WorldWideScience

Sample records for mice exhibited impaired

  1. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Science.gov (United States)

    Toque, Haroldo A; Nunes, Kenia P; Yao, Lin; Xu, Zhimin; Kondrikov, Dmitry; Su, Yunchao; Webb, R Clinton; Caldwell, Ruth B; Caldwell, R William

    2013-01-01

    Elevated arginase (Arg) activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO) synthase (NOS) and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC) from Akita mice. Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT) mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP) was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC) compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH) reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177) (in aorta and CC) and nNOS expression (in CC) were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks. Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  2. Akita spontaneously type 1 diabetic mice exhibit elevated vascular arginase and impaired vascular endothelial and nitrergic function.

    Directory of Open Access Journals (Sweden)

    Haroldo A Toque

    Full Text Available Elevated arginase (Arg activity is reported to be involved in diabetes-induced vascular endothelial dysfunction. It can reduce L-arginine availability to nitric oxide (NO synthase (NOS and NO production. Akita mice, a genetic non-obese type 1 diabetes model, recapitulate human diabetes. We determined the role of Arg in a time-course of diabetes-associated endothelial dysfunction in aorta and corpora cavernosa (CC from Akita mice.Endothelium-dependent relaxation, Arg and NOS activity, and protein expression levels of Arg and constitutive NOS were assessed in aortas and CC from Akita and non-diabetic wild type (WT mice at 4, 12 and 24 wks of age. Systolic blood pressure (SBP was assessed by tail cuff. In aorta and CC, Akita mice exhibited a progressive impairment of vascular endothelial and nitrergic function increased Arg activity and expression (Arg1 in aorta and both Arg1 and Arg2 in CC compared with that of age-matched WT mice. Treatment of aorta and CC from Akita mice with an Arg inhibitor (BEC or ABH reduced diabetes-induced elevation of Arg activity and restored endothelial and nitrergic function. Reduced levels of phospho-eNOS at Ser(1177 (in aorta and CC and nNOS expression (in CC were observed in Akita mice at 12 and 24 wks. Akita mice also had decreased NOS activity in aorta and CC at 12 and 24 wks that was restored by BEC treatment. Further, Akita mice exhibited moderately increased SBP at 24 wks and increased sensitivity to PE-induced contractions in aorta and sympathetic nerve stimulation in CC at 12 and 24 wks.Over 24 wks of diabetes in Akita mice, both aortic and cavernosal tissues exhibited increased Arg activity/expression, contributing to impaired endothelial and nitrergic function and reduced NO production. Our findings demonstrate involvement of Arg activity in diabetes-induced impairment of vascular function in Akita mouse.

  3. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  4. Mice with an Oncogenic HRAS Mutation are Resistant to High-Fat Diet-Induced Obesity and Exhibit Impaired Hepatic Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Daiju Oba

    2018-01-01

    Full Text Available Costello syndrome is a “RASopathy” that is characterized by growth retardation, dysmorphic facial appearance, hypertrophic cardiomyopathy and tumor predisposition. >80% of patients with Costello syndrome harbor a heterozygous germline G12S mutation in HRAS. Altered metabolic regulation has been suspected because patients with Costello syndrome exhibit hypoketotic hypoglycemia and increased resting energy expenditure, and their growth is severely retarded. To examine the mechanisms of energy reprogramming by HRAS activation in vivo, we generated knock-in mice expressing a heterozygous Hras G12S mutation (HrasG12S/+ mice as a mouse model of Costello syndrome. On a high-fat diet, HrasG12S/+ mice developed a lean phenotype with microvesicular hepatic steatosis, resulting in early death compared with wild-type mice. Under starvation conditions, hypoketosis and elevated blood levels of long-chain fatty acylcarnitines were observed, suggesting impaired mitochondrial fatty acid oxidation. Our findings suggest that the oncogenic Hras mutation modulates energy homeostasis in vivo.

  5. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    Science.gov (United States)

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  6. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  7. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  8. Hormone-sensitive lipase null mice exhibit signs of impaired insulin sensitivity whereas insulin secretion is intact

    DEFF Research Database (Denmark)

    Mulder, Hindrik; Sörhede-Winzell, Maria; Contreras, Juan Antonio

    2003-01-01

    of increased amounts of insulin. Impaired insulin sensitivity was further indicated by retarded glucose disposal during an insulin tolerance test. A euglycemic hyperinsulinemic clamp revealed that hepatic glucose production was insufficiently blocked by insulin in HSL null mice. In vitro, insulin......-stimulated glucose uptake into soleus muscle, and lipogenesis in adipocytes were moderately reduced, suggesting additional sites of insulin resistance. Morphometric analysis of pancreatic islets revealed a doubling of beta-cell mass in HSL null mice, which is consistent with an adaptation to insulin resistance....... Insulin secretion in vitro, examined by perifusion of isolated islets, was not impacted by HSL deficiency. Thus, HSL deficiency results in a moderate impairment of insulin sensitivity in multiple target tissues of the hormone but is compensated by hyperinsulinemia....

  9. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  10. Constitutive activation of Gli2 impairs bone formation in postnatal growing mice.

    Directory of Open Access Journals (Sweden)

    Kyu Sang Joeng

    Full Text Available Indian hedgehog (Ihh signaling is indispensable for osteoblast differentiation during endochondral bone development in the mouse embryo. We have previously shown that the Gli2 transcription activator critically mediates Ihh function in osteoblastogenesis. To explore the possibility that activation of Hedgehog (Hh signaling may enhance bone formation, we generated mice that expressed a constitutively active form of Gli2 in the Osx-lineage cells. Unexpectedly, these mice exhibited severe osteopenia due to a marked decrease in osteoblast number and function, although bone resorption was not affected. Quantitative analyses of the molecular markers indicated that osteoblast differentiation was impaired in the mutant mouse. However, the osteoblast-lineage cells isolated from these mice exhibited more robust osteoblast differentiation than normal in vitro. Similarly, pharmacological stimulation of Hh signaling enhanced osteoblast differentiation from Osx-expressing cells isolated from the wild-type mouse. Thus, even though Hh signaling directly promotes osteoblast differentiation in vitro, constitutive activation of this pathway impairs bone formation in vivo, perhaps through an indirect mechanism.

  11. Impaired transport of thyroid hormones into livers of obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1988-01-01

    Obese (ob/ob) mice exhibit impaired hepatic thyroid hormone action that is mediated, at least in part, by a reduced nuclear 3,5,3'-triiodothyronine (T 3 ) receptor occupancy. The possibility that lowered occupancy in obese mice may be caused by decreased transport of T 3 across the hepatic plasma membrane was examined by measuring the unidirectional influx of [ 125 I]T 3 into livers of 8- to 10-wk-old obese and lean mice using a tissue-sampling portal vein-injection technique. Influx of [ 125 I]thyroxine (T 4 ), a substrate for T 4 5'-deiodinase, was also measured. Unidirectional clearance of T 3 and T 4 was 64 and 80% lower, respectively, in obese mice than in lean mice. Hepatic T 3 and T 4 uptake was nonsaturable in both lean and obese mice, suggesting that transport occurs by lipid-mediated free diffusion. Clearance of another lipid-soluble hormone, hydrocortisone, was also lower in obese mice than in lean mice. Decreased membrane permeability to the above hormones in obese mice may result from reported changes in membrane lipid composition. In conclusion, decreased hepatic thyroid hormone uptake may contribute to impaired thyroid hormone action and T 3 production in livers of obese mice

  12. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  13. Delay-dependent working memory impairment in young-adult and aged 5-HT1BKO mice as assessed in a radial-arm water maze.

    Science.gov (United States)

    Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, Rene; Segu, Louis; Buhot, Marie-Christine

    2003-01-01

    Serotonin (5-HT) plays a modulatory role in mnemonic functions, especially by interacting with the cholinergic system. The 5-HT1B receptor is a key target of this interaction. The 5-HT1B receptor knockout mice were found previously to exhibit a facilitation in hippocampal-dependent spatial reference memory learning. In the present study, we submitted mice to a delayed spatial working memory task, allowing the introduction of various delays between an exposure trial and a test trial. The 5-HT1BKO and wild-type mice learned the task in a radial-arm water maze (returning to the most recent presented arm containing the escape platform), and exhibited a high level of performance at delays of 0 and 5 min. However, at the delay of 60 min, only 5-HT1BKO mice exhibited an impairment. At a delay of 90 min, all mice were impaired. Treatment by scopolamine (0.8 mg/kg) induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. The 22-month-old wild-type and knockout mice exhibited an impairment at short delays (5 and 15 min). The effect of the mutation affected both young-adult and aged mice at delays of 15, 30, and 60 min. Neurobiological data show that stimulation of the 5-HT1B receptor inhibits the release of acetylcholine in the hippocampus, but stimulates this in the frontal cortex. This dual function might, at least in part, explain the opposite effect of the mutation on reference memory (facilitation) and delay-dependent working memory (impairment). These results support the idea that cholinergic-serotonergic interactions play an important role in memory processes.

  14. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  15. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3

    Directory of Open Access Journals (Sweden)

    Marta ePardo

    2015-03-01

    Full Text Available ABSTRACTBrain glycogen synthase kinase-3 (GSK3 is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC. To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with wild-type mice. Environmental enrichment (EE increased NPC proliferation in male, but not female, GSK3 knockin mice and wild-type mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched wild-type mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 hr pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.

  16. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  17. Impaired spatial and contextual memory formation in galectin-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Sakaguchi Masanori

    2011-09-01

    Full Text Available Abstract Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1 is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/- mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.

  18. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    Science.gov (United States)

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  19. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  20. Impaired Muscle Regeneration in Ob/ob and Db/db Mice

    Directory of Open Access Journals (Sweden)

    Mai-Huong Nguyen

    2011-01-01

    Full Text Available In obesity and type 2 diabetes, efficient skeletal muscle repair following injury may be required, not only for restoring muscle structure and function, but also for maintaining exercise capacity and insulin sensitivity. The hypothesis of this study was that muscle regeneration would be impaired in ob/ob and db/db mice, which are common mouse models of obesity and type 2 diabetes. Muscle injury was produced by cardiotoxin injection, and regeneration was assessed by morphological and immunostaining techniques. Muscle regeneration was delayed in ob/ob and db/db mice, but not in a less severe model of insulin resistance – feeding a high-fat diet to wild-type mice. Angiogenesis, cell proliferation, and myoblast accumulation were also impaired in ob/ob and db/db mice, but not the high-fat diet mice. The impairments in muscle regeneration were associated with impaired macrophage accumulation; macrophages have been shown previously to be required for efficient muscle regeneration. Impaired regeneration in ob/ob and db/db mice could be due partly to the lack of leptin signaling, since leptin is expressed both in damaged muscle and in cultured muscle cells. In summary, impaired muscle regeneration in ob/ob and db/db mice was associated with reduced macrophage accumulation, angiogenesis, and myoblast activity, and could have implications for insulin sensitivity in the skeletal muscle of obese and type 2 diabetic patients.

  1. Visual impairment in FOXG1-mutated individuals and mice.

    Science.gov (United States)

    Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M

    2016-06-02

    The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  3. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    Science.gov (United States)

    2013-01-01

    Background The Grin1 (glutamate receptor, ionotropic, NMDA1) gene expresses a subunit of N-methyl-D-aspartate (NMDA) receptors that is considered to play an important role in excitatory neurotransmission, synaptic plasticity, and brain development. Grin1 is a candidate susceptibility gene for neuropsychiatric disorders, including schizophrenia, bipolar disorder, and attention deficit/hyperactivity disorder (ADHD). In our previous study, we examined an N-ethyl-N-nitrosourea (ENU)-generated mutant mouse strain (Grin1Rgsc174/Grin1+) that has a non-synonymous mutation in Grin1. These mutant mice showed hyperactivity, increased novelty-seeking to objects, and abnormal social interactions. Therefore, Grin1Rgsc174/Grin1+ mice may serve as a potential animal model of neuropsychiatric disorders. However, other behavioral characteristics related to these disorders, such as working memory function and sensorimotor gating, have not been fully explored in these mutant mice. In this study, to further investigate the behavioral phenotypes of Grin1Rgsc174/Grin1+ mice, we subjected them to a comprehensive battery of behavioral tests. Results There was no significant difference in nociception between Grin1Rgsc174/Grin1+ and wild-type mice. The mutants did not display any abnormalities in the Porsolt forced swim and tail suspension tests. We confirmed the previous observations that the locomotor activity of these mutant mice increased in the open field and home cage activity tests. They displayed abnormal anxiety-like behaviors in the light/dark transition and the elevated plus maze tests. Both contextual and cued fear memory were severely deficient in the fear conditioning test. The mutant mice exhibited slightly impaired working memory in the eight-arm radial maze test. The startle amplitude was markedly decreased in Grin1Rgsc174/Grin1+ mice, whereas no significant differences between genotypes were detected in the prepulse inhibition (PPI) test. The mutant mice showed no obvious

  4. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  5. Tinnitus-provoking salicylate treatment triggers social impairments in mice.

    Science.gov (United States)

    Guitton, Matthieu J

    2009-09-01

    Tinnitus (perception of sound in silence) strongly affects the quality of life of sufferers. Tinnitus sufferers and their relatives frequently complain about major social impairments. However, it is not known whether this impairment directly results from the occurrence of tinnitus or is the indirect expression of a preexisting psychological vulnerability. Using the well-characterized animal model of salicylate-induced tinnitus, we investigate in mice whether the occurrence of tinnitus can trigger social impairments. Experiments were performed on 32 male Balb/C mice. Tinnitus was induced in mice using salicylate treatment. Social behavior was assessed in experimental and control animals using social interaction paradigm. Interaction time, number of social events, and number of nonsocial events were assessed in all animals. We demonstrate for the first time that treatment known to induce tinnitus triggers complex social impairments in mice. While salicylate-treated animals present a massive decrease in their overall social interactions compared to control untreated animals, they also display a paradoxal increase in the number of conspecific followings. Tinnitus can thus trigger a complex set of modifications of behavior, which will not only find their expression at the individual level, but also at the social level. Our results suggest that tinnitus can directly be a cause of psychosocial impairment in human and have strong implications for the clinical management of tinnitus sufferers.

  6. Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Lao, Ye; Maximov, Anton

    2008-01-01

    and insulin release. Here, we show that synaptotagmin-7 is required for the maintenance of systemic glucose tolerance and glucose-stimulated insulin secretion. Mutant mice have normal insulin sensitivity, insulin production, islet architecture and ultrastructural organization, and metabolic and calcium...... secretion in pancreatic beta-cells. Of these other synaptotagmins, synaptotagmin-7 is one of the most abundant and is present in pancreatic beta-cells. To determine whether synaptotagmin-7 regulates Ca(2+)-dependent insulin secretion, we analyzed synaptotagmin-7 null mutant mice for glucose tolerance...... responses but exhibit impaired glucose-induced insulin secretion, indicating a calcium-sensing defect during insulin-containing secretory granule exocytosis. Taken together, our findings show that synaptotagmin-7 functions as a positive regulator of insulin secretion and may serve as a calcium sensor...

  7. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice

    Directory of Open Access Journals (Sweden)

    Aimee eWong

    2013-09-01

    Full Text Available The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age‐related increases in intraocular pressure, retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 ‐12 months of age and visual impairment is correlated with poor learning and memory performance in visuo‐spatial tasks but not in tasks that do not depend on visual cues. To test the sensory impairment hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic‐XE, 0.00, 0.25 or 0.50% daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9 and 12 months of age, mice treated with Timoptic-XE (0.25 and 0.50% maintained a high level of performance, while 12 month old control mice (0.00% exhibited impaired performance in visually‐dependent, but not non‐visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  8. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice.

    Science.gov (United States)

    Wong, Aimée A; Brown, Richard E

    2013-01-01

    The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age-related increases in intraocular pressure (IOP), retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 to 12 months of age and visual impairment is correlated with poor learning and memory performance in visuo-spatial tasks but not in tasks that do not depend on visual cues. To test the "sensory impairment" hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic-XE, 0.00, 0.25, or 0.50%) daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9, and 12 months of age), mice treated with Timoptic-XE (0.25 and 0.50%) maintained a high level of performance, while 12 month old control mice (0.00%) exhibited impaired performance in visually-dependent, but not non-visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  9. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.

    Science.gov (United States)

    Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing

    2016-03-01

    The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.

  10. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    Science.gov (United States)

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Impairment in extinction of cued fear memory in syntenin-1 knockout mice.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Mori, Hisashi

    2018-03-01

    Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Impaired Leptomeningeal Collateral Flow Contributes to the Poor Outcome following Experimental Stroke in the Type 2 Diabetic Mice

    Science.gov (United States)

    Akamatsu, Yosuke; Nishijima, Yasuo; Lee, Chih Cheng; Yang, Shih Yen; Shi, Lei; An, Lin; Wang, Ruikang K.; Tominaga, Teiji

    2015-01-01

    Collateral status is an independent predictor of stroke outcome. However, the spatiotemporal manner in which collateral flow maintains cerebral perfusion during cerebral ischemia is poorly understood. Diabetes exacerbates ischemic brain damage, although the impact of diabetes on collateral dynamics remains to be established. Using Doppler optical coherent tomography, a robust recruitment of leptomeningeal collateral flow was detected immediately after middle cerebral artery (MCA) occlusion in C57BL/6 mice, and it continued to grow over the course of 1 week. In contrast, an impairment of collateral recruitment was evident in the Type 2 diabetic db/db mice, which coincided with a worse stroke outcome compared with their normoglycemic counterpart db/+, despite their equally well-collateralized leptomeningeal anastomoses. Similar to the wild-type mice, both db/+ and db/db mice underwent collateral growth 7 d after MCA stroke, although db/db mice still exhibited significantly reduced retrograde flow into the MCA territory chronically. Acutely induced hyperglycemia in the db/+ mice did not impair collateral flow after stroke, suggesting that the state of hyperglycemia alone was not sufficient to impact collateral flow. Human albumin was efficacious in improving collateral flow and outcome after stroke in the db/db mice, enabling perfusion to proximal MCA territory that was usually not reached by retrograde flow from anterior cerebral artery without treatment. Our results suggest that the impaired collateral status contributes to the exacerbated ischemic injury in mice with Type 2 diabetes, and modulation of collateral flow has beneficial effects on stroke outcome among these subjects. PMID:25740515

  14. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    Science.gov (United States)

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.

  15. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    Science.gov (United States)

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  16. Sleep deprivation impairs object recognition in mice

    NARCIS (Netherlands)

    Palchykova, S; Winsky-Sommerer, R; Meerlo, P; Durr, R; Tobler, Irene

    2006-01-01

    Many studies in animals and humans suggest that sleep facilitates learning, memory consolidation, and retrieval. Moreover, sleep deprivation (SD) incurred after learning, impaired memory in humans, mice, rats, and hamsters. We investigated the importance of sleep and its timing in in object

  17. G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses

    Science.gov (United States)

    Tarrant, Teresa K.; Billard, Matthew J.; Timoshchenko, Roman G.; McGinnis, Marcus W.; Serafin, D. Stephen; Foreman, Oded; Esserman, Denise A.; Chao, Nelson J.; Lento, William E.; Lee, David M.; Patel, Dhavalkumar; Siderovski, David P.

    2013-01-01

    Chemokine receptor interactions coordinate leukocyte migration in inflammation. Chemokine receptors are GPCRs that when activated, are phosphorylated by GRKs to turn off G protein-mediated signaling yet recruit additional signaling machinery. Recently, GRK3 was identified as a negative regulator of CXCL12/CXCR4 signaling that is defective in human WHIM syndrome. Here, we report that GRK3−/− mice exhibit numerous features of human WHIM, such as impaired CXCL12-mediated desensitization, enhanced CXCR4 signaling to ERK activation, altered granulocyte migration, and a mild myelokathexis. Moreover, GRK3−/− protects mice from two acute models of inflammatory arthritis (K/BxN serum transfer and CAIA). In these granulocyte-dependent disease models, protection of GRK3−/− mice is mediated by retention of cells in the marrow, fewer circulating granulocytes in the peripheral blood, and reduced granulocytes in the joints during active inflammation. In contrast to WHIM, GRK3−/− mice have minimal hypogammaglobulinemia and a peripheral leukocytosis with increased lymphocytes and absent neutropenia. Thus, we conclude that the loss of GRK3-mediated regulation of CXCL12/CXCR4 signaling contributes to some, but not all, of the complete WHIM phenotype and that GRK3 inhibition may be beneficial in the treatment of inflammatory arthritis. PMID:23935208

  18. Impaired cutaneous wound healing in mice lacking tetranectin

    DEFF Research Database (Denmark)

    Iba, Kousuke; Hatakeyama, Naoko; Kojima, Takashi

    2009-01-01

    disruption of the tetranectin gene to elucidate the biological function of tetranectin. In this study, we showed that wound healing was markedly delayed in tetranectin-null mice compared with wild-type mice. A single full-thickness incision was made in the dorsal skin. By 14 days after the incision......, the wounds fully healed in all wild-type mice based on the macroscopic closure; in contrast, the progress of wound healing in the tetranectin null mice appeared to be impaired. In histological analysis, wounds of wild-type mice showed complete reepithelialization and healed by 14 days after the incision....... However, those of tetranectin-null mice never showed complete reepithelialization at 14 days. At 21 days after the injury, the wound healed and was covered with an epidermis. These results supported the fact that tetranectin may play a role in the wound healing process....

  19. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    Directory of Open Access Journals (Sweden)

    Diansan Su

    Full Text Available Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2% for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE, choline acetylase (ChAT and α7 nicotinic receptor (α7-nAChR were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.

  20. Abnormal nociception and opiate sensitivity of STOP null mice exhibiting elevated levels of the endogenous alkaloid morphine

    Directory of Open Access Journals (Sweden)

    Aunis Dominique

    2010-12-01

    Full Text Available Abstract Background- Mice deficient for the stable tubule only peptide (STOP display altered dopaminergic neurotransmission associated with severe behavioural defects including disorganized locomotor activity. Endogenous morphine, which is present in nervous tissues and synthesized from dopamine, may contribute to these behavioral alterations since it is thought to play a role in normal and pathological neurotransmission. Results- In this study, we showed that STOP null brain structures, including cortex, hippocampus, cerebellum and spinal cord, contain high endogenous morphine amounts. The presence of elevated levels of morphine was associated with the presence of a higher density of mu opioid receptor with a higher affinity for morphine in STOP null brains. Interestingly, STOP null mice exhibited significantly lower nociceptive thresholds to thermal and mechanical stimulations. They also had abnormal behavioural responses to the administration of exogenous morphine and naloxone. Low dose of morphine (1 mg/kg, i.p. produced a significant mechanical antinociception in STOP null mice whereas it has no effect on wild-type mice. High concentration of naloxone (1 mg/kg was pronociceptive for both mice strain, a lower concentration (0.1 mg/kg was found to increase the mean mechanical nociceptive threshold only in the case of STOP null mice. Conclusions- Together, our data show that STOP null mice displayed elevated levels of endogenous morphine, as well as an increase of morphine receptor affinity and density in brain. This was correlated with hypernociception and impaired pharmacological sensitivity to mu opioid receptor ligands.

  1. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  2. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  3. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  4. Altered thermogenesis and impaired bone remodeling in Misty mice.

    Science.gov (United States)

    Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E; Bornstein, Sheila A; Le, Phuong; Kawai, Masanobu; Lotinun, Sutada; Horowitz, Mark C; Baron, Roland; Bouxsein, Mary L; Rosen, Clifford J

    2013-09-01

    Fat mass may be modulated by the number of brown-like adipocytes in white adipose tissue (WAT) in humans and rodents. Bone remodeling is dependent on systemic energy metabolism and, with age, bone remodeling becomes uncoupled and brown adipose tissue (BAT) function declines. To test the interaction between BAT and bone, we employed Misty (m/m) mice, which were reported be deficient in BAT. We found that Misty mice have accelerated age-related trabecular bone loss and impaired brown fat function (including reduced temperature, lower expression of Pgc1a, and less sympathetic innervation compared to wild-type (+/ +)). Despite reduced BAT function, Misty mice had normal core body temperature, suggesting heat is produced from other sources. Indeed, upon acute cold exposure (4°C for 6 hours), inguinal WAT from Misty mice compensated for BAT dysfunction by increasing expression of Acadl, Pgc1a, Dio2, and other thermogenic genes. Interestingly, acute cold exposure also decreased Runx2 and increased Rankl expression in Misty bone, but only Runx2 was decreased in wild-type. Browning of WAT is under the control of the sympathetic nervous system (SNS) and, if present at room temperature, could impact bone metabolism. To test whether SNS activity could be responsible for accelerated trabecular bone loss, we treated wild-type and Misty mice with the β-blocker, propranolol. As predicted, propranolol slowed trabecular bone volume/total volume (BV/TV) loss in the distal femur of Misty mice without affecting wild-type. Finally, the Misty mutation (a truncation of DOCK7) also has a significant cell-autonomous role. We found DOCK7 expression in whole bone and osteoblasts. Primary osteoblast differentiation from Misty calvaria was impaired, demonstrating a novel role for DOCK7 in bone remodeling. Despite the multifaceted effects of the Misty mutation, we have shown that impaired brown fat function leads to altered SNS activity and bone loss, and for the first time that cold

  5. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    Science.gov (United States)

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  6. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  7. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion*

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C.; Wang, Tong

    2016-01-01

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk−/− mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1−/− mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1+/+ and Romk1−/− mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1+/+, but such regulation by high K intake was diminished with significant hyperkalemia in Romk1−/− mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K+ secretion in the collecting tubule. PMID:26728465

  8. Romk1 Knockout Mice Do Not Produce Bartter Phenotype but Exhibit Impaired K Excretion.

    Science.gov (United States)

    Dong, Ke; Yan, Qingshang; Lu, Ming; Wan, Laxiang; Hu, Haiyan; Guo, Junhua; Boulpaep, Emile; Wang, WenHui; Giebisch, Gerhard; Hebert, Steven C; Wang, Tong

    2016-03-04

    Romk knock-out mice show a similar phenotype to Bartter syndrome of salt wasting and dehydration due to reduced Na-K-2Cl-cotransporter activity. At least three ROMK isoforms have been identified in the kidney; however, unique functions of any of the isoforms in nephron segments are still poorly understood. We have generated a mouse deficient only in Romk1 by selective deletion of the Romk1-specific first exon using an ES cell Cre-LoxP strategy and examined the renal phenotypes, ion transporter expression, ROMK channel activity, and localization under normal and high K intake. Unlike Romk(-/-) mice, there was no Bartter phenotype with reduced NKCC2 activity and increased NCC expression in Romk1(-/-) mice. The small conductance K channel (SK) activity showed no difference of channel properties or gating in the collecting tubule between Romk1(+/+) and Romk1(-/-) mice. High K intake increased SK channel number per patch and increased the ROMK channel intensity in the apical membrane of the collecting tubule in Romk1(+/+), but such regulation by high K intake was diminished with significant hyperkalemia in Romk1(-/-) mice. We conclude that 1) animal knockouts of ROMK1 do not produce Bartter phenotype. 2) There is no functional linking of ROMK1 and NKCC2 in the TAL. 3) ROMK1 is critical in response to high K intake-stimulated K(+) secretion in the collecting tubule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Postpartum estrogen withdrawal impairs hippocampal neurogenesis and causes depression- and anxiety-like behaviors in mice.

    Science.gov (United States)

    Zhang, Zhuan; Hong, Juan; Zhang, Suyun; Zhang, Tingting; Sha, Sha; Yang, Rong; Qian, Yanning; Chen, Ling

    2016-04-01

    Postpartum estrogen withdrawal is known to be a particularly vulnerable time for depressive symptoms. Ovariectomized adult mice (OVX-mice) treated with hormone-simulated pregnancy (HSP mice) followed by a subsequent estradiol benzoate (EB) withdrawal (EW mice) exhibited depression- and anxiety-like behaviors, as assessed by forced swim, tail suspension and elevated plus-maze, while HSP mice, OVX mice or EB-treated OVX mice (OVX/EB mice) did not. The survival and neurite growth of newborn neurons in hippocampal dentate gyrus were examined on day 5 after EW. Compared with controls, the numbers of 28-day-old BrdU(+) and BrdU(+)/NeuN(+) cells were increased in HSP mice but significantly decreased in EW mice; the numbers of 10-day-old BrdU(+) cells were increased in HSP mice and OVX/EB mice; and the density of DCX(+) fibers was reduced in EW mice and OVX mice. The phosphorylation of hippocampal NMDA receptor (NMDAr) NR2B subunit or Src was increased in HSP mice but decreased in EW mice. NMDAr agonist NMDA prevented the loss of 28-day-old BrdU(+) cells and the depression- and anxiety-like behaviors in EW mice. NR2B inhibitor Ro25-6981 or Src inhibitor dasatinib caused depression- and anxiety-like behaviors in HSP mice with the reduction of 28-day-old BrdU(+) cells. The hippocampal BDNF levels were reduced in EW mice and OVX mice. TrkB receptor inhibitor K252a reduced the density of DCX(+) fibers in HSP mice without the reduction of 28-day-old BrdU(+) cells, or the production of affective disorder. Collectively, these results indicate that postpartum estrogen withdrawal impairs hippocampal neurogenesis in mice that show depression- and anxiety-like behaviors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Adipose tissue-derived microvascular fragments from aged donors exhibit an impaired vascularisation capacity

    Directory of Open Access Journals (Sweden)

    MW Laschke

    2014-10-01

    Full Text Available Adipose tissue-derived microvascular fragments are promising vascularisation units for applications in the field of tissue engineering. Elderly patients are the major future target population of such applications due to an increasing human life expectancy. Therefore, we herein investigated the effect of aging on the fragments’ vascularisation capacity. Microvascular fragments were isolated from epididymal fat pads of adult (8 months and aged (16 months C57BL/6 donor mice. These fragments were seeded onto porous polyurethane scaffolds, which were implanted into dorsal skinfold chambers to study their vascularisation using intravital fluorescence microscopy, histology and immunohistochemistry. Scaffolds seeded with fragments from aged donors exhibited a significantly lower functional microvessel density and intravascular blood flow velocity. This was associated with an impaired vessel maturation, as indicated by vessel wall irregularities, constantly elevated diameters and a lower fraction of CD31/α-smooth muscle actin double positive microvessels in the implants’ border and centre zones. Additional in vitro analyses revealed that microvascular fragments from adult and aged donors do not differ in their stem cell content as well as in their release of angiogenic growth factors, survival and proliferative activity under hypoxic conditions. However, fragments from aged donors exhibit a significantly lower number of matrix metalloproteinase -9-positive perivascular cells. Taken together, these findings demonstrate that aging is a crucial determinant for the vascularisation capacity of isolated microvascular fragments.

  11. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

    Science.gov (United States)

    Nguyen-Vu, TD Barbara; Zhao, Grace Q; Lahiri, Subhaneil; Kimpo, Rhea R; Lee, Hanmi; Ganguli, Surya; Shatz, Carla J; Raymond, Jennifer L

    2017-01-01

    Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI: http://dx.doi.org/10.7554/eLife.20147.001 PMID:28234229

  12. Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.

    Science.gov (United States)

    Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui

    2017-07-01

    Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  14. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  15. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    Science.gov (United States)

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  16. Impaired baroreflex function in mice overexpressing alpha-synuclein

    Directory of Open Access Journals (Sweden)

    Sheila eFleming

    2013-07-01

    Full Text Available Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD. In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn, a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate, computed from R-R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in heart rate and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD.

  17. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    Science.gov (United States)

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  18. Effect of Ginseng (Panax ginseng Berry EtOAc Fraction on Cognitive Impairment in C57BL/6 Mice under High-Fat Diet Inducement

    Directory of Open Access Journals (Sweden)

    Chang Hyeon Park

    2015-01-01

    Full Text Available High-fat diet-induced obesity leads to type 2 diabetes. Recently, there has been growing apprehension about diabetes-associated cognitive impairment (DACM. The effect of ginseng (Panax ginseng berry ethyl acetate fraction (GBEF on mice with high-fat diet-induced cognitive impairment was investigated to confirm its physiological function. C57BL/6 mice were fed a high-fat diet for 5 weeks and then a high-fat diet with GBEF (20 and 50 mg/kg of body weight for 4 weeks. After three in vivo behavioral tests (Y-maze, passive avoidance, and Morris water maze tests, blood samples were collected from the postcaval vein for biochemical analysis, and whole brains were prepared for an ex vivo test. A method based on ultra-performance liquid chromatography (UPLC accurate-mass quadrupole time-of-flight mass spectrometry (Q-TOF/MS was used to determine major ginsenosides. GBEF decreased the fasting blood glucose levels of high-fat diet-induced diabetes mellitus (DM mice and improved hyperglycemia. Cognitive behavior tests were examined after setting up the DM mice. The in vivo experiments showed that mice treated with GBEF exhibited more improved cognitive behavior than DM mice. In addition, GBEF effectively inhibited the acetylcholinesterase (AChE activity and malondialdehyde (MDA levels of DM mice brain tissues. Q-TOF UPLC/MS analyses of GBEF showed that ginsenoside Re was the major ginsenoside.

  19. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    Science.gov (United States)

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P exercise training (P smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P exercise training (P smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  20. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice.

    Science.gov (United States)

    Kubo, Kin-Ya; Murabayashi, Chika; Kotachi, Mika; Suzuki, Ayumi; Mori, Daisuke; Sato, Yuichi; Onozuka, Minoru; Azuma, Kagaku; Iinuma, Mitsuo

    2017-02-01

    Tooth loss induced neurological alterations through activation of a stress hormone, corticosterone. Age-related hippocampal morphological and functional changes were accelerated by early tooth loss in senescence-accelerated mouse prone 8 (SAMP8). In order to explore the mechanism underlying the impaired hippocampal function resulting from early masticatory dysfunction due to tooth loss, we investigated the effects of early tooth loss on plasma corticosterone levels, learning ability, neurogenesis, and synaptophysin expression in the hippocampus later in life of SAMP8 mice. We examined the effects of tooth loss soon after tooth eruption (1 month of age) on plasma corticosterone levels, learning ability in the Morris water maze, newborn cell proliferation, survival and differentiation in the hippocampal dentate gyrus, and synaptophysin expression in the hippocampus of aged (8 months of age) SAMP8 mice. Aged mice with early tooth loss exhibited increased plasma corticosterone levels, hippocampus-dependent learning deficits in the Morris water maze, decreased cell proliferation, and cell survival in the dentate gyrus, and suppressed synaptophysin expression in the hippocampus. Newborn cell differentiation in the hippocampal dentate gyrus, however, was not affected by early tooth loss. These findings suggest that learning deficits in aged SAMP8 mice with tooth loss soon after tooth eruption are associated with suppressed neurogenesis and decreased synaptophysin expression resulting from increased plasma corticosterone levels, and that long-term tooth loss leads to impaired cognitive function in older age. Copyright © 2016. Published by Elsevier Ltd.

  1. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    Science.gov (United States)

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  2. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    Science.gov (United States)

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment. © 2013 Elsevier B.V. All rights reserved.

  3. Obese mice exhibit an altered behavioural and inflammatory response to lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Catherine B. Lawrence

    2012-09-01

    Obesity is associated with an increase in the prevalence and severity of infections. Genetic animal models of obesity (ob/ob and db/db mice display altered centrally-mediated sickness behaviour in response to acute inflammatory stimuli such as lipopolysaccharide (LPS. However, the effect of diet-induced obesity (DIO on the anorectic and febrile response to LPS in mice is unknown. This study therefore determined how DIO and ob/ob mice respond to a systemic inflammatory challenge. C57BL/6 DIO and ob/ob mice, and their respective controls, were given an intraperitoneal (i.p. injection of LPS. Compared with controls, DIO and ob/ob mice exhibited an altered febrile response to LPS (100 μg/kg over 8 hours. LPS caused a greater and more prolonged anorexic effect in DIO compared with control mice and, in ob/ob mice, LPS induced a reduction in food intake and body weight earlier than it did in controls. These effects of LPS in obese mice were also seen after a fixed dose of LPS (5 μg. LPS (100 μg/kg induced Fos protein expression in several brain nuclei of control mice, with fewer Fos-positive cells observed in the brains of obese mice. An altered inflammatory response to LPS was also observed in obese mice compared with controls: changes in cytokine expression and release were detected in the plasma, spleen, liver and peritoneal macrophages in obese mice. In summary, DIO and ob/ob mice displayed an altered behavioural response and cytokine release to systemic inflammatory challenge. These findings could help explain why obese humans show increased sensitivity to infections.

  4. Chronic exposure to low frequency noise at moderate levels causes impaired balance in mice.

    Directory of Open Access Journals (Sweden)

    Haruka Tamura

    Full Text Available We are routinely exposed to low frequency noise (LFN; below 0.5 kHz at moderate levels of 60-70 dB sound pressure level (SPL generated from various sources in occupational and daily environments. LFN has been reported to affect balance in humans. However, there is limited information about the influence of chronic exposure to LFN at moderate levels for balance. In this study, we investigated whether chronic exposure to LFN at a moderate level of 70 dB SPL affects the vestibule, which is one of the organs responsible for balance in mice. Wild-type ICR mice were exposed for 1 month to LFN (0.1 kHz and high frequency noise (HFN; 16 kHz at 70 dB SPL at a distance of approximately 10-20 cm. Behavior analyses including rotarod, beam-crossing and footprint analyses showed impairments of balance in LFN-exposed mice but not in non-exposed mice or HFN-exposed mice. Immunohistochemical analysis showed a decreased number of vestibular hair cells and increased levels of oxidative stress in LFN-exposed mice compared to those in non-exposed mice. Our results suggest that chronic exposure to LFN at moderate levels causes impaired balance involving morphological impairments of the vestibule with enhanced levels of oxidative stress. Thus, the results of this study indicate the importance of considering the risk of chronic exposure to LFN at a moderate level for imbalance.

  5. Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.

