment and recommends that its anti-inflammatory and antioxidants properties in the dystrophic muscle should be better understood.

  17. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  18. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  19. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  20. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  1. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  2. Phenotype screening for genetically deermined age-onset disorders and increased longevity in ENU-mutagenized mice

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Dabney K [ORNL; Rinchik, Eugene M [ORNL; Moustaid-Moussa, Naima [University of Tennessee, Knoxville (UTK); Miller, Darla R [ORNL; Williams, Robert [University of Tennessee Health Science Center, Memphis; Michaud III, Edward J [ORNL; Jablonski, Monica M. [University of Tennessee Health Science Center, Memphis; Elberger, Andrea [University of Tennessee Health Science Center, Memphis; Hamre, Kristin M. [University of Tennessee Health Science Center, Memphis; Smeyne, Richard [St. Jude Children' s Research Hospital; Chesler, Elissa J [ORNL; Goldowitz, Daniel [University of Tennessee Health Science Center, Memphis

    2005-01-01

    With the goal of discovering genes that contribute to late-onset neurological and ocular disorders and also genes that extend the healthy life span in mammals, we are phenotyping mice carrying new mutations induced by the chemical N-ethyl-N-nitrosourea (ENU). The phenotyping plan includes basic behavioral, neurohistological, and vision testing in sibling cohorts of mice aged to 18 months, and then evaluation for markers of growth trajectory and stress response in these same cohorts aged up to 28 months. Statistical outliers are identified by comparison to test results of similar aged cohorts, and potential mutants are recovered for re-aging to confirm heritability of the phenotype.

  3. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  4. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  5. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Science.gov (United States)

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    Science.gov (United States)

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  7. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  8. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  9. Hypolocomotion, anxiety and serotonin syndrome-like behavior contribute to the complex phenotype of serotonin transporter knockout mice.

    Science.gov (United States)

    Kalueff, A V; Fox, M A; Gallagher, P S; Murphy, D L

    2007-06-01

    Although mice with a targeted disruption of the serotonin transporter (SERT) have been studied extensively using various tests, their complex behavioral phenotype is not yet fully understood. Here we assess in detail the behavior of adult female SERT wild type (+/+), heterozygous (+/-) and knockout (-/-) mice on an isogenic C57BL/6J background subjected to a battery of behavioral paradigms. Overall, there were no differences in the ability to find food or a novel object, nest-building, self-grooming and its sequencing, and horizontal rod balancing, indicating unimpaired sensory functions, motor co-ordination and behavioral sequencing. In contrast, there were striking reductions in exploration and activity in novelty-based tests (novel object, sticky label and open field tests), accompanied by pronounced thigmotaxis, suggesting that combined hypolocomotion and anxiety (rather than purely anxiety) influence the SERT -/- behavioral phenotype. Social interaction behaviors were also markedly reduced. In addition, SERT -/- mice tended to move close to the ground, frequently displayed spontaneous Straub tail, tics, tremor and backward gait - a phenotype generally consistent with 'serotonin syndrome'-like behavior. In line with replicated evidence of much enhanced serotonin availability in SERT -/- mice, this serotonin syndrome-like state may represent a third factor contributing to their behavioral profile. An understanding of the emerging complexity of SERT -/- mouse behavior is crucial for a detailed dissection of their phenotype and for developing further neurobehavioral models using these mice.

  10. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  11. Altered fibre types in gastrocnemius muscle of high wheel-running selected mice with mini-muscle phenotypes.

    Science.gov (United States)

    Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore

    2008-03-01

    Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.

  12. Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice

    Directory of Open Access Journals (Sweden)

    Schlamp Cassandra L

    2007-03-01

    Full Text Available Abstract Background Several neurodegenerative diseases are influenced by complex genetics that affect an individual's susceptibility, disease severity, and rate of progression. One such disease is glaucoma, a chronic neurodegenerative condition of the eye that targets and stimulates apoptosis of CNS neurons called retinal ganglion cells. Since ganglion cell death is intrinsic, it is reasonable that the genes that control this process may contribute to the complex genetics that affect ganglion cell susceptibility to disease. To determine if genetic background influences susceptibility to optic nerve damage, leading to ganglion cell death, we performed optic nerve crush on 15 different inbred lines of mice and measured ganglion cell loss. Resistant and susceptible strains were used in a reciprocal breeding strategy to examine the inheritance pattern of the resistance phenotype. Because earlier studies had implicated Bax as a susceptibility allele for ganglion cell death in the chronic neurodegenerative disease glaucoma, we conducted allelic segregation analysis and mRNA quantification to assess this gene as a candidate for the cell death phenotype. Results Inbred lines showed varying levels of susceptibility to optic nerve crush. DBA/2J mice were most resistant and BALB/cByJ mice were most susceptible. F1 mice from these lines inherited the DBA/2J phenotype, while N2 backcross mice exhibited the BALB/cByJ phenotype. F2 mice exhibited an intermediate phenotype. A Wright Formula calculation suggested as few as 2 dominant loci were linked to the resistance phenotype, which was corroborated by a Punnett Square analysis of the distribution of the mean phenotype in each cross. The levels of latent Bax mRNA were the same in both lines, and Bax alleles did not segregate with phenotype in N2 and F2 mice. Conclusion Inbred mice show different levels of resistance to optic nerve crush. The resistance phenotype is heritable in a dominant fashion involving

  13. CD44+/CD24- breast cancer cells exhibit phenotypic reversion in three-dimensional self-assembling peptide RADA16 nanofiber scaffold

    Directory of Open Access Journals (Sweden)

    Mi K

    2015-04-01

    Full Text Available Kun Mi,1 Zhihua Xing2 1Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, 2Laboratory of Ethnopharmacology, Institute for Nanobiomedical Technology and Membrane Biology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Self-assembling peptide nanofiber scaffolds have been shown to be a ­permissive biological material for tissue repair, cell proliferation, differentiation, etc. Recently, a subpopulation (CD44+/CD24- of breast cancer cells has been reported to have stem/progenitor cell properties. The aim of this study was to investigate whether this subpopulation of cancer cells have different phenotypes in self-assembling COCH3-RADARADARADARADA-CONH2 (RADA16 peptide nanofiber scaffold compared with Matrigel® (BD Biosciences, Two Oak Park, Bedford, MA, USA and collagen I.Methods: CD44 and CD24 expression was determined by flow cytometry. Cell proliferation was measured by 5-bromo-2'-deoxyuridine assay and DNA content measurement. Immunostaining was used to indicate the morphologies of cells in three-dimensional (3D cultures of different scaffolds and the localization of β-catenin in the colonies. Western blot was used to determine the expression of signaling proteins. In vitro migration assay and inoculation into nude mice were used to evaluate invasion and tumorigenesis in vivo.Results: The breast cancer cell line MDA-MB-435S contained a high percentage (>99% of CD44+/CD24- cells, which exhibited phenotypic reversion in 3D RADA16 nanofiber scaffold compared with collagen I and Matrigel. The newly formed reverted acini-like colonies reassembled a basement membrane and reorganized their cytoskeletons. At the same time, cells cultured and embedded in RADA16 peptide scaffold exhibited growth arrest. Also, they exhibited different migration potential, which links their migration ability with their cellular morphology. Consistent with studies in vitro, the in vivo tumor

  14. Suppression of Alzheimer's disease-related phenotypes by geranylgeranylacetone in mice.

    Directory of Open Access Journals (Sweden)

    Tatsuya Hoshino

    Full Text Available Amyloid-β peptide (Aβ plays an important role in the pathogenesis of Alzheimer's disease (AD. Aβ is generated by the secretase-mediated proteolysis of β-amyloid precursor protein (APP, and cleared by enzyme-mediated degradation and phagocytosis. Transforming growth factor (TGF-β1 stimulates this phagocytosis. We recently reported that the APP23 mouse model for AD showed fewer AD-related phenotypes when these animals were crossed with transgenic mice expressing heat shock protein (HSP 70. We here examined the effect of geranylgeranylacetone, an inducer of HSP70 expression, on the AD-related phenotypes. Repeated oral administration of geranylgeranylacetone to APP23 mice for 9 months not only improved cognitive function but also decreased levels of Aβ, Aβ plaque deposition and synaptic loss. The treatment also up-regulated the expression of an Aβ-degrading enzyme and TGF-β1 but did not affect the maturation of APP and secretase activities. These outcomes were similar to those observed in APP23 mice genetically modified to overexpress HSP70. Although the repeated oral administration of geranylgeranylacetone did not increase the level of HSP70 in the brain, a single oral administration of geranylgeranylacetone significantly increased the level of HSP70 when Aβ was concomitantly injected directly into the hippocampus. Since geranylgeranylacetone has already been approved for use as an anti-ulcer drug and its safety in humans has been confirmed, we propose that this drug be considered as a candidate drug for the prevention of AD.

  15. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  16. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  17. CD11c-positive cells from brain, spleen, lung, and liver exhibit site-specific immune phenotypes and plastically adapt to new environments.

    Science.gov (United States)

    Immig, Kerstin; Gericke, Martin; Menzel, Franziska; Merz, Felicitas; Krueger, Martin; Schiefenhövel, Fridtjof; Lösche, Andreas; Jäger, Kathrin; Hanisch, Uwe-Karsten; Biber, Knut; Bechmann, Ingo

    2015-04-01

    The brain's immune privilege has been also attributed to the lack of dendritic cells (DC) within its parenchyma and the adjacent meninges, an assumption, which implies maintenance of antigens rather than their presentation in lymphoid organs. Using mice transcribing the green fluorescent protein under the promoter of the DC marker CD11c (itgax), we identified a juxtavascular population of cells expressing this DC marker and demonstrated their origin from bone marrow and local microglia. We now phenotypically compared this population with CD11c/CD45 double-positive cells from lung, liver, and spleen in healthy mice using seven-color flow cytometry. We identified unique, site-specific expression patterns of F4/80, CD80, CD86, CX3CR1, CCR2, FLT3, CD103, and MHC-II. Furthermore, we observed the two known CD45-positive populations (CD45(high) and CD45(int) ) in the brain, whereas liver, lung, and spleen exhibited a homogeneous CD45(high) population. CD11c-positive microglia lacked MHC-II expression and CD45(high) /CD11c-positive cells from the brain have a lower percentage of MHC-II-positive cells. To test whether phenotypical differences are fixed by origin or specifically develop due to environmental factors, we transplanted brain and spleen mononuclear cells on organotypic slice cultures from brain (OHSC) and spleen (OSSC). We demonstrate that adaption and ramification of MHC-II-positive splenocytes is paralleled by down-regulation of MHC-II, whereas brain-derived mononuclear cells neither ramified nor up-regulated MHC-II in OSSCs. Thus, brain-derived mononuclear cells maintain their MHC-II-negative phenotype within the environment of an immune organ. Intraparenchymal CD11c-positive cells share immunophenotypical characteristics of DCs from other organs but remain unique for their low MHC-II expression. © 2014 Wiley Periodicals, Inc.

  18. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  19. Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice

    DEFF Research Database (Denmark)

    Xu, T; Bianco, P; Fisher, L W

    1998-01-01

    The resilience and strength of bone is due to the orderly mineralization of a specialized extracellular matrix (ECM) composed of type I collagen (90%) and a host of non-collagenous proteins that are, in general, also found in other tissues. Biglycan (encoded by the gene Bgn) is an ECM proteoglycan...... apparently normal at birth, these mice display a phenotype characterized by a reduced growth rate and decreased bone mass due to the absence of Bgn. To our knowledge, this is the first report in which deficiency of a non-collagenous ECM protein leads to a skeletal phenotype that is marked by low bone mass...... that becomes more obvious with age. These mice may serve as an animal model to study the role of ECM proteins in osteoporosis....

  20. Meis1: effects on motor phenotypes and the sensorimotor system in mice

    Directory of Open Access Journals (Sweden)

    Aaro V. Salminen

    2017-08-01

    Full Text Available MEIS1 encodes a developmental transcription factor and has been linked to restless legs syndrome (RLS in genome-wide association studies. RLS is a movement disorder leading to severe sleep reduction and has a substantial impact on the quality of life of patients. In genome-wide association studies, MEIS1 has consistently been the gene with the highest effect size and functional studies suggest a disease-relevant downregulation. Therefore, haploinsufficiency of Meis1 could be the system with the most potential for modeling RLS in animals. We used heterozygous Meis1-knockout mice to study the effects of Meis1 haploinsufficiency on mouse behavioral and neurological phenotypes, and to relate the findings to human RLS. We exposed the Meis1-deficient mice to assays of motor, sensorimotor and cognitive ability, and assessed the effect of a dopaminergic receptor 2/3 agonist commonly used in the treatment of RLS. The mutant mice showed a pattern of circadian hyperactivity, which is compatible with human RLS. Moreover, we discovered a replicable prepulse inhibition (PPI deficit in the Meis1-deficient animals. In addition, these mice were hyposensitive to the PPI-reducing effect of the dopaminergic receptor agonist, highlighting a role of Meis1 in the dopaminergic system. Other reported phenotypes include enhanced social recognition at an older age that was not related to alterations in adult olfactory bulb neurogenesis previously shown to be implicated in this behavior. In conclusion, the Meis1-deficient mice fulfill some of the hallmarks of an RLS animal model, and revealed the role of Meis1 in sensorimotor gating and in the dopaminergic systems modulating it.

  1. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  2. The importance of immunohistochemical analyses in evaluating the phenotype of Kv channel knockout mice.

    Science.gov (United States)

    Menegola, Milena; Clark, Eliana; Trimmer, James S

    2012-06-01

    To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  3. A broad phenotypic screen identifies novel phenotypes driven by a single mutant allele in Huntington's disease CAG knock-in mice.

    Directory of Open Access Journals (Sweden)

    Sabine M Hölter

    Full Text Available Huntington's disease (HD is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG trinucleotide repeat in the HTT gene encoding huntingtin. The disease has an insidious course, typically progressing over 10-15 years until death. Currently there is no effective disease-modifying therapy. To better understand the HD pathogenic process we have developed genetic HTT CAG knock-in mouse models that accurately recapitulate the HD mutation in man. Here, we describe results of a broad, standardized phenotypic screen in 10-46 week old heterozygous HdhQ111 knock-in mice, probing a wide range of physiological systems. The results of this screen revealed a number of behavioral abnormalities in HdhQ111/+ mice that include hypoactivity, decreased anxiety, motor learning and coordination deficits, and impaired olfactory discrimination. The screen also provided evidence supporting subtle cardiovascular, lung, and plasma metabolite alterations. Importantly, our results reveal that a single mutant HTT allele in the mouse is sufficient to elicit multiple phenotypic abnormalities, consistent with a dominant disease process in patients. These data provide a starting point for further investigation of several organ systems in HD, for the dissection of underlying pathogenic mechanisms and for the identification of reliable phenotypic endpoints for therapeutic testing.

  4. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice

    OpenAIRE

    Rakov, Helena; Engels, Kathrin; H?nes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; K?hrle, Josef; Zwanziger, Denise; F?hrer, Dagmar

    2016-01-01

    Background Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Methods Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 ? or T4 i.p. treatment over 7?weeks, and control animals unde...

  5. Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice

    DEFF Research Database (Denmark)

    Møller-Kristensen, Mette; Hamblin, Michael R; Thiel, Steffen

    2007-01-01

    Burn injury destroys skin, the second largest innate immune organ in the body, and triggers chaotic immune and inflammatory responses. The pattern recognition molecule, mannan-binding lectin (MBL), plays an important role in the first-line host defense against infectious agents. MBL initiates...... the lectin complement pathway and acts as an opsonin. Recent studies suggest that MBL also modulates inflammatory responses. We report that local responses after burn in MBL null mice differ from those found in wild-type (WT) mice in the following important biological markers: spontaneous eschar separation......, thinned epidermis and dermis, upregulation of soluble factors including cytokines, chemokines, cell adhesion molecules, a growth factor-binding protein, and matrix metalloproteinases. Mice lacking C1q, C4, or C3 did not show the lack of eschar separation seen in MBL null-burn phenotype. These findings...

  6. ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2.

    Directory of Open Access Journals (Sweden)

    Gaynor Miller

    2010-02-01

    Full Text Available Fibrillins 1 (FBN1 and 2 (FBN2 are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes.As part of a large-scale N-ethyl-N-nitrosourea (ENU mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2(fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice.These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.

  7. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  8. In vitro phenotypic correction of hematopoietic progenitors from Fanconi anemia group A knockout mice.

    Science.gov (United States)

    Río, Paula; Segovia, José Carlos; Hanenberg, Helmut; Casado, José Antonio; Martínez, Jesús; Göttsche, Kerstin; Cheng, Ngan Ching; Van de Vrugt, Henri J; Arwert, Fré; Joenje, Hans; Bueren, Juan A

    2002-09-15

    Fanconi anemia (FA) is a rare autosomal recessive disease, characterized by bone marrow failure and cancer predisposition. So far, 8 complementation groups have been identified, although mutations in FANCA account for the disease in the majority of FA patients. In this study we characterized the hematopoietic phenotype of a Fanca knockout mouse model and corrected the main phenotypic characteristics of the bone marrow (BM) progenitors using retroviral vectors. The hematopoiesis of these animals was characterized by a modest though significant thrombocytopenia, consistent with reduced numbers of BM megakaryocyte progenitors. As observed in other FA models, the hematopoietic progenitors from Fanca(-/-) mice were highly sensitive to mitomycin C (MMC). In addition, we observed for the first time in a FA mouse model a marked in vitro growth defect of Fanca(-/-) progenitors, either when total BM or when purified Lin(-)Sca-1(+) cells were subjected to in vitro stimulation. Liquid cultures of Fanca(-/-) BM that were stimulated with stem cell factor plus interleukin-11 produced low numbers of granulocyte macrophage colony-forming units, contained a high proportion of apoptotic cells, and generated a decreased proportion of granulocyte versus macrophage cells, compared to normal BM cultures. Aiming to correct the phenotype of Fanca(-/-) progenitors, purified Lin(-)Sca-1(+) cells were transduced with retroviral vectors encoding the enhanced green fluorescent protein (EGFP) gene and human FANCA genes. Lin(-)Sca-1(+) cells from Fanca(-/-) mice were transduced with an efficiency similar to that of samples from wild-type mice. More significantly, transductions with FANCA vectors corrected both the MMC hypersensitivity as well as the impaired ex vivo expansion ability that characterized the BM progenitors of Fanca(-/-) mice.

  9. High-fertility phenotypes: two outbred mouse models exhibit substantially different molecular and physiological strategies warranting improved fertility.

    Science.gov (United States)

    Langhammer, Martina; Michaelis, Marten; Hoeflich, Andreas; Sobczak, Alexander; Schoen, Jennifer; Weitzel, Joachim M

    2014-01-01

    Animal models are valuable tools in fertility research. Worldwide, there are more than 400 transgenic or knockout mouse models available showing a reproductive phenotype; almost all of them exhibit an infertile or at least subfertile phenotype. By contrast, animal models revealing an improved fertility phenotype are barely described. This article summarizes data on two outbred mouse models exhibiting a 'high-fertility' phenotype. These mouse lines were generated via selection over a time period of more than 40 years and 161 generations. During this selection period, the number of offspring per litter and the total birth weight of the entire litter nearly doubled. Concomitantly with the increased fertility phenotype, several endocrine parameters (e.g. serum testosterone concentrations in male animals), physiological parameters (e.g. body weight, accelerated puberty, and life expectancy), and behavioral parameters (e.g. behavior in an open field and endurance fitness on a treadmill) were altered. We demonstrate that the two independently bred high-fertility mouse lines warranted their improved fertility phenotype using different molecular and physiological strategies. The fertility lines display female- as well as male-specific characteristics. These genetically heterogeneous mouse models provide new insights into molecular and cellular mechanisms that enhance fertility. In view of decreasing fertility in men, these models will therefore be a precious information source for human reproductive medicine. Translated abstract A German translation of abstract is freely available at http://www.reproduction-online.org/content/147/4/427/suppl/DC1.

  10. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    Directory of Open Access Journals (Sweden)

    Marina Kovalenko

    Full Text Available The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111 with mice carrying a conditional (floxed Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.

  11. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  12. An ethanolic extract of Desmodium adscendens exhibits antipsychotic-like activity in mice.

    Science.gov (United States)

    Amoateng, Patrick; Adjei, Samuel; Osei-Safo, Dorcas; Kukuia, Kennedy K E; Karikari, Thomas K; Nyarko, Alexander K

    2017-09-26

    Desmodium adscendens extract (DAE) is used traditionally in Ghana for the management of psychosis. The present study aimed at providing pharmacological evidence for its ethnomedical use by testing the hypothesis that an ethanolic extract of Desmodium adscendens may possess antipsychotic properties. The primary behavioral effects of DAE on the central nervous system of mice were investigated using Irwin's test paradigm. Novelty-induced and apomorphine-induced locomotor and rearing behaviors in mice were explored in an open-field observational test system. Apomorphine-induced cage climbing test in mice was used as the antipsychotic animal model. The ability of DAE to induce catalepsy and enhance haloperidol-induced catalepsy was also investigated in mice. The DAE produced sedation, cholinergic-, and serotonergic-like effects in mice when evaluated using the Irwin's test. No lethality was observed after 24 h post-treatment. The LD50 in mice was estimated to be greater than 3000 mg/kg. The DAE significantly decreased the frequency of novelty- and apomorphine-induced rearing and locomotor activities in mice. It also significantly lowered the frequency and duration of apomorphine-induced climbing activities in mice. It did not induce any cataleptic event in naïve mice but only significantly enhanced haloperidol-induced catalepsy at a dose of 1000 mg/kg. The ethanolic extract of Desmodium adscendens exhibited antipsychotic-like activities in mice. Motor side effects are only likely to develop at higher doses of the extract.

  13. CaV1.3 L-type Ca2+ channels modulate depression-like behaviour in mice independent of deaf phenotype.

    Science.gov (United States)

    Busquet, Perrine; Nguyen, Ngoc Khoi; Schmid, Eduard; Tanimoto, Naoyuki; Seeliger, Mathias W; Ben-Yosef, Tamar; Mizuno, Fengxia; Akopian, Abram; Striessnig, Jörg; Singewald, Nicolas

    2010-05-01

    Mounting evidence suggests that voltage-gated L-type Ca2+ channels can modulate affective behaviour. We therefore explored the role of CaV1.3 L-type Ca2+ channels in depression- and anxiety-like behaviours using CaV1.3-deficient mice (CaV1.3-/-). We showed that CaV1.3-/- mice displayed less immobility in the forced swim test as well as in the tail suspension test, indicating an antidepressant-like phenotype. Locomotor activity in the home cage or a novel open-field test was not influenced. In the elevated plus maze (EPM), CaV1.3-/- mice entered the open arms more frequently and spent more time there indicating an anxiolytic-like phenotype which was, however, not supported in the stress-induced hyperthermia test. By performing parallel experiments in Claudin 14 knockout mice (Cldn14-/-), which like CaV1.3-/- mice are congenitally deaf, an influence of deafness on the antidepressant-like phenotype could be ruled out. On the other hand, a similar EPM behaviour indicative of an anxiolytic phenotype was also found in the Cldn14-/- animals. Using electroretinography and visual behavioural tasks we demonstrated that at least in mice, CaV1.3 channels do not significantly contribute to visual function. However, marked morphological changes were revealed in synaptic ribbons in the outer plexiform layer of CaV1.3-/- retinas by immunohistochemistry suggesting a possible role of this channel type in structural plasticity at the ribbon synapse. Taken together, our findings indicate that CaV1.3 L-type Ca2+ channels modulate depression-like behaviour but are not essential for visual function. The findings raise the possibility that selective modulation of CaV1.3 channels could be a promising new therapeutic concept for the treatment of mood disorders.

  14. Phenotypic screening of hepatocyte nuclear factor (HNF) 4-γ receptor knockout mice

    International Nuclear Information System (INIS)

    Gerdin, Anna Karin; Surve, Vikas V.; Joensson, Marie; Bjursell, Mikael; Bjoerkman, Maria; Edenro, Anne; Schuelke, Meint; Saad, Alaa; Bjurstroem, Sivert; Lundgren, Elisabeth Jensen; Snaith, Michael; Fransson-Steen, Ronny; Toernell, Jan; Berg, Anna-Lena; Bohlooly-Y, Mohammad

    2006-01-01

    Using the mouse as a model organism in pharmaceutical research presents unique advantages as its physiology in many ways resembles the human physiology, it also has a relatively short generation time, low breeding and maintenance costs, and is available in a wide variety of inbred strains. The ability to genetically modify mouse embryonic stem cells to generate mouse models that better mimic human disease is another advantage. In the present study, a comprehensive phenotypic screening protocol is applied to elucidate the phenotype of a novel mouse knockout model of hepatocyte nuclear factor (HNF) 4-γ. HNF4-γ is expressed in the kidneys, gut, pancreas, and testis. First level of the screen is aimed at general health, morphologic appearance, normal cage behaviour, and gross neurological functions. The second level of the screen looks at metabolic characteristics and lung function. The third level of the screen investigates behaviour more in-depth and the fourth level consists of a thorough pathological characterisation, blood chemistry, haematology, and bone marrow analysis. When compared with littermate wild-type mice (HNF4-γ +/+ ), the HNF4-γ knockout (HNF4-γ -/- ) mice had lowered energy expenditure and locomotor activity during night time that resulted in a higher body weight despite having reduced intake of food and water. HNF4-γ -/- mice were less inclined to build nest and were found to spend more time in a passive state during the forced swim test

  15. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  16. Phenotypic complementation of genetic immunodeficiency by chronic herpesvirus infection.

    Science.gov (United States)

    MacDuff, Donna A; Reese, Tiffany A; Kimmey, Jacqueline M; Weiss, Leslie A; Song, Christina; Zhang, Xin; Kambal, Amal; Duan, Erning; Carrero, Javier A; Boisson, Bertrand; Laplantine, Emmanuel; Israel, Alain; Picard, Capucine; Colonna, Marco; Edelson, Brian T; Sibley, L David; Stallings, Christina L; Casanova, Jean-Laurent; Iwai, Kazuhiro; Virgin, Herbert W

    2015-01-20

    Variation in the presentation of hereditary immunodeficiencies may be explained by genetic or environmental factors. Patients with mutations in HOIL1 (RBCK1) present with amylopectinosis-associated myopathy with or without hyper-inflammation and immunodeficiency. We report that barrier-raised HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium but show minimal signs of hyper-inflammation. However, they show immunodeficiency upon acute infection with Listeria monocytogenes, Toxoplasma gondii or Citrobacter rodentium. Increased susceptibility to Listeria was due to HOIL-1 function in hematopoietic cells and macrophages in production of protective cytokines. In contrast, HOIL-1-deficient mice showed enhanced control of chronic Mycobacterium tuberculosis or murine γ-herpesvirus 68 (MHV68), and these infections conferred a hyper-inflammatory phenotype. Surprisingly, chronic infection with MHV68 complemented the immunodeficiency of HOIL-1, IL-6, Caspase-1 and Caspase-1;Caspase-11-deficient mice following Listeria infection. Thus chronic herpesvirus infection generates signs of auto-inflammation and complements genetic immunodeficiency in mutant mice, highlighting the importance of accounting for the virome in genotype-phenotype studies.

  17. Δ9-tetrahydrocannabinol (Δ9-THC) administration after neonatal exposure to phencyclidine potentiates schizophrenia-related behavioral phenotypes in mice.

    Science.gov (United States)

    Rodríguez, Guadalupe; Neugebauer, Nichole M; Yao, Katherine Lan; Meltzer, Herbert Y; Csernansky, John G; Dong, Hongxin

    2017-08-01

    The clinical onset of schizophrenia often coincides with cannabis use in adolescents and young adults. However, the neurobiological consequences of this co-morbidity are not well understood. In this study, we examined the effects of Δ9-THC exposure during early adulthood on schizophrenia-related behaviors using a developmental mouse model of schizophrenia. Phencyclidine (PCP) or saline was administered once in neonatal mice (at P7; 10mg/kg). In turn, Δ9-THC or saline was administered sub-acutely later in life to cohorts of animals who had received either PCP or saline (P55-80, 5mg/kg). Mice who were administered PCP alone displayed behavioral changes in the Morris water waze (MWM) and pre-pulse inhibition (PPI) task paradigm that were consistent with schizophrenia-related phenotypes, but not in the locomotor activity or novel object recognition (NOR) task paradigms. Mice who were administered PCP and then received Δ9-THC later in life displayed behavioral changes in the locomotor activity paradigm (pschizophrenia-related phenotype, as well as potentiated changes in the NOR (pschizophrenia-related behavioral phenotypes induced by neonatal exposure to PCP in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  19. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  20. Strategi Pengembangan Kota Surakarta Menjadi Kota Mice (Meeting, Incentive, Convention, Exhibition)

    OpenAIRE

    Mahadi, Khairul; Hidayat, Teguh

    2013-01-01

    Seiring dengan berkembangnnya sistem transportasi yang ada di dunia baik transportasi laut, darat, dan udara dimana dapat memudahkan seseorang atau sebuah kelompok berpergian dari satu wilayah ke wilayah lain, dari sinilah MICE (meeting, incentive, convention, exhibition) dilihat sebagai peluang bisnis dimana seseorang atau kelompok melakukan sebuah pertemuan atau konferensi conference). Indonesia sudah berkembang menjadi salah satu negara tujuan bisnis dan wisata. Hal itu dibuktikan dengan p...

  1. Genetic modification of glaucoma associated phenotypes between AKXD-28/Ty and DBA/2J mice

    Directory of Open Access Journals (Sweden)

    Zabaleta Adriana

    2001-01-01

    Full Text Available Abstract Background Glaucoma is a common disease but its molecular etiology is poorly understood. It involves retinal ganglion cell death and optic nerve damage that is often associated with elevated intraocular pressure. Identifying genes that modify glaucoma associated phenotypes is likely to provide insights to mechanisms of glaucoma. We previously reported glaucoma in DBA/2J mice caused by recessive alleles at two loci, isa and ipd, that cause iris stromal atrophy and iris pigment dispersion, respectively. A approach for identifying modifier genes is to study the effects of specific mutations in different mouse strains. When the phenotypic effect of a mutation is modified upon its introduction into a new strain, crosses between the parental strains can be used to identify modifier genes. The purpose of this study was to determine if the effects of the DBA/2J derived isa and ipd loci are modified in strain AKXD-28/Ty. Results AKXD-28/Ty mice develop glaucoma characterized by intraocular pressure elevation, retinal ganglion loss, and optic nerve excavation. In AKXD-28/Ty, isa causes an iris stromal atrophy phenotype as in DBA/2J. However, the iris pigment dispersion phenotype associated with ipd in DBA/2J does not occur in AKXD-28/Ty. Additionally, a greater severity and speed of retinal and optic nerve damage following intraocular pressure elevation in AKXD-28/Ty compared to DBA/2J mice suggests that AKXD-28/Ty is more susceptible to pressure-induced cell death. Conclusions The consequences of the ipd and isa mutations are modified in the AKXD-28/Ty background. These strains provide a resource for the identification of modifier genes that modulate pigment dispersion and susceptibility to pressure-induced cell death.

  2. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    Directory of Open Access Journals (Sweden)

    De Deyn PP

    2006-08-01

    Full Text Available Summary Background Arylsulfatase A (ASA-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT. This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.

  3. Phenotypic characterization of thymic prelymphoma cells of B10 mice treated with split-dose irradiation

    International Nuclear Information System (INIS)

    Muto, M.; Kubo, E.; Kamisaku, H.; Sado, T.

    1990-01-01

    Using an intrathymic injection assay on B10 Thy-1 congenic mice, it was demonstrated that thymic prelymphoma cells first developed within the thymuses from 4 to 8 days after split-dose irradiation and were detected in more than 63% of the test donor thymuses when examined at 21 and 31 days after irradiation. Moreover, some mice (25%) at 2 mo after split-dose irradiation had already developed thymic lymphomas in their thymuses. To characterize these thymic prelymphoma cells, the thymocytes from B10 Thy-1.1 mice 1 mo after irradiation were stained with anti-CD4 and anti-CD8 mAb and were sorted into four subpopulations. These fractionated cells were injected into the recipient thymuses to examine which subpopulation contained thymic prelymphoma cells. The results indicated that thymic prelymphoma cells existed mainly in CD4- CD8- and CD4- CD8+ thymocyte subpopulations and also in CD4+ CD8+ subpopulation. T cell lymphomas derived from CD4- CD8- prelymphoma cells had mainly CD4- CD8- or CD4- CD8+ phenotypes. T cell lymphomas developed from CD4- CD8+ prelymphoma cells mainly expressed CD4- CD8+ or CD4+ CD8+ phenotype. T cell lymphomas originating from CD4+ CD8+ prelymphoma cells were mainly CD4+ CD8+ but some CD4- CD8+ or CD4+ CD8- cells were also present. These thymic prelymphoma cells were further characterized phenotypically in relation to their expression of the marker defined by the mAb against J11d marker and TL-2 (thymus-leukemia) Ag, which is not expressed on normal thymocytes of B10.Thy-1.2 or B10.Thy-1.1 strain, but appears on the thymocytes of lymphomagenic irradiated mice. The results indicated that the prelymphoma cells existed in J11d+, TL-2+ cells

  4. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Directory of Open Access Journals (Sweden)

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  5. Reduced Gut Acidity Induces an Obese-Like Phenotype in Drosophila melanogaster and in Mice.

    Directory of Open Access Journals (Sweden)

    Wei-Sheng Lin

    Full Text Available In order to identify genes involved in stress and metabolic regulation, we carried out a Drosophila P-element-mediated mutagenesis screen for starvation resistance. We isolated a mutant, m2, that showed a 23% increase in survival time under starvation conditions. The P-element insertion was mapped to the region upstream of the vha16-1 gene, which encodes the c subunit of the vacuolar-type H+-ATPase. We found that vha16-1 is highly expressed in the fly midgut, and that m2 mutant flies are hypomorphic for vha16-1 and also exhibit reduced midgut acidity. This deficit is likely to induce altered metabolism and contribute to accelerated aging, since vha16-1 mutant flies are short-lived and display increases in body weight and lipid accumulation. Similar phenotypes were also induced by pharmacological treatment, through feeding normal flies and mice with a carbonic anhydrase inhibitor (acetazolamide or proton pump inhibitor (PPI, lansoprazole to suppress gut acid production. Our study may thus provide a useful model for investigating chronic acid suppression in patients.

  6. Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity

    DEFF Research Database (Denmark)

    Iba, K; Durkin, M E; Johnsen, L

    2001-01-01

    and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were...... in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material...... in tissue growth and remodeling. The tetranectin-deficient mouse is the first mouse model that resembles common human kyphotic disorders, which affect up to 8% of the population....

  7. Antigenic variants of yellow fever virus with an altered neurovirulence phenotype in mice.

    Science.gov (United States)

    Ryman, K D; Xie, H; Ledger, T N; Campbell, G A; Barrett, A D

    1997-04-14

    The live-attenuated yellow fever (YF) vaccine virus, strain 17D-204, has long been known to consist of a heterologous population of virions. Gould et al. (J. Gen. Virol. 70, 1889-1894 (1989)) previously demonstrated that variant viruses exhibiting a YF wild-type-specific envelope (E) protein epitope are present at low frequency in the vaccine pool and were able to isolate representative virus variants with and without this epitope, designated 17D(+wt) and 17D(-wt), respectively. These variants were employed here in an investigation of YF virus pathogenesis in the mouse model. Both the 17D-204 parent and the 17D(+wt) variant viruses were lethal for adult outbred mice by the intracerebral route of inoculation. However, the 17D(-wt) variant was significantly attenuated (18% mortality rate) and replicated to much lower titer in the brains of infected mice. A single amino acid substitution in the envelope (E) protein at E-240 (Ala-->Val) was identified as responsible for the restricted replication of the 17D(-wt) variant in vivo. The 17D(+wt) variant has an additional second-site mutation, believed to encode a reversion to the neurovirulence phenotype of the 17D-204 parent virus. The amino acid substitution in the E protein at E-173 (Thr-->Ile) of the 17D(+wt) variant which results in the appearance of the wild-type-specific epitope or nucleotide changes in the 5' and 3' noncoding regions of the virus are proposed as a candidates.

  8. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  9. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  10. Serotonin₂A/C receptors mediate the aggressive phenotype of TLX gene knockout mice.

    Science.gov (United States)

    Juárez, Pablo; Valdovinos, Maria G; May, Michael E; Lloyd, Blair P; Couppis, Maria H; Kennedy, Craig H

    2013-11-01

    Deleting the tailless (TLX) gene in mice produces a highly aggressive phenotype yet to be characterized in terms of heterozygous animals or neurotransmitter mechanisms. We sought to establish pharmacological control over aggression and study the role of serotonin (5-HT)(2A/C) receptors in mediating changes in aggression. We analyzed aggression in mice heterozygous (+/-) or homozygous (-/-) for the TLX gene and wild-types (+/+) using a resident-intruder paradigm. No +/+ mice were aggressive, 36% of +/- TLX and 100% of -/- TLX mice showed aggression. Dose-effect functions were established for clozapine (0.1-1.5mg/kg, ip), ketanserin (0.3-1.25 mg/kg, ip), and (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] (0.5-2.0 mg/kg, ip). Injecting clozapine decreased the frequency and duration of attacks for +/- TLX and -/- TLX mice. Clozapine did not decrease grooming in either +/- TLX or -/- TLX mice but may have increased locomotion for -/- TLX mice. Injecting ketanserin, a 5-HT(2A/C) receptor antagonist, produced differential decreases in frequency and latency to aggression between genotypes and corresponding increases in locomotor behavior. Injecting (±)DOI, a 5-HT(2A/C) receptor agonist, increased the frequency and duration of attacks, decreased the latency to attacks, and decreased locomotion in +/- and -/- TLX mice. Results of the current study suggest aggression displayed by TLX null and heterozygous mice involves 5-HT(2A/C) receptors. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice1

    Science.gov (United States)

    Kauffman, Alexander S.; Thackray, Varykina G.; Ryan, Genevieve E.; Tolson, Kristen P.; Glidewell-Kenney, Christine A.; Semaan, Sheila J.; Poling, Matthew C.; Iwata, Nahoko; Breen, Kellie M.; Duleba, Antoni J.; Stener-Victorin, Elisabet; Shimasaki, Shunichi; Webster, Nicholas J.; Mellon, Pamela L.

    2015-01-01

    Polycystic ovary syndrome (PCOS) pathophysiology is poorly understood, due partly to lack of PCOS animal models fully recapitulating this complex disorder. Recently, a PCOS rat model using letrozole (LET), a nonsteroidal aromatase inhibitor, mimicked multiple PCOS phenotypes, including metabolic features absent in other models. Given the advantages of using genetic and transgenic mouse models, we investigated whether LET produces a similar PCOS phenotype in mice. Pubertal female C57BL/6N mice were treated for 5 wk with LET, which resulted in increased serum testosterone and normal diestrus levels of estradiol, similar to the hyperandrogenemia and follicular phase estrogen levels of PCOS women. As in PCOS, ovaries from LET mice were larger, polycystic, and lacked corpora lutea versus controls. Most LET females were acyclic, and all were infertile. LET females displayed elevated serum LH levels and higher Lhb mRNA in the pituitary. In contrast, serum FSH and Fshb were significantly reduced in LET females, demonstrating differential effects on gonadotropins, as in PCOS. Within the ovary, LET females had higher Cyp17, Cyp19, and Fsh receptor mRNA expression. In the hypothalamus, LET females had higher kisspeptin receptor mRNA expression but lower progesterone receptor mRNA levels. LET females also gained more weight than controls, had increased abdominal adiposity and adipocyte size, elevated adipose inflammatory mRNA levels, and impaired glucose tolerance, mirroring the metabolic phenotype in PCOS women. This is the first report of a LET paradigm in mice that recapitulates both reproductive and metabolic PCOS phenotypes and will be useful to genetically probe the PCOS condition. PMID:26203175

  12. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  13. Selective Disruption of Metabotropic Glutamate Receptor 5-Homer Interactions Mimics Phenotypes of Fragile X Syndrome in Mice.

    Science.gov (United States)

    Guo, Weirui; Molinaro, Gemma; Collins, Katie A; Hays, Seth A; Paylor, Richard; Worley, Paul F; Szumlinski, Karen K; Huber, Kimberly M

    2016-02-17

    Altered function of the Gq-coupled, Group 1 metabotropic glutamate receptors, specifically mGlu5, is implicated in multiple mouse models of autism and intellectual disability. mGlu5 dysfunction has been most well characterized in the fragile X syndrome mouse model, the Fmr1 knock-out (KO) mouse, where pharmacological and genetic reduction of mGlu5 reverses many phenotypes. mGlu5 is less associated with its scaffolding protein Homer in Fmr1 KO mice, and restoration of mGlu5-Homer interactions by genetic deletion of a short, dominant negative of Homer, H1a, rescues many phenotypes of Fmr1 KO mice. These results suggested that disruption of mGlu5-Homer leads to phenotypes of FXS. To test this idea, we examined mice with a knockin mutation of mGlu5 (F1128R; mGlu5(R/R)) that abrogates binding to Homer. Although FMRP levels were normal, mGlu5(R/R) mice mimicked multiple phenotypes of Fmr1 KO mice, including reduced mGlu5 association with the postsynaptic density, enhanced constitutive mGlu5 signaling to protein synthesis, deficits in agonist-induced translational control, protein synthesis-independent LTD, neocortical hyperexcitability, audiogenic seizures, and altered behaviors, including anxiety and sensorimotor gating. These results reveal new roles for the Homer scaffolds in regulation of mGlu5 function and implicate a specific molecular mechanism in a complex brain disease. Abnormal function of the metabotropic, or Gq-coupled, glutamate receptor 5 (mGlu5) has been implicated in neurodevelopmental disorders, including a genetic cause of intellectual disability and autism called fragile X syndrome. In brains of a mouse model of fragile X, mGlu5 is less associated with its binding partner Homer, a scaffolding protein that regulates mGlu5 localization to synapses and its ability to activate biochemical signaling pathways. Here we show that a mouse expressing a mutant mGlu5 that cannot bind to Homer is sufficient to mimic many of the biochemical, neurophysiological, and

  14. Phenotypic characterization of Grm1crv4 mice reveals a functional role for the type 1 metabotropic glutamate receptor in bone mineralization.

    Science.gov (United States)

    Musante, Ilaria; Mattinzoli, Deborah; Otescu, Lavinia Alexandra; Bossi, Simone; Ikehata, Masami; Gentili, Chiara; Cangemi, Giuliana; Gatti, Cinzia; Emionite, Laura; Messa, Piergiorgio; Ravazzolo, Roberto; Rastaldi, Maria Pia; Riccardi, Daniela; Puliti, Aldamaria

    2017-01-01

    Recent increasing evidence supports a role for neuronal type signaling in bone. Specifically glutamate receptors have been found in cells responsible for bone remodeling, namely the osteoblasts and the osteoclasts. While most studies have focused on ionotropic glutamate receptors, the relevance of the metabotropic glutamate signaling in bone is poorly understood. Specifically type 1 metabotropic glutamate (mGlu1) receptors are expressed in bone, but the effect of its ablation on skeletal development has never been investigated. Here we report that Grm1 crv4/crv4 mice, homozygous for an inactivating mutation of the mGlu1 receptor, and mainly characterized by ataxia and renal dysfunction, exhibit decreased body weight, bone length and bone mineral density compared to wild type (WT) animals. Blood analyses of the affected mice demonstrate the absence of changes in circulating factors, such as vitamin D and PTH, suggesting renal damage is not the main culprit of the skeletal phenotype. Cultures of osteoblasts lacking functional mGlu1 receptors exhibit less homogeneous collagen deposition than WT cells, and present increased expression of osteocalcin, a marker of osteoblast maturation. These data suggest that the skeletal damage is directly linked to the absence of the receptor, which in turn leads to osteoblasts dysfunction and earlier maturation. Accordingly, skeletal histomorphology suggests that Grm1 crv4/crv4 mice exhibit enhanced bone maturation, resulting in premature fusion of the growth plate and shortened long bones, and further slowdown of bone apposition rate compared to the WT animals. In summary, this work reveals novel functions of mGlu1 receptors in the bone and indicates that in osteoblasts mGlu1 receptors are necessary for production of normal bone matrix, longitudinal bone growth, and normal skeletal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR).

    Science.gov (United States)

    Ksiazek, Aneta; Czerniecki, Jan; Konarzewski, Marek

    2009-03-01

    Theoretical considerations suggest that one of the main factors determining phenotypic flexibility of the digestive system is the size (mass) of internal organs. To test this, we used mice from two lines selected for high and low levels of basal metabolic rate (BMR). Mice with higher BMRs also have larger internal organs and higher daily food consumption (C) under non-stressful conditions. We exposed animals from both lines to a sudden cold exposure by transferring them (without prior acclimation) from an ambient temperature of 23 degrees C to 5 degrees C. Cold exposure elicited a twofold increase in C and a 25% reduction of apparent digestive efficiency. For the same body mass-corrected C, small intestine, kidneys, heart and liver of cold-exposed low-BMR mice were smaller than those of the high-BMR line. Therefore, the internal organs of low-BMR animals were burdened with substantially higher metabolic loads (defined as C or digestible food intake per total mass of a particular organ). The mass-specific activity of citrate synthase (CS) in the liver and kidneys (but not heart) was also lower in the low-BMR mice. The magnitude of phenotypic flexibility of internal organ size and CS activity was strictly proportional to the organ mass (in the case of kidneys and liver, also mass-specific CS activity) prior to an increased energy demand. Thus, phenotypic flexibility had additive rather than multiplicative dynamics. Our results also suggest that variation in BMR positively correlates with the magnitude of an immediate spare capacity that fuels the initial response of internal organs to a sudden metabolic stress.

  16. An extensive phenotypic characterization of the hTNFα transgenic mice

    Directory of Open Access Journals (Sweden)

    Tugusheva Marina

    2007-12-01

    Full Text Available Abstract Background Tumor necrosis factor alpha (TNFα is implicated in a wide variety of pathological and physiological processes, including chronic inflammatory conditions, coronary artery disease, diabetes, obesity, and cachexia. Transgenic mice expressing human TNFα (hTNFα have previously been described as a model for progressive rheumatoid arthritis. In this report, we describe extensive characterization of an hTNFα transgenic mouse line. Results In addition to arthritis, these hTNFα transgenic mice demonstrated major alterations in body composition, metabolic rate, leptin levels, response to a high-fat diet, bone mineral density and content, impaired fertility and male sexual function. Many phenotypes displayed an earlier onset and a higher degree of severity in males, pointing towards a significant degree of sexual dimorphism in response to deregulated expression of TNFα. Conclusion These results highlight the potential usefulness of this transgenic model as a resource for studying the progressive effects of constitutively expressed low levels of circulating TNFα, a condition mimicking that observed in a number of human pathological conditions.

  17. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Suzana Gispert

    Full Text Available BACKGROUND: Parkinson's disease (PD is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1 cause the recessive PARK6 variant of PD. METHODOLOGY/PRINCIPAL FINDINGS: Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. CONCLUSION: Thus, aging Pink1(-/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.

  18. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Simian, Marina; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Shyamala, Gopalan

    2009-05-11

    Expression of the A and B forms of progesterone receptor (PR) in an appropriate ratio is critical for mammary development. Mammary glands of PR-A transgenic mice, carrying an additional A form of PR as a transgene, exhibit morphological features associated with the development of mammary tumors. Our objective was to determine the roles of estrogen (E) and progesterone (P) in the genesis of mammary hyperplasias/preneoplasias in PR-A transgenics. We subjected PR-A mice to hormonal treatments and analyzed mammary glands for the presence of hyperplasias and used BrdU incorporation to measure proliferation. Quantitative image analysis was carried out to compare levels of latency-associated peptide and transforming growth factor beta 1 (TGF{beta}1) between PR-A and PR-B transgenics. Basement membrane disruption was examined by immunofluorescence and proteolytic activity by zymography. The hyperplastic phenotype of PR-A transgenics is inhibited by ovariectomy, and is reversed by treatment with E + P. Studies using the antiestrogen ICI 182,780 or antiprogestins RU486 or ZK 98,299 show that the increase in proliferation requires signaling through E/estrogen receptor alpha but is not sufficient to give rise to hyperplasias, whereas signaling through P/PR has little impact on proliferation but is essential for the manifestation of hyperplasias. Increased proliferation is correlated with decreased TGF{beta}1 activation in the PR-A transgenics. Analysis of basement membrane integrity showed loss of laminin-5, collagen III and collagen IV in mammary glands of PR-A mice, which is restored by ovariectomy. Examination of matrix metalloproteases (MMPs) showed that total levels of MMP-2 correlate with the steady-state levels of PR, and that areas of laminin-5 loss coincide with those of activation of MMP-2 in PR-A transgenics. Activation of MMP-2 is dependent on treatment with E and P in ovariectomized wild-type mice, but is achieved only by treatment with P in PR-A mice. These data

  19. Genetic control of oromotor phenotypes: A survey of licking and ingestive behaviors in highly diverse strains of mice.