    Science.gov (United States)

    Li, Zaixin; Zhang, Zhi; Zhang, Jinshan; Jia, Jing; Ding, Jie; Luo, Rongzhen; Liu, Zhangqin

    2012-12-01

    Memory impairment is one of main clinical symptoms of brain senescence. To address the effects of Cordyceps militaris Link extract (CE) on memory impairment, a D-galactose (D-Gal)-induced aging mouse model was employed. Mice injected with D-Gal showed a significant learning and memory impairment that was rescued by CE treatment. The mechanism was further investigated by analyzing the protein level and activity of oxidant and antioxidant molecules, including malondialdehyde (MDA), monoamine oxidase (MAO), total super-oxide dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-px), which played critical roles in the development of brain senescence. The results showed that CE treatment resulted in a significant decrease in the oxidative activity of MAO and the level of MDA, and significantly increased the antioxidant activities of T-SOD and T-AOC in the cerebral cortices. Moreover, the level of GSH and the activity of antioxidant enzymes GSH-px in serum were significantly upregulated after CE treatment. Taken together, our results suggest that Cordyceps militaris extract could ameliorate experimental memory impairment in mice with D-Gal-induced aging through its potent antioxidant activities.

  6. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Science.gov (United States)

    Yang, Siming; Gu, Changping; Mandeville, Emiri T.; Dong, Yuanlin; Esposito, Elga; Zhang, Yiying; Yang, Guang; Shen, Yuan; Fu, Xiaobing; Lo, Eng H.; Xie, Zhongcong

    2017-01-01

    Blood–brain barrier (BBB) dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy) under 1.4% isoflurane anesthesia (anesthesia/surgery) for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL)-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification), and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium. PMID:28848542

  7. Anesthesia and Surgery Impair Blood–Brain Barrier and Cognitive Function in Mice

    Directory of Open Access Journals (Sweden)

    Siming Yang

    2017-08-01

    Full Text Available Blood–brain barrier (BBB dysfunction, e.g., increase in BBB permeability, has been reported to contribute to cognitive impairment. However, the effects of anesthesia and surgery on BBB permeability, the underlying mechanisms, and associated cognitive function remain largely to be determined. Here, we assessed the effects of surgery (laparotomy under 1.4% isoflurane anesthesia (anesthesia/surgery for 2 h on BBB permeability, levels of junction proteins and cognitive function in both 9- and 18-month-old wild-type mice and 9-month-old interleukin (IL-6 knockout mice. BBB permeability was determined by dextran tracer (immunohistochemistry imaging and spectrophotometric quantification, and protein levels were measured by Western blot and cognitive function was assessed by using both Morris water maze and Barnes maze. We found that the anesthesia/surgery increased mouse BBB permeability to 10-kDa dextran, but not to 70-kDa dextran, in an IL-6-dependent and age-associated manner. In addition, the anesthesia/surgery induced an age-associated increase in blood IL-6 level. Cognitive impairment was detected in 18-month-old, but not 9-month-old, mice after the anesthesia/surgery. Finally, the anesthesia/surgery decreased the levels of β-catenin and tight junction protein claudin, occludin and ZO-1, but not adherent junction protein VE-cadherin, E-cadherin, and p120-catenin. These data demonstrate that we have established a system to study the effects of perioperative factors, including anesthesia and surgery, on BBB and cognitive function. The results suggest that the anesthesia/surgery might induce an age-associated BBB dysfunction and cognitive impairment in mice. These findings would promote mechanistic studies of postoperative cognitive impairment, including postoperative delirium.

  8. D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice.

    Science.gov (United States)

    Palazzo, Enza; Luongo, Livio; Guida, Francesca; Marabese, Ida; Romano, Rosaria; Iannotta, Monica; Rossi, Francesca; D'Aniello, Antimo; Stella, Luigi; Marmo, Federica; Usiello, Alessandro; de Bartolomeis, Andrea; Maione, Sabatino; de Novellis, Vito

    2016-07-01

    D-Aspartate (D-Asp) is a free D-amino acid detected in multiple brain regions and putative precursor of endogenous N-methyl-D-aspartate (NMDA) acting as agonist at NMDA receptors. In this study, we investigated whether D-Asp (20 mM) in drinking solution for 1 month affects pain responses and pain-related emotional, and cognitive behaviour in a model of neuropathic pain induced by the spared nerve injury (SNI) of the sciatic nerve in mice. SNI mice developed mechanical allodynia and motor coordination impairment 30 days after SNI surgery. SNI mice showed cognitive impairment, anxiety and depression-like behaviour, reduced sociability in the three chamber sociability paradigm, increased expression of NR2B subunit of NMDA receptor and Homer 1a in the medial prefrontal cortex (mPFC). The expression of (post synaptic density) PSD-95 and Shank 1was instead unaffected in the mPFC of the SNI mice. Treatment with D-Asp drinking solution, started right after the SNI (day 0), alleviated mechanical allodynia, improved cognition and motor coordination and increased social interaction. D-Asp also restored the levels of extracellular D-Asp, Homer 1a and NR2B subunit of the NMDA receptor to physiological levels and reduced Shank1 and PSD-95 protein levels in the mPFC. Amitriptyline, a tricyclic antidepressant used also to alleviate neuropathic pain in humans, reverted mechanical allodynia and cognitive impairment, and unlike D-Asp, was effective in reducing depression and anxiety-like behaviour in the SNI mice and increased PSD protein level. Altogether these findings demonstrate that D-Asp improves sensorial, motor and cognitive-like symptoms related to chronic pain possibly through glutamate neurotransmission normalization in neuropathic mice.

  9. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  10. Long-term activation of TLR3 by Poly(I:C induces inflammation and impairs lung function in mice

    Directory of Open Access Journals (Sweden)

    Alexopoulou Lena

    2009-06-01

    Full Text Available Abstract Background The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases. Methods TLR3 knock-out (KO mice and C57B6 (WT mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C. Results There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C, the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy. Conclusion These findings demonstrate that TLR3 activation by poly(I:C modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.

  11. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    International Nuclear Information System (INIS)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani; Gupta, Sanjeev; Singhal, Pravin C.

    2013-01-01

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level

  12. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  13. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  14. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  15. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  16. Antioxidant hydrolysed peptides from Manchurian walnut (Juglansmandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Ren, Dayong; Zhao, Fanrui; Liu, Chunlei; Wang, Ji; Guo, Yong; Liu, Jingsheng; Min, Weihong

    2018-04-13

    Walnut protein, which is obtained as a by-product of oil expression, has not been used efficiently. Although walnuts are beneficial for cognitive functioning, the potential of their protein composition in strengthening learning and memory functions remains unknown. In this research, the inhibition of memory impairment by the Manchurian walnut hydrolyzed peptide (MWHP) was evaluated. Small-molecular-weight MWHP (<3 kDa) achieved the optimal antioxidative activity. Therefore, MWHP (<3 kDa) was subjected to the following mice trials to evaluate its attenuation effect on memory impairment. In the Morris water maze test, MWHP shortened the total path for searching the platform, reduced the escape latency, and increased the dwelling distance and time in the coverage zone. MWHP also prolonged the latency and diminished errors in the passive avoidance response tests. These behavioral tests demonstrated that MWHP could inhibit scopolamine-induced memory impairment. MWHP improved memory by reducing oxidative stress, inhibiting apoptosis, regulating neurotransmitter functions, maintaining hippocampal CA3 pyramidal neurons, and increasing p-CaMK II levels in brain tissues. Experimental results proved that MWHP exhibits potential in improving memory and should be used to develop novel functional food. This article is protected by copyright. All rights reserved.

  17. Abnormal social behavior, hyperactivity, impaired remote spatial memory, and increased D1-mediated dopaminergic signaling in neuronal nitric oxide synthase knockout mice

    Directory of Open Access Journals (Sweden)

    Tanda Koichi

    2009-06-01

    Full Text Available Abstract Background Neuronal nitric oxide synthase (nNOS is involved in the regulation of a diverse population of intracellular messenger systems in the brain. In humans, abnormal NOS/nitric oxide metabolism is suggested to contribute to the pathogenesis and pathophysiology of some neuropsychiatric disorders, such as schizophrenia and bipolar disorder. Mice with targeted disruption of the nNOS gene exhibit abnormal behaviors. Here, we subjected nNOS knockout (KO mice to a battery of behavioral tests to further investigate the role of nNOS in neuropsychiatric functions. We also examined the role of nNOS in dopamine/DARPP-32 signaling in striatal slices from nNOS KO mice and the effects of the administration of a dopamine D1 receptor agonist on behavior in nNOS KO mice. Results nNOS KO mice showed hyperlocomotor activity in a novel environment, increased social interaction in their home cage, decreased depression-related behavior, and impaired spatial memory retention. In striatal slices from nNOS KO mice, the effects of a dopamine D1 receptor agonist, SKF81297, on the phosphorylation of DARPP-32 and AMPA receptor subunit GluR1 at protein kinase A sites were enhanced. Consistent with the biochemical results, intraperitoneal injection of a low dose of SKF81297 significantly decreased prepulse inhibition in nNOS KO mice, but not in wild-type mice. Conclusion These findings indicate that nNOS KO upregulates dopamine D1 receptor signaling, and induces abnormal social behavior, hyperactivity and impaired remote spatial memory. nNOS KO mice may serve as a unique animal model of psychiatric disorders.

  18. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  19. Impaired Sperm Maturation in Rnase9 Knockout Mice1

    Science.gov (United States)

    Westmuckett, Andrew D.; Nguyen, Edward B.; Herlea-Pana, Oana M.; Alvau, Antonio; Salicioni, Ana M.; Moore, Kevin L.

    2014-01-01

    ABSTRACT Ribonuclease, RNase A family, 9 (RNASE9) is a ribonuclease A superfamily member that is expressed only in the epididymis. It is a small, secreted polypeptide, it lacks ribonuclease activity, and its function(s) is unknown. However, epididymis-specific expression suggests a role in sperm maturation. We generated Rnase9−/− mice to study RNASE9 function in vivo. We confirm that RNASE9 expression is restricted to the epididymis. Within the epididymis, RNASE9 is first detected in midcaput, persists through the distal caput and corpus, and wanes in the cauda. Rnase9−/− mice are born at the expected Mendelian ratio, have normal postnatal growth and development, and have no outwardly apparent phenotype. Spermatogenesis is normal, and Rnase9-null sperm are morphologically normal. Rnase9−/− males have normal fertility in unrestricted mating trials, and fertilization rates in in vitro fertilization assays are indistinguishable from wild-type mice. Visual observations coupled with analyses of sperm velocities shortly after swim out from the corpus shows that motility of Rnase9-null sperm is significantly impaired. However, no differences between wild-type and Rnase9-null sperm are detected by computer-assisted sperm analysis 10–90 min after sperm isolation from the corpus or cauda. Assessment of capacitation-dependent signaling pathways in Rnase9-null sperm showed that, while levels of tyrosine phosphorylation of sperm proteins were normal, there was decreased phosphorylation of protein kinase A substrates upon capacitation compared to wild-type mice. In conclusion, RNASE9 is dispensable for fertility, but the absence of RNASE9 during epididymal transit results in impaired sperm maturation. PMID:24719258

  20. Impaired bone healing at tooth extraction sites in CD24-deficient mice: A pilot study.

    Science.gov (United States)

    Avivi-Arber, Limor; Avivi, Doran; Perez, Marilena; Arber, Nadir; Shapira, Shiran

    2018-01-01

    To use a micro-computed tomography (micro-CT) to quantify bone healing at maxillary first molar extraction sites, and test the hypothesis that bone healing is impaired in CD24-knockout mice as compared with wild-type C57BL/6J mice. Under ketamine-xylazine general anaesthesia, mice had either extraction of the right maxillary first molar tooth or sham operation. Mice were sacrificed 1 (n = 12/group), 2 (n = 6/group) or 4 (n = 6/group) weeks postoperatively. The right maxillae was disected. Micro-CT was used to quantify differences in bone microstructural features at extrction sites, between CD24-knockout mice and wild-type mice. CD24-Knockout mice displayed impaired bone healing at extraction sites that was manifested as decreased trabecular bone density, and decreased number and thickness of trabeculae. This pilot study suggests that CD24 plays an important role in extraction socket bone healing and may be used as a novel biomarker of bone quality and potential therapeutic target to improve bone healing and density following alveolar bone injury.

  1. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    Science.gov (United States)

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important

  2. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2018-04-01

    Full Text Available The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM tests. MSE (250 or 500 mg/kg was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

  3. Mice lacking inositol 1,4,5-trisphosphate receptors exhibit dry eye.

    Directory of Open Access Journals (Sweden)

    Takaaki Inaba

    Full Text Available Tear secretion is important as it supplies water to the ocular surface and keeps eyes moist. Both the parasympathetic and sympathetic pathways contribute to tear secretion. Although intracellular Ca2+ elevation in the acinar cells of lacrimal glands is a crucial event for tear secretion in both the pathways, the Ca2+ channel, which is responsible for the Ca2+ elevation in the sympathetic pathway, has not been sufficiently analyzed. In this study, we examined tear secretion in mice lacking the inositol 1,4,5-trisphosphate receptor (IP3R types 2 and 3 (Itpr2-/-;Itpr3-/-double-knockout mice. We found that tear secretion in both the parasympathetic and sympathetic pathways was abolished in Itpr2-/-;Itpr3-/- mice. Intracellular Ca2+ elevation in lacrimal acinar cells after acetylcholine and epinephrine stimulation was abolished in Itpr2-/-;Itpr3-/- mice. Consequently, Itpr2-/-;Itpr3-/- mice exhibited keratoconjunctival alteration and corneal epithelial barrier disruption. Inflammatory cell infiltration into the lacrimal glands and elevation of serum autoantibodies, a representative marker for Sjögren's syndrome (SS in humans, were also detected in older Itpr2-/-;Itpr3-/- mice. These results suggested that IP3Rs are essential for tear secretion in both parasympathetic and sympathetic pathways and that Itpr2-/-;Itpr3-/- mice could be a new dry eye mouse model with symptoms that mimic those of SS.

  4. An ethanolic extract of Desmodium adscendens exhibits antipsychotic-like activity in mice.

    Science.gov (United States)

    Amoateng, Patrick; Adjei, Samuel; Osei-Safo, Dorcas; Kukuia, Kennedy K E; Karikari, Thomas K; Nyarko, Alexander K

    2017-09-26

    Desmodium adscendens extract (DAE) is used traditionally in Ghana for the management of psychosis. The present study aimed at providing pharmacological evidence for its ethnomedical use by testing the hypothesis that an ethanolic extract of Desmodium adscendens may possess antipsychotic properties. The primary behavioral effects of DAE on the central nervous system of mice were investigated using Irwin's test paradigm. Novelty-induced and apomorphine-induced locomotor and rearing behaviors in mice were explored in an open-field observational test system. Apomorphine-induced cage climbing test in mice was used as the antipsychotic animal model. The ability of DAE to induce catalepsy and enhance haloperidol-induced catalepsy was also investigated in mice. The DAE produced sedation, cholinergic-, and serotonergic-like effects in mice when evaluated using the Irwin's test. No lethality was observed after 24 h post-treatment. The LD50 in mice was estimated to be greater than 3000 mg/kg. The DAE significantly decreased the frequency of novelty- and apomorphine-induced rearing and locomotor activities in mice. It also significantly lowered the frequency and duration of apomorphine-induced climbing activities in mice. It did not induce any cataleptic event in naïve mice but only significantly enhanced haloperidol-induced catalepsy at a dose of 1000 mg/kg. The ethanolic extract of Desmodium adscendens exhibited antipsychotic-like activities in mice. Motor side effects are only likely to develop at higher doses of the extract.

  5. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1.

    Science.gov (United States)

    Reheman, Adili; Tasneem, Subia; Ni, Heyu; Hayward, Catherine P M

    2010-05-01

    Multimerin 1 is a stored platelet and endothelial cell adhesive protein that shows significant conservation. In vitro, multimerin 1 supports platelet adhesion and it also binds to collagen and enhances von Willebrand factor-dependent platelet adhesion to collagen. As selective, multimerin 1 deficient mice have not been generated, we investigated multimerin 1 effects on platelet adhesion using a subpopulation of C57BL/6J mice with tandem deletion of the genes for multimerin 1 and alpha-synuclein, a protein that inhibits alpha-granule release in vitro. We postulated that multimerin 1/alpha-synuclein deficient mice might show impaired platelet adhesive function from multimerin 1 deficiency and increased alpha-granule release from alpha-synuclein deficiency. Platelet function was assessed by intravital microscopy, after ferric chloride injury, using untreated and human multimerin 1-transfused multimerin 1/alpha-synuclein deficient mice, and by in vitro assays of adhesion, aggregation and thrombin-induced P-selectin release. Multimerin 1/alpha-synuclein deficient mice showed impaired platelet adhesion and their defective thrombus formation at sites of vessel injury improved with multimerin 1 transfusion. Although multimerin 1/alpha-synuclein deficient platelets showed increased P-selectin release at low thrombin concentrations, they also showed impaired adhesion to collagen, and attenuated aggregation with thrombin, that improved with added multimerin 1. Our data suggest that multimerin 1 supports platelet adhesive functions and thrombus formation, which will be important to verify by generating and testing selective multimerin 1 deficient mice. Copyright (c) 2010. Published by Elsevier Ltd.

  6. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice

    Institute of Scientific and Technical Information of China (English)

    Yan-Jiong Chen; Teng Chen; Yan-Ling Liu; Qing Zhong; Yan-Fang Yu; Hong-Liang Su; Haroldo A.Toque; Yong-Hui Dang; Feng Chen; Ming Xu

    2012-01-01

    [Objective] The purpose of this study was to investigate the effect of methamphetamine (MA) on spatial learning and memory and the role of tetrahydropalmatine (THP) in MA-induced changes in these phenomena in mice.[Methods]Male C57BL/6 mice were randomly divided into eight groups,according to different doses of MA,different doses of THP,treatment with both MA and THP,and saline controls.Spatial learning and memory were assessed using the Morris water maze.Western blot was used to detect the expression of extracellular signal-regulated protein kinase (ERK) in the mouse prefrontal cortex (PFC) and hippocampus.[Results] Repeated MA treatment significantly increased the escape latency in the learning phase and decreased the number of platform site crossings in the memory-test phase.ERK1/2 expression was decreased in the PFC but not in the hippocampus of the MA-treated mice.Repeated THP treatment alone did not affect the escape latency,the number of platform site crossings or the total ERK1/2 expression in the brain.Statistically significantly shorter escape latencies and more platform site crossings occurred in MA+THP-trcatcd mice than in MA-treated mice.[Conclusion]Repeated MA administration impairs spatial learning and memory in mice,and its co-administration with THP prevents this impairment,which is probably attributable to changed ERK1/2 expression in the PFC.This study contributes to uncovering the mechanism underlying MA abuse,and to exploring potential therapies.

  7. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  8. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  9. Moderate maternal food restriction in mice impairs physical growth, behavior, and neurodevelopment of offspring.

    Science.gov (United States)

    Akitake, Yoshiharu; Katsuragi, Shinji; Hosokawa, Masato; Mishima, Kenichi; Ikeda, Tomoaki; Miyazato, Mikiya; Hosoda, Hiroshi

    2015-01-01

    Intrauterine growth retardation (IUGR) occurs in 3% to 7% of all pregnancies. Recent human studies have indicated that neurodevelopmental disabilities, learning disorders, memory impairment, and mood disturbance are common in IUGR offspring. However, the interactions between IUGR and neurodevelopmental disorders are unclear because of the wide range of causes of IUGR, such as maternal malnutrition, placental insufficiency, pregnancy toxemia, and fetal malformations. Meanwhile, many studies have shown that moderate food restriction enhances spatial learning and improves mood disturbance in adult humans and animals. To date, the effects of maternal moderate food restriction on fetal brain remain largely unknown. In this study, we hypothesized that IUGR would be caused by even moderate food restriction in pregnant females and that the offspring would have neurodevelopmental disabilities. Mid-pregnant mice received moderate food restriction through the early lactation period. The offspring were tested for aspects of physical development, behavior, and neurodevelopment. The results showed that moderate maternal food restriction induced IUGR. Offspring had low birth weight and delayed development of physical and coordinated movement. Moreover, IUGR offspring exhibited mental disabilities such as anxiety and poor cognitive function. In particular, male offspring exhibited significantly impaired cognitive function at 3 weeks of age. These results suggested that a restricted maternal diet could be a risk factor for developmental disability in IUGR offspring and that male offspring might be especially susceptible. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  11. Impaired memory of eyeblink conditioning in CaMKIV KO mice.

    Science.gov (United States)

    Lee, Ka Hung; Chatila, Talal A; Ram, Rana A; Thompson, Richard F

    2009-04-01

    The calcium/calmodulin-dependent protein kinase type IV (CaMKIV) is highly expressed in cerebellar cortical granule cells and deep nuclear neurons in the cerebellum. It mediates the phosphorylation and activation of the cAMP-dependent response element binding protein (CREB). In several paradigms CREB-dependent transcription is required for cellular events underlying long-term memory processes. Also, CaMKIV deficiency results in impaired long-term depression (LTD) induction in cerebellar cortex. To investigate the function of CaMKIV in the cerebellum, Wild-type (WT) and CaMKIV KO mice were tested with delay eyeblink conditioning. KO and WT mice did not differ in acquisition, but the KO mice showed a significantly lower conditioned response (CR) percentage than the WT mice in the retention testing and retraining period. The CR peak latencies for the two groups did not differ in acquisition but were shorter for the KO mice in the testing period. No significant differences were found between KO and WT mice in spontaneous eyeblink activity, auditory brainstem response (ABR) amplitudes, and tail-flick latency. The results suggest an important role for CaMKIV in long-term memory in the cerebellum. (c) 2009 APA, all rights reserved.

  12. Mice lacking Brinp2 or Brinp3, or both, exhibit behaviours consistent with neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Susie Ruth Berkowicz

    2016-10-01

    Full Text Available Background: Brinps 1 – 3, and Astrotactins (Astn 1 and 2, are members of the Membrane Attack Complex / Perforin (MACPF superfamily that are predominantly expressed in the mammalian brain during development. Genetic variation at the human BRINP2/ASTN1 and BRINP1/ASTN2 loci has been implicated in neurodevelopmental disorders. We, and others, have previously shown that Brinp1-/- mice exhibit behaviour reminiscent of autism spectrum disorder (ASD and attention deficit hyperactivity disorder (ADHD.Method: We created Brinp2-/- mice and Brinp3-/- mice via the Cre-mediated LoxP system to investigate the effect of gene deletion on anatomy and behaviour. Additionally, Brinp2-/-Brinp3-/- double knock-out mice were generated by interbreeding Brinp2-/- and Brinp3-/- mice. Genomic validation was carried out for each knock-out line, followed by histological, weight and behavioural examination. Brinp1-/-Brinp2-/-Brinp3-/- triple knock-out mice were also generated by crossing Brinp2/3 double knock-out mice with previously generated Brinp1-/- mice, and examined by weight and histological analysis.Results: Brinp2-/- and Brinp3-/- mice differ in their behaviour: Brinp2-/- mice are hyperactive, whereas Brinp3-/- mice exhibit marked changes in anxiety-response on the elevated plus maze. Brinp3-/- mice also show evidence of altered sociability. Both Brinp2-/- and Brinp3-/- mice have normal short-term memory, olfactory responses, pre-pulse inhibition and motor learning. The double knock-out mice show behaviours of Brinp2-/- and Brinp3-/- mice, without evidence of new or exacerbated phenotypes. Conclusion: Brinp3 is important in moderation of anxiety, with potential relevance to anxiety disorders. Brinp2 dysfunction resulting in hyperactivity may be relevant to the association of ADHD with chromosome locus 1q25.2. Brinp2-/- and Brinp3-/- genes do not compensate in the mammalian brain and likely have distinct molecular or cell-type specific functions.

  13. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  14. The I2020T Leucine-rich repeat kinase 2 transgenic mouse exhibits impaired locomotive ability accompanied by dopaminergic neuron abnormalities

    Directory of Open Access Journals (Sweden)

    Maekawa Tatsunori

    2012-04-01

    Full Text Available Abstract Background Leucine-rich repeat kinase 2 (LRRK2 is the gene responsible for autosomal-dominant Parkinson’s disease (PD, PARK8, but the mechanism by which LRRK2 mutations cause neuronal dysfunction remains unknown. In the present study, we investigated for the first time a transgenic (TG mouse strain expressing human LRRK2 with an I2020T mutation in the kinase domain, which had been detected in the patients of the original PARK8 family. Results The TG mouse expressed I2020T LRRK2 in dopaminergic (DA neurons of the substantia nigra, ventral tegmental area, and olfactory bulb. In both the beam test and rotarod test, the TG mice exhibited impaired locomotive ability in comparison with their non-transgenic (NTG littermates. Although there was no obvious loss of DA neurons in either the substantia nigra or striatum, the TG brain showed several neurological abnormalities such as a reduced striatal dopamine content, fragmentation of the Golgi apparatus in DA neurons, and an increased degree of microtubule polymerization. Furthermore, the tyrosine hydroxylase-positive primary neurons derived from the TG mouse showed an increased frequency of apoptosis and had neurites with fewer branches and decreased outgrowth in comparison with those derived from the NTG controls. Conclusions The I2020T LRRK2 TG mouse exhibited impaired locomotive ability accompanied by several dopaminergic neuron abnormalities. The TG mouse should provide valuable clues to the etiology of PD caused by the LRRK2 mutation.

  15. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  16. Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model.

    Science.gov (United States)

    Kim, YoungDoo; Choi, Hyunwoo; Lee, WonJae; Park, Hyejin; Kam, Tae-In; Hong, Se-Hoon; Nah, Jihoon; Jung, Sunmin; Shin, Bora; Lee, Huikyong; Choi, Tae-Yong; Choo, Hyosun; Kim, Kyung-Keun; Choi, Se-Young; Kayed, Rakez; Jung, Yong-Keun

    2016-03-01

    In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Impaired mastication reduced newly generated neurons at the accessory olfactory bulb and pheromonal responses in mice.

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-12-01

    A large number of neurons are generated at the subventricular zone (SVZ) even during adulthood. In a previous study, we have shown that a reduced mastication impairs both neurogenesis in the SVZ and olfactory functions. Pheromonal signals, which are received by the vomeronasal organ, provide information about reproductive and social states. Vomeronasal sensory neurons project to the accessory olfactory bulb (AOB) located on the dorso-caudal surface of the main olfactory bulb. Newly generated neurons at the SVZ migrate to the AOB and differentiate into granule cells and periglomerular cells. This study aimed to explore the effects of changes in mastication on newly generated neurons and pheromonal responses. Bromodeoxyuridine-immunoreactive (BrdU-ir; a marker of DNA synthesis) and Fos-ir (a marker of neurons excited) structures in sagittal sections of the AOB after exposure to urinary odours were compared between the mice fed soft and hard diets. The density of BrdU-ir cells in the AOB in the soft-diet-fed mice after 1 month was essentially similar to that of the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 3 or 6 months than in the hard-diet-fed mice. The density of Fos-ir cells in the soft-diet-fed mice after 2 months was essentially similar to that in the hard-diet-fed mice, while that was lower in the soft-diet-fed mice for 4 months than in the hard-diet-fed mice. The present results suggest that impaired mastication reduces newly generated neurons at the AOB, which in turn impairs olfactory function at the AOB. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ameliorating Effects of Ethanol Extract of Fructus mume on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-01-01

    Full Text Available We previously reported that Fructus mume (F. mume extract shows protective effects on memory impairments and anti-inflammatory effects induced by chronic cerebral hypoperfusion. Neurodegeneration of basal cholinergic neurons is also observed in the brain with chronic cerebral hypoperfusion. Therefore, the present study was conducted to examine whether F. mume extracts enhance cognitive function via the action of cholinergic neuron using a scopolamine-induced animal model of memory impairments. F. mume (50, 100, or 200 mg/kg was administered to C57BL/6 mice for 14 days (days 1–14 and memory impairment was induced by scopolamine (1 mg/kg, a muscarinic receptor antagonist for 7 days (days 8–14. Spatial memory was assessed using Morris water maze and hippocampal level of acetylcholinesterase (AChE and choline acetyltransferase (ChAT was examined by ELISA and immunoblotting. Mice that received scopolamine alone showed impairments in acquisition and retention in Morris water maze task and increased activity of AChE in the hippocampus. Mice that received F. mume and scopolamine showed no scopolamine-induced memory impairment and increased activity of AChE. In addition, treatments of F. mume increased ChAT expression in the hippocampus. These results indicated that F. mume might enhance cognitive function via action of cholinergic neurons.

  19. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

    Directory of Open Access Journals (Sweden)

    Nicholas J. Anderson

    2014-06-01

    Full Text Available One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity and central nervous system function (learning ability, memory were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

  20. Weaker Seniors Exhibit Motor Cortex Hypoexcitability and Impairments in Voluntary Activation.

    Science.gov (United States)

    Clark, Brian C; Taylor, Janet L; Hong, S Lee; Law, Timothy D; Russ, David W

    2015-09-01

    Weakness predisposes seniors to a fourfold increase in functional limitations. The potential for age-related degradation in nervous system function to contribute to weakness and physical disability has garnered much interest of late. In this study, we tested the hypothesis that weaker seniors have impairments in voluntary (neural) activation and increased indices of GABAergic inhibition of the motor cortex, assessed using transcranial magnetic stimulation. Young adults (N = 46; 21.2±0.5 years) and seniors (N = 42; 70.7±0.9 years) had their wrist flexion strength quantified along with voluntary activation capacity (by comparing voluntary and electrically evoked forces). Single-pulse transcranial magnetic stimulation was used to measure motor-evoked potential amplitude and silent period duration during isometric contractions at 15% and 30% of maximum strength. Paired-pulse transcranial magnetic stimulation was used to measure intracortical facilitation and short-interval and long-interval intracortical inhibition. The primary analysis compared seniors to young adults. The secondary analysis compared stronger seniors (top two tertiles) to weaker seniors (bottom tertile) based on strength relative to body weight. The most novel findings were that weaker seniors exhibited: (i) a 20% deficit in voluntary activation; (ii) ~20% smaller motor-evoked potentials during the 30% contraction task; and (iii) nearly twofold higher levels of long-interval intracortical inhibition under resting conditions. These findings indicate that weaker seniors exhibit significant impairments in voluntary activation, and that this impairment may be mechanistically associated with increased GABAergic inhibition of the motor cortex. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  2. Ursodeoxycholic acid impairs atherogenesis and promotes plaque regression by cholesterol crystal dissolution in mice.

    Science.gov (United States)

    Bode, Niklas; Grebe, Alena; Kerksiek, Anja; Lütjohann, Dieter; Werner, Nikos; Nickenig, Georg; Latz, Eicke; Zimmer, Sebastian

    2016-09-09

    Atherosclerosis is a chronic inflammatory disease driven primarily by a continuous retention of cholesterol within the subendothelial space where it precipitates to form cholesterol crystals (CC). These CC trigger a complex inflammatory response through activation of the NLRP3 inflammasome and promote lesion development. Here we examined whether increasing cholesterol solubility with ursodeoxycholic acid (UDCA) affects vascular CC formation and ultimately atherosclerotic lesion development. UDCA mediated intracellular CC dissolution in macrophages and reduced IL-1β production. In ApoE(-/-) mice, UDCA treatment not only impaired atherosclerotic plaque development but also mediated regression of established vascular lesions. Importantly, mice treated with UDCA had decreased CC-depositions in atherosclerotic plaques compared to controls. Together, our data demonstrate that UDCA impaired CC and NLRP3 dependent inflammation by increasing cholesterol solubility and diminished atherosclerosis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Strategi Pengembangan Kota Surakarta Menjadi Kota Mice (Meeting, Incentive, Convention, Exhibition)

    OpenAIRE

    Mahadi, Khairul; Hidayat, Teguh

    2013-01-01

    Seiring dengan berkembangnnya sistem transportasi yang ada di dunia baik transportasi laut, darat, dan udara dimana dapat memudahkan seseorang atau sebuah kelompok berpergian dari satu wilayah ke wilayah lain, dari sinilah MICE (meeting, incentive, convention, exhibition) dilihat sebagai peluang bisnis dimana seseorang atau kelompok melakukan sebuah pertemuan atau konferensi conference). Indonesia sudah berkembang menjadi salah satu negara tujuan bisnis dan wisata. Hal itu dibuktikan dengan p...

  4. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  5. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  6. Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity

    DEFF Research Database (Denmark)

    Iba, K; Durkin, M E; Johnsen, L

    2001-01-01

    and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were...... in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material...... in tissue growth and remodeling. The tetranectin-deficient mouse is the first mouse model that resembles common human kyphotic disorders, which affect up to 8% of the population....

  7. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  8. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice.

    Directory of Open Access Journals (Sweden)

    Savita Khanna

    2010-03-01

    Full Text Available Chronic inflammation is a characteristic feature of diabetic cutaneous wounds. We sought to delineate novel mechanisms involved in the impairment of resolution of inflammation in diabetic cutaneous wounds. At the wound-site, efficient dead cell clearance (efferocytosis is a pre-requisite for the timely resolution of inflammation and successful healing.Macrophages isolated from wounds of diabetic mice showed significant impairment in efferocytosis. Impaired efferocytosis was associated with significantly higher burden of apoptotic cells in wound tissue as well as higher expression of pro-inflammatory and lower expression of anti-inflammatory cytokines. Observations related to apoptotic cell load at the wound site in mice were validated in the wound tissue of diabetic and non-diabetic patients. Forced Fas ligand driven elevation of apoptotic cell burden at the wound site augmented pro-inflammatory and attenuated anti-inflammatory cytokine response. Furthermore, successful efferocytosis switched wound macrophages from pro-inflammatory to an anti-inflammatory mode.Taken together, this study presents first evidence demonstrating that diabetic wounds suffer from dysfunctional macrophage efferocytosis resulting in increased apoptotic cell burden at the wound site. This burden, in turn, prolongs the inflammatory phase and complicates wound healing.

  9. Immunization with DAT fragments is associated with long-term striatal impairment, hyperactivity and reduced cognitive flexibility in mice

    Directory of Open Access Journals (Sweden)

    Adriani Walter

    2012-11-01

    Full Text Available Abstract Background Possible interactions between nervous and immune systems in neuro-psychiatric disorders remain elusive. Levels of brain dopamine transporter (DAT have been implicated in several impulse-control disorders, like attention deficit / hyperactivity disorder (ADHD and obsessive-compulsive disorder (OCD. Here, we assessed the interplay between DAT auto-immunity and behavioural / neurochemical phenotype. Methods Male CD-1 mice were immunized with DAT peptide fragments (DAT-i, or vehicle alone (VEH, to generate elevated circulating levels of DAT auto-antibodies (aAbs. Using an operant delay-of-reward task (20 min daily sessions; timeout 25 sec, mice had a choice between either an immediate small amount of food (SS, or a larger amount of food after a delay (LL, which increased progressively across sessions (from 0 to 150 sec. Results DAT-i mice exhibited spontaneous hyperactivity (2 h-longer wake-up peak; a wake-up attempt during rest. Two sub-populations differing in behavioural flexibility were identified in the VEH control group: they showed either a clear-cut decision to select LL or clear-cut shifting towards SS, as expected. Compared to VEH controls, choice-behaviour profile of DAT-i mice was markedly disturbed, together with long-lasting alterations of the striatal monoamines. Enhanced levels of DA metabolite HVA in DAT-i mice came along with slower acquisition of basal preferences and with impaired shifting; elevation also in DOPAC levels was associated with incapacity to change a rigid selection strategy. This scarce flexibility of performance is indicative of a poor adaptation to task contingencies. Conclusions Hyperactivity and reduced cognitive flexibility are patterns of behaviour consistent with enduring functional impairment of striatal regions. It is yet unclear how anti-DAT antibodies could enter or otherwise affect these brain areas, and which alterations in DAT activity exactly occurred after immunization

  10. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  11. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  12. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  13. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice.

    Science.gov (United States)

    Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G

    2014-06-01

    One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.

  14. Aqueous extracts from asparagus stems prevent memory impairments in scopolamine-treated mice.

    Science.gov (United States)

    Sui, Zifang; Qi, Ce; Huang, Yunxiang; Ma, Shufeng; Wang, Xinguo; Le, Guowei; Sun, Jin

    2017-04-19

    Aqueous extracts from Asparagus officinalis L. stems (AEAS) are rich in polysaccharides, gamma-amino butyric acid (GABA), and steroidal saponin. This study was designed to investigate the effects of AEAS on learning, memory, and acetylcholinesterase-related activity in a scopolamine-induced model of amnesia. Sixty ICR mice were randomly divided into 6 groups (n = 10) including the control group (CT), scopolamine group (SC), donepezil group (DON), low, medium, and high dose groups of AEAS (LS, MS, HS; 1.6 mL kg -1 , 8 mL kg -1 , 16 mL kg -1 ). The results showed that 8 mL kg -1 of AEAS used in this study significantly reversed scopolamine-induced cognitive impairments in mice in the novel object recognition test (P < 0.05) and the Y-maze test (P < 0.05), and also improved the latency to escape in the Morris water maze test (P < 0.05). Moreover, it significantly increased acetylcholine and inhibited acetylcholinesterase activity in the hippocampus, which was directly related to the reduction in learning and memory impairments. It also reversed scopolamine-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) and the cAMP response element-binding protein (CREB) mRNA expression. AEAS protected against scopolamine-induced memory deficits. In conclusion, AEAS protected learning and memory function in mice by enhancing the activity of the cholinergic nervous system, and increasing BDNF and CREB expression. This suggests that AEAS has the potential to prevent cognitive impairments in age-related diseases, such as Alzheimer's disease.

  15. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    Science.gov (United States)

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  16. MicroRNA-Mediated Rescue of Fear Extinction Memory by miR-144-3p in Extinction-Impaired Mice.

    Science.gov (United States)

    Murphy, Conor P; Li, Xiang; Maurer, Verena; Oberhauser, Michael; Gstir, Ronald; Wearick-Silva, Luis Eduardo; Viola, Thiago Wendt; Schafferer, Simon; Grassi-Oliveira, Rodrigo; Whittle, Nigel; Hüttenhofer, Alexander; Bredy, Timothy W; Singewald, Nicolas

    2017-06-15

    MicroRNA (miRNA)-mediated control of gene expression suggests that miRNAs are interesting targets and/or biomarkers in the treatment of anxiety- and trauma-related disorders, where often memory-associated gene expression is adversely affected. The role of miRNAs in the rescue of impaired fear extinction was assessed using the 129S1/SvlmJ (S1) mouse model of impaired fear extinction. miRNA microarray analysis, reverse transcription polymerase chain reaction, fluorescent in situ hybridization, lentiviral overexpression, and Luciferase reporter assays were used to gain insight into the mechanisms underlying miRNA-mediated normalization of deficient fear extinction. Rescuing impaired fear extinction via dietary zinc restriction was associated with differential expression of miRNAs in the amygdala. One candidate, miR-144-3p, robustly expressed in the basolateral amygdala, showed specific extinction-induced, but not fear-induced, increased expression in both extinction-rescued S1 mice and extinction-intact C57BL/6 (BL6) mice. miR-144-3p upregulation and effects on subsequent behavioral adaption was assessed in S1 and BL6 mice. miR-144-3p overexpression in the basolateral amygdala rescued impaired fear extinction in S1 mice, led to enhanced fear extinction acquisition in BL6 mice, and furthermore protected against fear renewal in BL6 mice. miR-144-3p targets a number of genes implicated in the control of plasticity-associated signaling cascades, including Pten, Spred1, and Notch1. In functional interaction studies, we revealed that the miR-144-3p target, PTEN, colocalized with miR-144-3p in the basolateral amygdala and showed functional downregulation following successful fear extinction in S1 mice. These findings identify a fundamental role of miR-144-3p in the rescue of impaired fear extinction and suggest this miRNA as a viable target in developing novel treatments for posttraumatic stress disorder and related disorders. Copyright © 2017 Society of Biological

  17. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Science.gov (United States)

    Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  18. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice

    Science.gov (United States)

    Kittelberger, Kara A.; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G.

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss. PMID:22238679

  19. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  20. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  1. Conditional expression of constitutively active estrogen receptor α in chondrocytes impairs longitudinal bone growth in mice

    International Nuclear Information System (INIS)

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-01-01

    Highlights: ► Conditional transgenic mice expressing constitutively active estrogen receptor α (caERα) in chondrocytes were developed. ► Expression of caERα in chondrocytes impaired longitudinal bone growth in mice. ► caERα affects chondrocyte proliferation and differentiation. ► This mouse model is useful for understanding the physiological role of ERαin vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caERα ColII , expressing constitutively active mutant estrogen receptor (ER) α in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caERα ColII mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caERα ColII mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caERα ColII mice. These results suggest that ERα is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  2. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  3. Enzyme-treated Asparagus officinalis extract shows neuroprotective effects and attenuates cognitive impairment in senescence-accelerated mice.

    Science.gov (United States)

    Sakurai, Takuya; Ito, Tomohiro; Wakame, Koji; Kitadate, Kentaro; Arai, Takashi; Ogasawara, Junetsu; Kizaki, Takako; Sato, Shogo; Ishibashi, Yoshinaga; Fujiwara, Tomonori; Akagawa, Kimio; Ishida, Hitoshi; Ohno, Hideki

    2014-01-01

    Increases in the number of patients with dementia involving Alzheimer's disease (AD) are seen as a grave public health problem. In neurodegenerative disorders involving AD, biological stresses, such as oxidative and inflammatory stress, induce neural cell damage. Asparagus (Asparagus officinalis) is a popular vegetable, and an extract prepared from this reportedly possesses various beneficial biological activities. In the present study, we investigated the effects of enzyme-treated asparagus extract (ETAS) on neuronal cells and early cognitive impairment of senescence-accelerated mouse prone 8 (SAMP8) mice. The expression of mRNAs for factors that exert cytoprotective and anti-apoptotic functions, such as heat-shock protein 70 and heme oxygenase-1, was upregulated in NG108-15 neuronal cells by treatment with ETAS. Moreover, when release of lactate dehydrogenase from damaged NG108-15 cells was increased for cells cultured in medium containing either the nitric oxide donor sodium nitroprusside or the hypoxia mimic reagent cobalt chloride, ETAS significantly attenuated this cell damage. Also, when contextual fear memory, which is considered to be a hippocampus-dependent memory, was significantly impaired in SAMP8 mice, ETAS attenuated the cognitive impairment. These results suggest that ETAS produces cytoprotective effects in neuronal cells and attenuates the effects on the cognitive impairment of SAMP8 mice.

  4. Oxidative stress with tau hyperphosphorylation in memory impaired 1,2-diacetylbenzene-treated mice.

    Science.gov (United States)

    Kang, Sin-Woo; Kim, Sung Jin; Kim, Min-Sun

    2017-09-05

    Long-term exposure to organic solvent may be related to the incidence of neuronal diseases, such as, Alzheimer's disease, depression, multiple sclerosis, dementia, Parkinson's disease. Previously, the authors reported 1,2-diacetylbenzene (DAB; a neurotoxic metabolite of 1,2-diethylbenzene) causes central and peripheral neuropathies that lead to motor neuronal deficits. Furthermore, it is known DAB increases oxidative stress and protein adduct levels and impairs hippocampal neurogenesis in mice. The authors examined the relevance of oxidative stress and tau hyperphosphorylation in the hippocampus. Five-week-old male C57BL/6 mice were treated with 1 or 5mg/kg/day DAB for 2weeks. Neither overall body weight increases nor behavioral differences were observed after treatment, but kidney and liver weights decreased. Increased ROS production, activated glycogen synthase kinase-3β (GSK-3β) and tau hyperphosphorylation were observed in hippocampal homogenates. To assess memory impairment, the Morris Water Maze was used. Animals in the DAB-treated groups took longer to reach the platform. Movement patterns of DAB treated mice were more complicated and their swimming speeds were lower than those of controls. When SHSY5Y neuroblastoma cells were pretreated with NAC (an antioxidant) or a GSK-3β inhibitor, the expression of active GSK-3β and tau hyperphosphorylation were reduced. These results suggest ROS produced by DAB causes tau hyperphosphorylation via GSK-3β phosphorylation and it might be related to impaired memory deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impaired Albumin Uptake and Processing Promote Albuminuria in OVE26 Diabetic Mice

    Science.gov (United States)

    Long, Y. S.; Zheng, S.; Kralik, P. M.; Benz, F. W.

    2016-01-01

    The importance of proximal tubules dysfunction to diabetic albuminuria is uncertain. OVE26 mice have the most severe albuminuria of all diabetic mouse models but it is not known if impaired tubule uptake and processing are contributing factors. In the current study fluorescent albumin was used to follow the fate of albumin in OVE26 and normal mice. Compared to normal urine, OVE26 urine contained at least 23 times more intact fluorescent albumin but only 3-fold more 70 kD fluorescent dextran. This indicated that a function other than size selective glomerular sieving contributed to OVE26 albuminuria. Imaging of albumin was similar in normal and diabetic tubules for 3 hrs after injection. However 3 days after injection a subset of OVE26 tubules retained strong albumin fluorescence, which was never observed in normal mice. OVE26 tubules with prolonged retention of injected albumin lost the capacity to take up albumin and there was a significant correlation between tubules unable to eliminate fluorescent albumin and total albuminuria. TUNEL staining revealed a 76-fold increase in cell death in OVE26 tubules that retained fluorescent albumin. These results indicate that failure to process and dispose of internalized albumin leads to impaired albumin uptake, increased albuminuria, and tubule cell apoptosis. PMID:27822483

  6. Impaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain

    DEFF Research Database (Denmark)

    Nasser, A.; Bjerrum, Ole Jannik; Heegaard, A.-M.

    2013-01-01

    following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naïve hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms......Background: GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a " pain-protective" (PP) haplotype...... of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH...

  7. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhong-he Liu

    2015-01-01

    Full Text Available Objective. The effects of Flos Puerariae extract (FPE on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA and total cholesterol (TCH in serum, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and acetylcholinesterase (AChE activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.

  8. Memory-impairing effects of local anesthetics in an elevated plus-maze test in mice

    Directory of Open Access Journals (Sweden)

    S.L. Blatt

    1998-04-01

    Full Text Available Post-training intracerebroventricular administration of procaine (20 µg/µl and dimethocaine (10 or 20 µg/µl, local anesthetics of the ester class, prolonged the latency (s in the retention test of male and female 3-month-old Swiss albino mice (25-35 g body weight; N = 140 in the elevated plus-maze (mean ± SEM for 10 male mice: control = 41.2 ± 8.1; procaine = 78.5 ± 10.3; 10 µg/µl dimethocaine = 58.7 ± 12.3; 20 µg/µl dimethocaine = 109.6 ± 5.73; for 10 female mice: control = 34.8 ± 5.8; procaine = 55.3 ± 13.4; 10 µg/µl dimethocaine = 59.9 ± 12.3 and 20 µg/µl dimethocaine = 61.3 ± 11.1. However, lidocaine (10 or 20 µg/µl, an amide class type of local anesthetic, failed to influence this parameter. Local anesthetics at the dose range used did not affect the motor coordination of mice exposed to the rota-rod test. These results suggest that procaine and dimethocaine impair some memory process(es in the plus-maze test. These findings are interpreted in terms of non-anesthetic mechanisms of action of these drugs on memory impairment and also confirm the validity of the elevated plus-maze for the evaluation of drugs affecting learning and memory in mice

  9. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G.

    Science.gov (United States)

    Jiang, Meng; Yu, Shu; Yu, Zhui; Sheng, Huaxin; Li, Ying; Liu, Shuai; Warner, David S; Paschen, Wulf; Yang, Wei

    2017-06-01

    Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains. © 2017 American Heart Association, Inc.

  10. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  12. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  13. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice

    Science.gov (United States)

    Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun

    2016-01-01

    Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780

  14. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy.

    Science.gov (United States)

    Wang, Hua; Meng, Xiu-Hong; Ning, Huan; Zhao, Xian-Feng; Wang, Qun; Liu, Ping; Zhang, Heng; Zhang, Cheng; Chen, Gui-Hai; Xu, De-Xiang

    2010-02-01

    Lipopolysaccharide (LPS)-induced intrauterine infection has been associated with neurodevelopmental injury in rodents. The purpose of the present study was to analyze the dynamic changes of neurobehaviors in mice whose mothers were exposed to LPS during pregnancy. The pregnant mice were intraperitoneally (i.p.) injected with LPS (8 microg/kg) daily from gestational day (gd) 8 to gd 15. A battery of neurobehavioral tasks was performed in mice at postnatal day (PND) 70, 200, 400 and 600. Results showed that the spatial learning and memory ability, determined by radial six-arm water maze (RAWM), were obviously impaired in two hundred-day-old female mice and four hundred-day-old male mice whose mothers were exposed to LPS during pregnancy. Open field test showed that the number of squares crossed and peripheral time, a marker of anxiety and exploration activity, were markedly increased in two hundred-day-old female mice following prenatal LPS exposure. In addition, prenatal LPS exposure significantly shortened the latency to the first grid crossing in six hundred-day-old female offspring. Moreover, sensorimotor impairment in the beam walking was observed in two hundred-day-old female mice whose mothers were exposed to LPS during pregnancy. Species-typical behavior examination showed that prenatal LPS exposure markedly increased weight burrowed in seventy-day-old male offspring and six hundred-day-old female offspring. Correspondingly, prenatal LPS exposure significantly reduced weight hoarded in two hundred-day-old female offspring. Taken together, these results suggest that prenatal LPS exposure induces neurobehavioral impairments at adulthood in an age- and gender-dependent manner. 2009 Elsevier Ireland Ltd. All rights reserved.

  15. Mice lacking prostaglandin E receptor subtype 4 manifest disrupted lipid metabolism attributable to impaired triglyceride clearance.

    Science.gov (United States)

    Cai, Yin; Ying, Fan; Song, Erfei; Wang, Yu; Xu, Aimin; Vanhoutte, Paul M; Tang, Eva Hoi-Ching

    2015-12-01

    Upon high-fat feeding, prostaglandin E receptor subtype 4 (EP4)-knockout mice gain less body weight than their EP4(+/+) littermates. We investigated the cause of the lean phenotype. The mice showed a 68.8% reduction in weight gain with diminished fat mass that was not attributable to reduced food intake, fat malabsorption, or increased energy expenditure. Plasma triglycerides in the mice were elevated by 244.9%. The increase in plasma triglycerides was independent of changes in hepatic very low density lipoprotein (VLDL)-triglyceride production or intestinal chylomicron-triglyceride synthesis. However, VLDL-triglyceride clearance was drastically impaired in the EP4-knockout mice. The absence of EP4 in mice compromised the activation of lipoprotein lipase (LPL), the key enzyme responsible for trafficking of plasma triglycerides into peripheral tissues. Deficiency in EP4 reduced hepatic mRNA expression of the transcriptional factor cAMP response element binding protein H (by 36.8%) and LPL activators, including apolipoprotein (Apo)a5 (by 40.2%) and Apoc2 (by 61.3%). In summary, the lean phenotype of EP4-deficient mice resulted from reduction in adipose tissue and accretion of other peripheral organs caused by impaired triglyceride clearance. The findings identify a new metabolic dimension in the physiologic role played by endogenous EP4. © FASEB.

  16. Impairments of hepatic gluconeogenesis and ketogenesis in PPARα-deficient neonatal mice.

    Science.gov (United States)

    Cotter, David G; Ercal, Baris; d'Avignon, D André; Dietzen, Dennis J; Crawford, Peter A

    2014-07-15

    Peroxisome proliferator activated receptor-α (PPARα) is a master transcriptional regulator of hepatic metabolism and mediates the adaptive response to fasting. Here, we demonstrate the roles for PPARα in hepatic metabolic adaptations to birth. Like fasting, nutrient supply is abruptly altered at birth when a transplacental source of carbohydrates is replaced by a high-fat, low-carbohydrate milk diet. PPARα-knockout (KO) neonatal mice exhibit relative hypoglycemia due to impaired conversion of glycerol to glucose. Although hepatic expression of fatty acyl-CoA dehydrogenases is imparied in PPARα neonates, these animals exhibit normal blood acylcarnitine profiles. Furthermore, quantitative metabolic fate mapping of the medium-chain fatty acid [(13)C]octanoate in neonatal mouse livers revealed normal contribution of this fatty acid to the hepatic TCA cycle. Interestingly, octanoate-derived carbon labeled glucose uniquely in livers of PPARα-KO neonates. Relative hypoketonemia in newborn PPARα-KO animals could be mechanistically linked to a 50% decrease in de novo hepatic ketogenesis from labeled octanoate. Decreased ketogenesis was associated with diminished mRNA and protein abundance of the fate-committing ketogenic enzyme mitochondrial 3-hydroxymethylglutaryl-CoA synthase (HMGCS2) and decreased protein abundance of the ketogenic enzyme β-hydroxybutyrate dehydrogenase 1 (BDH1). Finally, hepatic triglyceride and free fatty acid concentrations were increased 6.9- and 2.7-fold, respectively, in suckling PPARα-KO neonates. Together, these findings indicate a primary defect of gluconeogenesis from glycerol and an important role for PPARα-dependent ketogenesis in the disposal of hepatic fatty acids during the neonatal period. Copyright © 2014 the American Physiological Society.

  17. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  18. Prenatal exposure to arsenic impairs behavioral flexibility and cortical structure in mice

    Directory of Open Access Journals (Sweden)

    Kyaw Htet eAung

    2016-03-01

    Full Text Available Exposure to arsenic from well water in developing countries is suspected to cause developmental neurotoxicity. Although it has been demonstrated that exposure to sodium arsenite (NaAsO2 suppresses neurite outgrowth of cortical neurons in vitro, it is largely unknown how developmental exposure to NaAsO2 impairs higher brain function and affects cortical histology. Here, we investigated the effect of prenatal NaAsO2 exposure on the behavior of mice in adulthood, and evaluated histological changes in the prelimbic cortex (PrL, which is a part of the medial prefrontal cortex that is critically involved in cognition. Drinking water with or without NaAsO2 (85 ppm was provided to pregnant C3H mice from gestational days 8 to 18, and offspring of both sexes were subjected to cognitive behavioral analyses at 60 weeks of age. The brains of female offspring were subsequently harvested and used for morphometrical analyses. We found that both male and female mice prenatally exposed to NaAsO2 displayed an impaired adaptation to repetitive reversal tasks. In morphometrical analyses of Nissl- or Golgi-stained tissue sections, we found that NaAsO2 exposure was associated with a significant increase in the number of pyramidal neurons in layers V and VI of the PrL, but not other layers of the PrL. More strikingly, prenatal NaAsO2 exposure was associated with a significant decrease in neurite length but not dendrite spine density in all layers of the PrL. Taken together, our results indicate that prenatal exposure to NaAsO2 leads to behavioral inflexibility in adulthood and cortical disarrangement in the PrL might contribute to this behavioral impairment.

  19. Mutation of Dcdc2 in mice leads to impairments in auditory processing and memory ability.

    Science.gov (United States)

    Truong, D T; Che, A; Rendall, A R; Szalkowski, C E; LoTurco, J J; Galaburda, A M; Holly Fitch, R

    2014-11-01

    Dyslexia is a complex neurodevelopmental disorder characterized by impaired reading ability despite normal intellect, and is associated with specific difficulties in phonological and rapid auditory processing (RAP), visual attention and working memory. Genetic variants in Doublecortin domain-containing protein 2 (DCDC2) have been associated with dyslexia, impairments in phonological processing and in short-term/working memory. The purpose of this study was to determine whether sensory and behavioral impairments can result directly from mutation of the Dcdc2 gene in mice. Several behavioral tasks, including a modified pre-pulse inhibition paradigm (to examine auditory processing), a 4/8 radial arm maze (to assess/dissociate working vs. reference memory) and rotarod (to examine sensorimotor ability and motor learning), were used to assess the effects of Dcdc2 mutation. Behavioral results revealed deficits in RAP, working memory and reference memory in Dcdc2(del2/del2) mice when compared with matched wild types. Current findings parallel clinical research linking genetic variants of DCDC2 with specific impairments of phonological processing and memory ability. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  1. Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice.

    Science.gov (United States)

    Adamski, Mateusz G; Sternak, Magdalena; Mohaissen, Tasnim; Kaczor, Dawid; Wierońska, Joanna M; Malinowska, Monika; Czaban, Iwona; Byk, Katarzyna; Lyngsø, Kristina S; Przyborowski, Kamil; Hansen, Pernille B L; Wilczyński, Grzegorz; Chlopicki, Stefan

    2018-03-26

    Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte-specific overexpression of G-αq*44 protein were studied before the end-stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6- to 10-month-old but not in 3-month-old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood-brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E-selectin immunoreactivity, which was accompanied by increased amyloid-β 1-42 accumulation in piriform cortex and increased cortical oxidative stress (8-OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO-dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3- to 10-month-old Tgαq*44 mice, but it was not associated with increased platelet-dependent thrombogenicity. We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation. © 2018 The Authors. Published on behalf of the American Heart

  2. Toxoplasma gondii Infection in Mice Impairs Long-Term Fear Memory Consolidation through Dysfunction of the Cortex and Amygdala.

    Science.gov (United States)

    Ihara, Fumiaki; Nishimura, Maki; Muroi, Yoshikage; Mahmoud, Motamed Elsayed; Yokoyama, Naoaki; Nagamune, Kisaburo; Nishikawa, Yoshifumi

    2016-10-01

    Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    Science.gov (United States)

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired

  4. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazuhiro [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Tsukui, Tohru [Experimental Animal Laboratory, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Imazawa, Yukiko; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo (Japan)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  5. Pridopidine Reverses Phencyclidine-Induced Memory Impairment.

    Science.gov (United States)

    Sahlholm, Kristoffer; Valle-León, Marta; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2018-01-01

    Pridopidine is in clinical trials for Huntington's disease treatment. Originally developed as a dopamine D 2 receptor (D 2 R) ligand, pridopidine displays about 100-fold higher affinity for the sigma-1 receptor (sigma-1R). Interestingly, pridopidine slows disease progression and improves motor function in Huntington's disease model mice and, in preliminarily reports, Huntington's disease patients. The present study examined the anti-amnesic potential of pridopidine. Thus, memory impairment was produced in mice by administration of phencyclidine (PCP, 10 mg/kg/day) for 10 days, followed by 14 days' treatment with pridopidine (6 mg/kg/day), or saline. Finally, novel object recognition performance was assessed in the animals. Mice receiving PCP and saline exhibited deficits in novel object recognition, as expected, while pridopidine treatment counteracted PCP-induced memory impairment. The effect of pridopidine was attenuated by co-administration of the sigma receptor antagonist, NE-100 (10 mg/kg). Our results suggest that pridopidine exerts anti-amnesic and potentially neuroprotective actions. These data provide new insights into the therapeutic potential of pridopidine as a pro-cognitive drug.

  6. Citalopram Ameliorates Impairments in Spatial Memory and Synaptic Plasticity in Female 3xTgAD Mice

    Directory of Open Access Journals (Sweden)

    Zhang Wei

    2017-01-01

    Full Text Available Alzheimer’s disease (AD is the primary cause of dementia. There is no effective treatment. Amyloid-β peptide (Aβ plays an important role in the pathogenesis and thus strategies suppressing Aβ production and accumulation seem promising. Citalopram is an antidepressant drug and can decrease Aβ production and amyloid plaques in transgenic mice of AD and humans. Whether citalopram can ameliorate memory deficit was not known yet. We tested the effects of citalopram on behavioral performance and synaptic plasticity in female 3xTgAD mice, a well-characterized model of AD. Mice were treated with citalopram or water from 5 months of age for 3 months. Citalopram treatment at approximately 10 mg/kg/day significantly improved spatial memory in the Morris water maze (MWM test, while not affecting anxiety-like and depression-like behavior in 3xTgAD mice. Further, hippocampal long-term potentiation (LTP impairment in 3xTgAD mice was reversed by citalopram treatment. Citalopram treatment also significantly decreased the levels of insoluble Aβ40 in hippocampal and cortical tissues in 3xTgAD mice, accompanied with a reduced amyloid precursor protein (APP. Together, citalopram treatment may be a promising strategy for AD and further clinical trials should be conducted to verify the effect of citalopram on cognition in patients with AD or mild cognitive impairment.

  7. Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice.

    Directory of Open Access Journals (Sweden)

    Loubna Khalki

    Full Text Available Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1 g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.

  8. Cadmium Exposure Impairs Cognition and Olfactory Memory in Male C57BL/6 Mice.

    Science.gov (United States)

    Wang, Hao; Zhang, Liang; Abel, Glen M; Storm, Daniel R; Xia, Zhengui

    2018-01-01

    Cadmium (Cd) is a heavy metal of high interest to the superfund initiative. Recent epidemiology studies have suggested a possible association between Cd exposure and cognitive as well as olfactory impairments in humans. However, studies in animal models are needed to establish a direct causal relationship between Cd exposure and impairments in cognition and olfaction. This study aims to investigate the toxic effect of Cd on cognition and olfactory function in mice. One group of 8-week-old C57BL/6 male mice was exposed to 3 mg/l Cd (in the form of CdCl2) through drinking water for 20 weeks for behavior tests and final blood Cd concentration analysis. The behavior tests were conducted before, during, and after Cd exposure to analyze the effects of Cd on cognition and olfactory function. Upon completion of behavior tests, blood was collected to measure final blood Cd concentration. Two additional groups of mice were similarly exposed to Cd for 5 or 13 weeks for peak blood Cd concentration measurement. The peak blood Cd concentration was 2.125-2.25 μg/l whereas the final blood Cd concentration was 0.18 μg/l. At this exposure level, Cd impaired hippocampus-dependent learning and memory in novel object location test, T-maze test, and contextual fear memory test. It also caused deficits in short-term olfactory memory and odor-cued olfactory learning and memory. Results in this study demonstrate a direct relationship between Cd exposure and cognitive as well as olfactory impairments in an animal model. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  10. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice.

    Science.gov (United States)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-03-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the effect of n-3 long chain polyunsaturated fatty acids (n-3 LCPUFA) on food allergy-induced impaired social behaviour and associated deficits in prefrontal dopamine (DA) in mice. Mice were fed either control or n-3 LCPUFA-enriched diet before and during sensitization with whey. Social behaviour, acute allergic skin response and serum immunoglobulins were assessed. Monoamine levels were measured in brain and intestine and fatty acid content in brain. N-3 LCPUFA prevented impaired social behaviour of allergic mice. Moreover, n-3 LCPUFA supplementation increased docosahexaenoic acid (DHA) incorporation into the brain and restored reduced levels of prefrontal DA and its metabolites 3,4-dihydroxyphenylacetic acid, 3-methoxytyramine and homovanillic acid in allergic mice. In addition to these brain effects, n-3 LCPUFA supplementation reduced the allergic skin response and restored decreased intestinal levels of serotonin metabolite 5-hydroxyindoleacetic acid in allergic mice. N-3 LCPUFA may have beneficial effects on food allergy-induced deficits in social behaviour, either indirectly by reducing the allergic response and restoring intestinal 5-HT signalling, or directly by DHA incorporation into neuronal membranes, affecting the DA system. Therefore, it is of interest to further investigate the relevance of food allergy-enhanced impairments in social behaviour in humans and the potential benefits of dietary n-3 LCPUFA supplementation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice.

    Directory of Open Access Journals (Sweden)

    Yosefu Arime

    Full Text Available Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days of either saline or PCP (10 mg/kg: (1 a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2 brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.

  12. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    OpenAIRE

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent A? accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and human...

  13. Maternal separation induces hippocampal changes in cadherin-1 (CDH-1) mRNA and recognition memory impairment in adolescent mice.

    Science.gov (United States)

    de Azeredo, Lucas Araújo; Wearick-Silva, Luis Eduardo; Viola, Thiago Wendt; Tractenberg, Saulo Gantes; Centeno-Silva, Anderson; Orso, Rodrigo; Schröder, Nadja; Bredy, Timothy William; Grassi-Oliveira, Rodrigo

    2017-05-01

    In rodents, disruption of mother-infant attachment induced by maternal separation (MS) is associated with recognition memory impairment and long-term neurobiological consequences. Particularly stress-induced modifications have been associated to disruption of cadherin (CDH) adhesion function, which plays an important role in remodeling of neuronal connection and synaptic plasticity. This study investigated the sex-dependent effect of MS on recognition memory and mRNA levels of classical type I and type II CDH and the related β -catenin (β -Cat) in the hippocampus and prefrontal cortex of late adolescent mice. We provided evidence that the BALB/c mice exposed to MS present deficit in recognition memory, especially females. Postnatal MS induced higher hippocampal CDH-2 and CDH-8 mRNA levels, as well as an upregulation of CDH-1 in the prefrontal cortex in both males and females. MS-reared female mice presented lower CDH-1 mRNA levels in the hippocampus. In addition, hippocampal CDH-1 mRNA levels were positively correlated with recognition memory performance in females. MS-reared male mice exhibited higher β -Cat mRNA levels in the hippocampus. Considering sex-specific effects on CDH mRNA levels, it has been demonstrated mRNA changes in CDH-1, β -Cat, and CDH-6 in the hippocampus, as well as CDH-1, CDH-8 and CDH-11 in the prefrontal cortex. Overall, these findings suggest a complex interplay among MS, CDH mRNA expression, and sex differences in the PFC and hippocampus of adolescent mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Effects of Early Chemotherapeutic Treatment on Learning in Adolescent Mice: Implications for Cognitive Impairment and Remediation in Childhood Cancer Survivors

    Science.gov (United States)

    Bisen-Hersh, Emily B.; Hineline, Philip N.; Walker, Ellen A.

    2013-01-01

    Purpose Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Experimental Design Pre-weanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days following treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Results Significant impairment in acquisition and retention over both short (1h) and long (24h) intervals, as measured by autoshaping and novel object recognition tasks, were found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Conclusions Findings are consistent with clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy treatment. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. PMID:23596103

  15. Effects of early chemotherapeutic treatment on learning in adolescent mice: implications for cognitive impairment and remediation in childhood cancer survivors.

    Science.gov (United States)

    Bisen-Hersh, Emily B; Hineline, Philip N; Walker, Ellen A

    2013-06-01

    Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days after treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Significant impairment in acquisition and retention over both short (1 hour) and long (24 hours) intervals, as measured by autoshaping and novel object recognition tasks, was found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Findings are consistent with those from clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. ©2013 AACR

  16. A beam-walking apparatus to assess behavioural impairments in MPTP-treated mice: pharmacological validation with R-(-)-deprenyl.

    Science.gov (United States)

    Quinn, Leann P; Perren, Marion J; Brackenborough, Kim T; Woodhams, Peter L; Vidgeon-Hart, Martin; Chapman, Helen; Pangalos, Menelas N; Upton, Neil; Virley, David J

    2007-08-15

    A beam-walking apparatus has been evaluated for its ability to detect motor impairments in mice acutely treated with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 30 mg/kg, s.c., single or double administration). Mice subjected to MPTP lesioning showed deficits in motor performance on the beam-walking task, for up to 6 days post-MPTP administration, as compared to saline-treated controls. In addition, MPTP-treated mice were detected to have a marked depletion in striatal dopamine levels and a concomitant reduction in substantia nigra (SN) tyrosine hydroxylase (TH) immunoreactivity, at 7 days post-MPTP administration, indicative of dopaminergic neuronal loss. Pre-administration of the potent MAO-B inhibitor R-(-)-deprenyl at 3 or 10 mg/kg, 30 min, s.c, significantly inhibited the MPTP-induced reduction in SN TH-immunoreactivity, striatal dopamine depletions and impairments in mouse motor function. The data described in the present study provides further evidence that functional deficits following an acute MPTP dosing schedule in mice can be quantified and are related to nigro-striatal dopamine function.

  17. Impaired sense of smell and altered olfactory system in RAG-1-/- immunodeficient mice

    Directory of Open Access Journals (Sweden)

    Lorenza eRattazzi

    2015-09-01

    Full Text Available Immune deficiencies are often associated with a number of physical manifestations including loss of sense of smell and an increased level of anxiety. We have previously shown that T and B cell-deficient recombinase activating gene (RAG-1-/- knockout mice have an increased level of anxiety-like behavior and altered gene expression involved in olfaction. In this study, we expanded these findings by testing the structure and functional development of the olfactory system in RAG-1-/- mice. Our results show that these mice have a reduced engagement in different types of odors and this phenotype is associated with disorganized architecture of glomerular tissue and atrophy of the main olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and is not due to impairment in the patterning of the olfactory neuron staining at the embryo stage. Together these findings provide a formerly unreported biological evidence for an altered function of the olfactory system in RAG-1-/- mice.

  18. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory...

  19. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children

    Science.gov (United States)

    Undernourished children exhibit impaired development of their gut microbiota. Transplanting microbiota from 6- and 18-month-old healthy or undernourished Malawian donors into young germ-free mice that were fed a Malawian diet revealed that immature microbiota from undernourished infants and children...

  20. A high-sugar and high-fat diet impairs cardiac systolic and diastolic function in mice.

    Science.gov (United States)

    Carbone, Salvatore; Mauro, Adolfo G; Mezzaroma, Eleonora; Kraskauskas, Donatas; Marchetti, Carlo; Buzzetti, Raffaella; Van Tassell, Benjamin W; Abbate, Antonio; Toldo, Stefano

    2015-11-01

    Heart failure (HF) is a clinical syndrome characterized by dyspnea, fatigue, exercise intolerance and cardiac dysfunction. Unhealthy diet has been associated with increased risk of obesity and heart disease, but whether it directly affects cardiac function, and promotes the development and progression of HF is unknown. We fed 8-week old male or female CD-1 mice with a standard diet (SD) or a diet rich in saturated fat and sugar, resembling a "Western" diet (WD). Cardiac systolic and diastolic function was measured at baseline and 4 and 8 weeks by Doppler echocardiography, and left ventricular (LV) end-diastolic pressure (EDP) by cardiac catheterization prior to sacrifice. An additional group of mice received WD for 4 weeks followed by SD (wash-out) for 8 weeks. WD-fed mice experienced a significant decreased in LV ejection fraction (LVEF), reflecting impaired systolic function, and a significant increase in isovolumetric relaxation time (IRT), myocardial performance index (MPI), and LVEDP, showing impaired diastolic function, without any sex-related differences. Switching to a SD after 4 weeks of WD partially reversed the cardiac systolic and diastolic dysfunction. A diet rich in saturated fat and sugars (WD) impairs cardiac systolic and diastolic function in the mouse. Further studies are required to define the mechanism through which diet affects cardiac function, and whether dietary interventions can be used in patients with, or at risk for, HF. Published by Elsevier Ireland Ltd.

  1. Impaired macrophage and satellite cell infiltration occurs in a muscle-specific fashion following injury in diabetic skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Matthew P Krause

    Full Text Available Systemic elevations in PAI-1 suppress the fibrinolytic pathway leading to poor collagen remodelling and delayed regeneration of tibialis anterior (TA muscles in type-1 diabetic Akita mice. However, how impaired collagen remodelling was specifically attenuating regeneration in Akita mice remained unknown. Furthermore, given intrinsic differences between muscle groups, it was unclear if the reparative responses between muscle groups were different.Here we reveal that diabetic Akita muscles display differential regenerative responses with the TA and gastrocnemius muscles exhibiting reduced regenerating myofiber area compared to wild-type mice, while soleus muscles displayed no difference between animal groups following injury. Collagen levels in TA and gastrocnemius, but not soleus, were significantly increased post-injury versus controls. At 5 days post-injury, when degenerating/necrotic regions were present in both animal groups, Akita TA and gastrocnemius muscles displayed reduced macrophage and satellite cell infiltration and poor myofiber formation. By 10 days post-injury, necrotic regions were absent in wild-type TA but persisted in Akita TA. In contrast, Akita soleus exhibited no impairment in any of these measures compared to wild-type soleus. In an effort to define how impaired collagen turnover was attenuating regeneration in Akita TA, a PAI-1 inhibitor (PAI-039 was orally administered to Akita mice following cardiotoxin injury. PAI-039 administration promoted macrophage and satellite cell infiltration into necrotic areas of the TA and gastrocnemius. Importantly, soleus muscles exhibit the highest inducible expression of MMP-9 following injury, providing a mechanism for normative collagen degradation and injury recovery in this muscle despite systemically elevated PAI-1.Our findings suggest the mechanism underlying how impaired collagen remodelling in type-1 diabetes results in delayed regeneration is an impairment in macrophage

  2. Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins.

    Science.gov (United States)

    Teng, Yan; Zhang, Meng-Qi; Wang, Wen; Liu, Li-Tao; Zhou, Li-Ming; Miao, Shi-Kun; Wan, Li-Hong

    2014-01-14

    Compound Danshen Tablet (CDT), a Traditional Chinese Medicine, has recently been reported to improve spatial cognition in a rat model of Alzheimer's disease. However, in vivo neuroprotective mechanism of the CDT in models of spatial memory impairment is not yet evaluated. The present study is aimed to elucidate the cellular mechanism of CDT on Aβ25-35-induced cognitive impairment in mice. Mice were randomly divided into 5 groups: the control group (sham operated), the Aβ25-35 treated group, the positive drug group, and large and small dosage of the CDT groups, respectively. CDT was administered at a dose of 0.81 g/kg and 0.405 g/kg for 3 weeks. The mice in the positive drug group were treated with 0.4 mg/kg of Huperzine A, whereas the mice of the control and Aβ25-35 treated groups were administrated orally with equivalent saline. After 7 days of preventive treatment, mice were subjected to lateral ventricle injection of Aβ25-35 to establish the mice model of Alzheimer's disease. Spatial memory impairment was evaluated by Morris water maze test. Choline acetyltransferase (ChAT) contents in hippocampus and cortex were quantified by ELISA. The levels of cytokines, receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in hippocampus were measured by RT-PCR and ELISA. The results showed that Aβ25-35 caused spatial memory impairment as demonstrated by performance in the Morris water maze test. CDT was able to confer a significant improvement in spatial memory, and protect mice from Aβ25-35-induced neurotoxicity. Additionally, CDT also inhibited the increase of TNF-α and IL-6 level, and increased the expression of choline acetyltransferase (ChAT), receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in brain as compared to model mice. These findings strongly implicate that CDT may be a useful treatment against learning and memory deficits in mice by rescuing imbalance between cytokines

  3. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice

    Science.gov (United States)

    Song, Jae Chun; Seo, Mi Kyoung; Park, Sung Woo; Lee, Jung Goo; Kim, Young Hoon

    2016-01-01

    Objective We investigated the differential effects of the antipsychotic drugs olanzapine and haloperidol on MK-801-induced memory impairment and neurogenesis in mice. Methods MK-801 (0.1 mg/kg) was administered 20 minutes prior to behavioral testing over 9 days. Beginning on the sixth day of MK-801 treatment, either olanzapine (0.05 mg/kg) or haloperidol (0.05 mg/kg) was administered 40 minutes prior to MK-801 for the final 4 days. Spatial memory performance was measured using a Morris water maze (MWM) test for 9 days (four trials/day). Immunohistochemistry with bromodeoxyuridine (BrdU) was used to identify newborn cells labeled in tissue sections from the dentate gyrus of the hippocampus. Results MK-801 administration over 9 days significantly impaired memory performance in the MWM test compared to untreated controls (p801 also resulted in a decrease in the number of BrdU-labeled cells in the dentate gyrus (28.6%; p801 in mice via the stimulating effects of neurogenesis. PMID:27489382

  4. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Miski Aghnia Khairinisa

    2018-05-01

    Full Text Available Thyroid hormones (THs play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21. First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups. As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  5. Frontal Lobe Contusion in Mice Chronically Impairs Prefrontal-Dependent Behavior.

    Directory of Open Access Journals (Sweden)

    Austin Chou

    Full Text Available Traumatic brain injury (TBI is a major cause of chronic disability in the world. Moderate to severe TBI often results in damage to the frontal lobe region and leads to cognitive, emotional, and social behavioral sequelae that negatively affect quality of life. More specifically, TBI patients often develop persistent deficits in social behavior, anxiety, and executive functions such as attention, mental flexibility, and task switching. These deficits are intrinsically associated with prefrontal cortex (PFC functionality. Currently, there is a lack of analogous, behaviorally characterized TBI models for investigating frontal lobe injuries despite the prevalence of focal contusions to the frontal lobe in TBI patients. We used the controlled cortical impact (CCI model in mice to generate a frontal lobe contusion and studied behavioral changes associated with PFC function. We found that unilateral frontal lobe contusion in mice produced long-term impairments to social recognition and reversal learning while having only a minor effect on anxiety and completely sparing rule shifting and hippocampal-dependent behavior.