    Science.gov (United States)

    St John, Steven J; Lu, Lu; Williams, Robert W; Saputra, Jennifer; Boughter, John D

    2017-08-01

    In order to examine genetic influences on fluid ingestion, 20-min intake of either water or 0.1M sucrose was measured in a lickometer in 18 isogenic strains of mice, including 15 inbred strains and 3 F 1 hybrid crosses. Intake and licking data were examined at a number of levels, including lick rate as defined by mean or median interlick interval, as well as several microstructural parameters (i.e. burst-pause structure). In general, strain variation for ingestive phenotypes were correlated across water and sucrose in all strains, indicating fundamental, rather than stimulus-specific, mechanisms of intake. Strain variation was substantial and robust, with heritabilities for phenotypes ranging from 0.22 to 0.73. For mean interlick interval (MPI; a measure of lick rate) strains varied continuously from 94.3 to 127.0ms, a range consistent with previous studies. Furthermore, variation among strains for microstructural traits such as burst size and number suggested that strains possess different overall ingestive strategies, with some favoring more short bursts, and others favoring fewer, long bursts. Strains also varied in cumulative intake functions, exhibiting both linear and decelerated rates of intake across the session. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ

    2013-01-01

    to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development...... and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal...

  1. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  2. Seizure phenotypes, periodicity, and sleep-wake pattern of seizures in Kcna-1 null mice.

    Science.gov (United States)

    Wright, Samantha; Wallace, Eli; Hwang, Youngdeok; Maganti, Rama

    2016-02-01

    This study was undertaken to describe seizure phenotypes, natural progression, sleep-wake patterns, as well as periodicity of seizures in Kcna-1 null mutant mice. These mice were implanted with epidural electroencephalography (EEG) and electromyography (EMG) electrodes, and simultaneous video-EEG recordings were obtained while animals were individually housed under either diurnal (LD) condition or constant darkness (DD) over ten days of recording. The video-EEG data were analyzed to identify electrographic and behavioral phenotypes and natural progression and to examine the periodicity of seizures. Sleep-wake patterns were analyzed to understand the distribution and onset of seizures across the sleep-wake cycle. Four electrographically and behaviorally distinct seizure types were observed. Regardless of lighting condition that animals were housed in, Kcna-1 null mice initially expressed only a few of the most severe seizure types that progressively increased in frequency and decreased in seizure severity. In addition, a circadian periodicity was noted, with seizures peaking in the first 12h of the Zeitgeber time (ZT) cycle, regardless of lighting conditions. Interestingly, seizure onset differed between lighting conditions where more seizures arose out of sleep in LD conditions, whereas under DD conditions, the majority occurred out of the wakeful state. We suggest that this model be used to understand the circadian pattern of seizures as well as the pathophysiological implications of sleep and circadian disturbances in limbic epilepsies. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    Science.gov (United States)

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  4. Neurexin Dysfunction in Adult Neurons Results in Autistic-like Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Luis G. Rabaneda

    2014-07-01

    Full Text Available Autism spectrum disorders (ASDs comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  5. Human thrombomodulin knock-in mice reveal differential effects of human thrombomodulin on thrombosis and atherosclerosis.

    Science.gov (United States)

    Raife, Thomas J; Dwyre, Denis M; Stevens, Jeff W; Erger, Rochelle A; Leo, Lorie; Wilson, Katina M; Fernández, Jose A; Wilder, Jennifer; Kim, Hyung-Suk; Griffin, John H; Maeda, Nobuyo; Lentz, Steven R

    2011-11-01

    We sought to develop a murine model to examine the antithrombotic and antiinflammatory functions of human thrombomodulin in vivo. Knock-in mice that express human thrombomodulin from the murine thrombomodulin gene locus were generated. Compared with wild-type mice, human thrombomodulin knock-in mice exhibited decreased protein C activation in the aorta (Pknock-in mice compared with wild-type mice (Pknock-in mice (12±3 minutes) than in wild-type mice (31±6 minutes; Pknock-in and wild-type mice after injection of endotoxin. When crossed with apolipoprotein E-deficient mice and fed a Western diet, knock-in mice had a further decrease in protein C activation but did not exhibit increased atherosclerosis. Expression of human thrombomodulin in place of murine thrombomodulin produces viable mice with a prothrombotic phenotype but unaltered responses to systemic inflammatory or atherogenic stimuli. This humanized animal model will be useful for investigating the function of human thrombomodulin under pathophysiological conditions in vivo.

  6. m-Trifluoromethyl-diphenyl Diselenide Regulates Prefrontal Cortical MOR and KOR Protein Levels and Abolishes the Phenotype Induced by Repeated Forced Swim Stress in Mice.

    Science.gov (United States)

    Rosa, Suzan Gonçalves; Pesarico, Ana Paula; Martini, Franciele; Nogueira, Cristina Wayne

    2018-04-05

    The present study aimed to investigate the m-trifluoromethyl-diphenyl diselenide [(m-CF 3 -PhSe) 2 ] effects on prefrontal cortical MOR and KOR protein levels and phenotype induced by repeated forced swim stress (FSS) in mice. Adult Swiss mice were subjected to repeated FSS sessions, and after that, they performed the spontaneous locomotor/exploratory activity, tail suspension, and splash tests. (m-CF 3 -PhSe) 2 (0.1 to 5 mg/kg) was administered to mice 30 min before the first FSS session and 30 min before the subsequent repeated FSS. (m-CF 3 -PhSe) 2 abolished the phenotype induced by repeated FSS in mice. In addition, a single FSS session increased μ but reduced δ-opioid receptor contents, without changing the κ content. Mice subjected to repeated FSS had an increase in the μ content when compared to those of naïve group or subjected to single FSS. Repeated FSS induced an increase of δ-opioid receptor content compared to those mice subjected to single FSS. However, the δ-opioid receptor contents were lower than those found in the naïve group. The mice subjected to repeated FSS showed an increase in the κ-opioid receptor content when compared to that of the naïve mice. (m-CF 3 -PhSe) 2 regulated the protein contents of μ and κ receptors in mice subjected to repeated FSS. These findings demonstrate that (m-CF 3 -PhSe) 2 was effective to abolish the phenotype induced by FSS, which was accompanied by changes in the contents of cortical μ- and κ-opioid receptors.

  7. Sclerostin Antibody Treatment Improves the Bone Phenotype of Crtap(-/-) Mice, a Model of Recessive Osteogenesis Imperfecta.

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-05-01

    Osteogenesis imperfecta (OI) is characterized by low bone mass, poor bone quality, and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin-neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage-associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1-week-old and 6-week-old Crtap(-/-) mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of "pediatric" and "young adult" recessive OI. Vehicle-treated Crtap(-/-) and wild-type (WT) mice served as controls. Compared with control Crtap(-/-) mice, micro-computed tomography (μCT) analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab-treated Crtap(-/-) mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole-bone strength in Crtap(-/-) mice, with more robust effects in the week 6 to 12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6 to 12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen posttranslational modification. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  8. Ankyrin-1 Gene Exhibits Allelic Heterogeneity in Conferring Protection Against Malaria

    Directory of Open Access Journals (Sweden)

    Hong Ming Huang

    2017-09-01

    Full Text Available Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host–parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1 which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845, and the other a truncated Ank-1 protein (MRI96570. Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570 mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845 caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host–parasite interactions, which could be the basis of future studies.

  9. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization.

    Directory of Open Access Journals (Sweden)

    Mohun Ramratnam

    Full Text Available Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+ recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i, and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/- mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.

  10. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype

    OpenAIRE

    Smythe, Gayle M; White, Jason D

    2012-01-01

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the...

  11. Intermittent fasting uncovers and rescues cognitive phenotypes in PTEN neuronal haploinsufficient mice.

    Science.gov (United States)

    Cabral-Costa, J V; Andreotti, D Z; Mello, N P; Scavone, C; Camandola, S; Kawamoto, E M

    2018-06-05

    Phosphatase and tensin homolog (PTEN) is an important protein with key modulatory functions in cell growth and survival. PTEN is crucial during embryogenesis and plays a key role in the central nervous system (CNS), where it directly modulates neuronal development and synaptic plasticity. Loss of PTEN signaling function is associated with cognitive deficits and synaptic plasticity impairment. Accordingly, Pten mutations have a strong link with autism spectrum disorder. In this study, neuronal Pten haploinsufficient male mice were subjected to a long-term environmental intervention - intermittent fasting (IF) - and then evaluated for alterations in exploratory, anxiety and learning and memory behaviors. Although no significant effects on spatial memory were observed, mutant mice showed impaired contextual fear memory in the passive avoidance test - an outcome that was effectively rescued by IF. In this study, we demonstrated that IF modulation, in addition to its rescue of the memory deficit, was also required to uncover behavioral phenotypes otherwise hidden in this neuronal Pten haploinsufficiency model.

  12. Behavioral phenotype and BDNF differences related to apoE isoforms and sex in young transgenic mice

    DEFF Research Database (Denmark)

    Reverte, Ingrid; Klein, Anders Bue; Ratner, Cecilia

    2012-01-01

    , very little information is available on apoE2 genotype. In the present study, we have characterized behavioral and learning phenotypes in young transgenic mice apoE2, apoE3 and apoE4 of both sexes. We have also determined the levels of brain-derived neurotrophic factor (BDNF) and its receptor Trk...

  13. Improvement of neuromuscular synaptic phenotypes without enhanced survival and motor function in severe spinal muscular atrophy mice selectively rescued in motor neurons.

    Directory of Open Access Journals (Sweden)

    Ximena Paez-Colasante

    Full Text Available In the inherited childhood neuromuscular disease spinal muscular atrophy (SMA, lower motor neuron death and severe muscle weakness result from the reduction of the ubiquitously expressed protein survival of motor neuron (SMN. Although SMA mice recapitulate many features of the human disease, it has remained unclear if their short lifespan and motor weakness are primarily due to cell-autonomous defects in motor neurons. Using Hb9(Cre as a driver, we selectively raised SMN expression in motor neurons in conditional SMAΔ7 mice. Unlike a previous study that used choline acetyltransferase (ChAT(Cre+ as a driver on the same mice, and another report that used Hb9(Cre as a driver on a different line of conditional SMA mice, we found no improvement in survival, weight, motor behavior and presynaptic neurofilament accumulation. However, like in ChAT(Cre+ mice, we detected rescue of endplate size and mitigation of neuromuscular junction (NMJ denervation status. The rescue of endplate size occurred in the absence of an increase in myofiber size, suggesting endplate size is determined by the motor neuron in these animals. Real time-PCR showed that the expression of spinal cord SMN transcript was sharply reduced in Hb9(Cre+ SMA mice relative to ChAT(Cre+ SMA mice. This suggests that our lack of overall phenotypic improvement is most likely due to an unexpectedly poor recombination efficiency driven by Hb9(Cre . Nonetheless, the low levels of SMN were sufficient to rescue two NMJ structural parameters indicating that these motor neuron cell autonomous phenotypes are very sensitive to changes in motoneuronal SMN levels. Our results directly suggest that even those therapeutic interventions with very modest effects in raising SMN in motor neurons may provide mitigation of neuromuscular phenotypes in SMA patients.

  14. Ah receptor mediated suppression of the antibody response in mice is primarily dependent on the Ah phenotype of lymphoid tissue

    International Nuclear Information System (INIS)

    Silkworth, J.B.; Antrim, L.A.; Sack, G.

    1986-01-01

    Halogenated aromatic hydrocarbons act through the aromatic hydrocarbon (Ah) receptor in mice to produce a series of toxic effects of the immune system. The receptor protein is a product of the Ah gene locus. Ah responsive (Ahb/Ahb) mice express a high affinity receptor in both lymphoid and nonlymphoid tissues whereas nonresponsive Ahd/Ahd mice express a poor affinity receptor. To determine the role of the Ah receptor of lymphoid tissue relative to that of nonlymphoid tissue in the induction of immune impairment, bone marrow was used to reconstitute lethally irradiated mice of the same or opposite Ah phenotype. All mice were given 3,3',4,4'-tetrachlorobiphenyl (35 and 350 mumol/kg) ip 2 days before immunization with sheep erythrocytes (SRBC). The immune response to this T dependent antigen and organ weights were determined 5 or 7 days later in normal or chimeric mice, respectively. Monoclonal Lyt 1.1 and Lyt 1.2 antibodies were used to establish the origin of the cells which repopulated the chimeric thymuses. The immune responses of both BALB/cBy (Ahb/Ahb) and the BALB/cBy X DBA/2 hybrid, CByD2F1 (Ahb/Ahd), were significantly suppressed but DBA/2 mice were unaffected. The immune responses of chimeric BALB/cBy----BALB/cBy and BALB/cBy----DBA/2 (donor----recipient) mice were also significantly suppressed and thymic atrophy was observed in both cases. The serum anti-SRBC antibody titers of DBA/2----BALB/cBy chimeras were also significantly decreased although not to the same extent as in BALB/cBy----DBA/2 mice. Chimeric DBA/2----DBA/2 mice were not affected. These results indicate that the sensitivity to Ah receptor mediated suppression of the antibody response is primarily determined by the Ah phenotype of the lymphoid tissue

  15. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    Science.gov (United States)

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

  16. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  17. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  18. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  19. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  20. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    Science.gov (United States)

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Exploring the Lean Phenotype of Glutathione-Depleted Mice: Thiol, Amino Acid and Fatty Acid Profiles.

    Directory of Open Access Journals (Sweden)

    Amany K Elshorbagy

    Full Text Available Although reduced glutathione (rGSH is decreased in obese mice and humans, block of GSH synthesis by buthionine sulfoximine (BSO results in a lean, insulin-sensitive phenotype. Data is lacking about the effect of BSO on GSH precursors, cysteine and glutamate. Plasma total cysteine (tCys is positively associated with stearoyl-coenzyme A desaturase (SCD activity and adiposity in humans and animal models.To explore the phenotype, amino acid and fatty acid profiles in BSO-treated mice.Male C3H/HeH mice aged 11 weeks were fed a high-fat diet with or without BSO in drinking water (30 mmol/L for 8 weeks. Amino acid and fatty acid changes were assessed, as well as food consumption, energy expenditure, locomotor activity, body composition and liver vacuolation (steatosis.Despite higher food intake, BSO decreased particularly fat mass but also lean mass (both P<0.001, and prevented fatty liver vacuolation. Physical activity increased during the dark phase. BSO decreased plasma free fatty acids and enhanced insulin sensitivity. BSO did not alter liver rGSH, but decreased plasma total GSH (tGSH and rGSH (by ~70%, and liver tGSH (by 82%. Glutamate accumulated in plasma and liver. Urine excretion of cysteine and its precursors was increased by BSO. tCys, rCys and cystine decreased in plasma (by 23-45%, P<0.001 for all, but were maintained in liver, at the expense of decreased taurine. Free and total plasma concentrations of the SCD products, oleic and palmitoleic acids were decreased (by 27-38%, P <0.001 for all.Counterintuitively, block of GSH synthesis decreases circulating tCys, raising the question of whether the BSO-induced obesity-resistance is linked to cysteine depletion. Cysteine-supplementation of BSO-treated mice is warranted to dissect the effects of cysteine and GSH depletion on energy metabolism.

  2. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    Science.gov (United States)

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. A mouse model of the schizophrenia-associated 1q21.1 microdeletion syndrome exhibits altered mesolimbic dopamine transmission

    DEFF Research Database (Denmark)

    Nielsen, Jacob; Fejgin, Kim; Sotty, Florence

    2017-01-01

    on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1...... and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced...

  4. Wound healing and longevity: lessons from long-lived αMUPA mice.

    Science.gov (United States)

    Yanai, Hagai; Toren, Dimitri; Vierlinger, Klemens; Hofner, Manuela; Nöhammer, Christa; Chilosi, Marco; Budovsky, Arie; Fraifeld, Vadim E

    2015-03-01

    Does the longevity phenotype offer an advantage in wound healing (WH)? In an attempt to answer this question, we explored skin wound healing in the long-lived transgenic αMUPA mice, a unique model of genetically extended life span. These mice spontaneously eat less, preserve their body mass, are more resistant to spontaneous and induced tumorigenesis and live longer, thus greatly mimicking the effects of caloric restriction (CR). We found that αMUPA mice showed a much slower age-related decline in the rate of WH than their wild-type counterparts (FVB/N). After full closure of the wound, gene expression in the skin of old αMUPA mice returned close to basal levels. In contrast, old FVB/N mice still exhibited significant upregulation of genes associated with growth-promoting pathways, apoptosis and cell-cell/cell-extra cellular matrix interaction, indicating an ongoing tissue remodeling or an inability to properly shut down the repair process. It appears that the CR-like longevity phenotype is associated with more balanced and efficient WH mechanisms in old age, which could ensure a long-term survival advantage.

  5. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M.; Batista, Claudia Maria de Castro; Mattson, Mark P.; de Mello Coelho, Valeria

    2016-01-01

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN+ LLC. Some cortical NeuN+ neurons, GFAP+ glia limitans astrocytes, Iba-1+ microglia and S100β+ ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes. PMID:27029648

  6. Lipid-laden cells differentially distributed in the aging brain are functionally active and correspond to distinct phenotypes.

    Science.gov (United States)

    Shimabukuro, Marilia Kimie; Langhi, Larissa Gutman Paranhos; Cordeiro, Ingrid; Brito, José M; Batista, Claudia Maria de Castro; Mattson, Mark P; Mello Coelho, Valeria de

    2016-03-31

    We characterized cerebral Oil Red O-positive lipid-laden cells (LLC) of aging mice evaluating their distribution, morphology, density, functional activities and inflammatory phenotype. We identified LLC in meningeal, cortical and neurogenic brain regions. The density of cerebral LLC increased with age. LLC presenting small lipid droplets were visualized adjacent to blood vessels or deeper in the brain cortical and striatal parenchyma of aging mice. LLC with larger droplets were asymmetrically distributed in the cerebral ventricle walls, mainly located in the lateral wall. We also found that LLC in the subventricular region co-expressed beclin-1 or LC3, markers for autophagosome or autophagolysosome formation, and perilipin (PLIN), a lipid droplet-associated protein, suggesting lipophagic activity. Some cerebral LLC exhibited β galactosidase activity indicating a senescence phenotype. Moreover, we detected production of the pro-inflammatory cytokine TNF-α in cortical PLIN(+) LLC. Some cortical NeuN(+) neurons, GFAP(+) glia limitans astrocytes, Iba-1(+) microglia and S100β(+) ependymal cells expressed PLIN in the aging brain. Our findings suggest that cerebral LLC exhibit distinct cellular phenotypes and may participate in the age-associated neuroinflammatory processes.

  7. Early Retinal Defects in Fmr1-/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1 -/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1 -/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1 -/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  8. Delayed Hepatic Adaptation to Weaning in ACBP(-/-) Mice Is Caused by Disruption of the Epidermal Barrier

    DEFF Research Database (Denmark)

    Neess, Ditte; Bek, Signe; Bloksgaard, Maria

    2013-01-01

    in the skin rather than in the liver. Similarly to ACBP(-/-) mice, K14-ACBP(-/-) mice exhibit an increased transepidermal water loss, and we show that the hepatic phenotype is caused specifically by the epidermal barrier defect, which leads to increased lipolysis in white adipose tissue. Our data demonstrate......We previously reported that mice deficient in acyl-CoA-binding protein (ACBP) display a delayed metabolic adaptation to weaning. This includes a delayed activation of the hepatic lipogenic gene program, which may result from hepatic accumulation of triacylglycerol and/or cholesteryl esters...... in the late suckling period. To further investigate the basis for this phenotype, we generated mice deficient in ACBP in hepatocytes (Alb-ACBP(-/-)) and keratinocytes (K14-ACBP(-/-)). Surprisingly, the delayed adaptation to weaning, including hepatic lipid accumulation, is caused by ACBP deficiency...

  9. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  10. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  11. Behavioral characterization of CD36 knockout mice with SHIRPA primary screen.

    Science.gov (United States)

    Zhang, Shuxiao; Wang, Wei; Li, Juan; Cheng, Ke; Zhou, Jingjing; Zhu, Dan; Yang, Deyu; Liang, Zihong; Fang, Liang; Liao, Li; Xie, Peng

    2016-02-15

    CD36 is a member of the class B scavenger receptor family of cell surface proteins, which plays a major role in fatty acid, glucose and lipid metabolism. Besides, CD36 functions as a microglial surface receptor for amyloid beta peptide. Regarding this, we suggest CD36 might also contribute to neuropsychiatric disease. The aim of this study was to achieve a behavioral phenotype of CD36 knockout (CD36(-/-)) mice. We characterized the behavior of CD36(-/-) mice and C57BL/6J mice by subjecting them to a series of tests, which include SHIRPA primary behavioral screen test, 1% sucrose preference test, elevated plus-maze test, open-field test and forced swimming test. The results showed that CD36(-/-) mice traversed more squares, emitted more defecation, exhibited higher tail elevation and had more aggressive behaviors than C57BL/6J mice. The CD36(-/-) mice spent more time and traveled longer distance in periphery zone in the open-field test. Meanwhile, the numbers that CD36(-/-) mice entered in the open arms of elevated plus-maze were reduced. These findings suggest that CD36(-/-) mice present an anxious phenotype and might be involved in neuropsychiatric disorders. Copyright © 2015. Published by Elsevier B.V.

  12. Kaiso overexpression promotes intestinal inflammation and potentiates intestinal tumorigenesis in Apc(Min/+) mice.

    Science.gov (United States)

    Pierre, Christina C; Longo, Joseph; Mavor, Meaghan; Milosavljevic, Snezana B; Chaudhary, Roopali; Gilbreath, Ebony; Yates, Clayton; Daniel, Juliet M

    2015-09-01

    Constitutive Wnt/β-catenin signaling is a key contributor to colorectal cancer (CRC). Although inactivation of the tumor suppressor adenomatous polyposis coli (APC) is recognized as an early event in CRC development, it is the accumulation of multiple subsequent oncogenic insults facilitates malignant transformation. One potential contributor to colorectal carcinogenesis is the POZ-ZF transcription factor Kaiso, whose depletion extends lifespan and delays polyp onset in the widely used Apc(Min/+) mouse model of intestinal cancer. These findings suggested that Kaiso potentiates intestinal tumorigenesis, but this was paradoxical as Kaiso was previously implicated as a negative regulator of Wnt/β-catenin signaling. To resolve Kaiso's role in intestinal tumorigenesis and canonical Wnt signaling, we generated a transgenic mouse model (Kaiso(Tg/+)) expressing an intestinal-specific myc-tagged Kaiso transgene. We then mated Kaiso(Tg/+) and Apc(Min/+) mice to generate Kaiso(Tg/+):Apc(Min/+) mice for further characterization. Kaiso(Tg/+):Apc(Min/+) mice exhibited reduced lifespan and increased polyp multiplicity compared to Apc(Min/+) mice. Consistent with this murine phenotype, we found increased Kaiso expression in human CRC tissue, supporting a role for Kaiso in human CRC. Interestingly, Wnt target gene expression was increased in Kaiso(Tg/+):Apc(Min/+) mice, suggesting that Kaiso's function as a negative regulator of canonical Wnt signaling, as seen in Xenopus, is not maintained in this context. Notably, Kaiso(Tg/+):Apc(Min/+) mice exhibited increased inflammation and activation of NFκB signaling compared to their Apc(Min/+) counterparts. This phenotype was consistent with our previous report that Kaiso(Tg/+) mice exhibit chronic intestinal inflammation. Together our findings highlight a role for Kaiso in promoting Wnt signaling, inflammation and tumorigenesis in the mammalian intestine. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Sclerostin antibody treatment improves the bone phenotype of Crtap−/− mice, a model of recessive Osteogenesis Imperfecta

    Science.gov (United States)

    Grafe, Ingo; Alexander, Stefanie; Yang, Tao; Lietman, Caressa; Homan, Erica P; Munivez, Elda; Chen, Yuqing; Jiang, Ming Ming; Bertin, Terry; Dawson, Brian; Asuncion, Franklin; Ke, Hua Zhu; Ominsky, Michael S; Lee, Brendan

    2016-01-01

    Osteogenesis Imperfecta (OI) is characterized by low bone mass, poor bone quality and fractures. Standard treatment for OI patients is limited to bisphosphonates, which only incompletely correct the bone phenotype, and seem to be less effective in adults. Sclerostin neutralizing antibodies (Scl-Ab) have been shown to be beneficial in animal models of osteoporosis, and dominant OI resulting from mutations in the genes encoding type I collagen. However, Scl-Ab treatment has not been studied in models of recessive OI. Cartilage associated protein (CRTAP) is involved in posttranslational type I collagen modification, and its loss of function results in recessive OI. In this study, we treated 1 and 6 week old Crtap−/− mice with Scl-Ab for 6 weeks (25 mg/kg, s.c., twice per week), to determine the effects on the bone phenotype in models of “pediatric” and “young adult” recessive OI. Vehicle treated Crtap−/− and wildtype (WT) mice served as controls. Compared with control Crtap−/− mice, microCT analyses showed significant increases in bone volume and improved trabecular microarchitecture in Scl-Ab treated Crtap−/− mice in both age cohorts, in both vertebrae and femurs. Additionally, Scl-Ab improved femoral cortical parameters in both age cohorts. Biomechanical testing showed that Scl-Ab improved parameters of whole bone strength in Crtap−/− mice, with more robust effects in the week 6–12 cohort, but did not affect the increased bone brittleness. Additionally, Scl-Ab normalized the increased osteoclast numbers, stimulated bone formation rate (week 6–12 cohort only), but did not affect osteocyte density. Overall, our findings suggest that Scl-Ab treatment may be beneficial in the treatment of recessive OI caused by defects in collagen post-translational modification. PMID:26716893

  14. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    Science.gov (United States)

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  16. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Science.gov (United States)

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  17. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Bobby W. S. Li

    2017-12-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than

  18. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  19. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

    Directory of Open Access Journals (Sweden)

    Ihssane Bouybayoune

    2015-04-01

    Full Text Available Fatal familial insomnia (FFI and a genetic form of Creutzfeldt-Jakob disease (CJD178 are clinically different prion disorders linked to the D178N prion protein (PrP mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD mice modeling CJD178. No prion infectivity was detectable in Tg(FFI and Tg(CJD brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI and Tg(CJD neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.

  20. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Science.gov (United States)

    Perche, Olivier; Felgerolle, Chloé; Ardourel, Maryvonne; Bazinet, Audrey; Pâris, Arnaud; Rossignol, Rafaëlle; Meyer-Dilhet, Géraldine; Mausset-Bonnefont, Anne-Laure; Hébert, Betty; Laurenceau, David; Montécot-Dubourg, Céline; Menuet, Arnaud; Bizot, Jean-Charles; Pichon, Jacques; Ranchon-Cole, Isabelle; Briault, Sylvain

    2018-01-01

    Fragile X Syndrome (FXS) is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP) leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO) is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions. PMID:29681800

  1. Early Retinal Defects in Fmr1−/y Mice: Toward a Critical Role of Visual Dys-Sensitivity in the Fragile X Syndrome Phenotype?

    Directory of Open Access Journals (Sweden)

    Olivier Perche

    2018-04-01

    Full Text Available Fragile X Syndrome (FXS is caused by a deficiency in Fragile X Mental Retardation Protein (FMRP leading to global sensorial abnormalities, among which visual defects represent a critical part. These visual defects are associated with cerebral neuron immaturity especially in the primary visual cortex. However, we recently demonstrated that retinas of adult Fmr1−/y mice, the FXS murine model, present molecular, cellular and functional alterations. However, no data are currently available on the evolution pattern of such defects. As retinal stimulation through Eye Opening (EO is a crucial signal for the cerebral visual system maturation, we questioned the precocity of molecular and functional retinal phenotype. To answer this question, we studied the retinal molecular phenotype of Fmr1−/y mice before EO until adult age and the consequences of the retinal loss of Fmrp on retinal function in young and adult mice. We showed that retinal molecular defects are present before EO and remain stable at adult age, leading to electrophysiological impairments without any underlying structural changes. We underlined that loss of Fmrp leads to a wide range of defects in the retina, settled even before EO. Our work demonstrates a critical role of the sensorial dysfunction in the Fmr1−/y mice overall phenotype, and provides evidence that altered peripheral perception is a component of the sensory processing defect in FXS conditions.

  2. Cultured gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice

    OpenAIRE

    Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Cheng, Jiye; Duncan, Alexis E.; Kau, Andrew L.; Griffin, Nicholas W.; Lombard, Vincent; Henrissat, Bernard; Bain, James R.; Muehlbauer, Michael J.; Ilkayeva, Olga; Semenkovich, Clay F.; Funai, Katsuhiko; Hayashi, David K.

    2013-01-01

    The role of specific gut microbes in shaping body composition remains unclear. We transplanted fecal microbiota from adult female twin pairs discordant for obesity into germ-free mice fed low-fat mouse chow, as well as diets representing different levels of saturated fat and fruit and vegetable consumption typical of the USA. Increased total body and fat mass, as well as obesity-associated metabolic phenotypes were transmissible with uncultured fecal communities, and with their corresponding ...

  3. Chronic self-administration of alcohol results in elevated ΔFosB: comparison of hybrid mice with distinct drinking patterns

    Directory of Open Access Journals (Sweden)

    Ozburn Angela R

    2012-10-01

    Full Text Available Abstract Background The inability to reduce or regulate alcohol intake is a hallmark symptom for alcohol use disorders. Research on novel behavioral and genetic models of experience-induced changes in drinking will further our knowledge on alcohol use disorders. Distinct alcohol self-administration behaviors were previously observed when comparing two F1 hybrid strains of mice: C57BL/6J x NZB/B1NJ (BxN show reduced alcohol preference after experience with high concentrations of alcohol and periods of abstinence while C57BL/6J x FVB/NJ (BxF show sustained alcohol preference. These phenotypes are interesting because these hybrids demonstrate the occurrence of genetic additivity (BxN and overdominance (BxF in ethanol intake in an experience dependent manner. Specifically, BxF exhibit sustained alcohol preference and BxN exhibit reduced alcohol preference after experience with high ethanol concentrations; however, experience with low ethanol concentrations produce sustained alcohol preference for both hybrids. In the present study, we tested the hypothesis that these phenotypes are represented by differential production of the inducible transcription factor, ΔFosB, in reward, aversion, and stress related brain regions. Results Changes in neuronal plasticity (as measured by ΔFosB levels were experience dependent, as well as brain region and genotype specific, further supporting that neuronal circuitry underlies motivational aspects of ethanol consumption. BxN mice exhibiting reduced alcohol preference had lower ΔFosB levels in the Edinger-Westphal nucleus than mice exhibiting sustained alcohol preference, and increased ΔFosB levels in central medial amygdala as compared with control mice. BxN mice showing sustained alcohol preference exhibited higher ΔFosB levels in the ventral tegmental area, Edinger-Westphal nucleus, and amygdala (central and lateral divisions. Moreover, in BxN mice ΔFosB levels in the Edinger-Westphal nucleus and ventral

  4. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice.

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS.

  5. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  6. Strain-typical patterns of pregnancy-induced nestbuilding in mice: maternal and experiential influences.

    Science.gov (United States)

    Broida, J; Svare, B

    1982-07-01

    Pregnant C57BL/6J mice incorporate less material into maternal nests and build fewer fully enclosed nests than do pregnant DBA/2J mice. These strain differences are not ameliorated by additional reproductive experience since multiparous animals also exhibit a similar pattern. Reciprocally-crossed hybrid females exhibit DBA-like levels of pregnancy-induced nestbuilding and cross-fostered C57BL and DBA females retain the phenotype of their strain. Experiential and maternal environmental factors apparently are not responsible for strain differences in pregnancy-induced nestbuilding. Differences in ovarian function and/or central neural tissue sensitivity to ovarian hormones may modulate strain differences in pregnancy-induced nestbuilding.

  7. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  8. Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice

    International Nuclear Information System (INIS)

    Hirota, Yoshihisa; Nakagawa, Kimie; Mimatsu, Shino; Sawada, Natsumi; Sakaki, Toshiyuki; Kubodera, Noboru; Kamao, Maya; Tsugawa, Naoko; Suhara, Yoshitomo; Okano, Toshio

    2017-01-01

    The active form of vitamin D, 1α,25-dihydroxyvitamin D 3 (1α,25D 3 ), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1 −/− mice, deficient in CYP27B1, and VDR-deficient mice (Vdr −/− ) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D 3 and VDR, we produced Cyp27b1 −/− mice and compared their phenotypes with those of Vdr −/− mice. Cyp27b1 −/− mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr −/− mice. However, unlike Cyp27b1 −/− mice, Vdr −/− mice developed alopecia. Cyp27b1 −/− mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1 −/− mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D 3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1 −/− mice. These results suggested that 1α,25D 3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1 −/− mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D 3 . Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis. - Highlights: • We produced Cyp27b1 −/− mice and analyzed their phenotypes. • Vdr −/− mice exhibited alopecia and Cyp27b1 −/− mice exhibited

  9. Characterisation of the nociceptive phenotype of suppressible galanin overexpressing transgenic mice

    Directory of Open Access Journals (Sweden)

    Wynick David

    2010-10-01

    Full Text Available Abstract The neuropeptide galanin is widely expressed in both the central and peripheral nervous systems and is involved in many diverse biological functions. There is a substantial data set that demonstrates galanin is upregulated after injury in the DRG, spinal cord and in many brain regions where it plays a predominantly antinociceptive role in addition to being neuroprotective and pro-regenerative. To further characterise the role of galanin following nerve injury, a novel transgenic line was created using the binary transgenic tet-off system, to overexpress galanin in galaninergic tissue in a suppressible manner. The double transgenic mice express significantly more galanin in the DRG one week after sciatic nerve section (axotomy compared to WT mice and this overexpression is suppressible upon administration of doxycycline. Phenotypic analysis revealed markedly attenuated allodynia when galanin is overexpressed and an increase in allodynia following galanin suppression. This novel transgenic line demonstrates that whether galanin expression is increased at the time of nerve injury or only after allodynia is established, the neuropeptide is able to reduce neuropathic pain behaviour. These new findings imply that administration of a galanin agonist to patients with established allodynia would be an effective treatment for neuropathic pain.

  10. Stressful presentations: mild cold stress in laboratory mice influences phenotype of dendritic cells in naïve and tumor-bearing mice.

    Science.gov (United States)

    Kokolus, Kathleen M; Spangler, Haley M; Povinelli, Benjamin J; Farren, Matthew R; Lee, Kelvin P; Repasky, Elizabeth A

    2014-01-01

    The ability of dendritic cells (DCs) to stimulate and regulate T cells is critical to effective anti-tumor immunity. Therefore, it is important to fully recognize any inherent factors which may influence DC function under experimental conditions, especially in laboratory mice since they are used so heavily to model immune responses. The goals of this report are to 1) briefly summarize previous work revealing how DCs respond to various forms of physiological stress and 2) to present new data highlighting the potential for chronic mild cold stress inherent to mice housed at the required standard ambient temperatures to influence baseline DCs properties in naïve and tumor-bearing mice. As recent data from our group shows that CD8(+) T cell function is significantly altered by chronic mild cold stress and since DC function is crucial for CD8(+) T cell activation, we wondered whether housing temperature may also be influencing DC function. Here we report that there are several significant phenotypical and functional differences among DC subsets in naïve and tumor-bearing mice housed at either standard housing temperature or at a thermoneutral ambient temperature, which significantly reduces the extent of cold stress. The new data presented here strongly suggests that, by itself, the housing temperature of mice can affect fundamental properties and functions of DCs. Therefore differences in basal levels of stress due to housing should be taken into consideration when interpreting experiments designed to evaluate the impact of additional variables, including other stressors on DC function.

  11. The meetings, incentives, conferences, and exhibitions (MICE industry: Determinants of Thai organizational effectiveness

    Directory of Open Access Journals (Sweden)

    Songsiri Bandhuseve

    2018-01-01

    Full Text Available Studies have shown that there is more money in business tourism than leisure travel, and on average, business travellers spend more money. To understand this phenomenon, this study aimed to investigate the effect of relationships between capacity management, customer relationship management, information computer technology (ICT, service quality, supplier relationship management, and supply chain management on Thailand’s meetings, incentives, conferences, and exhibitions (MICE industry organizational effectiveness. The researchers embraced a descriptive survey methodology designed to assess how the 500 managers surveyed viewed their organization’s effectiveness. The design employed the self-administration of questionnaires to a sample of individuals which was aimed at finding each individual’s attitudes and opinion about how the 21 observed variables impacted their operations. Of the 10 hypotheses and 21 observed variables, nine hypotheses were proven, with the findings confirming that service quality and information computer technology having a significant effect on MICE organizational effectiveness.

  12. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  13. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  14. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  15. Deletion of the Thyroid Hormone-Activating Type 2 Deiodinase Rescues Cone Photoreceptor Degeneration but Not Deafness in Mice Lacking Type 3 Deiodinase.

    Science.gov (United States)

    Ng, Lily; Liu, Hong; St Germain, Donald L; Hernandez, Arturo; Forrest, Douglas

    2017-06-01

    Type 2 deiodinase amplifies and type 3 deiodinase depletes levels of the active form of thyroid hormone, triiodothyronine. Given the opposing activities of these enzymes, we tested the hypothesis that they counteract each other's developmental functions by investigating whether deletion of type 2 deiodinase (encoded by Dio2) modifies sensory phenotypes in type 3 deiodinase-deficient (Dio3-/-) mice. Dio3-/- mice display degeneration of retinal cones, the photoreceptors that mediate daylight and color vision. In Dio2-/- mice, cone function was largely normal but deletion of Dio2 in Dio3-/- mice markedly recovered cone numbers and electroretinogram responses, suggesting counterbalancing roles for both enzymes in cone survival. Both Dio3-/- and Dio2-/- strains exhibit deafness with cochlear abnormalities. In Dio3-/-;Dio2-/- mice, deafness was exacerbated rather than alleviated, suggesting unevenly balanced actions by these enzymes during auditory development. Dio3-/- mice also exhibit an atrophic thyroid gland, low thyroxine, and high triiodothyronine levels, but this phenotype was ameliorated in Dio3-/-;Dio2-/- mice, indicating counterbalancing roles for the enzymes in determining the thyroid hormone status. The results suggest that the composite action of these two enzymes is a critical determinant in visual and auditory development and in setting the systemic thyroid hormone status.

  16. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    OpenAIRE

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-t...

  17. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    Science.gov (United States)

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  18. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  19. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  1. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    Science.gov (United States)

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  2. The transgenerational inheritance of autism-like phenotypes in mice exposed to valproic acid during pregnancy.

    Science.gov (United States)

    Choi, Chang Soon; Gonzales, Edson Luck; Kim, Ki Chan; Yang, Sung Min; Kim, Ji-Woon; Mabunga, Darine Froy; Cheong, Jae Hoon; Han, Seol-Heui; Bahn, Geon Ho; Shin, Chan Young

    2016-11-07

    Autism spectrum disorder (ASD) is a heterogeneously pervasive developmental disorder in which various genetic and environmental factors are believed to underlie its development. Recently, epigenetics has been suggested as a novel concept for ASD aetiology with a proposition that epigenetic marks can be transgenerationally inherited. Based on this assumption of epigenetics, we investigated the transgenerational inheritance of ASD-like behaviours and their related synaptic changes in the VPA animal model of ASD. The first generation (F1) VPA-exposed offspring exhibited autistic-like impaired sociability and increased marble burying. They also showed increased seizure susceptibility, hyperactivity and decreased anxiety. We mated the VPA-exposed F1 male offspring with naïve females to produce the second generation (F2), and then similarly mated the F2 to deliver the third generation (F3). Remarkably, the autism-like behavioural phenotypes found in F1 persisted to the F2 and F3. Additionally, the frontal cortices of F1 and F3 showed some imbalanced expressions of excitatory/inhibitory synaptic markers, suggesting a transgenerational epigenetic inheritance. These results open the idea that E/I imbalance and ASD-like behavioural changes induced by environmental insults in mice can be epigenetically transmitted, at least, to the third generation. This study could help explain the unprecedented increase in ASD prevalence.

  3. A mild mutator phenotype arises in a mouse model for malignancies associated with neurofibromatosis type 1

    International Nuclear Information System (INIS)

    Garza, Rene; Hudson, Robert A.; McMahan, C. Alex; Walter, Christi A.; Vogel, Kristine S.

    2007-01-01

    Defects in genes that control DNA repair, proliferation, and apoptosis can increase genomic instability, and thus promote malignant progression. Although most tumors that arise in humans with neurofibromatosis type 1 (NF1) are benign, these individuals are at increased risk for malignant peripheral nerve sheath tumors (MPNST). To characterize additional mutations required for the development of MPNST from benign plexiform neurofibromas, we generated a mouse model for these tumors by combining targeted null mutations in Nf1 and p53, in cis. CisNf1+/-; p53+/- mice spontaneously develop PNST, and these tumors exhibit loss-of-heterozygosity at both the Nf1 and p53 loci. Because p53 has well-characterized roles in the DNA damage response, DNA repair, and apoptosis, and because DNA repair genes have been proposed to act as modifiers in NF1, we used the cisNf1+/-; p53+/- mice to determine whether a mutator phenotype arises in NF1-associated malignancies. To quantitate spontaneous mutant frequencies (MF), we crossed the Big Blue mouse, which harbors a lacI transgene, to the cisNf1+/-; p53+/- mice, and isolated genomic DNA from both tumor and normal tissues in compound heterozygotes and wild-type siblings. Many of the PNST exhibited increased mutant frequencies (MF = 4.70) when compared to normal peripheral nerve and brain (MF = 2.09); mutations occurred throughout the entire lacI gene, and included base substitutions, insertions, and deletions. Moreover, the brains, spleens, and livers of these cisNf1+/-; p53+/- animals exhibited increased mutant frequencies when compared to tissues from wild-type littermates. We conclude that a mild mutator phenotype arises in the tumors and tissues of cisNf1+/-; p53+/- mice, and propose that genomic instability influences NF1 tumor progression and disease severity

  4. Rapid-throughput skeletal phenotyping of 100 knockout mice identifies 9 new genes that determine bone strength.

    Directory of Open Access Journals (Sweden)

    J H Duncan Bassett

    Full Text Available Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium.

  5. FSHD myotubes with different phenotypes exhibit distinct proteomes.

    Science.gov (United States)

    Tassin, Alexandra; Leroy, Baptiste; Laoudj-Chenivesse, Dalila; Wauters, Armelle; Vanderplanck, Céline; Le Bihan, Marie-Catherine; Coppée, Frédérique; Wattiez, Ruddy; Belayew, Alexandra

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4) gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL) method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS) to study FSHD myotubes. Primary CD56(+) FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the adjustment of a

  6. FSHD myotubes with different phenotypes exhibit distinct proteomes.

    Directory of Open Access Journals (Sweden)

    Alexandra Tassin

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is a progressive muscle disorder linked to a contraction of the D4Z4 repeat array in the 4q35 subtelomeric region. This deletion induces epigenetic modifications that affect the expression of several genes located in the vicinity. In each D4Z4 element, we identified the double homeobox 4 (DUX4 gene. DUX4 expresses a transcription factor that plays a major role in the development of FSHD through the initiation of a large gene dysregulation cascade that causes myogenic differentiation defects, atrophy and reduced response to oxidative stress. Because miRNAs variably affect mRNA expression, proteomic approaches are required to define the dysregulated pathways in FSHD. In this study, we optimized a differential isotope protein labeling (ICPL method combined with shotgun proteomic analysis using a gel-free system (2DLC-MS/MS to study FSHD myotubes. Primary CD56(+ FSHD myoblasts were found to fuse into myotubes presenting various proportions of an atrophic or a disorganized phenotype. To better understand the FSHD myogenic defect, our improved proteomic procedure was used to compare predominantly atrophic or disorganized myotubes to the same matching healthy control. FSHD atrophic myotubes presented decreased structural and contractile muscle components. This phenotype suggests the occurrence of atrophy-associated proteolysis that likely results from the DUX4-mediated gene dysregulation cascade. The skeletal muscle myosin isoforms were decreased while non-muscle myosin complexes were more abundant. In FSHD disorganized myotubes, myosin isoforms were not reduced, and increased proteins were mostly involved in microtubule network organization and myofibrillar remodeling. A common feature of both FSHD myotube phenotypes was the disturbance of several caveolar proteins, such as PTRF and MURC. Taken together, our data suggest changes in trafficking and in the membrane microdomains of FSHD myotubes. Finally, the

  7. Ectopic expression of the agouti gene in transgenic mice causes obesity, features of type II diabetes, and yellow fur

    Energy Technology Data Exchange (ETDEWEB)

    Klebig, M.L.; Woychik, R.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Wilkinson, J.E. [Univ. of Tennessee, Knoxville, TN (United States); Geisler, J.G. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)]|[Univ. of Tennessee, Knoxville, TN (United States)

    1995-05-23

    Mice that carry the lethal yellow (A{sup y}) or viable yellow (A{sup vy}) mutation, two dominant mutations of the agouti (a) gene in mouse chromosome 2, exhibit a phenotype that includes yellow fur, marked obesity, a form of type II diabetes associated with insulin resistance, and an increased susceptibility to tumor development. Molecular analyses of these and several other dominant {open_quotes}obese yellow{close_quotes} a-locus mutations suggested that ectopic expression of the normal agouti protein gives rise to this complex pleiotropic phenotype. We have now tested this hypothesis directly by generating transgenic mice that ectopically express an agouti cDNA clone encoding the normal agouti protein in all tissues examined. Transgenic mice of both sexes have yellow fur, become obese, and develop hyperinsulinemia. In addition, male transgenic mice develop hyperglycemia by 12-20 weeks of age. These results demonstrate conclusively that the ectopic agouti expression is responsible for most, if not all, of the phenotypic traits of the dominant, obese yellow mutants. 42 refs., 5 figs.

  8. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic

  9. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype.

    Science.gov (United States)

    Kusunoki, Yasuo; Matsui, Isao; Hamano, Takayuki; Shimomura, Akihiro; Mori, Daisuke; Yonemoto, Sayoko; Takabatake, Yoshitsugu; Tsubakihara, Yoshiharu; St-Arnaud, René; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-11-01

    Vitamin D hydroxylated at carbon 25 (25(OH)D) is generally recognized as a precursor of active vitamin D. Despite its low affinity for the vitamin D receptor (VDR), both deficient and excessive 25(OH)D levels are associated with poor clinical outcomes. Here we studied direct effects of 25(OH)D3 on the kidney using 25(OH)D-1α-hydroxylase (CYP27B1) knockout mice. The effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed as proximal tubular cells and macrophages are two major cell types that take up 25(OH)D and contribute to the pathogenesis of kidney injury. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-β1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-β1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-β1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.

  10. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  11. Diet-induced obesity increases the frequency of Pig-a mutant erythrocytes in male C57BL/6J mice.

    Science.gov (United States)

    Wickliffe, Jeffrey K; Dertinger, Stephen D; Torous, Dorothea K; Avlasevich, Svetlana L; Simon-Friedt, Bridget R; Wilson, Mark J

    2016-12-01

    Obesity increases the risk of a number of chronic diseases in humans including several cancers. Biological mechanisms responsible for such increased risks are not well understood at present. Increases in systemic inflammation and oxidative stress, endogenous production of mutagenic metabolites, altered signaling in proliferative pathways, and increased sensitivity to exogenous mutagens and carcinogens are some of the potential contributing factors. We hypothesize that obesity creates an endogenously mutagenic environment in addition to increasing the sensitivity to environmental mutagens. To test this hypothesis, we examined two in vivo genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in blood cells in two independent experiments in 30-week old male mice reared on either a high-fat diet (60% calories from fat) that exhibit an obese phenotype or a normal-fat diet (10% calories from fat) that do not exhibit an obese phenotype. Mice were assayed again at 52 weeks of age in one of the experiments. N-ethyl-N-nitrosourea (ENU) was used as a positive mutation control in one experiment. ENU induced a robust Pig-a mutant and micronucleus response in both phenotypes. Obese, otherwise untreated mice, did not differ from non-obese mice with respect to Pig-a mutant frequencies in reticulocytes or micronucleus frequencies. However, such mice, had significantly higher and sustained Pig-a mutant frequencies (increased 2.5-3.7-fold, p obese mice (based on measurements collected at 30 weeks or 30 and 52 weeks of age). This suggests that obesity, in the absence of exposure to an exogenous mutagen, is itself mutagenic. Environ. Mol. Mutagen. 57:668-677, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1.

    Directory of Open Access Journals (Sweden)

    Sandra J Feeney

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal-dominant disease with no effective treatment. The genetic cause of FSHD is complex and the primary pathogenic insult underlying the muscle disease is unknown. Several disease candidate genes have been proposed including DUX4 and FRG1. Expression analysis studies of FSHD report the deregulation of genes which mediate myoblast differentiation and fusion. Transgenic mice overexpressing FRG1 recapitulate the FSHD muscular dystrophy phenotype. Our current study selectively examines how increased expression of FRG1 may contribute to myoblast differentiation defects. We generated stable C2C12 cell lines overexpressing FRG1, which exhibited a myoblast fusion defect upon differentiation. To determine if myoblast fusion defects contribute to the FRG1 mouse dystrophic phenotype, this strain was crossed with skeletal muscle specific FHL1-transgenic mice. We previously reported that FHL1 promotes myoblast fusion in vitro and FHL1-transgenic mice develop skeletal muscle hypertrophy. In the current study, FRG1 mice overexpressing FHL1 showed an improvement in the dystrophic phenotype, including a reduced spinal kyphosis, increased muscle mass and myofiber size, and decreased muscle fibrosis. FHL1 expression in FRG1 mice, did not alter satellite cell number or activation, but enhanced myoblast fusion. Primary myoblasts isolated from FRG1 mice showed a myoblast fusion defect that was rescued by FHL1 expression. Therefore, increased FRG1 expression may contribute to a muscular dystrophy phenotype resembling FSHD by impairing myoblast fusion, a defect that can be rescued by enhanced myoblast fusion via expression of FHL1.

  13. Perturbed desmosomal cadherin expression in grainy head-like 1-null mice.

    Science.gov (United States)

    Wilanowski, Tomasz; Caddy, Jacinta; Ting, Stephen B; Hislop, Nikki R; Cerruti, Loretta; Auden, Alana; Zhao, Lin-Lin; Asquith, Stephen; Ellis, Sarah; Sinclair, Rodney; Cunningham, John M; Jane, Stephen M

    2008-03-19

    In Drosophila, the grainy head (grh) gene plays a range of key developmental roles through the regulation of members of the cadherin gene family. We now report that mice lacking the grh homologue grainy head-like 1 (Grhl1) exhibit hair and skin phenotypes consistent with a reduction in expression of the genes encoding the desmosomal cadherin, desmoglein 1 (Dsg1). Grhl1-null mice show an initial delay in coat growth, and older mice exhibit hair loss as a result of poor anchoring of the hair shaft in the follicle. The mice also develop palmoplantar keratoderma, analogous to humans with DSG1 mutations. Sequence analysis, DNA binding, and chromatin immunoprecipitation experiments demonstrate that the human and mouse Dsg1 promoters are direct targets of GRHL1. Ultrastructural analysis reveals reduced numbers of abnormal desmosomes in the interfollicular epidermis. These findings establish GRHL1 as an important regulator of the Dsg1 genes in the context of hair anchorage and epidermal differentiation, and suggest that cadherin family genes are key targets of the grainy head-like genes across 700 million years of evolution.

  14. Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice

    Directory of Open Access Journals (Sweden)

    lili qiu

    2016-10-01

    Full Text Available Postoperative cognitive decline (POCD is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH oxidase mediated-abnormalities in parvalbumin (PV interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in sixteen-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO. Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β, markers of oxidative stress, and NADPH oxidase 2 (Nox2 in the hippocampus. In addition, lipopolysaccharide exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived ROS production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.

  15. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex.

    Science.gov (United States)

    Zeng, Ling-Hui; Rensing, Nicholas R; Zhang, Bo; Gutmann, David H; Gambello, Michael J; Wong, Michael

    2011-02-01

    Tuberous Sclerosis Complex (TSC) is an autosomal dominant, multi-system disorder, typically involving severe neurological symptoms, such as epilepsy, cognitive deficits and autism. Two genes, TSC1 and TSC2, encoding the proteins hamartin and tuberin, respectively, have been identified as causing TSC. Although there is a substantial overlap in the clinical phenotype produced by TSC1 and TSC2 mutations, accumulating evidence indicates that TSC2 mutations cause more severe neurological manifestations than TSC1 mutations. In this study, the neurological phenotype of a novel mouse model involving conditional inactivation of the Tsc2 gene in glial-fibrillary acidic protein (GFAP)-positive cells (Tsc2(GFAP1)CKO mice) was characterized and compared with previously generated Tsc1(GFAP1)CKO mice. Similar to Tsc1(GFAP1)CKO mice, Tsc2(GFAP1)CKO mice exhibited epilepsy, premature death, progressive megencephaly, diffuse glial proliferation, dispersion of hippocampal pyramidal cells and decreased astrocyte glutamate transporter expression. However, Tsc2(GFAP1)CKO mice had an earlier onset and higher frequency of seizures, as well as significantly more severe histological abnormalities, compared with Tsc1(GFAP1)CKO mice. The differences between Tsc1(GFAP1)CKO and Tsc2(GFAP1)CKO mice were correlated with higher levels of mammalian target of rapamycin (mTOR) activation in Tsc2(GFAP1)CKO mice and were reversed by the mTOR inhibitor, rapamycin. These findings provide novel evidence in mouse models that Tsc2 mutations intrinsically cause a more severe neurological phenotype than Tsc1 mutations and suggest that the difference in phenotype may be related to the degree to which Tsc1 and Tsc2 inactivation causes abnormal mTOR activation.

  16. Phenotypic characterization of speed-associated gait changes in mice reveals modular organization of locomotor networks

    DEFF Research Database (Denmark)

    Bellardita, Carmelo; Kiehn, Ole

    2015-01-01

    behavioral outcomes expressed at different speeds of locomotion. Here, we use detailed kinematic analyses to search for signatures of a modular organization of locomotor circuits in intact and genetically modified mice moving at different speeds of locomotion. We show that wild-type mice display three...... distinct gaits: two alternating, walk and trot, and one synchronous, bound. Each gait is expressed in distinct ranges of speed with phenotypic inter-limb and intra-limb coordination. A fourth gait, gallop, closely resembled bound in most of the locomotor parameters but expressed diverse inter......-limb coordination. Genetic ablation of commissural V0V neurons completely removed the expression of one alternating gait, trot, but left intact walk, gallop, and bound. Ablation of commissural V0V and V0D neurons led to a loss of walk, trot, and gallop, leaving bound as the default gait. Our study provides...

  17. A novel mice model of metabolic syndrome: the high-fat-high-fructose diet-fed ICR mice

    Science.gov (United States)

    Zhuhua, Zhang; Zhiquan, Wang; Zhen, Yang; Yixin, Niu; Weiwei, Zhang; Xiaoyong, Li; Yueming, Liu; Hongmei, Zhang; Li, Qin; Qing, Su

    2015-01-01

    Currently, the metabolic syndrome (MS) is occurring at growing rates worldwide, raising extensive concerns on the mechanisms and therapeutic interventions for this disorder. Herein, we described a novel method of establishing MS model in rodents. Male Institute of Cancer Research (ICR) mice were fed with high-fat-high-fructose (HFHF) diet or normal chow (NC) respectively for 12 weeks. Metabolic phenotypes were assessed by glucose tolerance test, insulin tolerance test and hyperinsulinemic-euglycemic clamp. Blood pressure was measured by a tail-cuff system. At the end of the experiment, mice were sacrificed, and blood and tissues were harvested for subsequent analysis. Serum insulin levels were measured by ELISA, and lipid profiles were determined biochemically. The HFHF diet-fed ICR mice exhibited obvious characteristics of the components of MS, including obvious obesity, severe insulin resistance, hyperinsulinemia, dislipidemia, significant hypertension and hyperuricemia. Our data suggest that HFHF diet-fed ICR mice may be a robust and efficient animal model that could well mimic the basic pathogenesis of human MS. PMID:26134356

  18. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas

    2018-01-01

    that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison...... to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory...... demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin...

  19. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  20. Vascular defects in gain-of-function fps/fes transgenic mice correlate with PDGF- and VEGF-induced activation of mutant Fps/Fes kinase in endothelial cells.

    Science.gov (United States)

    Sangrar, W; Mewburn, J D; Vincent, S G; Fisher, J T; Greer, P A

    2004-05-01

    Fps/Fes is a cytoplasmic tyrosine kinase that is abundantly expressed in the myeloid, endothelial, epithelial, neuronal and platelet lineages. Genetic manipulation in mice has uncovered potential roles for this kinase in hematopoiesis, innate immunity, inflammation and angiogenesis. We have utilized a genetic approach to explore the role of Fps/Fes in angiogenesis. A hypervascular line of mice generated by expression of a 'gain-of-function' human fps/fes transgene (fps(MF)) encoding a myristoylated variant of Fps (MFps) was used in these studies. The hypervascular phenotype of this line was extensively characterized by intravital microscopy and biochemical approaches. fps(MF) mice exhibited 1.6-1.7-fold increases in vascularity which was attributable to increases in the number of secondary vessels. Vessels were larger, exhibited varicosities and disorganized patterning, and were found to have defects in histamine-induced permeability. Biochemical characterization of endothelial cell (EC) lines derived from fps(MF) mice revealed that MFps was hypersensitive to activation by vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). MFps mediates enhanced sensitization to VEGF and PDGF signaling in ECs. We propose that this hypersensitization contributes to excessive angiogenic signaling and that this underlies the observed hypervascular phenotype of fps(MF) mice. These phenotypes recapitulate important aspects of the vascular defects observed in both VEGF and angiopoietin-1 transgenic mice. The fps/fes proto-oncogene product therefore represents a novel player in the regulation of angiogenesis, and the fps(MF) line of mice constitutes a unique new murine model for the study of this process.

  1. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  2. Virulent variants emerging in mice infected with the apathogenic prototype strain of the parvovirus minute virus of mice exhibit a capsid with low avidity for a primary receptor.

    Science.gov (United States)

    Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M

    2005-09-01

    The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of

  3. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Two-year body composition analyses of long-lived GHR null mice.

    Science.gov (United States)

    Berryman, Darlene E; List, Edward O; Palmer, Amanda J; Chung, Min-Yu; Wright-Piekarski, Jacob; Lubbers, Ellen; O'Connor, Patrick; Okada, Shigeru; Kopchick, John J

    2010-01-01

    Growth hormone receptor gene-disrupted (GHR-/-) mice exhibit increased life span and adipose tissue mass. Although this obese phenotype has been reported extensively for young adult male GHR-/- mice, data for females and for other ages in either gender are lacking. Thus, the purpose of this study was to evaluate body composition longitudinally in both male and female GHR-/- mice. Results show that GHR-/- mice have a greater percent fat mass with no significant difference in absolute fat mass throughout life. Lean mass shows an opposite trend with percent lean mass not significantly different between genotypes but absolute mass reduced in GHR-/- mice. Differences in body composition are more pronounced in male than in female mice, and both genders of GHR-/- mice show specific enlargement of the subcutaneous adipose depot. Along with previously published data, these results suggest a consistent and intriguing protective effect of excess fat mass in the subcutaneous region.

  5. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice.

    Science.gov (United States)

    Heun-Johnson, Hanke; Levitt, Pat

    2018-02-01

    Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ' C' allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression ( Met +/- ) and early-life stress from postnatal day 2-9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met +/- mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met +/- mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.

  6. Antisocial and seizure susceptibility phenotypes in an animal model of epilepsy are normalized by impairment of brain corticotropin-releasing factor.

    Science.gov (United States)

    Turner, Laura H; Lim, Chen E; Heinrichs, Stephen C

    2007-02-01

    Social interaction phenotyping is an unexplored niche in animal modeling of epilepsy despite the sensitivity of affiliative behaviors to emotionality and stress, which are known seizure triggers. Thus, the present studies examined the social phenotype of seizure-susceptible El and nonsusceptible ddY strains both in untreated animals and following preexposure to a handling stressor. The second aim of the present studies was to evaluate the dependence of sociability in El mice on the proconvulsive, stress neuropeptide corticotropin-releasing factor (CRF) using CRF-SAP, a conjugate of CRF and the toxin saporin, which selectively reduced CRF peptide levels in the basolateral amygdala of El mice. El mice exhibited lower social investigation times than ddY counterparts, whereas central administration of CRF-SAP normalized social investigation times relative to ddY controls. Moreover, handling-induced seizures in El mice were reduced by 50% following treatment with CRF-SAP relative to saporin alone-injected El controls. The results of this study suggest that tonically activated CRF systems in the El mouse brain suppress affiliative behavior and facilitate evoked seizures.

  7. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and

  8. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Human Stromal (Mesenchymal) Stem Cells from Bone Marrow, Adipose Tissue and Skin Exhibit Differences in Molecular Phenotype and Differentiation Potential

    DEFF Research Database (Denmark)

    Al-Nbaheen, May; Vishnubalaji, Radhakrishnan; Ali, Dalia

    2013-01-01

    Human stromal (mesenchymal) stem cells (hMSCs) are multipotent stem cells with ability to differentiate into mesoderm-type cells e.g. osteoblasts and adipocytes and thus they are being introduced into clinical trials for tissue regeneration. Traditionally, hMSCs have been isolated from bone marrow......, but the number of cells obtained is limited. Here, we compared the MSC-like cell populations, obtained from alternative sources for MSC: adipose tissue and skin, with the standard phenotype of human bone marrow MSC (BM-MSCs). MSC from human adipose tissue (human adipose stromal cells (hATSCs)) and human skin......, MSC populations obtained from different tissues exhibit significant differences in their proliferation, differentiation and molecular phenotype, which should be taken into consideration when planning their use in clinical protocols....

  10. Disseminated breast cancer cells acquire a highly malignant and aggressive metastatic phenotype during metastatic latency in the bone.

    Directory of Open Access Journals (Sweden)

    Carolyn G Marsden

    Full Text Available BACKGROUND: Disseminated tumor cells (DTCs in the bone marrow may exist in a dormant state for extended periods of time, maintaining the ability to proliferate upon activation, engraft at new sites, and form detectable metastases. However, understanding of the behavior and biology of dormant breast cancer cells in the bone marrow niche remains limited, as well as their potential involvement in tumor recurrence and metastasis. Therefore, the purpose of this study was to investigate the tumorigenicity and metastatic potential of dormant disseminated breast cancer cells (prior to activation in the bone marrow. METHODOLOGY/PRINCIPAL FINDINGS: Total bone marrow, isolated from mice previously injected with tumorspheres into the mammary fat pad, was injected into the mammary fat pad of NUDE mice. As a negative control, bone marrow isolated from non-injected mice was injected into the mammary fat pad of NUDE mice. The resultant tumors were analyzed by immunohistochemistry for expression of epithelial and mesenchymal markers. Mouse lungs, livers, and kidneys were analyzed by H+E staining to detect metastases. The injection of bone marrow isolated from mice previously injected with tumorspheres into the mammary fat pad, resulted in large tumor formation in the mammary fat pad 2 months post-injection. However, the injection of bone marrow isolated from non-injected mice did not result in tumor formation in the mammary fat pad. The DTC-derived tumors exhibited accelerated development of metastatic lesions within the lung, liver and kidney. The resultant tumors and the majority of metastatic lesions within the lung and liver exhibited a mesenchymal-like phenotype. CONCLUSIONS/SIGNIFICANCE: Dormant DTCs within the bone marrow are highly malignant upon injection into the mammary fat pad, with the accelerated development of metastatic lesions within the lung, liver and kidney. These results suggest the acquisition of a more aggressive phenotype of DTCs during

  11. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus.

    Science.gov (United States)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2014-10-31

    Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  12. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Directory of Open Access Journals (Sweden)

    Alex Langford-Smith

    Full Text Available Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A, is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  13. Female mucopolysaccharidosis IIIA mice exhibit hyperactivity and a reduced sense of danger in the open field test.

    Science.gov (United States)

    Langford-Smith, Alex; Langford-Smith, Kia J; Jones, Simon A; Wynn, Robert F; Wraith, J E; Wilkinson, Fiona L; Bigger, Brian W

    2011-01-01

    Reliable behavioural tests in animal models of neurodegenerative diseases allow us to study the natural history of disease and evaluate the efficacy of novel therapies. Mucopolysaccharidosis IIIA (MPS IIIA or Sanfilippo A), is a severe, neurodegenerative lysosomal storage disorder caused by a deficiency in the heparan sulphate catabolising enzyme, sulfamidase. Undegraded heparan sulphate accumulates, resulting in lysosomal enlargement and cellular dysfunction. Patients suffer a progressive loss of motor and cognitive function with severe behavioural manifestations and premature death. There is currently no treatment. A spontaneously occurring mouse model of the disease has been described, that has approximately 3% of normal enzyme activity levels. Behavioural phenotyping of the MPS IIIA mouse has been previously reported, but the results are conflicting and variable, even after full backcrossing to the C57BL/6 background. Therefore we have independently backcrossed the MPS IIIA model onto the C57BL/6J background and evaluated the behaviour of male and female MPS IIIA mice at 4, 6 and 8 months of age using the open field test, elevated plus maze, inverted screen and horizontal bar crossing at the same circadian time point. Using a 60 minute open field, we have demonstrated that female MPS IIIA mice are hyperactive, have a longer path length, display rapid exploratory behaviour and spend less time immobile than WT mice. Female MPS IIIA mice also display a reduced sense of danger and spend more time in the centre of the open field. There were no significant differences found between male WT and MPS IIIA mice and no differences in neuromuscular strength were seen with either sex. The altered natural history of behaviour that we observe in the MPS IIIA mouse will allow more accurate evaluation of novel therapeutics for MPS IIIA and potentially other neurodegenerative disorders.

  14. Comprehensive behavioral analysis of mice deficient in Rapgef2 and Rapgef6, a subfamily of guanine nucleotide exchange factors for Rap small GTPases possessing the Ras/Rap-associating domain.

    Science.gov (United States)

    Maeta, Kazuhiro; Hattori, Satoko; Ikutomo, Junji; Edamatsu, Hironori; Bilasy, Shymaa E; Miyakawa, Tsuyoshi; Kataoka, Tohru

    2018-05-10

    Rapgef2 and Rapgef6 define a subfamily of guanine nucleotide exchange factors for Rap small GTPases, characterized by the possession of the Ras/Rap-associating domain. Previous genomic analyses suggested their possible involvement in the etiology of schizophrenia. We recently demonstrated the development of an ectopic cortical mass (ECM), which resembles the human subcortical band heterotopia, in the dorsal telencephalon-specific Rapgef2 conditional knockout (Rapgef2-cKO) brains. Additional knockout of Rapgef6 in Rapgef2-cKO mice resulted in gross enlargement of the ECM whereas knockout of Rapgef6 alone (Rapgef6-KO) had no discernible effect on the brain morphology. Here, we performed a battery of behavioral tests to examine the effects of Rapgef2 or Rapgef6 deficiency on higher brain functions. Rapgef2-cKO mice exhibited hyperlocomotion phenotypes. They showed decreased anxiety-like behavior in the elevated plus maze and the open-field tests as well as increased depression-like behavior in the Porsolt forced swim and tail suspension tests. They also exhibited increased sociability especially in novel environments. They showed defects in cognitive function as evidenced by reduced learning ability in the Barnes circular maze test and by impaired working memory in the T maze tests. In contrast, although Rapgef6 and Rapgef2 share similarities in biochemical roles, Rapgef6-KO mice exhibited mild behavioral abnormalities detected with a number of behavioral tests, such as hyperlocomotion phenotype in the open-field test and the social interaction test with a novel environment and working-memory defects in the T-maze test. In conclusion, although there were differences in their brain morphology and the magnitude of the behavioral abnormalities, Rapgef2-cKO mice and Rapgef6-KO mice exhibited hyperlocomotion phenotype and working-memory defect, both of which could be recognized as schizophrenia-like behavior.

  15. Mouse Embryonic Fibroblasts (MEF) Exhibit a Similar but not Identical Phenotype to Bone Marrow Stromal Stem Cells (BMSC)

    DEFF Research Database (Denmark)

    Saeed, Hamid; Taipaleenmäki, Hanna; Aldahmash, Abdullah M

    2012-01-01

    Mouse embryonic fibroblasts have been utilized as a surrogate stem cell model for the postnatal bone marrow-derived stromal stem cells (BMSC) to study mesoderm-type cell differentiation e.g. osteoblasts, adipocytes and chondrocytes. However, no formal characterization of MEF phenotype has been...... by real-time PCR analysis. Compared to BMSC, MEF exhibited a more enhanced differentiation into adipocyte and chondrocyte lineages. Interestingly, both MEF and BMSC formed the same amount of heterotopic bone and bone marrow elements upon in vivo subcutaneous implantation with hydroxyapatite...... and differentiation to osteoblasts, adipocytes and chondrocytes....

  16. Prenatal Metformin Exposure in Mice Programs the Metabolic Phenotype of the Offspring during a High Fat Diet at Adulthood

    Science.gov (United States)

    Salomäki, Henriikka; Vähätalo, Laura H.; Laurila, Kirsti; Jäppinen, Norma T.; Penttinen, Anna-Maija; Ailanen, Liisa; Ilyasizadeh, Juan; Pesonen, Ullamari; Koulu, Markku

    2013-01-01

    Aims The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. Methods Metformin (300 mg/kg) or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase) and high fat diet (HFD-phase). At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. Results Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. Conclusions The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a therapeutic agent during

  17. Prenatal metformin exposure in mice programs the metabolic phenotype of the offspring during a high fat diet at adulthood.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: The antidiabetic drug metformin is currently used prior and during pregnancy for polycystic ovary syndrome, as well as during gestational diabetes mellitus. We investigated the effects of prenatal metformin exposure on the metabolic phenotype of the offspring during adulthood in mice. METHODS: Metformin (300 mg/kg or vehicle was administered orally to dams on regular diet from the embryonic day E0.5 to E17.5. Gene expression profiles in liver and brain were analysed from 4-day old offspring by microarray. Body weight development and several metabolic parameters of offspring were monitored both during regular diet (RD-phase and high fat diet (HFD-phase. At the end of the study, two doses of metformin or vehicle were given acutely to mice at the age of 20 weeks, and Insig-1 and GLUT4 mRNA expressions in liver and fat tissue were analysed using qRT-PCR. RESULTS: Metformin exposed fetuses were lighter at E18.5. There was no effect of metformin on the maternal body weight development or food intake. Metformin exposed offspring gained more body weight and mesenteric fat during the HFD-phase. The male offspring also had impaired glucose tolerance and elevated fasting glucose during the HFD-phase. Moreover, the expression of GLUT4 mRNA was down-regulated in epididymal fat in male offspring prenatally exposed to metformin. Based on the microarray and subsequent qRT-PCR analyses, the expression of Insig-1 was changed in the liver of neonatal mice exposed to metformin prenatally. Furthermore, metformin up-regulated the expression of Insig-1 later in development. Gene set enrichment analysis based on preliminary microarray data identified several differentially enriched pathways both in control and metformin exposed mice. CONCLUSIONS: The present study shows that prenatal metformin exposure causes long-term programming effects on the metabolic phenotype during high fat diet in mice. This should be taken into consideration when using metformin as a

  18. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice.

    Directory of Open Access Journals (Sweden)

    Cara J Westmark

    Full Text Available Fragile X syndrome (FXS is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP, which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP mRNA. Cleavage of AβPP can produce β-amyloid (Aβ, a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD and Down syndrome (DS. Aβ is over-expressed in the brain of Fmr1(KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS, anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR-mediated long-term depression (LTD in Fmr1(KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.

  19. Isolation and characterization of string-forming female germline stem cells from ovaries of neonatal mice.

    Science.gov (United States)

    Liu, Jing; Shang, Dantong; Xiao, Yao; Zhong, Pei; Cheng, Hanhua; Zhou, Rongjia

    2017-09-29

    Germline stem cells are essential in the generation of both male and female gametes. In mammals, the male testis produces sperm throughout the entire lifetime, facilitated by testicular germline stem cells. Oocyte renewal ceases in postnatal or adult life in mammalian females, suggesting that germline stem cells are absent from the mammalian ovary. However, studies in mice, rats, and humans have recently provided evidence for ovarian female germline stem cells (FGSCs). A better understanding of the role of FGSCs in ovaries could help improve fertility treatments. Here, we developed a rapid and efficient method for isolating FGSCs from ovaries of neonatal mice. Notably, our FGSC isolation method could efficiently isolate on average 15 cell "strings" per ovary from mice at 1-3 days postpartum. FGSCs isolated from neonatal mice displayed the string-forming cell configuration at mitosis ( i.e. a "stringing" FGSC (sFGSC) phenotype) and a disperse phenotype in postnatal mice. We also found that sFGSCs undergo vigorous mitosis especially at 1-3 days postpartum. After cell division, the sFGSC membranes tended to be connected to form sFGSCs. Moreover, F-actin filaments exhibited a cell-cortex distribution in sFGSCs, and E-cadherin converged in cell-cell connection regions, resulting in the string-forming morphology. Our new method provides a platform for isolating FGSCs from the neonatal ovary, and our findings indicate that FGCSs exhibit string-forming features in neonatal mice. The sFGSCs represent a valuable resource for analysis of ovary function and an in vitro model for future clinical use to address ovarian dysfunction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. STRATEGI PENINGKATAN PENDAPATAN ASLI DAERAH, INVESTASI DAN PERTUMBUHAN EKONOMI KOTA SEMARANG MELALUI MICE (MEETING, INCENTIVE, CONVENTION DAN EXHIBITION)

    OpenAIRE

    Tika Putri Pratiwi

    2015-01-01

    Abstrak ___________________________________________________________________ Semarang sebagai ibukota Provinsi Jawa Tengah memiliki potensi yang besar dalam mengembangkan sektor industri dan pariwisata. Langkah awal pemerintah yang serius dalam mengolah kedua industri ini yaitu dengan menjadikan Kota Semarang sebagai salah satu destinasi MICE (Meeting, Incentive, Convention, Exhibition). Penelitian ini bertujuan untuk memilih strategi apa yang dapat dilakukan dalam pembangunan Kota...

  1. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice.

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D; Kelley, David E; Myers, Robert W; Li, Cai; Guan, Hong-Ping

    2016-11-04

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2 NI ) and R531G (AMPKγ2 RG ), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2 NI or AMPKγ2 RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2 NI or AMPKγ2 RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2 NI and AMPKγ2 RG , respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2 NI or AMPKγ2 RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2 WT mice, AMPKγ2 NI and AMPKγ2 RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2 RG but not AMPKγ2 NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2 NI and AMPKγ2 RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2 RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Physiological Expression of AMPKγ2RG Mutation Causes Wolff-Parkinson-White Syndrome and Induces Kidney Injury in Mice*

    Science.gov (United States)

    Yang, Xiaodong; Mudgett, John; Bou-About, Ghina; Champy, Marie-France; Jacobs, Hugues; Monassier, Laurent; Pavlovic, Guillaume; Sorg, Tania; Herault, Yann; Petit-Demoulière, Benoit; Lu, Ku; Feng, Wen; Wang, Hongwu; Ma, Li-Jun; Askew, Roger; Erion, Mark D.; Kelley, David E.; Myers, Robert W.; Li, Cai

    2016-01-01

    Mutations of the AMP-activated kinase gamma 2 subunit (AMPKγ2), N488I (AMPKγ2NI) and R531G (AMPKγ2RG), are associated with Wolff-Parkinson-White (WPW) syndrome, a cardiac disorder characterized by ventricular pre-excitation in humans. Cardiac-specific transgenic overexpression of human AMPKγ2NI or AMPKγ2RG leads to constitutive AMPK activation and the WPW phenotype in mice. However, overexpression of these mutant proteins also caused profound, non-physiological increase in cardiac glycogen, which might abnormally alter the true phenotype. To investigate whether physiological levels of AMPKγ2NI or AMPKγ2RG mutation cause WPW syndrome and metabolic changes in other organs, we generated two knock-in mouse lines on the C57BL/6N background harboring mutations of human AMPKγ2NI and AMPKγ2RG, respectively. Similar to the reported phenotypes of mice overexpressing AMPKγ2NI or AMPKγ2RG in the heart, both lines developed WPW syndrome and cardiac hypertrophy; however, these effects were independent of cardiac glycogen accumulation. Compared with AMPKγ2WT mice, AMPKγ2NI and AMPKγ2RG mice exhibited reduced body weight, fat mass, and liver steatosis when fed with a high fat diet (HFD). Surprisingly, AMPKγ2RG but not AMPKγ2NI mice fed with an HFD exhibited severe kidney injury characterized by glycogen accumulation, inflammation, apoptosis, cyst formation, and impaired renal function. These results demonstrate that expression of AMPKγ2NI and AMPKγ2RG mutations at physiological levels can induce beneficial metabolic effects but that this is accompanied by WPW syndrome. Our data also reveal an unexpected effect of AMPKγ2RG in the kidney, linking lifelong constitutive activation of AMPK to a potential risk for kidney dysfunction in the context of an HFD. PMID:27621313

  3. Alzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Maria José Menal

    2018-01-01

    Full Text Available BackgroundEvidence from patients and animal models suggests that obstructive sleep apnea (OSA may increase the risk of Alzheimer’s disease (AD and that AD is associated with reduced brain tissue stiffness.AimTo investigate whether intermittent hypoxia (IH alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA.MethodsSix-eight month old (B6C3-Tg(APPswe,PSEN1dE985Dbo/J AD mutant mice and wild-type (WT littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day or normoxia for 8 weeks. After euthanasia, the stiffness (E of 200-μm brain cortex slices was measured by atomic force microscopy.ResultsTwo-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT, but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice.ConclusionAD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

  4. Decreased triiodothyronine receptor binding in skeletal muscle nuclei and erythrocyte membranes of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Gilvary, E.P.

    1988-01-01

    Hindlimb skeletal muscle weights and binding of L-tri-iodothyronine (T 3 ) to isolated nuclei of this tissue were investigated in obese (ob/ob) mice and their lean littermates. Maximal binding capacities (Bmax) and dissociation constants (Kd) were determined by incubating isolated muscle nuclei with increasing conc. of 125 I-T 3 (0.4 nM to 4nM). At 12 wks. of age, although weighing substantially more, obese mice had only 55% as much muscle mass as their lean littermates. There was no phenotype effect observed for Kd, however, Bmax was significantly less for the obese mice. In a second experiment, a 16-wk. feeding study was conducted with 4 groups of mice according to the following design: lean mice fed rodent chow; obese mice fed rodent chow; obese mice, n-6 fatty acid (FA)-rich diet; and obese mice, n-3FA-rich diet. Erythrocyte T 3 receptor binding capacities were measured by incubating red cell ghosts from mice of these 4 groups with 125 I-T 3 . As with skeletal muscle nuclei there were no phenotype effects observed for Kd between any two groups. In contrasts obese mice fed chow and n-6FA-rich diets both exhibited lower Bmax than their lean counterparts, while no significant difference was observed between the latter group and the obese mice fed an n-3FA-rich diet. Bmax values of the n-6 group were also decreased compared to the n-3 group

  5. Tight Skin 2 Mice Exhibit Delayed Wound Healing Caused by Increased Elastic Fibers in Fibrotic Skin.

    Science.gov (United States)

    Long, Kristen B; Burgwin, Chelsea M; Huneke, Richard; Artlett, Carol M; Blankenhorn, Elizabeth P

    2014-09-01

    Rationale: The Tight Skin 2 (Tsk2) mouse model of systemic sclerosis (SSc) has many features of human disease, including tight skin, excessive collagen deposition, alterations in the extracellular matrix (ECM), increased elastic fibers, and occurrence of antinuclear antibodies with age. A tight skin phenotype is observed by 2 weeks of age, but measurable skin fibrosis is only apparent at 10 weeks. We completed a series of wound healing experiments to determine how fibrosis affects wound healing in Tsk2/+ mice compared with their wild-type (WT) littermates. Method: We performed these experiments by introducing four 4 mm biopsy punched wounds on the back of each mouse, ventral of the midline, and observed wound healing over 10 days. Tsk2/+ mice showed significantly delayed wound healing and increased wound size compared with the WT littermates at both 5 and 10 weeks of age. We explored the potential sources of this response by wounding Tsk2/+ mice that were genetically deficient either for the NLRP3 inflammasome (a known fibrosis mediator), or for elastic fibers in the skin, using a fibulin-5 knockout. Conclusion: We found that the loss of elastic fibers restores normal wound healing in the Tsk2/+ mouse and that the loss of the NLRP3 inflammasome had no effect. We conclude that elastic fiber dysregulation is the primary cause of delayed wound healing in the Tsk2/+ mouse and therapies that promote collagen deposition in the tissue matrix in the absence of elastin deposition might be beneficial in promoting wound healing in SSc and other diseases.

  6. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Directory of Open Access Journals (Sweden)

    Gregory R Rompala

    Full Text Available Pharmacological and genetic studies support a role for NMDA receptor (NMDAR hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1 deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice, in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior. Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  7. Contribution of NMDA receptor hypofunction in prefrontal and cortical excitatory neurons to schizophrenia-like phenotypes.

    Science.gov (United States)

    Rompala, Gregory R; Zsiros, Veronika; Zhang, Shuqin; Kolata, Stefan M; Nakazawa, Kazu

    2013-01-01

    Pharmacological and genetic studies support a role for NMDA receptor (NMDAR) hypofunction in the etiology of schizophrenia. We have previously demonstrated that NMDAR obligatory subunit 1 (GluN1) deletion in corticolimbic interneurons during early postnatal development is sufficient to confer schizophrenia-like phenotypes in mice. However, the consequence of NMDAR hypofunction in cortical excitatory neurons is not well delineated. Here, we characterize a conditional knockout mouse strain (CtxGluN1 KO mice), in which postnatal GluN1 deletion is largely confined to the excitatory neurons in layer II/III of the medial prefrontal cortex and sensory cortices, as evidenced by the lack of GluN1 mRNA expression in in situ hybridization immunocytochemistry as well as the lack of NMDA currents with in vitro recordings. Mutants were impaired in prepulse inhibition of the auditory startle reflex as well as object-based short-term memory. However, they did not exhibit impairments in additional hallmarks of schizophrenia-like phenotypes (e.g. spatial working memory, social behavior, saccharine preference, novelty and amphetamine-induced hyperlocomotion, and anxiety-related behavior). Furthermore, upon administration of the NMDA receptor antagonist, MK-801, there were no differences in locomotor activity versus controls. The mutant mice also showed negligible levels of reactive oxygen species production following chronic social isolation, and recording of miniature-EPSC/IPSCs from layer II/III excitatory neurons in medial prefrontal cortex suggested no alteration in GABAergic activity. All together, the mutant mice displayed cognitive deficits in the absence of additional behavioral or cellular phenotypes reflecting schizophrenia pathophysiology. Thus, NMDAR hypofunction in prefrontal and cortical excitatory neurons may recapitulate only a cognitive aspect of human schizophrenia symptoms.

  8. Loss of RhoB expression enhances the myelodysplastic phenotype of mammalian diaphanous-related Formin mDia1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aaron D DeWard

    Full Text Available Myelodysplastic syndrome (MDS is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia-related formin mDia1, encoded by DIAPH1 (5q31.3. mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1(-/-RhoB(-/- mice are fertile and develop normally. Relative to age-matched Drf1(-/-RhoB(+/- mice, the age of myelodysplasia onset was earlier in Drf1(-/-RhoB(-/- animals--including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1(-/-RhoB(-/- mice relative to Drf1(-/-RhoB(+/- mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.

  9. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis.

    Science.gov (United States)

    Tarantini, Stefano; Giles, Cory B; Wren, Jonathan D; Ashpole, Nicole M; Valcarcel-Ares, M Noa; Wei, Jeanne Y; Sonntag, William E; Ungvari, Zoltan; Csiszar, Anna

    2016-08-01

    Epidemiological findings support the concept of Developmental Origins of Health and Disease, suggesting that early-life hormonal influences during a sensitive period of development have a fundamental impact on vascular health later in life. The endocrine changes that occur during development are highly conserved across mammalian species and include dramatic increases in circulating IGF-1 levels during adolescence. The present study was designed to characterize the effect of developmental IGF-1 deficiency on the vascular aging phenotype. To achieve that goal, early-onset endocrine IGF-1 deficiency was induced in mice by knockdown of IGF-1 in the liver using Cre-lox technology (Igf1 f/f mice crossed with mice expressing albumin-driven Cre recombinase). This model exhibits low-circulating IGF-1 levels during the peripubertal phase of development, which is critical for the biology of aging. Due to the emergence of miRNAs as important regulators of the vascular aging phenotype, the effect of early-life IGF-1 deficiency on miRNA expression profile in the aorta was examined in animals at 27 months of age. We found that developmental IGF-1 deficiency elicits persisting late-life changes in miRNA expression in the vasculature, which significantly differed from those in mice with adult-onset IGF-1 deficiency (TBG-Cre-AAV8-mediated knockdown of IGF-1 at 5 month of age in Igf1 f/f mice). Using a novel computational approach, we identified miRNA target genes that are co-expressed with IGF-1 and associate with aging and vascular pathophysiology. We found that among the predicted targets, the expression of multiple extracellular matrix-related genes, including collagen-encoding genes, were downregulated in mice with developmental IGF-1 deficiency. Collectively, IGF-1 deficiency during a critical period during early in life results in persistent changes in post-transcriptional miRNA-mediated control of genes critical targets for vascular health, which likely contribute to the

  10. Environmental spread of microbes impacts the development of metabolic phenotypes in mice transplanted with microbial communities from humans

    DEFF Research Database (Denmark)

    Zhang, Li; Bahl, Martin Iain; Roager, Henrik Munch

    2017-01-01

    Microbiota transplantation to germ-free animals is a powerful method to study involvement of gut microbes in the aetiology of metabolic syndrome. Owing to large interpersonal variability in gut microbiota, studies with broad coverage of donors are needed to elucidate the establishment of human......, thereby allowing us to explore the extent of microbial spread between cages in a well-controlled environment. Despite high group-wise similarity between obese and control human microbiotas, transplanted mice in the four isolators developed distinct gut bacterial composition and activity, body mass gain......, and insulin resistance. Spread of microbes between cages within isolators interacted with establishment of the transplanted microbiotas in mice, and contributed to the transmission of metabolic phenotypes. Our findings highlight the impact of donor variability and reveal that inter-individual spread...

  11. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  12. Activated Braf induces esophageal dilation and gastric epithelial hyperplasia in mice.

    Science.gov (United States)

    Inoue, Shin-Ichi; Takahara, Shingo; Yoshikawa, Takeo; Niihori, Tetsuya; Yanai, Kazuhiko; Matsubara, Yoichi; Aoki, Yoko

    2017-12-01

    Germline mutations in BRAF are a major cause of cardio-facio-cutaneous (CFC) syndrome, which is characterized by heart defects, characteristic craniofacial dysmorphology and dermatologic abnormalities. Patients with CFC syndrome also commonly show gastrointestinal dysfunction, including feeding and swallowing difficulties and gastroesophageal reflux. We have previously found that knock-in mice expressing a Braf Q241R mutation exhibit CFC syndrome-related phenotypes, such as growth retardation, craniofacial dysmorphisms, congenital heart defects and learning deficits. However, it remains unclear whether BrafQ241R/+ mice exhibit gastrointestinal dysfunction. Here, we report that BrafQ241R/+ mice have neonatal feeding difficulties and esophageal dilation. The esophagus tissues from BrafQ241R/+ mice displayed incomplete replacement of smooth muscle with skeletal muscle and decreased contraction. Furthermore, the BrafQ241R/+ mice showed hyperkeratosis and a thickened muscle layer in the forestomach. Treatment with MEK inhibitors ameliorated the growth retardation, esophageal dilation, hyperkeratosis and thickened muscle layer in the forestomach in BrafQ241R/+ mice. The esophageal dilation with aberrant skeletal-smooth muscle boundary in BrafQ241R/+ mice were recovered after treatment with the histone H3K27 demethylase inhibitor GSK-J4. Our results provide clues to elucidate the pathogenesis and possible treatment of gastrointestinal dysfunction and failure to thrive in patients with CFC syndrome. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    Science.gov (United States)

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human

  14. Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice.

    Science.gov (United States)

    Jürgens, Hella S; Schürmann, Annette; Kluge, Reinhart; Ortmann, Sylvia; Klaus, Susanne; Joost, Hans-Georg; Tschöp, Matthias H

    2006-04-13

    Among polygenic mouse models of obesity, the New Zealand obese (NZO) mouse exhibits the most severe phenotype, with fat depots exceeding 40% of total body weight at the age of 6 mo. Here we dissected the components of energy balance including feeding behavior, locomotor activity, energy expenditure, and thermogenesis compared with the related lean New Zealand black (NZB) and obese B6.V-Lep(ob)/J (ob/ob) strains (11% and 65% fat at 23 wk, respectively). NZO mice exhibited a significant hyperphagia that, when food intake was expressed per metabolic body mass, was less pronounced than that of the ob/ob strain. Compared with NZB, NZO mice exhibited increased meal frequency, meal duration, and meal size. Body temperature as determined by telemetry with implanted sensors was reduced in NZO mice, but again to a lesser extent than in the ob/ob strain. In striking contrast to ob/ob mice, NZO mice were able to maintain a constant body temperature during a 20-h cold exposure, thus exhibiting a functioning cold-induced thermogenesis. No significant differences in spontaneous home cage activity were observed among NZO, NZB, and ob/ob strains. When mice had access to voluntary running wheels, however, running activity was significantly lower in NZO than NZB mice and even lower in ob/ob mice. These data indicate that obesity in NZO mice, just as in humans, is due to a combination of hyperphagia, reduced energy expenditure, and insufficient physical activity. Because NZO mice differ strikingly from the ob/ob strain in their resistance to cold stress, we suggest that the molecular defects causing hyperphagia in NZO mice are located distal from leptin and its receptor.

  15. Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2−/y Mice

    KAUST Repository

    Murru, Luca

    2017-08-02

    Intellectual disability affects 2–3% of the world’s population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1–GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1–GluA2 binding restored synaptic function in Tm4sf2−/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2−/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.

  16. Attachment, invasion, chemotaxis, and proteinase expression of B16-BL6 melanoma cells exhibiting a low metastatic phenotype after exposure to dietary restriction of tyrosine and phenylalanine.

    Science.gov (United States)

    Uhlenkott, C E; Huijzer, J C; Cardeiro, D J; Elstad, C A; Meadows, G G

    1996-03-01

    We previously reported that low levels of tyrosine (Tyr) and phenylalanine (Phe) alter the metastatic phenotype of B16-BL6 (BL6) murine melanoma and select for tumor cell populations with decreased lung colonizing ability. To more specifically characterize the effects of Tyr and Phe restriction on the malignant phenotype of BL6, we investigated in vitro attachment, invasion, proteinase expression, and chemotaxis of high and low metastatic BL6 variants. High metastatic variant cells were isolated from subcutaneous tumors of mice fed a nutritionally complete diet (ND cells) and low metastatic variant cells were isolated from mice fed a diet restricted in Tyr and Phe (LTP cells). Results indicate that attachment to reconstituted basement membrane (Matrigel) was significantly reduced in LTP cells as compared to ND cells. Attachment to collagen IV, laminin, and fibronectin were similar between the two variants. Invasion through Matrigel and growth factor-reduced Matrigel were significantly decreased in LTP cells as compared to ND cells. Zymography revealed the presence of M(r) 92,000 and M(r) 72,000 progelatinases, tissue plasminogen activator, and urokinase plasminogen activator in the conditioned medium of both variants; however, there were no differences in activity of these secreted proteinases between the two variants. Growth of the variants on growth factor-reduced Matrigel similarly induced expression of the M(r) 92,000 progelatinase. The variants exhibited similar chemotactic responses toward laminin. However, the chemotactic response toward fibronectin by LTP cells was significantly increased. MFR5, a monoclonal antibody which selectively blocks function of the alpha 5 chain of the alpha 5 beta 1 integrin, VLA-5, decreased the chemotactic response toward fibronectin of ND cells by 37%; the chemotactic response by LTP cells was reduced by 49%. This effect was specific for fibronectin-mediated chemotaxis since the chemotaxis toward laminin and invasion through

  17. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  18. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    Science.gov (United States)

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  19. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.

    Science.gov (United States)

    Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore

    2009-08-01

    We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.

  20. Growth hormone secretagogue receptor (GHS-R1a) knockout mice exhibit improved spatial memory and deficits in contextual memory.

    Science.gov (United States)

    Albarran-Zeckler, Rosie G; Brantley, Alicia Faruzzi; Smith, Roy G

    2012-06-15

    Although the hormone ghrelin is best known for its stimulatory effect on appetite and regulation of growth hormone release, it is also reported to have beneficial effects on learning and memory formation in mice. Nevertheless, controversy exists about whether endogenous ghrelin acts on its receptors in extra-hypothalamic areas of the brain. The ghrelin receptor (GHS-R1a) is co-expressed in neurons that express dopamine receptor type-1 (DRD1a) and type-2 (DRD2), and we have shown that a subset of GHS-R1a, which are not occupied by the agonist (apo-GHSR1a), heterodimerize with these two receptors to regulate dopamine signaling in vitro and in vivo. To determine the consequences of ghsr ablation on brain function, congenic ghsr -/- mice on the C57BL6/J background were subjected to a battery of behavioral tests. We show that the ghsr -/- mice exhibit normal balance, movement, coordination, and pain sensation, outperform ghsr +/+ mice in the Morris water maze, but show deficits in contextual fear conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Replicable in vivo physiological and behavioral phenotypes of the Shank3B null mutant mouse model of autism.

    Science.gov (United States)

    Dhamne, Sameer C; Silverman, Jill L; Super, Chloe E; Lammers, Stephen H T; Hameed, Mustafa Q; Modi, Meera E; Copping, Nycole A; Pride, Michael C; Smith, Daniel G; Rotenberg, Alexander; Crawley, Jacqueline N; Sahin, Mustafa

    2017-01-01

    behavioral domain, including social, repetitive, cognitive, anxiety-related, sensory, and motor categories of assays. Relative to WT mice, Shank3B KO mice displayed a dramatic resistance to PTZ seizure induction and an enhancement of gamma band oscillatory EEG activity indicative of enhanced inhibitory tone. These findings replicated in two separate cohorts. Behaviorally, Shank3B KO mice exhibited repetitive grooming, deficits in aspects of reciprocal social interactions and vocalizations, and reduced open field activity, as well as variable deficits in sensory responses, anxiety-related behaviors, learning and memory. Robust animal models and quantitative, replicable biomarkers of neural dysfunction are needed to decrease risk and enable successful drug discovery and development for ASD and other neurodevelopmental disorders. Complementary to the replicated behavioral phenotypes of the Shank3B mutant mouse is the new identification of a robust, translational in vivo neurophysiological phenotype. Our findings provide strong evidence for robustness and replicability of key translational phenotypes in Shank3B mutant mice and support the usefulness of this mouse model of ASD for therapeutic discovery.

  2. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  3. Whole exome sequencing of wild-derived inbred strains of mice improves power to link phenotype and genotype.

    Science.gov (United States)

    Chang, Peter L; Kopania, Emily; Keeble, Sara; Sarver, Brice A J; Larson, Erica; Orth, Annie; Belkhir, Khalid; Boursot, Pierre; Bonhomme, François; Good, Jeffrey M; Dean, Matthew D

    2017-10-01

    The house mouse is a powerful model to dissect the genetic basis of phenotypic variation, and serves as a model to study human diseases. Despite a wealth of discoveries, most classical laboratory strains have captured only a small fraction of genetic variation known to segregate in their wild progenitors, and existing strains are often related to each other in complex ways. Inbred strains of mice independently derived from natural populations have the potential to increase power in genetic studies with the addition of novel genetic variation. Here, we perform exome-enrichment and high-throughput sequencing (~8× coverage) of 26 wild-derived strains known in the mouse research community as the "Montpellier strains." We identified 1.46 million SNPs in our dataset, approximately 19% of which have not been detected from other inbred strains. This novel genetic variation is expected to contribute to phenotypic variation, as they include 18,496 nonsynonymous variants and 262 early stop codons. Simulations demonstrate that the higher density of genetic variation in the Montpellier strains provides increased power for quantitative genetic studies. Inasmuch as the power to connect genotype to phenotype depends on genetic variation, it is important to incorporate these additional genetic strains into future research programs.