  6. Syngeneic B16F10 Melanoma Causes Cachexia and Impaired Skeletal Muscle Strength and Locomotor Activity in Mice

    Directory of Open Access Journals (Sweden)

    Fabrício A. Voltarelli

    2017-09-01

    Full Text Available Muscle wasting has been emerging as one of the principal components of cancer cachexia, leading to progressive impairment of work capacity. Despite early stages melanomas rarely promotes weight loss, the appearance of metastatic and/or solid tumor melanoma can leads to cachexia development. Here, we investigated the B16F10 tumor-induced cachexia and its contribution to muscle strength and locomotor-like activity impairment. C57BL/6 mice were subcutaneously injected with 5 × 104 B16F10 melanoma cells or PBS as a Sham negative control. Tumor growth was monitored during a period of 28 days. Compared to Sham mice, tumor group depicts a loss of skeletal muscle, as well as significantly reduced muscle grip strength and epididymal fat mass. This data are in agreement with mild to severe catabolic host response promoted by elevated serum tumor necrosis factor-alpha (TNF-α, interleukin-6 (IL-6 and lactate dehydrogenase (LDH activity. Tumor implantation has also compromised general locomotor activity and decreased exploratory behavior. Likewise, muscle loss, and elevated inflammatory interleukin were associated to muscle strength loss and locomotor activity impairment. In conclusion, our data demonstrated that subcutaneous B16F10 melanoma tumor-driven catabolic state in response to a pro-inflammatory environment that is associated with impaired skeletal muscle strength and decreased locomotor activity in tumor-bearing mice.

  7. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty.

    Science.gov (United States)

    Meng, Xiu-Hong; Liu, Ping; Wang, Hua; Zhao, Xian-Feng; Xu, Zhong-Mei; Chen, Gui-Hai; Xu, De-Xiang

    2011-06-24

    In human and rodent models, endocrine disrupting chemicals (EDCs) interfere with the development of cognition and behaviors. Fenvalerate is a potential EDC. The purpose of this study was to examine whether pubertal fenvalerate exposure altered behavioral development. Mice were orally administered with either vehicle or fenvalerate (7.5 or 30 mg/kg/day) from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris Water Maze. Aggressive performance was evaluated by aggressive behavior test. Anxiety-related activities were detected by three tests: open-field, plus-maze and black-white alley. Sensorimotor function was analyzed using beam walking and tightrope. Results found that the impairment for spatial learning and memory was more severe in fenvalerate-exposed female mice than in male mice. In addition, pubertal fenvalerate exposure inhibited aggressive behavior in males. Moreover, pubertal fenvalerate exposure increased anxiety activities in females. Altogether, these results suggest that pubertal fenvalerate exposure impairs spatial cognition and behavioral development in a gender-dependent manner. These findings identify fenvalerate as candidate environmental risk factors for cognitive and behavioral development, especially in the critical period of development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.

    Science.gov (United States)

    Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki

    2018-06-01

    Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Long-chain fatty acid triglyceride (TG) metabolism disorder impairs male fertility: a study using adipose triglyceride lipase deficient mice.

    Science.gov (United States)

    Masaki, Hidetake; Kim, Namhyo; Nakamura, Hitomi; Kumasawa, Keiichi; Kamata, Eriko; Hirano, Ken-Ichi; Kimura, Tadashi

    2017-07-01

    Does the deletion of adipose triglyceride lipase (Atgl) gene impair male fertility? The deletion of Atgl gene impaired male fertility but the effect was partially reversed by a low long-chain triglyceride (TG) diet. ATGL specifically hydrolyses long-chain fatty acid TG to diacylglycerol and a high level of expression of ATGL in testes has been reported. However, the role of ATGL in male fertility is unknown. To investigate the effect of deletion of Atgl gene on male fertility, cauda epididymides and testes were collected from wild-type, heterozygous and homozygous Atgl-deficient mice at 10 weeks of age and epididymal sperm analysis and histological analysis of the testes were performed. To investigate whether a medium-chain triglycerides (MCTs) replacement diet mitigated the impaired male fertility by deletion of Atgl gene, homozygous Atgl-deficient mice were fed a MCT replacement diet, or a standard diet including long-chain triglycerides (LCTs) in a control group, for 6 weeks from 5 weeks of age (n = 22). The systematic and local effects of the MCT replacement diet on spermatogenesis and sperm maturation in the epididymis were analyzed at 10 weeks of age. Hematoxylin and eosin staining in paraffin-embedded sections of testes and Oil Red O staining in frozen sections of testes were performed. The epididymal sperm concentrations were analyzed. Statistical analyses were performed using the Student's t-test or Mann-Whitney U test with Shapiro-Wilk Normality test. Although heterozygous mice were fertile and showed a similar number of epididymal total and motile sperm concentrations to wild-type mice, the deletion of Atgl gene in homozygous mice led to accumulation of TG deposits in testes and impaired spermatogenesis. The deletion of Atgl gene also impaired the sperm maturation process required for sperm to acquire the ability to move forward in the epididymis. The MCT replacement diet for 6 weeks increased the plasma level of non-esterified fatty acid (NEFA) (1

  10. Impairment of social behavior and communication in mice lacking the Uba6-dependent ubiquitin activation system.

    Science.gov (United States)

    Lee, Ji Yeon; Kwak, Minseok; Lee, Peter C W

    2015-03-15

    The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Aqueous Extract of Black Maca (Lepidium meyenii) on Memory Impairment Induced by Ovariectomy in Mice.

    Science.gov (United States)

    Rubio, Julio; Qiong, Wang; Liu, Xinmin; Jiang, Zhen; Dang, Haixia; Chen, Shi-Lin; Gonzales, Gustavo F

    2011-01-01

    The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX) mice and their relation with malonalehyde (MDA), acetylcholinesterase (Ache) and monoamine oxidase (MAO) brain levels. Female mice were divided into five groups: (i) naive (control), (ii) sham, (iii) OVX mice and OVX mice treated with (iv) 0.50 g kg(-1) and (v) 2.00 g kg(-1) black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23-27) and the step-down avoidance test (days 34 and 35). At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg) increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities.

  12. Nuclear SREBP-1a causes loss of pancreatic β-cells and impaired insulin secretion

    International Nuclear Information System (INIS)

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-01

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic β-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, ΒΕΤΑ2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of β-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous β-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts β-cell mass and function.

  13. Loss of hfe function reverses impaired recognition memory caused by olfactory manganese exposure in mice.

    Science.gov (United States)

    Ye, Qi; Kim, Jonghan

    2015-03-01

    Excessive manganese (Mn) in the brain promotes a variety of abnormal behaviors, including memory deficits, decreased motor skills and psychotic behavior resembling Parkinson's disease. Hereditary hemochromatosis (HH) is a prevalent genetic iron overload disorder worldwide. Dysfunction in HFE gene is the major cause of HH. Our previous study has demonstrated that olfactory Mn uptake is altered by HFE deficiency, suggesting that loss of HFE function could alter manganese-associated neurotoxicity. To test this hypothesis, Hfe-knockout (Hfe (-/-)) and wild-type (Hfe (+/+)) mice mice were intranasally-instilled with manganese chloride (MnCl2 5 mg/kg) or water daily for 3 weeks and examined for memory function. Olfactory Mn diminished both short-term recognition and spatial memory in Hfe (+/+) mice, as examined by novel object recognition task and Barnes maze test, respectively. Interestingly, Hfe (-/-) mice did not show impaired recognition memory caused by Mn exposure, suggesting a potential protective effect of Hfe deficiency against Mn-induced memory deficits. Since many of the neurotoxic effects of manganese are thought to result from increased oxidative stress, we quantified activities of anti-oxidant enzymes in the prefrontal cortex (PFC). Mn instillation decreased superoxide dismutase 1 (SOD1) activity in Hfe (+/+) mice, but not in Hfe (-/-) mice. In addition, Hfe deficiency up-regulated SOD1 and glutathione peroxidase activities. These results suggest a beneficial role of Hfe deficiency in attenuating Mn-induced oxidative stress in the PFC. Furthermore, Mn exposure reduced nicotinic acetylcholine receptor levels in the PFC, indicating that blunted acetylcholine signaling could contribute to impaired memory associated with intranasal manganese. Together, our model suggests that disrupted cholinergic system in the brain is involved in airborne Mn-induced memory deficits and loss of HFE function could in part prevent memory loss via a potential up-regulation of

  14. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    Science.gov (United States)

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  15. Bisphenol A impairs the memory function and glutamatergic homeostasis in a sex-dependent manner in mice: Beneficial effects of diphenyl diselenide.

    Science.gov (United States)

    Jardim, Natália S; Sartori, Glaúbia; Sari, Marcel H M; Müller, Sabrina G; Nogueira, Cristina W

    2017-08-15

    Bisphenol A (BPA) is a compound integrated in commodities, which consequently increases the human exposure to this toxicant. The deleterious effects of BPA exposure during periods of brain development have been documented mainly concerning the impairment in memory functions. Diphenyl diselenide (PhSe) 2 , an organoselenium compound, shows protective/restorative effects against memory deficits in experimental models. Thus, this study investigated the effects of (PhSe) 2 on the memory impairments induced by BPA exposure to male and female mice and the possible involvement of glutamatergic system in these effects. Three-week-old male and female Swiss mice received BPA (5mg/kg), intragastrically, from 21st to 60th postnatal day. After, the animals were intragastrically treated with (PhSe) 2 (1mg/kg) during seven days. The mice performed the behavioral memory tests and the [ 3 H] glutamate uptake and NMDA receptor subunits (2A and 2B) analyses were carried out in the hippocampus and cerebral cortex of mice. The results demonstrated that the BPA exposure induced impairment of object recognition memory in both sexes. However, it caused impairments in spatial memory in female and in the passive avoidance memory in male mice. Besides, BPA caused a decrease in the [ 3 H] glutamate uptake and NMDA receptor subunit levels in the cortical and hippocampal regions depending on the sex. Treatment with (PhSe) 2 reversed in a sex-independent manner the behavioral impairments and molecular alterations. In conclusion, BPA had a negative effect in different memory types as well as in the glutamatergic parameters in a sex-dependent manner and (PhSe) 2 treatment was effective against these alterations. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Neurexin Dysfunction in Adult Neurons Results in Autistic-like Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Luis G. Rabaneda

    2014-07-01

    Full Text Available Autism spectrum disorders (ASDs comprise a group of clinical phenotypes characterized by repetitive behavior and social and communication deficits. Autism is generally viewed as a neurodevelopmental disorder where insults during embryonic or early postnatal periods result in aberrant wiring and function of neuronal circuits. Neurexins are synaptic proteins associated with autism. Here, we generated transgenic βNrx1ΔC mice in which neurexin function is selectively impaired during late postnatal stages. Whole-cell recordings in cortical neurons show an impairment of glutamatergic synaptic transmission in the βNrx1ΔC mice. Importantly, mutant mice exhibit autism-related symptoms, such as increased self-grooming, deficits in social interactions, and altered interaction for nonsocial olfactory cues. The autistic-like phenotype of βNrx1ΔC mice can be reversed after removing the mutant protein in aged animals. The defects resulting from disruption of neurexin function after the completion of embryonic and early postnatal development suggest that functional impairment of mature circuits can trigger autism-related phenotypes.

  17. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex.

    Science.gov (United States)

    Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S

    2004-09-01

    Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.

  18. ApoB100/LDLR-/- hypercholesterolaemic mice as a model for mild cognitive impairment and neuronal damage.

    Directory of Open Access Journals (Sweden)

    Carlos Ramírez

    Full Text Available Recent clinical findings support the notion that the progressive deterioration of cholesterol homeostasis is a central player in Alzheimer's disease (AD. Epidemiological studies suggest that high midlife plasma total cholesterol levels are associated with an increased risk of AD. This paper reports the plasma cholesterol concentrations, cognitive performance, locomotor activity and neuropathological signs in a murine model (transgenic mice expressing apoB100 but knockout for the LDL receptor [LDLR] of human familial hypercholesterolaemia (FH. From birth, these animals have markedly elevated LDL-cholesterol and apolipoprotein B100 (apoB100 levels. These transgenic mice were confirmed to have higher plasma cholesterol concentrations than wild-type mice, an effect potentiated by aging. Further, 3-month-old transgenic mice showed cholesterol (total and fractions concentrations considerably higher than those of 18-month-old wild-type mice. The hypercholesterolaemia of the transgenic mice was associated with a clear locomotor deficit (as determined by rotarod, grip strength and open field testing and impairment of the episodic-like memory (determined by the integrated memory test. This decline in locomotor activity and cognitive status was associated with neuritic dystrophy and/or the disorganization of the neuronal microtubule network, plus an increase in astrogliosis and lipid peroxidation in the brain regions associated with AD, such as the motor and lateral entorhinal cortex, the amygdaloid basal nucleus, and the hippocampus. Aortic atherosclerotic lesions were positively correlated with age, although potentiated by the transgenic genotype, while cerebral β-amyloidosis was positively correlated with genetic background rather than with age. These findings confirm hypercholesterolaemia as a key biomarker for monitoring mild cognitive impairment, and shows these transgenic mice can be used as a model for cognitive and psycho-motor decline.

  19. Bisphenol A impairs hepatic glucose sensing in C57BL/6 male mice.

    Directory of Open Access Journals (Sweden)

    Leigh Perreault

    Full Text Available AIMS/HYPOTHESIS: Glucose sensing (eg. glucokinase activity becomes impaired in the development of type 2 diabetes, the etiology of which is unclear. Estrogen can stimulate glucokinase activity, whereas the pervasive environmental pollutant bisphenol A (BPA can inhibit estrogen action, hence we aimed to determine the effect of BPA on glucokinase activity directly. METHODS: To evaluate a potential acute effect on hepatic glucokinase activity, BPA in water (n = 5 vs. water alone (n = 5 was administered at the EPA's purported "safe dose" (50 µg/kg by gavage to lean 6-month old male C57BL/6 mice. Two hours later, animals were euthanized and hepatic glucokinase activity measured over glucose levels from 1-20 mmol/l in liver homogenate. To determine the effect of chronic BPA exposure on hepatic glucokinase activity, lean 6-month old male C57BL/6 mice were provided with water (n = 15 or water with 1.75 mM BPA (∼50 µg/kg/day; n = 14 for 2 weeks. Following the 2-week exposure, animals were euthanized and glucokinase activity measured as above. RESULTS: Hepatic glucokinase activity was signficantly suppressed after 2 hours in animals given an oral BPA bolus compared to those who received only water (p = 0.002-0.029 at glucose 5-20 mmol/l; overall treatment effect p<0.001. Exposure to BPA over 2 weeks also suppressed hepatic glucokinase activity in exposed vs. unexposed mice (overall treatment effect, p = 0.003. In both experiments, the Hill coefficient was higher and Vmax lower in mice treated with BPA. CONCLUSIONS/INTERPRETATION: Both acute and chronic exposure to BPA significantly impair hepatic glucokinase activity and function. These findings identify a potential mechanism for how BPA may increase risk for diabetes.

  20. DNA polymerase β decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A; Sykora, Peter; Liu, Dong; Cordonnier, Stephanie; Fang, Evandro F; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2017-02-01

    Alzheimer's disease (AD) involves the progressive degeneration of neurons critical for learning and memory. In addition, patients with AD typically exhibit impaired olfaction associated with neuronal degeneration in the olfactory bulb (OB). Because DNA base excision repair (BER) is reduced in brain cells during normal aging and AD, we determined whether inefficient BER due to reduced DNA polymerase-β (Polβ) levels renders OB neurons vulnerable to degeneration in the 3xTgAD mouse model of AD. We interrogated OB histopathology and olfactory function in wild-type and 3xTgAD mice with normal or reduced Polβ levels. Compared to wild-type control mice, Polβ heterozygous (Polβ +/- ), and 3xTgAD mice, 3xTgAD/Polβ +/- mice exhibited impaired performance in a buried food test of olfaction. Polβ deficiency did not affect the proliferation of OB neural progenitor cells in the subventricular zone. However, numbers of newly generated neurons were reduced by approximately 25% in Polβ +/- and 3xTgAD mice, and by over 60% in the 3xTgAD/Polβ +/- mice compared to wild-type control mice. Analyses of DNA damage and apoptosis revealed significantly greater degeneration of OB neurons in 3xTgAD/Polβ +/- mice compared to 3xTgAD mice. Levels of amyloid β-peptide (Aβ) accumulation in the OB were similar in 3xTgAD and 3xTgAD/Polβ +/- mice, and cultured Polβ-deficient neurons exhibited increased vulnerability to Aβ-induced death. Olfactory deficit is an early sign in human AD, but the mechanism is not yet understood. Our findings in a new AD mouse model demonstrate that diminution of BER can endanger OB neurons, and suggest a mechanism underlying early olfactory impairment in AD. © 2016 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  1. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Kate S Collison

    Full Text Available Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05. Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training, the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05. Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime

  2. Enhanced susceptibility to stress and seizures in GAD65 deficient mice.

    Science.gov (United States)

    Qi, Jin; Kim, Minjung; Sanchez, Russell; Ziaee, Saba M; Kohtz, Jhumku D; Koh, Sookyong

    2018-01-01

    Reduced gamma-aminobutyric acid (GABA) inhibition has been implicated in both anxiety and epilepsy. GAD65-/- (NOD/LtJ) mice have significantly decreased basal GABA levels in the brain and a lowered threshold for seizure generation. One fifth of GAD65 -/- mice experienced stress-induced seizures upon exposure to an open field at 4 weeks of age. In each successive week until 8 weeks of age, the latency to seizures decreased with prior seizure experience. 100% of GAD65-/- mice exhibited stress-induced seizures by the end of 8 weeks. GAD65-/- mice also exhibited marked impairment in open field exploratory behavior and deficits in spatial learning acquisition on a Barnes maze. Anxiety-like behavior in an open field was observed prior to seizure onset and was predictive of subsequent seizures. Immunohistochemical characterization of interneuron subtypes in GAD65-/- mice showed a selective decrease in GABA and neuropeptide Y (NPY) levels and no change in calbindin (CLB) or calretinin (CLR) immunoreactivity in the hippocampus. Stem cells from the medial ganglionic eminence (MGE) were injected into the hippocampal hilus to restore GABAergic interneurons. One week after transplantation, MGE-transplanted mice demonstrated significant seizure resistance compared to sham surgical controls. The percent area of GFP+ MGE graft in the hippocampus correlated significantly with the increase in seizure latency. Our data indicate that impaired GABAergic neurotransmission can cause anxiety-like behavior and stress-induced seizures that can be rescued by MGE stem cell transplantation.

  3. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  4. Protein-energy malnutrition alters IgA responses to rotavirus vaccination and infection but does not impair vaccine efficacy in mice.

    Science.gov (United States)

    Maier, Elizabeth A; Weage, Kristina J; Guedes, Marjorie M; Denson, Lee A; McNeal, Monica M; Bernstein, David I; Moore, Sean R

    2013-12-17

    Conflicting evidence links malnutrition to the reduced efficacy of rotavirus vaccines in developing countries, where diarrhea and undernutrition remain leading causes of child deaths. Here, we adapted mouse models of rotavirus vaccination (rhesus rotavirus, RRV), rotavirus infection (EDIM), and protein-energy malnutrition (PEM) to test the hypothesis that undernutrition reduces rotavirus vaccine immunogenicity and efficacy. We randomized wild type Balb/C dams with 3-day-old pups to a control diet (CD) or an isocaloric, multideficient regional basic diet (RBD) that produces PEM. At 3 weeks of age, we weaned CD and RBD pups to their dams' diet and subrandomized weanlings to receive a single dose of either live oral rotavirus vaccine (RRV) or PBS. At 6 weeks of age, we orally challenged all groups with murine rotavirus (EDIM). Serum and stool specimens were collected before and after RRV and EDIM administration to measure viral shedding and antibody responses by ELISA. RBD pups and weanlings exhibited significant failure to thrive compared to age-matched CD mice (Pvaccination induced higher levels of serum anti-RV IgA responses in RBD vs. CD mice (PVaccination protected CD and RBD mice equally against EDIM infection, as measured by viral shedding. In unvaccinated RBD mice, EDIM shedding peaked 1 day earlier (Pvaccination (Pvaccination mitigated stool IgA responses to EDIM more in CD vs. RBD mice (Pvaccination and infection, undernutrition does not impair rotavirus vaccine efficacy nor exacerbate infection in this mouse model of protein-energy malnutrition. Alternative models are needed to elucidate host-pathogen factors undermining rotavirus vaccine effectiveness in high-risk global settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Apolipoprotein E4 Causes Age- and Sex-Dependent Impairments of Hilar GABAergic Interneurons and Learning and Memory Deficits in Mice

    Science.gov (United States)

    Leung, Laura; Andrews-Zwilling, Yaisa; Yoon, Seo Yeon; Jain, Sachi; Ring, Karen; Dai, Jessica; Wang, Max Mu; Tong, Leslie; Walker, David; Huang, Yadong

    2012-01-01

    Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype. PMID:23300939

  6. Diacylglycerol kinase β knockout mice exhibit attention-deficit behavior and an abnormal response on methylphenidate-induced hyperactivity.

    Directory of Open Access Journals (Sweden)

    Mitsue Ishisaka

    Full Text Available BACKGROUND: Diacylglycerol kinase (DGK is an enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. DGKβ is one of the subtypes of the DGK family and regulates many intracellular signaling pathways in the central nervous system. Previously, we demonstrated that DGKβ knockout (KO mice showed various dysfunctions of higher brain function, such as cognitive impairment (with lower spine density, hyperactivity, reduced anxiety, and careless behavior. In the present study, we conducted further tests on DGKβ KO mice in order to investigate the function of DGKβ in the central nervous system, especially in the pathophysiology of attention deficit hyperactivity disorder (ADHD. METHODOLOGY/PRINCIPAL FINDINGS: DGKβ KO mice showed attention-deficit behavior in the object-based attention test and it was ameliorated by methylphenidate (MPH, 30 mg/kg, i.p.. In the open field test, DGKβ KO mice displayed a decreased response to the locomotor stimulating effects of MPH (30 mg/kg, i.p., but showed a similar response to an N-methyl-d-aspartate (NMDA receptor antagonist, MK-801 (0.3 mg/kg, i.p., when compared to WT mice. Examination of the phosphorylation of extracellular signal-regulated kinase (ERK, which is involved in regulation of locomotor activity, indicated that ERK1/2 activation induced by MPH treatment was defective in the striatum of DGKβ KO mice. CONCLUSIONS/SIGNIFICANCE: These findings suggest that DGKβ KO mice showed attention-deficit and hyperactive phenotype, similar to ADHD. Furthermore, the hyporesponsiveness of DGKβ KO mice to MPH was due to dysregulation of ERK phosphorylation, and that DGKβ has a pivotal involvement in ERK regulation in the striatum.

  7. Impairments in neurogenesis are not tightly linked to depressive behavior in a transgenic mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Daniel M Iascone

    Full Text Available Alzheimer's disease (AD, the most common cause of dementia, is also associated with depression. Although the precise mechanisms that lead to depression in AD are unknown, the impairments in adult hippocampal neurogenesis observed in AD may play a role. Adult-born neurons play a critical role in regulating both cognition and mood, and reduced hippocampal neurogenesis is associated with depression in other neurological disorders. To assess the relationship between Alzheimer's disease, neurogenesis, and depression, we studied human amyloid precursor protein (hAPP transgenic mice, a well-characterized model of AD. We report that reductions in hippocampal neurogenesis are evident early in disease progression in hAPP mice, but a mild depressive phenotype manifests only in later stages of disease. We found that hAPP mice exhibited a reduction in BrdU-positive cells in the subgranular zone of the dentate gyrus in the hippocampus, as well as a reduction in doublecortin-expressing cells, relative to nontransgenic controls at 5-7 months of age. These alterations in neurogenesis appeared to worsen with age, as the magnitude of reduction in doublecortin-expressing cells was greater in hAPP mice at 13-15 months of age. Only 13-15 month old hAPP mice exhibited depressive behavior in the tail suspension test. However, mice at both age groups exhibited deficits in spatial memory, which was observed in the Morris water maze test for hippocampus-dependent memory. These findings indicate that neurogenesis impairments are accompanied by cognitive deficits, but are not tightly linked to depressive behavior in hAPP mice.

  8. Telomere shortening impairs regeneration of the olfactory epithelium in response to injury but not under homeostatic conditions.

    Directory of Open Access Journals (Sweden)

    Masami Watabe-Rudolph

    Full Text Available Atrophy of the olfactory epithelium (OE associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc(-/- with short telomeres compared to wild type mice (mTerc(+/+ with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc(-/- mice compared to mTerc(+/+ mice. Seven days after chemical induced damage, G3 mTerc(-/- mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc(+/+ mice (p = 0.031. Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21 rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people.

  9. Aqueous Extract of Black Maca (Lepidium meyenii on Memory Impairment Induced by Ovariectomy in Mice

    Directory of Open Access Journals (Sweden)

    Julio Rubio

    2011-01-01

    Full Text Available The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX mice and their relation with malonalehyde (MDA, acetylcholinesterase (Ache and monoamine oxidase (MAO brain levels. Female mice were divided into five groups: (i naive (control, (ii sham, (iii OVX mice and OVX mice treated with (iv 0.50 g kg−1 and (v 2.00 g kg−1 black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23–27 and the step-down avoidance test (days 34 and 35. At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities.

  10. Preserved otolith organ function in caspase-3-deficient mice with impaired horizontal semicircular canal function.

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-06-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: (1) horizontal angular vestibulo-ocular reflex (hVOR) to evaluate semicircular canal function and (2) otolith-ocular reflex (OOR) to evaluate otolith organ function and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo off-vertical axis rotation to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow-phase eye velocity and vertical eye position were evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 (-/-) mice had severely impaired hVOR gain, while Casp3 (+/-) mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low-to-mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ-related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function.

  11. Preserved otolith organ function in caspase-3 deficient mice with impaired horizontal semicircular canal function

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-01-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: 1) horizontal angular vestibular-ocular reflex (hVOR) to evaluate semicircular canal function, and 2) otolith-ocular reflex (OOR) to evaluate otolith organ function, and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo-off vertical axis rotation (pOVAR) to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow phase eye velocity (HEV) and vertical eye position (VEP) was evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 −/− mice had severely impaired hVOR gain, while Casp3 +/− mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low to mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function. PMID:25827332

  12. Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization

    Directory of Open Access Journals (Sweden)

    Amanda Clause

    2017-06-01

    Full Text Available Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cells as genetic deletion of the α9 subunit results in functional cholinergic de-efferentation of the cochlea. Cholinergic modulation of spontaneous cochlear activity before hearing onset is important for the maturation of central auditory circuits. In α9KO mice, the developmental refinement of inhibitory afferents to the lateral superior olive is disturbed, resulting in decreased tonotopic organization of this sound localization nucleus. In this study, we used behavioral tests to investigate whether the circuit anomalies in α9KO mice correlate with sound localization or sound frequency processing. Using a conditioned lick suppression task to measure sound localization, we found that three out of four α9KO mice showed impaired minimum audible angles. Using a prepulse inhibition of the acoustic startle response paradigm, we found that the ability of α9KO mice to detect sound frequency changes was impaired, whereas their ability to detect sound intensity changes was not. These results demonstrate that cholinergic, nicotinic α9 subunit mediated transmission in the developing cochlear plays an important role in the maturation of hearing.

  13. Hard-Diet Feeding Recovers Neurogenesis in the Subventricular Zone and Olfactory Functions of Mice Impaired by Soft-Diet Feeding

    Science.gov (United States)

    Utsugi, Chizuru; Miyazono, Sadaharu; Osada, Kazumi; Sasajima, Hitoshi; Noguchi, Tomohiro; Matsuda, Mitsuyoshi; Kashiwayanagi, Makoto

    2014-01-01

    The subventricular zone (SVZ) generates an immense number of neurons even during adulthood. These neurons migrate to the olfactory bulb (OB) and differentiate into granule cells and periglomerular cells. The information broadcast by general odorants is received by the olfactory sensory neurons and transmitted to the OB. Recent studies have shown that a reduction of mastication impairs both neurogenesis in the hippocampus and brain functions. To examine these effects, we first measured the difference in Fos-immunoreactivity (Fos-ir) at the principal sensory trigeminal nucleus (Pr5), which receives intraoral touch information via the trigeminal nerve, when female adult mice ingested a hard or soft diet to explore whether soft-diet feeding could mimic impaired mastication. Ingestion of a hard diet induced greater expression of Fos-ir cells at the Pr5 than did a soft diet or no diet. Bromodeoxyuridine-immunoreactive (BrdU-ir) structures in sagittal sections of the SVZ and in the OB of mice fed a soft or hard diet were studied to explore the effects of changes in mastication on newly generated neurons. After 1 month, the density of BrdU-ir cells in the SVZ and OB was lower in the soft-diet-fed mice than in the hard-diet-fed mice. The odor preferences of individual female mice to butyric acid were tested in a Y-maze apparatus. Avoidance of butyric acid was reduced by the soft-diet feeding. We then explored the effects of the hard-diet feeding on olfactory functions and neurogenesis in the SVZ of mice impaired by soft-diet feeding. At 3 months of hard-diet feeding, avoidance of butyric acid was reversed and responses to odors and neurogenesis were recovered in the SVZ. The present results suggest that feeding with a hard diet improves neurogenesis in the SVZ, which in turn enhances olfactory function at the OB. PMID:24817277

  14. Augmented hepatic injury followed by impaired regeneration in metallothionein-I/II knockout mice after treatment with thioacetamide

    International Nuclear Information System (INIS)

    Oliver, Jordan R.; Jiang, Sean; Cherian, M. George

    2006-01-01

    A previous study (Oliver, J.R., Mara, T.W., Cherian, M.G. 2005. Impaired hepatic regeneration in metallothionein-I/II knockout mice after partial hepatectomy. Exp. Biol. Med. 230, 61-67) has shown an impairment of liver regeneration following partial hepatectomy (PH) in metallothionein (MT)-I and MT-II gene knockout (MT-null) mice, thus suggesting a requirement for MT in cellular growth. The present study was undertaken to investigate whether MT may play a similar role in hepatic injury and regeneration after acute treatment with thioacetamide (TAA). Hepatotoxicity of TAA is caused by the generation of oxidative stress. TAA was injected ip to both wild-type (WT) and MT-null mice. Mice were killed at 6, 12, 24, 48, 60, and 72 h after injection of TAA (125 mg/kg) or 48 h after injection of saline (vehicle control), and different parameters of hepatic injury were measured. The levels of hepatic lipid peroxidation were increased at 12 h in both types of mice; however, lipid peroxidation was significantly less in WT mice than MT-null mice at 48 h after injection of TAA. Analysis of hepatic glutathione (GSH) levels after TAA injection showed depletion of GSH at 12 h in WT mice and at 6 h in MT-null mice; however, significantly more GSH was depleted early (6-24 h) in MT-null mice than WT mice. An increase in hepatic iron (Fe) levels was observed in both types of mice after injection of TAA, but Fe levels were significantly higher in MT-null mice than WT mice at 6-60 h. The levels of hepatic copper (Cu) and zinc (Zn) were significantly higher in WT mice than MT-null mice at 6-60 h for Cu, and at 24 h and 60 h for Zn, respectively. Histopathological examination showed hemorrhagic necrosis in the liver of both types of mice at 12-72 h, with hepatic injury being more prominent in MT-null mice than WT mice. The hepatic MT levels were increased in WT mice after injection of TAA, and were highest at 24-72 h. Immunohistochemical staining for MT in WT mice indicated the presence

  15. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Proteasome function is not impaired in healthy aging of the lung.

    Science.gov (United States)

    Caniard, Anne; Ballweg, Korbinian; Lukas, Christina; Yildirim, Ali Ö; Eickelberg, Oliver; Meiners, Silke

    2015-10-01

    Aging is the progressive loss of cellular function which inevitably leads to death. Failure of proteostasis including the decrease in proteasome function is one hallmark of aging. In the lung, proteasome activity was shown to be impaired in age-related diseases such as chronic obstructive pulmonary disease. However, little is known on proteasome function during healthy aging. Here, we comprehensively analyzed healthy lung aging and proteasome function in wildtype, proteasome reporter and immunoproteasome knockout mice. Wildtype mice spontaneously developed senile lung emphysema while expression and activity of proteasome complexes and turnover of ubiquitinated substrates was not grossly altered in lungs of aged mice. Immunoproteasome subunits were specifically upregulated in the aged lung and the caspase-like proteasome activity concomitantly decreased. Aged knockout mice for the LMP2 or LMP7 immunoproteasome subunits showed no alteration in proteasome activities but exhibited typical lung aging phenotypes suggesting that immunoproteasome function is dispensable for physiological lung aging in mice. Our results indicate that healthy aging of the lung does not involve impairment of proteasome function. Apparently, the reserve capacity of the proteostasis systems in the lung is sufficient to avoid severe proteostasis imbalance during healthy aging.

  17. Aged Tg2576 mice are impaired on social memory and open field habituation tests.

    Science.gov (United States)

    Deacon, R M J; Koros, E; Bornemann, K D; Rawlins, J N P

    2009-02-11

    In a previous publication [Deacon RMJ, Cholerton LL, Talbot K, Nair-Roberts RG, Sanderson DJ, Romberg C, et al. Age-dependent and -independent behavioral deficits in Tg2576 mice. Behav Brain Res 2008;189:126-38] we found that very few cognitive tests were suitable for demonstrating deficits in Tg2576 mice, an amyloid over-expression model of Alzheimer's disease, even at 23 months of age. However, in a retrospective analysis of a separate project on these mice, tests of social memory and open field habituation revealed large cognitive impairments. Controls showed good open field habituation, but Tg2576 mice were hyperactive and failed to habituate. In the test of social memory for a juvenile mouse, controls showed considerably less social investigation on the second meeting, indicating memory of the juvenile, whereas Tg2576 mice did not show this decrement.As a control for olfactory sensitivity, on which social memory relies, the ability to find a food pellet hidden under wood chip bedding was assessed. Tg2576 mice found the pellet as quickly as controls. As this test requires digging ability, this was independently assessed in tests of burrowing and directly observed digging. In line with previous results and the hippocampal dysfunction characteristic of aged Tg2576 mice, they both burrowed and dug less than controls.

  18. The meetings, incentives, conferences, and exhibitions (MICE industry: Determinants of Thai organizational effectiveness

    Directory of Open Access Journals (Sweden)

    Songsiri Bandhuseve

    2018-01-01

    Full Text Available Studies have shown that there is more money in business tourism than leisure travel, and on average, business travellers spend more money. To understand this phenomenon, this study aimed to investigate the effect of relationships between capacity management, customer relationship management, information computer technology (ICT, service quality, supplier relationship management, and supply chain management on Thailand’s meetings, incentives, conferences, and exhibitions (MICE industry organizational effectiveness. The researchers embraced a descriptive survey methodology designed to assess how the 500 managers surveyed viewed their organization’s effectiveness. The design employed the self-administration of questionnaires to a sample of individuals which was aimed at finding each individual’s attitudes and opinion about how the 21 observed variables impacted their operations. Of the 10 hypotheses and 21 observed variables, nine hypotheses were proven, with the findings confirming that service quality and information computer technology having a significant effect on MICE organizational effectiveness.

  19. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  20. Hippocampus-dependent spatial memory impairment due to molar tooth loss is ameliorated by an enriched environment.

    Science.gov (United States)

    Kondo, Hiroko; Kurahashi, Minori; Mori, Daisuke; Iinuma, Mitsuo; Tamura, Yasuo; Mizutani, Kenmei; Shimpo, Kan; Sonoda, Shigeru; Azuma, Kagaku; Kubo, Kin-ya

    2016-01-01

    Teeth are crucial, not only for mastication, but for overall nutrition and general health, including cognitive function. Aged mice with chronic stress due to tooth loss exhibit impaired hippocampus-dependent learning and memory. Exposure to an enriched environment restores the reduced hippocampal function. Here, we explored the effects of an enriched environment on learning deficits and hippocampal morphologic changes in aged senescence-accelerated mouse strain P8 (SAMP8) mice with tooth loss. Eight-month-old male aged SAMP8 mice with molar intact or with molars removed were housed in either a standard environment or enriched environment for 3 weeks. The Morris water maze was performed for spatial memory test. The newborn cell proliferation, survival, and differentiation in the hippocampus were analyzed using 5-Bromodeoxyuridine (BrdU) immunohistochemical method. The hippocampal brain-derived neurotrophic factor (BDNF) levels were also measured. Mice with upper molars removed (molarless) exhibited a significant decline in the proliferation and survival of newborn cells in the dentate gyrus (DG) as well as in hippocampal BDNF levels. In addition, neuronal differentiation of newly generated cells was suppressed and hippocampus-dependent spatial memory was impaired. Exposure of molarless mice to an enriched environment attenuated the reductions in the hippocampal BDNF levels and neuronal differentiation, and partially improved the proliferation and survival of newborn cells, as well as the spatial memory ability. These findings indicated that an enriched environment could ameliorate the hippocampus-dependent spatial memory impairment induced by molar tooth loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice.

    Directory of Open Access Journals (Sweden)

    Virginie F Labrousse

    Full Text Available Regular consumption of food enriched in omega3 polyunsaturated fatty acids (ω3 PUFAs has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA are the most likely active components of ω3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old and aged (22-month-old mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain ω3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects.

  2. Mice lacking the kf-1 gene exhibit increased anxiety- but not despair-like behavior

    Directory of Open Access Journals (Sweden)

    Atsushi Tsujimura

    2008-09-01

    Full Text Available KF-1 was originally identified as a protein encoded by human gene with increased expression in the cerebral cortex of a patient with Alzheimer’s disease. In mouse brain, kf-1 mRNA is detected predominantly in the hippocampus and cerebellum, and kf-1 gene expression is elevated also in the frontal cortex of rats after chronic antidepressant treatments. KF-1 mediates E2-dependent ubiquitination and may modulate cellular protein levels as an E3 ubiquitin ligase, though its target proteins are not yet identified. To elucidate the role of kf-1 in the central nervous system, we generated kf-1 knockout mice by gene targeting, using Cre-lox recombination. The resulting kf-1−/− mice were normal and healthy in appearance. Behavioral analyses revealed that kf-1−/− mice showed significantly increased anxiety-like behavior compared with kf-1+/+ littermates in the light/dark transition and elevated plus maze tests; however, no significant differences were observed in exploratory locomotion using the open field test or in behavioral despair using the forced swim and tail suspension tests. These observations suggest that KF-1 suppresses selectively anxiety under physiological conditions probably through modulating protein levels of its unknown target(s. Interestingly, kf-1−/− mice exhibited significantly increased prepulse inhibition, which is usually reduced in human schizophrenic patients. Thus, the kf-1−/− mice provide a novel animal model for elucidating molecular mechanisms of psychiatric diseases such as anxiety/depression, and may be useful for screening novel anxiolytic/antidepressant compounds.