  4. Delivery of Adipose-Derived Stem Cells Attenuates Adipose Tissue Inflammation and Insulin Resistance in Obese Mice Through Remodeling Macrophage Phenotypes.

    Science.gov (United States)

    Shang, Qianwen; Bai, Yang; Wang, Guannan; Song, Qiang; Guo, Chun; Zhang, Lining; Wang, Qun

    2015-09-01

    Adipose-derived stem cells (ADSCs) have been used to control several autoimmune or inflammatory diseases due to immunosuppressive properties, but their role in obesity-associated inflammation remains unestablished. This study aims to evaluate the effects of ADSCs on obesity-induced white adipose tissue (WAT) inflammation and insulin resistance. We found that diet-induced obesity caused a remarkable reduction of ADSC fraction in mouse WAT. Delivery of lean mouse-derived ADSCs, which could successfully locate into WAT of obese mice, substantially improved insulin action and metabolic homeostasis of obese mice. ADSC treatment not only reduced adipocyte hypertrophy but also attenuated WAT inflammation by reducing crown-like structures of macrophages and tumor necrosis factor (TNF)-α secretion. Importantly, ADSC treatment remodeled the phenotypes of adipose-resident macrophages from proinflammatory M1 toward anti-inflammatory M2-like subtypes, as characterized by decreased MHC class II-expressing but increased interleukin (IL)-10-producing macrophages together with low expression of TNF-α and IL-12. Coculture of ADSCs through the transwell or conditional medium with induced M1 macrophages also reproduced the phenotypic switch toward M2-like macrophages, which was substantiated by elevated arginase 1, declined inducible nitric oxide synthase, inhibition of NF-κB activity, and activation of STAT3/STAT6. Taken together, our data support that ADSC supplement in obese mice could sustain IL-10-producing M2-like macrophages in WAT through paracrine action, thereby suggesting the crucial role of ADSCs in resolving WAT inflammation, maintaining adipose homeostasis, and proposing a potential ADSC-based approach for the treatment of obesity-related diseases.

  5. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.

    Directory of Open Access Journals (Sweden)

    Yong Jun Choi

    Full Text Available Ku70 and Ku80 form a heterodimer called Ku that forms a holoenzyme with DNA dependent-protein kinase catalytic subunit (DNA-PKCS to repair DNA double strand breaks (DSBs through the nonhomologous end joining (NHEJ pathway. As expected mutating these genes in mice caused a similar DSB repair-defective phenotype. However, ku70(-/- cells and ku80(-/- cells also appeared to have a defect in base excision repair (BER. BER corrects base lesions, apurinic/apyrimidinic (AP sites and single stand breaks (SSBs utilizing a variety of proteins including glycosylases, AP endonuclease 1 (APE1 and DNA Polymerase β (Pol β. In addition, deleting Ku70 was not equivalent to deleting Ku80 in cells and mice. Therefore, we hypothesized that free Ku70 (not bound to Ku80 and/or free Ku80 (not bound to Ku70 possessed activity that influenced BER. To further test this hypothesis we performed two general sets of experiments. The first set showed that deleting either Ku70 or Ku80 caused an NHEJ-independent defect. We found ku80(-/- mice had a shorter life span than dna-pkcs(-/- mice demonstrating a phenotype that was greater than deleting the holoenzyme. We also found Ku70-deletion induced a p53 response that reduced the level of small mutations in the brain suggesting defective BER. We further confirmed that Ku80-deletion impaired BER via a mechanism that was not epistatic to Pol β. The second set of experiments showed that free Ku70 and free Ku80 could influence BER. We observed that deletion of either Ku70 or Ku80, but not both, increased sensitivity of cells to CRT0044876 (CRT, an agent that interferes with APE1. In addition, free Ku70 and free Ku80 bound to AP sites and in the case of Ku70 inhibited APE1 activity. These observations support a novel role for free Ku70 and free Ku80 in altering BER.

  6. Pam heterozygous mice reveal essential role for Cu in amygdalar behavioral and synaptic function.

    Science.gov (United States)

    Gaier, Eric D; Eipper, Betty A; Mains, Richard E

    2014-05-01

    Copper (Cu) is an essential element with many biological roles, but its roles in the mammalian nervous system are poorly understood. Mice deficient in the cuproenzyme peptidylglycine α-amidating monooxygenase (Pam(+/-) mice) were initially generated to study neuropeptide amidation. Pam(+/-) mice exhibit profound deficits in a few behavioral tasks, including enhancements in innate fear along with deficits in acquired fear. Interestingly, several Pam(+/-) phenotypes were recapitulated in Cu-restricted wild-type mice and rescued in Cu-supplemented Pam(+/-) mice. These behaviors correspond to enhanced excitability and deficient synaptic plasticity in the amygdala of Pam(+/-) mice, which are also rescued by Cu supplementation. Cu and ATP7A are present at synapses, in key positions to respond to and influence synaptic activity. Further study demonstrated that extracellular Cu is necessary for wild-type synaptic plasticity and sufficient to induce long-term potentiation. These experiments support roles for PAM in Cu homeostasis and for synaptic Cu in amygdalar function. © 2014 New York Academy of Sciences.

  7. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice.

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-02-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia.

  8. Phenotypic Variation Is Almost Entirely Independent of the Host-Pathogen Relationship in Clinical Isolates of S. aureus.

    Directory of Open Access Journals (Sweden)

    Adrian D Land

    Full Text Available A key feature of Staphylococcus aureus biology is its ability to switch from an apparently benign colonizer of ~30% of the population to a cutaneous pathogen, to a deadly invasive pathogen. Little is known about the mechanisms driving this transition or the propensity of different S. aureus strains to engender different types of host-pathogen interactions. At the same time, significant weight has been given to the role of specific in vitro phenotypes in S. aureus virulence. Biofilm formation, hemolysis and pigment formation have all been associated with virulence in mice.To determine if there is a correlation between in vitro phenotype and the three types of host-pathogen relationships commonly exhibited by S. aureus in the context of its natural human host, we assayed 300 clinical isolates for phenotypes implicated in virulence including hemolysis, sensitivity to autolysis, and biofilm formation. For comparative purposes, we also assayed phenotype in 9 domesticated S. aureus strains routinely used for analysis of virulence determinants in laboratory settings.Strikingly, the clinical strains exhibited significant phenotypic uniformity in each of the assays evaluated in this study. One exception was a small, but significant, correlation between an increased propensity for biofilm formation and isolation from skin and soft tissue infections (SSTIs. In contrast, we observed a high degree of phenotypic variation between common laboratory strains that exhibit virulence in mouse models. These data suggest the existence of significant evolutionary pressure on the S. aureus genome and highlight a role for host factors as a strong determinant of the host-pathogen relationship. In addition, the high degree of variation between laboratory strains emphasizes the need for caution when applying data obtained in one lab strain to the analysis of another.

  9. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mice with a targeted disruption of the Fanconi anemia homolog Fanca.

    Science.gov (United States)

    Cheng, N C; van de Vrugt, H J; van der Valk, M A; Oostra, A B; Krimpenfort, P; de Vries, Y; Joenje, H; Berns, A; Arwert, F

    2000-07-22

    Fanconi anemia (FA) is a hereditary chromosomal instability syndrome with cancer predisposition. Bone marrow failure resulting in pancytopenia is the main cause of death of FA patients. Diagnosis of FA is based on their cellular hypersensitivity to DNA crosslinking agents and chromosome breakages. Somatic complementation experiments suggest the involvement of at least eight genes in FA. The gene for complementation group A (FANCA) is defective in the majority of FA patients. We show here that mice deficient of FANCA: are viable and have no detectable developmental abnormalities. The hematological parameters showed a slightly decreased platelet count and a slightly increased erythrocyte mean cell volume in mice at young age, but this did not progress to anemia. Consistent with the clinical phenotype of FA patients, both male and female mice showed hypogonadism and impaired fertility. Furthermore, embryonic fibroblasts of the knock-out mice exhibited spontaneous chromosomal instability and were hyper-responsive to the clastogenic effect of the crosslinker mitomycin C.

  11. Phenotypic characterization of a novel virulence-factor deletion strain of Burkholderia mallei that provides partial protection against inhalational glanders in mice

    Directory of Open Access Journals (Sweden)

    Joel A. Bozue

    2016-02-01

    Full Text Available Burkholderia mallei (Bm is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN, and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.

  12. Early initiation of low-level parenteral dextrose induces an accelerated diabetic phenotype in septic C57BL/6J mice.

    Science.gov (United States)

    Singamsetty, Srikanth; Shah, Faraaz Ali; Guo, Lanping; Watanabe, Yoshio; McDonald, Sherie; Sharma, Rohit; Zhang, Yingze; Alonso, Laura C; O'Donnell, Christopher P; McVerry, Bryan J

    2016-01-01

    Development of hyperglycemia during sepsis is associated with increased morbidity and mortality. Nutritional support is common practice in the intensive care unit, but the metabolic effects are not well understood. The purpose of this study is to determine the effect of early low-level calorie provision on the development of hyperglycemia in a clinically relevant murine model of sepsis. C57BL/6J mice underwent femoral arterial and venous catheterization followed by cecal ligation and puncture (CLP) or sham surgery and low-dose intravenous dextrose or saline infusion. Blood glucose, plasma insulin, and cytokines were measured after 24 h. Additional septic mice underwent hyperinsulinemic-euglycemic clamps or received intravenous insulin concurrent with dextrose to determine whole-body insulin sensitivity and test the efficacy of insulin to reverse hyperglycemia. Neither dextrose infusion nor CLP alone induced hyperglycemia. Early initiation of low-level dextrose in septic mice produced a variable glycemic response: 49% maintained euglycemia (blood glucose dextrose (∼ 20% daily caloric requirements) precipitated hyperglycemia akin to an acute diabetic phenotype in septic mice characterized by decreased insulin sensitivity, decreased insulin secretion, and an increased inflammatory response.

  13. Partial correction of the dwarf phenotype by non-viral transfer of the growth hormone gene in mice: Treatment age is critical.

    Science.gov (United States)

    Higuti, Eliza; Cecchi, Cláudia R; Oliveira, Nélio A J; Lima, Eliana R; Vieira, Daniel P; Aagaard, Lars; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N

    2016-02-01

    Non-viral transfer of the growth hormone gene to different muscles of immunodeficient dwarf (lit/scid) mice is under study with the objective of improving phenotypic correction via this particular gene therapy approach. Plasmid DNA was administered into the exposed quadriceps or non-exposed tibialis cranialis muscle of lit/scid mice followed by electroporation, monitoring several growth parameters. In a 6-month bioassay, 50μg DNA were injected three times into the quadriceps muscle of 80-day old mice. A 50% weight increase, with a catch-up growth of 21%, together with a 16% increase for nose-to-tail and tail lengths (catch-up=19-21%) and a 24-28% increase for femur length (catch-up=53-60%), were obtained. mIGF1 serum levels were ~7-fold higher than the basal levels for untreated mice, but still ~2-fold lower than in non-dwarf scid mice. Since treatment age was found to be particularly important in a second bioassay utilizing 40-day old mice, these pubertal mice were compared in a third bioassay with adult (80-day old) mice, all treated twice with 50μg DNA injected into each tibialis cranialis muscle, via a less invasive approach. mIGF1 concentrations at the same level as co-aged scid mice were obtained 15days after administration in pubertal mice. Catch-up growth, based on femur length (77%), nose-to-tail (36%) and tail length (39%) increases was 40 to 95% higher than those obtained upon treating adult mice. These data pave the way for the development of more effective pre-clinical assays in pubertal dwarf mice for the treatment of GH deficiency via plasmid-DNA muscular administration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Pelaksanaan Manajemen Mice (Meeting Incentive Convention Exhibition) di Hotel Pangeran Pekanbaru

    OpenAIRE

    Achmnes, Syofia; Siregar, Damara Saputra

    2014-01-01

    Implementation of MICE management operationalize theoretical concepts inthe book P.Hasibuan Terry GR (2005) that state that the management process consistsof: planning, organizing, actuating, and controlling.Growing MICE industry in Indonesia, including the city of Pekanbaru. CityGoverment continues to initiate Pekanbaru city as MICE city in Sumatera. One of theleading institutions that have a major role in the realization of this idea is thePangeran hotel Pekanbaru. which is a four-star hote...

  15. Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation – Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins

    Science.gov (United States)

    Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish

    2018-01-01

    We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study

  16. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Science.gov (United States)

    Kopsida, Eleni; Lynn, Phoebe M; Humby, Trevor; Wilkinson, Lawrence S; Davies, William

    2013-01-01

    Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG) model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression) and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects) to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry) exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry); in two behavioural tests (the elevated plus and zero mazes) XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water) consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i) the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii) dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  17. Dissociable effects of Sry and sex chromosome complement on activity, feeding and anxiety-related behaviours in mice.

    Directory of Open Access Journals (Sweden)

    Eleni Kopsida

    Full Text Available Whilst gonadal hormones can substantially influence sexual differentiation of the brain, recent findings have suggested that sex-linked genes may also directly influence neurodevelopment. Here we used the well-established murine 'four core genotype' (FCG model on a gonadally-intact, outbred genetic background to characterise the contribution of Sry-dependent effects (i.e. those arising from the expression of the Y-linked Sry gene in the brain, or from hormonal sequelae of gonadal Sry expression and direct effects of sex-linked genes other than Sry ('sex chromosome complement' effects to sexually dimorphic mouse behavioural phenotypes. Over a 24 hour period, XX and XY gonadally female mice (lacking Sry exhibited greater horizontal locomotor activity and reduced food consumption per unit bodyweight than XX and XY gonadally male mice (possessing Sry; in two behavioural tests (the elevated plus and zero mazes XX and XY gonadally female mice showed evidence for increased anxiety-related behaviours relative to XX and XY gonadally male mice. Exploratory correlational analyses indicated that these Sry-dependent effects could not be simply explained by brain expression of the gene, nor by circulating testosterone levels. We also noted a sex chromosome complement effect on food (but not water consumption whereby XY mice consumed more over a 24hr period than XX mice, and a sex chromosome complement effect in a third test of anxiety-related behaviour, the light-dark box. The present data suggest that: i the male-specific factor Sry may influence activity and feeding behaviours in mice, and ii dissociable feeding and anxiety-related murine phenotypes may be differentially modulated by Sry and by other sex-linked genes. Our results may have relevance for understanding the molecular underpinnings of sexually dimorphic behavioural phenotypes in healthy men and women, and in individuals with abnormal sex chromosome constitutions.

  18. Bu-Shen-Ning-Xin Decoction ameliorated the osteoporotic phenotype of ovariectomized mice without affecting the serum estrogen concentration or uterus

    Directory of Open Access Journals (Sweden)

    Wang L

    2015-08-01

    Full Text Available Ling Wang,1,2,* Xue-Min Qiu,1,2,* Yu-Yan Gui,1,2 Ying-Ping Xu,1,2 Hans-Jürgen Gober,3 Da-Jin Li1 1Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, 2Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, People’s Republic of China; 3Department of Pharmacy, Wagner Jauregg Hospital and Children’s Hospital, Linz, Austria *These authors contributed equally to this work Introduction: Bu-Shen-Ning-Xin Decoction (BSNXD, a traditional Chinese medicinal composition, has been used as a remedy for postmenopausal osteoporosis, but its effects on bone metabolism and the uterus have not been reported.Purpose: We aimed to determine the respective effects of BSNXD on the bones and the uterus of ovariectomized (OVX mice to evaluate the efficacy and safety of this herbal formula.Materials and methods: Postmenopausal osteoporosis animal models that were generated by ovariectomy were treated with BSNXD. Dual-energy X-ray absorptiometry was performed to analyze the bone mineral density, and histomorphometric analysis was performed to measure the parameters related to bone metabolism. Calcein labeling was performed to detect bone formation. The uteruses from the mice were weighed, and the histomorphometry was analyzed. Drug-derived serum was prepared to assess the 17-β-estradiol concentration via enzyme immunoassay.Results: BSNXD administration ameliorated the osteoporotic phenotype of OVX mice, as evidenced by an increase in the bone mineral density and bone volume; these effects could not be abolished by the administration of the aromatase inhibitor letrozole. Moreover, BSNXD had no effect on the serum estrogen concentration or uterus.Conclusion: These results suggest that BSNXD has ameliorating effects on bone loss due to estrogen deprivation without affecting the peripheral blood estrogen concentration or the uterus in OVX mice. Keywords

  19. Loss of Hfe Leads to Progression of Tumor Phenotype in Primary Retinal Pigment Epithelial Cells

    Science.gov (United States)

    Gnana-Prakasam, Jaya P.; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Reddy, Sushma K.; Martin, Pamela M.; Thangaraju, Muthusamy; Smith, Sylvia B.; Ganapathy, Vadivel

    2013-01-01

    Purpose. Hemochromatosis is a disorder of iron overload arising mostly from mutations in HFE. HFE is expressed in retinal pigment epithelium (RPE), and Hfe−/− mice develop age-related iron accumulation and retinal degeneration associated with RPE hyperproliferation. Here, the mechanism underlying the hyperproliferative phenotype in RPE was investigated. Methods. Cellular senescence was monitored by β-galactosidase activity. Gene expression was monitored by real-time PCR. Survivin was analyzed by Western blot and immunofluorescence. Migration and invasion were monitored using appropriate kits. Glucose transporters (GLUTs) were monitored by 3-O-methyl-D-glucose uptake. Histone deacetylases (HDACs) were studied by monitoring catalytic activity and acetylation status of histones H3/H4. Results. Hfe−/− RPE cells exhibited slower senescence rate and higher survivin expression than wild type cells. Hfe−/− cells migrated faster and showed greater glucose uptake and increased expression of GLUTs. The expression of HDACs and DNA methyltransferase (DNMTs) also was increased. Similarly, RPE cells from hemojuvelin (Hjv)-knockout mice, another model of hemochromatosis, also had increased expression of GLUTs, HDACs, and DNMTs. The expression of Slc5a8 was decreased in Hfe−/− RPE cells, but treatment with a DNA methylation inhibitor restored the transporter expression, indicating involvement of DNA methylation in the silencing of Slc5a8 in Hfe−/− cells. Conclusions. RPE cells from iron-overloaded mice exhibit several features of tumor cells: decreased senescence, enhanced migration, increased glucose uptake, and elevated levels of HDACs and DNMTs. These features are seen in Hfe−/− RPE cells as well as in Hjv−/− RPE cells, providing a molecular basis for the hyperproliferative phenotype of Hfe−/− and Hjv−/− RPE cells. PMID:23169885

  20. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  1. Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia

    Directory of Open Access Journals (Sweden)

    Francesca Managò

    2016-08-01

    Full Text Available Human genetic studies have recently suggested that the postsynaptic activity-regulated cytoskeleton-associated protein (Arc complex is a convergence signal for several genes implicated in schizophrenia. However, the functional significance of Arc in schizophrenia-related neurobehavioral phenotypes and brain circuits is unclear. Here, we find that, consistent with schizophrenia-related phenotypes, disruption of Arc in mice produces deficits in sensorimotor gating, cognitive functions, social behaviors, and amphetamine-induced psychomotor responses. Furthermore, genetic disruption of Arc leads to concomitant hypoactive mesocortical and hyperactive mesostriatal dopamine pathways. Application of a D1 agonist to the prefrontal cortex or a D2 antagonist in the ventral striatum rescues Arc-dependent cognitive or psychomotor abnormalities, respectively. Our findings demonstrate a role for Arc in the regulation of dopaminergic neurotransmission and related behaviors. The results also provide initial biological support implicating Arc in dopaminergic and behavioral abnormalities related to schizophrenia.

  2. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Directory of Open Access Journals (Sweden)

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  4. Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways.

    Science.gov (United States)

    Livraghi-Butrico, Alessandra; Wilkinson, Kristen J; Volmer, Allison S; Gilmore, Rodney C; Rogers, Troy D; Caldwell, Ray A; Burns, Kimberlie A; Esther, Charles R; Mall, Marcus A; Boucher, Richard C; O'Neal, Wanda K; Grubb, Barbara R

    2018-02-01

    The epithelial Na + channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na + hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na + hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na + transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na + absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na + transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na + transport and disease severity, suggesting dose dependency of these two variables.

  5. Sterile mutant of Verbena hybrida induced by heavy ion beam irradiation and wild species V. peruviana exhibit self-incompatible phenotype

    International Nuclear Information System (INIS)

    Saito, H.; Hayashi, Y.; Abe, T.; Kanaya, T.; Suzuki, K.

    2005-01-01

    Full text: Garden verbenas (Verbena hybrida) belonging to the Verbenaceae family are originated from interspecific hybridization among several species, many cultivars frequently produce seeds. Recently, a sterile mutant has been isolated in the verbena cultivar 'Coral Pink' of Temari series (Suntory Flowers Ltd., Tokyo, Japan) by mutation induction using heavy-ion beams at RIKEN Accelarator Research Facility (RARF, Saitama, Japan). We investigated pollen and ovule fertility assessed by acetocarmin staining, seed-set following controlled-pollination tests and behavior of pollen tubes in pistils with the sterile mutant of 'Coral Pink' (SC) and its original fertile one (FC). As the results, although SC has functional male and female gametes, few self-pollinated flowers carry out seed-set, leading to sterile phenotype. Additionally, the sterile mechanism of SC was compared with the wild species V. peruviana (VP) which is one of origin of Temari series and exhibits sterility. Interestingly, similar phenotype was observed in PV. We further investigated, therefore, whether there are differences on self-incompatible reaction between SC and VP. (author)

  6. Sterile mutant of Verbena hybrida induced by heavy ion beam irradiation and wild species V. peruviana exhibit self-incompatible phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H; Hayashi, Y; Abe, T [RIKEN, Wako (Japan); Kanaya, T; Suzuki, K [Suntory Flowers Ltd., Higashiomi (Japan)

    2005-07-01

    Full text: Garden verbenas (Verbena hybrida) belonging to the Verbenaceae family are originated from interspecific hybridization among several species, many cultivars frequently produce seeds. Recently, a sterile mutant has been isolated in the verbena cultivar 'Coral Pink' of Temari series (Suntory Flowers Ltd., Tokyo, Japan) by mutation induction using heavy-ion beams at RIKEN Accelarator Research Facility (RARF, Saitama, Japan). We investigated pollen and ovule fertility assessed by acetocarmin staining, seed-set following controlled-pollination tests and behavior of pollen tubes in pistils with the sterile mutant of 'Coral Pink' (SC) and its original fertile one (FC). As the results, although SC has functional male and female gametes, few self-pollinated flowers carry out seed-set, leading to sterile phenotype. Additionally, the sterile mechanism of SC was compared with the wild species V. peruviana (VP) which is one of origin of Temari series and exhibits sterility. Interestingly, similar phenotype was observed in PV. We further investigated, therefore, whether there are differences on self-incompatible reaction between SC and VP. (author)

  7. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and ‘Schizophrenia-Like Behaviors' in Mice

    Science.gov (United States)

    Vitucci, Daniela; Di Giorgio, Annabella; Napolitano, Francesco; Pelosi, Barbara; Blasi, Giuseppe; Errico, Francesco; Attrotto, Maria Teresa; Gelao, Barbara; Fazio, Leonardo; Taurisano, Paolo; Di Maio, Anna; Marsili, Valentina; Pasqualetti, Massimo; Bertolino, Alessandro; Usiello, Alessandro

    2016-01-01

    Rasd2 is a thyroid hormone target gene, which encodes for a GTP-binding protein enriched in the striatum where, among other functions, it modulates dopaminergic neurotransmission. Here we report that human RASD2 mRNA is abundant in putamen, but it also occurs in the cerebral cortex, with a distinctive expression pattern that differs from that present in rodents. Consistent with its localization, we found that a genetic variation in RASD2 (rs6518956) affects postmortem prefrontal mRNA expression in healthy humans and is associated with phenotypes of relevance to schizophrenia, including prefrontal and striatal grey matter volume and physiology during working memory, as measured with magnetic resonance imaging. Interestingly, quantitative real-time PCR analysis indicated that RASD2 mRNA is slightly reduced in postmortem prefrontal cortex of patients with schizophrenia. In the attempt to uncover the neurobiological substrates associated with Rasd2 activity, we used knockout mice to analyze the in vivo influence of this G-protein on the prepulse inhibition of the startle response and psychotomimetic drug-related behavioral response. Data showed that Rasd2 mutants display deficits in basal prepulse inhibition that, in turn, exacerbate gating disruption under psychotomimetic drug challenge. Furthermore, we documented that lack of Rasd2 strikingly enhances the behavioral sensitivity to motor stimulation elicited by amphetamine and phencyclidine. Based on animal model data, along with the finding that RASD2 influences prefronto-striatal phenotypes in healthy humans, we suggest that genetic mutation or reduced levels of this G-protein might have a role in cerebral circuitry dysfunction underpinning exaggerated psychotomimetic drugs responses and development of specific biological phenotypes linked to schizophrenia. PMID:26228524

  8. Alternating hemiplegia of childhood-related neural and behavioural phenotypes in Na+,K+-ATPase α3 missense mutant mice.

    Directory of Open Access Journals (Sweden)

    Greer S Kirshenbaum

    Full Text Available Missense mutations in ATP1A3 encoding Na(+,K(+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC, a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na(+,K(+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N that affects the same position in Na(+,K(+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na(+,K(+-ATPase α3, including upon the K(+ pore and predicted K(+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality, directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na(+,K(+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC.

  9. The Internationalization of the Meetings - Incentives - Conventions - and Exhibitions - (MICE industry: Its Influences on the Actors in the Tourism Business Activity

    Directory of Open Access Journals (Sweden)

    Natalia Smagina

    2017-02-01

    Full Text Available This article is aimed to analyze the link between internationalization and Meetings-, Incentives-, Conventions- and Exhibitions (MICE industry which is refer to the destination development. A comprehensive review of the totality of the processes associated with the regional market of business tourism, allowed to develop a number of actual tools that make it possible to obtain important practical results. One of these tools is a so called public-private partnership (PPP, to strengthen the trust between government and business representatives on regional level. This article reveals the cooperation process between foreign private companies and the local government in organizing the development of the industry connected to MICE. This vision may help all parties connected to the MICE industry to achieve a new level of understanding of the business tourism destination as a result of internationalization processes.

  10. Arrhythmia phenotype in mouse models of human long QT.

    Science.gov (United States)

    Salama, Guy; Baker, Linda; Wolk, Robert; Barhanin, Jacques; London, Barry

    2009-03-01

    Enhanced dispersion of repolarization (DR) was proposed as a unifying mechanism, central to arrhythmia genesis in the long QT (LQT) syndrome. In mammalian hearts, K(+) channels are heterogeneously expressed across the ventricles resulting in 'intrinsic' DR that may worsen in long QT. DR was shown to be central to the arrhythmia phenotype of transgenic mice with LQT caused by loss of function of the dominant mouse K(+) currents. Here, we investigated the arrhythmia phenotype of mice with targeted deletions of KCNE1 and KCNH2 genes which encode for minK/IsK and Merg1 (mouse homolog of human ERG) proteins resulting in loss of function of I(Ks) and I(Kr), respectively. Both currents are important human K(+) currents associated with LQT5 and LQT2. Loss of minK, a protein subunit that interacts with KvLQT1, results in a marked reduction of I(Ks) giving rise to the Jervell and Lange-Nielsen syndrome and the reduced KCNH2 gene reduces MERG and I(Kr). Hearts were perfused, stained with di-4-ANEPPS and optically mapped to compare action potential durations (APDs) and arrhythmia phenotype in homozygous minK (minK(-/-)) and heterozygous Merg1 (Merg(+/-)) deletions and littermate control mice. MinK(-/-) mice has similar APDs and no arrhythmias (n = 4). Merg(+/-) mice had prolonged APDs (from 20 +/- 6 to 32 +/- 9 ms at the base, p mice (60% vs. 10%). A comparison of mouse models of LQT based on K(+) channel mutations important to human and mouse repolarization emphasizes DR as a major determinant of arrhythmia vulnerability.

  11. Postnatal hematopoiesis and gut microbiota in NOD mice deviate from C57BL/6 mice

    DEFF Research Database (Denmark)

    Damlund, Dina Silke Malling; Metzdorff, Stine Broeng; Hasselby, Jane Preuss

    2016-01-01

    , a distinct splenic cell profile high in a granulocytic phenotype was evident in the neonatal NOD mice whereas neonatal C57BL/6 mice showed a profile rich in monocytes. Neonatal expression of Reg3g and Muc2 in the gut was deviating in NOD mice and coincided with fewer bacteria attaching to the Mucosal surface...

  12. Motor neuronal repletion of the NMJ organizer, Agrin, modulates the severity of the spinal muscular atrophy disease phenotype in model mice.

    Science.gov (United States)

    Kim, Jeong-Ki; Caine, Charlotte; Awano, Tomoyuki; Herbst, Ruth; Monani, Umrao R

    2017-07-01

    Spinal muscular atrophy (SMA) is a common and often fatal neuromuscular disorder caused by low levels of the Survival Motor Neuron (SMN) protein. Amongst the earliest detectable consequences of SMN deficiency are profound defects of the neuromuscular junctions (NMJs). In model mice these synapses appear disorganized, fail to mature and are characterized by poorly arborized nerve terminals. Given one role of the SMN protein in orchestrating the assembly of spliceosomal snRNP particles and subsequently regulating the alternative splicing of pre-mRNAs, a plausible link between SMN function and the distal neuromuscular SMA phenotype is an incorrectly spliced transcript or transcripts involved in establishing or maintaining NMJ structure. In this study, we explore the effects of one such transcript-Z+Agrin-known to be a critical organizer of the NMJ. We confirm that low SMN protein reduces motor neuronal levels of Z+Agrin. Repletion of this isoform of Agrin in the motor neurons of SMA model mice increases muscle fiber size, enhances the post-synaptic NMJ area, reduces the abnormal accumulation of intermediate filaments in nerve terminals of the neuromuscular synapse and improves the innervation of muscles. While these effects are independent of changes in SMN levels or increases in motor neuron numbers they nevertheless have a significant effect on the overall disease phenotype, enhancing mean survival in severely affected SMA model mice by ∼40%. We conclude that Agrin is an important target of the SMN protein and that mitigating NMJ defects may be one strategy in treating human spinal muscular atrophy. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Patients With High Bone Mass Phenotype Exhibit Enhanced Osteoblast Differentiation and Inhibition of Adipogenesis of Human Mesenchymal Stem Cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Andersen, Tom; Bollerslev, Jens

    2007-01-01

    in iliac crest bone biopsies from patients with the HBM phenotype and controls. We also used retrovirus-mediated gene transduction to establish three different human mesenchymal stem cell (hMSC) strains stably expressing wildtype LRP5 (hMSC-LRP5WT), LRP5T244 (hMSC-LRP5T244, inactivation mutation leading...... to osteoporosis), or LRP5T253 (hMSC-LRP5T253, activation mutation leading to high bone mass). We characterized Wnt signaling activation using a dual luciferase assay, cell proliferation, lineage biomarkers using real-time PCR, and in vivo bone formation. Results: In bone biopsies, we found increased trabecular...... mineralized bone when implanted subcutaneously with hydroxyapatite/tricalcium phosphate in SCID/NOD mice. Conclusions: LRP5 mutations and the level of Wnt signaling determine differentiation fate of hMSCs into osteoblasts or adipocytes. Activation of Wnt signaling can thus provide a novel approach to increase...

  14. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Science.gov (United States)

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D; Lombardi, Giovanna; Nestle, Frank O

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.

  15. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    Directory of Open Access Journals (Sweden)

    Niwa Ali

    Full Text Available The occurrence of Graft-versus-Host Disease (GvHD is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice" are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null, notably the NOD-scid IL-2Rγ(null (NSG and BALB/c-Rag2(null IL-2Rγ(null (BRG mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+ compartment and higher engraftment levels of CD3(+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM phenotype and high levels of cutaneous lymphocyte antigen (CLA expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM-cell driven GvHD.

  16. STRATEGI PENINGKATAN PENDAPATAN ASLI DAERAH, INVESTASI DAN PERTUMBUHAN EKONOMI KOTA SEMARANG MELALUI MICE (MEETING, INCENTIVE, CONVENTION DAN EXHIBITION

    Directory of Open Access Journals (Sweden)

    Tika Putri Pratiwi

    2015-05-01

    Full Text Available Abstrak ___________________________________________________________________ Semarang sebagai ibukota Provinsi Jawa Tengah memiliki potensi yang besar dalam mengembangkan sektor industri dan pariwisata. Langkah awal pemerintah yang serius dalam mengolah kedua industri ini yaitu dengan menjadikan Kota Semarang sebagai salah satu destinasi MICE (Meeting, Incentive, Convention, Exhibition. Penelitian ini bertujuan untuk memilih strategi apa yang dapat dilakukan dalam pembangunan Kota Semarang Melalui MICE. Data yang digunakan dalam penelitian ini adalah data primer dan data sekunder. Data primer bersumber dari hasil pengisian kuesioner oleh pihak dinas dan Swasta. Data sekunder dalam penelitian ini berupa data-data yang diperoleh dari dinas terkait serta Badan Pusat Statistik (BPS Provinsi Jawa Tengah dan Kota Semarang dan jurnal serta literatur yang berkaitan dengan penelitian. Metode analisis yang digunakan yaituAnalitical Hierarki Process (AHP dan diolah menggunakan expert choice versi 9.0. Hasil penelitian ini menunjukkan bahwa strategi pembangunan Kota Semarang melalui MICE dapat mengutamakan pada kriteria (1 peningkatan sektor investasi dengan bobot tertinggi yaitu sebesar 0,614 dan dilanjutkan dengan (2 memperbaiki pertumbuhan ekonomi kota dengan bobot 0,260, sehingga akan membantu dalam (3 peningkatan Pendapatan Asli Daerah Kota Semarang melalui MICE dengan bobot 0,126. Berdasarkan temuan tersebut, saran yang dapat disampaikan yaitu Memperkenalkan Kota Semarang melalui jalur promosi dengan menggunakan media-media sosal dan media elektronik. Hal tersebut merupakan salah satu alternatif membuka investasi yang lebih luas di Kota Semarang, sehingga tidak hanya masyarakat dalam negeri namun masyarakat internasional juga dapat lebih mengenal Kota Semarang. Memperbanyak even berskala nasional maupun internasional yang diselenggarakan di Kota Semarang dan lebih memperkenalkan Kota Semarang baik di dalam maupun di luar negeri. Memberikan pelatihan

  17. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  18. Gastritis promotes an activated bone marrow-derived mesenchymal stem cell with a phenotype reminiscent of a cancer-promoting cell.

    Science.gov (United States)

    Donnelly, Jessica M; Engevik, Amy C; Engevik, Melinda; Schumacher, Michael A; Xiao, Chang; Yang, Li; Worrell, Roger T; Zavros, Yana

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) promote gastric cancer in response to gastritis. In culture, BM-MSCs are prone to mutation with continued passage but it is unknown whether a similar process occurs in vivo in response to gastritis. The purpose of this study was to identify the role of chronic gastritis in the transformation of BM-MSCs leading to an activated cancer-promoting phenotype. Age matched C57BL/6 (BL/6) and gastrin deficient (GKO) mice were used for isolation of stomach, serum and mesenchymal stem cells (MSCs) at 3 and 6 months of age. MSC activation was assessed by growth curve analysis, fluorescence-activated cell sorting and xenograft assays. To allow for the isolation of bone marrow-derived stromal cells and assay in response to chronic gastritis, IRG/Vav-1(Cre) mice that expressed both enhanced green fluorescent protein-expressing hematopoietic cells and red fluorescent protein-expressing stromal cells were generated. In a parabiosis experiment, IRG/Vav-1(Cre) mice were paired to either an uninfected Vav-1(Cre) littermate or a BL/6 mouse inoculated with Helicobacter pylori. GKO mice displayed severe atrophic gastritis accompanied by elevated gastric tissue and circulating transforming growth factor beta (TGFβ) by 3 months of age. Compared to BM-MSCs isolated from uninflamed BL/6 mice, BM-MSCs isolated from GKO mice displayed an increased proliferative rate and elevated phosphorylated-Smad3 suggesting active TGFβ signaling. In xenograft assays, mice injected with BM-MSCs from 6-month-old GKO animals displayed tumor growth. RFP+ stromal cells were rapidly recruited to the gastric mucosa of H. pylori parabionts and exhibited changes in gene expression. Gastritis promotes the in vivo activation of BM-MSCs to a phenotype reminiscent of a cancer-promoting cell.

  19. Heteroresistance to Fluconazole Is a Continuously Distributed Phenotype among Candida glabrata Clinical Strains Associated with In Vivo Persistence

    Directory of Open Access Journals (Sweden)

    Ronen Ben-Ami

    2016-08-01

    Full Text Available Candida glabrata causes persistent infections in patients treated with fluconazole and often acquires resistance following exposure to the drug. Here we found that clinical strains of C. glabrata exhibit cell-to-cell variation in drug response (heteroresistance. We used population analysis profiling (PAP to assess fluconazole heteroresistance (FLCHR and to ask if it is a binary trait or a continuous phenotype. Thirty (57.6% of 52 fluconazole-sensitive clinical C. glabrata isolates met accepted dichotomous criteria for FLCHR. However, quantitative grading of FLCHR by using the area under the PAP curve (AUC revealed a continuous distribution across a wide range of values, suggesting that all isolates exhibit some degree of heteroresistance. The AUC correlated with rhodamine 6G efflux and was associated with upregulation of the CDR1 and PDH1 genes, encoding ATP-binding cassette (ABC transmembrane transporters, implying that HetR populations exhibit higher levels of drug efflux. Highly FLCHRC. glabrata was recovered more frequently than nonheteroresistant C. glabrata from hematogenously infected immunocompetent mice following treatment with high-dose fluconazole (45.8% versus 15%, P = 0.029. Phylogenetic analysis revealed some phenotypic clustering but also variations in FLCHR within clonal groups, suggesting both genetic and epigenetic determinants of heteroresistance. Collectively, these results establish heteroresistance to fluconazole as a graded phenotype associated with ABC transporter upregulation and fluconazole efflux. Heteroresistance may explain the propensity of C. glabrata for persistent infection and the emergence of breakthrough resistance to fluconazole.

  20. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.

    Science.gov (United States)

    Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu

    2009-10-01

    Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.

  1. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  2. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  3. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Science.gov (United States)

    Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa

    2015-01-01

    Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice. First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant. Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  4. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Prevention of the disrupted enamel phenotype in Slc4a4-null mice using explant organ culture maintained in a living host kidney capsule.

    Directory of Open Access Journals (Sweden)

    Xin Wen

    Full Text Available Slc4a4-null mice are a model of proximal renal tubular acidosis (pRTA. Slc4a4 encodes the electrogenic sodium base transporter NBCe1 that is involved in transcellular base transport and pH regulation during amelogenesis. Patients with mutations in the SLC4A4 gene and Slc4a4-null mice present with dysplastic enamel, amongst other pathologies. Loss of NBCe1 function leads to local abnormalities in enamel matrix pH regulation. Loss of NBCe1 function also results in systemic acidemic blood pH. Whether local changes in enamel pH and/or a decrease in systemic pH are the cause of the abnormal enamel phenotype is currently unknown. In the present study we addressed this question by explanting fetal wild-type and Slc4a4-null mandibles into healthy host kidney capsules to study enamel formation in the absence of systemic acidemia. Mandibular E11.5 explants from NBCe1-/- mice, maintained in host kidney capsules for 70 days, resulted in teeth with enamel and dentin with morphological and mineralization properties similar to cultured NBCe1+/+ mandibles grown under identical conditions. Ameloblasts express a number of proteins involved in dynamic changes in H+/base transport during amelogenesis. Despite the capacity of ameloblasts to dynamically modulate the local pH of the enamel matrix, at least in the NBCe1-/- mice, the systemic pH also appears to contribute to the enamel phenotype. Extrapolating these data to humans, our findings suggest that in patients with NBCe1 mutations, correction of the systemic metabolic acidosis at a sufficiently early time point may lead to amelioration of enamel abnormalities.

  6. Heregulin ameliorates the dystrophic phenotype in mdx mice

    DEFF Research Database (Denmark)

    Krag, Thomas O B; Bogdanovich, Sasha; Jensen, Claus J

    2004-01-01

    Duchenne's muscular dystrophy (DMD) is a fatal neuromuscular disease caused by absence of dystrophin. Utrophin is a chromosome 6-encoded dystrophin-related protein (DRP), sharing functional motifs with dystrophin. Utrophin's ability to compensate for dystrophin during development and when....... Therefore, this pathway offers a potential mechanism to modulate utrophin expression in muscle. We tested the ability of heregulin to improve the dystrophic phenotype in the mdx mouse model of DMD. Intraperitoneal injections of a small peptide encoding the epidermal growth factor-like region of heregulin...... ectodomain for 3 months in vivo resulted in up-regulation of utrophin, a marked improvement in the mechanical properties of muscle as evidenced by resistance to eccentric contraction mediated damage, and a reduction of muscle pathology. The amelioration of dystrophic phenotype by heregulin-mediated utrophin...

  7. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  8. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    Science.gov (United States)

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  9. Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice

    Science.gov (United States)

    Safdar, Adeel; Bourgeois, Jacqueline M.; Ogborn, Daniel I.; Little, Jonathan P.; Hettinga, Bart P.; Akhtar, Mahmood; Thompson, James E.; Melov, Simon; Mocellin, Nicholas J.; Kujoth, Gregory C.; Prolla, Tomas A.; Tarnopolsky, Mark A.

    2011-01-01

    A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities. PMID:21368114

  10. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    Science.gov (United States)

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  11. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  12. Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice.

    Science.gov (United States)

    Qiao, Yanhua; Wang, Xingyue; Ma, Lian; Li, Shengguang; Liang, Jing

    2017-10-01

    Deficits in behavioral flexibility and recognition memory are commonly observed in mental illnesses and neurodegenerative diseases. Abnormality of the striatum has been implicated in an association with the pathology of these diseases. However, the exact roles of striatal heterogeneous structures in these cognitive functions are still unknown. In the present study, we investigated the effects of suppressing neuronal activity in the dorsomedial striatum (DMStr) and nucleus accumbens core (NAcC) on reversal learning and novelty recognition in mice. In addition, the locomotor activity, anxiety-like behavior and social interaction were analyzed. Neuronal inactivation was performed by expressing lentivirus-mediated tetanus toxin (TeNT) in the target regions. The results showed that reversal learning was facilitated by neuronal inactivation in the DMStr but not the NAcC, which was attributable to accelerated extinction of acquired strategy but not to impaired memory retention. Furthermore, mice with NAcC inactivation spent more time exploring a novel object than a familiar one, comparable to control mice. In contrast, mice with DMStr inactivation exhibited no preference to a novel environment during the novel object or place recognition test. The DMStr mice also exhibited decreased anxiety level. No phenotypic effect was observed in the locomotion or social interaction in mice with either DMStr or NAcC inactivation. Altogether, these findings suggest that the DMStr but not the ventral area of the striatum plays a crucial role in learning and memory by coordinating spatial exploration as well as mediating information updating. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.

    Science.gov (United States)

    Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W

    2013-06-01

    Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Copyright © 2013 Wiley Periodicals, Inc.

  14. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guangming Wu

    2011-07-01

    Full Text Available Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione. Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  15. Real-time resolution of point mutations that cause phenovariance in mice

    Science.gov (United States)

    Wang, Tao; Zhan, Xiaowei; Bu, Chun-Hui; Lyon, Stephen; Pratt, David; Hildebrand, Sara; Choi, Jin Huk; Zhang, Zhao; Zeng, Ming; Wang, Kuan-wen; Turer, Emre; Chen, Zhe; Zhang, Duanwu; Yue, Tao; Wang, Ying; Shi, Hexin; Wang, Jianhui; Sun, Lei; SoRelle, Jeff; McAlpine, William; Hutchins, Noelle; Zhan, Xiaoming; Fina, Maggy; Gobert, Rochelle; Quan, Jiexia; Kreutzer, McKensie; Arnett, Stephanie; Hawkins, Kimberly; Leach, Ashley; Tate, Christopher; Daniel, Chad; Reyna, Carlos; Prince, Lauren; Davis, Sheila; Purrington, Joel; Bearden, Rick; Weatherly, Jennifer; White, Danielle; Russell, Jamie; Sun, Qihua; Tang, Miao; Li, Xiaohong; Scott, Lindsay; Moresco, Eva Marie Y.; McInerney, Gerald M.; Karlsson Hedestam, Gunilla B.; Xie, Yang; Beutler, Bruce

    2015-01-01

    With the wide availability of massively parallel sequencing technologies, genetic mapping has become the rate limiting step in mammalian forward genetics. Here we introduce a method for real-time identification of N-ethyl-N-nitrosourea-induced mutations that cause phenotypes in mice. All mutations are identified by whole exome G1 progenitor sequencing and their zygosity is established in G2/G3 mice before phenotypic assessment. Quantitative and qualitative traits, including lethal effects, in single or multiple combined pedigrees are then analyzed with Linkage Analyzer, a software program that detects significant linkage between individual mutations and aberrant phenotypic scores and presents processed data as Manhattan plots. As multiple alleles of genes are acquired through mutagenesis, pooled “superpedigrees” are created to analyze the effects. Our method is distinguished from conventional forward genetic methods because it permits (1) unbiased declaration of mappable phenotypes, including those that are incompletely penetrant (2), automated identification of causative mutations concurrent with phenotypic screening, without the need to outcross mutant mice to another strain and backcross them, and (3) exclusion of genes not involved in phenotypes of interest. We validated our approach and Linkage Analyzer for the identification of 47 mutations in 45 previously known genes causative for adaptive immune phenotypes; our analysis also implicated 474 genes not previously associated with immune function. The method described here permits forward genetic analysis in mice, limited only by the rates of mutant production and screening. PMID:25605905

  16. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  17. Advanced transgenic approaches to understand alcohol-related phenotypes in animals.

    Science.gov (United States)

    Bilbao, Ainhoa

    2013-01-01

    During the past two decades, the use of genetically manipulated animal models in alcohol research has greatly improved the understanding of the mechanisms underlying alcohol addiction. In this chapter, we present an overview of the progress made in this field by summarizing findings obtained from studies of mice harboring global and conditional mutations in genes that influence alcohol-related phenotypes. The first part reviews behavioral paradigms for modeling the different phases of the alcohol addiction cycle and other alcohol-induced behavioral phenotypes in mice. The second part reviews the current data available using genetic models targeting the main neurotransmitter and neuropeptide systems involved in the reinforcement and stress pathways, focusing on the phenotypes modeling the alcohol addiction cycle. Finally, the third part will discuss the current findings and future directions, and proposes advanced transgenic mouse models for their potential use in alcohol research.

  18. Calpain 1 inhibitor BDA-410 ameliorates α-klotho-deficiency phenotypes resembling human aging-related syndromes.

    Science.gov (United States)

    Nabeshima, Yoko; Washida, Miwa; Tamura, Masaru; Maeno, Akiteru; Ohnishi, Mutsuko; Shiroishi, Toshihiko; Imura, Akihiro; Razzaque, M Shawkat; Nabeshima, Yo-ichi

    2014-08-01

    Taking good care of elderly is a major challenge of our society, and thus identification of potential drug targets to reduce age-associated disease burden is desirable. α-klotho(-/-) (α-kl) is a short-lived mouse model that displays multiple phenotypes resembling human aging-related syndromes. Such ageing phenotype of α-kl(-/-) mice is associated with activation of a proteolytic enzyme, Calpain-1. We hypothesized that uncontrolled activation of calpain-1 might be causing age-related phenotypes in α-kl-deficient mice. We found that daily administration of BDA-410, a calpain-1 inhibitor, strikingly ameliorated multiple aging-related phenotypes. Treated mice showed recovery of reproductive ability, increased body weight, reduced organ atrophy, and suppression of ectopic calcifications, bone mineral density reduction, pulmonary emphysema and senile atrophy of skin. We also observed ectopic expression of FGF23 in calcified arteries of α-kl(-/-) mice, which might account for the clinically observed association of increased FGF23 level with increased risk of cardiovascular mortality. These findings allow us to propose that modulation of calpain-1 activity is a potential therapeutic option for delaying age-associated organ pathology, particularly caused by the dysregulation of mineral ion homeostasis.

  19. Hindlimb Skeletal Muscle Function and Skeletal Quality and Strength in +/G610C Mice With and Without Weight-Bearing Exercise.

    Science.gov (United States)

    Jeong, Youngjae; Carleton, Stephanie M; Gentry, Bettina A; Yao, Xiaomei; Ferreira, J Andries; Salamango, Daniel J; Weis, MaryAnn; Oestreich, Arin K; Williams, Ashlee M; McCray, Marcus G; Eyre, David R; Brown, Marybeth; Wang, Yong; Phillips, Charlotte L

    2015-10-01

    Osteogenesis imperfecta (OI) is a heterogeneous heritable connective tissue disorder associated with reduced bone mineral density and skeletal fragility. Bone is inherently mechanosensitive, with bone strength being proportional to muscle mass and strength. Physically active healthy children accrue more bone than inactive children. Children with type I OI exhibit decreased exercise capacity and muscle strength compared with healthy peers. It is unknown whether this muscle weakness reflects decreased physical activity or a muscle pathology. In this study, we used heterozygous G610C OI model mice (+/G610C), which model both the genotype and phenotype of a large Amish OI kindred, to evaluate hindlimb muscle function and physical activity levels before evaluating the ability of +/G610C mice to undergo a treadmill exercise regimen. We found +/G610C mice hindlimb muscles do not exhibit compromised muscle function, and their activity levels were not reduced relative to wild-type mice. The +/G610C mice were also able to complete an 8-week treadmill regimen. Biomechanical integrity of control and exercised wild-type and +/G610C femora were analyzed by torsional loading to failure. The greatest skeletal gains in response to exercise were observed in stiffness and the shear modulus of elasticity with alterations in collagen content. Analysis of tibial cortical bone by Raman spectroscopy demonstrated similar crystallinity and mineral/matrix ratios regardless of sex, exercise, and genotype. Together, these findings demonstrate +/G610C OI mice have equivalent muscle function, activity levels, and ability to complete a weight-bearing exercise regimen as wild-type mice. The +/G610C mice exhibited increased femoral stiffness and decreased hydroxyproline with exercise, whereas other biomechanical parameters remain unaffected, suggesting a more rigorous exercise regimen or another exercise modality may be required to improve bone quality of OI mice. © 2015 American Society for Bone

  20. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice.

    Science.gov (United States)

    Hamilton, M Kristina; Ronveaux, Charlotte C; Rust, Bret M; Newman, John W; Hawley, Melissa; Barile, Daniela; Mills, David A; Raybould, Helen E

    2017-05-01

    Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO. NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice. Copyright © 2017 the American Physiological Society.

  1. Metabolic phenotype in the mouse model of osteogenesis imperfecta.

    Science.gov (United States)

    Boraschi-Diaz, Iris; Tauer, Josephine T; El-Rifai, Omar; Guillemette, Delphine; Lefebvre, Geneviève; Rauch, Frank; Ferron, Mathieu; Komarova, Svetlana V

    2017-09-01

    Osteogenesis imperfecta (OI) is the most common heritable bone fragility disorder, usually caused by dominant mutations in genes coding for collagen type I alpha chains, COL1A1 or COL1A2 Osteocalcin (OCN) is now recognized as a bone-derived regulator of insulin secretion and sensitivity and glucose homeostasis. Since OI is associated with increased rates of bone formation and resorption, we hypothesized that the levels of undercarboxylated OCN are increased in OI. The objective of this study was to determine changes in OCN and to elucidate the metabolic phenotype in the Col1a1 Jrt/+ mouse, a model of dominant OI caused by a Col1a1 mutation. Circulating levels of undercarboxylated OCN were higher in 4-week-old OI mice and normal by 8 weeks of age. Young OI animals exhibited a sex-dependent metabolic phenotype, including increased insulin levels in males, improved glucose tolerance in females, lower levels of random glucose and low adiposity in both sexes. The rates of O 2 consumption and CO 2 production, as well as energy expenditure assessed using indirect calorimetry were significantly increased in OI animals of both sexes, whereas respiratory exchange ratio was significantly higher in OI males only. Although OI mice have significant physical impairment that may contribute to metabolic differences, we specifically accounted for movement and compared OI and WT animals during the periods of similar activity levels. Taken together, our data strongly suggest that OI animals have alterations in whole body energy metabolism that are consistent with the action of undercarboxylated osteocalcin. © 2017 Society for Endocrinology.

  2. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity.

    Science.gov (United States)

    Sideris, Alexandra; Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. At baseline, CB1R-/- mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R-/- mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R-/- mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/-) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R-/- mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different among genotypes. Cold allodynia and

  3. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Science.gov (United States)

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo

    2015-01-01

    Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667

  4. Mitochondrial DNA polymerase editing mutation, PolgD257A, reduces the diabetic phenotype of Akita male mice by suppressing appetite.

    Science.gov (United States)

    Fox, Raymond; Kim, Hyung-Suk; Reddick, Robert L; Kujoth, Gregory C; Prolla, Tomas A; Tsutsumi, Shuichi; Wada, Youichiro; Smithies, Oliver; Maeda, Nobuyo

    2011-05-24

    Diabetes and the development of its complications have been associated with mitochondrial DNA (mtDNA) dysfunction, but causal relationships remain undetermined. With the objective of testing whether increased mtDNA mutations exacerbate the diabetic phenotype, we have compared mice heterozygous for the Akita diabetogenic mutation (Akita) with mice homozygous for the D257A mutation in mitochondrial DNA polymerase gamma (Polg) or with mice having both mutations (Polg-Akita). The Polg-D257A protein is defective in proofreading and increases mtDNA mutations. At 3 mo of age, the Polg-Akita and Akita male mice were equally hyperglycemic. Unexpectedly, as the Polg-Akita males aged to 9 mo, their diabetic symptoms decreased. Thus, their hyperglycemia, hyperphagia and urine output declined significantly. The decrease in their food intake was accompanied by increased plasma leptin and decreased plasma ghrelin, while hypothalamic expression of the orexic gene, neuropeptide Y, was lower and expression of the anorexic gene, proopiomelanocortin, was higher. Testis function progressively worsened with age in the double mutants, and plasma testosterone levels in 9-mo-old Polg-Akita males were significantly reduced compared with Akita males. The hyperglycemia and hyperphagia returned in aged Polg-Akita males after testosterone administration. Hyperglycemia-associated distal tubular damage in the kidney also returned, and Polg-D257A-associated proximal tubular damage was enhanced. The mild diabetes of female Akita mice was not affected by the Polg-D257A mutation. We conclude that reduced diabetic symptoms of aging Polg-Akita males results from appetite suppression triggered by decreased testosterone associated with damage to the Leydig cells of the testis.

  5. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  6. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice.

    Science.gov (United States)

    Walker, Paul D; Jarosz, Patricia A; Bouhamdan, Mohamad; MacKenzie, Robert G

    2015-01-01

    Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome. Copyright © 2014. Published by Elsevier Inc.

  7. Role of dystrophin in airway smooth muscle phenotype, contraction and lung function.

    Directory of Open Access Journals (Sweden)

    Pawan Sharma

    Full Text Available Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh when compared to genetic control BL10ScSnJ mice (wild-type. In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.

  8. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-01-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells

  9. Mouse Chromosome 4 Is Associated with the Baseline and Allergic IgE Phenotypes

    Directory of Open Access Journals (Sweden)

    Cynthia Kanagaratham

    2017-08-01

    Full Text Available Regulation of IgE concentration in the blood is a complex trait, with high concentrations associated with parasitic infections as well as allergic diseases. A/J strain mice have significantly higher plasma concentrations of IgE, both at baseline and after ovalbumin antigen exposure, when compared to C57BL/6J strain mice. Our objective was to determine the genomic regions associated with this difference in phenotype. To achieve this, we used a panel of recombinant congenic strains (RCS derived from A/J and C57BL/6J strains. We measured IgE in the RCS panel at baseline and following allergen exposure. Using marker by marker analysis of the RCS genotype and phenotype data, we identified multiple regions associated with the IgE phenotype. A single region was identified to be associated with baseline IgE level, while multiple regions wereassociated with the phenotype after allergen exposure. The most significant region was found on Chromosome 4, from 81.46 to 86.17 Mbp. Chromosome 4 substitution strain mice had significantly higher concentration of IgE than their background parental strain mice, C57BL/6J. Our data presents multiple candidate regions associated with plasma IgE concentration at baseline and following allergen exposure, with the most significant one located on Chromosome 4.

  10. Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice.

    Directory of Open Access Journals (Sweden)

    Johannes Fuss

    2010-09-01

    Full Text Available Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.

  11. Maternal genetic mutations as gestational and early life influences in producing psychiatric disease-like phenotypes in mice

    Directory of Open Access Journals (Sweden)

    Georgia eGleason

    2011-05-01

    Full Text Available Risk factors for psychiatric disorders have traditionally been classified as genetic or environmental. Risk (candidate genes, although typically possessing small effects, represent a clear starting point to elucidate downstream cellular/molecular pathways of disease. Environmental effects, especially during development, can also lead to altered behavior and increased risk for disease. An important environmental factor is the mother, demonstrated by the negative effects elicited by maternal gestational stress and altered maternal care. These maternal effects can also have a genetic basis (e.g. maternal genetic variability and mutations. The focus of this review is maternal genotype effects that influence the emotional development of the offspring resulting in life-long psychiatric disease-like phenotypes. We have recently found that genetic inactivation of the serotonin1A receptor (5-HT1AR and the fmr-1 gene (encoding the fragile X mental retardation protein in mouse dams results in psychiatric disease-like phenotypes in their genetically unaffected offspring. 5-HT1AR deficiency in dams results in anxiety and increased stress responsiveness in their offspring. Mice with 5-HT1AR deficient dams display altered development of the hippocampus, which could be linked to their anxiety-like phenotype. Maternal inactivation of fmr-1, like its inactivation in the offspring, results in a hyperactivity-like condition and is associated with receptor alterations in the striatum. These data indicate a high sensitivity of the offspring to maternal mutations and suggest that maternal genotype effects can increase the impact of genetic risk factors in a population by increasing the risk of the genetically normal offspring as well as by enhancing the effects of offspring mutations.

  12. Increased anxiety-related behaviour in Hint1 knockout mice.

    Science.gov (United States)

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  14. Global Gene Expression Differences in Joints of Mice with Divergent Post Traumatic Osteoarthritis Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Kibui, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-28

    Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation which prompts pain, stiffness and swelling. Contributing factors include age, genetics, obesity, injury and overuse of joints. OA is defined by an acute phase and a chronic phase whereby inflammation and degeneration of articular cartilage and other tissues is followed by joint pain and limited mobility. Patients remain asymptomatic until substantial joint damage has occurred and therefore rely on long term surgical joint replacement and pain management as their sole treatment options. For this reason, there is an increasing need to identify early stage osteoarthritis biomarkers. Our study aimed to identify and characterize gene expression variances in 3 different mouse strains (STR/ort, C57BL/6 and MRL/MpJ) with different susceptibility to post traumatic osteoarthritis (PTOA). Through RNA sequence analysis of whole knee joint RNA, we identified differentially expressed genes associated with the initial stages of PTOA in relation to mice with divergent phenotypes. These results will help elucidate potential mechanisms responsible for PTOA outcomes.

  15. Comparison of inbred mouse substrains reveals segregation of maladaptive fear phenotypes

    Directory of Open Access Journals (Sweden)

    Stephanie J Temme

    2014-08-01

    Full Text Available Maladaptive fear, such as fear that is persistent or easily generalized to a nonthreatening stimuli, is associated with anxiety-related disorders in humans. In the laboratory, maladaptive fear can be modeled in rodents using Pavlovian fear conditioning. Recently, an inbred mouse strain known as 129S1/SvImJ, or 129S1 have been reported as exhibiting impairments in fear extinction and enhanced fear generalization. With a long-term goal of identifying segregating genetic markers of maladaptive fear, we used Pavlovian fear conditioning to characterize a closely related substrain designated as 129S6/SvEvTac, or 129S6. Here we report that, like 129S1 animals, 129S6 mice exhibit appropriate levels of fear upon conditioning, but are unable to extinguish fear memories once they are consolidated. Importantly, the maladaptive fear phenotype in this inbred stain can be segregated by sub-strain when probed using conditioning protocols designed to assess generalized fear. We find that unlike the 129S1 substrain, mice from the 129S6 sub-strain do not generalize conditioned fear to previously novel contexts and can learn to discriminate between two similar contexts when trained using a discrimination protocol. These results suggest that at least two forms of maladaptive fear (deficits in fear extinction and fear generalization can be can be functionally segregated, further suggesting that the underlying neurobiology is heritable. Given the observation that two closely related sub-strains can exhibit different constellations of maladaptive fear suggests that these findings could be exploited to facilitate the identification of candidate genes for anxiety-related disorders.

  16. Region-specific role for Pten in maintenance of epithelial phenotype and integrity

    Science.gov (United States)

    Flodby, Per; Sunohara, Mitsuhiro; Castillo, Dan R.; McConnell, Alicia M.; Krishnaveni, Manda S.; Banfalvi, Agnes; Li, Min; Stripp, Barry; Zhou, Beiyun; Crandall, Edward D.; Minoo, Parviz

    2017-01-01

    Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific. PMID:27864284

  17. B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS

    Science.gov (United States)

    Pedersen, Gabriel K.; Àdori, Monika; Khoenkhoen, Sharesta; Dosenovic, Pia; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2014-01-01

    B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93+IgM+CD5+) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93+IgM+CD5− cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS. PMID:25228759

  18. Medan Convention & Exhibition Center (Arsitektur Ekspresionisme)

    OpenAIRE

    Iskandar, Nurul Auni

    2015-01-01

    Medan is one of the third largest city in Indonesia, which is currently being developed, and a city with lots of activities. In the city of Medan has a high investment opportunities for a convention, because of its strategic position in Southeast Asia and also supported by the facility and the potential for tourism in North Sumatra, Medan city has the potential for industrial MICE (Meeting, Incentive, Conference, Exhibition). The construction of Medan Convention & Exhibition Cente...

  19. Loss of Akt1 in mice increases energy expenditure and protects against diet-induced obesity.

    Science.gov (United States)

    Wan, Min; Easton, Rachael M; Gleason, Catherine E; Monks, Bobby R; Ueki, Kohjiro; Kahn, C Ronald; Birnbaum, Morris J

    2012-01-01

    Akt is encoded by a gene family for which each isoform serves distinct but overlapping functions. Based on the phenotypes of the germ line gene disruptions, Akt1 has been associated with control of growth, whereas Akt2 has been linked to metabolic regulation. Here we show that Akt1 serves an unexpected role in the regulation of energy metabolism, as mice deficient for Akt1 exhibit protection from diet-induced obesity and its associated insulin resistance. Although skeletal muscle contributes most of the resting and exercising energy expenditure, muscle-specific deletion of Akt1 does not recapitulate the phenotype, indicating that the role of Akt1 in skeletal muscle is cell nonautonomous. These data indicate a previously unknown function of Akt1 in energy metabolism and provide a novel target for treatment of obesity.

  20. The nature of stable insomnia phenotypes.

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L

    2015-01-01

    We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Longitudinal. Urban, community-based. Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). None. At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the 'neither criterion' phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With the exception of daytime sleepiness, few clinical differences are apparent across stable phenotypes.

  1. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    Science.gov (United States)

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  2. Early-life viral infection and allergen exposure interact to induce an asthmatic phenotype in mice

    Directory of Open Access Journals (Sweden)

    Asquith Kelly L

    2010-02-01

    Full Text Available Abstract Background Early-life respiratory viral infections, notably with respiratory syncytial virus (RSV, increase the risk of subsequent development of childhood asthma. The purpose of this study was to assess whether early-life infection with a species-specific model of RSV and subsequent allergen exposure predisposed to the development of features of asthma. Methods We employed a unique combination of animal models in which BALB/c mice were neonatally infected with pneumonia virus of mice (PVM, which replicates severe RSV disease in human infants and following recovery, were intranasally sensitised with ovalbumin. Animals received low-level challenge with aerosolised antigen for 4 weeks to elicit changes of chronic asthma, followed by a single moderate-level challenge to induce an exacerbation of inflammation. We then assessed airway inflammation, epithelial changes characteristic of remodelling, airway hyperresponsiveness (AHR and host immunological responses. Results Allergic airway inflammation, including recruitment of eosinophils, was prominent only in animals that had recovered from neonatal infection with PVM and then been sensitised and chronically challenged with antigen. Furthermore, only these mice exhibited an augmented Th2-biased immune response, including elevated serum levels of anti-ovalbumin IgE and IgG1 as well as increased relative expression of Th2-associated cytokines IL-4, IL-5 and IL-13. By comparison, development of AHR and mucous cell change were associated with recovery from PVM infection, regardless of subsequent allergen challenge. Increased expression of IL-25, which could contribute to induction of a Th2 response, was demonstrable in the lung following PVM infection. Signalling via the IL-4 receptor α chain was crucial to the development of allergic inflammation, mucous cell change and AHR, because all of these were absent in receptor-deficient mice. In contrast, changes of remodelling were evident in mice

  3. Human glia can both induce and rescue aspects of disease phenotype in Huntington disease

    DEFF Research Database (Denmark)

    Benraiss, Abdellatif; Wang, Su; Herrlinger, Stephanie

    2016-01-01

    The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells...... chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends...

  4. Sclerostin antibody (Scl-Ab) improves osteomalacia phenotype in dentin matrix protein 1(Dmp1) knockout mice with little impact on serum levels of phosphorus and FGF23.

    Science.gov (United States)

    Ren, Yinshi; Han, Xianglong; Jing, Yan; Yuan, Baozhi; Ke, Huazhu; Liu, Min; Feng, Jian Q

    2016-01-01

    Unlike treatments for most rickets, the treatment using 1,25-(OH)2 vitamin D3 has little efficacy on patients with hypophosphatemic rickets, a set of rare genetic diseases. Thus, understanding the local cause for osteomalacia in hypophosphatemic rickets and developing an effective treatment to restore mineralization in this rare disease has been a longstanding goal in medicine. Here, we used Dmp1 knockout (KO) mice (whose mutations led to the same type of autosomal recessive hypophosphatemic rickets in humans) as the model in which the monoclonal antibody of sclerostin (Scl-Ab) was tested in two age groups for 8weeks: the prevention group (starting at age 4weeks) and the treatment group (starting at age 12weeks). Applications of Scl-Ab greatly improved the osteomalacia phenotype (>15%) and the biomechanical properties (3-point bending, ~60%) in the treated long-bone group. Our studies not only showed improvement of the osteomalacia in the alveolar bone, which has the highest bone metabolism rate, as well as the long bone phenotypes in treated mice. All these improvements attributed to the use of Scl-Ab are independent of the change in serum levels of phosphorus and FGF23, since Scl-Ab had little efficacy on those parameters. Finally, we propose a model to explain how Scl-Ab can improve the Dmp1 KO osteomalacia phenotype, in which the sclerostin level is already low. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  5. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    Science.gov (United States)

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  7. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Science.gov (United States)

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of

  8. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  9. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice

    NARCIS (Netherlands)

    Rensing, Katrijn L.; de Jager, Saskia C. A.; Stroes, Erik S.; Vos, Mariska; Twickler, Marcel Th B.; Dallinga-Thie, Geesje M.; de Vries, Carlie J. M.; Kuiper, Johan; Bot, Ilze; von der Thüsen, Jan H.

    2014-01-01

    To characterize the phenotype of Akt2/low-density-lipoprotein receptor double knockout (dKO) (Akt2/LDLr dKO) mice with respect to insulin resistance and features of atherosclerotic plaque progression. Metabolic profile and atherosclerotic plaque progression were compared between LDLr KO mice and

  11. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    International Nuclear Information System (INIS)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C.

    2013-01-01

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level

  12. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  13. Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice.

    Science.gov (United States)

    Lau, Adeline A; Crawley, Allison C; Hopwood, John J; Hemsley, Kim M

    2008-08-05

    Mucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background. To more thoroughly characterize the behavioral phenotype of congenic MPS IIIA mice, we assessed exploratory activity and unconditioned anxiety-related behavior in the elevated plus maze (EPM) and open field locomotor activity. Although MPS IIIA male mice were less active in the EPM at 18 and 20 weeks of age, they were more likely to explore the open arms than their normal counter-parts suggesting reduced anxiety. Repeated EPM testing reduced exploration of the open arms in MPS IIIA mice. In the open field test, significant reductions in activity were evident in naïve-tested male MPS IIIA mice from 10 weeks of age. Female normal and MPS IIIA mice displayed similar exploratory activity in the open field test. These differences in anxiety and locomotor activity will allow us to evaluate the efficacy of therapeutic regimes for MPS IIIA as a forerunner to developing safe and effective therapies for Sanfilippo patients.

  14. Prevalence of sexual dimorphism in mammalian phenotypic traits

    Science.gov (United States)

    Karp, Natasha A.; Mason, Jeremy; Beaudet, Arthur L.; Benjamini, Yoav; Bower, Lynette; Braun, Robert E.; Brown, Steve D.M.; Chesler, Elissa J.; Dickinson, Mary E.; Flenniken, Ann M.; Fuchs, Helmut; Angelis, Martin Hrabe de; Gao, Xiang; Guo, Shiying; Greenaway, Simon; Heller, Ruth; Herault, Yann; Justice, Monica J.; Kurbatova, Natalja; Lelliott, Christopher J.; Lloyd, K.C. Kent; Mallon, Ann-Marie; Mank, Judith E.; Masuya, Hiroshi; McKerlie, Colin; Meehan, Terrence F.; Mott, Richard F.; Murray, Stephen A.; Parkinson, Helen; Ramirez-Solis, Ramiro; Santos, Luis; Seavitt, John R.; Smedley, Damian; Sorg, Tania; Speak, Anneliese O.; Steel, Karen P.; Svenson, Karen L.; Obata, Yuichi; Suzuki, Tomohiro; Tamura, Masaru; Kaneda, Hideki; Furuse, Tamio; Kobayashi, Kimio; Miura, Ikuo; Yamada, Ikuko; Tanaka, Nobuhiko; Yoshiki, Atsushi; Ayabe, Shinya; Clary, David A.; Tolentino, Heather A.; Schuchbauer, Michael A.; Tolentino, Todd; Aprile, Joseph Anthony; Pedroia, Sheryl M.; Kelsey, Lois; Vukobradovic, Igor; Berberovic, Zorana; Owen, Celeste; Qu, Dawei; Guo, Ruolin; Newbigging, Susan; Morikawa, Lily; Law, Napoleon; Shang, Xueyuan; Feugas, Patricia; Wang, Yanchun; Eskandarian, Mohammad; Zhu, Yingchun; Nutter, Lauryl M. J.; Penton, Patricia; Laurin, Valerie; Clarke, Shannon; Lan, Qing; Sohel, Khondoker; Miller, David; Clark, Greg; Hunter, Jane; Cabezas, Jorge; Bubshait, Mohammed; Carroll, Tracy; Tondat, Sandra; MacMaster, Suzanne; Pereira, Monica; Gertsenstein, Marina; Danisment, Ozge; Jacob, Elsa; Creighton, Amie; Sleep, Gillian; Clark, James; Teboul, Lydia; Fray, Martin; Caulder, Adam; Loeffler, Jorik; Codner, Gemma; Cleak, James; Johnson, Sara; Szoke-Kovacs, Zsombor; Radage, Adam; Maritati, Marina; Mianne, Joffrey; Gardiner, Wendy; Allen, Susan; Cater, Heather; Stewart, Michelle; Keskivali-Bond, Piia; Sinclair, Caroline; Brown, Ellen; Doe, Brendan; Wardle-Jones, Hannah; Grau, Evelyn; Griggs, Nicola; Woods, Mike; Kundi, Helen; Griffiths, Mark N. D.; Kipp, Christian; Melvin, David G.; Raj, Navis P. S.; Holroyd, Simon A.; Gannon, David J.; Alcantara, Rafael; Galli, Antonella; Hooks, Yvette E.; Tudor, Catherine L.; Green, Angela L.; Kussy, Fiona L.; Tuck, Elizabeth J.; Siragher, Emma J.; Maguire, Simon A.; Lafont, David T.; Vancollie, Valerie E.; Pearson, Selina A.; Gates, Amy S.; Sanderson, Mark; Shannon, Carl; Anthony, Lauren F. E.; Sumowski, Maksymilian T.; McLaren, Robbie S. B.; Swiatkowska, Agnieszka; Isherwood, Christopher M.; Cambridge, Emma L; Wilson, Heather M.; Caetano, Susana S.; Mazzeo, Cecilia Icoresi; Dabrowska, Monika H.; Lillistone, Charlotte; Estabel, Jeanne; Maguire, Anna Karin B.; Roberson, Laura-Anne; Pavlovic, Guillaume; Birling, Marie-Christine; Marie, Wattenhofer-Donze; Jacquot, Sylvie; Ayadi, Abdel; Ali-Hadji, Dalila; Charles, Philippe; André, Philippe; Le Marchand, Elise; El Amri, Amal; Vasseur, Laurent; Aguilar-Pimentel, Antonio; Becker, Lore; Treise, Irina; Moreth, Kristin; Stoeger, Tobias; Amarie, Oana V.; Neff, Frauke; Wurst, Wolfgang; Bekeredjian, Raffi; Ollert, Markus; Klopstock, Thomas; Calzada-Wack, Julia; Marschall, Susan; Brommage, Robert; Steinkamp, Ralph; Lengger, Christoph; Östereicher, Manuela A.; Maier, Holger; Stoeger, Claudia; Leuchtenberger, Stefanie; Yildrim, AliÖ; Garrett, Lillian; Hölter, Sabine M; Zimprich, Annemarie; Seisenberger, Claudia; Bürger, Antje; Graw, Jochen; Eickelberg, Oliver; Zimmer, Andreas; Wolf, Eckhard; Busch, Dirk H; Klingenspor, Martin; Schmidt-Weber, Carsten; Gailus-Durner, Valérie; Beckers, Johannes; Rathkolb, Birgit; Rozman, Jan; Wakana, Shigeharu; West, David; Wells, Sara; Westerberg, Henrik; Yaacoby, Shay; White, Jacqueline K.

    2017-01-01

    The role of sex in biomedical studies has often been overlooked, despite evidence of sexually dimorphic effects in some biological studies. Here, we used high-throughput phenotype data from 14,250 wildtype and 40,192 mutant mice (representing 2,186 knockout lines), analysed for up to 234 traits, and found a large proportion of mammalian traits both in wildtype and mutants are influenced by sex. This result has implications for interpreting disease phenotypes in animal models and humans. PMID:28650954

  15. Anxiety- and depression-like phenotype of hph-1 mice deficient in tetrahydrobiopterin

    DEFF Research Database (Denmark)

    Nasser, Arafat; Birk Møller, Lisbeth; Olesen, Jess Have

    2014-01-01

    as determine hippocampal monoamine and plasma nitric oxide levels. In the elevated zero maze test, hph mice displayed increased anxiety-like responses compared to wild-type mice, while the marble burying test revealed decreased anxiety-like behaviour. This was particularly observed in male mice. In the tail...

  16. The Nature of Stable Insomnia Phenotypes

    Science.gov (United States)

    Pillai, Vivek; Roth, Thomas; Drake, Christopher L.

    2015-01-01

    Study Objectives: We examined the 1-y stability of four insomnia symptom profiles: sleep onset insomnia; sleep maintenance insomnia; combined onset and maintenance insomnia; and neither criterion (i.e., insomnia cases that do not meet quantitative thresholds for onset or maintenance problems). Insomnia cases that exhibited the same symptom profile over a 1-y period were considered to be phenotypes, and were compared in terms of clinical and demographic characteristics. Design: Longitudinal. Setting: Urban, community-based. Participants: Nine hundred fifty-four adults with Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition based current insomnia (46.6 ± 12.6 y; 69.4% female). Interventions: None. Measurements and results: At baseline, participants were divided into four symptom profile groups based on quantitative criteria. Follow-up assessment 1 y later revealed that approximately 60% of participants retained the same symptom profile, and were hence judged to be phenotypes. Stability varied significantly by phenotype, such that sleep onset insomnia (SOI) was the least stable (42%), whereas combined insomnia (CI) was the most stable (69%). Baseline symptom groups (cross-sectionally defined) differed significantly across various clinical indices, including daytime impairment, depression, and anxiety. Importantly, however, a comparison of stable phenotypes (longitudinally defined) did not reveal any differences in impairment or comorbid psychopathology. Another interesting finding was that whereas all other insomnia phenotypes showed evidence of an elevated wake drive both at night and during the day, the “neither criterion” phenotype did not; this latter phenotype exhibited significantly higher daytime sleepiness despite subthreshold onset and maintenance difficulties. Conclusions: By adopting a stringent, stability-based definition, this study offers timely and important data on the longitudinal trajectory of specific insomnia phenotypes. With

  17. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  18. THE EFFECT OF ASCORBIC ACID ON PATHOHISTOLOGICAL TUMOR CHARACTERISTICS AND PHENOTYPE CHARACTERISTICS OF LYMPHOCYTES DURING THE DEVELOPMENT OF EXPERIMENTAL MAMMARY CARCINOMA IN MICE

    Directory of Open Access Journals (Sweden)

    Voja Pavlovic

    2005-04-01

    Full Text Available TIn our previous study we demonstrated that high doses of ascorbic acid prolonged the survival of mice with experimental mammary carcinoma. In this work we studied, ussing the same model, pathohistological characteristics of the tumor and phenotypic changes of lymphocyte subsets in the spleen. Experiments were performed on CBA/H mice. The growh of experimental tumor was induced by injection of mammary adenocarcinoma cells intramuscularly at the femoral region of mice. The animals were divided into control group and three experimental groups (I, II and III. Mice from experimental groups were treated peroraly with 10, 100 and 1000 mg/kg body mass (b.m. of ascorbic acid, respectively, whereas control mice received physiological saline. Mice were sacrified after 7, 14 and 21 days from the beginning of the experiment. Total tumor mass and its pathohistological characteristics, spleen mass and cellularity as well as relative and total numbers of T cells, B cells and T cell subsets (CD4+ and CD8+ in the spleen, were analyzed. High doses of ascorbic acid decreased tumor mass, stimulated proliferation of fibroblasts and formation of capsula arround the tumor, induced tumor necrosis and increased the number of tumor infiltrating lymphocytes. Changes of lymphocyte subsets and their numbers varied depending on the applied dose of ascorbic acid and the time elapsed following tumor induction. The most prominent changes, manifested by an increase in the number of CD4+ T cells were observed on the 14th day in II experimental group. Our results suggest that the beneficial effect of ascorbic acid on experimental tumorogenesis in our model was the consequence of its influence on the tumor and on the immune system.

  19. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Science.gov (United States)

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  20. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  1. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  2. Niacin and olive oil promote skewing to the M2 phenotype in bone marrow-derived macrophages of mice with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, Maria C; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2016-05-18

    Metabolic syndrome (MetS) is associated with obesity, dyslipemia, type 2 diabetes and chronic low-grade inflammation. The aim of this study was to determine the role of high-fat low-cholesterol diets (HFLCDs) rich in SFAs (HFLCD-SFAs), MUFAs (HFLCD-MUFAs) or MUFAs plus omega-3 long-chain PUFAs (HFLCD-PUFAs) on polarisation and inflammatory potential in bone marrow-derived macrophages (BMDMs) from niacin (NA)-treated Lep(ob/ob)LDLR(-/-) mice. Animals fed with HFLCD-SFAs had increased weight and serum triglycerides, and their BMDMs accumulated triglycerides over the animals fed with HFLCD-MUFAs or -PUFAs. Furthermore, BMDMs from animals fed with HFLCD-SFAs were polarised towards the M1 phenotype with functional competence to produce pro-inflammatory cytokines, whereas BMDMs from animals fed with HFLCD-MUFAs or -PUFAs were skewed to the anti-inflammatory M2 phenotype. These findings open opportunities for developing novel nutritional strategies with olive oil as the most important dietary source of MUFAs (notably oleic acid) to prevent development and progression of metabolic complications in the NA-treated MetS.

  3. Novel method for high-throughput phenotyping of sleep in mice.

    Science.gov (United States)

    Pack, Allan I; Galante, Raymond J; Maislin, Greg; Cater, Jacqueline; Metaxas, Dimitris; Lu, Shan; Zhang, Lin; Von Smith, Randy; Kay, Timothy; Lian, Jie; Svenson, Karen; Peters, Luanne L

    2007-01-17

    Assessment of sleep in mice currently requires initial implantation of chronic electrodes for assessment of electroencephalogram (EEG) and electromyogram (EMG) followed by time to recover from surgery. Hence, it is not ideal for high-throughput screening. To address this deficiency, a method of assessment of sleep and wakefulness in mice has been developed based on assessment of activity/inactivity either by digital video analysis or by breaking infrared beams in the mouse cage. It is based on the algorithm that any episode of continuous inactivity of > or =40 s is predicted to be sleep. The method gives excellent agreement in C57BL/6J male mice with simultaneous assessment of sleep by EEG/EMG recording. The average agreement over 8,640 10-s epochs in 24 h is 92% (n = 7 mice) with agreement in individual mice being 88-94%. Average EEG/EMG determined sleep per 2-h interval across the day was 59.4 min. The estimated mean difference (bias) per 2-h interval between inactivity-defined sleep and EEG/EMG-defined sleep was only 1.0 min (95% confidence interval for mean bias -0.06 to +2.6 min). The standard deviation of differences (precision) was 7.5 min per 2-h interval with 95% limits of agreement ranging from -13.7 to +15.7 min. Although bias significantly varied by time of day (P = 0.0007), the magnitude of time-of-day differences was not large (average bias during lights on and lights off was +5.0 and -3.0 min per 2-h interval, respectively). This method has applications in chemical mutagenesis and for studies of molecular changes in brain with sleep/wakefulness.

  4. Secondary hyperalgesia phenotypes exhibit differences in brain activation during noxious stimulation

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Pereira, Manuel Pedro; Werner, Mads Utke

    2015-01-01

    of the burn-injury) (p right (p = 0.001) and left caudate nucleus (p = 0.01) was detected....... To study differences in the propensity to develop central sensitization we examined differences in brain activity and anatomy according to individual phenotypical expression of secondary hyperalgesia by magnetic resonance imaging. Forty healthy volunteers received a first-degree burn-injury (47 °C, 7 min......, 9 cm(2)) on the non-dominant lower-leg. Areas of secondary hyperalgesia were assessed 100 min after the injury. We measured neuronal activation by recording blood-oxygen-level-dependent-signals (BOLD-signals) during mechanical noxious stimulation before burn injury and in both primary and secondary...

  5. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.

    Directory of Open Access Journals (Sweden)

    Qin Liu

    Full Text Available Mutations in the retinitis pigmentosa 1 (RP1 gene are a common cause of autosomal dominant retinitis pigmentosa (adRP, and have also been found to cause autosomal recessive RP (arRP in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39 are located in the 4(th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd exon of RP1 (c.686delC; p.P229QfsX35 found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.

  6. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    Science.gov (United States)

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  7. Genetic interactions between planar cell polarity genes cause diverse neural tube defects in mice

    Directory of Open Access Journals (Sweden)

    Jennifer N. Murdoch

    2014-10-01

    Full Text Available Neural tube defects (NTDs are among the commonest and most severe forms of developmental defect, characterized by disruption of the early embryonic events of central nervous system formation. NTDs have long been known to exhibit a strong genetic dependence, yet the identity of the genetic determinants remains largely undiscovered. Initiation of neural tube closure is disrupted in mice homozygous for mutations in planar cell polarity (PCP pathway genes, providing a strong link between NTDs and PCP signaling. Recently, missense gene variants have been identified in PCP genes in humans with NTDs, although the range of phenotypes is greater than in the mouse mutants. In addition, the sequence variants detected in affected humans are heterozygous, and can often be detected in unaffected individuals. It has been suggested that interactions between multiple heterozygous gene mutations cause the NTDs in humans. To determine the phenotypes produced in double heterozygotes, we bred mice with all three pairwise combinations of Vangl2Lp, ScribCrc and Celsr1Crsh mutations, the most intensively studied PCP mutants. The majority of double-mutant embryos had open NTDs, with the range of phenotypes including anencephaly and spina bifida, therefore reflecting the defects observed in humans. Strikingly, even on a uniform genetic background, variability in the penetrance and severity of the mutant phenotypes was observed between the different double-heterozygote combinations. Phenotypically, Celsr1Crsh;Vangl2Lp;ScribCrc triply heterozygous mutants were no more severe than doubly heterozygous or singly homozygous mutants. We propose that some of the variation between double-mutant phenotypes could be attributed to the nature of the protein disruption in each allele: whereas ScribCrc is a null mutant and produces no Scrib protein, Celsr1Crsh and Vangl2Lp homozygotes both express mutant proteins, consistent with dominant effects. The variable outcomes of these genetic

  8. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  9. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Generation and Characterization of Mice Expressing a Conditional Allele of the Interleukin-1 Receptor Type 1.

    Directory of Open Access Journals (Sweden)

    Matthew J Robson

    Full Text Available The cytokines IL-1α and IL-1β exert powerful pro-inflammatory actions throughout the body, mediated primarily by the intracellular signaling capacity of the interleukin-1 receptor (IL-1R1. Although Il1r1 knockout mice have been informative with respect to a requirement for IL-1R1 signaling in inflammatory events, the constitutive nature of gene elimination has limited their utility in the assessment of temporal and spatial patterns of cytokine action. To pursue such questions, we have generated C57Bl/6J mice containing a floxed Il1r1 gene (Il1r1loxP/loxP, with loxP sites positioned to flank exons 3 and 4 and thereby the ability to spatially and temporally eliminate Il1r1 expression and signaling. We found that Il1r1loxP/loxP mice breed normally and exhibit no gross physical or behavioral phenotypes. Moreover, Il1r1loxP/loxP mice exhibit normal IL-1R1 receptor expression in brain and spleen, as well as normal IL-1R1-dependent increases in serum IL-6 following IL-1α injections. Breeding of Il1r1loxP/loxP mice to animals expressing a cytomegalovirus (CMV-driven Cre recombinase afforded efficient excision at the Il1r1 locus. The Il1r1loxP/loxP line should be a valuable tool for the assessment of contributions made by IL-1R1 signaling in diverse cell types across development.

  11. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice

    Science.gov (United States)

    Dachtler, James; Elliott, Christina; Rodgers, R. John; Baillie, George S.; Clapcote, Steven J.

    2016-01-01

    Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal ‘head’ domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1’s C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1D453G mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1D453G mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1D453G mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans. PMID:26728762

  12. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping.

    Science.gov (United States)

    Laughlin, Maren R; Lloyd, K C Kent; Cline, Gary W; Wasserman, David H

    2012-10-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community's needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses.

  13. Chronic psychosocial stress disturbs long-bone growth in adolescent mice

    Directory of Open Access Journals (Sweden)

    Sandra Foertsch

    2017-12-01

    Full Text Available Although a strong association between psychiatric and somatic disorders is generally accepted, little is known regarding the interrelationship between mental and skeletal health. Although depressive disorders have been shown to be strongly associated with osteoporosis and increased fracture risk, evidence from post-traumatic stress disorder (PTSD patients is less consistent. Therefore, the present study investigated the influence of chronic psychosocial stress on bone using a well-established murine model for PTSD. C57BL/6N mice (7 weeks old were subjected to chronic subordinate colony housing (CSC for 19 days, whereas control mice were singly housed. Anxiety-related behavior was assessed in the open-field/novel-object test, after which the mice were euthanized to assess endocrine and bone parameters. CSC mice exhibited increased anxiety-related behavior in the open-field/novel-object test, increased adrenal and decreased thymus weights, and unaffected plasma morning corticosterone. Microcomputed tomography and histomorphometrical analyses revealed significantly reduced tibia and femur lengths, increased growth-plate thickness and reduced mineral deposition at the growth plate, suggesting disturbed endochondral ossification during long-bone growth. This was associated with reduced Runx2 expression in hypertrophic chondrocytes in the growth plate. Trabecular thicknesses and bone mineral density were significantly increased in CSC compared to singly housed mice. Tyrosine hydroxylase expression was increased in bone marrow cells located at the growth plates of CSC mice, implying that local adrenergic signaling might be involved in the effects of CSC on the skeletal phenotype. In conclusion, chronic psychosocial stress negatively impacts endochondral ossification in the growth plate, affecting both longitudinal and appositional bone growth in adolescent mice.

  14. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level

    Directory of Open Access Journals (Sweden)

    Wang Jia

    2009-11-01

    Full Text Available Abstract Background Protein kinase C interacting protein (PKCI/HINT1 is a small protein belonging to the histidine triad (HIT family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. Results Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST and the tail suspension (TST tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. Conclusion PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.

  15. Transfer of gut microbiota from lean and obese mice to antibiotic-treated mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Selfjord, Ellika; Larsen, Christian S.

    2014-01-01

    of the donor phenotype were partly transmissible from obese to lean mice, in particularly beta cell hyperactivity in the obese recipients. Thus, a successful inoculation of gut microbiota was not age dependent in order for the microbes to colonize, and transferring different microbial compositions...

  16. Constitutive luteinizing hormone receptor signaling causes sexual dysfunction and Leydig cell adenomas in male mice.

    Science.gov (United States)

    Hai, Lan; Hiremath, Deepak S; Paquet, Marilène; Narayan, Prema

    2017-05-01

    The luteinizing hormone receptor (LHCGR) is necessary for fertility, and genetic mutations cause defects in reproductive development and function. Activating mutations in LHCGR cause familial male-limited precocious puberty (FMPP). We have previously characterized a mouse model (KiLHRD582G) for FMPP that exhibits the same phenotype of precocious puberty, Leydig cell hyperplasia, and elevated testosterone as boys with the disorder. We observed that KiLHRD582G male mice became infertile by 6 months of age, although sperm count and motility were normal. In this study, we sought to determine the reason for the progressive infertility and the long-term consequences of constant LHCGR signaling. Mating with superovulated females showed that infertile KiLHRD582G mice had functional sperm and normal accessory gland function. Sexual behavior studies revealed that KiLHRD582G mice mounted females, but intromission was brief and ejaculation was not achieved. Histological analysis of the reproductive tract showed unique metaplastic changes resulting in pseudostratified columnar epithelial cells with cilia in the ampulla and chondrocytes in the penile body of the KiLHRD582G mice. The infertile KiLHRD582G exhibited enlarged sinusoids and a decrease in smooth muscle content in the corpora cavernosa of the penile body. However, collagen content was unchanged. Leydig cell adenomas and degenerating seminiferous tubules were seen in 1-year-old KiLHRD582G mice. We conclude that progressive infertility in KiLHRD582G mice is due to sexual dysfunction likely due to functional defects in the penis. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please journals.permissions@oup.com.

  17. Uremia does not affect neointima formation in mice

    DEFF Research Database (Denmark)

    Aarup, Annemarie; Nielsen, Carsten H; Bisgaard, Line S

    2017-01-01

    Atherosclerotic cardiovascular disease is a major complication of chronic kidney disease (CKD). CKD leads to uremia, which modulates the phenotype of aortic smooth muscle cells (SMCs). Phenotypic modulation of SMCs plays a key role in accelerating atherosclerosis. We investigated the hypothesis...... that uremia potentiates neointima formation in response to vascular injury in mice. Carotid wire injury was performed on C57BL/6 wt and apolipoprotein E knockout (Apoe-/-) mice two weeks after induction of uremia by 5/6 nephrectomy. Wire injury led to neointima formation and downregulation of genes encoding...... classical SMC markers (i.e., myocardin, α-smooth muscle actin, SM22-alpha, and smooth muscle myosin heavy chain) in both wt and Apoe-/-mice. Contrary to our expectations, uremia did not potentiate neointima formation, nor did it affect intimal lesion composition as judged from magnetic resonance imaging...

  18. Generation and analysis of knock-in mice carrying pseudohypoaldosteronism type II-causing mutations in the cullin 3 gene.

    Science.gov (United States)

    Araki, Yuya; Rai, Tatemitsu; Sohara, Eisei; Mori, Takayasu; Inoue, Yuichi; Isobe, Kiyoshi; Kikuchi, Eriko; Ohta, Akihito; Sasaki, Sei; Uchida, Shinichi

    2015-10-21

    Pseudohypoaldosteronism type II (PHAII) is a hereditary hypertensive disease caused by mutations in four different genes: with-no-lysine kinases (WNK) 1 and 4, Kelch-like family member 3 (KLHL3), and cullin 3 (Cul3). Cul3 and KLHL3 form an E3 ligase complex that ubiquitinates and reduces the expression level of WNK4. PHAII-causing mutations in WNK4 and KLHL3 impair WNK4 ubiquitination. However, the molecular pathogenesis of PHAII caused by Cul3 mutations is unclear. In cultured cells and human leukocytes, PHAII-causing Cul3 mutations result in the skipping of exon 9, producing mutant Cul3 protein lacking 57 amino acids. However, whether this phenomenon occurs in the kidneys and is responsible for the pathogenesis of PHAII in vivo is unknown. We generated knock-in mice carrying a mutation in the C-terminus of intron 8 of Cul3, c.1207-1G>A, which corresponds to a PHAII-causing mutation in the human Cul3 gene. Heterozygous Cul3(G(-1)A/+) knock-in mice did not exhibit PHAII phenotypes, and the skipping of exon 9 was not evident in their kidneys. However, the level of Cul3 mRNA expression in the kidneys of heterozygous knock-in mice was approximately half that of wild-type mice. Furthermore, homozygous knock-in mice were nonviable. It suggested that the mutant allele behaved like a knockout allele and did not produce Cul3 mRNA lacking exon 9. A reduction in Cul3 expression alone was not sufficient to develop PHAII in the knock-in mice. Our findings highlighted the pathogenic role of mutant Cul3 protein and provided insight to explain why PHAII-causing mutations in Cul3 cause kidney-predominant PHAII phenotypes. © 2015. Published by The Company of Biologists Ltd.

  19. Epigallocatechin-3-gallate (EGCG) consumption in the Ts65Dn model of Down syndrome fails to improve behavioral deficits and is detrimental to skeletal phenotypes.