  3. Adenovirus vector expressing keratinocyte growth factor using CAG promoter impairs pulmonary function of mice with elastase-induced emphysema.

    Science.gov (United States)

    Oki, Hiroshi; Yazawa, Takuya; Baba, Yasuko; Kanegae, Yumi; Sato, Hanako; Sakamoto, Seiko; Goto, Takahisa; Saito, Izumu; Kurahashi, Kiyoyasu

    2017-07-01

    Pulmonary emphysema impairs quality of life and increases mortality. It has previously been shown that administration of adenovirus vector expressing murine keratinocyte growth factor (KGF) before elastase instillation prevents pulmonary emphysema in mice. We therefore hypothesized that therapeutic administration of KGF would restore damage to lungs caused by elastase instillation and thus improve pulmonary function in an animal model. KGF expressing adenovirus vector, which prevented bleomycin-induced pulmonary fibrosis in a previous study, was constructed. Adenovirus vector (1.0 × 10 9 plaque-forming units) was administered intratracheally one week after administration of elastase into mouse lungs. One week after administration of KGF-vector, exercise tolerance testing and blood gas analysis were performed, after which the lungs were removed under deep anesthesia. KGF-positive pneumocytes were more numerous, surfactant protein secretion in the airspace greater and mean linear intercept of lungs shorter in animals that had received KGF than in control animals. Unexpectedly, however, arterial blood oxygenation was worse in the KGF group and maximum running speed, an indicator of exercise capacity, had not improved after KGF in mice with elastase-induced emphysema, indicating that KGF-expressing adenovirus vector impaired pulmonary function in these mice. Notably, vector lacking KGF-expression unit did not induce such impairment, implying that the KGF expression unit itself may cause the damage to alveolar cells. Possible involvement of the CAG promoter used for KGF expression in impairing pulmonary function is discussed. © 2017 The Societies and John Wiley & Sons Australia, Ltd.

  4. Female Offspring From Chronic Hyperandrogenemic Dams Exhibit Delayed Puberty and Impaired Ovarian Reserve.

    Science.gov (United States)

    Wang, Zhiqiang; Shen, Mingjie; Xue, Ping; DiVall, Sara A; Segars, James; Wu, Sheng

    2018-02-01

    Female offspring of many species exposed to high doses of androgens in utero experience endocrine dysfunction during adulthood. The phenotype of offspring from females with prepregnancy hyperandrogenemia and impaired ovulation, however, has not been examined. We developed a mouse model of hyperandrogenemia by implanting a low-dose dihydrotestosterone (DHT) pellet 15 days before conception. Female offspring born to dams with hyperandrogenemia (DHT daughters) had delayed puberty (P DHT (non-DHT daughters, PND37.5). Serum follicle-stimulating hormone (FSH) levels in the DHT daughters were fourfold higher (P DHT daughters (controls). DHT daughters showed an extended time in metestrus/diestrus and a shorter time in the proestrus/estrus phase compared with non-DHT daughters (P DHT daughters compared with non-DHT daughters (P DHT daughters compared with non-DHT daughters. Daughters from hyperandrogenemic females exhibited elevated prepubertal FSH levels, diminished ovarian response to superovulation, impaired estrous cyclicity, delayed onset of puberty, and reduced ovarian reserve, suggesting that fetal androgen exposure had lasting effects on female reproductive function. Copyright © 2018 Endocrine Society.

  5. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  6. Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Mao, Qing-Qiu; Cheng, Christopher H K; Ip, Siu-Po; Lin, Zhi-Xiu

    2014-10-01

    Isorhynchophylline (IRN), an alkaloid isolated from Uncaria rhynchophylla, has been reported to improve cognitive impairment induced by beta-amyloid in rats. However, whether IRN could also ameliorate the D-galactose (D-gal)-induced mouse memory deficits is still not clear. In the present study, we aimed to investigate whether IRN had potential protective effect against the D-gal-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (100mg/kg) and orally administered IRN (20 or 40mg/kg) daily for 8weeks, followed by assessing spatial learning and memory function by the Morris water maze test. The results showed that IRN significantly improved spatial learning and memory function in the D-gal-treated mice. In the mechanistic studies, IRN significantly increased the level of glutathione (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT), while decreased the level of malondialdehyde (MDA) in the brain tissues of the D-gal-treated mice. Moreover, IRN (20 or 40mg/kg) significantly inhibited the production of prostaglandin E 2 (PGE2) and nitric oxide (NO), and the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of nuclear factor kappa B (NF-κB) in the brain tissues of D-gal-treated mice. Our results amply demonstrated that IRN was able to ameliorate cognitive deficits induced by D-gal in mice, and the observed cognition-improving action may be mediated, at least in part, through enhancing the antioxidant status and anti-inflammatory effect of brain tissues via NFκB signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Impaired clearance of influenza A virus in obese, leptin receptor deficient mice is independent of leptin signaling in the lung epithelium and macrophages.

    Directory of Open Access Journals (Sweden)

    Kathryn A Radigan

    Full Text Available During the recent H1N1 outbreak, obese patients had worsened lung injury and increased mortality. We used a murine model of influenza A pneumonia to test the hypothesis that leptin receptor deficiency might explain the enhanced mortality in obese patients.We infected wild-type, obese mice globally deficient in the leptin receptor (db/db and non-obese mice with tissue specific deletion of the leptin receptor in the lung epithelium (SPC-Cre/LepR fl/fl or macrophages and alveolar type II cells (LysM-Cre/Lepr fl/fl with influenza A virus (A/WSN/33 [H1N1] (500 and 1500 pfu/mouse and measured mortality, viral clearance and several markers of lung injury severity.The clearance of influenza A virus from the lungs of mice was impaired in obese mice globally deficient in the leptin receptor (db/db compared to normal weight wild-type mice. In contrast, non-obese, SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl had improved viral clearance after influenza A infection. In obese mice, mortality was increased compared with wild-type mice, while the SP-C-Cre+/+/LepR fl/fl and LysM-Cre+/+/LepR fl/fl mice exhibited improved survival.Global loss of the leptin receptor results in reduced viral clearance and worse outcomes following influenza A infection. These findings are not the result of the loss of leptin signaling in lung epithelial cells or macrophages. Our results suggest that factors associated with obesity or with leptin signaling in non-myeloid populations such as natural killer and T cells may be associated with worsened outcomes following influenza A infection.

  8. Impaired c-Fos and polo-like kinase 2 induction in the limbic system of fear-conditioned α-synuclein transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heinrich Schell

    Full Text Available α-Synuclein (αSYN is genetically and neuropathologically linked to a spectrum of neurodegenerative diseases including Parkinson's disease, dementia with Lewy bodies, and related disorders. Cognitive impairment is recapitulated in several αSYN transgenic mouse lines. However, the mechanisms of dysfunction in affected neurons are largely unknown. Here we measured neuronal activity induced gene products in the limbic system of αSYN transgenic mice upon fear conditioning (FC. Induction of the synaptic plasticity marker c-Fos was significantly reduced in the amygdala and hippocampus of (Thy1-h[A30P]αSYN transgenic mice in an age-dependent manner. Similarly, the neuronal activity inducible polo-like kinase 2 (Plk2 that can phosphorylate αSYN at the pathological site serine-129 was up-regulated in both brain regions upon FC. Plk2 inductions were also significantly impaired in aged (Thy1-h[A30P]αSYN transgenic mice, both in the amygdala and hippocampus. Plk2 inductions in the amygdala after FC were paralleled by a small but significant increase in the number of neuronal cell bodies immunopositive for serine-129 phosphorylated αSYN in young but not aged (Thy1-h[A30P]αSYN transgenic mice. In addition, we observed in the aged hippocampus a distinct type of apparently unmodified transgenic αSYN profiles resembling synaptic accumulations of αSYN. Thus, the cognitive decline observed in aged αSYN transgenic mice might be due to impairment of neurotransmission and synaptic plasticity in the limbic system by distinct αSYN species.

  9. Dietary long chain n-3 polyunsaturated fatty acids prevent impaired social behaviour and normalize brain dopamine levels in food allergic mice

    NARCIS (Netherlands)

    de Theije, Caroline G M; van den Elsen, Lieke W J; Willemsen, Linette E M; Milosevic, Vanja; Korte-Bouws, Gerdien A H; Lopes da Silva, Sofia; Broersen, Laus M; Korte, S Mechiel; Olivier, Berend; Garssen, Johan; Kraneveld, Aletta D

    2015-01-01

    Allergy is suggested to exacerbate impaired behaviour in children with neurodevelopmental disorders. We have previously shown that food allergy impaired social behaviour in mice. Dietary fatty acid composition may affect both the immune and nervous system. The aim of this study was to assess the

  10. Impaired peripheral nerve regeneration in type-2 diabetic mouse model.

    Science.gov (United States)

    Pham, Vuong M; Tu, Nguyen Huu; Katano, Tayo; Matsumura, Shinji; Saito, Akira; Yamada, Akihiro; Furue, Hidemasa; Ito, Seiji

    2018-01-01

    Peripheral neuropathy is one of the most common and serious complications of type-2 diabetes. Diabetic neuropathy is characterized by a distal symmetrical sensorimotor polyneuropathy, and its incidence increases in patients 40 years of age or older. In spite of extensive research over decades, there are few effective treatments for diabetic neuropathy besides glucose control and improved lifestyle. The earliest changes in diabetic neuropathy occur in sensory nerve fibers, with initial degeneration and regeneration resulting in pain. To seek its effective treatment, here we prepared a type-2 diabetic mouse model by giving mice 2 injections of streptozotocin and nicotinamide and examining the ability for nerve regeneration by using a sciatic nerve transection-regeneration model previously established by us. Seventeen weeks after the last injection, the mice exhibited symptoms of type-2 diabetes, that is, impaired glucose tolerance, decreased insulin level, mechanical hyperalgesia, and impaired sensory nerve fibers in the plantar skin. These mice showed delayed functional recovery and nerve regeneration by 2 weeks compared with young healthy mice and by 1 week compared with age-matched non-diabetic mice after axotomy. Furthermore, type-2 diabetic mice displayed increased expression of PTEN in their DRG neurons. Administration of a PTEN inhibitor at the cutting site of the nerve for 4 weeks promoted the axonal transport and functional recovery remarkably. This study demonstrates that peripheral nerve regeneration was impaired in type-2 diabetic model and that its combination with sciatic nerve transection is suitable for the study of the pathogenesis and treatment of early diabetic neuropathy. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Schizandrin, an Antioxidant Lignan from Schisandra chinensis, Ameliorates Aβ1–42-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Di Hu

    2012-01-01

    Full Text Available In the present study, we examined the effect of schisandrin (SCH of Schisandra chinensis on the amyloid-beta1–42- (Aβ1–42- induced memory impairment in mice and elucidated the possible antioxidative mechanism. Mice were intracerebroventricular (i.c.v. injected with the aggregated Aβ1–42 and then treated with SCH (4, 12, and 36 mg/kg body weight or donepezil (DPZ, a reference drug (0.65 mg/kg by intragastric infusion for 14 days. Noncognitive disturbances and cognitive performance were evaluated by locomotor activity test, Y-maze test, and water maze test. Antioxidative enzyme activities including superoxide dismutase (SOD and glutathione peroxidase (GSH-px and levels of malondialdehyde (MDA, glutathione (GSH, and oxidized glutathione (GSSG within the cerebral cortex and hippocampus of mice were measured to elucidate the mechanism. Our results showed that SCH significantly improved Aβ1–42-induced short-term and spatial reference memory impairments in Y-maze test and water maze test. Furthermore, in the cerebral cortex and hippocampus of mice, SOD and GSH-px activities, GSH level, and GSH/GSSG ratio were increased, and levels of MDA and GSSG were decreased by the treatment of SCH. These results suggest that SCH is a potential cognitive enhancer against Alzheimer’s disease through antioxidative action.

  12. Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling

    Directory of Open Access Journals (Sweden)

    Gobinath Shanmugam

    2017-05-01

    Full Text Available Nuclear factor erythroid 2 related factor 2 (Nrf2 signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/− (>22 months were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade. The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc (p < 0.05 in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in

  13. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  14. Exposure to marijuana smoke impairs memory retrieval in mice.

    Science.gov (United States)

    Niyuhire, Floride; Varvel, Stephen A; Martin, Billy R; Lichtman, Aron H

    2007-09-01

    Marijuana (Cannabis sativa) and its primary psychoactive component, delta-9-tetrahydrocannabinol (Delta(9)-THC), have long been known to disrupt cognition in humans. Although Delta(9)-THC and other cannabinoids disrupt performance in a wide range of animal models of learning and memory, few studies have investigated the effects of smoked marijuana in these paradigms. Moreover, in preclinical studies, cannabinoids are generally administered before acquisition, and because retention is generally evaluated soon afterward, it is difficult to distinguish between processes related to acquisition and retrieval. In the present study, we investigated the specific effects of marijuana smoke and injected Delta(9)-THC on acquisition versus memory retrieval in a mouse repeated acquisition Morris water-maze task. To distinguish between these processes, subjects were administered Delta(9)-THC or they were exposed to marijuana smoke either 30 min before acquisition or 30 min before the retention test. Inhalation of marijuana smoke or injected Delta(9)-THC impaired the ability of the mice to learn the location of the hidden platform and to recall the platform location once learning had already taken place. In contrast, neither drug impaired performance in a cued task in which the platform was made visible. Finally, the cannabinoid-1 (CB(1)) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide HCl (rimonabant) blocked the memory disruptive effects of both Delta(9)-THC and marijuana. These data represent the first evidence demonstrating that marijuana impairs memory retrieval through a CB(1) receptor mechanism of action and independently of its effects on sensorimotor performance, motivation, and initial acquisition.

  15. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  16. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  17. Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice.

    Science.gov (United States)

    Salehpour, Farzad; Ahmadian, Nahid; Rasta, Seyed Hossein; Farhoudi, Mehdi; Karimi, Pouran; Sadigh-Eteghad, Saeed

    2017-10-01

    Mitochondrial function plays a key role in the aging-related cognitive impairment, and photoneuromodulation of mitochondria by transcranial low-level laser therapy (LLLT) may contribute to its improvement. This study focused on the transcranial LLLT effects on the D-galactose (DG)-induced mitochondrial dysfunction, apoptosis, and cognitive impairment in mice. For this purpose, red and near-infrared (NIR) laser wavelengths (660 and 810 nm) at 2 different fluencies (4 and 8 J/cm 2 ) at 10-Hz pulsed wave mode were administrated transcranially 3 d/wk in DG-received (500 mg/kg/subcutaneous) mice model of aging for 6 weeks. Spatial and episodic-like memories were assessed by the Barnes maze and What-Where-Which (WWWhich) tasks. Brain tissues were analyzed for mitochondrial function including active mitochondria, adenosine triphosphate, and reactive oxygen species levels, as well as membrane potential and cytochrome c oxidase activity. Apoptosis-related biomarkers, namely, Bax, Bcl-2, and caspase-3 were evaluated by Western blotting method. Laser treatments at wavelengths of 660 and 810 nm at 8 J/cm 2 attenuated DG-impaired spatial and episodic-like memories. Also, results showed an obvious improvement in the mitochondrial function aspects and modulatory effects on apoptotic markers in aged mice. However, same wavelengths at the fluency of 4 J/cm 2 had poor effect on the behavioral and molecular indexes in aging model. This data indicates that transcranial LLLT at both of red and NIR wavelengths at the fluency of 8 J/cm 2 has a potential to ameliorate aging-induced mitochondrial dysfunction, apoptosis, and cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    Lauren R Harms

    Full Text Available Epidemiological evidence suggests that Developmental Vitamin D (DVD deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT and five-choice continuous performance test (5C-CPT, as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour.

  19. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Science.gov (United States)

    Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (Pdifferent from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.

  20. Running performance at high running velocities is impaired but V'O(₂max and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Directory of Open Access Journals (Sweden)

    Marta Wojewoda

    Full Text Available It has been reported that IL-6 knockout mice (IL-6⁻/⁻ possess lower endurance capacity than wild type mice (WT, however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max, decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively. Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05 than in WT mice. V'O(₂max in IL-6⁻/⁻ (n = 20 amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22 amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16. No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01 than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  1. Running performance at high running velocities is impaired but V'O(₂max) and peripheral endothelial function are preserved in IL-6⁻/⁻ mice.

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6⁻/⁻) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6⁻/⁻ mice is linked to impaired maximal oxygen uptake (V'O(₂max)), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6⁻/⁻ mice than in WT mice (13.00±0.97 m·min⁻¹ vs. 16.89±1.15 m·min⁻¹, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m·min⁻¹ in IL-6⁻/⁻ mice was significantly shorter (P<0.05) than in WT mice. V'O(₂max) in IL-6⁻/⁻ (n = 20) amounting to 108.3±2.8 ml·kg⁻¹·min⁻¹ was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml·kg⁻¹·min⁻¹, (P = 0.16). No difference in maximal COX activity between the IL-6⁻/⁻ and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6⁻/⁻ mice. Surprisingly, plasma lactate concentration during running at 8 m·min⁻¹ as well at maximal running velocity in IL-6⁻/⁻ mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6⁻/⁻ mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca²⁺-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6⁻/⁻ mice could not be explained by reduced V'O(₂max), endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance

  2. Running Performance at High Running Velocities Is Impaired but V′O2max and Peripheral Endothelial Function Are Preserved in IL-6−/− Mice

    Science.gov (United States)

    Wojewoda, Marta; Kmiecik, Katarzyna; Ventura-Clapier, Renée; Fortin, Dominique; Onopiuk, Marta; Jakubczyk, Justyna; Sitek, Barbara; Fedorowicz, Andrzej; Majerczak, Joanna; Kaminski, Karol; Chlopicki, Stefan; Zoladz, Jerzy Andrzej

    2014-01-01

    It has been reported that IL-6 knockout mice (IL-6−/−) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6−/− mice is linked to impaired maximal oxygen uptake (V′O2max), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min−1 vs. 16.89±1.15 m.min−1, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min−1 in IL-6−/− mice was significantly shorter (P<0.05) than in WT mice. V′O2max in IL-6−/− (n = 20) amounting to 108.3±2.8 ml.kg−1.min−1 was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg−1.min−1, (P = 0.16). No difference in maximal COX activity between the IL-6−/− and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6−/− mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6−/− mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6−/− mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca2+-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6−/− mice could not be explained by reduced V′O2max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we

  3. Social anxiety disorder exhibit impaired networks involved in self and theory of mind processing.

    Science.gov (United States)

    Cui, Qian; Vanman, Eric J; Long, Zhiliang; Pang, Yajing; Chen, Yuyan; Wang, Yifeng; Duan, Xujun; Chen, Heng; Gong, Qiyong; Zhang, Wei; Chen, Huafu

    2017-08-01

    Most previous studies regarding social anxiety disorder (SAD) have focused on the role of emotional dysfunction, while impairments in self- and theory of mind (ToM)-processing have relatively been neglected. This study utilised functional connectivity density (FCD), resting-state functional connectivity (RSFC) and discriminant analyses to investigate impairments in self- and ToM-related networks in patients with SAD. Patients with SAD exhibited decreased long-range FCD in the right rostral anterior cingulate cortex (rACC) and decreased short-range FCD in the right superior temporal gyrus (STG)-key nodes involved in self- and ToM-processing, respectively. Decreased RSFC of the right rACC and STG with widespread frontal, temporal, posteromedial, sensorimotor, and somatosensory, regions was also observed in patients with SAD. Altered RSFC between the right rACC and bilateral superior frontal gyrus, between the right rACC and right middle frontal gyrus, and within the right STG itself provided the greatest contribution to individual diagnoses of SAD, with an accuracy of 84.5%. These results suggest that a lack of cognitive inhibition on emotional self-referential processing as well as impairments in social information integration may play critical roles in the pathomechanism of SAD and highlight the importance of recognising such features in the diagnosis and treatment of SAD. © The Author (2017). Published by Oxford University Press.

  4. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  5. Inactivation of JAK2/STAT3 Signaling Axis and Downregulation of M1 mAChR Cause Cognitive Impairment in klotho Mutant Mice, a Genetic Model of Aging

    Science.gov (United States)

    Park, Seok-Joo; Shin, Eun-Joo; Min, Sun Seek; An, Jihua; Li, Zhengyi; Hee Chung, Yoon; Hoon Jeong, Ji; Bach, Jae-Hyung; Nah, Seung-Yeol; Kim, Won-Ki; Jang, Choon-Gon; Kim, Yong-Sun; Nabeshima, Yo-ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2013-01-01

    We previously reported cognitive dysfunction in klotho mutant mice. In the present study, we further examined novel mechanisms involved in cognitive impairment in these mice. Significantly decreased janus kinase 2 (JAK2) and signal transducer and activator of transcription3 (STAT3) phosphorylation were observed in the hippocampus of klotho mutant mice. A selective decrease in protein expression and binding density of the M1 muscarinic cholinergic receptor (M1 mAChR) was observed in these mice. Cholinergic parameters (ie, acetylcholine (ACh), choline acetyltransferase (ChAT), and acetylcholinesterase (AChE)) and NMDAR-dependent long-term potentiation (LTP) were significantly impaired in klotho mutant mice. McN-A-343 (McN), an M1 mAChR agonist, significantly attenuated these impairments. AG490 (AG), a JAK2 inhibitor, counteracted the attenuating effects of McN, although AG did not significantly alter the McN-induced effect on AChE. Furthermore, AG significantly inhibited the attenuating effects of McN on decreased NMDAR-dependent LTP, protein kinase C βII, p-ERK, p-CREB, BDNF, and p-JAK2/p-STAT3-expression in klotho mutant mice. In addition, k252a, a BDNF receptor tyrosine kinase B (TrkB) inhibitor, significantly counteracted McN effects on decreased ChAT, ACh, and M1 mAChR and p-JAK2/p-STAT3 expression. McN-induced effects on cognitive impairment in klotho mutant mice were consistently counteracted by either AG or k252a. Our results suggest that inactivation of the JAK2/STAT3 signaling axis and M1 mAChR downregulation play a critical role in cognitive impairment observed in klotho mutant mice. PMID:23389690

  6. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice

    Directory of Open Access Journals (Sweden)

    Manish Kumar Saraf

    2011-01-01

    Full Text Available Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease.

  7. Mechanical Forces Exacerbate Periodontal Defects in Bsp-null Mice

    Science.gov (United States)

    Soenjaya, Y.; Foster, B.L.; Nociti, F.H.; Ao, M.; Holdsworth, D.W.; Hunter, G.K.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is an acidic phosphoprotein with collagen-binding, cell attachment, and hydroxyapatite-nucleating properties. BSP expression in mineralized tissues is upregulated at onset of mineralization. Bsp-null (Bsp-/-) mice exhibit reductions in bone mineral density, bone turnover, osteoclast activation, and impaired bone healing. Furthermore, Bsp-/- mice have marked periodontal tissue breakdown, with a lack of acellular cementum leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and incisor malocclusion. We hypothesized that altered mechanical stress from mastication contributes to periodontal destruction observed in Bsp-/- mice. This hypothesis was tested by comparing Bsp-/- and wild-type mice fed with standard hard pellet diet or soft powder diet. Dentoalveolar tissues were analyzed using histology and micro–computed tomography. By 8 wk of age, Bsp-/- mice exhibited molar and incisor malocclusion regardless of diet. Bsp-/- mice with hard pellet diet exhibited high incidence (30%) of severe incisor malocclusion, 10% lower body weight, 3% reduced femur length, and 30% elevated serum alkaline phosphatase activity compared to wild type. Soft powder diet reduced severe incisor malocclusion incidence to 3% in Bsp-/- mice, supporting the hypothesis that occlusal loading contributed to the malocclusion phenotype. Furthermore, Bsp-/- mice in the soft powder diet group featured normal body weight, long bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects reported in Bsp-/- mice. Bsp-/- incisors also erupt at a slower rate, which likely leads to the observed thickened dentin and enhanced mineralization of dentin and enamel toward the apical end. We propose that the decrease in eruption rate is due to a lack of acellular cementum and associated defective periodontal attachment. These data demonstrate the importance of BSP

  8. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Impaired compensation to femoral artery ligation in diet-induced obese mice is primarily mediated via suppression of collateral growth by Nox2 and p47phox.

    Science.gov (United States)

    DiStasi, Matthew R; Mund, Julie A; Bohlen, H Glenn; Miller, Steven J; Ingram, David A; Dalsing, Michael C; Unthank, Joseph L

    2015-10-01

    The present study was undertaken to establish the role of NADPH oxidase (Nox) in impaired vascular compensation to arterial occlusion that occurs in the presence of risk factors associated with oxidative stress. Diet-induced obese (DIO) mice characterized by multiple comorbidities including diabetes and hyperlipidemia were used as a preclinical model. Arterial occlusion was induced by distal femoral artery ligation in lean and DIO mice. Proximal collateral arteries were identified as the site of major (∼70%) vascular resistance to calf perfusion by distal arterial pressures, which decreased from ∼80 to ∼30 mmHg with ligation in both lean and DIO mice. Two weeks after ligation, significant vascular compensation occurred in lean but not DIO mice as evidenced by increased perfusion (147 ± 48% vs. 49 ± 29%) and collateral diameter (151 ± 30% vs. 44 ± 17%). Vascular mRNA expression of p22(phox), Nox2, Nox4, and p47(phox) were all increased in DIO mice. Treatment of DIO mice with either apocynin or Nox2ds-tat or with whole body ablation of either Nox2 or p47(phox) ameliorated the impairment in both collateral growth and hindlimb perfusion. Multiparametric flow cytometry analysis demonstrated elevated levels of circulating monocytes in DIO mice without impaired mobilization and demargination after femoral artery ligation. These results establish collateral resistance as the major limitation to calf perfusion in this preclinical model, demonstrate than monocyte mobilization and demarginatin is not suppressed, implicate Nox2-p47(phox) interactions in the impairment of vascular compensation to arterial occlusion in DIO mice, and suggest that selective Nox component suppression/inhibition may be effective as either primary or adjuvant therapy for claudicants. Copyright © 2015 the American Physiological Society.

  10. Behavioral testing of mice exposed to intermediate frequency magnetic fields indicates mild memory impairment.

    Directory of Open Access Journals (Sweden)

    Kajal Kumari

    Full Text Available Human exposure to intermediate frequency magnetic fields (MF is increasing due to applications like electronic article surveillance systems and induction heating cooking hobs. However, limited data is available on their possible health effects. The present study assessed behavioral and histopathological consequences of exposing mice to 7.5 kHz MF at 12 or 120 μT for 5 weeks. No effects were observed on body weight, spontaneous activity, motor coordination, level of anxiety or aggression. In the Morris swim task, mice in the 120 μT group showed less steep learning curve than the other groups, but did not differ from controls in their search bias in the probe test. The passive avoidance task indicated a clear impairment of memory over 48 h in the 120 μT group. No effects on astroglial activation or neurogenesis were observed in the hippocampus. The mRNA expression of brain-derived neurotrophic factor did not change but expression of the proinflammatory cytokine tumor necrosis factor alpha mRNA was significantly increased in the 120 μT group. These findings suggest that 7.5 kHz MF exposure may lead to mild learning and memory impairment, possibly through an inflammatory reaction in the hippocampus.

  11. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  13. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  14. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice.

    Science.gov (United States)

    Zhou, Heng; Xue, Wei; Chu, Shi-Feng; Wang, Zhen-Zhen; Li, Chuang-Jun; Jiang, Yi-Na; Luo, Lin-Ming; Luo, Piao; Li, Gang; Zhang, Dong-Ming; Chen, Nai-Hong

    2016-08-01

    Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.

  15. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels.

    Science.gov (United States)

    Ruiz, Henry H; Chi, Tiffany; Shin, Andrew C; Lindtner, Claudia; Hsieh, Wilson; Ehrlich, Michelle; Gandy, Sam; Buettner, Christoph

    2016-08-01

    Epidemiologic studies have demonstrated an association between diabetes and dementia. Insulin signaling within the brain, in particular within the hypothalamus regulates carbohydrate, lipid, and branched chain amino acid (BCAA) metabolism in peripheral organs such as the liver and adipose tissue. We hypothesized that cerebral amyloidosis impairs central nervous system control of metabolism through disruption of insulin signaling in the hypothalamus, which dysregulates glucose and BCAA homeostasis resulting in increased susceptibility to diabetes. We examined whether APP/PS1 mice exhibit increased susceptibility to aging or high-fat diet (HFD)-induced metabolic impairment using metabolic phenotyping and insulin-signaling studies. APP/PS1 mice were more susceptible to high-fat feeding and aging-induced metabolic dysregulation including disrupted BCAA homeostasis and exhibited impaired hypothalamic insulin signaling. Our data suggest that AD pathology increases susceptibility to diabetes due to impaired hypothalamic insulin signaling, and that plasma BCAA levels could serve as a biomarker of hypothalamic insulin action in patients with AD. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  16. 7,8-Dihydroxyflavone Ameliorates Cognitive Impairment by Inhibiting Expression of Tau Pathology in ApoE-Knockout Mice

    Directory of Open Access Journals (Sweden)

    Yang Tan

    2016-11-01

    Full Text Available 7,8-Dihydroxyflavone (7,8-DHF, a tyrosine kinase B (TrkB agonist that mimics the neuroprotective properties of brain-derived neurotrophic factor, which can not efficiently deliver into the brain, has been reported to be useful in ameliorating cognitive impairment in many diseases. Researches have indicated that apolipoprotein E-knockout (ApoE-KO mouse was associated with cognitive alteration via various mechanisms. Our present study investigated the possible mechanisms of cognitive impairment of ApoE-KO mouse fed with western type diet and the protective effects of 7,8-DHF in improving spatial learning and memory in ApoE-KO mouse. 5-weeks-old ApoE-KO mice and C57BL/6 mice were chronically treated with 7,8-DHF (with a dosage of 5mg/kg or vehicles orally for 25 weeks, and then subjected to Morris water maze at the age of 30 weeks to evaluate the cognitive performances. Afterwards, histology analysis and western blotting were performed. Spatial learning and memory deficits were observed in ApoE-KO mice, which were consistent with higher expression of active-asparaginyl endopeptidase (active-AEP as well as AEP-derived truncated tauN368 compared with normal group. In addition to that, long-term treatment of 7,8-DHF dramatically ameliorated cognitive decline in ApoE-KO mice, accompanied by the activation in phosphorylated protein kinase B (Akt/glycogen synthase kinase-3β (GSK-3β pathway and down-regulated expression of tau S396 and PHF-tau (phosphorylated tau at ser396 and ser404 epitope. These findings suggested that cognitive impairment of ApoE-KO mouse might associate with tau pathology and 7,8-DHF could activate AKT and then phosphorylate its downstream molecule to inhibit expression of abnormal tau, meanwhile, 7,8-DHF could reduce the expression of active-AEP and then inhibit production of truncated tauN368.

  17. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  18. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations.

    Science.gov (United States)

    Laviola, Giovanni; Zoratto, Francesca; Ingiosi, Danilo; Carito, Valentina; Huzard, Damien; Fiore, Marco; Macrì, Simone

    2017-01-01

    Deficits in empathy have been proposed to constitute a hallmark of several psychiatric disturbances like conduct disorder, antisocial and narcissistic personality disorders. Limited sensitivity to punishment, shallow or deficient affect and reduced physiological reactivity to environmental stressors have been often reported to co-occur with limited empathy and contribute to the onset of antisocial phenotypes. Empathy in its simplest form (i.e. emotional contagion) is addressed in preclinical models through the evaluation of the social transmission of emotional states: mice exposed to a painful stimulus display a higher response if in the presence of a familiar individual experiencing a higher degree of discomfort, than in isolation. In the present study, we investigated whether a reduction of emotional contagion can be considered a predictor of reduced sociality, sensitivity to punishment and physiological stress reactivity. To this aim, we first evaluated emotional contagion in a group of Balb/cJ mice and then discretised their values in four quartiles. The upper (i.e. Emotional Contagion Prone, ECP) and the lower (i.e. Emotional Contagion Resistant, ECR) quartiles constituted the experimental groups. Our results indicate that mice in the lower quartile are characterized by reduced sociability, impaired memory of negative events and dampened hypothalamic-pituitary-adrenocortical reactivity to external stressors. Furthermore, in the absence of changes in oxytocin receptor density, we show that these mice exhibit elevated concentrations of oxytocin and vasopressin and reduced density of BDNF receptors in behaviourally-relevant brain areas. Thus, not only do present results translate to the preclinical investigation of psychiatric disturbances, but also they can contribute to the study of emotional contagion in terms of its adaptive significance.

  19. Low empathy-like behaviour in male mice associates with impaired sociability, emotional memory, physiological stress reactivity and variations in neurobiological regulations.

    Directory of Open Access Journals (Sweden)

    Giovanni Laviola

    Full Text Available Deficits in empathy have been proposed to constitute a hallmark of several psychiatric disturbances like conduct disorder, antisocial and narcissistic personality disorders. Limited sensitivity to punishment, shallow or deficient affect and reduced physiological reactivity to environmental stressors have been often reported to co-occur with limited empathy and contribute to the onset of antisocial phenotypes. Empathy in its simplest form (i.e. emotional contagion is addressed in preclinical models through the evaluation of the social transmission of emotional states: mice exposed to a painful stimulus display a higher response if in the presence of a familiar individual experiencing a higher degree of discomfort, than in isolation. In the present study, we investigated whether a reduction of emotional contagion can be considered a predictor of reduced sociality, sensitivity to punishment and physiological stress reactivity. To this aim, we first evaluated emotional contagion in a group of Balb/cJ mice and then discretised their values in four quartiles. The upper (i.e. Emotional Contagion Prone, ECP and the lower (i.e. Emotional Contagion Resistant, ECR quartiles constituted the experimental groups. Our results indicate that mice in the lower quartile are characterized by reduced sociability, impaired memory of negative events and dampened hypothalamic-pituitary-adrenocortical reactivity to external stressors. Furthermore, in the absence of changes in oxytocin receptor density, we show that these mice exhibit elevated concentrations of oxytocin and vasopressin and reduced density of BDNF receptors in behaviourally-relevant brain areas. Thus, not only do present results translate to the preclinical investigation of psychiatric disturbances, but also they can contribute to the study of emotional contagion in terms of its adaptive significance.

  20. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration

    Directory of Open Access Journals (Sweden)

    William Sealy Hambright

    2017-08-01

    Full Text Available Synaptic loss and neuron death are the underlying cause of neurodegenerative diseases such as Alzheimer's disease (AD; however, the modalities of cell death in those diseases remain unclear. Ferroptosis, a newly identified oxidative cell death mechanism triggered by massive lipid peroxidation, is implicated in the degeneration of neurons populations such as spinal motor neurons and midbrain neurons. Here, we investigated whether neurons in forebrain regions (cerebral cortex and hippocampus that are severely afflicted in AD patients might be vulnerable to ferroptosis. To this end, we generated Gpx4BIKO mouse, a mouse model with conditional deletion in forebrain neurons of glutathione peroxidase 4 (Gpx4, a key regulator of ferroptosis, and showed that treatment with tamoxifen led to deletion of Gpx4 primarily in forebrain neurons of adult Gpx4BIKO mice. Starting at 12 weeks after tamoxifen treatment, Gpx4BIKO mice exhibited significant deficits in spatial learning and memory function versus Control mice as determined by the Morris water maze task. Further examinations revealed that the cognitively impaired Gpx4BIKO mice exhibited hippocampal neurodegeneration. Notably, markers associated with ferroptosis, such as elevated lipid peroxidation, ERK activation and augmented neuroinflammation, were observed in Gpx4BIKO mice. We also showed that Gpx4BIKO mice fed a diet deficient in vitamin E, a lipid soluble antioxidant with anti-ferroptosis activity, had an expedited rate of hippocampal neurodegeneration and behavior dysfunction, and that treatment with a small-molecule ferroptosis inhibitor ameliorated neurodegeneration in those mice. Taken together, our results indicate that forebrain neurons are susceptible to ferroptosis, suggesting that ferroptosis may be an important neurodegenerative mechanism in diseases such as AD. Keywords: Ferroptosis, Neurodegeneration, Cognitive impairment, Alzheimer's disease, Glutathione peroxidase 4, Transgenic mice

  2. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2017-11-01

    Full Text Available Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio, an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5 and glycogen synthase kinase-3β (GSK3β, two pharmacological targets of Alzheimer's disease (AD. In this study, we have discovered that 2.3–23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD with hyper-phosphorylated tau (pTau, glial fibrillary acidic protein (GFAP and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.

  3. Mori Folium and Mori Fructus Mixture Attenuates High-Fat Diet-Induced Cognitive Deficits in Mice

    Directory of Open Access Journals (Sweden)

    Hyo Geun Kim

    2015-01-01

    Full Text Available Obesity has become a global health problem, contributing to various diseases including diabetes, hypertension, cancer, and dementia. Increasing evidence suggests that obesity can also cause neuronal damage, long-term memory loss, and cognitive impairment. The leaves and the fruits of Morus alba L., containing active phytochemicals, have been shown to possess antiobesity and hypolipidemic properties. Thus, in the present study, we assessed their effects on cognitive functioning in mice fed a high-fat diet by performing immunohistochemistry, using antibodies against c-Fos, synaptophysin, and postsynaptic density protein 95 and a behavioral test. C57BL/6 mice fed a high-fat diet for 21 weeks exhibited increased body weight, but mice coadministered an optimized Mori Folium and Mori Fructus extract mixture (2 : 1; MFE for the final 12 weeks exhibited significant body weight loss. Additionally, obese mice exhibited not only reduced neural activity, but also decreased presynaptic and postsynaptic activities, while MFE-treated mice exhibited recovery of these activities. Finally, cognitive deficits induced by the high-fat diet were recovered by cotreatment with MFE in the novel object recognition test. Our findings suggest that the antiobesity effects of MFE resulted in recovery of the cognitive deficits induced by the high-fat diet by regulation of neural and synaptic activities.