    Science.gov (United States)

    Stringer, Megan; Abeysekera, Irushi; Thomas, Jared; LaCombe, Jonathan; Stancombe, Kailey; Stewart, Robert J; Dria, Karl J; Wallace, Joseph M; Goodlett, Charles R; Roper, Randall J

    2017-08-01

    Down syndrome (DS) is caused by three copies of human chromosome 21 (Hsa21) and results in phenotypes including intellectual disability and skeletal deficits. Ts65Dn mice have three copies of ~50% of the genes homologous to Hsa21 and display phenotypes associated with DS, including cognitive deficits and skeletal abnormalities. DYRK1A is found in three copies in humans with Trisomy 21 and in Ts65Dn mice, and is involved in a number of critical pathways including neurological development and osteoclastogenesis. Epigallocatechin-3-gallate (EGCG), the main polyphenol in green tea, inhibits Dyrk1a activity. We have previously shown that EGCG treatment (~10mg/kg/day) improves skeletal abnormalities in Ts65Dn mice, yet the same dose, as well as ~20mg/kg/day did not rescue deficits in the Morris water maze spatial learning task (MWM), novel object recognition (NOR) or balance beam task (BB). In contrast, a recent study reported that an EGCG-containing supplement with a dose of 2-3mg per day (~40-60mg/kg/day) improved hippocampal-dependent task deficits in Ts65Dn mice. The current study investigated if an EGCG dosage similar to that study would yield similar improvements in either cognitive or skeletal deficits. Ts65Dn mice and euploid littermates were given EGCG [0.4mg/mL] or a water control, with treatments yielding average daily intakes of ~50mg/kg/day EGCG, and tested on the multivariate concentric square field (MCSF)-which assesses activity, exploratory behavior, risk assessment, risk taking, and shelter seeking-and NOR, BB, and MWM. EGCG treatment failed to improve cognitive deficits; EGCG also produced several detrimental effects on skeleton in both genotypes. In a refined HPLC-based assay, its first application in Ts65Dn mice, EGCG treatment significantly reduced kinase activity in femora but not in the cerebral cortex, cerebellum, or hippocampus. Counter to expectation, 9-week-old Ts65Dn mice exhibited a decrease in Dyrk1a protein levels in Western blot analysis

  20. Optimizing the phenotyping of rodent ASD models: enrichment analysis of mouse and human neurobiological phenotypes associated with high-risk autism genes identifies morphological, electrophysiological, neurological, and behavioral features

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2012-02-01

    Full Text Available Abstract Background There is interest in defining mouse neurobiological phenotypes useful for studying autism spectrum disorders (ASD in both forward and reverse genetic approaches. A recurrent focus has been on high-order behavioral analyses, including learning and memory paradigms and social paradigms. However, well-studied mouse models, including for example Fmr1 knockout mice, do not show dramatic deficits in such high-order phenotypes, raising a question as to what constitutes useful phenotypes in ASD models. Methods To address this, we made use of a list of 112 disease genes etiologically involved in ASD to survey, on a large scale and with unbiased methods as well as expert review, phenotypes associated with a targeted disruption of these genes in mice, using the Mammalian Phenotype Ontology database. In addition, we compared the results with similar analyses for human phenotypes. Findings We observed four classes of neurobiological phenotypes associated with disruption of a large proportion of ASD genes, including: (1 Changes in brain and neuronal morphology; (2 electrophysiological changes; (3 neurological changes; and (4 higher-order behavioral changes. Alterations in brain and neuronal morphology represent quantitative measures that can be more widely adopted in models of ASD to understand cellular and network changes. Interestingly, the electrophysiological changes differed across different genes, indicating that excitation/inhibition imbalance hypotheses for ASD would either have to be so non-specific as to be not falsifiable, or, if specific, would not be supported by the data. Finally, it was significant that in analyses of both mouse and human databases, many of the behavioral alterations were neurological changes, encompassing sensory alterations, motor abnormalities, and seizures, as opposed to higher-order behavioral changes in learning and memory and social behavior paradigms. Conclusions The results indicated that mutations

  1. IL-2 receptor γ-chain molecule is critical for intestinal T-cell reconstitution in humanized mice.

    Science.gov (United States)

    Denton, P W; Nochi, T; Lim, A; Krisko, J F; Martinez-Torres, F; Choudhary, S K; Wahl, A; Olesen, R; Zou, W; Di Santo, J P; Margolis, D M; Garcia, J V

    2012-09-01

    Intestinal immune cells are important in host defense, yet the determinants for human lymphoid homeostasis in the intestines are poorly understood. In contrast, lymphoid homeostasis has been studied extensively in mice, where the requirement for a functional common γ-chain molecule has been established. We hypothesized that humanized mice could offer insights into human intestinal lymphoid homeostasis if generated in a strain with an intact mouse common γ-chain molecule. To address this hypothesis, we used three mouse strains (non-obese diabetic (NOD)/severe-combined immunodeficient (SCID) (N/S); NOD/SCID γ-chain(-/-) (NSG); and Rag2(-/-) γ-chain(-/-) (DKO)) and two humanization techniques (bone marrow liver thymus (BLT) and human CD34(+) cell bone marrow transplant of newborn mice (hu)) to generate four common types of humanized mice: N/S-BLT, NSG-BLT, NSG-hu, and DKO-hu mice. The highest levels of intestinal human T cells throughout the small and large intestines were observed in N/S-BLT mice, which have an intact common γ-chain molecule. Furthermore, the small intestine lamina propria T-cell populations of N/S-BLT mice exhibit a human intestine-specific surface phenotype. Thus, the extensive intestinal immune reconstitution of N/S-BLT mice was both quantitatively and qualitatively better when compared with the other models tested such that N/S-BLT mice are well suited for the analysis of human intestinal lymphocyte trafficking and human-specific diseases affecting the intestines.

  2. Of mice and men

    DEFF Research Database (Denmark)

    Andersen, Troels Askhøj; Troelsen, Karin de Linde Lind; Larsen, Lars Allan

    2014-01-01

    CHD is part of the phenotype. Furthermore, mapping of genomic copy number variants and exome sequencing of CHD patients have led to the identification of a large number of candidate disease genes. Experiments in animal models, particularly in mice, have been used to verify human disease genes...

  3. DNA damage preceding dopamine neuron degeneration in A53T human α-synuclein transgenic mice

    International Nuclear Information System (INIS)

    Wang, Degui; Yu, Tianyu; Liu, Yongqiang; Yan, Jun; Guo, Yingli; Jing, Yuhong; Yang, Xuguang; Song, Yanfeng; Tian, Yingxia

    2016-01-01

    Defective DNA repair has been linked with age-associated neurodegenerative disorders. Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by genetic and environmental factors. Whether damages to nuclear DNA contribute to neurodegeneration of PD still remain obscure. in this study we aim to explore whether nuclear DNA damage induce dopamine neuron degeneration in A53T human α-Synuclein over expressed mouse model. We investigated the effects of X-ray irradiation on A53T-α-Syn MEFs and A53T-α-Syn transgene mice. Our results indicate that A53T-α-Syn MEFs show a prolonged DNA damage repair process and senescense phenotype. DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice and decrease the number of nigrostriatal dopaminergic neurons. Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages. - Highlights: • This study explore contribution of DNA damage to neurodegeneration in Parkinson's disease mice. • A53T-α-Syn MEF cells show a prolonged DNA damage repair process and senescense phenotype. • DNA damage preceded onset of motor phenotype in A53T-α-Syn transgenic mice. • DNA damage decrease the number of nigrostriatal dopaminergic neurons. • Neurons of A53T-α-Syn transgenic mice are more fragile to DNA damages.

  4. Mutant Mice Lacking the p53 C-Terminal Domain Model Telomere Syndromes

    Directory of Open Access Journals (Sweden)

    Iva Simeonova

    2013-06-01

    Full Text Available Mutations in p53, although frequent in human cancers, have not been implicated in telomere-related syndromes. Here, we show that homozygous mutant mice expressing p53Δ31, a p53 lacking the C-terminal domain, exhibit increased p53 activity and suffer from aplastic anemia and pulmonary fibrosis, hallmarks of syndromes caused by short telomeres. Indeed, p53Δ31/Δ31 mice had short telomeres and other phenotypic traits associated with the telomere disease dyskeratosis congenita and its severe variant the Hoyeraal-Hreidarsson syndrome. Heterozygous p53+/Δ31 mice were only mildly affected, but decreased levels of Mdm4, a negative regulator of p53, led to a dramatic aggravation of their symptoms. Importantly, several genes involved in telomere metabolism were downregulated in p53Δ31/Δ31 cells, including Dyskerin, Rtel1, and Tinf2, which are mutated in dyskeratosis congenita, and Terf1, which is implicated in aplastic anemia. Together, these data reveal that a truncating mutation can activate p53 and that p53 plays a major role in the regulation of telomere metabolism.

  5. The metabotropic glutamate 5 receptor modulates extinction and reinstatement of methamphetamine-seeking in mice.

    Directory of Open Access Journals (Sweden)

    Rose Chesworth

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant with no therapeutics registered to assist addicts in discontinuing use. Glutamatergic dysfunction has been implicated in the development and maintenance of addiction. We sought to assess the involvement of the metabotropic glutamate 5 receptor (mGlu5 in behaviours relevant to METH addiction because this receptor has been implicated in the actions of other drugs of abuse, including alcohol, cocaine and opiates. mGlu5 knockout (KO mice were tested in intravenous self-administration, conditioned place preference and locomotor sensitization. Self-administration of sucrose was used to assess the response of KO mice to a natural reward. Acquisition and maintenance of self-administration, as well as the motivation to self-administer METH was intact in mGlu5 KO mice. Importantly, mGlu5 KO mice required more extinction sessions to extinguish the operant response for METH, and exhibited an enhanced propensity to reinstate operant responding following exposure to drug-associated cues. This phenotype was not present when KO mice were tested in an equivalent paradigm assessing operant responding for sucrose. Development of conditioned place preference and locomotor sensitization were intact in KO mice; however, conditioned hyperactivity to the context previously paired with drug was elevated in KO mice. These data demonstrate a role for mGlu5 in the extinction and reinstatement of METH-seeking, and suggests a role for mGlu5 in regulating contextual salience.

  6. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  7. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jamie K Wong

    Full Text Available Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP signaling, results in neuroprotection in an ischemia-reperfusion (I/R stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1(-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO, Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.

  8. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  9. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    Science.gov (United States)

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.

  10. Changes in the reproductive function and developmental phenotypes in mice following intramuscular injection of an activin betaA-expressing plasmid

    Directory of Open Access Journals (Sweden)

    Mayo Kelly E

    2008-12-01

    Full Text Available Abstract Background The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model. Methods To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection. Results Activin betaA mRNA was detected in the muscle by RT-PCR and subsequent Southern blot analysis. Activin betaA was also detected, and western blot analysis revealed a relatively high level of serum activin with correspondingly increased FSH. In the pCMV-rAct-injected female mice, estrus stage within the estrous cycle was extended. Moreover, increased numbers of corpora lutea and a thickened granulosa cell layer with a small antrum in tertiary follicles within the ovary were observed. When injected female mice were mated with males of proven fertility, a subset of embryos died in utero, and most of those that survived exhibited increased body weight. Conclusion Taken together, our data reveal that activin betaA can directly influence the estrous cycle, an integral part of the reproduction in female mice and activin betaA can also influence the embryo development as an endocrine fashion.

  11. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  12. Behavioral phenotyping of mice in pharmacological and toxicological research.

    Science.gov (United States)

    Karl, Tim; Pabst, Reinhard; von Hörsten, Stephan

    2003-07-01

    The evaluation of behavioral effects is an important component for the in vivo screening of drugs or potentially toxic compounds in mice. Ideally, such screening should be composed of monitoring general health, sensory functions, and motor abilities, right before specific behavioral domains are tested. A rational strategy in the design and procedure of testing as well as an effective composition of different well-established and reproducible behavioral tests can minimize the risk of false positive and false negative results in drug screening. In the present review we describe such basic considerations in planning experiments, selecting strains of mice, and propose groups of behavioral tasks suitable for a reliable detection of differences in specific behavioral domains in mice. Screening of general health and neurophysiologic functions (reflexes, sensory abilities) and motor function (pole test, wire hang test, beam walking, rotarod, accelerod, and footprint) as well as specific hypothesis-guided testing in the behavioral domains of learning and memory (water maze, radial maze, conditioned fear, and avoidance tasks), emotionality (open field, hole board, elevated plus maze, and object exploration), nociception (tail flick, hot plate), psychiatric-like conditions (porsolt swim test, acoustic startle response, and prepulse inhibition), and aggression (isolation-induced aggression, spontaneous aggression, and territorial aggression) are described in further detail. This review is designed to describe a general approach, which increases reliability of behavioral screening. Furthermore, it provides an overview on a selection of specific procedures suitable for but not limited to behavioral screening in pharmacology and toxicology.

  13. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In vivo mutational analysis of the N-terminal region of HIV-1 Nef reveals critical motifs for the development of an AIDS-like disease in CD4C/HIV transgenic mice

    International Nuclear Information System (INIS)

    Hanna, Zaher; Priceputu, Elena; Kay, Denis G.; Poudrier, Johanne; Chrobak, Pavel; Jolicoeur, Paul

    2004-01-01

    HIV-1 Nef is a critical determinant of pathogenicity in humans and transgenic (Tg) mice. To gain a better understanding of the molecular mechanisms by which Nef induces an AIDS-like disease in Tg mice, a mutational analysis of the N-terminal domain, involved in anchoring Nef to the plasma membrane, was carried out. The pathogenic effects of these Nef mutant alleles were evaluated in Tg mice by FACS analysis and by histopathological assessment. Mutation of the myristoylation site (G2A) completely abrogated the development of the AIDS-like organ disease in Tg mice, although partial downregulation of the CD4 cell surface protein and depletion of peripheral CD4 + T-cells, but not of CD4 + CD8 + thymocytes, still occurred. Despite that, the peripheral CD4 + T cells expressing Nef G2A show normal spontaneous proliferation in vivo or after stimulation in vitro, including in an allogenic mixed leukocyte reaction (MLR). Three other internal deletion mutants of Nef, spanning amino acids 8-17 (Nef Δ8-17 ), 25-35 (Nef Δ25-35 ), and 57-66 (Nef Δ57-66 ), were also studied. Nef Δ8-17 retained full pathogenic potential, although Nef Δ25-35 and Nef Δ57-66 Tg mice were free of organ disease. However, Nef Δ25-35 Tg mice exhibited disorganization of thymic architecture and a partial depletion of peripheral CD4 + T cells. These data indicate that myristoylation and other regions at the N-terminus of Nef (aa 25-35 and 57-66) are involved in mediating severe T-cell phenotypes and organ disease, although residues 8-17 are dispensable for these Nef functions. In addition, these results indicate that at least some of the CD4 + T-cell phenotypes can develop independently of the other AIDS-like organ phenotypes. This apparent segregation of different Nef-mediated phenotypes suggests distinct mechanisms of Nef action in different populations of target cells, and may be relevant to human AIDS

  15. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  16. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  17. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    International Nuclear Information System (INIS)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-01-01

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN +/− mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN −/− mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN −/− mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN −/− mice were generated using TALEN technique. • TPRN −/− mice presented progressive hearing loss. • WT and TPRN −/− mice showed no difference in hair cell numbers. • TPRN −/− mice showed progressive degeneration of hair cell stereocilia.

  18. Effect of Oxidized Dextran on Cytokine Production and Activation of IRF3 Transcription Factor in Macrophages from Mice of Opposite Strains with Different Sensitivity to Tuberculosis Infection.

    Science.gov (United States)

    Chechushkov, A V; Kozhin, P M; Zaitseva, N S; Gainutdinov, P I; Men'shchikova, E B; Troitskii, A V; Shkurupy, V A

    2018-04-16

    We studied differences in the production of pro- and anti-inflammatory cytokines and IRF3 transcription factor by peritoneal macrophages from mice of opposite strains CBA/J and C57Bl/6 and the effect of 60-kDa oxidized dextran on these parameters. Macrophages from C57Bl/6 mice were mainly characterized by the production of proinflammatory cytokines TNFα, IL-12, and MCP-1 (markers of M1 polarization). By contrast, CBA/J mice exhibited a relatively high level of anti-inflammatory cytokine IL-10 and lower expression of proinflammatory cytokines (M2 phenotype). IRF3 content in peritoneal macrophages of CBA/J mice was higher than in C57Bl/6 mice. Oxidized dextran decreased the expression of IRF3 upon stimulation of cells from CBA/J mice with LPS, but increased this process in C57Bl/6 mice. Despite a diversity of oxidized dextran-induced changes in cytokine production, the data confirm our hypothesis that this agent can stimulate the alternative activation of macrophages.

  19. Cardiac dysfunction and peri-weaning mortality in malonyl-coenzyme A decarboxylase (MCD) knockout mice as a consequence of restricting substrate plasticity.

    Science.gov (United States)

    Aksentijević, Dunja; McAndrew, Debra J; Karlstädt, Anja; Zervou, Sevasti; Sebag-Montefiore, Liam; Cross, Rebecca; Douglas, Gillian; Regitz-Zagrosek, Vera; Lopaschuk, Gary D; Neubauer, Stefan; Lygate, Craig A

    2014-10-01

    Inhibition of malonyl-coenzyme A decarboxylase (MCD) shifts metabolism from fatty acid towards glucose oxidation, which has therapeutic potential for obesity and myocardial ischemic injury. However, ~40% of patients with MCD deficiency are diagnosed with cardiomyopathy during infancy. To clarify the link between MCD deficiency and cardiac dysfunction in early life and to determine the contributing systemic and cardiac metabolic perturbations. MCD knockout mice ((-/-)) exhibited non-Mendelian genotype ratios (31% fewer MCD(-/-)) with deaths clustered around weaning. Immediately prior to weaning (18days) MCD(-/-) mice had lower body weights, elevated body fat, hepatic steatosis and glycogen depletion compared to wild-type littermates. MCD(-/-) plasma was hyperketonemic, hyperlipidemic, had 60% lower lactate levels and markers of cellular damage were elevated. MCD(-/-) hearts exhibited hypertrophy, impaired ejection fraction and were energetically compromised (32% lower total adenine nucleotide pool). However differences between WT and MCD(-/-) converged with age, suggesting that, in surviving MCD(-/-) mice, early cardiac dysfunction resolves over time. These observations were corroborated by in silico modelling of cardiomyocyte metabolism, which indicated improvement of the MCD(-/-) metabolic phenotype and improved cardiac efficiency when switched from a high-fat diet (representative of suckling) to a standard post-weaning diet, independent of any developmental changes. MCD(-/-) mice consistently exhibited cardiac dysfunction and severe metabolic perturbations while on a high-fat, low carbohydrate diet of maternal milk and these gradually resolved post-weaning. This suggests that dysfunction is a common feature of MCD deficiency during early development, but that severity is dependent on composition of dietary substrates. Copyright © 2014. Published by Elsevier Ltd.

  20. Phenotypic and evolutionary implications of modulating the ERK-MAPK cascade using the dentition as a model

    Science.gov (United States)

    Marangoni, Pauline; Charles, Cyril; Tafforeau, Paul; Laugel-Haushalter, Virginie; Joo, Adriane; Bloch-Zupan, Agnès; Klein, Ophir D.; Viriot, Laurent

    2015-06-01

    The question of phenotypic convergence across a signalling pathway has important implications for both developmental and evolutionary biology. The ERK-MAPK cascade is known to play a central role in dental development, but the relative roles of its components remain unknown. Here we investigate the diversity of dental phenotypes in Spry2-/-, Spry4-/-, and Rsk2-/Y mice, including the incidence of extra teeth, which were lost in the mouse lineage 45 million years ago (Ma). In addition, Sprouty-specific anomalies mimic a phenotype that is absent in extant mice but present in mouse ancestors prior to 9 Ma. Although the mutant lines studied display convergent phenotypes, each gene has a specific role in tooth number determination and crown patterning. The similarities found between teeth in fossils and mutants highlight the pivotal role of the ERK-MAPK cascade during the evolution of the dentition in rodents.

  1. Enhanced glucose tolerance in pancreatic-derived factor (PANDER knockout C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shari L. Moak

    2014-11-01

    Full Text Available Pancreatic-derived factor (PANDER; also known as FAM3B is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D. Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57 model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.

  2. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss.

    Science.gov (United States)

    DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R; Maridas, David E; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R; Rosen, Clifford J

    2015-11-01

    Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21.

  3. Beneficial renal and pancreatic phenotypes in a mouse deficient in FXYD2 regulatory subunit of Na,K-ATPase

    Directory of Open Access Journals (Sweden)

    Elena eArystarkhova

    2016-03-01

    Full Text Available The fundamental role of Na,K-ATPase in eukaryotic cells calls for complex and efficient regulation of its activity. Besides alterations in gene expression and trafficking, kinetic properties of the pump are modulated by reversible association with single span membrane proteins, the FXYDs. Seven members of the family are expressed in a tissue-specific manner, affecting pump kinetics in all possible permutations. This mini-review focuses on functional properties of FXYD2 studied in transfected cells, and on noteworthy and unexpected phenotypes discovered in a Fxyd2-/- mouse. FXYD2, the gamma subunit, reduces activity of Na,K-ATPase either by decreasing affinity for Na+, or reducing Vmax. FXYD2 mRNA splicing and editing provide another layer for regulation of Na,K-ATPase. In kidney of knockouts, there was elevated activity for Na,K-ATPase and for NCC and NKCC2 apical sodium transporters. That should lead to sodium retention and hypertension, however, the mice were in sodium balance and normotensive. Adult Fxyd2-/- mice also exhibited a mild pancreatic phenotype with enhanced glucose tolerance, elevation of circulating insulin, but no insulin resistance. There was an increase in beta cell proliferation and beta cell mass that correlated with activation of the PI3K-Akt pathway. The Fxyd2-/- mice are thus in a highly desirable state: the animals are resistant to Na+ retention, and showed improved glucose control, i.e. they display favorable metabolic adaptations to protect against development of salt-sensitive hypertension and diabetes. Investigation of the mechanisms of these adaptations in the mouse has the potential to unveil a novel therapeutic FXYD2-dependent strategy.

  4. ENU Mutagenesis in Mice Identifies Candidate Genes For Hypogonadism

    Science.gov (United States)

    Weiss, Jeffrey; Hurley, Lisa A.; Harris, Rebecca M.; Finlayson, Courtney; Tong, Minghan; Fisher, Lisa A.; Moran, Jennifer L.; Beier, David R.; Mason, Christopher; Jameson, J. Larry

    2012-01-01

    Genome-wide mutagenesis was performed in mice to identify candidate genes for male infertility, for which the predominant causes remain idiopathic. Mice were mutagenized using N-ethyl-N-nitrosourea (ENU), bred, and screened for phenotypes associated with the male urogenital system. Fifteen heritable lines were isolated and chromosomal loci were assigned using low density genome-wide SNP arrays. Ten of the fifteen lines were pursued further using higher resolution SNP analysis to narrow the candidate gene regions. Exon sequencing of candidate genes identified mutations in mice with cystic kidneys (Bicc1), cryptorchidism (Rxfp2), restricted germ cell deficiency (Plk4), and severe germ cell deficiency (Prdm9). In two other lines with severe hypogonadism candidate sequencing failed to identify mutations, suggesting defects in genes with previously undocumented roles in gonadal function. These genomic intervals were sequenced in their entirety and a candidate mutation was identified in SnrpE in one of the two lines. The line harboring the SnrpE variant retains substantial spermatogenesis despite small testis size, an unusual phenotype. In addition to the reproductive defects, heritable phenotypes were observed in mice with ataxia (Myo5a), tremors (Pmp22), growth retardation (unknown gene), and hydrocephalus (unknown gene). These results demonstrate that the ENU screen is an effective tool for identifying potential causes of male infertility. PMID:22258617

  5. Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice.

    Directory of Open Access Journals (Sweden)

    Leonora E Long

    Full Text Available The cannabis constituent cannabidiol (CBD possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT received vehicle or CBD (1, 50 or 100 mg/kg i.p. for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg also selectively increased GABA(A receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.

  6. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  7. Uremia modulates the phenotype of aortic smooth muscle cells

    DEFF Research Database (Denmark)

    Madsen, Marie; Pedersen, Annemarie Aarup; Albinsson, Sebastian

    2017-01-01

    the phenotype of aortic SMCs in vivo. METHODS: Moderate uremia was induced by 5/6 nephrectomy in apolipoprotein E knockout (ApoE(-/-)) and wildtype C57Bl/6 mice. Plasma analysis, gene expression, histology, and myography were used to determine uremia-mediated changes in the arterial wall. RESULTS: Induction...... of moderate uremia in ApoE(-/-) mice increased atherosclerosis in the aortic arch en face 1.6 fold (p = 0.04) and induced systemic inflammation. Based on histological analyses of aortic root sections, uremia increased the medial area, while there was no difference in the content of elastic fibers or collagen...... in the aortic media. In the aortic arch, mRNA and miRNA expression patterns were consistent with a uremia-mediated phenotypic modulation of SMCs; e.g. downregulation of myocardin, α-smooth muscle actin, and transgelin; and upregulation of miR146a. Notably, these expression patterns were observed after acute (2...

  8. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  9. Piperine Augments the Protective Effect of Curcumin Against Lipopolysaccharide-Induced Neurobehavioral and Neurochemical Deficits in Mice.

    Science.gov (United States)

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Sharma, Yogita; Saroha, Babita; Datusalia, Ashok Kumar; Bezbaruah, Babul Kumar

    2016-06-01

    The aim of the present study was to investigate the protective effects of curcumin alone and in combination with piperine against lipopolysaccharide (LPS)-induced neurobehavioral and neurochemical deficits in the mice hippocampus. Mice were treated with curcumin (100, 200, and 400 mg/kg, p.o.) and piperine (20 mg/kg, p.o.) for 7 days followed by LPS (0.83 mg/kg, i.p.) administration. Animals exhibited anxiety and depressive-like phenotype after 3 and 24 h of LPS exposure, respectively. LPS administration increased the oxido-nitrosative stress as evident by elevated levels of malondialdehyde, nitrite, and depletion of glutathione level in the hippocampus. Furthermore, we found raised level of pro-inflammatory cytokines (IL-1β and TNF-α) in the hippocampus of LPS-treated mice. Pretreatment with curcumin alleviated LPS-induced neurobehavioral and neurochemical deficits. Furthermore, co-administration of curcumin with piperine significantly potentiated the neuroprotective effect of curcumin. These results demonstrate that piperine enhanced the neuroprotective effect of curcumin against LPS-induced neurobehavioral and neurochemical deficits.

  10. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice.

    Science.gov (United States)

    Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas; Taipaleenmäki, Hanna; Nielsen, Tina Kamilla; Kassem, Moustapha

    2018-06-01

    Obesity represents a risk factor for development of insulin resistance and type 2 diabetes. In addition, it has been associated with increased adipocyte formation in the bone marrow (BM) along with increased risk for bone fragility fractures. However, little is known on the cellular mechanisms that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory genes (Tnfα, IL1β, Lcn2) and did not manifest an insulin resistant phenotype evidenced by normal levels of pAKT after insulin stimulation as well as normal levels of insulin signaling genes. In addition, BM progenitor cells manifested enhanced adipocyte differentiation in HFD condition. Thus, our data demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin resistance and inflammation in the BM suggest that BMAT buffers extra energy in the form of triglycerides and thus plays a role in whole-body energy homeostasis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.

  11. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  12. Quantitative immunofluorescence microscopy of renal glomeruli from mice exhibiting murien lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R H [Lawrence Livermore Lab., CA; Greenspan, J S; Moore, D II; Talal, N; Roubinian, J R

    1981-01-01

    Pathologic changes in renal glomeruli of mice with systemic murine lupus erythematosus were quantified using microfluorophotometry. Cryostat sections were taken from kidneys of affected mice, stained with fluorescein-conjugated anti-mouse immunoglobulin, and the extent of immune complex glomerulonephritis was determined. A subjective microscopic examination procedure, which has been used previously, was compared with quantitative microfluorophotometry and a close correlation between the results using each of the two methods was found. Since the microfluorometric procedure measures the total fluorescence per glomerulus, subjective microscopy must estimate that same quantity in a linear fashion. The present advance in measuring capability indicates good potential for rapid, quantitive measurements for further studies on systemic lupus erythematosus, and on other tissue sections stained with fluorescent antibodies.

  13. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype.

    Science.gov (United States)

    Smythe, Gayle M; White, Jason D

    2011-12-18

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the average daily distance (ranging from 0.003 ± 0.005 km to 4.48 ± 0.96 km), culminating in a wide range (0.040 km to 67.24 km) of total cumulative distances run by individuals. There was also variation in the number and length of run/rest cycles per night, and the average running rate. Correlation analyses demonstrated that in the quadriceps muscle, a low number of high distance run/rest cycles was the most consistent indicator for increased tissue damage. The amount of rest time between running bouts was a key factor associated with gastrocnemius damage. These data emphasize the need for detailed analysis of individual running performance, consideration of the length of wheel exposure time, and the selection of appropriate muscle groups for analysis, when applying the use of voluntary wheel running to disease exacerbation and/or pre-clinical testing of the efficacy of therapeutic agents in the mdx mouse.

  14. Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice.

    Directory of Open Access Journals (Sweden)

    Mandy Sawitzky

    Full Text Available We have investigated molecular mechanisms for muscle mass accretion in a non-inbred mouse model (DU6P mice characterized by extreme muscle mass. This extreme muscle mass was developed during 138 generations of phenotype selection for high protein content. Due to the repeated trait selection a complex setting of different mechanisms was expected to be enriched during the selection experiment. In muscle from 29-week female DU6P mice we have identified robust increases of protein kinase B activation (AKT, Ser-473, up to 2-fold if compared to 11- and 54-week DU6P mice or controls. While a number of accepted effectors of AKT activation, including IGF-I, IGF-II, insulin/IGF-receptor, myostatin or integrin-linked kinase (ILK, were not correlated with this increase, phosphatase and tensin homologue deleted on chromosome 10 (PTEN was down-regulated in 29-week female DU6P mice. In addition, higher levels of PTEN phosphorylation were found identifying a second mechanism of PTEN inhibition. Inhibition of PTEN and activation of AKT correlated with specific activation of p70S6 kinase and ribosomal protein S6, reduced phosphorylation of eukaryotic initiation factor 2α (eIF2α and higher rates of protein synthesis in 29-week female DU6P mice. On the other hand, AKT activation also translated into specific inactivation of glycogen synthase kinase 3ß (GSK3ß and an increase of muscular glycogen. In muscles from 29-week female DU6P mice a significant increase of protein/DNA was identified, which was not due to a reduction of protein breakdown or to specific increases of translation initiation. Instead our data support the conclusion that a higher rate of protein translation is contributing to the higher muscle mass in mid-aged female DU6P mice. Our results further reveal coevolution of high protein and high glycogen content during the selection experiment and identify PTEN as gate keeper for muscle mass in mid-aged female DU6P mice.

  15. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  16. Targeted Disruption of NF1 in Osteocytes Increases FGF23 and Osteoid With Osteomalacia-like Bone Phenotype.

    Science.gov (United States)

    Kamiya, Nobuhiro; Yamaguchi, Ryosuke; Aruwajoye, Olumide; Kim, Audrey J; Kuroyanagi, Gen; Phipps, Matthew; Adapala, Naga Suresh; Feng, Jian Q; Kim, Harry Kw

    2017-08-01

    Neurofibromatosis type 1 (NF1, OMIM 162200), caused by NF1 gene mutations, exhibits multi-system abnormalities, including skeletal deformities in humans. Osteocytes play critical roles in controlling bone modeling and remodeling. However, the role of neurofibromin, the protein product of the NF1 gene, in osteocytes is largely unknown. This study investigated the role of neurofibromin in osteocytes by disrupting Nf1 under the Dmp1-promoter. The conditional knockout (Nf1 cKO) mice displayed serum profile of a metabolic bone disorder with an osteomalacia-like bone phenotype. Serum FGF23 levels were 4 times increased in cKO mice compared with age-matched controls. In addition, calcium-phosphorus metabolism was significantly altered (calcium reduced; phosphorus reduced; parathyroid hormone [PTH] increased; 1,25(OH) 2 D decreased). Bone histomorphometry showed dramatically increased osteoid parameters, including osteoid volume, surface, and thickness. Dynamic bone histomorphometry revealed reduced bone formation rate and mineral apposition rate in the cKO mice. TRAP staining showed a reduced osteoclast number. Micro-CT demonstrated thinner and porous cortical bones in the cKO mice, in which osteocyte dendrites were disorganized as assessed by electron microscopy. Interestingly, the cKO mice exhibited spontaneous fractures in long bones, as found in NF1 patients. Mechanical testing of femora revealed significantly reduced maximum force and stiffness. Immunohistochemistry showed significantly increased FGF23 protein in the cKO bones. Moreover, primary osteocytes from cKO femora showed about eightfold increase in FGF23 mRNA levels compared with control cells. The upregulation of FGF23 was specifically and significantly inhibited by PI3K inhibitor Ly294002, indicating upregulation of FGF23 through PI3K in Nf1-deficient osteocytes. Taken together, these results indicate that Nf1 deficiency in osteocytes dramatically increases FGF23 production and causes a mineralization

  17. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Roemer, Frank W. [Department of Radiology, Klinikum Augsburg, Augsburg (Germany); Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Boston University Medical Center, Department of Radiology, Boston, MA (United States); Mohr, Andreas [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Sligo General Hospital, Department of Radiology, Sligo (Ireland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Boston, MA (United States); University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); Jiang, Yebin [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); University of Michigan Medical School, Osteoporosis and Arthritis Laboratory, Musculoskeletal Division, Department of Radiology, Ann Arbor, MI (United States); Schlechtweg, Philipp [University of Erlangen, Department of Radiology, Erlangen (Germany); Genant, Harry K. [University of California, San Francisco, Osteoporosis and Arthritis Research Group, San Francisco, CA (United States); CCBR-SYNARC, Inc., San Francisco, CA (United States); Sohaskey, Michael L. [University of California, Berkeley, Department of Molecular and Cell Biology and Center for Integrative Genomics, Berkeley, CA (United States)

    2011-08-15

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  18. Phenotypic characterization of skeletal abnormalities of osteopotentia mutant mice by micro-CT: a descriptive approach with emphasis on reconstruction techniques

    International Nuclear Information System (INIS)

    Roemer, Frank W.; Mohr, Andreas; Guermazi, Ali; Jiang, Yebin; Schlechtweg, Philipp; Genant, Harry K.; Sohaskey, Michael L.

    2011-01-01

    The novel protein osteopotentia (Opt) has recently been described as an essential regulator of postnatal osteoblast maturation and might possibly be responsible for some of the rarer types of osteogenesis imperfecta. Our aim was the evaluation of micro CT for the qualitative morphological assessment of skeletal abnormalities of Osteopotentia-mutant mice in comparison to radiography and histology. Four homozygous mice with insertional mutations in the Opt gene and three wild-type controls were examined ex vivo using radiography and micro-CT. Two of the homozygous animals were evaluated histologically (trichrome reagent). For the micro-CT evaluation three-dimensional (3D) surface reconstructions and two-dimensional (2D) multiplanar reformations (MPRs) were applied. The Opt-homozygous mice exhibited severe growth. The radiographic examinations showed osteopenia and fractures with hypertrophic callus formation and pseudarthroses of the forelimbs and ribs. Micro-CT confirmed these findings and was able to demonstrate additional fractures especially at smaller bones such as the metacarpals and phalanges. Additional characterization and superior delineation of cortices and fracture fragments was achieved by 2D MPRs. Histological correlation verified several of these imaging findings. Micro-CT is able to screen Opt-mutant mice for osseous pathologies and furthermore characterize these anomalies. The modality seems superior to conventional radiography, but is not able to demonstrate cellular pathology. However, histology is destructive and more time- and material-consuming than micro-CT. Additional information may be gathered by 2D MPRs. (orig.)

  19. Phenotypic effects of repeated psychosocial stress during adolescence in mice mutant for the schizophrenia risk gene neuregulin-1: a putative model of gene × environment interaction.

    Science.gov (United States)

    Desbonnet, Lieve; O'Tuathaigh, Colm; Clarke, Gerard; O'Leary, Claire; Petit, Emilie; Clarke, Niamh; Tighe, Orna; Lai, Donna; Harvey, Richard; Cryan, John F; Dinan, Timothy G; Waddington, John L

    2012-05-01

    There is a paucity of animal models by which the contributions of environmental and genetic factors to the pathobiology of psychosis can be investigated. This study examined the individual and combined effects of chronic social stress during adolescence and deletion of the schizophrenia risk gene neuregulin-1 (NRG1) on adult mouse phenotype. Mice were exposed to repeated social defeat stress during adolescence and assessed for exploratory behaviour, working memory, sucrose preference, social behaviour and prepulse inhibition in adulthood. Thereafter, in vitro cytokine responses to mitogen stimulation and corticosterone inhibition were assayed in spleen cells, with measurement of cytokine and brain-derived neurotrophic factor (BDNF) mRNA in frontal cortex, hippocampus and striatum. NRG1 mutants exhibited hyperactivity, decreased anxiety, impaired sensorimotor gating and reduced preference for social novelty. The effects of stress on exploratory/anxiety-related parameters, spatial working memory, sucrose preference and basal cytokine levels were modified by NRG1 deletion. Stress also exerted varied effect on spleen cytokine response to concanavalin A and brain cytokine and BDNF mRNA expression in NRG1 mutants. The experience of psychosocial stress during adolescence may trigger further pathobiological features that contribute to the development of schizophrenia, particularly in those with underlying NRG1 gene abnormalities. This model elaborates the importance of gene × environment interactions in the etiology of schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice

    DEFF Research Database (Denmark)

    Restrepo, Carlos E.; Margaryan, Gayane; Borgius, Lotta

    2011-01-01

    Neuronal networks in the spinal cord termed central pattern generators (CPGs) are responsible for the generation of rhythmic movements, such as walking. The axon guidance molecule EphA4 has been suggested to play a role in the configuration of spinal CPG networks in mammals. In EphA4 knockout (Eph...... compared with EphA4 lacZ/+ mice. These results show that the hopping phenotype is the result of a change in the balance between excitatory and inhibitory signals across the midline and that EphA4-positive neurons play an essential role in the mammalian CPG....

  1. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    Science.gov (United States)

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  2. Compound heterozygosity of the functionally null Cdh23(v-ngt) and hypomorphic Cdh23(ahl) alleles leads to early-onset progressive hearing loss in mice.

    Science.gov (United States)

    Miyasaka, Yuki; Suzuki, Sari; Ohshiba, Yasuhiro; Watanabe, Kei; Sagara, Yoshihiko; Yasuda, Shumpei P; Matsuoka, Kunie; Shitara, Hiroshi; Yonekawa, Hiromichi; Kominami, Ryo; Kikkawa, Yoshiaki

    2013-01-01

    The waltzer (v) mouse mutant harbors a mutation in Cadherin 23 (Cdh23) and is a model for Usher syndrome type 1D, which is characterized by congenital deafness, vestibular dysfunction, and prepubertal onset of progressive retinitis pigmentosa. In mice, functionally null Cdh23 mutations affect stereociliary morphogenesis and the polarity of both cochlear and vestibular hair cells. In contrast, the murine Cdh23(ahl) allele, which harbors a hypomorphic mutation, causes an increase in susceptibility to age-related hearing loss in many inbred strains. We produced congenic mice by crossing mice carrying the v niigata (Cdh23(v-ngt)) null allele with mice carrying the hypomorphic Cdh23(ahl) allele on the C57BL/6J background, and we then analyzed the animals' balance and hearing phenotypes. Although the Cdh23(v-ngt/ahl) compound heterozygous mice exhibited normal vestibular function, their hearing ability was abnormal: the mice exhibited higher thresholds of auditory brainstem response (ABR) and rapid age-dependent elevation of ABR thresholds compared with Cdh23(ahl/ahl) homozygous mice. We found that the stereocilia developed normally but were progressively disrupted in Cdh23(v-ngt/ahl) mice. In hair cells, CDH23 localizes to the tip links of stereocilia, which are thought to gate the mechanoelectrical transduction channels in hair cells. We hypothesize that the reduction of Cdh23 gene dosage in Cdh23(v-ngt/ahl) mice leads to the degeneration of stereocilia, which consequently reduces tip link tension. These findings indicate that CDH23 plays an important role in the maintenance of tip links during the aging process.

  3. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  4. The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease.

    Science.gov (United States)

    Shin, Rick; Kobayashi, Katsunori; Hagihara, Hideo; Kogan, Jeffrey H; Miyake, Shinichi; Tajinda, Katsunori; Walton, Noah M; Gross, Adam K; Heusner, Carrie L; Chen, Qian; Tamura, Kouichi; Miyakawa, Tsuyoshi; Matsumoto, Mitsuyuki

    2013-06-01

    There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy

  5. Sustained alterations of hypothalamic tanycytes during posttraumatic hypopituitarism in male mice.

    Science.gov (United States)

    Osterstock, Guillaume; El Yandouzi, Taoufik; Romanò, Nicola; Carmignac, Danielle; Langlet, Fanny; Coutry, Nathalie; Guillou, Anne; Schaeffer, Marie; Chauvet, Norbert; Vanacker, Charlotte; Galibert, Evelyne; Dehouck, Bénédicte; Robinson, Iain C A F; Prévot, Vincent; Mollard, Patrice; Plesnila, Nikolaus; Méry, Pierre-François

    2014-05-01

    Traumatic brain injury is a leading cause of hypopituitarism, which compromises patients' recovery, quality of life, and life span. To date, there are no means other than standardized animal studies to provide insights into the mechanisms of posttraumatic hypopituitarism. We have found that GH levels were impaired after inducing a controlled cortical impact (CCI) in mice. Furthermore, GHRH stimulation enhanced GH to lower level in injured than in control or sham mice. Because many characteristics were unchanged in the pituitary glands of CCI mice, we looked for changes at the hypothalamic level. Hypertrophied astrocytes were seen both within the arcuate nucleus and the median eminence, two pivotal structures of the GH axis, spatially remote to the injury site. In the arcuate nucleus, GHRH neurons were unaltered. In the median eminence, injured mice exhibited unexpected alterations. First, the distributions of claudin-1 and zonula occludens-1 between tanycytes were disorganized, suggesting tight junction disruptions. Second, endogenous IgG was increased in the vicinity of the third ventricle, suggesting abnormal barrier properties after CCI. Third, intracerebroventricular injection of a fluorescent-dextran derivative highly stained the hypothalamic parenchyma only after CCI, demonstrating an increased permeability of the third ventricle edges. This alteration of the third ventricle might jeopardize the communication between the hypothalamus and the pituitary gland. In conclusion, the phenotype of CCI mice had similarities to the posttraumatic hypopituitarism seen in humans with intact pituitary gland and pituitary stalk. It is the first report of a pathological status in which tanycyte dysfunctions appear as a major acquired syndrome.

  6. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice.

    Science.gov (United States)

    Wang, I-Ting Judy; Allen, Megan; Goffin, Darren; Zhu, Xinjian; Fairless, Andrew H; Brodkin, Edward S; Siegel, Steve J; Marsh, Eric D; Blendy, Julie A; Zhou, Zhaolan

    2012-12-26

    Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in neurodevelopmental disorders including atypical Rett syndrome (RTT), autism spectrum disorders (ASDs), and early infantile epileptic encephalopathy. The biological function of CDKL5 and its role in the etiology of these disorders, however, remain unclear. Here we report the development of a unique knockout mouse model of CDKL5-related disorders and demonstrate that mice lacking CDKL5 show autistic-like deficits in social interaction, as well as impairments in motor control and fear memory. Neurophysiological recordings reveal alterations in event-related potentials (ERPs) similar to those observed in RTT and ASDs. Moreover, kinome profiling uncovers disruption of multiple signal transduction pathways, including the AKT-mammalian target of rapamycin (mTOR) cascade, upon Cdkl5 loss-of-function. These data demonstrate that CDKL5 regulates signal transduction pathways and mediates autistic-like phenotypes and together establish a causal role for Cdkl5 loss-of-function in neurodevelopmental disorders.

  7. Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status.

    Science.gov (United States)

    Kim, Jung H; Rhee, Ye-Y; Bae, Jeong-M; Kwon, Hyeong-J; Cho, Nam-Y; Kim, Mi J; Kang, Gyeong H

    2013-07-01

    Although the presence of MLH1 methylation in microsatellite-unstable colorectal cancer generally indicates involvement of the CpG island methylator phenotype (CIMP) in the development of the tumor, these two conditions do not always correlate. A minority of microsatellite-unstable colorectal cancers exhibit discordance between CIMP and MLH1 methylation statuses. However, the clinicopathological features of such microsatellite-unstable colorectal cancers with discrepant MLH1 methylation and CIMP statuses remain poorly studied. Microsatellite-unstable colorectal cancers (n=220) were analyzed for CIMP and MLH1 methylation statuses using the MethyLight assay. Based on the combinatorial CIMP and MLH1 methylation statuses, the microsatellite-unstable colorectal cancers were grouped into four subtypes (CIMP-high (CIMP-H) MLH1 methylation-positive (MLH1m+), CIMP-H MLH1 methylation-negative, CIMP-low/0 (CIMP-L/0) MLH1m+, and CIMP-L/0 MLH1 methylation-negative), which were compared in terms of their associations with clinicopathological and molecular features. The CIMP-L/0 MLH1 methylation-negative and CIMP-H MLH1m+ subtypes were predominant, comprising 63.6 and 24.1% of total microsatellite-unstable colorectal cancers, respectively. The discordant subtypes, CIMP-H MLH1 methylation-negative and CIMP-L/0 MLH1m+, were found in 5 and 7% of microsatellite-unstable colorectal cancers, respectively. The CIMP-H MLH1 methylation-negative subtype exhibited elevated incidence rates in male patients and was associated with larger tumor size, more frequent loss of MSH2 expression, increased frequency of KRAS mutation, and advanced cancer stage. The CIMP-L/0 MLH1m+ subtype was associated with onset at an earlier age, a predominance of MLH1 loss, and earlier cancer stage. None of the CIMP-L/0 MLH1m+ subtype patients succumbed to death during the follow-up. Our findings suggest that the discordant subtypes of colorectal cancers exhibit distinct clinicopathological and molecular features

  8. A Modified Bacillus Calmette-Guérin (BCG Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence

    Directory of Open Access Journals (Sweden)

    Douglas S. Kernodle

    2013-01-01

    Full Text Available Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.

  9. Phenotypic Changes Exhibited by E. coli Cultured in Space

    Directory of Open Access Journals (Sweden)

    Luis Zea

    2017-08-01

    Full Text Available Bacteria will accompany humans in our exploration of space, making it of importance to study their adaptation to the microgravity environment. To investigate potential phenotypic changes for bacteria grown in space, Escherichia coli was cultured onboard the International Space Station with matched controls on Earth. Samples were challenged with different concentrations of gentamicin sulfate to study the role of drug concentration on the dependent variables in the space environment. Analyses included assessments of final cell count, cell size, cell envelope thickness, cell ultrastructure, and culture morphology. A 13-fold increase in final cell count was observed in space with respect to the ground controls and the space flight cells were able to grow in the presence of normally inhibitory levels of gentamicin sulfate. Contrast light microscopy and focused ion beam/scanning electron microscopy showed that, on average, cells in space were 37% of the volume of their matched controls, which may alter the rate of molecule–cell interactions in a diffusion-limited mass transport regime as is expected to occur in microgravity. TEM imagery showed an increase in cell envelope thickness of between 25 and 43% in space with respect to the Earth control group. Outer membrane vesicles were observed on the spaceflight samples, but not on the Earth cultures. While E. coli suspension cultures on Earth were homogenously distributed throughout the liquid medium, in space they tended to form a cluster, leaving the surrounding medium visibly clear of cells. This cell aggregation behavior may be associated with enhanced biofilm formation observed in other spaceflight experiments.

  10. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  11. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  12. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice

    Science.gov (United States)

    Tomberg, Kärt; Khoriaty, Rami; Westrick, Randal J.; Fairfield, Heather E.; Reinholdt, Laura G.; Brodsky, Gary L.; Davizon-Castillo, Pavel; Ginsburg, David; Di Paola, Jorge

    2016-01-01

    During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp) deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS), an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps) exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10−7). Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains. PMID:26950939

  13. Spontaneous 8bp Deletion in Nbeal2 Recapitulates the Gray Platelet Syndrome in Mice.

    Directory of Open Access Journals (Sweden)

    Kärt Tomberg

    Full Text Available During the analysis of a whole genome ENU mutagenesis screen for thrombosis modifiers, a spontaneous 8 base pair (bp deletion causing a frameshift in exon 27 of the Nbeal2 gene was identified. Though initially considered as a plausible thrombosis modifier, this Nbeal2 mutation failed to suppress the synthetic lethal thrombosis on which the original ENU screen was based. Mutations in NBEAL2 cause Gray Platelet Syndrome (GPS, an autosomal recessive bleeding disorder characterized by macrothrombocytopenia and gray-appearing platelets due to lack of platelet alpha granules. Mice homozygous for the Nbeal2 8 bp deletion (Nbeal2gps/gps exhibit a phenotype similar to human GPS, with significantly reduced platelet counts compared to littermate controls (p = 1.63 x 10-7. Nbeal2gps/gps mice also have markedly reduced numbers of platelet alpha granules and an increased level of emperipolesis, consistent with previously characterized mice carrying targeted Nbeal2 null alleles. These findings confirm previous reports, provide an additional mouse model for GPS, and highlight the potentially confounding effect of background spontaneous mutation events in well-characterized mouse strains.

  14. Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.

    Science.gov (United States)

    Csiszar, Anna; Labinskyy, Nazar; Perez, Viviana; Recchia, Fabio A; Podlutsky, Andrej; Mukhopadhyay, Partha; Losonczy, Gyorgy; Pacher, Pal; Austad, Steven N; Bartke, Andrzej; Ungvari, Zoltan

    2008-11-01

    Hypopituitary Ames dwarf mice have low circulating growth hormone (GH)/IGF-I levels, and they have extended longevity and exhibit many symptoms of delayed aging. To elucidate the vascular consequences of Ames dwarfism we compared endothelial O2(-) and H2O2 production, mitochondrial reactive oxygen species (ROS) generation, expression of antioxidant enzymes, and nitric oxide (NO) production in aortas of Ames dwarf and wild-type control mice. In Ames dwarf aortas endothelial O2(-) and H2O2 production and ROS generation by mitochondria were enhanced compared with those in vessels of wild-type mice. In Ames dwarf aortas there was a less abundant expression of Mn-SOD, Cu,Zn-SOD, glutathione peroxidase (GPx)-1, and endothelial nitric oxide synthase (eNOS). NO production and acetylcholine-induced relaxation were also decreased in aortas of Ames dwarf mice. In cultured wild-type mouse aortas and in human coronary arterial endothelial cells treatment with GH and IGF significantly reduced cellular O2(-) and H2O2 production and ROS generation by mitochondria and upregulated expression of Mn-SOD, Cu,Zn-SOD, GPx-1, and eNOS. Thus GH and IGF-I promote antioxidant phenotypic changes in the endothelial cells, whereas Ames dwarfism leads to vascular oxidative stress.

  15. The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans

    Directory of Open Access Journals (Sweden)

    Bin Qiu

    2016-08-01

    Full Text Available FKBP5 encodes FK506-binding protein 5, a glucocorticoid receptor (GR-binding protein implicated in various psychiatric disorders and alcohol withdrawal severity. The purpose of this study is to characterize alcohol preference and related phenotypes in Fkbp5 knockout (KO mice and to examine the role of FKBP5 in human alcohol consumption. The following experiments were performed to characterize Fkpb5 KO mice. (1 Fkbp5 KO and wild-type (WT EtOH consumption was tested using a two-bottle choice paradigm; (2 The EtOH elimination rate was measured after intraperitoneal (IP injection of 2.0 g/kg EtOH; (3 Blood alcohol concentration (BAC was measured after 3 h limited access of alcohol; (4 Brain region expression of Fkbp5 was identified using LacZ staining; (5 Baseline corticosterone (CORT was assessed. Additionally, two SNPs, rs1360780 (C/T and rs3800373 (T/G, were selected to study the association of FKBP5 with alcohol consumption in humans. Participants were college students (n = 1162 from 21–26 years of age with Chinese, Korean or Caucasian ethnicity. The results, compared to WT mice, for KO mice exhibited an increase in alcohol consumption that was not due to differences in taste sensitivity or alcohol metabolism. Higher BAC was found in KO mice after 3 h of EtOH access. Fkbp5 was highly expressed in brain regions involved in the regulation of the stress response, such as the hippocampus, amygdala, dorsal raphe and locus coeruleus. Both genotypes exhibited similar basal levels of plasma corticosterone (CORT. Finally, single nucleotide polymorphisms (SNPs in FKBP5 were found to be associated with alcohol drinking in humans. These results suggest that the association between FKBP5 and alcohol consumption is conserved in both mice and humans.

  16. Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

    Directory of Open Access Journals (Sweden)

    Katherine A. Willard

    2017-12-01

    Full Text Available Zika virus (ZIKV has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.

  17. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  18. Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability.

    Science.gov (United States)

    Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A; Cepeda, Carlos; Levine, Michael S; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R; Clark, Peter M; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah; Devaskar, Sherin U

    2017-04-01

    We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice. Copyright © 2017 Endocrine Society.

  19. Prolonged Ketamine Effects in Sp4 Hypomorphic Mice: Mimicking Phenotypes of Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Baohu Ji

    Full Text Available It has been well established that schizophrenia patients display impaired NMDA receptor (NMDAR functions as well as exacerbation of symptoms in response to NMDAR antagonists. Abnormal NMDAR signaling presumably contributes to cognitive deficits which substantially contribute to functional disability in schizophrenia. Establishing a mouse genetic model will help investigate molecular mechanisms of hypoglutmatergic neurotransmission in schizophrenia. Here, we examined the responses of Sp4 hypomorphic mice to NMDAR antagonists in electroencephalography and various behavioral paradigms. Sp4 hypomorphic mice, previously reported to have reduced NMDAR1 expression and LTP deficit in hippocampal CA1, displayed increased sensitivity and prolonged responses to NMDAR antagonists. Molecular studies demonstrated reduced expression of glutamic acid decarboxylase 67 (GAD67 in both cortex and hippocampus, consistent with abnormal gamma oscillations in Sp4 hypomorphic mice. On the other hand, human SP4 gene was reported to be deleted in schizophrenia. Several human genetic studies suggested the association of SP4 gene with schizophrenia and other psychiatric disorders. Therefore, elucidation of the Sp4 molecular pathway in Sp4 hypomorphic mice may provide novel insights to our understanding of abnormal NMDAR signaling in schizophrenia.

  20. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  1. Genetic control of susceptibility to apoptosis of thymocytes

    International Nuclear Information System (INIS)

    Mori, N.; Okumoto, M.; Morimoto, J.; Imai, S.; Matsuyama, T.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Genetic control of the susceptibility of thymocytes to radiation-induced apoptosis in mice was investigated by counting dead cells in a selected area of thymic cortex on histological specimens after whole-body X-irradiation. The number of dead cells increased almost linearly with doses in BALB/cHeA and STS/A mice. However, dead cell counts in BALB/cHeA mice were more than twice those in STS/A mice at each dose. C57BL/6N and B10.BR mice exhibited a sensitive phenotype similar to BALB/cHeA mice, while C3H/HeMsNrs and NFS/N mice showed a resistant phenotype similar to STS/A mice. Sex difference in the susceptibility of thymocytes to cell death was not recognized in BALB/cHeA and STS/A mice. Resistance was dominant over susceptibility in the progenies of reciprocal crosses between the two strains, indicating an autosomal inheritance. The segregation ratio of susceptible to resistant phenotype in the backcrosses of (BALB/cHeA X STS/A)F 1 with BALB/cHeA was not significantly different from 1 : 1 and all backcrosses of (BALB/cHeA X STS/A)F 1 with STS/A exhibited a resistant phenotype. The results demonstrated that the difference in the susceptibility of thymocytes to radiation-induced apoptosis in the two strains of mice is due to one major autosomal allele. (author)

  2. Morphometry, ultrastructure, myosin isoforms, and metabolic capacities of the "mini muscles" favoured by selection for high activity in house mice.

    Science.gov (United States)

    Guderley, Helga; Houle-Leroy, Philippe; Diffee, Gary M; Camp, Dana M; Garland, Theodore

    2006-07-01

    Prolonged selective breeding of mice (Mus musculus) for high levels of voluntary wheel running has favoured an unusual phenotype ("mini muscles"), apparently caused by a single Mendelian recessive allele, in which most hind-limb muscles are markedly reduced in mass, but have increased mass-specific activities of mitochondrial enzymes. We examined whether these changes reflect changes in fibre size, number or ultrastructure in normal and "mini-muscle" mice within the two (of four) selectively bred lines (lab designations L3 and L6) that exhibit the phenotype at generations 26 and 27. In both lines, the gastrocnemius and plantaris muscles are smaller in mass (by >50% and 20%, respectively) in affected individuals. The mass-specific activities of mitochondrial enzymes in the gastrocnemius and plantaris muscles were increased in the mini phenotype in both lines, with stronger effects in the gastrocnemius muscle. In the gastrocnemius, the % myosin heavy chain (MHC) IIb was reduced by 50% in L3 and by 30% in L6, whereas the % MHC IIa and I were higher, particularly in L3. Fibre number in the plantaris muscle did not significantly differ between mini and normal muscles, although muscle mass was a significant positive correlate of fibre number. Small fibres were more abundant in mini than normal muscles in L3. Mitochondrial volume density was significantly higher in mini than normal muscle fibres in L3, but not in L6. Microscopy revealed a surprising attribute of the mini muscles: an abundance of small, minimally differentiated, myofibril-containing cells positioned in a disorderly fashion, particularly in the surface layer. We hypothesise that these unusual cells may be satellite cells or type IIb fibres that did not complete their differentiation. Together, these observations suggest that mice with the mini phenotype have reduced numbers of type IIb fibres in many of their hind-limb muscles, leading to a decrease in mass and an increase in mass-specific aerobic capacity

  3. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity

    Science.gov (United States)

    Keeney, JG; O’Bleness, MS; Anderson, N; Davis, JM; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, SM; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D

    2014-01-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ2= 19.1, df = 2, p = 7.0 × 10−5). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by Area Under the Curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  4. Generation of mice lacking DUF1220 protein domains: effects on fecundity and hyperactivity.

    Science.gov (United States)

    Keeney, J G; O'Bleness, M S; Anderson, N; Davis, J M; Arevalo, N; Busquet, N; Chick, W; Rozman, J; Hölter, S M; Garrett, L; Horsch, M; Beckers, J; Wurst, W; Klingenspor, M; Restrepo, D; de Angelis, M Hrabě; Sikela, J M

    2015-02-01

    Sequences encoding DUF1220 protein domains show the most extreme human lineage-specific copy number increase of any coding region in the genome and have been linked to human brain evolution. In addition, DUF1220 copy number (dosage) has been implicated in influencing brain size within the human species, both in normal populations and in individuals associated with brain size pathologies (1q21-associated microcephaly and macrocephaly). More recently, increasing dosage of a subtype of DUF1220 has been linked with increasing severity of the primary symptoms of autism. Despite these intriguing associations, a function for these domains has not been described. As a first step in addressing this question, we have developed the first transgenic model of DUF1220 function by removing the single DUF1220 domain (the ancestral form) encoded in the mouse genome. In a hypothesis generating exercise, these mice were evaluated by 197 different phenotype measurements. While resulting DUF1220-minus (KO) mice show no obvious anatomical peculiarities, they exhibit a significantly reduced fecundity (χ(2) = 19.1, df = 2, p = 7.0 × 10(-5)). Further extensive phenotypic analyses suggest hyperactivity (p < 0.05) of DUF1220 mice and changes in gene expression levels of brain associated with distinct neurological functions and disease. Other changes that met statistical significance include an increase in plasma glucose concentration (as measured by area under the curve, AUC 0-30 and AUC 30-120) in male mutants, fasting glucose levels, reduce sodium levels in male mutants, increased levels of the liver functional indicator ALAT/GPT in males, levels of alkaline phosphatase (also an indicator of liver function), mean R and SR amplitude by electrocardiography, elevated IgG3 levels, a reduced ratio of CD4:CD8 cells, and a reduced frequency of T cells; though it should be noted that many of these differences are quite small and require further examination. The linking of DUF1220 loss to a

  5. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    Directory of Open Access Journals (Sweden)

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  6. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  7. A Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes

    Directory of Open Access Journals (Sweden)

    Kuan-Hsun Wu

    2012-01-01

    Full Text Available Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed that the expression of the fimbrial subunit gene fimA, and fimZ, a regulatory gene of fimA, were both increased in the stbC mutant when grown on LB agar; fimW, a repressor gene of fimA, exhibited lower expression. Flagella were observed in the stbC mutant and this phenotype was correlated with the motile phenotype. Microarray data and RT-PCR indicated that the expression of three genes, motA, motB, and cheM, was enhanced in the stbC mutant. The stbC mutant was resistant to several antibiotics, consistent with the finding that expression of yhcQ and ramA was enhanced. A complementation test revealed that transforming a recombinant plasmid possessing the stbC restored the mannose-sensitive agglutination phenotype to the stbC mutant much as that in the parental Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, indicating the possibility of an interplay of different fimbrial systems in coordinating their expression.

  8. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  9. Generation and characterization of epoxide hydrolase 3 (EPHX3-deficient mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Cytochrome P450 (CYP epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs, which play an important role in blood pressure regulation, protection against ischemia-reperfusion injury, angiogenesis, and inflammation. Epoxide hydrolases metabolize EETs to their corresponding diols (dihydroxyeicosatrienoic acids; DHETs which are biologically less active. Microsomal epoxide hydrolase (EPHX1, mEH and soluble epoxide hydrolase (EPHX2, sEH were identified >30 years ago and are capable of hydrolyzing EETs to DHETs. A novel epoxide hydrolase, EPHX3, was recently identified by sequence homology and also exhibits epoxide hydrolase activity in vitro with a substrate preference for 9,10-epoxyoctadecamonoenoic acid (EpOME and 11,12-EET. EPHX3 is highly expressed in the skin, lung, stomach, esophagus, and tongue; however, its endogenous function is unknown. Therefore, we investigated the impact of genetic disruption of Ephx3 on fatty acid epoxide hydrolysis and EET-related physiology in mice. Ephx3-/- mice were generated by excising the promoter and first four exons of the Ephx3 gene using Cre-LoxP methodology. LC-MS/MS analysis of Ephx3-/- heart, lung, and skin lysates revealed no differences in endogenous epoxide:diol ratios compared to wild type (WT. Ephx3-/- mice also exhibited no change in plasma levels of fatty acid epoxides and diols relative to WT. Incubations of cytosolic and microsomal fractions prepared from Ephx3-/- and WT stomach, lung, and skin with synthetic 8,9-EET, 11,12-EET, and 9,10-EpOME revealed no significant differences in rates of fatty acid diol formation between the genotypes. Ephx3-/- hearts had similar functional recovery compared to WT hearts following ischemia/reperfusion injury. Following intranasal lipopolysaccharide (LPS exposure, Ephx3-/- mice were not different from WT in terms of lung histology, bronchoalveolar lavage fluid cell counts, or fatty acid epoxide and diol levels. We conclude that genetic

  10. Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice

    Science.gov (United States)

    Konger, Raymond L.; Derr-Yellin, Ethel; Hojati, Delaram; Lutz, Cathleen; Sundberg, John P.

    2016-01-01

    Hairless albino Crl:SKH1-Hrhr mice are commonly utilized for studies in which hair or pigmentation would introduce an impediment to observational studies. Being an outbred strain, the SKH1 model suffers from key limitations that are not seen with congenic mouse strains. Inbred and congenic C57BL/6J mice are commonly utilized for modified genetic mouse models. We compare the acute UV-induced photoresponse between outbred SKH1 mice and an immune competent, hairless, albino C57BL/6J congenic mouse line [B6.Cg-Tyrc-2J Hrhr/J]. Histologically, B6.Cg-Tyrc-2J Hrhr/J skin is indistinguishable from that of SKH1 mice. The skin of both SKH1 and B6.Cg-Tyrc-2J Hrhr/J mice exhibited a reduction in hypodermal adipose tissue, the presence of utricles and dermal cystic structures, the presence of dermal granulomas, and epidermal thickening. In response to a single 1500 J/m2 UVB dose, the edema and apoptotic response was equivalent in both mouse strains. However, B6.Cg-Tyrc-2J Hrhr/J mice exhibited a more robust delayed sunburn reaction, with an increase in epidermal erosion, scab formation, and myeloperoxidase activity relative to SKH1 mice. Compared with SKH1 mice, B6.Cg-Tyrc-2J Hrhr/J also exhibited an aberrant proliferative response to this single UV exposure. Epidermal Ki67 immunopositivity was significantly suppressed in B6.Cg-Tyrc-2J Hrhr/J mice at 24 hours post-UV. A smaller non-significant reduction in Ki67 labeling was observed in SKH1 mice. Finally, at 72 hours post-UV, SKH1 mice, but not B6.Cg-Tyrc-2J Hrhr/J mice, exhibited a significant increase in Ki67 immunolabeling relative to non-irradiated controls. Thus, B6.Cg-Tyrc-2J Hrhr/J mice are suitable for photobiology experiments. PMID:27095432

  11. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    Science.gov (United States)

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.

  12. Increased susceptibility to diet-induced obesity in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Smajilovic, Sanela; Madsen, Andreas N

    2013-01-01

    locomotor activity. Moreover, diet-induced obese Gprc6a KO mice had increased circulating insulin and leptin levels relative to WT animals, thereby demonstrating that endocrine abnormalities associate with the reported disturbances in energy balance. The phenotype was further accompanied by disruptions...... complications is still elusive. In the present study, we investigated the impact of GPRC6A deficiency in a murine model of diet-induced obesity (DIO). Male Gprc6a knockout (KO) mice and WT littermates were subjected to a high-fat diet (HFD) for 25 weeks and exposed to comprehensive metabolic phenotyping...

  13. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  14. Frequency of the cancer-resistant phenotype in SR/CR mice and the effect of litter seriation

    DEFF Research Database (Denmark)

    Koch, Janne; Boschian, Anna; Hau, Jann

    2008-01-01

    . The frequency of the SR/CR phenotype in the present study was 30% for the BALB/c strain and 22% for the C57BL/6 strain in the first litters, but the overall frequency was 8% for both strains. A frequency of about 30% was reported in the original US colony. A litter seriation effect on the frequency of the SR....../CR phenotype was recorded. The phenotype frequency in the first-born litters was similar to that recorded in the founder colony in the US. There was no significant difference in the frequency of the SR/CR phenotype between the two genders, but the overall frequency of the SR/CR phenotype was significantly...

  15. BDNF Overexpression Exhibited Bilateral Effect on Neural Behavior in SCT Mice Associated with AKT Signal Pathway.

    Science.gov (United States)

    Chen, Mei-Rong; Dai, Ping; Wang, Shu-Fen; Song, Shu-Hua; Wang, Hang-Ping; Zhao, Ya; Wang, Ting-Hua; Liu, Jia

    2016-10-01

    Spinal cord injury (SCI), a severe health problem in worldwide, was commonly associated with functional disability and reduced quality of life. As the expression of brain-derived neurotrophic factor (BDNF) was substantial event in injured spinal cord, we hypothesized whether BDNF-overexpression could be in favor of the recovery of both sensory function and hindlimb function after SCI. By using BDNF-overexpression transgene mice [CMV-BDNF 26 (CB26) mice] we assessed the role of BDNF on the recovery of neurological behavior in spinal cord transection (SCT) model. BMS score and tail-flick test was performed to evaluate locomotor function and sensory function, respectively. Immunohistochemistry was employed to detect the location and the expression of BDNF, NeuN, 5-HT, GAP-43, GFAP as well as CGRP, and the level of p-AKT and AKT were examined through western blot analysis. BDNF overexpressing resulted in significant locomotor functional recovery from 21 to 28 days after SCT, compared with wild type (WT)+SCT group. Meanwhile, the NeuN, 5-HT and GAP-43 positive cells were markedly increased in ventral horn in BDNF overexpression animals, compared with WT mice with SCT. Moreover, the crucial molecular signal, p-AKT/AKT has been largely up-regulated, which is consistent with the improvement of locomotor function. However, in this study, thermal hyperpathia encountered in sham (CB26) group and WT+SCT mice and further aggravated in CB26 mice after SCT. Also, following SCT, the significant augment of positive-GFAP astrocytes and CGRP fibers were found in WT+SCT mice, and further increase was seen in BDNF over-expression transgene mice. BDNF-overexpression may not only facilitate the recovery of locomotor function via AKT pathway, but also contributed simultaneously to thermal hyperalgesia after SCT.

  16. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.

    Science.gov (United States)

    Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji

    2013-09-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.

  18. Analysis of the intestinal microbiota of oligo-saccharide fed mice exhibiting reduced resistance to Salmonella infection

    DEFF Research Database (Denmark)

    Petersen, Anne; Bergström, Anders; Andersen, Jens Bo

    2010-01-01

    recently demonstrated a reduced resistance to Salmonella infection in mice fed diets containing fructo-oligosaccharides (FOS) or xylo-oligosaccharides (XOS). In the present study, faecal and caecal samples from the same mice were analysed in order to study microbial changes potentially explaining...... the observed effects on the pathogenesis of Salmonella. Denaturing gradient gel electrophoresis revealed that the microbiota in faecal samples from mice fed FOS or XOS were different from faecal samples collected before the feeding trial as well as from faecal profiles generated from control animals...... of short-chain fatty acids was recorded. In conclusion, diets supplemented with FOS or XOS induced a number of microbial changes in the faecal microbiota of mice. The observed effects of XOS were qualitatively similar to those of FOS, but the most prominent bifidogenic effect was seen for XOS. An increased...

  19. and Epigenetic Dysregulation in Diabetes-prone Bicongenic B6.NODC11bxC1tb Mice

    Directory of Open Access Journals (Sweden)

    Erin Garrigan

    2015-01-01

    Full Text Available In Type 1 diabetic (T1D human monocytes, STAT5 aberrantly binds to epigenetic regulatory sites of two proinflammatory genes, CSF2 (encoding granulocyte–macrophage colony-stimulating factor and PTGS2 (encoding prostaglandin synthase 2/cyclooxygenase 2. Bicongenic B6.NOD C11bxC1tb mice re-create this phenotype of T1D monocytes with only two nonobese diabetic (NOD Idd subloci (130.8 Mb–149.7 Mb, of Idd5 on Chr 1 and 32.08–53.85 Mb of Idd4.3 on Chr11 on C57BL/6 genetic background. These two Idd loci interact through STAT5 binding at upstream regulatory regions affecting Csf2 ( Chr 11 and Ptgs2 ( Chr 1 expression. B6.NODC11bxC1tb mice exhibited hyperglycemia and immune destruction of pancreatic islets between 8 and 30 weeks of age, with 12%–22% penetrance. Thus, B6.NODC11bxC1tb mice embody NOD epigenetic dysregulation of gene expression in myeloid cells, and this defect appears to be sufficient to impart genetic susceptibility to diabetes in an otherwise genetically nonautoimmune mouse.

  20. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    Science.gov (United States)

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  2. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    Science.gov (United States)

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  3. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  4. Phenotypic variation in California populations of valley oak (Quercus lobata Née) sampled along elevational gradients

    Science.gov (United States)

    Ana L. Albarrán-Lara; Jessica W. Wright; Paul F. Gugger; Annette Delfino-Mix; Juan Manuel Peñaloza-Ramírez; Victoria L. Sork

    2015-01-01

    California oaks exhibit tremendous phenotypic variation throughout their range. This variation reflects phenotypic plasticity in tree response to local environmental conditions as well as genetic differences underlying those phenotypes. In this study, we analyze phenotypic variation in leaf traits for valley oak adults sampled along three elevational transects and in...

  5. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

    Directory of Open Access Journals (Sweden)

    Gilly Wolf

    2017-06-01

    Full Text Available Bilateral common carotid artery stenosis (BCAS models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month and young adult (3 month female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014: on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049, while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05 compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01 and old control mice (p < 0.05. These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

  6. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders

    OpenAIRE

    Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura

    2008-01-01

    In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models...

  7. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    Science.gov (United States)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  8. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice.

    Science.gov (United States)

    Illien-Jünger, Svenja; Lu, Young; Qureshi, Sheeraz A; Hecht, Andrew C; Cai, Weijing; Vlassara, Helen; Striker, Gary E; Iatridis, James C

    2015-01-01

    Intervertebral disc (IVD) degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs), cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG)) on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+) or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG). dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions.

  9. Chronic ingestion of advanced glycation end products induces degenerative spinal changes and hypertrophy in aging pre-diabetic mice.

    Directory of Open Access Journals (Sweden)

    Svenja Illien-Jünger

    Full Text Available Intervertebral disc (IVD degeneration and pathological spinal changes are major causes of back pain, which is the top cause of global disability. Obese and diabetic individuals are at increased risk for back pain and musculoskeletal complications. Modern diets contain high levels of advanced glycation end products (AGEs, cyto-toxic components which are known contributors to obesity, diabetes and accelerated aging pathologies. There is little information about potential effects of AGE rich diet on spinal pathology, which may be a contributing cause for back pain which is common in obese and diabetic individuals. This study investigated the role of specific AGE precursors (e.g. methylglyoxal-derivatives (MG on IVD and vertebral pathologies in aging C57BL6 mice that were fed isocaloric diets with standard (dMG+ or reduced amounts of MG derivatives (dMG-; containing 60-70% less dMG. dMG+ mice exhibited a pre-diabetic phenotype, as they were insulin resistant but not hyperglycemic. Vertebrae of dMG+ mice displayed increased cortical-thickness and cortical-area, greater MG-AGE accumulation and ectopic calcification in vertebral endplates. IVD morphology of dMG+ mice exhibited ectopic calcification, hypertrophic differentiation and glycosaminoglycan loss relative to dMG- mice. Overall, chronic exposure to dietary AGEs promoted age-accelerated IVD degeneration and vertebral alterations involving ectopic calcification which occurred in parallel with insulin resistance, and which were prevented with dMG- diet. This study described a new mouse model for diet-induced spinal degeneration, and results were in support of the hypothesis that chronic AGE ingestion could be a factor contributing to a pre-diabetic state, ectopic calcifications in spinal tissues, and musculoskeletal complications that are more generally known to occur with chronic diabetic conditions.

  10. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  12. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Directory of Open Access Journals (Sweden)

    Vinciane Régnier

    Full Text Available The cystathionine β-synthase (CBS gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA metabolism, a pathway important for several brain physiological processes.Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1 expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line.We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  13. Brain phenotype of transgenic mice overexpressing cystathionine β-synthase.

    Science.gov (United States)

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P; Patterson, David; Kruger, Warren D; Delabar, Jean M; London, Jaqueline

    2012-01-01

    The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS.

  14. Power Doppler ultrasound phenotyping of expanding versus collapsed popliteal lymph nodes in murine inflammatory arthritis.

    Directory of Open Access Journals (Sweden)

    Echoe M Bouta

    Full Text Available Rheumatoid arthritis is a chronic inflammatory disease manifested by episodic flares in affected joints that are challenging to predict and treat. Longitudinal contrast enhanced-MRI (CE-MRI of inflammatory arthritis in tumor necrosis factor-transgenic (TNF-Tg mice has demonstrated that popliteal lymph nodes (PLN increase in volume and contrast enhancement during the pre-arthritic "expanding" phase of the disease, and then suddenly "collapse" during knee flare. Given the potential of this biomarker of arthritic flare, we aimed to develop a more cost-effective means of phenotyping PLN using ultrasound (US imaging. Initially we attempted to recapitulate CE-MRI of PLN with subcutaneous footpad injection of US microbubbles (DEFINITY®. While this approach allowed for phenotyping via quantification of lymphatic sinuses in PLN, which showed a dramatic decrease in collapsed PLN versus expanding or wild-type (WT PLN, electron microscopy demonstrated that DEFINITY® injection also resulted in destruction of the lymphatic vessels afferent to the PLN. In contrast, Power Doppler (PD US is innocuous to and efficiently quantifies blood flow within PLN of WT and TNF-Tg mice. PD-US demonstrated that expanding PLN have a significantly higher normalized PD volume (NPDV versus collapsed PLN (0.553 ± 0.007 vs. 0.008 ± 0.003; p0.030 and lower (<0.016 quartile NPDVs in this cohort of mice, which serve as conservative thresholds to phenotype PLN as expanding and collapsed, respectively. Interestingly, of the 12 PLN phenotyped by the two methods, there was disagreement in 4 cases in which they were determined to be expanding by CE-MRI and collapsed by PD-US. Since the adjacent knee had evidence of synovitis in all 4 cases, we concluded that the PD-US phenotyping was correct, and that this approach is currently the safest and most cost-effective in vivo approach to phenotype murine PLN as a biomarker of arthritic flare.

  15. Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular Joint in Mice

    Directory of Open Access Journals (Sweden)

    Xihai Li

    2014-07-01

    Full Text Available Our previous study reported that inactivation of Shox2 led to dysplasia and ankylosis of the temporomandibular joint (TMJ, and that replacing Shox2 with human Shox partially rescued the phenotype with a prematurely worn out articular disc. However, the mechanisms of Shox2 activity in TMJ development remain to be elucidated. In this study, we investigated the molecular and cellular basis for the congenital dysplasia of TMJ in Wnt1-Cre; pMes-stop Shox2 mice. We found that condyle and glenoid fossa dysplasia occurs primarily in the second week after the birth. The dysplastic TMJ of Wnt1-Cre; pMes-stop Shox2 mice exhibits a loss of Collagen type I, Collagen type II, Ihh and Gli2. In situ zymography and immunohistochemistry further demonstrate an up-regulation of matrix metalloproteinases (MMPs, MMP9 and MMP13, accompanied by a significantly increased cell apoptosis. In addition, the cell proliferation and expressions of Sox9, Runx2 and Ihh are no different in the embryonic TMJ between the wild type and mutant mice. Our results show that overexpression of Shox2 leads to the loss of extracellular matrix and the increase of cell apoptosis in TMJ dysplasia by up-regulating MMPs and down-regulating the Ihh signaling pathway.

  16. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy.

    Science.gov (United States)

    Marzuca-Nassr, Gabriel Nasri; Murata, Gilson Masahiro; Martins, Amanda Roque; Vitzel, Kaio Fernando; Crisma, Amanda Rabello; Torres, Rosângela Pavan; Mancini-Filho, Jorge; Kang, Jing Xuan; Curi, Rui

    2017-10-06

    The consequences of two-week hindlimb suspension (HS) on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA), and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2) and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1) were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively), muscle isotonic and tetanic force (by 29% and 18%, respectively), CSA of the soleus muscle (by 36%), and soleus muscle fibers (by 45%). Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio as compared with C57BL/6 wild-type mice (56%, p Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  18. Absence of strong strain effects in behavioral analyses of Shank3-deficient mice

    Directory of Open Access Journals (Sweden)

    Elodie Drapeau

    2014-06-01

    Full Text Available Haploinsufficiency of SHANK3, caused by chromosomal abnormalities or mutations that disrupt one copy of the gene, leads to a neurodevelopmental syndrome called Phelan-McDermid syndrome, symptoms of which can include absent or delayed speech, intellectual disability, neurological changes and autism spectrum disorders. The SHANK3 protein forms a key structural part of the post-synaptic density. We previously generated and characterized mice with a targeted disruption of Shank3 in which exons coding for the ankyrin-repeat domain were deleted and expression of full-length Shank3 was disrupted. We documented specific deficits in synaptic function and plasticity, along with reduced reciprocal social interactions, in Shank3 heterozygous mice. Changes in phenotype owing to a mutation at a single locus are quite frequently modulated by other loci, most dramatically when the entire genetic background is changed. In mice, each strain of laboratory mouse represents a distinct genetic background and alterations in phenotype owing to gene knockout or transgenesis are frequently different across strains, which can lead to the identification of important modifier loci. We have investigated the effect of genetic background on phenotypes of Shank3 heterozygous, knockout and wild-type mice, using C57BL/6, 129SVE and FVB/Ntac strain backgrounds. We focused on observable behaviors with the goal of carrying out subsequent analyses to identify modifier loci. Surprisingly, there were very modest strain effects over a large battery of analyses. These results indicate that behavioral phenotypes associated with Shank3 haploinsufficiency are largely strain-independent.

  19. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Atherosclerotic Plaque Stability Is Affected by the Chemokine CXCL10 in Both Mice and Humans

    Directory of Open Access Journals (Sweden)

    Dolf Segers

    2011-01-01

    Full Text Available Background. The chemokine CXCL10 is specifically upregulated during experimental development of plaque with an unstable phenotype. In this study we evaluated the functional consequences of these findings in mice and humans. Methods and Results. In ApoE-/- mice, we induced unstable plaque with using a flow-altering device around the carotid artery. From week 1 to 4, mice were injected with a neutralizing CXCL10 antibody. After 9 weeks, CXCL10 inhibition resulted in a more stable plaque phenotype: collagen increased by 58% (P=0.002, smooth muscle cell content increased 2-fold (P=0.03, while macrophage MHC class II expression decreased by 50% (P=0.005. Also, the size of necrotic cores decreased by 41% (P=0.01. In 106 human carotid endarterectomy specimens we found that increasing concentrations of CXCL10 strongly associate with an increase in atheromatous plaque phenotype (ANOVA, P=0.003, with high macrophage, low smooth muscle cell, and low collagen content. Conclusions. In the present study we showed that CXCL10 is associated with the development of vulnerable plaque in human and mice. We conclude that CXCL10 might provide a new lead towards plaque-stabilizing therapy.

  1. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype.

    Science.gov (United States)

    Schuster-Gossler, K; Simon-Chazottes, D; Guenet, J L; Zachgo, J; Gossler, A

    1996-01-01

    We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.

  2. Abdominal fat analyzed by DEXA scan reflects visceral body fat and improves the phenotype description and the assessment of metabolic risk in mice

    Science.gov (United States)

    Chen, Weiyi; Wilson, Jenny L.; Khaksari, Mohammad; Cowley, Michael A.

    2012-01-01

    Clinical studies have demonstrated a strong relationship between visceral fat content and metabolic diseases, such as type 2 diabetes and liver steatosis. Obese mouse models are an excellent tool to study metabolic diseases; however, there are limited methods for the noninvasive measurement of fat distribution in mice. Although micromagnetic resonance imaging and microcomputed tomography are the “gold standards” in the measurement of fat distribution, more economical and accessible methods are required. Dual energy X-ray absorptiometry (DEXA) is an effective method in characterizing fat content; however, it cannot discriminate between visceral and subcutaneous fat depots. We demonstrate that an evaluation of abdominal fat content measured by DEXA through the selection of one localized abdominal area strongly correlates with visceral fat content in C57BL/6J mice. We found that DEXA is able to measure fat pad volume ex vivo with high accuracy; however, the measurement of visceral fat in vivo shows an overestimation caused by subcutaneous tissue interference. The overestimation is almost constant for a wide range of values, and thus it is possible to correct the data for a more accurate estimation of visceral fat content. We demonstrate the utility of this technique in characterizing phenotypes of several obese mouse models (ob/ob, db/db, MC4R-KO, and DIO) and evaluating the effect of treatments on visceral fat content in longitudinal studies. Additionally, we also establish abdominal obesity as a potential biomarker for metabolic abnormalities (liver fat accumulation, insulin resistance/diabetes) in mice, similar to that described in humans. PMID:22761161

  3. Analysis of the T Cell Response to Zika Virus and Identification of a Novel CD8+ T Cell Epitope in Immunocompetent Mice.

    Directory of Open Access Journals (Sweden)

    Ryan D Pardy

    2017-02-01

    Full Text Available Zika virus (ZIKV is an emerging arbovirus of the Flaviviridae family. Although ZIKV infection is typically mild and self-limiting in healthy adults, infection has been associated with neurological symptoms such as Guillain-Barré syndrome, and a causal link has been established between fetal microcephaly and ZIKV infection during pregnancy. These risks, and the magnitude of the ongoing ZIKV pandemic, have created an urgent need for the development of animal models to study the immune response to ZIKV infection. Previous animal models have primarily focused on pathogenesis in immunocompromised mice. In this study, we provide a model of ZIKV infection in wild-type immunocompetent C57BL/6 mice, and have provided an analysis of the immune response to infection. We evaluated the activation of several innate immune cell types, and studied the kinetics, phenotype, and functionality of T cell responses to ZIKV infection. Our results demonstrate that ZIKV infection is mild in wild-type immunocompetent C57BL/6 mice, resulting in minimal morbidity. Our data establish that at the peak of the adaptive response, antigen-experienced CD4+ T cells polarize to a Th1 phenotype, and antigen-experienced CD8+ T cells exhibit an activated effector phenotype, producing both effector cytokines and cytolytic molecules. Furthermore, we have identified a novel ZIKV CD8+ T cell epitope in the envelope protein that is recognized by the majority of responding cells. Our model provides an important reference point that will help dissect the impact of polymorphisms in the circulating ZIKV strains on the immune response and ZIKV pathogenesis. In addition, the identification of a ZIKV epitope will allow for the design of tetramers to study epitope-specific T cell responses, and will have important implications for the design and development of ZIKV vaccine strategies.

  4. Absence-like and tonic seizures in aspartoacylase/attractin double-mutant mice.

    Science.gov (United States)

    Gohma, Hiroshi; Kuramoto, Takashi; Matalon, Reuben; Surendran, Sankar; Tyring, Stephen; Kitada, Kazuhiro; Sasa, Masashi; Serikawa, Tadao

    2007-04-01

    The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.

  5. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  6. Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes.

    Science.gov (United States)

    Dere, E; De Souza-Silva, M A; Frisch, C; Teubner, B; Söhl, G; Willecke, K; Huston, J P

    2003-08-01

    Gap-junction channels in the brain, formed by connexin (Cx) proteins with a distinct regional/cell-type distribution, allow intercellular electrical and metabolic communication. In astrocytes, mainly the connexins 43, 26 and 30 are expressed. In addition, connexin30 is expressed in ependymal and leptomeningeal cells, as well as in skin and cochlea. The functional implications of the astrocytic gap-junctional network are not well understood and evidence regarding their behavioural relevance is lacking. Thus, we have tested groups of Cx30-/-, Cx30+/-, and Cx30+/+ mice in the open-field, an object exploration task, in the graded anxiety test and on the rotarod. The Cx30-/- mice showed reduced exploratory activity in terms of rearings but not locomotion in the open-field and object exploration task. Furthermore, Cx30-/- mice exhibited anxiogenic behaviour as shown by higher open-field centre avoidance and corner preference. Graded anxiety test and rotarod performance was similar across groups. The Cx30-/- mice had elevated choline levels in the ventral striatum, possibly related to their aberrant behavioural phenotypes. The Cx30+/- mice had lower dopamine and metabolite levels in the amygdala and ventral striatum and lower hippocampal 5-hydroxyindole acid (5-HIAA) concentrations relative to Cx30+/+ mice. Furthermore, the Cx30+/- mice had lower acetylcholine concentrations in the ventral striatum and higher choline levels in the neostriatum, relative to Cx30+/+ mice. Our data suggest that the elimination of connexin30 can alter the reactivity to novel environments, pointing to the importance of gap-junctional signalling in behavioural processes.

  7. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  8. The light spot test: Measuring anxiety in mice in an automated home-cage environment.

    Science.gov (United States)

    Aarts, Emmeke; Maroteaux, Gregoire; Loos, Maarten; Koopmans, Bastijn; Kovačević, Jovana; Smit, August B; Verhage, Matthijs; Sluis, Sophie van der

    2015-11-01

    Behavioral tests of animals in a controlled experimental setting provide a valuable tool to advance understanding of genotype-phenotype relations, and to study the effects of genetic and environmental manipulations. To optimally benefit from the increasing numbers of genetically engineered mice, reliable high-throughput methods for comprehensive behavioral phenotyping of mice lines have become a necessity. Here, we describe the development and validation of an anxiety test, the light spot test, that allows for unsupervised, automated, high-throughput testing of mice in a home-cage system. This automated behavioral test circumvents bias introduced by pretest handling, and enables recording both baseline behavior and the behavioral test response over a prolonged period of time. We demonstrate that the light spot test induces a behavioral response in C57BL/6J mice. This behavior reverts to baseline when the aversive stimulus is switched off, and is blunted by treatment with the anxiolytic drug Diazepam, demonstrating predictive validity of the assay, and indicating that the observed behavioral response has a significant anxiety component. Also, we investigated the effectiveness of the light spot test as part of sequential testing for different behavioral aspects in the home-cage. Two learning tests, administered prior to the light spot test, affected the light spot test parameters. The light spot test is a novel, automated assay for anxiety-related high-throughput testing of mice in an automated home-cage environment, allowing for both comprehensive behavioral phenotyping of mice, and rapid screening of pharmacological compounds. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Phenotypic T cell exhaustion in a murine model of bacterial infection in the setting of pre-existing malignancy.

    Directory of Open Access Journals (Sweden)

    Rohit Mittal

    Full Text Available While much of cancer immunology research has focused on anti-tumor immunity both systemically and within the tumor microenvironment, little is known about the impact of pre-existing malignancy on pathogen-specific immune responses. Here, we sought to characterize the antigen-specific CD8+ T cell response following a bacterial infection in the setting of pre-existing pancreatic adenocarcinoma. Mice with established subcutaneous pancreatic adenocarcinomas were infected with Listeria monocytogenes, and antigen-specific CD8+ T cell responses were compared to those in control mice without cancer. While the kinetics and magnitude of antigen-specific CD8+ T cell expansion and accumulation was comparable between the cancer and non-cancer groups, bacterial antigen-specific CD8+ T cells and total CD4+ and CD8+ T cells in cancer mice exhibited increased expression of the coinhibitory receptors BTLA, PD-1, and 2B4. Furthermore, increased inhibitory receptor expression was associated with reduced IFN-γ and increased IL-2 production by bacterial antigen-specific CD8+ T cells in the cancer group. Taken together, these data suggest that cancer's immune suppressive effects are not limited to the tumor microenvironment, but that pre-existing malignancy induces phenotypic exhaustion in T cells by increasing expression of coinhibitory receptors and may impair pathogen-specific CD8+ T cell functionality and differentiation.

  10. Extensive metabolic disorders are present in APC(min) tumorigenesis mice.

    Science.gov (United States)

    Liu, Zhenzhen; Xiao, Yi; Zhou, Zhengxiang; Mao, Xiaoxiao; Cai, Jinxing; Xiong, Lu; Liao, Chaonan; Huang, Fulian; Liu, Zehao; Ali Sheikh, Md Sayed; Plutzky, Jorge; Huang, He; Yang, Tianlun; Duan, Qiong

    2016-05-15

    Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity. The mutation of APC gene leads to the activation of Wnt signaling and is responsible for tumorigenesis in APC(min) mouse; however, very few studies focused on its metabolic abnormalities. The present study reports a widespread metabolic disorder phenotype in APC(min) mice. The old APC(min) mice have decreased body weight and impaired adipogenesis, but severe hyperlipidemia, which mimic the phenotypes of Familial Adenomatous Polyposis (FAP), an inherited disease also caused by APC gene mutation in human. We found that the expression of lipid metabolism and free fat acids (FA) use genes in the white adipose tissue (WAT) of the APC(min) mice is much lower than those of control. The changed gene expression pattern may lead to the disability of circulatory lipid transportation and storage at WAT. Moreover, the APC(min) mice could not maintain the core body temperature in cold condition. PET-CT determination revealed that the BAT of APC(min) mice has significantly impaired ability to take up (18)FDG from the blood. Morphological studies identified that the brown adipocytes of APC(min) mice were filled with lipid droplets but fewer mitochondria. These results matched with the findings of impaired BAT function in APC(min) mice. Collectively, our study explores a new mechanism that explains abnormal metabolism in APC(min) mice and provides insights into studying the metabolic disorders of FAP patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. A novel intergenic ETnII-β insertion mutation causes multiple malformations in polypodia mice.

    Directory of Open Access Journals (Sweden)

    Jessica A Lehoczky

    Full Text Available Mouse early transposon insertions are responsible for ~10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd, a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5' LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development.

  12. Phenotypic instability of Saos-2 cells in long-term culture

    International Nuclear Information System (INIS)

    Hausser, Heinz-Juergen; Brenner, Rolf E.

    2005-01-01

    The human osteosarcoma cell line Saos-2 is widely used as a model system for human osteoblastic cells, though its phenotypic stability has not been ascertained. We therefore propagated these cells over 100 passages and compared relevant phenotypic properties. In general, higher passage cells exhibited higher proliferation rates and lower specific alkaline phosphatase activities, though mineralization was significantly more pronounced in cultures of late passage cells. Whereas expression of most genes investigated did not vary profoundly, some genes exhibited remarkable differences. Decorin, for instance, that has been discussed as a regulator of proliferation and mineralization, is strongly expressed only in early passage cells, and two receptors for pleiotrophin and midkine exhibited an almost mutually exclusive expression pattern in early and late passage cells, respectively. Our observations indicate that special care is required when results obtained with Saos-2 cells with different culture history are to be compared

  13. Sequence analysis of chromosome 1 revealed different selection patterns between Chinese wild mice and laboratory strains.

    Science.gov (United States)

    Xu, Fuyi; Hu, Shixian; Chao, Tianzhu; Wang, Maochun; Li, Kai; Zhou, Yuxun; Xu, Hongyan; Xiao, Junhua

    2017-10-01

    Both natural and artificial selection play a critical role in animals' adaptation to the environment. Detection of the signature of selection in genomic regions can provide insights for understanding the function of specific phenotypes. It is generally assumed that laboratory mice may experience intense artificial selection while wild mice more natural selection. However, the differences of selection signature in the mouse genome and underlying genes between wild and laboratory mice remain unclear. In this study, we used two mouse populations: chromosome 1 (Chr 1) substitution lines (C1SLs) derived from Chinese wild mice and mouse genome project (MGP) sequenced inbred strains and two selection detection statistics: Fst and Tajima's D to identify the signature of selection footprint on Chr 1. For the differentiation between the C1SLs and MGP, 110 candidate selection regions containing 47 protein coding genes were detected. A total of 149 selection regions which encompass 7.215 Mb were identified in the C1SLs by Tajima's D approach. While for the MGP, we identified nearly twice selection regions (243) compared with the C1SLs which accounted for 13.27 Mb Chr 1 sequence. Through functional annotation, we identified several biological processes with significant enrichment including seven genes in the olfactory transduction pathway. In addition, we searched the phenotypes associated with the 47 candidate selection genes identified by Fst. These genes were involved in behavior, growth or body weight, mortality or aging, and immune systems which align well with the phenotypic differences between wild and laboratory mice. Therefore, the findings would be helpful for our understanding of the phenotypic differences between wild and laboratory mice and applications for using this new mouse resource (C1SLs) for further genetics studies.

  14. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation

    Science.gov (United States)

    Wu, Xue; Simpson, Jeremy; Hong, Jenny H.; Kim, Kyoung-Han; Thavarajah, Nirusha K.; Backx, Peter H.; Neel, Benjamin G.; Araki, Toshiyuki

    2011-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden death in children and young adults. Abnormalities in several signaling pathways are implicated in the pathogenesis of HCM, but the role of the RAS-RAF-MEK-ERK MAPK pathway has been controversial. Noonan syndrome (NS) is one of several autosomal-dominant conditions known as RASopathies, which are caused by mutations in different components of this pathway. Germline mutations in RAF1 (which encodes the serine-threonine kinase RAF1) account for approximately 3%–5% of cases of NS. Unlike other NS alleles, RAF1 mutations that confer increased kinase activity are highly associated with HCM. To explore the pathogenesis of such mutations, we generated knockin mice expressing the NS-associated Raf1L613V mutation. Like NS patients, mice heterozygous for this mutation (referred to herein as L613V/+ mice) had short stature, craniofacial dysmorphia, and hematologic abnormalities. Valvuloseptal development was normal, but L613V/+ mice exhibited eccentric cardiac hypertrophy and aberrant cardiac fetal gene expression, and decompensated following pressure overload. Agonist-evoked MEK-ERK activation was enhanced in multiple cell types, and postnatal MEK inhibition normalized the growth, facial, and cardiac defects in L613V/+ mice. These data show that different NS genes have intrinsically distinct pathological effects, demonstrate that enhanced MEK-ERK activity is critical for causing HCM and other RAF1-mutant NS phenotypes, and suggest a mutation-specific approach to the treatment of RASopathies. PMID:21339642

  15. Effect of Early-Life Fluoxetine on Anxiety-Like Behaviors in BDNF Val66Met Mice.

    Science.gov (United States)

    Dincheva, Iva; Yang, Jianmin; Li, Anfei; Marinic, Tina; Freilingsdorf, Helena; Huang, Chienchun; Casey, B J; Hempstead, Barbara; Glatt, Charles E; Lee, Francis S; Bath, Kevin G; Jing, Deqiang

    2017-12-01

    Adolescence is a developmental stage in which the incidence of psychiatric disorders, such as anxiety disorders, peaks. Selective serotonin reuptake inhibitors (SSRIs) are the main class of agents used to treat anxiety disorders. However, the impact of SSRIs on the developing brain during adolescence remains unknown. The authors assessed the impact of developmentally timed SSRI administration in a genetic mouse model displaying elevated anxiety-like behaviors. Knock-in mice containing a common human single-nucleotide polymorphism (Val66Met; rs6265) in brain-derived neurotrophic factor (BDNF), a growth factor implicated in the mechanism of action of SSRIs, were studied based on their established phenotype of increased anxiety-like behavior. Timed administration of fluoxetine was delivered during one of three developmental periods (postnatal days 21-42, 40-61, or 60-81), spanning the transition from childhood to adulthood. Neurochemical and anxiety-like behavioral analyses were performed. We identified a "sensitive period" during periadolescence (postnatal days 21-42) in which developmentally timed fluoxetine administration rescued anxiety-like phenotypes in BDNF Val66Met mice in adulthood. Compared with littermate controls, BDNF Met/Met mice exhibited diminished maturation of serotonergic fibers projecting particularly to the prefrontal cortex, as well as decreased expression of the serotonergic trophic factor S100B in the dorsal raphe. Interestingly, deficient serotonergic innervation, as well as S100B levels, were rescued with fluoxetine administration during periadolescence. These findings suggest that SSRI administration during a "sensitive period" during periadolescence leads to long-lasting anxiolytic effects in a genetic mouse model of elevated anxiety-like behaviors. These persistent effects highlight the role of BDNF in the maturation of the serotonin system and the capacity to enhance its development through a pharmacological intervention.