  4. Functions of TAM RTKs in regulating spermatogenesis and male fertility in mice.

    Science.gov (United States)

    Chen, Yongmei; Wang, Huizhen; Qi, Nan; Wu, Hui; Xiong, Weipeng; Ma, Jing; Lu, Qingxian; Han, Daishu

    2009-10-01

    Mice lacking TYRO3, AXL and MER (TAM) receptor tyrosine kinases (RTKs) are male sterile. The mechanism of TAM RTKs in regulating male fertility remains unknown. In this study, we analyzed in more detail the testicular phenotype of TAM triple mutant (TAM(-/-)) mice with an effort to understand the mechanism. We demonstrate that the three TAM RTKs cooperatively regulate male fertility, and MER appears to be more important than AXL and TYRO3. TAM(-/-) testes showed a progressive loss of germ cells from elongated spermatids to spermatogonia. Young adult TAM(-/-) mice exhibited oligo-astheno-teratozoospermia and various morphological malformations of sperm cells. As the mice aged, the germ cells were eventually depleted from the seminiferous tubules. Furthermore, we found that TAM(-/-) Sertoli cells have an impaired phagocytic activity and a large number of differentially expressed genes compared to wild-type controls. By contrast, the function of Leydig cells was not apparently affected by the mutation of TAM RTKs. Therefore, we conclude that the suboptimal function of Sertoli cells leads to the impaired spermatogenesis in TAM(-/-) mice. The results provide novel insight into the mechanism of TAM RTKs in regulating male fertility.

  5. Selective impairment of subcategories of long-term memory in mice with hippocampal lesions accessed by the olfactory tubing maze.

    Science.gov (United States)

    Chaillan, F A; Marchetti, E; Soumireu-Mourat, B; Roman, F S

    2005-03-30

    A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.

  6. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  7. Clinically relevant doses of lidocaine and bupivacaine do not impair cutaneous wound healing in mice.

    Science.gov (United States)

    Waite, A; Gilliver, S C; Masterson, G R; Hardman, M J; Ashcroft, G S

    2010-06-01

    Lidocaine and bupivacaine are commonly infiltrated into surgical cutaneous wounds to provide local anaesthesia after surgical procedures. However, very little is known about their effects on cutaneous wound healing. If an inhibitory effect is demonstrated, then the balance between the benefits of postoperative local anaesthesia and the negatives of impaired cutaneous wound healing may affect the decision to use local anaesthesia or not. Furthermore, if a difference in the rate of healing of lidocaine- and bupivacaine-treated cutaneous wounds is revealed, or if an inhibitory effect is found to be dose-dependent, then this may well influence the choice of agent and its concentration for clinical use. Immediately before incisional wounding, we administered lidocaine and bupivacaine intradermally to adult female mice, some of which had been ovariectomized to act as a model of post-menopausal women (like post-menopausal women, ovariectomized mice heal wounds poorly, with increased proteolysis and inflammation). Day 3 wound tissue was analysed histologically and tested for expression of inflammatory and proteolytic factors. On day 3 post-wounding, wound areas and extent of re-epithelialization were comparable between the control and local anaesthetic-treated animals, in both intact and ovariectomized groups. Both tested drugs significantly increased wound activity of the degradative enzyme matrix metalloproteinase-2 relative to controls, while lidocaine also increased wound neutrophil numbers. Although lidocaine and bupivacaine influenced local inflammatory and proteolytic factors, they did not impair the rate of healing in either of two well-established models (mimicking normal human wound healing and impaired age-related healing).

  8. Nuclear triiodothyronine receptor binding characteristics and occupancy in obese (ob/ob) mice

    International Nuclear Information System (INIS)

    Hillgartner, F.B.; Romsos, D.R.

    1987-01-01

    Obese (ob/ob) mice exhibit reduced adaptive thermogenesis associated with an impairment of thyroid hormone action. The mechanism underlying the latter defect was investigated by comparing the binding characteristics and occupancy of solubilized nuclear 3,5,3'-triiodothyronine (T 3 ) receptors from livers of lean and obese mice. T 3 concentration was measured by radioimmunoassay. Scatchard analysis showed minimal differences in B/sub max/ and K/sub d/ between phenotypes at both 4 and 8-10 wk of age, indicating that reduced hepatic thyroid hormone expression in obese mice is not caused by alterations in nuclear receptor concentration or affinity. In contrast, nuclear T 3 receptor occupancy (endogenous T 3 associated with the specific receptor divided by B/sub max/) was 14 and 23% lower in 4- and 8- to 10-wk old obese mice, respectively. Together with reported changes in hepatic thyroid hormone-sensitive enzymes, these data are consistent with a diminished nuclear T 3 signal initiating thyroid hormone action in obese mice. Decreased nuclear T 3 receptor occupancy may be secondary to a low transport of plasma T 3 to the nuclear pool. In conclusion, impaired hepatic thyroid hormone action in obese mice is mediated in part at least by a reduction in nuclear T 3 receptor occupancy

  9. Steamed and Fermented Ethanolic Extract from Codonopsis lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Jin Bae Weon

    2016-01-01

    Full Text Available Codonopsis lanceolata (C. lanceolata is a traditional medicinal plant used for the treatment of certain inflammatory diseases such as asthma, tonsillitis, and pharyngitis. We evaluated whether steamed and fermented C. lanceolata (SFC extract improves amyloid-β- (Aβ- induced learning and memory impairment in mice. The Morris water maze and passive avoidance tests were used to evaluate the effect of SFC extract. Moreover, we investigated acetylcholinesterase (AChE activity and brain-derived neurotrophic factor (BDNF, cyclic AMP response element-binding protein (CREB, and extracellular signal-regulated kinase (ERK signaling in the hippocampus of mice to determine a possible mechanism for the cognitive-enhancing effect. Saponin compounds in SFC were identified by Ultra Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS. SFC extract ameliorated amyloid-β-induced memory impairment in the Morris water maze and passive avoidance tests. SFC extract inhibited AChE activity and also significantly increased the level of CREB phosphorylation, BDNF expression, and ERK activation in hippocampal tissue of amyloid-β-treated mice. Lancemasides A, B, C, D, E, and G and foetidissimoside A compounds present in SFC were determined by UPLC-Q-TOF-MS. These results indicate that SFC extract improves Aβ-induced memory deficits and that AChE inhibition and CREB/BDNF/ERK expression is important for the effect of the SFC extract. In addition, lancemaside A specifically may be responsible for efficacious effect of SFC.

  10. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    Science.gov (United States)

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  11. High-fat feeding impairs nutrient sensing and gut brain integration in the caudomedial nucleus of the solitary tract in mice.

    Directory of Open Access Journals (Sweden)

    Althea R Cavanaugh

    Full Text Available Hyperphagic obesity is characterized in part by a specific increase in meal size that contributes to increased daily energy intake, but the mechanisms underlying impaired activity of meal size regulatory circuits, particularly those converging at the caudomedial nucleus of the solitary tract in the hindbrain (cmNTS, remain poorly understood. In this paper, we assessed the consequences of high-fat (HF feeding and diet-induced obesity (DIO on cmNTS nutrient sensing and metabolic integration in the control of meal size. Mice maintained on a standard chow diet, low-fat (LF diet or HF diet for 2 weeks or 6 months were implanted with a bilateral brain cannula targeting the cmNTS. Feeding behavior was assessed using behavioral chambers and meal-pattern analysis following cmNTS L-leucine injections alone or together with ip CCK. Molecular mechanisms implicated in the feeding responses were assessed using western blot, immunofluorescence and pharmacological inhibition of the amino acid sensing mTORC1 pathway (mammalian target of rapamycin complex 1. We found that HF feeding blunts the anorectic consequences of cmNTS L-leucine administration. Increased baseline activity of the L-leucine sensor P70 S6 kinase 1 and impaired L-leucine-induced activation of this pathway in the cmNTS of HF-fed mice indicate that HF feeding is associated with an impairment in cmNTS mTOR nutritional and hormonal sensing. Interestingly, the acute orexigenic effect of the mTORC1 inhibitor rapamycin was preserved in HF-fed mice, supporting the assertion that HF-induced increase in baseline cmNTS mTORC1 activity underlies the defect in L-leucine sensing. Last, the synergistic feeding-suppressive effect of CCK and cmNTS L-leucine was abrogated in DIO mice. These results indicate that HF feeding leads to an impairment in cmNTS nutrient sensing and metabolic integration in the regulation of meal size.

  12. STRATEGI PENINGKATAN PENDAPATAN ASLI DAERAH, INVESTASI DAN PERTUMBUHAN EKONOMI KOTA SEMARANG MELALUI MICE (MEETING, INCENTIVE, CONVENTION DAN EXHIBITION)

    OpenAIRE

    Tika Putri Pratiwi

    2015-01-01

    Abstrak ___________________________________________________________________ Semarang sebagai ibukota Provinsi Jawa Tengah memiliki potensi yang besar dalam mengembangkan sektor industri dan pariwisata. Langkah awal pemerintah yang serius dalam mengolah kedua industri ini yaitu dengan menjadikan Kota Semarang sebagai salah satu destinasi MICE (Meeting, Incentive, Convention, Exhibition). Penelitian ini bertujuan untuk memilih strategi apa yang dapat dilakukan dalam pembangunan Kota...

  13. 12/15-Lipoxygenase Inhibition Reverses Cognitive Impairment, Brain Amyloidosis, and Tau Pathology by Stimulating Autophagy in Aged Triple Transgenic Mice.

    Science.gov (United States)

    Di Meco, Antonio; Li, Jian-Guo; Blass, Benjamin E; Abou-Gharbia, Magid; Lauretti, Elisabetta; Praticò, Domenico

    2017-01-15

    The 12/15-lipoxygenase (12/15-LO) enzyme is upregulated in the brains of patients with Alzheimer's disease (AD), and its expression levels influence the onset of the AD-like phenotype in mouse models. However, whether targeting this pathway after the neuropathology and behavioral impairments have been established remains to be investigated. Triple transgenic (3xTg) mice received either PD146176-a selective and specific pharmacological inhibitor of 12/15-LO-or placebo starting at 12 months of age for 12 weeks. They were then assessed for the effect of the treatment on neuropathologies and behavioral impairments. At the end of the study, mice in the control group showed a worsening of memory and learning abilities, whereas mice receiving PD146176 were undistinguishable from wild-type mice. The same group also had significantly lower amyloid beta levels and deposition, less tau neuropathology, increased synaptic integrity, and autophagy activation. Ex vivo and in vitro genetic and pharmacological studies found that the mechanism involved in these effects was the activation of neuronal autophagy. Our findings provide new insights into the disease-modifying action of 12/15-LO pharmacological inhibition and establish it as a viable therapeutic approach for patients with AD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  14. Alzheimer’s Disease Mutant Mice Exhibit Reduced Brain Tissue Stiffness Compared to Wild-type Mice in both Normoxia and following Intermittent Hypoxia Mimicking Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Maria José Menal

    2018-01-01

    Full Text Available BackgroundEvidence from patients and animal models suggests that obstructive sleep apnea (OSA may increase the risk of Alzheimer’s disease (AD and that AD is associated with reduced brain tissue stiffness.AimTo investigate whether intermittent hypoxia (IH alters brain cortex tissue stiffness in AD mutant mice exposed to IH mimicking OSA.MethodsSix-eight month old (B6C3-Tg(APPswe,PSEN1dE985Dbo/J AD mutant mice and wild-type (WT littermates were subjected to IH (21% O2 40 s to 5% O2 20 s; 6 h/day or normoxia for 8 weeks. After euthanasia, the stiffness (E of 200-μm brain cortex slices was measured by atomic force microscopy.ResultsTwo-way ANOVA indicated significant cortical softening and weight increase in AD mice compared to WT littermates, but no significant effects of IH on cortical stiffness and weight were detected. In addition, reduced myelin was apparent in AD (vs. WT, but no significant differences emerged in the cortex extracellular matrix components laminin and glycosaminoglycans when comparing baseline AD and WT mice.ConclusionAD mutant mice exhibit reduced brain tissue stiffness following both normoxia and IH mimicking sleep apnea, and such differences are commensurate with increased edema and demyelination in AD.

  15. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism

    International Nuclear Information System (INIS)

    Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha; Kahl, Philip; Roeper, Anke; Kalff, Joerg C.; Buettner, Reinhard

    2008-01-01

    Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target

  16. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Rubio, Julio; Dang, Haixia; Gong, Mengjuan; Liu, Xinmin; Chen, Shi-Lin; Gonzales, Gustavo F

    2007-10-01

    Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4,000 and 4,500 m altitude in the central Peruvian Andes, particularly in Junin plateau. Previously, Black variety of Maca showed to be more beneficial than other varieties of Maca on learning and memory in ovariectomized mice on the water finding test. The present study aimed to test two different doses of aqueous (0.50 and 2.00 g/kg) and hydroalcoholic (0.25 and 1.00 g/kg) extracts of Black Maca administered for 35 days on memory impairment induced by scopolamine (1mg/kg body weight i.p.) in male mice. Memory and learning were evaluated using the water Morris maze and the step-down avoidance test. Brain acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities in brain were also determined. Both extracts of Black Maca significantly ameliorated the scopolamine-induced memory impairment as measured in both the water Morris maze and the step-down avoidance tests. Black Maca extracts inhibited AChE activity, whereas MAO activity was not affected. These results indicate that Black Maca improves scopolamine-induced memory deficits.

  17. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  18. Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis.

    Science.gov (United States)

    Saben, Jessica L; Bales, Elise S; Jackman, Matthew R; Orlicky, David; MacLean, Paul S; McManaman, James L

    2014-01-01

    Maternal metabolic and nutrient trafficking adaptations to lactation differ among lean and obese mice fed a high fat (HF) diet. Obesity is thought to impair milk lipid production, in part, by decreasing trafficking of dietary and de novo synthesized lipids to the mammary gland. Here, we report that de novo lipogenesis regulatory mechanisms are disrupted in mammary glands of lactating HF-fed obese (HF-Ob) mice. HF feeding decreased the total levels of acetyl-CoA carboxylase-1 (ACC), and this effect was exacerbated in obese mice. The relative levels of phosphorylated (inactive) ACC, were elevated in the epithelium, and decreased in the adipose stroma, of mammary tissue from HF-Ob mice compared to those of HF-fed lean (HF-Ln) mice. Mammary gland levels of AMP-activated protein kinase (AMPK), which catalyzes formation of inactive ACC, were also selectively elevated in mammary glands of HF-Ob relative to HF-Ln dams or to low fat fed dams. These responses correlated with evidence of increased lipid retention in mammary adipose, and decreased lipid levels in mammary epithelial cells, of HF-Ob dams. Collectively, our data suggests that maternal obesity impairs milk lipid production, in part, by disrupting the balance of de novo lipid synthesis in the epithelial and adipose stromal compartments of mammary tissue through processes that appear to be related to increased mammary gland AMPK activity, ACC inhibition, and decreased fatty acid synthesis.

  19. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus.

    Science.gov (United States)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2014-10-31

    Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  20. Cellular dysfunction in the diabetic fibroblast: impairment in migration, vascular endothelial growth factor production, and response to hypoxia.

    Science.gov (United States)

    Lerman, Oren Z; Galiano, Robert D; Armour, Mary; Levine, Jamie P; Gurtner, Geoffrey C

    2003-01-01

    Although it is known that systemic diseases such as diabetes result in impaired wound healing, the mechanism for this impairment is not understood. Because fibroblasts are essential for wound repair, we compared the in vitro behavior of fibroblasts cultured from diabetic, leptin receptor-deficient (db/db) mice with wild-type fibroblasts from mice of the same genetic background in processes important during tissue repair. Adult diabetic mouse fibroblast migration exhibited a 75% reduction in migration compared to normal fibroblasts (P under basal or hypoxic conditions, confirming that the results from db/db fibroblasts in mature mice resulted from the diabetic state and were not because of alterations in the leptin-leptin receptor axis. Markers of cellular viability including proliferation and senescence were not significantly different between diabetic and wild-type fibroblasts. We conclude that, in vitro, diabetic fibroblasts show selective impairments in discrete cellular processes critical for tissue repair including cellular migration, VEGF production, and the response to hypoxia. The VEGF abnormalities developed concurrently with the onset of hyperglycemia and were not seen in normoglycemic, leptin receptor-deficient db/db mice. These observations support a role for fibroblast dysfunction in the impaired wound healing observed in human diabetics, and also suggest a mechanism for the poor clinical outcomes that occur after ischemic injury in diabetic patients.

  1. Catalase deletion promotes prediabetic phenotype in mice.

    Science.gov (United States)

    Heit, Claire; Marshall, Stephanie; Singh, Surrendra; Yu, Xiaoqing; Charkoftaki, Georgia; Zhao, Hongyu; Orlicky, David J; Fritz, Kristofer S; Thompson, David C; Vasiliou, Vasilis

    2017-02-01

    Hydrogen peroxide is produced endogenously and can be toxic to living organisms by inducing oxidative stress and cell damage. However, it has also been identified as a signal transduction molecule. By metabolizing hydrogen peroxide, catalase protects cells and tissues against oxidative damage and may also influence signal transduction mechanisms. Studies suggest that acatalasemic individuals (i.e., those with very low catalase activity) have a higher risk for the development of diabetes. We now report catalase knockout (Cat -/- ) mice, when fed a normal (6.5% lipid) chow, exhibit an obese phenotype that manifests as an increase in body weight that becomes more pronounced with age. The mice demonstrate altered hepatic and muscle lipid deposition, as well as increases in serum and hepatic triglycerides (TGs), and increased hepatic transcription and protein expression of PPARγ. Liver morphology revealed steatosis with inflammation. Cat -/- mice also exhibited pancreatic morphological changes that correlated with impaired glucose tolerance and increased fasting serum insulin levels, conditions consistent with pre-diabetic status. RNA-seq analyses revealed a differential expression of pathways and genes in Cat -/- mice, many of which are related to metabolic syndrome, diabetes, and obesity, such as Pparg and Cidec. In conclusion, the results of the present study show mice devoid of catalase develop an obese, pre-diabetic phenotype and provide compelling evidence for catalase (or its products) being integral in metabolic regulation. Copyright © 2016. Published by Elsevier Inc.

  2. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  3. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease

    OpenAIRE

    Ferguson, Marcus C.; Nayyar, Tultul; Deutch, Ariel Y.; Ansah, Twum A.

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT2A/C receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT2A receptor antagonist M100907 and the selective 5-HT2C receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited...

  4. Age- and sex-related disturbance in a battery of sensorimotor and cognitive tasks in Kunming mice.

    Science.gov (United States)

    Chen, Gui-Hai; Wang, Yue-Ju; Zhang, Li-Qun; Zhou, Jiang-Ning

    2004-12-15

    A battery of tasks, i.e. beam walking, open field, tightrope, radial six-arm water maze (RAWM), novel-object recognition and olfactory discrimination, was used to determine whether there was age- and sex-related memory deterioration in Kunming (KM) mice, and whether these tasks are independent or correlated with each other. Two age groups of KM mice were used: a younger group (7-8 months old, 12 males and 11 females) and an older group (17-18 months old, 12 males and 12 females). The results showed that the spatial learning ability and memory in the RAWM were lower in older female KM mice relative to younger female mice and older male mice. Consistent with this, in the novel-object recognition task, a non-spatial cognitive task, older female mice but not older male mice had impairment of short-term memory. In olfactory discrimination, another non-spatial task, the older mice retained this ability. Interestingly, female mice performed better than males, especially in the younger group. The older females exhibited sensorimotor impairment in the tightrope task and low locomotor activity in the open-field task. Moreover, older mice spent a longer time in the peripheral squares of the open-field than younger ones. The non-spatial cognitive performance in the novel-object recognition and olfactory discrimination tasks was related to performance in the open-field, whereas the spatial cognitive performance in the RAWM was not related to performance in any of the three sensorimotor tasks. These results suggest that disturbance of spatial learning and memory, as well as selective impairment of non-spatial learning and memory, existed in older female KM mice.

  5. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  6. Brevican-deficient mice display impaired hippocampal CA1 long-term potentiation but show no obvious deficits in learning and memory

    DEFF Research Database (Denmark)

    Brakebusch, Cord; Seidenbecher, Constanze I; Asztely, Fredrik

    2002-01-01

    to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect....... Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles....

  7. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  8. DPP6 Loss Impacts Hippocampal Synaptic Development and Induces Behavioral Impairments in Recognition, Learning and Memory

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2018-03-01

    Full Text Available DPP6 is well known as an auxiliary subunit of Kv4-containing, A-type K+ channels which regulate dendritic excitability in hippocampal CA1 pyramidal neurons. We have recently reported, however, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. These results are notable considering recent clinical findings associating DPP6 with neurodevelopmental and intellectual disorders. Here we assessed the behavioral consequences of DPP6 loss. We found that DPP6 knockout (DPP6-KO mice are impaired in hippocampus-dependent learning and memory. Results from the Morris water maze and T-maze tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. DPP6 mouse brain weight is reduced throughout development compared with WT, and in vitro imaging results indicated that DPP6 loss affects synaptic structure and motility. Taken together, these results show impaired synaptic development along with spatial learning and memory deficiencies in DPP6-KO mice.

  9. Deoxyschizandrin isolated from the fruits of Schisandra chinensis ameliorates Aβ₁₋₄₂-induced memory impairment in mice.

    Science.gov (United States)

    Hu, Di; Li, Changxia; Han, Na; Miao, Lijing; Wang, Dong; Liu, Zhihui; Wang, Hua; Yin, Jun

    2012-08-01

    In the present study, we examined the effects of deoxyschisandrin (DS) from Schisandra chinensis on the amyloid-beta₁₋₄₂ (Aβ₁₋₄₂)-induced memory impairment in mice and investigated the possible antioxidative mechanism. Mice were given an intracerebroventricular (i. c. v.) injection with the aggregated Aβ₁₋₄₂ and then treated with DS (4, 12, and 36 mg/kg body weight) or donepezil (DPZ), a positive control drug (0.65 mg/kg), by intragastric infusion for 14 days. Non-cognitive disturbances and cognitive performance were evaluated by the locomotor activity, Y-maze, and water maze tests. Antioxidative enzyme activities including superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) and levels of malondialdehyde (MDA), glutathione (GSH), and oxidized glutathione (GSSG) within the cerebral cortex and hippocampus of mice were measured to investigate the mechanism. Our results showed that DS significantly improved Aβ₁₋₄₂-induced short-term and spatial memory impairments in the Y-maze and water maze tests. Furthermore, in the cerebral cortex and hippocampus of mice, the reduced activities of SOD and GSH-px, the GSH level, and the GSH/GSSG ratio were increased, and increased levels of MDA and GSSG were reduced following treatment with DS, although the improvement of GSH and the reduction of GSSG levels were not marked. These results suggest that DS is a potential cognitive enhancer in Alzheimer's disease through its antioxidative action. Georg Thieme Verlag KG Stuttgart · New York.

  10. Growth hormone secretagogue receptor (GHS-R1a) knockout mice exhibit improved spatial memory and deficits in contextual memory.

    Science.gov (United States)

    Albarran-Zeckler, Rosie G; Brantley, Alicia Faruzzi; Smith, Roy G

    2012-06-15

    Although the hormone ghrelin is best known for its stimulatory effect on appetite and regulation of growth hormone release, it is also reported to have beneficial effects on learning and memory formation in mice. Nevertheless, controversy exists about whether endogenous ghrelin acts on its receptors in extra-hypothalamic areas of the brain. The ghrelin receptor (GHS-R1a) is co-expressed in neurons that express dopamine receptor type-1 (DRD1a) and type-2 (DRD2), and we have shown that a subset of GHS-R1a, which are not occupied by the agonist (apo-GHSR1a), heterodimerize with these two receptors to regulate dopamine signaling in vitro and in vivo. To determine the consequences of ghsr ablation on brain function, congenic ghsr -/- mice on the C57BL6/J background were subjected to a battery of behavioral tests. We show that the ghsr -/- mice exhibit normal balance, movement, coordination, and pain sensation, outperform ghsr +/+ mice in the Morris water maze, but show deficits in contextual fear conditioning. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Signal pathway of hippocampal apoptosis and cognitive impairment of mice caused by cerium chloride.

    Science.gov (United States)

    Cheng, Zhe; Li, Na; Cheng, Jie; Hu, Renping; Gao, Guodong; Cui, Yaling; Gong, Xiaolan; Wang, Ling; Hong, Fashui

    2012-12-01

    Experimental studies have demonstrated that lanthanides could impair cognitive functions of children and animals, but very little is known about the hippocampal apoptosis and its molecular mechanism. The study investigated the signal pathway of hippocampal apoptosis induced by intragastric administration of CeCl(3) for 60 consecutive days. It showed that cerium had been significantly accumulated in the mouse hippocampus, and CeCl(3) caused hippocampal apoptosis and impairment of spatial recognition memory of mice. CeCl(3) effectively activated caspase-3 and -9, inhibited Bcl-2, and increased the levels of Bax and cytochrome c, promoted accumulation of reactive oxygen species in the mouse hippocampus. It implied that CeCl(3)-induced apoptosis in the mouse hippocampus could be triggered via mitochondrion-mediated pathway. Our findings suggest the need for great caution to handle the lanthanides for workers and consumers. 2011 Wiley Periodicals, Inc

  12. Hippocampal expression of a virus-derived protein impairs memory in mice.

    Science.gov (United States)

    Bétourné, Alexandre; Szelechowski, Marion; Thouard, Anne; Abrial, Erika; Jean, Arnaud; Zaidi, Falek; Foret, Charlotte; Bonnaud, Emilie M; Charlier, Caroline M; Suberbielle, Elsa; Malnou, Cécile E; Granon, Sylvie; Rampon, Claire; Gonzalez-Dunia, Daniel

    2018-02-13

    The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.

  13. Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand.

    Science.gov (United States)

    Buhot, Marie-Christine; Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, René; Segu, Louis

    2003-01-01

    Age-related memory decline is associated with a combined dysfunction of the cholinergic and serotonergic systems in the hippocampus and frontal cortex, in particular. The 5-HT1B receptor occupies strategic cellular and subcellular locations in these structures, where it plays a role in the modulation of ACh release. In an attempt to characterize the contribution of this receptor to memory functions, 5-HT1B receptor knockout (KO) mice were submitted to various behavioral paradigms carried out in the same experimental context (water maze), which were aimed at exposing mice to various levels of memory demand. 5-HT1BKO mice exhibited a facilitation in the acquisition of a hippocampal-dependent spatial reference memory task in the Morris water maze. This facilitation was selective of task difficulty, showing thus that the genetic inactivation of the 5-HT1B receptor is associated with facilitation when the complexity of the task is increased, and reveals a protective effect on age-related hippocampal-dependent memory decline. Young-adult and aged KO and wild-type (WT) mice were equally able to learn a delayed spatial matching-to-sample working memory task in a radial-arm water maze with short (0 or 5 min) delays. However, 5-HT1BKO mice, only, exhibited a selective memory impairment at intermediate and long (15, 30, and 60 min) delays. Treatment by scopolamine induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. Taken together, these studies revealed a beneficial effect of the mutation on the acquisition of a spatial reference memory task, but a deleterious effect on a working memory task for long delays. This 5-HT1BKO mouse story highlights the problem of the potential existence of "global memory enhancers."

  14. Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer's disease is impaired in old but not young mice.

    Directory of Open Access Journals (Sweden)

    Simon Gengler

    Full Text Available BACKGROUND: Alzheimer disease (AD is a neurodegenerative disorder for which there is no cure. We have investigated synaptic plasticity in area CA1 in a novel AD mouse model (APPPS1-21 which expresses the Swedish mutation of APP and the L166P mutation of human PS-1. This model shows initial plaque formation at 2 months in the neocortex and 4 months in the hippocampus and displays beta-amyloid-associated pathologies and learning impairments. METHODOLOGY/PRINCIPAL FINDINGS: We tested long-term potentiation (LTP and short term potentiation (paired-pulse facilitation, PPF of synaptic transmission in vivo in area CA1 of the hippocampus. There was no difference in LTP or PPF at 4-5 months of age in APPPS1-21 mice compared to littermate controls. At 6 months of age there was also no difference in LTP but APPPS1-21 mice showed slightly increased PPF (p<0.03. In 8 months old mice, LTP was greatly impaired in APPPS-21 animals (p<0.0001 while PPF was not changed. At 15 months of age, APPPS1-21 mice showed again impaired LTP compared to littermate controls (p<0.005, and PPF was also significantly reduced at 80 ms (p<0.005 and 160 ms (p<0.01 interstimulus interval. Immunohistological analysis showed only modest amyloid deposition in the hippocampus at 4 and 6 months with a robust increase up to 15 months of age. CONCLUSIONS: Our results suggest that increased formation and aggregation of beta amyloid with aging is responsible for the impaired LTP with aging in this mouse model, while the transient increase of PPF at 6 months of age is caused by some other mechanism.

  15. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  16. Impairment of the vascular relaxation and differential expression of caveolin-1 of the aorta of diabetic +db/+db mice.

    Science.gov (United States)

    Lam, Tze Yan; Seto, Sai Wang; Lau, Yee Man; Au, Lai Shan; Kwan, Yiu Wa; Ngai, Sai Ming; Tsui, Kwong Wing

    2006-09-28

    In this study, we compared the endothelium-dependent and -independent relaxation of the isolated thoracic aorta of control (+db/+m) and diabetic (+db/+db) (C57BL/KsJ) mice. The gene expression (mRNA and protein) level of the muscarinic M(3) receptors, endothelial nitric oxide synthase (eNOS) and caveolin-1 of the aorta was also evaluated. Acetylcholine caused a concentration-dependent, N(G)-nitro-L-arginine methyl-ester (20 microM)-sensitive relaxation, with approximately 100% relaxation at 10 microM, in +db/+m mice. In +db/+db mice, the acetylcholine-induced relaxation was significantly smaller (maximum relaxation: approximately 80%). The sodium nitroprusside-mediated relaxation was slightly diminished in +db/+db mice, compared to +db/+m mice. However, there was no significant difference in the isoprenaline- and cromakalim-induced relaxation observed in both species. The mRNA and protein expression levels of caveolin-1 were significantly higher in the aorta of +db/+db mice. In contrast, there was no difference in the mRNA and protein expression levels of eNOS and muscarinic M(3) receptors between these mice. Our results demonstrate that the impairment of the acetylcholine-induced, endothelium-dependent aortic relaxation observed in +db/+db mice was probably associated with an enhanced expression of caveolin-1 mRNA and protein.

  17. Attention-deficit/hyperactivity disorder children exhibit an impaired accommodative response.

    Science.gov (United States)

    Redondo, Beatriz; Vera, Jesús; Molina, Rubén; García, José Antonio; Ouadi, Miriam; Muñoz-Hoyos, Antonio; Jiménez, Raimundo

    2018-05-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common paediatric neurobehavioural disorders causing multiple functional impairments in children. Based on the relationship between the neural system that controls attention and ocular dynamics, the present study compares the magnitude and variability of accommodation between a group of non-medicated ADHD children and an age-matched control group. The magnitude and variability of the accommodative response were objectively measured in 36 children using the WAM-5500 autorefractometer for 90 consecutive seconds at three static viewing distances (500, 40, and 20 cm). Participants were divided into ADHD (n = 18) or control (n = 18) groups based on clinically validated criteria. Children with ADHD exhibited higher lags of accommodation (p = 0.024), increasing at closer viewing distances, in comparison to the control group. Marginal statistical differences were found for the variability of accommodation (p = 0.066), with the ADHD group showing a trend towards higher variability. Our analysis showed that the magnitude and variability of accommodation did not vary over time between groups (p > 0.05). Our data suggest that children with ADHD have a less accurate accommodative response. These results provide a new ocular index that could help to clarify the relationship between accommodative response and attentional deficits, which could have a direct impact on the academic, cognitive, and visual performance of ADHD children.

  18. Loss of CDKL5 in Glutamatergic Neurons Disrupts Hippocampal Microcircuitry and Leads to Memory Impairment in Mice.

    Science.gov (United States)

    Tang, Sheng; Wang, I-Ting Judy; Yue, Cuiyong; Takano, Hajime; Terzic, Barbara; Pance, Katarina; Lee, Jun Y; Cui, Yue; Coulter, Douglas A; Zhou, Zhaolan

    2017-08-02

    Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a neurodevelopmental disorder characterized by epileptic seizures, severe intellectual disability, and autistic features. Mice lacking CDKL5 display multiple behavioral abnormalities reminiscent of the disorder, but the cellular origins of these phenotypes remain unclear. Here, we find that ablating CDKL5 expression specifically from forebrain glutamatergic neurons impairs hippocampal-dependent memory in male conditional knock-out mice. Hippocampal pyramidal neurons lacking CDKL5 show decreased dendritic complexity but a trend toward increased spine density. This morphological change is accompanied by an increase in the frequency of spontaneous miniature EPSCs and interestingly, miniature IPSCs. Using voltage-sensitive dye imaging to interrogate the evoked response of the CA1 microcircuit, we find that CA1 pyramidal neurons lacking CDKL5 show hyperexcitability in their dendritic domain that is constrained by elevated inhibition in a spatially and temporally distinct manner. These results suggest a novel role for CDKL5 in the regulation of synaptic function and uncover an intriguing microcircuit mechanism underlying impaired learning and memory. SIGNIFICANCE STATEMENT Cyclin-dependent kinase-like 5 (CDKL5) deficiency is a severe neurodevelopmental disorder caused by mutations in the CDKL5 gene. Although Cdkl5 constitutive knock-out mice have recapitulated key aspects of human symptomatology, the cellular origins of CDKL5 deficiency-related phenotypes are unknown. Here, using conditional knock-out mice, we show that hippocampal-dependent learning and memory deficits in CDKL5 deficiency have origins in glutamatergic neurons of the forebrain and that loss of CDKL5 results in the enhancement of synaptic transmission and disruptions in neural circuit dynamics in a spatially and temporally specific manner. Our findings demonstrate that CDKL5 is an important regulator of synaptic function in glutamatergic neurons and

  19. The Ameliorating Effect of Steamed and Fermented Codonopsis lanceolata on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Jin Bae Weon

    2013-01-01

    Full Text Available Codonopsis lanceolata (Campanulaceae have been traditionally used to treat lung inflammatory diseases, such as asthma, tonsillitis, and pharyngitis. The present study was performed to evaluate the cognitive-enhancing effects of steamed and fermented C. lanceolata in scopolamine-induced memory impairments in mice. Cognitive abilities were determined by the Morris water maze and passive avoidance tests. Mice orally received fermented C. lanceolata extract at doses of 100, 300, or 500 mg/kg body weight. Fermented C. lanceolata extract (500 mg/kg body weight, p.o. significantly shortened the escape latency times that were increased by scopolamine on the 4th day of trial sessions in the Morris water maze task. In addition, it exerted longer step-through latency times than those of the scopolamine-treated group in the passive avoidance test. Furthermore, the neuroprotective effects of fermented C. lanceolata extract on glutamate-induced neurocytotoxicity were investigated in HT22 cells. Fermented C. lanceolata extract showed a relative protection ratio of 59.62% at 500 μg/mL. In conclusion, fermented C. lanceolata extract ameliorated scopolamine-induced memory impairments, exerted neuroprotective effects, and improved activity compared to that found with original C. lanceolata. Further study will be required to investigate the mechanisms underlying this cognitive-enhancing activity.

  20. Immunotherapy by targeting of VGKC complex for seizure control and prevention of cognitive impairment in a mouse model of epilepsy.

    Science.gov (United States)

    Fan, Zhiliang; Feng, Xiaojuan; Fan, Zhigang; Zhu, Xingyuan; Yin, Shaohua

    2018-05-09

    Epilepsy is a type of refractory neurologic disorder mental disease, which is associated with cognitive impairments and memory dysfunction. However, the potential mechanisms of epilepsy are not well understood. Previous evidence has identified the voltage gated potassium channel complex (VGKC) as a target in various cohorts of patients with epilepsy. In the present study, the efficacy of an antibody against VGKC (anti‑VGKC) for the treatment of epilepsy in mice was investigated. A mouse model of lithium‑pilocarpine temporal lobe epilepsy was established and anti‑VGKC treatment was administered for 30 days. Memory impairment, anxiety, visual attention, inhibitory control and neuronal loss were measured in the mouse model of lithium‑pilocarpine temporal lobe epilepsy. The results revealed that epileptic mice treated with anti‑VGKC were able to learn the task and presented attention impairment, even a tendency toward impulsivity and compulsivity. It was also exhibited that anti‑VGKC treatment decreased neuronal loss in structures classically associated with attentional performance in hippocampus. Mice who received Anti‑VGKC treatment had inhibited motor seizures and hippocampal damage as compared with control mice. In conclusion, these results indicated that anti‑VGKC treatment may present benefits for improvements of the condition of motor attention impairment and cognitive competence, which suggests that VGKC may be a potential target for the treatment of epilepsy.

  1. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  2. Development of central nervous system autoimmunity is impaired in the absence of Wiskott-Aldrich syndrome protein.

    Directory of Open Access Journals (Sweden)

    Marita Bosticardo

    Full Text Available Wiskott-Aldrich Syndrome protein (WASP is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was(-/- mice. We describe here that Was(-/- mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was(-/- mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was(-/- mice. However, adoptive transfer of MOG-activated T cells from Was(-/- mice in WT mice failed to induce EAE. Was(-/- mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was(+/- heterozygous mice developed an intermediate clinical phenotype between WT and Was(-/- mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.

  3. The Mass1frings mutation underlies early onset hearing impairment in BUB/BnJ mice, a model for the auditory pathology of Usher syndrome IIC

    Science.gov (United States)

    Johnson, K.R.; Zheng, Q.Y.; Weston, M.D.; Ptacek, L.J.; Noben-Trauth, K.