  16. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a.

    Science.gov (United States)

    Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V

    2017-06-01

    Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.

  17. Functional consequences of integrin gene mutations in mice

    DEFF Research Database (Denmark)

    Bouvard, D; Brakebusch, C; Gustafsson, E

    2001-01-01

    Integrins are cell-surface receptors responsible for cell attachment to extracellular matrices and to other cells. The application of mouse genetics has significantly increased our understanding of integrin function in vivo. In this review, we summarize the phenotypes of mice carrying mutant inte...

  18. H-11-linked gene has a parallel effect on Leishmania major and L. donovani infections in mice

    International Nuclear Information System (INIS)

    Blackwell, J.M.; Hale, C.; Roberts, M.B.; Ulczak, O.M.; Liew, F.Y.; Howard, J.G.

    1985-01-01

    The courses of visceral infection following intravenous injection of Leishmania donovani amastigotes, or lesion growth following subcutaneous injection of L. major promastigotes, were examined in B10.129(10M) (H-2b, H-11b) mice and compared with disease profiles observed in congenic C57BL/10ScSn(= B10) (H-2b, H-11a) and B10.D2/n (H-2d, H-11a) mice, and in BALB/mice. Possession of alternative alleles at H-11 and closely linked loci transformed the normal curing/healing phenotype of B10 mice into a characteristically different noncuring/nonhealing phenotype affecting both visceral and subcutaneous infections in B10.129(10M) mice. In reciprocal radiation bone marrow chimeras made between the congenic B10 and B10.129(10M) strains, both cure and noncure phenotypes were transferable with the donor hematopoietic system. Although it was possible to demonstrate transfer of suppression with T-enriched spleen cells from day 61 L. donovani-infected B10.129(10M) donor mice into 550 rad syngeneic recipients, the pretreatment of mice with sublethal irradiation did not, as in the earlier studies of Scl-controlled L. major nonhealing or H-2-controlled L. donovani noncure phenotypes, have a clear or consistent prophylactic effect. Together with the progressive disease profile observed even for L. donovani at low parasite doses this suggests that, despite their ability to develop initial delayed-type hypersensitivity reactions to parasite antigen early in L. major infection, B10.129(10M) mice possess some inherent defect in ability to mount a cell-mediated response effective at the level of macrophage neishmanial activity in vivo even when suppressor T cells are not generated. Elucidation of this characteristically different noncuring/nonhealing phenotye may provide important insight into common events involved in the development of the cell-mediated immune response to both visceral and subcutaneous forms of leishmaniasis

  19. High-fat feeding in cardiomyocyte-restricted PPARdelta knockout mice leads to cardiac overexpression of lipid metabolic genes but fails to rescue cardiac phenotypes.

    Science.gov (United States)

    Li, Yuquan; Cheng, Lihong; Qin, Qianhong; Liu, Jian; Lo, Woo-kuen; Brako, Lowrence A; Yang, Qinglin

    2009-10-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is an essential determinant of basal myocardial fatty acid oxidation (FAO) and bioenergetics. We wished to determine whether increased lipid loading affects the PPARdelta deficient heart in transcriptional regulation of FAO and in the development of cardiac pathology. Cardiomyocyte-restricted PPARdelta knockout (CR-PPARdelta(-/-)) and control (alpha-MyHC-Cre) mice were subjected to 48 h of fasting and to a long-term maintenance on a (28 weeks) high-fat diet (HFD). The expression of key FAO proteins in heart was examined. Serum lipid profiles, cardiac pathology, and changes of various transduction signaling pathways were also examined. Mice subjected to fasting exhibited upregulated transcript expression of FAO genes in the CR-PPARdelta(-/-) hearts. Moreover, long-term HFD in CR-PPARdelta(-/-) mice induced a strikingly greater transcriptional response. After HFD, genes encoding key FAO enzymes were expressed remarkably more in CR-PPARdelta(-/-) hearts than in those of control mice. Despite the marked rise of FAO gene expression, corresponding protein expression remained low in the CR-PPARdelta(-/-) heart, accompanied by abnormalities in sarcomere structures and mitochondria that were similar to those of CR-PPARdelta(-/-) hearts with regular chow feeding. The CR-PPARdelta(-/-) mice displayed increased expression of PPARgamma co-activator-1alpha (PGC-1alpha) and PPARalpha in the heart with deactivated Akt and p42/44 MAPK signaling in response to HFD. We conclude that PPARdelta is an essential determinant of myocardial FAO. Increased lipid intake activates cardiac expression of FAO genes via PPARalpha/PGC-1alpha pathway, albeit it is not sufficient to improve cardiac pathology due to PPARdelta deficiency.

  20. Herpes simplex virus type 1 gene UL14: phenotype of a null mutant and identification of the encoded protein.

    Science.gov (United States)

    Cunningham, C; Davison, A J; MacLean, A R; Taus, N S; Baines, J D

    2000-01-01

    Herpes simplex virus type 1 (HSV-1) gene UL14 is located between divergently transcribed genes UL13 and UL15 and overlaps the promoters for both of these genes. UL14 also exhibits a substantial overlap of its coding region with that of UL13. It is one of the few HSV-1 genes for which a phenotype and protein product have not been described. Using mass spectrometric and immunological approaches, we demonstrated that the UL14 protein is a minor component of the virion tegument of 32 kDa which is expressed late in infection. In infected cells, the UL14 protein was detected in the nucleus at discrete sites within electron-dense nuclear bodies and in the cytoplasm initially in a diffuse distribution and then at discrete sites. Some of the UL14 protein was phosphorylated. A mutant with a 4-bp deletion in the central region of UL14 failed to produce the UL14 protein and generated small plaques. The mutant exhibited an extended growth cycle at low multiplicity of infection and appeared to be compromised in efficient transit of virus particles from the infected cell. In mice injected intracranially, the 50% lethal dose of the mutant was reduced more than 30,000-fold. Recovery of the mutant from the latently infected sacral ganglia of mice injected peripherally was significantly less than that of wild-type virus, suggesting a marked defect in the establishment of, or reactivation from, latent infection.

  1. A major locus on mouse chromosome 18 controls XX sex reversal in Odd Sex (Ods) mice.

    Science.gov (United States)

    Qin, Yangjun; Poirier, Christophe; Truong, Cavatina; Schumacher, Armin; Agoulnik, Alexander I; Bishop, Colin E

    2003-03-01

    We have previously reported a dominant mouse mutant, Odd sex (Ods), in which XX Ods/+ mice on the FVB/N background show complete sex reversal, associated with expression of Sox9 in the fetal gonads. Remarkably, when crossed to the A/J strain approximately 95% of the (AXFVB) F(1) XX Ods/+ mice developed as fully fertile, phenotypic females, the remainder developing as males or hermaphrodites. Using a (AXFVB) F(2) population, we conducted a genome-wide linkage scan to identify the number and chromosomal location of potential Ods modifier genes. A single major locus termed Odsm1 was mapped to chromosome 18, tightly linked to D18Mit189 and D18Mit210. Segregation at this locus could account for the presence of sex reversal in 100% of XX Ods/+ mice which develop as males, for the absence of sex reversal in approximately 92% of XX Ods/+ mice which develop as females, and for the mixed sexual phenotype in approximately 72% of XX Ods/+ mice that develop with ambiguous genitalia. We propose that homozygosity for the FVB-derived allele strongly favors Ods sex reversal, whereas homozygosity for the A/J-derived allele inhibits it. In mice heterozygous at Odsm1, the phenotypic outcome, male, female or hermaphrodite, is determined by a complex interaction of several minor modifying loci. The close proximity of Smad2, Smad7 and Smad4 to D18Mit189/210 provides a potential mechanism through which Odsm1 might act.

  2. Knockout and transgenic mice of Trp53: what have we learned about p53 in breast cancer?

    International Nuclear Information System (INIS)

    Blackburn, Anneke C; Jerry, D Joseph

    2002-01-01

    The human p53 tumor suppressor gene TP53 is mutated at a high frequency in sporadic breast cancer, and Li-Fraumeni syndrome patients who carry germline mutations in one TP53 allele have a high incidence of breast cancer. In the 10 years since the first knockout of the mouse p53 tumor suppressor gene (designated Trp53) was published, much has been learned about the contribution of p53 to biology and tumor suppression in the breast through the use of p53 transgenic and knockout mice. The original mice deficient in p53 showed no mammary gland phenotype. However, studies using BALB/c-Trp53-deficient mice have demonstrated a delayed involution phenotype and a mammary tumor phenotype. Together with other studies of mutant p53 transgenes and p53 bitransgenics, a greater understanding has been gained of the role of p53 in involution, of the regulation of p53 activity by hormones, of the effect of mouse strain and modifier genes on tumor phenotype, and of the cooperation between p53 and other oncogenic pathways, chemical carcinogens and hormonal stimulation in mammary tumorigenesis. Both p53 transgenic and knockout mice are important in vivo tools for understanding breast cancer, and are yet to be exploited for developing therapeutic strategies in breast cancer

  3. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  4. Hyperactivity and learning deficits in transgenic mice bearing a human mutant thyroid hormone beta1 receptor gene.

    Science.gov (United States)

    McDonald, M P; Wong, R; Goldstein, G; Weintraub, B; Cheng, S Y; Crawley, J N

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor beta (TRbeta) gene on chromosome 3, representing a mutation of the ligand-binding domain of the TRbeta gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRbeta gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRbeta gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD.

  5. Hyperactivity and Learning Deficits in Transgenic Mice Bearing a Human Mutant Thyroid Hormone β1 Receptor Gene

    Science.gov (United States)

    McDonald, Michael P.; Wong, Rosemary; Goldstein, Gregory; Weintraub, Bruce; Cheng, Sheue-yann; Crawley, Jacqueline N.

    1998-01-01

    Resistance to thyroid hormone (RTH) is a human syndrome mapped to the thyroid receptor β (TRβ) gene on chromosome 3, representing a mutation of the ligandbinding domain of the TRβ gene. The syndrome is characterized by reduced tissue responsiveness to thyroid hormone and elevated serum levels of thyroid hormones. A common behavioral phenotype associated with RTH is attention deficit hyperactivity disorder (ADHD). To test the hypothesis that RTH produces attention deficits and/or hyperactivity, transgenic mice expressing a mutant TRβ gene were generated. The present experiment tested RTH transgenic mice from the PV kindred on behavioral tasks relevant to the primary features of ADHD: hyperactivity, sustained attention (vigilance), learning, and impulsivity. Male transgenic mice showed elevated locomotor activity in an open field compared to male wild-type littermate controls. Both male and female transgenic mice exhibited impaired learning of an autoshaping task, compared to wild-type controls. On a vigilance task in an operant chamber, there were no differences between transgenics and controls on the proportion of hits, response latency, or duration of stimulus tolerated. On an operant go/no-go task measuring sustained attention and impulsivity, there were no differences between controls and transgenics. These results indicate that transgenic mice bearing a mutant human TRβ gene demonstrate several behavioral characteristics of ADHD and may serve a valuable heuristic role in elucidating possible candidate genes in converging pathways for other causes of ADHD. PMID:10454355

  6. Interventions Targeting Glucocorticoid-Krüppel-like Factor 15-Branched-Chain Amino Acid Signaling Improve Disease Phenotypes in Spinal Muscular Atrophy Mice

    Directory of Open Access Journals (Sweden)

    Lisa M. Walter

    2018-05-01

    Full Text Available The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA signaling pathway is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis. Spinal muscular atrophy (SMA is a neuromuscular disorder also characterized by intrinsic muscle pathologies, metabolic abnormalities and disrupted sleep patterns, which can influence or be influenced by circadian regulatory networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models. We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and metabolic tissues of SMA mice. Importantly, modulating the components of the GC-KLF15-BCAA pathway via pharmacological (prednisolone, genetic (muscle-specific Klf15 overexpression and dietary (BCAA supplementation interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral manifestations of the disease. The therapeutic potential of targeting metabolic perturbations by diet and commercially available drugs could have a broader implementation across other neuromuscular and metabolic disorders characterized by altered GC-KLF15-BCAA signaling. Keywords: Spinal muscular atrophy, KLF15, Glucocorticoids, Branched-chain amino acids, Metabolism, Therapy

  7. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  8. Phenotypic and Functional Changes Induced in Hematopoietic Stem/Progenitor Cells After Gamma-Ray Radiation Exposure

    International Nuclear Information System (INIS)

    Simonnet, A.J.; Nehme, J.; Leboulch, Ph.; Tronik-Le Roux, D.; Simonnet, A.J.; Nehme, J.; Leboulch, Ph.; Tronik-Le Roux, D.; Vaigot, P.; Vaigot, P.; Barroca, V.; Barroca, V.; Leboulch, Ph.

    2009-01-01

    Ionizing radiation (IR) exposure causes rapid and acute bone marrow (BM) suppression that is reversible for nonlethal doses. Evidence is accumulating that IR can also provoke long-lasting residual hematopoietic injury. To better understand these effects, we analyzed phenotypic and functional changes in the stem/progenitor compartment of irradiated mice over a 10-week period. We found that hematopoietic stem cells (HSCs) identified by their repopulating ability continued to segregate within the Hoechst dye excluding 'side population (SP)' early after IR exposure. However, transient phenotypic changes were observed within this cell population: Sca-1 (S) and c-Kit (K) expression levels were increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of the presence of HSCs: CD150 and CD105. Ten weeks after IR exposure, expression of Sca-1 and c-Kit at the SP cell surface returned to control levels, and BM cellularity of irradiated mice was restored. However, the c-Kit + Sca-1 + Lin -/low (KSL) stem/progenitor compartment displayed major phenotypic modifications, including an increase and a severe decrease in the frequencies of CD150 + Flk2 - and CD150 - Flk2 + cells, respectively. CD150 + KSL cells also showed impaired reconstituting ability, an increased tendency to apoptosis, and accrued DNA damage. Finally, 15 weeks after exposure, irradiated mice, but not age matched controls, allowed engraftment and significant hematopoietic contribution from transplanted con-genic HSCs without additional host conditioning. These results provide novel insight in our understanding of immediate and delayed IR-induced hematopoietic injury and highlight similarities between HSCs of young irradiated and old mice. (authors)

  9. Activation of protein kinase A in the amygdala modulates anxiety-like behaviors in social defeat exposed mice.

    Science.gov (United States)

    Yang, Liu; Shi, Li-Jun; Yu, Jin; Zhang, Yu-Qiu

    2016-01-08

    Social defeat (SD) stress induces social avoidance and anxiety-like phenotypes. Amygdala is recognized as an emotion-related brain region such as fear, aversion and anxiety. It is conceivable to hypothesize that activation of amygdala is involved in SD-dependent behavioral defects. SD model was established using C57BL/6J mice that were physically defeated by different CD-1 mice for 10 days. Stressed mice exhibited decreased social interaction level in social interaction test and significant anxiety-like behaviors in elevated plus maze and open field tests. Meanwhile, a higher phosphorylation of PKA and CREB with a mutually linear correlation, and increased Fos labeled cells in the basolateral amygdala (BLA) were observed. Activation of PKA in the BLA by 8-Br-cAMP, a PKA activitor, significantly upregulated pCREB and Fos expression. To address the role of PKA activation on SD stress-induced social avoidance and anxiety-like behaviors, 8-Br-cAMP or H-89, a PKA inhibitor, was continuously administered into the bilateral BLA by a micro-osmotic pump system during the 10-day SD period. Neither H-89 nor 8-Br-cAMP affected the social behavior. Differently, 8-Br-cAMP significantly relieved anxiety-like behaviors in both general and moderate SD protocols. H-89 per se did not have anxiogenic effect in naïve mice, but aggravated moderate SD stress-induced anxiety-like behaviors. The antidepressant clomipramine reduced SD-induced anxiety and up-regulated pPKA level in the BLA. These results suggest that SD-driven PKA activation in the basolateral amygdala is actually a compensatory rather than pathogenic response in the homeostasis, and modulating amygdaloid PKA may exhibit potency in the therapy of social derived disorders.

  10. Yam storage protein dioscorins from Dioscorea alata and Dioscorea japonica exhibit distinct immunomodulatory activities in mice.

    Science.gov (United States)

    Lin, Pei-Lan; Lin, Kuo-Wei; Weng, Ching-Feng; Lin, Kuo-Chih

    2009-06-10

    The aim of this study was to elucidate the effect of the major storage protein dioscorin isolated from two different yam species, Tainong No. 1 (TN1-dioscorins) and Japanese yam (Dj-dioscorins), on the immune activities of mice. Dj-dioscorins, like TN1-dioscorins, could induce expression of the pro-inflammatory cytokines and stimulate phagocytosis of RAW 264.7. Intraperitoneal injection of the TN1-dioscorins into mice stimulated phagocytosis of bone marrow, spleen, and thymic cells. In contrast, the T and B cells in bone marrow, spleen, and thymus isolated from mice injected with Dj-dioscorins had higher proliferative responses to mitogens. Furthermore, Dj-dioscorins enhanced proliferation of CD4(+), CD8(+), and Tim3(+) (Th1) cells in spleen and CD19(+) cells in both spleen and thymus. Supplement of Dj-dioscorins in the lymphoid cells isolated from Dj-dioscorins primed mice induced cell proliferation of both spleen and thymic cells. These findings indicated that TN1-dioscorins have a higher ability to stimulate the phagocytic activity of the lymphoid cells than Dj-dioscorins, whereas Dj-dioscorins possess more abilities than TN1-dioscorins to enhance the proliferation of the lymphoid cells.

  11. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  12. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  13. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  14. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1I4895T/wt mouse model of core myopathy

    International Nuclear Information System (INIS)

    Zvaritch, Elena; MacLennan, David H.

    2015-01-01

    Muscle spindles from the hind limb muscles of adult Ryr1 I4895T/wt (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed

  15. MICE Tourism (Meetings, Incentives, Conferecing and Exhibitions como gerador de Turismo Interno: Analisando a cidade de Pelotas, RS

    Directory of Open Access Journals (Sweden)

    Adriana Fumi Chim-Miki

    2016-06-01

    Full Text Available Este artigo objetiva apresentar as oportunidades do Turismo MICE Interno para as cidades consideradas regionais. Esta modalidade de turismo urbano, em termos mundiais e nacionais tem apresentado expressivo crescimento. Além disso, está sendo indicada como um produto complementar ou substituto ao clássico turismo de Sol e Praia, especialmente para destinos que estão apresentando sintomas da maturidade deste modelo, ou áreas em que não há condições naturais favoráveis a um completo desenvolvimento baseado em Sol e Praia. Objetivando contribuir com a literatura acadêmica, se apresenta uma revisão conceitual e tipológica do turismo MICE, seguido de uma revisão de determinantes ou atributos para destinos MICE. Desta revisão se extrai os principais determinantes da competitividade do turismo MICE regional, aplicando-os em uma análise empírica da cidade de Pelotas como candidata a Destino MICE Regional. A metodologia é qualitativa, sendo um estudo de caso que utiliza dados primários através de informação coletada nos sites de promoção turística oficiais do município. Conclui-se que a cidade de Pelotas, situada no sul do Estado do Rio Grande do Sul, possui condições de tornar-se um Destino MICE Regional, porém se recomenda uma melhoria no planejamento turístico, em términos de focalizar no desenvolvimento dos atributos de competitividade MICE, e especialmente uma melhoria na qualidade e quantidade das informações sobre suas capacidades como Destino MICE.

  16. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    OpenAIRE

    Franken, S; Wittke, D; Mansson, JE; D'Hooge, R; De Deyn, PP; Lüllmann-Rauch, R; Matzner, U; Gieselmann, V

    2006-01-01

    Summary Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of gal...

  17. Heterozygous Lmna(delK32) mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

    DEFF Research Database (Denmark)

    Cattin, M. E.; Bertrand, A. T.; Schlossarek, S.

    2013-01-01

    itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of K32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our....... The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(K32/) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could...... be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic K32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac...

  18. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Science.gov (United States)

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  19. mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Li, Qingle; Ali, Rahmat; Qin, Lingfeng; Li, Wei; Qyang, Yibing; Greif, Daniel M; Geirsson, Arnar; Humphrey, Jay D; Tellides, George

    2017-09-01

    Elastin deficiency because of heterozygous loss of an ELN allele in Williams syndrome causes obstructive aortopathy characterized by medial thickening and fibrosis and consequent aortic stiffening. Previous work in Eln -null mice with a severe arterial phenotype showed that inhibition of mTOR (mechanistic target of rapamycin), a key regulator of cell growth, lessened the aortic obstruction but did not prevent early postnatal death. We investigated the effects of mTOR inhibition in Eln -null mice partially rescued by human ELN that manifest a less severe arterial phenotype and survive long term. Thoracic aortas of neonatal and juvenile mice with graded elastin deficiency exhibited increased signaling through both mTOR complex 1 and 2. Despite lower predicted wall stress, there was increased phosphorylation of focal adhesion kinase, suggestive of greater integrin activation, and increased transforming growth factor-β-signaling mediators, associated with increased collagen expression. Pharmacological blockade of mTOR by rapalogs did not improve luminal stenosis but reduced mechanosignaling (in delayed fashion after mTOR complex 1 inhibition), medial collagen accumulation, and stiffening of the aorta. Rapalog administration also retarded somatic growth, however, and precipitated neonatal deaths. Complementary, less-toxic strategies to inhibit mTOR via altered growth factor and nutrient responses were not effective. In addition to previously demonstrated therapeutic benefits of rapalogs decreasing smooth muscle cell proliferation in the absence of elastin, we find that rapalogs also prevent aortic fibrosis and stiffening attributable to partial elastin deficiency. Our findings suggest that mTOR-sensitive perturbation of smooth muscle cell mechanosensing contributes to elastin aortopathy. © 2017 American Heart Association, Inc.

  20. Improved MECP2 Gene Therapy Extends the Survival of MeCP2-Null Mice without Apparent Toxicity after Intracisternal Delivery

    Directory of Open Access Journals (Sweden)

    Sarah E. Sinnett

    2017-06-01

    Full Text Available Intravenous administration of adeno-associated virus serotype 9 (AAV9/hMECP2 has been shown to extend the lifespan of Mecp2−/y mice, but this delivery route induces liver toxicity in wild-type (WT mice. To reduce peripheral transgene expression, we explored the safety and efficacy of AAV9/hMECP2 injected into the cisterna magna (ICM. AAV9/hMECP2 (1 × 1012 viral genomes [vg]; ICM extended Mecp2−/y survival but aggravated hindlimb clasping and abnormal gait phenotypes. In WT mice, 1 × 1012 vg of AAV9/hMECP2 induced clasping and abnormal gait. A lower dose mitigated these adverse phenotypes but failed to extend survival of Mecp2−/y mice. Thus, ICM delivery of this vector is impractical as a treatment for Rett syndrome (RTT. To improve the safety of MeCP2 gene therapy, the gene expression cassette was modified to include more endogenous regulatory elements believed to modulate MeCP2 expression in vivo. In Mecp2−/y mice, ICM injection of the modified vector extended lifespan and was well tolerated by the liver but did not rescue RTT behavioral phenotypes. In WT mice, these same doses of the modified vector had no adverse effects on survival or neurological phenotypes. In summary, we identified limitations of the original vector and demonstrated that an improved vector design extends Mecp2−/y survival, without apparent toxicity.

  1. Entrainment to feeding but not to light: circadian phenotype of VPAC2 receptor-null mice.

    Science.gov (United States)

    Sheward, W John; Maywood, Elizabeth S; French, Karen L; Horn, Jacqueline M; Hastings, Michael H; Seckl, Jonathan R; Holmes, Megan C; Harmar, Anthony J

    2007-04-18

    The master clock driving mammalian circadian rhythms is located in the suprachiasmatic nuclei (SCN) of the hypothalamus and entrained by daily light/dark cycles. SCN lesions abolish circadian rhythms of behavior and result in a loss of synchronized circadian rhythms of clock gene expression in peripheral organs (e.g., the liver) and of hormone secretion (e.g., corticosterone). We examined rhythms of behavior, hepatic clock gene expression, and corticosterone secretion in VPAC2 receptor-null (Vipr2-/-) mice, which lack a functional SCN clock. Unexpectedly, although Vipr2-/- mice lacked robust circadian rhythms of wheel-running activity and corticosterone secretion, hepatic clock gene expression was strongly rhythmic, but advanced in phase compared with that in wild-type mice. The timing of food availability is thought to be an important entrainment signal for circadian clocks outside the SCN. Vipr2-/- mice consumed food significantly earlier in the 24 h cycle than wild-type mice, consistent with the observed timing of peripheral rhythms of circadian gene expression. When restricted to feeding only during the daytime (RF), mice develop rhythms of activity and of corticosterone secretion in anticipation of feeding time, thought to be driven by a food-entrainable circadian oscillator, located outside the SCN. Under RF, mice of both genotypes developed food-anticipatory rhythms of activity and corticosterone secretion, and hepatic gene expression rhythms also became synchronized to the RF stimulus. Thus, food intake is an effective zeitgeber capable of coordinating circadian rhythms of behavior, peripheral clock gene expression, and hormone secretion, even in the absence of a functional SCN clock.

  2. Spice: discovery of phenotype-determining component interplays

    Directory of Open Access Journals (Sweden)

    Chen Zhengzhang

    2012-05-01

    Full Text Available Abstract Background A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system components and their component interplays that are responsible for the target system’s phenotype is a key and challenging step in this endeavor. Results The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator (Spice, iteratively enumerates statistically significant system components that are hypothesized (1 to play an important role in defining the specificity of the target system’s phenotype(s; (2 to exhibit a functionally coherent behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3 to improve the predictive skill of the system’s phenotype(s when used collectively in the ensemble of predictive models. Spice can be applied to both instance-based data and network-based data. When validated, Spice effectively identified system components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results curation agreed with the known phenotype-related system components reported in literature. Additionally, using the identified system components as discriminatory features improved the prediction accuracy by 10% on the phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark microarray data sets. Conclusion We formulate a problem—enumeration of phenotype-determining system component interplays—and propose an effective methodology (Spice to address this problem. Spice improved identification of cancer-related groups of genes from various microarray data sets and detected groups of genes associated with microbial biohydrogen production and motility, many of which were reported in literature. Spice also improved the predictive skill of the

  3. Adoptively transferred dendritic cells restore primary cell-mediated inflammatory competence to acutely malnourished weanling mice.

    Science.gov (United States)

    Hillyer, Lyn; Whitley, Charlene; Olver, Amy; Webster, Michelle; Steevels, Tessa; Woodward, Bill

    2008-02-01

    Immune depression associated with prepubescent malnutrition underlies a staggering burden of infection-related morbidity. This investigation centered on dendritic cells as potentially decisive in this phenomenon. C57BL/6J mice, initially 19 days old, had free access for 14 days to a complete diet or to a low-protein formulation that induced wasting deficits of protein and energy. Mice were sensitized by i.p. injection of sheep red blood cells on day 9, at which time one-half of the animals in each dietary group received a simultaneous injection of 10(6) syngeneic dendritic cells (JAWS II). All mice were challenged with the immunizing antigen in the right hind footpad on day 13, and the 24-hour delayed hypersensitivity response was assessed as percentage increase in footpad thickness. The low-protein diet reduced the inflammatory immune response, but JAWS cells, which exhibited immature phenotypic and functional characteristics, increased the response of both the malnourished group and the controls. By contrast, i.p. injection of 10(6) syngeneic T cells did not influence the inflammatory immune response of mice subjected to the low-protein protocol. Antigen-presenting cell numbers limited primary inflammatory cell-mediated competence in this model of wasting malnutrition, an outcome that challenges the prevailing multifactorial model of malnutrition-associated immune depression. Thus, a new dendritic cell-centered perspective emerges regarding the cellular mechanism underlying immune depression in acute pediatric protein and energy deficit.

  4. High fat diet accelerates cartilage repair in DBA/1 mice.

    Science.gov (United States)

    Wei, Wu; Bastiaansen-Jenniskens, Yvonne M; Suijkerbuijk, Mathijs; Kops, Nicole; Bos, Pieter K; Verhaar, Jan A N; Zuurmond, Anne-Marie; Dell'Accio, Francesco; van Osch, Gerjo J V M

    2017-06-01

    Obesity is a well-known risk factor for osteoarthritis, but it is unknown what it does on cartilage repair. Here we investigated whether a high fat diet (HFD) influences cartilage repair in a mouse model of cartilage repair. We fed DBA/1 mice control or HFD (60% energy from fat). After 2 weeks, a full thickness cartilage defect was made in the trochlear groove. Mice were sacrificed, 1, 8, and 24 weeks after operation. Cartilage repair was evaluated on histology. Serum glucose, insulin and amyloid A were measured 24 h before operation and at endpoints. Immunohistochemical staining was performed on synovium and adipose tissue to evaluate macrophage infiltration and phenotype. One week after operation, mice on HFD had defect filling with fibroblast-like cells and more cartilage repair as indicated by a lower Pineda score. After 8 weeks, mice on a HFD still had a lower Pineda score. After 24 weeks, no mice had complete cartilage repair and we did not detect a significant difference in cartilage repair between diets. Bodyweight was increased by HFD, whereas serum glucose, amyloid A and insulin were not influenced. Macrophage infiltration and phenotype in adipose tissue and synovium were not influenced by HFD. In contrast to common wisdom, HFD accelerated intrinsic cartilage repair in DBA/1 mice on the short term. Resistance to HFD induced inflammatory and metabolic changes could be associated with accelerated cartilage repair. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1258-1264, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Disruption of the Sec24d gene results in early embryonic lethality in the mouse.

    Directory of Open Access Journals (Sweden)

    Andrea C Baines

    Full Text Available Transport of newly synthesized proteins from the endoplasmic reticulum (ER to the Golgi is mediated by the coat protein complex COPII. The inner coat of COPII is assembled from heterodimers of SEC23 and SEC24. Though mice with mutations in one of the four Sec24 paralogs, Sec24b, exhibit a neural tube closure defect, deficiency in humans or mice has not yet been described for any of the other Sec24 paralogs. We now report characterization of mice with targeted disruption of Sec24d. Early embryonic lethality is observed in mice completely deficient in SEC24D, while a hypomorphic Sec24d allele permits survival to mid-embryogenesis. Mice haploinsufficient for Sec24d exhibit no phenotypic abnormality. A BAC transgene containing Sec24d rescues the embryonic lethality observed in Sec24d-null mice. These results demonstrate an absolute requirement for SEC24D expression in early mammalian development that is not compensated by the other three Sec24 paralogs. The early embryonic lethality resulting from loss of SEC24D in mice contrasts with the previously reported mild skeletal phenotype of SEC24D deficiency in zebrafish and restricted neural tube phenotype of SEC24B deficiency in mice. Taken together, these observations suggest that the multiple Sec24 paralogs have developed distinct functions over the course of vertebrate evolution.

  6. Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice

    Science.gov (United States)

    Whittlesey, Rebecca L.; Andrews, Nancy C.

    2011-01-01

    The hereditary hemochromatosis protein HFE promotes the expression of hepcidin, a circulating hormone produced by the liver that inhibits dietary iron absorption and macrophage iron release. HFE mutations are associated with impaired hepatic bone morphogenetic protein (BMP)/SMAD signaling for hepcidin production. TMPRSS6, a transmembrane serine protease mutated in iron-refractory iron deficiency anemia, inhibits hepcidin expression by dampening BMP/SMAD signaling. In the present study, we used genetic approaches in mice to examine the relationship between Hfe and Tmprss6 in the regulation of systemic iron homeostasis. Heterozygous loss of Tmprss6 in Hfe−/− mice reduced systemic iron overload, whereas homozygous loss caused systemic iron deficiency and elevated hepatic expression of hepcidin and other Bmp/Smad target genes. In contrast, neither genetic loss of Hfe nor hepatic Hfe overexpression modulated the hepcidin elevation and systemic iron deficiency of Tmprss6−/− mice. These results indicate that genetic loss of Tmprss6 increases Bmp/Smad signaling in an Hfe-independent manner that can restore Bmp/Smad signaling in Hfe−/− mice. Furthermore, these results suggest that natural genetic variation in the human ortholog TMPRSS6 might modify the clinical penetrance of HFE-associated hereditary hemochromatosis, raising the possibility that pharmacologic inhibition of TMPRSS6 could attenuate iron loading in this disorder. PMID:21355094

  7. Amphipathic DNA polymers exhibit antiviral activity against systemic Murine Cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Juteau Jean-Marc

    2009-12-01

    Full Text Available Abstract Background Phosphorothioated oligonucleotides (PS-ONs have a sequence-independent, broad spectrum antiviral activity as amphipathic polymers (APs and exhibit potent in vitro antiviral activity against a broad spectrum of herpesviruses: HSV-1, HSV-2, HCMV, VZV, EBV, and HHV-6A/B, and in vivo activity in a murine microbiocide model of genital HSV-2 infection. The activity of these agents against animal cytomegalovirus (CMV infections in vitro and in vivo was therefore investigated. Results In vitro, a 40 mer degenerate AP (REP 9 inhibited both murine CMV (MCMV and guinea pig CMV (GPCMV with an IC50 of 0.045 μM and 0.16 μM, respectively, and a 40 mer poly C AP (REP 9C inhibited MCMV with an IC50 of 0.05 μM. Addition of REP 9 to plaque assays during the first two hours of infection inhibited 78% of plaque formation whereas addition of REP 9 after 10 hours of infection did not significantly reduce the number of plaques, indicating that REP 9 antiviral activity against MCMV occurs at early times after infection. In a murine model of CMV infection, systemic treatment for 5 days significantly reduced virus replication in the spleens and livers of infected mice compared to saline-treated control mice. REP 9 and REP 9C were administered intraperitoneally for 5 consecutive days at 10 mg/kg, starting 2 days prior to MCMV infection. Splenomegaly was observed in infected mice treated with REP 9 but not in control mice or in REP 9 treated, uninfected mice, consistent with mild CpG-like activity. When REP 9C (which lacks CpG motifs was compared to REP 9, it exhibited comparable antiviral activity as REP 9 but was not associated with splenomegaly. This suggests that the direct antiviral activity of APs is the predominant therapeutic mechanism in vivo. Moreover, REP 9C, which is acid stable, was effective when administered orally in combination with known permeation enhancers. Conclusion These studies indicate that APs exhibit potent, well tolerated

  8. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    Science.gov (United States)

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  9. Zinc metabolism in genetically obese mice

    International Nuclear Information System (INIS)

    Kennedy, M.L.; Failla, M.L.

    1986-01-01

    Recent reports indicate that the concentrations and total amounts of several essential trace metals in various tissues of genetically obese rodents differ markedly from lean controls. In the present studies the absorption, retention and tissue distribution of zinc was compared in obese (ob/ob) and lean (+/?) C57BL/6J mice. When administered 0.1 and 1 umole 65 Zn by stomach tube and killed after 4 h, fasted 10 week old obese mice had 2.7 and 2.2 times more radioactivity in their carcasses, respectively, than age-matched lean mice. Higher levels of 65 Zn were also present in the intestinal mucosa of obese mice. To eliminate possible differences in the effects of fasting and gastric emptying rates between the phenotypes, zinc absorption and retention were determined according to the method of Heth and Hoekstra. Analysis of data revealed that obese and lean mice absorbed 43 and 18% of the oral dose, respectively. Also, the rate of 65 Zn excretion between 2 and 6 days post-treatment was similar for obese and lean mice. After 6 days obese mice had significantly lower levels of radioisotope in skin, muscle plus bone, spleen and testes and higher levels of 65 Zn in liver, small intestine and adipose tissue compared to tissues from lean mice. These results demonstrate increased absorption, altered tissue distribution and similar excretion of zinc in ob/ob mice

  10. Genotype-dependent participation of coat color gene loci in the behavioral traits of laboratory mice.

    Science.gov (United States)

    Yamamuro, Yutaka; Shiraishi, Aya

    2011-10-01

    To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. MicroRNA profiling in Muc2 knockout mice of colitis-associated cancer model reveals epigenetic alterations during chronic colitis malignant transformation.

    Directory of Open Access Journals (Sweden)

    Yonghua Bao

    Full Text Available Our previous studies have demonstrated that genetic deletion of the Muc2 gene causes colorectal cancers in mice. The current study further showed that at the early stage (3 months the mice exhibited colorectal cancer, including a unique phenotype of rectal prolapsed (rectal severe inflammation and adenocarcinoma. Thus, the age of 3 months might be the key point of the transition from chronic inflammation to cancer. To determine the mechanisms of the malignant transformation, we conducted miRNA array on the colonic epithelial cells from the 3-month Muc2-/- and +/+ mice. MicroRNA profiling showed differential expression of miRNAs (i.e. lower or higher expression enrichments in Muc2-/- mice. 15 of them were validated by quantitative PCR. Based on relevance to cytokine and cancer, 4 miRNAs (miR-138, miR-145, miR-146a, and miR-150 were validate and were found significantly downregulated in human colitis and colorectal cancer tissues. The network of the targets of these miRNAs was characterized, and interestedly, miRNA-associated cytokines were significantly increased in Muc2-/-mice. This is the first to reveal the importance of aberrant expression of miRNAs in dynamically transformation from chronic colitis to colitis-associated cancer. These findings shed light on revealing the mechanisms of chronic colitis malignant transformation.

  12. Maximal Oxygen Consumption is Reduced in Aquaporin-1 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Samer Al-Samir

    2016-08-01

    Full Text Available We have measured maximal oxygen consumption (V’O2,max of mice lacking one or two of the established mouse red-cell CO2 channels AQP1, AQP9 and Rhag. We intended to study whether these proteins, by acting as channels for O2, determine O2 exchange in the lung and in the periphery. We found that V’O2,max as determined by the Helox technique is reduced by ~ 16%, when AQP1 is knocked out, but not when AQP9 or Rhag are lacking. This figure holds for animals respiring normoxic as well as hypoxic gas mixtures. To see whether the reduction of V’O2,max is due to impaired O2 uptake in the lung, we measured carotid arterial O2 saturation (SO2 by pulse oximetry. Neither under normoxic (inspiratory O2 21% nor under hypoxic conditions (11% O2 is there a difference in SO2 between AQP1null and WT mice, suggesting that AQP1 is not critical for O2 uptake in the lung. The fact that the % reduction of V’O2,max is identical in normoxia and hypoxia indicates moreover that the limitation of V’O2,max is not due to an O2 diffusion problem, neither in the lung nor in the periphery. Instead, it appears likely that AQP1null animals exhibit a reduced V’O2,max due to the reduced wall thickness and muscle mass of the left ventricles of their hearts, as reported previously. We conclude that very likely the properties of the hearts of AQP1 knockout mice cause a reduced maximal cardiac output and thus cause a reduced V’O2,max, which constitutes a new phenotype of these mice.

  13. Long-term correction of obesity and diabetes in genetically obese mice by a single intramuscular injection of recombinant adeno-associated virus encoding mouse leptin

    Science.gov (United States)

    Murphy, John E.; Zhou, Shangzhen; Giese, Klaus; Williams, Lewis T.; Escobedo, Jaime A.; Dwarki, Varavani J.

    1997-01-01

    The ob/ob mouse is genetically deficient in leptin and exhibits a phenotype that includes obesity and non-insulin-dependent diabetes melitus. This phenotype closely resembles the morbid obesity seen in humans. In this study, we demonstrate that a single intramuscular injection of a recombinant adeno-associated virus (AAV) vector encoding mouse leptin (rAAV-leptin) in ob/ob mice leads to prevention of obesity and diabetes. The treated animals show normalization of metabolic abnormalities including hyperglycemia, insulin resistance, impaired glucose tolerance, and lethargy. The effects of a single injection have lasted through the 6-month course of the study. At all time points measured the circulating levels of leptin in the serum were similar to age-matched control C57 mice. These results demonstrate that maintenance of normal levels of leptin (2–5 ng/ml) in the circulation can prevent both the onset of obesity and associated non-insulin-dependent diabetes. Thus a single injection of a rAAV vector expressing a therapeutic gene can lead to complete and long-term correction of a genetic disorder. Our study demonstrates the long-term correction of a disease caused by a genetic defect and proves the feasibility of using rAAV-based vectors for the treatment of chronic disorders like obesity. PMID:9391128

  14. Analysis of mammalian gene function through broad based phenotypic screens across a consortium of mouse clinics

    Science.gov (United States)

    Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie

    2015-01-01

    The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591

  15. An overview of potential molecular mechanisms involved in VSMC phenotypic modulation.

    Science.gov (United States)

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Yan-Qin; Wang, Xu; Pi, Yan; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-02-01

    The fully differentiated medial vascular smooth muscle cells (VSMCs) of mature vessels keep quiescent and contractile. However, VSMC can exhibit the plasticity in phenotype switching from a differentiated and contractile phenotype to a dedifferentiated state in response to alterations in local environmental cues, which is called phenotypic modulation or switching. Distinguishing from its differentiated state expressing more smooth muscle (SM)-specific/selective proteins, the phenotypic modulation in VSMC is characterized by an increased rate of proliferation, migration, synthesis of extracellular matrix proteins and decreased expression of SM contractile proteins. Although it has been well demonstrated that phenotypic modulation of VSMC contributes to the occurrence and progression of many proliferative vascular diseases, little is known about the details of the molecular mechanisms of VSMC phenotypic modulation. Growing evidence suggests that variety of molecules including microRNAs, cytokines and biochemical factors, membrane receptors, ion channels, cytoskeleton and extracellular matrix play important roles in controlling VSMC phenotype. The focus of the present review is to provide an overview of potential molecular mechanisms involved in VSMC phenotypic modulation in recent years. To clarify VSMC differentiation and phenotypic modulation mechanisms will contribute to producing cell-based therapeutic interventions for aberrant VSMC differentiation-related diseases.

  16. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  17. Phenotypic and Functional Changes Induced in Hematopoietic Stem/Progenitor Cells After Gamma-Ray Radiation Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Simonnet, A.J.; Nehme, J.; Leboulch, Ph.; Tronik-Le Roux, D. [Institute of Emerging Diseases and Innovative Therapies, Functional Bioengineering Laboratory, Commissariat a l' Energie Atomique (CEA), Evry (France); Simonnet, A.J.; Nehme, J.; Leboulch, Ph.; Tronik-Le Roux, D. [Institut National de la Sante et de la Recherche Medicale (INSERM) U733 (Unite Mixte de Recherche) - UMR INSERM CEA Paris XI (France); Vaigot, P. [Institute of Cellular and Molecular Radiation Biology, Department of Genetic Instability, Recombination and Repair, Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France); Vaigot, P. [UMR 217, UMR-CEA-Centre National de la Recherche Scientifique (France); Barroca, V. [Laboratory of Gametogenesis, Apoptosis, Genotoxicity, Institute of Cellular and Molecular Radiation Biology, Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France); Barroca, V. [Institut National de la Sante et de la Recherche Medicale U566 - UMR INSERM-CEA-PARIS VII (France); Leboulch, Ph. [Genetics Division, Brigham and Women' s Hospital and Harvard Medical School, Boston, Massachusetts (US)

    2009-07-01

    Ionizing radiation (IR) exposure causes rapid and acute bone marrow (BM) suppression that is reversible for nonlethal doses. Evidence is accumulating that IR can also provoke long-lasting residual hematopoietic injury. To better understand these effects, we analyzed phenotypic and functional changes in the stem/progenitor compartment of irradiated mice over a 10-week period. We found that hematopoietic stem cells (HSCs) identified by their repopulating ability continued to segregate within the Hoechst dye excluding 'side population (SP)' early after IR exposure. However, transient phenotypic changes were observed within this cell population: Sca-1 (S) and c-Kit (K) expression levels were increased and severely reduced, respectively, with a concurrent increase in the proportion of SPSK cells positive for established indicators of the presence of HSCs: CD150 and CD105. Ten weeks after IR exposure, expression of Sca-1 and c-Kit at the SP cell surface returned to control levels, and BM cellularity of irradiated mice was restored. However, the c-Kit{sup +}Sca-1{sup +}Lin{sup -/low} (KSL) stem/progenitor compartment displayed major phenotypic modifications, including an increase and a severe decrease in the frequencies of CD150{sup +}Flk2{sup -} and CD150{sup -}Flk2{sup +} cells, respectively. CD150{sup +} KSL cells also showed impaired reconstituting ability, an increased tendency to apoptosis, and accrued DNA damage. Finally, 15 weeks after exposure, irradiated mice, but not age matched controls, allowed engraftment and significant hematopoietic contribution from transplanted con-genic HSCs without additional host conditioning. These results provide novel insight in our understanding of immediate and delayed IR-induced hematopoietic injury and highlight similarities between HSCs of young irradiated and old mice. (authors)

  18. Behavioral assessments of BTBR T+Itpr3tf/J mice by tests of object attention and elevated open platform: Implications for an animal model of psychiatric comorbidity in autism.

    Science.gov (United States)

    Chao, Owen Y; Yunger, Richelle; Yang, Yi-Mei

    2018-07-16

    Autism spectrum disorders (ASD) are diagnosed based on the behavioral criteria of impaired social interaction, defective communication and repetitive behaviors. Psychiatric comorbidities, such as anxiety and intellectual disability, are commonly present in ASD. The BTBR T+ Itpr3tf/J (BTBR) mice display a range of autistic phenotypes, yet whether this mouse model is appropriate to study psychiatric comorbidity in ASD remains unclear. We addressed this issue by subjecting the BTBR animals to three-chambered apparatus, open field, object attention test and elevated open platform. Compared to C57BL/6J control mice, the BTBR mice displayed hyperactivity in most of the tests. In the three-chamber assessment, they exhibited deficits in sociability. In the open field, more grooming and thigmotaxis and less rearing behaviors were observed. They also showed impaired object-based attention. On the elevated open platform, the BTBR animals stayed more to the edges than in the center of the platform. To further examine the properties of this test, naïve C57BL/6J mice were randomly administrated with saline or an anxiogenic substance, caffeine. The caffeine group demonstrated a similar behavioral pattern as the BTBR mice. When the saline group was re-exposed to the same platform, the time they stayed in the center substantially increased, likely due to reduced anxiety by habituation. These results indicate that the BTBR were more anxious than control mice on the open platform. Taken together, the BTBR strain exhibit emotional and cognitive impairments in addition to autistic behaviors, suggesting that they can be a valid model for ASD with psychiatric comorbidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death.

    Directory of Open Access Journals (Sweden)

    Katrin Ruisu

    Full Text Available Resistance to inhibitors of cholinesterase 8 (RIC8 is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre into the floxed Ric8a (Ric8a (F/F background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre (+/- Ric8 (lacZ/F mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6. The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre (+/- Ric8a (lacZ/F mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.

  20. Ablation of RIC8A function in mouse neurons leads to a severe neuromuscular phenotype and postnatal death.

    Science.gov (United States)

    Ruisu, Katrin; Kask, Keiu; Meier, Riho; Saare, Merly; Raid, Raivo; Veraksitš, Alar; Karis, Alar; Tõnissoo, Tambet; Pooga, Margus

    2013-01-01

    Resistance to inhibitors of cholinesterase 8 (RIC8) is a guanine nucleotide exchange factor required for the intracellular regulation of G protein signalling. RIC8 activates different Gα subunits via non-canonical pathway, thereby amplifying and prolonging the G protein mediated signal. In order to circumvent the embryonic lethality associated with the absence of RIC8A and to study its role in the nervous system, we constructed Ric8a conditional knockout mice using Cre/loxP technology. Introduction of a synapsin I promoter driven Cre transgenic mouse strain (SynCre) into the floxed Ric8a (Ric8a (F/F) ) background ablated RIC8A function in most differentiated neuron populations. Mutant SynCre (+/-) Ric8 (lacZ/F) mice were born at expected Mendelian ratio, but they died in early postnatal age (P4-P6). The mutants exhibited major developmental defects, like growth retardation and muscular weakness, impaired coordination and balance, muscular spasms and abnormal heart beat. Histological analysis revealed that the deficiency of RIC8A in neurons caused skeletal muscle atrophy and heart muscle hypoplasia, in addition, the sinoatrial node was misplaced and its size reduced. However, we did not observe gross morphological changes in brains of SynCre (+/-) Ric8a (lacZ/F) mutants. Our results demonstrate that in mice the activity of RIC8A in neurons is essential for survival and its deficiency causes a severe neuromuscular phenotype.