    2010-01-01

    The human ortholog of the gene responsible for audiogenic seizure susceptibility in Frings and BUB/BnJ mice (mouse gene symbol Mass1) recently was shown to underlie Usher syndrome type IIC (USH2C). Here we report that the Mass1frings mutation is responsible for the early onset hearing impairment of BUB/BnJ mice. We found highly significant linkage of Mass1 with ABR threshold variation among mice from two backcrosses involving BUB/BnJ mice with mice of strains CAST/EiJ and MOLD/RkJ. We also show an additive effect of the Cdh23 locus in modulating the progression of hearing loss in backcross mice. Together, these two loci account for more than 70% of the total ABR threshold variation among the backcross mice at all ages. The modifying effect of the strain-specific Cdh23ahl variant may account for the hearing and audiogenic seizure differences observed between Frings and BUB/BnJ mice, which share the Mass1frings mutation. During postnatal cochlear development in BUB/BnJ mice, stereocilia bundles develop abnormally and remain immature and splayed into adulthood, corresponding with the early onset hearing impairment associated with Mass1frings. Progressive base–apex hair cell degeneration occurs at older ages, corresponding with the age-related hearing loss associated with Cdh23ahl. The molecular basis and pathophysiology of hearing loss suggest BUB/BnJ and Frings mice as models to study cellular and molecular mechanisms underlying USH2C auditory pathology. PMID:15820310

  4. Otolith dysfunction alters exploratory movement in mice.

    Science.gov (United States)

    Blankenship, Philip A; Cherep, Lucia A; Donaldson, Tia N; Brockman, Sarah N; Trainer, Alexandria D; Yoder, Ryan M; Wallace, Douglas G

    2017-05-15

    The organization of rodent exploratory behavior appears to depend on self-movement cue processing. As of yet, however, no studies have directly examined the vestibular system's contribution to the organization of exploratory movement. The current study sequentially segmented open field behavior into progressions and stops in order to characterize differences in movement organization between control and otoconia-deficient tilted mice under conditions with and without access to visual cues. Under completely dark conditions, tilted mice exhibited similar distance traveled and stop times overall, but had significantly more circuitous progressions, larger changes in heading between progressions, and less stable clustering of home bases, relative to control mice. In light conditions, control and tilted mice were similar on all measures except for the change in heading between progressions. This pattern of results is consistent with otoconia-deficient tilted mice using visual cues to compensate for impaired self-movement cue processing. This work provides the first empirical evidence that signals from the otolithic organs mediate the organization of exploratory behavior, based on a novel assessment of spatial orientation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    Full Text Available Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1 and A(2A receptors emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25, mainly glutamatergic (vesicular glutamate transporters, and increased astrogliosis (GFAP immunoreactivity compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A receptors and down-regulated A(1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  6. Caffeine consumption prevents diabetes-induced memory impairment and synaptotoxicity in the hippocampus of NONcZNO10/LTJ mice.

    Science.gov (United States)

    Duarte, João M N; Agostinho, Paula M; Carvalho, Rui A; Cunha, Rodrigo A

    2012-01-01

    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A(1) and A(2A) receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7-11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A(2A) receptors and down-regulated A(1) receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes.

  7. Low dose EGCG treatment beginning in adolescence does not improve cognitive impairment in a Down syndrome mouse model.

    Science.gov (United States)

    Stringer, Megan; Abeysekera, Irushi; Dria, Karl J; Roper, Randall J; Goodlett, Charles R

    2015-11-01

    Down syndrome (DS) or Trisomy 21 causes intellectual disabilities in humans and the Ts65Dn DS mouse model is deficient in learning and memory tasks. DYRK1A is triplicated in DS and Ts65Dn mice. Ts65Dn mice were given up to ~20mg/kg/day epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, or water beginning on postnatal day 24 and continuing for three or seven weeks, and were tested on a series of behavioral and learning tasks, including a novel balance beam test. Ts65Dn as compared to control mice exhibited higher locomotor activity, impaired novel object recognition, impaired balance beam and decreased spatial learning and memory. Neither EGCG treatment improved performance of the Ts65Dn mice on these tasks. Ts65Dn mice had a non-significant increase in Dyrk1a activity in the hippocampus and cerebellum. Given the translational value of the Ts65Dn mouse model, further studies will be needed to identify the EGCG doses (and mechanisms) that may improve cognitive function. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    Science.gov (United States)

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration

  9. Impaired behavioural pain responses in hph-1 mice with inherited deficiency in GTP cyclohydrolase 1 in models of inflammatory pain

    Science.gov (United States)

    2013-01-01

    Background GTP cyclohydrolase 1 (GTP-CH1), the rate-limiting enzyme in the synthesis of tetrahydrobiopterin (BH4), encoded by the GCH1 gene, has been implicated in the development and maintenance of inflammatory pain in rats. In humans, homozygous carriers of a “pain-protective” (PP) haplotype of the GCH1 gene have been identified exhibiting lower pain sensitivity, but only following pain sensitisation. Ex vivo, the PP GCH1 haplotype is associated with decreased induction of GCH1 after stimulation, whereas the baseline BH4 production is not affected. Contrary, loss of function mutations in the GCH1 gene results in decreased basal GCH1 expression, and is associated with DOPA-responsive dystonia (DRD). So far it is unknown if such mutations affect acute and inflammatory pain. Results In the current study, we examined the involvement of the GCH1 gene in pain models using the hyperphenylalaninemia 1 (hph-1) mouse, a genetic model for DRD, with only 10% basal GTP-CH1 activity compared to wild type mice. The study included assays for determination of acute nociception as well as models for pain after sensitisation. Pain behavioural analysis of the hph-1 mice showed reduced pain-like responses following intraplantar injection of CFA, formalin and capsaicin; whereas decreased basal level of GTP-CH1 activity had no influence in naïve hph-1 mice on acute mechanical and heat pain thresholds. Moreover, the hph-1 mice showed no signs of motor impairment or dystonia-like symptoms. Conclusions In this study, we demonstrate novel evidence that genetic mutations in the GCH1 gene modulate pain-like hypersensitivity. Together, the present data suggest that BH4 is not important for basal heat and mechanical pain, but they support the hypothesis that BH4 plays a role in inflammation-induced hypersensitivity. Our studies suggest that the BH4 pathway could be a therapeutic target for the treatment of inflammatory pain conditions. Moreover, the hph-1 mice provide a valid model to

  10. Impaired neuronal maturation of hippocampal neural progenitor cells in mice lacking CRAF.

    Science.gov (United States)

    Pfeiffer, Verena; Götz, Rudolf; Camarero, Guadelupe; Heinsen, Helmut; Blum, Robert; Rapp, Ulf Rüdiger

    2018-01-01

    RAF kinases are major constituents of the mitogen activated signaling pathway, regulating cell proliferation, differentiation and cell survival of many cell types, including neurons. In mammals, the family of RAF proteins consists of three members, ARAF, BRAF, and CRAF. Ablation of CRAF kinase in inbred mouse strains causes major developmental defects during fetal growth and embryonic or perinatal lethality. Heterozygous germline mutations in CRAF result in Noonan syndrome, which is characterized by neurocognitive impairment that may involve hippocampal physiology. The role of CRAF signaling during hippocampal development and generation of new postnatal hippocampal granule neurons has not been examined and may provide novel insight into the cause of hippocampal dysfunction in Noonan syndrome. In this study, by crossing CRAF-deficiency to CD-1 outbred mice, a CRAF mouse model was established which enabled us to investigate the interplay of neural progenitor proliferation and postmitotic differentiation during adult neurogenesis in the hippocampus. Albeit the general morphology of the hippocampus was unchanged, CRAF-deficient mice displayed smaller granule cell layer (GCL) volume at postnatal day 30 (P30). In CRAF-deficient mice a substantial number of abnormal, chromophilic, fast dividing cells were found in the subgranular zone (SGZ) and hilus of the dentate gyrus (DG), indicating that CRAF signaling contributes to hippocampal neural progenitor proliferation. CRAF-deficient neural progenitor cells showed an increased cell death rate and reduced neuronal maturation. These results indicate that CRAF function affects postmitotic neural cell differentiation and points to a critical role of CRAF-dependent growth factor signaling pathway in the postmitotic development of adult-born neurons.

  11. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Directory of Open Access Journals (Sweden)

    Schouenborg Jens

    2008-05-01

    Full Text Available Abstract Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1 if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2 if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.

  12. Gamma aminobutyric acid transporter subtype 1 gene knockout mice: a new model for attention deficit/hyperactivity disorder

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Guoqiang Cai; Youqing Cai; Jian Fei; Guoxiang Liu

    2013-01-01

    Attention deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity,impaired sustained attention,impulsivity,and is usually accompanied by varying degrees of learning difficulties and lack of motor coordination.However,the pathophysiology and etiology of ADHD remain inconclusive so far.Our previous studies have demonstrated that the gamma aminobutyric acid transporter subtype 1 (GAT1) gene knockout (ko) mouse (gat1-/-)is hyperactive and exhibited impaired memory performance in the Morris water maze.In the current study,we found that the gat1-/-mice showed low levels of attentional focusing and increased impulsivity.In addition,the gat1-/-mice displayed ataxia characterized by defects in motor coordination and balance skills.The hyperactivity in the ko mice was reduced by both methylphenidate and amphetamine.Collectively,these results suggest that GAT1 ko mouse is a new animal model for ADHD studying and GAT1 may be a new target to treat ADHD.

  13. Intermittent Hypoxia Impairs Glucose Homeostasis in C57BL6/J Mice: Partial Improvement with Cessation of the Exposure

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A.; Drager, Luciano F.; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y.; Punjabi, Naresh M.

    2013-01-01

    Objectives: Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. Interventions: C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Results: Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Conclusions: Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism. Citation: Polak J; Shimoda LA; Drager LF; Undem C; McHugh H; Polotsky VY; Punjabi NM

  14. Ethyl acetate fraction from Hibiscus sabdariffa L. attenuates diabetes-associated cognitive impairment in mice.

    Science.gov (United States)

    Seung, Tae Wan; Park, Seon Kyeong; Kang, Jin Yong; Kim, Jong Min; Park, Sang Hyun; Kwon, Bong Seok; Lee, Chang Jun; Kang, Jeong Eun; Kim, Dae Ok; Lee, Uk; Heo, Ho Jin

    2018-03-01

    The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS) 2 against diabetes mellitus (DM) 3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ) 4 -induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM) 5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK), 6 phospho-tau (p-tau), 7 and cleaved poly (ADP-ribose) polymerase (c-PARP). 8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA) 9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Eicosanoyl-5-hydroxytryptamide (EHT prevents Alzheimer's disease-related cognitive and electrophysiological impairments in mice exposed to elevated concentrations of oligomeric beta-amyloid.

    Directory of Open Access Journals (Sweden)

    Kesava Asam

    Full Text Available Soluble forms of oligomeric beta-amyloid (Aβ are thought to play a central role in Alzheimer's disease (AD. Transgenic manipulation of methylation of the serine/threonine protein phosphatase, PP2A, was recently shown to alter the sensitivity of mice to AD-related impairments resulting from acute exposure to elevated levels of Aβ. In addition, eicosanoyl-5-hydroxytryptamide (EHT, a naturally occurring component from coffee beans that modulates PP2A methylation, was shown to confer therapeutic benefits in rodent models of AD and Parkinson's disease. Here, we tested the hypothesis that EHT protects animals from the pathological effects of exposure to elevated levels of soluble oligomeric Aβ. We treated mice with EHT-containing food at two different doses and assessed the sensitivity of these animals to Aβ-induced behavioral and electrophysiological impairments. We found that EHT administration protected animals from Aβ-induced cognitive impairments in both a radial-arm water maze and contextual fear conditioning task. We also found that both chronic and acute EHT administration prevented Aβ-induced impairments in long-term potentiation. These data add to the accumulating evidence suggesting that interventions with pharmacological agents, such as EHT, that target PP2A activity may be therapeutically beneficial for AD and other neurological conditions.

  16. Neuroprotective and Antiamnesic Effects of Mitragyna inermis Willd (Rubiaceae on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    David Bougolla Pahaye

    2017-01-01

    Full Text Available Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects.

  17. Pelaksanaan Manajemen Mice (Meeting Incentive Convention Exhibition) di Hotel Pangeran Pekanbaru

    OpenAIRE

    Achmnes, Syofia; Siregar, Damara Saputra

    2014-01-01

    Implementation of MICE management operationalize theoretical concepts inthe book P.Hasibuan Terry GR (2005) that state that the management process consistsof: planning, organizing, actuating, and controlling.Growing MICE industry in Indonesia, including the city of Pekanbaru. CityGoverment continues to initiate Pekanbaru city as MICE city in Sumatera. One of theleading institutions that have a major role in the realization of this idea is thePangeran hotel Pekanbaru. which is a four-star hote...

  18. DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization.

    Science.gov (United States)

    Zhao, Hengguang; Rieger, Sandra; Abe, Koichiro; Hewison, Martin; Lisse, Thomas S

    2016-11-26

    Mice and human patients with impaired vitamin D receptor (VDR) signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR -/- mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the stress-inducible regulator of energy homeostasis, DNA damage-inducible transcript 4 (Ddit4), is involved in these processes. By analyzing hair cycle activation in vivo, we show that VDR -/- mice at day 14 exhibit increased Ddit4 expression within follicular stress compartments. At day 29, degenerating VDR -/- follicular keratinocytes, but not bulge stem cells, continue to exhibit an increase in Ddit4 expression. At day 47, when normal follicles and epidermis are quiescent and enriched for Ddit4, VDR -/- skin lacks Ddit4 expression. In a skin wound healing assay, the re-epithelialized epidermis in wildtype (WT) but not VDR -/- animals harbor a population of Ddit4- and Krt10-positive cells. Our study suggests that VDR regulates Ddit4 expression during epidermal homeostasis and the wound healing process, while elevated Ddit4 represents an early growth-arresting stress response within VDR -/- follicles.

  19. DNA Damage-Inducible Transcript 4 Is an Innate Surveillant of Hair Follicular Stress in Vitamin D Receptor Knockout Mice and a Regulator of Wound Re-Epithelialization

    Directory of Open Access Journals (Sweden)

    Hengguang Zhao

    2016-11-01

    Full Text Available Mice and human patients with impaired vitamin D receptor (VDR signaling have normal developmental hair growth but display aberrant post-morphogenic hair cycle progression associated with alopecia. In addition, VDR–/– mice exhibit impaired cutaneous wound healing. We undertook experiments to determine whether the stress-inducible regulator of energy homeostasis, DNA damage-inducible transcript 4 (Ddit4, is involved in these processes. By analyzing hair cycle activation in vivo, we show that VDR−/− mice at day 14 exhibit increased Ddit4 expression within follicular stress compartments. At day 29, degenerating VDR−/− follicular keratinocytes, but not bulge stem cells, continue to exhibit an increase in Ddit4 expression. At day 47, when normal follicles and epidermis are quiescent and enriched for Ddit4, VDR−/− skin lacks Ddit4 expression. In a skin wound healing assay, the re-epithelialized epidermis in wildtype (WT but not VDR−/− animals harbor a population of Ddit4- and Krt10-positive cells. Our study suggests that VDR regulates Ddit4 expression during epidermal homeostasis and the wound healing process, while elevated Ddit4 represents an early growth-arresting stress response within VDR−/− follicles.

  20. Increased lipolysis and energy expenditure in a mouse model with severely impaired glucagon secretion.

    Directory of Open Access Journals (Sweden)

    Phing-How Lou

    Full Text Available BACKGROUND: Secretion of insulin and glucagon is triggered by elevated intracellular calcium levels. Although the precise mechanism by which the calcium signal is coupled to insulin and glucagon granule exocytosis is unclear, synaptotagmin-7 has been shown to be a positive regulator of calcium-dependent insulin and glucagon secretion, and may function as a calcium sensor for insulin and glucagon granule exocytosis. Deletion of synaptotagmin-7 leads to impaired glucose-stimulated insulin secretion and nearly abolished Ca(2+-dependent glucagon secretion in mice. Under non-stressed resting state, however, synaptotagmin-7 KO mice exhibit normal insulin level but severely reduced glucagon level. METHODOLOGY/PRINCIPAL FINDINGS: We studied energy expenditure and metabolism in synaptotagmin-7 KO and control mice using indirect calorimetry and biochemical techniques. Synaptotagmin-7 KO mice had lower body weight and body fat content, and exhibited higher oxygen consumption and basal metabolic rate. Respiratory exchange ratio (RER was lower in synaptotagmin-7 KO mice, suggesting an increased use of lipid in their energy production. Consistent with lower RER, gene expression profiles suggest enhanced lipolysis and increased capacity for fatty acid transport and oxidation in synaptotagmin-7 KO mice. Furthermore, expression of uncoupling protein 3 (UCP3 in skeletal muscle was approximately doubled in the KO mice compared with control mice. CONCLUSIONS: These results show that the lean phenotype in synaptotagmin-7 KO mice was mostly attributed to increased lipolysis and energy expenditure, and suggest that reduced glucagon level may have broad influence on the overall metabolism in the mouse model.

  1. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Kelly A Hamilton

    Full Text Available Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in

  2. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    Science.gov (United States)

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  3. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    Science.gov (United States)

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  4. Altered hippocampal replay is associated with memory impairment in mice heterozygous for the Scn2a gene.

    Science.gov (United States)

    Middleton, Steven J; Kneller, Emily M; Chen, Shuo; Ogiwara, Ikuo; Montal, Mauricio; Yamakawa, Kazuhiro; McHugh, Thomas J

    2018-06-04

    An accumulating body of experimental evidence has implicated hippocampal replay occurring within sharp wave ripples (SPW-Rs) as crucial for learning and memory in healthy subjects. This raises speculation that neurological disorders impairing memory disrupt either SPW-Rs or their underlying neuronal activity. We report that mice heterozygous for the gene Scn2a, a site of frequent de novo mutations in humans with intellectual disability, displayed impaired spatial memory. While we observed no changes during encoding, to either single place cells or cell assemblies, we identified abnormalities restricted to SPW-R episodes that manifest as decreased cell assembly reactivation strengths and truncated hippocampal replay sequences. Our results suggest that alterations to hippocampal replay content may underlie disease-associated memory deficits.

  5. Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance.

    Science.gov (United States)

    Andres, Allen M; Kooren, Joel A; Parker, Sarah J; Tucker, Kyle C; Ravindran, Nandini; Ito, Bruce R; Huang, Chengqun; Venkatraman, Vidya; Van Eyk, Jennifer E; Gottlieb, Roberta A; Mentzer, Robert M

    2016-07-01

    Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation. Copyright © 2016 the American Physiological Society.

  6. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Science.gov (United States)

    Murovets, Vladimir O; Bachmanov, Alexander A; Zolotarev, Vasiliy A

    2015-01-01

    The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+) inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-). Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  7. Impaired Glucose Metabolism in Mice Lacking the Tas1r3 Taste Receptor Gene.

    Directory of Open Access Journals (Sweden)

    Vladimir O Murovets

    Full Text Available The G-protein-coupled sweet taste receptor dimer T1R2/T1R3 is expressed in taste bud cells in the oral cavity. In recent years, its involvement in membrane glucose sensing was discovered in endocrine cells regulating glucose homeostasis. We investigated importance of extraorally expressed T1R3 taste receptor protein in age-dependent control of blood glucose homeostasis in vivo, using nonfasted mice with a targeted mutation of the Tas1r3 gene that encodes the T1R3 protein. Glucose and insulin tolerance tests, as well as behavioral tests measuring taste responses to sucrose solutions, were performed with C57BL/6ByJ (Tas1r3+/+ inbred mice bearing the wild-type allele and C57BL/6J-Tas1r3tm1Rfm mice lacking the entire Tas1r3 coding region and devoid of the T1R3 protein (Tas1r3-/-. Compared with Tas1r3+/+ mice, Tas1r3-/- mice lacked attraction to sucrose in brief-access licking tests, had diminished taste preferences for sucrose solutions in the two-bottle tests, and had reduced insulin sensitivity and tolerance to glucose administered intraperitoneally or intragastrically, which suggests that these effects are due to absence of T1R3. Impairment of glucose clearance in Tas1r3-/- mice was exacerbated with age after intraperitoneal but not intragastric administration of glucose, pointing to a compensatory role of extraoral T1R3-dependent mechanisms in offsetting age-dependent decline in regulation of glucose homeostasis. Incretin effects were similar in Tas1r3+/+ and Tas1r3-/- mice, which suggests that control of blood glucose clearance is associated with effects of extraoral T1R3 in tissues other than the gastrointestinal tract. Collectively, the obtained data demonstrate that the T1R3 receptor protein plays an important role in control of glucose homeostasis not only by regulating sugar intake but also via its extraoral function, probably in the pancreas and brain.

  8. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment.

    Directory of Open Access Journals (Sweden)

    Nicole Purrier

    Full Text Available Several aspects of behavior and physiology, such as sleep and wakefulness, blood pressure, body temperature, and hormone secretion exhibit daily oscillations known as circadian rhythms. These circadian rhythms are orchestrated by an intrinsic biological clock in the suprachiasmatic nuclei (SCN of the hypothalamus which is adjusted to the daily environmental cycles of day and night by the process of photoentrainment. In mammals, the neuronal signal for photoentrainment arises from a small subset of intrinsically photosensitive retinal ganglion cells (ipRGCs that send a direct projection to the SCN. ipRGCs also mediate other non-image-forming (NIF visual responses such as negative masking of locomotor activity by light, and the pupillary light reflex (PLR via co-release of neurotransmitters glutamate and pituitary adenylate cyclase-activating peptide (PACAP from their synaptic terminals. The relative contribution of each neurotransmitter system for the circadian photoentrainment and other NIF visual responses is still unresolved. We investigated the role of glutamatergic neurotransmission for circadian photoentrainment and NIF behaviors by selective ablation of ipRGC glutamatergic synaptic transmission in mice. Mutant mice displayed delayed re-entrainment to a 6 h phase shift (advance or delay in the light cycle and incomplete photoentrainment in a symmetrical skeleton photoperiod regimen (1 h light pulses between 11 h dark periods. Circadian rhythmicity in constant darkness also was reduced in some mutant mice. Other NIF responses such as the PLR and negative masking responses to light were also partially attenuated. Overall, these results suggest that glutamate from ipRGCs drives circadian photoentrainment and negative masking responses to light.

  9. Ca2+-clock-dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance

    Directory of Open Access Journals (Sweden)

    Sunil Jit Ramamoorthy Jeewanlal Logantha

    2016-06-01

    Full Text Available Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2 pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO as a model for investigating SERCA2’s role in sinus node pacemaking.Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P70% Serca2 downregulation.Conclusions: Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.

  10. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  11. Regular voluntary exercise cures stress-induced impairment of cognitive function and cell proliferation accompanied by increases in cerebral IGF-1 and GST activity in mice.

    Science.gov (United States)

    Nakajima, Sanae; Ohsawa, Ikuroh; Ohta, Shigeo; Ohno, Makoto; Mikami, Toshio

    2010-08-25

    Chronic stress impairs cognitive function and hippocampal neurogenesis. This impairment is attributed to increases in oxidative stress, which result in the accumulation of lipid peroxide. On the other hand, voluntary exercise enhances cognitive function, hippocampal neurogenesis, and antioxidant capacity in normal animals. However, the effects of voluntary exercise on cognitive function, neurogenesis, and antioxidants in stressed mice are unclear. This study was designed to investigate whether voluntary exercise cures stress-induced impairment of cognitive function accompanied by improvement of hippocampal neurogenesis and increases in antioxidant capacity. Stressed mice were exposed to chronic restraint stress (CRS), which consisted of 12h immobilization daily and feeding in a small cage, for 8 weeks. Exercised mice were allowed free access to a running wheel during their exposure to CRS. At the 6th week, cognitive function was examined using the Morris water maze (MWM) test. Daily voluntary exercise restored stress-induced impairment of cognitive function and the hippocampal cell proliferation of newborn cells but not cell survival. Voluntary exercise increased insulin-like growth factor 1 (IGF-1) protein and mRNA expression in the cerebral cortex and liver, respectively. In addition, CRS resulted in a significant increase in the number of 4-hydrosynonenal (4-HNE)-positive cells in the hippocampal dentate gyrus; whereas, voluntary exercise inhibited it and enhanced glutathione s-transferases (GST) activity in the brain. These findings suggest that voluntary exercise attenuated the stress-induced impairment of cognitive function accompanied by improvement of cell proliferation in the dentate gyrus. This exercise-induced improvement was attributed to exercise-induced enhancement of IGF-1 protein and GST activity in the brain. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  13. Impaired angiogenesis during fracture healing in GPCR kinase 2 interacting protein-1 (GIT1 knock out mice.

    Directory of Open Access Journals (Sweden)

    Guoyong Yin

    Full Text Available G protein coupled receptor kinase 2 (GRK2 interacting protein-1 (GIT1, is a scaffold protein that plays an important role in angiogenesis and osteoclast activity. We have previously demonstrated that GIT1 knockout (GIT1 KO mice have impaired angiogenesis and dysregulated osteoclast podosome formation leading to a reduction in the bone resorbing ability of these cells. Since both angiogenesis and osteoclast-mediated bone remodeling are involved in the fracture healing process, we hypothesized that GIT1 participates in the normal progression of repair following bone injury. In the present study, comparison of fracture healing in wild type (WT and GIT1 KO mice revealed altered healing in mice with loss of GIT1 function. Alcian blue staining of fracture callus indicated a persistence of cartilagenous matrix in day 21 callus samples from GIT1 KO mice which was temporally correlated with increased type 2 collagen immunostaining. GIT1 KO mice also showed a decrease in chondrocyte proliferation and apoptosis at days 7 and 14, as determined by PCNA and TUNEL staining. Vascular microcomputed tomography analysis of callus samples at days 7, 14 and 21 revealed decreased blood vessel volume, number, and connection density in GIT1 KO mice compared to WT controls. Correlating with this, VEGF-A, phospho-VEGFR2 and PECAM1 (CD31 were decreased in GIT1 KO mice, indicating reduced angiogenesis with loss of GIT1. Finally, calluses from GIT1 KO mice displayed a reduced number of tartrate resistant acid phosphatase-positive osteoclasts at days 14 and 21. Collectively, these results indicate that GIT1 is an important signaling participant in fracture healing, with gene ablation leading to reduced callus vascularity and reduced osteoclast number in the healing callus.

  14. Cardiac Ablation of Rheb1 Induces Impaired Heart Growth, Endoplasmic Reticulum-Associated Apoptosis and Heart Failure in Infant Mice

    Science.gov (United States)

    Cao, Yunshan; Tao, Lichan; Shen, Shutong; Xiao, Junjie; Wu, Hang; Li, Beibei; Wu, Xiangqi; Luo, Wen; Xiao, Qi; Hu, Xiaoshan; Liu, Hailang; Nie, Junwei; Lu, Shuangshuang; Yuan, Baiyin; Han, Zhonglin; Xiao, Bo; Yang, Zhongzhou; Li, Xinli

    2013-01-01

    Ras homologue enriched in brain 1 (Rheb1) plays an important role in a variety of cellular processes. In this study, we investigate the role of Rheb1 in the post-natal heart. We found that deletion of the gene responsible for production of Rheb1 from cardiomyocytes of post-natal mice resulted in malignant arrhythmias, heart failure, and premature death of these mice. In addition, heart growth impairment, aberrant metabolism relative gene expression, and increased cardiomyocyte apoptosis were observed in Rheb1-knockout mice prior to the development of heart failure and arrhythmias. Also, protein kinase B (PKB/Akt) signaling was enhanced in Rheb1-knockout mice, and removal of phosphatase and tensin homolog (Pten) significantly prolonged the survival of Rheb1-knockouts. Furthermore, signaling via the mammalian target of rapamycin complex 1 (mTORC1) was abolished and C/EBP homologous protein (CHOP) and phosphorylation levels of c-Jun N-terminal kinase (JNK) were increased in Rheb1 mutant mice. In conclusion, this study demonstrates that Rheb1 is important for maintaining cardiac function in post-natal mice via regulation of mTORC1 activity and stress on the endoplasmic reticulum. Moreover, activation of Akt signaling helps to improve the survival of mice with advanced heart failure. Thus, this study provides direct evidence that Rheb1 performs multiple important functions in the heart of the post-natal mouse. Enhancing Akt activity improves the survival of infant mice with advanced heart failure. PMID:24351823

  15. The Internationalization of the Meetings - Incentives - Conventions - and Exhibitions - (MICE industry: Its Influences on the Actors in the Tourism Business Activity

    Directory of Open Access Journals (Sweden)

    Natalia Smagina

    2017-02-01

    Full Text Available This article is aimed to analyze the link between internationalization and Meetings-, Incentives-, Conventions- and Exhibitions (MICE industry which is refer to the destination development. A comprehensive review of the totality of the processes associated with the regional market of business tourism, allowed to develop a number of actual tools that make it possible to obtain important practical results. One of these tools is a so called public-private partnership (PPP, to strengthen the trust between government and business representatives on regional level. This article reveals the cooperation process between foreign private companies and the local government in organizing the development of the industry connected to MICE. This vision may help all parties connected to the MICE industry to achieve a new level of understanding of the business tourism destination as a result of internationalization processes.

  16. The effect of cyclophosphamide and x-irradiation on experimental influenza in mice

    International Nuclear Information System (INIS)

    Frankova, V.

    1989-01-01

    Mice treated with Cyclophosphamide (Cy) shortly before inoculation of influenza A virus exhibited increased mortality and delayed mean time of death. The extrapulmonary dissemination of the infection was observed more often in Cy-treated animals with the titres of virus in different organs substantially higher than in equally infected immunocompetent controls. Although the humoral antibody response was not impaired in Cy-treated mice, they were more susceptible to challenge with a lethal dose of virus than normal animals. In X-irradiated mice, the increased multiplication of virus in lungs and spread of the infection to other organs was observed, with prolonged persistence of virus in lungs and brains as compared to adequate controls, reminding of previous observation in immunocompromised persons, who died in the course of influenza. (author) 1 fig., 4 tabs., 23 refs

  17. Motor impulsivity in APP-SWE mice: a model of Alzheimer's disease.

    Science.gov (United States)

    Adriani, Walter; Ognibene, Elisa; Heuland, Emilie; Ghirardi, Orlando; Caprioli, Antonio; Laviola, Giovanni

    2006-09-01

    Among transgenic mouse models of Alzheimer's disease, APP-SWE mice have been shown to develop beta-amyloid plaques and to exhibit progressive impairment of cognitive function. Human Alzheimer's disease, however, also includes secondary clinical manifestations, spanning from hyperactivity to agitation. The aim of this study was a better characterization of motor impulsivity in APP-SWE mice, observed at 12 months of age, when levels of soluble beta-amyloid are elevated and beta-amyloid neuritic plaques start to appear. Mice were tested for spatial learning abilities in the Morris water maze (seven daily sessions, four trials per day). The distance traveled to reach the hidden platform showed a learning curve in both groups. This profile, however, was somewhat delayed in APP-SWE mice, thus confirming slightly impaired spatial capacities. To evaluate motor impulsivity, animals were trained to nose-poke for a food reward, which was delivered after a waiting interval that increased over days (15-60 s). Further nose-poking during this signaled waiting interval resulted in food-reward loss and electric-shock punishment. APP-SWE mice received an increased quantity of punishment and were able to earn fewer food rewards, suggesting inability to wait already at the lowest delay. After the animals were killed, prefrontal cortex samples were assessed for neurochemical parameters. Serotonin turnover was elevated in the prefrontal cortex of APP-SWE mice compared with controls. The results clearly confirm cognitive deficits, and are consistent with the hypothesis of reduced behavioral-inhibition abilities. Together with recent findings, APP-SWE mice emerge as a suitable animal model, characterized by a number of specific behavioral alterations, resembling primary and secondary symptoms of human Alzheimer's disease.

  18. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  19. Mice with a targeted disruption of the Fanconi anemia homolog Fanca.

    Science.gov (United States)

    Cheng, N C; van de Vrugt, H J; van der Valk, M A; Oostra, A B; Krimpenfort, P; de Vries, Y; Joenje, H; Berns, A; Arwert, F

    2000-07-22

    Fanconi anemia (FA) is a hereditary chromosomal instability syndrome with cancer predisposition. Bone marrow failure resulting in pancytopenia is the main cause of death of FA patients. Diagnosis of FA is based on their cellular hypersensitivity to DNA crosslinking agents and chromosome breakages. Somatic complementation experiments suggest the involvement of at least eight genes in FA. The gene for complementation group A (FANCA) is defective in the majority of FA patients. We show here that mice deficient of FANCA: are viable and have no detectable developmental abnormalities. The hematological parameters showed a slightly decreased platelet count and a slightly increased erythrocyte mean cell volume in mice at young age, but this did not progress to anemia. Consistent with the clinical phenotype of FA patients, both male and female mice showed hypogonadism and impaired fertility. Furthermore, embryonic fibroblasts of the knock-out mice exhibited spontaneous chromosomal instability and were hyper-responsive to the clastogenic effect of the crosslinker mitomycin C.

  20. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    Science.gov (United States)

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  1. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  2. Gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice

    Science.gov (United States)

    Fang, Yu; Chen, Hao; Hu, Yuhui; Djukic, Zorka; Tevebaugh, Whitney; Shaheen, Nicholas J.; Orlando, Roy C.; Hu, Jianguo

    2013-01-01

    The barrier function of the esophageal epithelium is a major defense against gastroesophageal reflux disease. Previous studies have shown that reflux damage is reflected in a decrease in transepithelial electrical resistance associated with tight junction alterations in the esophageal epithelium. To develop novel therapies, it is critical to understand the molecular mechanisms whereby contact with a refluxate impairs esophageal barrier function. In this study, surgical models of duodenal and mixed reflux were developed in mice. Mouse esophageal epithelium was analyzed by gene microarray. Gene set enrichment analysis showed upregulation of inflammation-related gene sets and the NF-κB pathway due to reflux. Significance analysis of microarrays revealed upregulation of NF-κB target genes. Overexpression of NF-κB subunits (p50 and p65) and NF-κB target genes (matrix metalloproteinases-3 and -9, IL-1β, IL-6, and IL-8) confirmed activation of the NF-κB pathway in the esophageal epithelium. In addition, real-time PCR, Western blotting, and immunohistochemical staining also showed downregulation and mislocalization of claudins-1 and -4. In a second animal experiment, treatment with an NF-κB inhibitor, BAY 11-7085 (20 mg·kg−1·day−1 ip for 10 days), counteracted the effects of duodenal and mixed reflux on epithelial resistance and NF-κB-regulated cytokines. We conclude that gastroesophageal reflux activates the NF-κB pathway and impairs esophageal barrier function in mice and that targeting the NF-κB pathway may strengthen esophageal barrier function against reflux. PMID:23639809

  3. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Kim, Kui-Jin; Song, Ji-Hyeon; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Heo, Ho Jin; Lee, Boo-Yong

    2017-11-13

    Spirulina maxima , a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1-42 (Aβ 1-42 ) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ 1-42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ 1-42 -injected mice. SM70EE reduced hippocampal Aβ 1-42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ 1-42 -injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ 1-42 -injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ 1-42 -injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ 1-42 -injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ 1-42 -induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ 1-42 in mice.

  4. Pre-adolescent and adolescent mice are less sensitive to the effects of acute nicotine on extinction and spontaneous recovery.

    Science.gov (United States)

    Kutlu, Munir Gunes; Zeid, Dana; Tumolo, Jessica M; Gould, Thomas J

    2018-04-01

    Adolescence is a period of high risk for the initiation of nicotine product usage and exposure to traumatic events. In parallel, nicotine exposure has been found to age-dependently modulate acquisition of contextual fear memories; however, it is unknown if adolescent nicotine exposure alters extinction of fear related memories. Age-related differences in sensitivity to the effects of nicotine on fear extinction could increase or decrease susceptibility to anxiety disorders. In this study, we examined the effects of acute nicotine administration on extinction and spontaneous recovery of contextual fear memories in pre-adolescent (PND 23), late adolescent (PND 38), and adult (PND 53) C57B6/J mice. Mice were first trained in a background contextual fear conditioning paradigm and given an intraperitoneal injection of one of four doses of nicotine (0.045, 0.09, 0.18, or 0.36mg/kg, freebase) prior to subsequent extinction or spontaneous recovery sessions. Results indicated that all acute nicotine doses impaired extinction of contextual fear in adult mice. Late adolescent mice exhibited impaired extinction of contextual fear only following higher doses of acute nicotine, and extinction of contextual fear was unaffected by acute nicotine exposure in pre-adolescent mice. Finally, acute nicotine exposure enhanced spontaneous recovery of fear memory, but only in adult mice. Overall, our results suggest that younger mice were less sensitive to nicotine's impairing effects on extinction of contextual fear and to nicotine's enhancing effects on spontaneous recovery of contextual fear memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Brain-Derived Neurotrophic Factor Val66Met Human Polymorphism Impairs the Beneficial Exercise-Induced Neurobiological Changes in Mice

    Science.gov (United States)

    Ieraci, Alessandro; Madaio, Alessandro I; Mallei, Alessandra; Lee, Francis S; Popoli, Maurizio

    2016-01-01

    Several studies have shown that exercise improves cognitive functions and emotional behaviors. Positive effects of exercise have been associated with enhanced brain plasticity, adult hippocampal neurogenesis, and increased levels of brain-derived neurotrophic factor (BDNF). However, a substantial variability of individual response to exercise has been described, which may be accounted for by individual genetic variants. Here, we have assessed whether and how the common human BDNF Val66Met polymorphism influences the neurobiological effects modulated by exercise in BDNF Val66Met knock-in male mice. Wild-type (BDNFVal/Val) and homozygous BDNF Val66Met (BDNFMet/Met) male mice were housed in cages equipped with or without running wheels for 4 weeks. Changes in behavioral phenotype, hippocampal adult neurogenesis, and gene expression were evaluated in exercised and sedentary control mice. We found that exercise reduced the latency to feed in the novelty suppressed feeding and the immobility time in the forced swimming test in BDNFVal/Val but not in BDNFMet/Met mice. Hippocampal neurogenesis was reduced in BDNFMet/Met mice compared with BDNFVal/Val mice. BDNFMet/Met mice had lower basal BDNF protein levels in the hippocampus, which was not recovered following exercise. Moreover, exercise-induced expression of total BDNF, BDNF splice variants 1, 2, 4, 6 and fibronectin type III domain-containing protein 5 (FNDC5) mRNA levels were absent or reduced in the dentate gyrus of BDNFMet/Met mice. Exercise failed to enhance PGC-1α and FNDC5 mRNA levels in the BDNFMet/Met muscle. Overall these results indicate that, in adult male mice, the BDNF Val66Met polymorphism impairs the beneficial behavioral and neuroplasticity effects induced by physical exercise. PMID:27388329

  6. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice.

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P; Kenyon, Christopher J; Caughey, Sarah; Walker, Brian R; Holmes, Megan C; Seckl, Jonathan R; Yau, Joyce L W

    2015-04-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Genetic inactivation of Trpml3 does not lead to hearing and vestibular impairment in mice.

    Directory of Open Access Journals (Sweden)

    Simone Jörs

    2010-12-01

    Full Text Available TRPML3, a member of the transient receptor potential (TRP family, is an inwardly rectifying, non-selective Ca2+-permeable cation channel that is regulated by extracytosolic Na+ and H+ and can be activated by a variety of small molecules. The severe auditory and vestibular phenotype of the TRPML3(A419P varitint-waddler mutation made this protein particularly interesting for inner ear biology. To elucidate the physiological role of murine TRPML3, we conditionally inactivated Trpml3 in mice. Surprisingly, lack of functional TRPML3 did not lead to circling behavior, balance impairment or hearing loss.

  8. Behaviour of postnatally growth-impaired mice during malnutrition and after partial weight recovery

    DEFF Research Database (Denmark)

    Huber, Reinhard C.; Kolb, Andreas F.; Lillico, Simon

    2013-01-01

    Objectives: Early malnutrition is a highly prevalent condition in developing countries. Different rodent models of postnatal early malnutrition have been used to approach the subject experimentally, inducing early malnutrition by maternal malnutrition, temporal maternal separation, manipulation...... of litter size or the surgical nipple ligation to impair lactation. Studies on the behaviour of (previously) malnourished animals using animal models have produced sometimes contradictory results regarding the effects of early postnatal malnutrition and have been criticized for introducing potential...... confounding factors. The present paper is a first report on the behavioural effects of early malnutrition induced by an alternative approach: mice nursed by a-casein-deficient knockout dams showed a severe growth delay during early development and substantial catch-up growth after weaning when compared...

  9. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A.

    Directory of Open Access Journals (Sweden)

    Glòria Arqué

    Full Text Available BACKGROUND: Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/- to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE: The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.

  10. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    Directory of Open Access Journals (Sweden)

    Kaidanovich-Beilin Oksana

    2009-11-01

    Full Text Available Abstract Background Glycogen synthase kinase-3 (GSK-3 is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders.

  11. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Science.gov (United States)

    Kukar, Thomas; Prescott, Sonya; Eriksen, Jason L; Holloway, Vallie; Murphy, M Paul; Koo, Edward H; Golde, Todd E; Nicolle, Michelle M

    2007-01-01

    ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action. PMID:17650315

  12. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice

    Directory of Open Access Journals (Sweden)

    Koo Edward H

    2007-07-01

    in Tg2576 mice. Given its ability to selectively target Aβ42 production and improve cognitive impairments in transgenic APP mice, as well as promising data from a phase 2 human clinical trial, future studies are needed to investigate the utility of R-flurbiprofen as an AD therapeutic and its possible mechanisms of action.

  13. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    Science.gov (United States)

    Duque, Aránzazu; Vinader-Caerols, Concepción; Monleón, Santiago

    2017-01-01

    We have previously observed the impairing effects of chronic social defeat stress (CSDS) on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL); non-stressed + indomethacin (NS+IND); stressed + saline (S+SAL); and stressed + indomethacin (S+IND). Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS) for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.). 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group) were then evaluated in inhibitory avoidance (IA), novel object recognition (NOR), elevated plus maze and hot plate tests. As in control animals (NS+SAL group), IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group). Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  14. Indomethacin counteracts the effects of chronic social defeat stress on emotional but not recognition memory in mice.

    Directory of Open Access Journals (Sweden)

    Aránzazu Duque

    Full Text Available We have previously observed the impairing effects of chronic social defeat stress (CSDS on emotional memory in mice. Given the relation between stress and inflammatory processes, we sought to study the effectiveness of the anti-inflammatory indomethacin in reversing the detrimental effects of CSDS on emotional memory in mice. The effects of CSDS and indomethacin on recognition memory were also evaluated. Male CD1 mice were randomly divided into four groups: non-stressed + saline (NS+SAL; non-stressed + indomethacin (NS+IND; stressed + saline (S+SAL; and stressed + indomethacin (S+IND. Stressed animals were exposed to a daily 10 min agonistic confrontation (CSDS for 20 days. All subjects were treated daily with saline or indomethacin (10 mg/kg, i.p.. 24 h after the CSDS period, all the mice were evaluated in a social interaction test to distinguish between those that were resilient or susceptible to social stress. All subjects (n = 10-12 per group were then evaluated in inhibitory avoidance (IA, novel object recognition (NOR, elevated plus maze and hot plate tests. As in control animals (NS+SAL group, IA learning was observed in the resilient groups, as well as in the susceptible mice treated with indomethacin (S+IND group. Recognition memory was observed in the non-stressed and the resilient mice, but not in the susceptible animals. Also, stressed mice exhibited higher anxiety levels. No significant differences were observed in locomotor activity or analgesia. In conclusion, CSDS induces anxiety in post-pubertal mice and impairs emotional and recognition memory in the susceptible subjects. The effects of CSDS on emotional memory, but not on recognition memory and anxiety, are reversed by indomethacin. Moreover, memory impairment is not secondary to the effects of CSDS on locomotor activity, emotionality or pain sensitivity.

  15. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice.

    Directory of Open Access Journals (Sweden)

    Alexander O Krogmann

    Full Text Available Toll-like receptors (TLR of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice.TLR9-stimulation with high dose CpG ODN at concentrations between 6.25 nM to 30 nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/- mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects.Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.

  16. STRATEGI PENINGKATAN PENDAPATAN ASLI DAERAH, INVESTASI DAN PERTUMBUHAN EKONOMI KOTA SEMARANG MELALUI MICE (MEETING, INCENTIVE, CONVENTION DAN EXHIBITION

    Directory of Open Access Journals (Sweden)

    Tika Putri Pratiwi

    2015-05-01

    Full Text Available Abstrak ___________________________________________________________________ Semarang sebagai ibukota Provinsi Jawa Tengah memiliki potensi yang besar dalam mengembangkan sektor industri dan pariwisata. Langkah awal pemerintah yang serius dalam mengolah kedua industri ini yaitu dengan menjadikan Kota Semarang sebagai salah satu destinasi MICE (Meeting, Incentive, Convention, Exhibition. Penelitian ini bertujuan untuk memilih strategi apa yang dapat dilakukan dalam pembangunan Kota Semarang Melalui MICE. Data yang digunakan dalam penelitian ini adalah data primer dan data sekunder. Data primer bersumber dari hasil pengisian kuesioner oleh pihak dinas dan Swasta. Data sekunder dalam penelitian ini berupa data-data yang diperoleh dari dinas terkait serta Badan Pusat Statistik (BPS Provinsi Jawa Tengah dan Kota Semarang dan jurnal serta literatur yang berkaitan dengan penelitian. Metode analisis yang digunakan yaituAnalitical Hierarki Process (AHP dan diolah menggunakan expert choice versi 9.0. Hasil penelitian ini menunjukkan bahwa strategi pembangunan Kota Semarang melalui MICE dapat mengutamakan pada kriteria (1 peningkatan sektor investasi dengan bobot tertinggi yaitu sebesar 0,614 dan dilanjutkan dengan (2 memperbaiki pertumbuhan ekonomi kota dengan bobot 0,260, sehingga akan membantu dalam (3 peningkatan Pendapatan Asli Daerah Kota Semarang melalui MICE dengan bobot 0,126. Berdasarkan temuan tersebut, saran yang dapat disampaikan yaitu Memperkenalkan Kota Semarang melalui jalur promosi dengan menggunakan media-media sosal dan media elektronik. Hal tersebut merupakan salah satu alternatif membuka investasi yang lebih luas di Kota Semarang, sehingga tidak hanya masyarakat dalam negeri namun masyarakat internasional juga dapat lebih mengenal Kota Semarang. Memperbanyak even berskala nasional maupun internasional yang diselenggarakan di Kota Semarang dan lebih memperkenalkan Kota Semarang baik di dalam maupun di luar negeri. Memberikan pelatihan

  17. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Science.gov (United States)

    Sartori, Michelle; Conti, Filipe F.; Dias, Danielle da Silva; dos Santos, Fernando; Machi, Jacqueline F.; Palomino, Zaira; Casarini, Dulce E.; Rodrigues, Bruno; De Angelis, Kátia; Irigoyen, Maria-Claudia

    2017-01-01

    Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice. Methods: Metabolic parameters, cardiac function, arterial pressure (AP), autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group) and ob/ob mice (OB group). Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF) and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress. Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals. PMID:28878683

  18. Association between Diastolic Dysfunction with Inflammation and Oxidative Stress in Females ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Michelle Sartori

    2017-08-01

    Full Text Available Objective: To evaluate autonomic and cardiovascular function, as well as inflammatory and oxidative stress markers in ob/ob female mice.Methods: Metabolic parameters, cardiac function, arterial pressure (AP, autonomic, hormonal, inflammatory, and oxidative stress markers were evaluated in 12-weeks female wild-type (WT group and ob/ob mice (OB group.Results: OB animals showed increased body weight, blood glucose, and triglyceride levels, along with glucose intolerance, when compared to WT animals. Ejection fraction (EF and AP were similar between groups; however, the OB group presented diastolic dysfunction, as well as an impairment on myocardial performance index. Moreover, the OB group exhibited important autonomic dysfunction and baroreflex sensitivity impairment, when compared to WT group. OB group showed increased Angiotensin II levels in heart and renal tissues; decreased adiponectin and increased inflammatory markers in adipose tissue and spleen. Additionally, OB mice presented a higher damage to proteins and lipoperoxidation and lower activity of antioxidant enzymes in kidney and heart. Correlations were found between autonomic dysfunction with angiotensin II and inflammatory mediators, as well as between inflammation and oxidative stress.Conclusions: Our results showed that female adult ob/ob mice presented discrete diastolic dysfunction accompanied by autonomic disorder, which is associated with inflammation and oxidative stress in these animals.

  19. Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice.

    Directory of Open Access Journals (Sweden)

    Martin Alcala

    Full Text Available The use of antioxidant therapy in the treatment of oxidative stress-related diseases such as cardiovascular disease, diabetes or obesity remains controversial. Our aim is to demonstrate that antioxidant supplementation may promote negative effects if used before the establishment of oxidative stress due to a reduced ROS generation under physiological levels, in a mice model of obesity.C57BL/6J mice were fed with a high-fat diet for 14 weeks, with (OE group or without (O group vitamin E supplementation.O mice developed a mild degree of obesity, which was not enough to induce metabolic alterations or oxidative stress. These animals exhibited a healthy expansion of retroperitoneal white adipose tissue (rpWAT and the liver showed no signs of lipotoxicity. Interestingly, despite achieving a similar body weight, OE mice were insulin resistant. In the rpWAT they presented a reduced generation of ROS, even below physiological levels (C: 1651.0 ± 212.0; O: 3113 ± 284.7; OE: 917.6 ±104.4 RFU/mg protein. C vs OE p< 0.01. ROS decay may impair their action as second messengers, which could account for the reduced adipocyte differentiation, lipid transport and adipogenesis compared to the O group. Together, these processes limited the expansion of this fat pad and as a consequence, lipid flux shifted towards the liver, causing steatosis and hepatomegaly, which may contribute to the marked insulin resistance.This study provides in vivo evidence for the role of ROS as second messengers in adipogenesis, lipid metabolism and insulin signaling. Reducing ROS generation below physiological levels when the oxidative process has not yet been established may be the cause of the controversial results obtained by antioxidant therapy.

  20. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  1. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior.

    Directory of Open Access Journals (Sweden)

    Markus Wöhr

    Full Text Available Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1(-/- null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1(-/- mice as compared to wildtype Shank1(+/+ littermate controls. Shank1(-/- pups emitted fewer vocalizations than Shank1(+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1(-/- males deposited fewer scent marks in proximity to female urine than Shank1(+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1(+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1(-/- mice were unaffected, indicating a failure of Shank1(-/- males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1(-/- mice are consistent with a phenotype relevant to social communication deficits in autism.

  2. Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice.

    Science.gov (United States)

    Mazziotti, Raffaele; Lupori, Leonardo; Sagona, Giulia; Gennaro, Mariangela; Della Sala, Grazia; Putignano, Elena; Pizzorusso, Tommaso

    2017-06-15

    CDKL5 disorder is a neurodevelopmental disorder still without a cure. Murine models of CDKL5 disorder have been recently generated raising the possibility of preclinical testing of treatments. However, unbiased, quantitative biomarkers of high translational value to monitor brain function are still missing. Moreover, the analysis of treatment is hindered by the challenge of repeatedly and non-invasively testing neuronal function. We analyzed the development of visual responses in a mouse model of CDKL5 disorder to introduce visually evoked responses as a quantitative method to assess cortical circuit function. Cortical visual responses were assessed in CDKL5 null male mice, heterozygous females, and their respective control wild-type littermates by repeated transcranial optical imaging from P27 until P32. No difference between wild-type and mutant mice was present at P25-P26 whereas defective responses appeared from P27-P28 both in heterozygous and homozygous CDKL5 mutant mice. These results were confirmed by visually evoked potentials (VEPs) recorded from the visual cortex of a different cohort. The previously imaged mice were also analyzed at P60-80 using VEPs, revealing a persistent reduction of response amplitude, reduced visual acuity and defective contrast function. The level of adult impairment was significantly correlated with the reduction in visual responses observed during development. Support vector machine showed that multi-dimensional visual assessment can be used to automatically classify mutant and wt mice with high reliability. Thus, monitoring visual responses represents a promising biomarker for preclinical and clinical studies on CDKL5 disorder. © The Author 2017. Published by Oxford University Press.

  3. Protective effects of Punica granatum seeds extract against aging and scopolamine induced cognitive impairments in mice.

    Science.gov (United States)

    Kumar, Sokindra; Maheshwari, Kamal Kishore; Singh, Vijender

    2008-10-25

    Dementia is one of the age related mental problems and characteristic symptom of various neurodegenerative diseases including Alzheimer's disease. This impairment probably is due to the vulnerability of the brain cells to increased oxidative stress during aging process. Many studies have shown that certain phenolic antioxidants attenuate neuronal cell death induced by oxidative stress. The present work was undertaken to assess the effect of ethanolic extract of Punica granatum seeds on cognitive performance of aged and scopolamine treated young mice using one trial step-down type passive avoidance and elevated plus maze task. Aged or scopolamine treated mice showed poor retention of memory in step-down type passive avoidance and in elevated plus maze task. Chronic administration (21 days) of Punica granatum extract and vitamin C significantly (p Punica granatum extract also significantly lowered lipid peroxidation level and increased antioxidant glutathione level in brain tissues. Punica granatum preparations could be protective in the treatment of cognitive disorders such as dementia and Alzheimer's disease.

  4. Behavioral assessments of BTBR T+Itpr3tf/J mice by tests of object attention and elevated open platform: Implications for an animal model of psychiatric comorbidity in autism.

    Science.gov (United States)

    Chao, Owen Y; Yunger, Richelle; Yang, Yi-Mei

    2018-07-16

    Autism spectrum disorders (ASD) are diagnosed based on the behavioral criteria of impaired social interaction, defective communication and repetitive behaviors. Psychiatric comorbidities, such as anxiety and intellectual disability, are commonly present in ASD. The BTBR T+ Itpr3tf/J (BTBR) mice display a range of autistic phenotypes, yet whether this mouse model is appropriate to study psychiatric comorbidity in ASD remains unclear. We addressed this issue by subjecting the BTBR animals to three-chambered apparatus, open field, object attention test and elevated open platform. Compared to C57BL/6J control mice, the BTBR mice displayed hyperactivity in most of the tests. In the three-chamber assessment, they exhibited deficits in sociability. In the open field, more grooming and thigmotaxis and less rearing behaviors were observed. They also showed impaired object-based attention. On the elevated open platform, the BTBR animals stayed more to the edges than in the center of the platform. To further examine the properties of this test, naïve C57BL/6J mice were randomly administrated with saline or an anxiogenic substance, caffeine. The caffeine group demonstrated a similar behavioral pattern as the BTBR mice. When the saline group was re-exposed to the same platform, the time they stayed in the center substantially increased, likely due to reduced anxiety by habituation. These results indicate that the BTBR were more anxious than control mice on the open platform. Taken together, the BTBR strain exhibit emotional and cognitive impairments in addition to autistic behaviors, suggesting that they can be a valid model for ASD with psychiatric comorbidity. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    Science.gov (United States)

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  7. Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice

    Science.gov (United States)

    Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted

    2015-01-01

    Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…

  8. Rheumatoid arthritis patients exhibit impaired Candida albicans-specific Th17 responses.

    Science.gov (United States)

    Bishu, Shrinivas; Su, Ee Wern; Wilkerson, Erich R; Reckley, Kelly A; Jones, Donald M; McGeachy, Mandy J; Gaffen, Sarah L; Levesque, Marc C

    2014-02-11

    Accumulating data implicate the CD4+ T cell subset (Th17 cells) in rheumatoid arthritis (RA). IL-17 is an inflammatory cytokine that induces tumor necrosis factor (TNF)α, IL-1β and IL-6, all of which are targets of biologic therapies used to treat RA. RA patients are well documented to experience more infections than age-matched controls, and biologic therapies further increase the risk of infection. The Th17/IL-17 axis is vital for immunity to fungi, especially the commensal fungus Candida albicans. Therefore, we were prompted to examine the relationship between RA and susceptibility to C. albicans because of the increasing interest in Th17 cells and IL-17 in driving autoimmunity, and the advent of new biologics that target this pathway. We analyzed peripheral blood and saliva from 48 RA and 33 healthy control subjects. To assess C. albicans-specific Th17 responses, PBMCs were co-cultured with heat-killed C. albicans extract, and IL-17A levels in conditioned supernatants were measured by ELISA. The frequency of Th17 and Th1 cells was determined by flow cytometry. As a measure of IL-17A-mediated effector responses, we evaluated C. albicans colonization rates in the oral cavity, salivary fungicidal activity and levels of the antimicrobial peptide β-defensin 2 (BD2) in saliva. Compared to controls, PBMCs from RA subjects exhibited elevated baseline production of IL-17A (P = 0.004), although they had similar capacity to produce IL-17A in response to Th17 cell differentiating cytokines (P = 0.91). However RA PBMCs secreted less IL-17A in response to C. albicans antigens (P = 0.006). Significantly more RA patients were colonized with C. albicans in the oral cavity than healthy subjects (P = 0.02). Concomitantly, RA saliva had reduced concentrations of salivary BD2 (P = 0.02). Nonetheless, salivary fungicidal activity was preserved in RA subjects (P = 0.70). RA subjects exhibit detectable impairments in oral immune responses to C. albicans, a

  9. A Valepotriate Fraction of Valeriana glechomifolia Shows Sedative and Anxiolytic Properties and Impairs Recognition But Not Aversive Memory in Mice

    Directory of Open Access Journals (Sweden)

    Natasha Maurmann

    2011-01-01

    Full Text Available Plants of the genus Valeriana (Valerianaceae are used in traditional medicine as a mild sedative, antispasmodic and tranquilizer in many countries. This study was undertaken to explore the neurobehavioral effects of systemic administration of a valepotriate extract fraction of known quantitative composition of Valeriana glechomifolia (endemic of southern Brazil in mice. Adult animals were treated with a single intraperitoneal injection of valepotriate fraction (VF in the concentrations of 1, 3 or 10 mg kg-1, or with vehicle in the pre-training period before each behavioral test. During the exploration of an open field, mice treated with 10 mg kg-1 of VF showed reduced locomotion and exploratory behavior. Although overall habituation sessions for locomotion and exploratory behavior among vehicle control and doses of VF were not affected, comparison between open-field and habituation sessions within each treatment showed that VF administration at 1 and 10 mg kg-1 impaired habituation. In the elevated plus-maze test, mice treated with VF (10 mg kg-1 showed a significant increase in the percentage of time spent in the open arms without significant effects in the number of total arm entries. VF at 3 mg kg-1 produced an impairment of novel-object recognition memory. In contrast, VF did not affect fear-related memory assessed in an inhibitory avoidance task. The results indicate that VF can have sedative effects and affect behavioral parameters related to recognition memory.

  10. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  11. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Science.gov (United States)

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs We; Chahrour, Maria; Zhu, Hao

    2017-07-11

    Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

  12. Short-term inhibition of 11β-hydroxysteroid dehydrogenase type 1 reversibly improves spatial memory but persistently impairs contextual fear memory in aged mice

    Science.gov (United States)

    Wheelan, Nicola; Webster, Scott P.; Kenyon, Christopher J.; Caughey, Sarah; Walker, Brian R.; Holmes, Megan C.; Seckl, Jonathan R.; Yau, Joyce L.W.

    2015-01-01

    High glucocorticoid levels induced by stress enhance the memory of fearful events and may contribute to the development of anxiety and posttraumatic stress disorder. In contrast, elevated glucocorticoids associated with ageing impair spatial memory. We have previously shown that pharmacological inhibition of the intracellular glucocorticoid-amplifying enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) improves spatial memory in aged mice. However, it is not known whether inhibition of 11β-HSD1 will have any beneficial effects on contextual fear memories in aged mice. Here, we examined the effects of UE2316, a selective 11β-HSD1 inhibitor which accesses the brain, on both spatial and contextual fear memories in aged mice using a vehicle-controlled crossover study design. Short-term UE2316 treatment improved spatial memory in aged mice, an effect which was reversed when UE2316 was substituted with vehicle. In contrast, contextual fear memory induced by foot-shock conditioning was significantly reduced by UE2316 in a non-reversible manner. When the order of treatment was reversed following extinction of the original fear memory, and a second foot-shock conditioning was given in a novel context, UE2316 treated aged mice (previously on vehicle) now showed increased fear memory compared to vehicle-treated aged mice (previously on UE2316). Renewal of the original extinguished fear memory triggered by exposure to a new environmental context may explain these effects. Thus 11β-HSD1 inhibition reverses spatial memory impairments with ageing while reducing the strength and persistence of new contextual fear memories. Potentially this could help prevent anxiety-related disorders in vulnerable elderly individuals. PMID:25497454

  13. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function.

    Directory of Open Access Journals (Sweden)

    Ryo Suzuki

    Full Text Available The sterol sensor SCAP is a key regulator of SREBP-2, the major transcription factor controlling cholesterol synthesis. Recently, we showed that there is a global down-regulation of cholesterol synthetic genes, as well as SREBP-2, in the brains of diabetic mice, leading to a reduction of cholesterol synthesis. We now show that in mouse models of type 1 and type 2 diabetes, this is, in part, the result of a decrease of SCAP. Homozygous disruption of the Scap gene in the brains of mice causes perinatal lethality associated with microcephaly and gliosis. Mice with haploinsufficiency of Scap in the brain show a 60% reduction of SCAP protein and ~30% reduction in brain cholesterol synthesis, similar to what is observed in diabetic mice. This results in impaired synaptic transmission, as measured by decreased paired pulse facilitation and long-term potentiation, and is associated with behavioral and cognitive changes. Thus, reduction of SCAP and the consequent suppression of cholesterol synthesis in the brain may play an important role in the increased rates of cognitive decline and Alzheimer disease observed in diabetic states.

  14. Cognitive deficits associated with combined HIV gp120 expression and chronic methamphetamine exposure in mice

    Science.gov (United States)

    Kesby, James P.; Markou, Athina; Semenova, Svetlana

    2014-01-01

    Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e., similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. PMID:25476577

  15. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    Science.gov (United States)

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  16. Glycoprotein A33 deficiency: a new mouse model of impaired intestinal epithelial barrier function and inflammatory disease

    Directory of Open Access Journals (Sweden)

    Benjamin B. Williams

    2015-08-01

    Full Text Available The cells of the intestinal epithelium provide a selectively permeable barrier between the external environment and internal tissues. The integrity of this barrier is maintained by tight junctions, specialised cell-cell contacts that permit the absorption of water and nutrients while excluding microbes, toxins and dietary antigens. Impairment of intestinal barrier function contributes to multiple gastrointestinal disorders, including food hypersensitivity, inflammatory bowel disease (IBD and colitis-associated cancer (CAC. Glycoprotein A33 (GPA33 is an intestinal epithelium-specific cell surface marker and member of the CTX group of transmembrane proteins. Roles in cell-cell adhesion have been demonstrated for multiple CTX family members, suggesting a similar function for GPA33 within the gastrointestinal tract. To test a potential requirement for GPA33 in intestinal barrier function, we generated Gpa33−/− mice and subjected them to experimental regimens designed to produce food hypersensitivity, colitis and CAC. Gpa33−/− mice exhibited impaired intestinal barrier function. This was shown by elevated steady-state immunosurveillance in the colonic mucosa and leakiness to oral TRITC-labelled dextran after short-term exposure to dextran sodium sulphate (DSS to injure the intestinal epithelium. Gpa33−/− mice also exhibited rapid onset and reduced resolution of DSS-induced colitis, and a striking increase in the number of colitis-associated tumours produced by treatment with the colon-specific mutagen azoxymethane (AOM followed by two cycles of DSS. In contrast, Gpa33−/− mice treated with AOM alone showed no increase in sporadic tumour formation, indicating that their increased tumour susceptibility is dependent on inflammatory stimuli. Finally, Gpa33−/− mice displayed hypersensitivity to food allergens, a common co-morbidity in humans with IBD. We propose that Gpa33−/− mice provide a valuable model to study the mechanisms

  17. Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both β-amyloid production and clearance.

    Science.gov (United States)

    Zhu, Zhiyuan; Yan, Jianming; Jiang, Wei; Yao, Xin-gang; Chen, Jing; Chen, Lili; Li, Chenjing; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2013-08-07

    Alzheimer's disease (AD) chiefly characterizes a progressively neurodegenerative disorder of the brain, and eventually leads to irreversible loss of intellectual abilities. The β-amyloid (Aβ)-induced neurodegeneration is believed to be the main pathological mechanism of AD, and Aβ production inhibition or its clearance promotion is one of the promising therapeutic strategies for anti-AD research. Here, we report that the natural product arctigenin from Arctium lappa (L.) can both inhibit Aβ production by suppressing β-site amyloid precursor protein cleavage enzyme 1 expression and promote Aβ clearance by enhancing autophagy through AKT/mTOR signaling inhibition and AMPK/Raptor pathway activation as investigated in cells and APP/PS1 transgenic AD model mice. Moreover, the results showing that treatment of arctigenin in mice highly decreased Aβ formation and senile plaques and efficiently ameliorated AD mouse memory impairment strongly highlight the potential of arctigenin in anti-AD drug discovery.

  18. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

    Science.gov (United States)

    Han, Sung; Tai, Chao; Westenbroek, Ruth E; Yu, Frank H; Cheah, Christine S; Potter, Gregory B; Rubenstein, John L; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-09-20

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.

  19. High Insulin Levels in KK-Ay Diabetic Mice Cause Increased Cortical Bone Mass and Impaired Trabecular Micro-Structure

    Directory of Open Access Journals (Sweden)

    Cen Fu

    2015-04-01

    Full Text Available Type 2 diabetes mellitus (T2DM is a chronic disease characterized by hyperglycemia, hyperinsulinemia and complications, including obesity and osteoporosis. Rodents have been widely used to model human T2DM and investigate its effect on the skeleton. We aimed to investigate skeletal alterations in Yellow Kuo Kondo (KK-Ay diabetic mice displaying high insulin and glucose levels. Bone mineral density (BMD, micro-architecture and bone metabolism-related genes were analyzed. The total femoral areal BMD (aBMD, cortical volumetric BMD (vBMD and thickness were significantly increased in KK-Ay mice, while the trabecular vBMD and mineralized bone volume/tissue volume (BV/TV, trabecular thickness and number were decreased compared to C57BL mice. The expression of both osteoblast-related genes, such as osteocalcin (OC, bone sialoprotein, Type I Collagen, osteonectin, RUNX2 and OSX, and osteoclast-related genes, such as TRAP and TCIRG, were up-regulated in KK-Ay mice. Correlation analyses showed that serum insulin levels were positively associated with aBMD, cortical vBMD and thickness and negatively associated with trabecular vBMD and micro-architecture. In addition, serum insulin levels were positively related to osteoblast-related and osteoclast-related gene expression. Our data suggest that high insulin levels in KK-Ay diabetic mice may increase cortical bone mass and impair trabecular micro-structure by up-regulating osteoblast-and osteoclast-related gene expression.

  20. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  1. Central diabetes insipidus associated with impaired renal aquaporin-1 expression in mice lacking liver X receptor β.

    Science.gov (United States)

    Gabbi, Chiara; Kong, Xiaomu; Suzuki, Hitoshi; Kim, Hyun-Jin; Gao, Min; Jia, Xiao; Ohnishi, Hideo; Ueta, Yoichi; Warner, Margaret; Guan, Youfei; Gustafsson, Jan-Åke

    2012-02-21

    The present study demonstrates a key role for the oxysterol receptor liver X receptor β (LXRβ) in the etiology of diabetes insipidus (DI). Given free access to water, LXRβ(-/-) but not LXRα(-/-) mice exhibited polyuria (abnormal daily excretion of highly diluted urine) and polydipsia (increased water intake), both features of diabetes insipidus. LXRβ(-/-) mice responded to 24-h dehydration with a decreased urine volume and increased urine osmolality. To determine whether the DI was of central or nephrogenic origin, we examined the responsiveness of the kidney to arginine vasopressin (AVP). An i.p. injection of AVP to LXRβ(-/-) mice revealed a partial kidney response: There was no effect on urine volume, but there was a significant increase of urine osmolality, suggesting that DI may be caused by a defect in central production of AVP. In the brain of WT mice LXRβ was expressed in the nuclei of magnocellular neurons in the supraoptic and paraventricular nuclei of the hypothalamus. In LXRβ(-/-) mice the expression of AVP was markedly decreased in the magnocellular neurons as well as in urine collected over a 24-h period. The persistent high urine volume after AVP administration was traced to a reduction in aquaporin-1 expression in the kidney of LXRβ(-/-) mice. The LXR agonist (GW3965) in WT mice elicited an increase in urine osmolality, suggesting that LXRβ is a key receptor in controlling water balance with targets in both the brain and kidney, and it could be a therapeutic target in disorders of water balance.

  2. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice.

    Directory of Open Access Journals (Sweden)

    Alexander Kurz

    2010-07-01

    Full Text Available Parkinson's disease (PD, the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA. PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons.Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD was absent in corticostriatal slices from old transgenic mice.Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.

  3. Communication Impairments in Mice Lacking Shank1: Reduced Levels of Ultrasonic Vocalizations and Scent Marking Behavior

    Science.gov (United States)

    Wöhr, Markus; Roullet, Florence I.; Hung, Albert Y.; Sheng, Morgan; Crawley, Jacqueline N.

    2011-01-01

    Autism is a neurodevelopmental disorder with a strong genetic component. Core symptoms are abnormal reciprocal social interactions, qualitative impairments in communication, and repetitive and stereotyped patterns of behavior with restricted interests. Candidate genes for autism include the SHANK gene family, as mutations in SHANK2 and SHANK3 have been detected in several autistic individuals. SHANK genes code for a family of scaffolding proteins located in the postsynaptic density of excitatory synapses. To test the hypothesis that a mutation in SHANK1 contributes to the symptoms of autism, we evaluated Shank1 −/− null mutant mice for behavioral phenotypes with relevance to autism, focusing on social communication. Ultrasonic vocalizations and the deposition of scent marks appear to be two major modes of mouse communication. Our findings revealed evidence for low levels of ultrasonic vocalizations and scent marks in Shank1 −/− mice as compared to wildtype Shank1 +/+ littermate controls. Shank1 −/− pups emitted fewer vocalizations than Shank1+/+ pups when isolated from mother and littermates. In adulthood, genotype affected scent marking behavior in the presence of female urinary pheromones. Adult Shank1 −/− males deposited fewer scent marks in proximity to female urine than Shank1+/+ males. Call emission in response to female urinary pheromones also differed between genotypes. Shank1+/+ mice changed their calling pattern dependent on previous female interactions, while Shank1 −/− mice were unaffected, indicating a failure of Shank1 −/− males to learn from a social experience. The reduced levels of ultrasonic vocalizations and scent marking behavior in Shank1 −/− mice are consistent with a phenotype relevant to social communication deficits in autism. PMID:21695253

  4. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  5. Ethanol extract of Scutellaria baicalensis Georgi prevents oxidative damage and neuroinflammation and memorial impairments in artificial senescense mice

    Directory of Open Access Journals (Sweden)

    Choi Youkyung

    2011-02-01

    Full Text Available Abstract Aging is a progressive process related to the accumulation of oxidative damage and neuroinflammation. We tried to find the anti-amnesic effect of the Scutellaria baicalens Georgia (SBG ethanol extract and its major ingredients. The antioxidative effect of SBG on the mice model with memory impairment induced by chronic injection of D-galactose and sodium nitrate was studied. The Y-maze test was used to evaluate the learning and memory function of mice. The activities of superoxide dismutase, catalase and the content of malondialdehyde in brain tissue were used for the antioxidation activities. Neuropathological alteration and expression of bcl-2 protein were investigated in the hippocampus by immunohistochemical staining. ROS, neuroinflammation and apoptosis related molecules expression such as Cox-2, iNOS, procaspase-3, cleaved caspase-3, 8 and 9, bcl-2 and bax protein and the products of iNOS and Cox-2, NO, PGE2, were studied using LPS-activated Raw 264.7 cells and microglia BV2 cells. The cognition of mice was significantly improved by the treatment of baicalein and 50 and 100 mg/kg of SBG in Y-maze test. Both SBG groups showed strong antioxidation, antiinflammation effects with significantly decreased iNOS and Cox-2 expression, NO and PGE2 production, increased bcl-2 and decreased bax and cleaved caspase-3 protein expression in LPS induced Raw 264.7 and BV2 cells. We also found that apoptotic pathway was caused by the intrinsic mitochondrial pathway with the decreased cleaved caspase-9 and unchanged cleaved caspase-8 expression. These findings suggest that SBG, especially high dose, 100 mg/kg, improved the memory impairments significantly and showed antioxidation, antiinflammation and intrinsic caspase-mediated apoptosis effects.

  6. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  7. Aging-associated oxidative stress inhibits liver progenitor cell activation in mice.

    Science.gov (United States)

    Cheng, Yiji; Wang, Xue; Wang, Bei; Zhou, Hong; Dang, Shipeng; Shi, Yufang; Hao, Li; Luo, Qingquan; Jin, Min; Zhou, Qianjun; Zhang, Yanyun

    2017-04-29

    Recent studies have discovered aging-associated changes of adult stem cells in various tissues and organs, which potentially contribute to the organismal aging. However, aging-associated changes of liver progenitor cells (LPCs) remain elusive. Employing young (2-month-old) and old (24-month-old) mice, we found diverse novel alterations in LPC activation during aging. LPCs in young mice could be activated and proliferate upon liver injury, whereas the counterparts in old mice failed to respond and proliferate, leading to the impaired liver regeneration. Surprisingly, isolated LPCs from young and old mice did not exhibit significant difference in their clonogenic and proliferative capacity. Later, we uncovered that the decreased activation and proliferation of LPCs were due to excessive reactive oxygen species produced by neutrophils infiltrated into niche, which was resulted from chemokine production from activated hepatic stellate cells during aging. This study demonstrates aging-associated changes in LPC activation and reveals critical roles for the stem cell niche, including neutrophils and hepatic stellate cells, in the negative regulation of LPCs during aging.

  8. Gestational exposure to titanium dioxide nanoparticles impairs the placentation through dysregulation of vascularization, proliferation and apoptosis in mice.

    Science.gov (United States)

    Zhang, Lu; Xie, Xingxing; Zhou, Yigang; Yu, Dainan; Deng, Yu; Ouyang, Jiexiu; Yang, Bei; Luo, Dan; Zhang, Dalei; Kuang, Haibin

    2018-01-01

    Titanium dioxide nanoparticles (TiO 2 NPs) have recently found applications in a wide variety of consumer goods. TiO 2 NPs exposure significantly increases fetal deformities and mortality. However, the potential toxicity of TiO 2 NPs on the growth and development of placenta has been rarely studied during mice pregnancy. The objective of this study was to investigate the effects of maternal exposure of TiO 2 NPs on the placentation. Mice were administered TiO 2 NPs by gavage at 0, 1 and 10 mg/kg/day from gestational day (GD) 1 to GD 13. Uteri and placentas from these mice were collected and counted the numbers of implanted and resorbed embryo and measured the placental weight on GD 13. Placental morphometry was observed by hematoxylin and eosin staining. The levels of Hand1, Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA were assessed by qRT-PCR. Uterine NK (uNK) cells were detected by using DBA lectin. Laminin immunohistochemical staining was to identify fetal vessels. Western blotting and transmission electron micrograph (TEM) were used to assess the apoptosis of placenta. No treatment-related difference was observed in the numbers of implanted and resorbed embryos and weight of placenta between the groups. However, 1 mg/kg/day TiO 2 NPs treatment significantly reduced the ratio of placenta/body weight on GD 13. The proportion of spongiotrophoblast in the 10 mg/kg/day dose group became higher than that in the control group, yet that of labyrinth was significantly lower in 10 mg/kg/day mice. The expression levels of Hand1 , Esx1 , Eomes , Hand2 , Ascl2 and Fra1 mRNA markedly decreased in TiO 2 NP treated placentas. Furthermore, TiO 2 NPs treatment impaired the formation of intricate networks of fetal vessels and reduced the number of uNK cells, and inhibited proliferation and induced apoptosis of placenta by nuclear pyknosis, the activation of caspase-3 and upregulation of Bax protein and downregulation of Bcl-2 protein on GD 13. Gestational exposure to TiO 2 NPs

  9. Neuroligin 2 R215H Mutant Mice Manifest Anxiety, Increased Prepulse Inhibition, and Impaired Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Chia-Hsiang Chen

    2017-11-01

    Full Text Available Neuroligin 2 (NLGN2 is a postsynaptic adhesion protein that plays an essential role in synaptogenesis and function of inhibitory neuron. We previously identified a missense mutation R215H of the NLGN2 in a patient with schizophrenia. This missense mutation was shown to be pathogenic in several cell-based assays. The objective of this study was to better understand the behavioral consequences of this mutation in vivo. We generated a line of transgenic mice carrying this mutation using a recombinant-based method. The mice were subjected to a battery of behavioral tests including open field locomotor activity assay, prepulse inhibition (PPI assay, accelerated rotarod test, novel location and novel recognition tests, elevated plus-maze (EPM test, and Morris water maze test. The transgenic animals were viable and fertile, but the Nlgn2 R215H knock-in (KI homozygous mice showed growth retardation, anxiety-like behavior, increased PPI, and impaired spatial learning and memory. There was no significant interaction between sex and genotype in most behavioral tests; however, we observed a significant interaction between sex and genotype in EPM test in this study. Also, we found that the Nlgn2 R215H homozygous KI mice did not express the NLGN2 protein, resembling Nlgn2 knockout mice. Our results demonstrate that Nlgn2 R215H KI homozygous mice manifest several behavioral abnormalities similar to those found in psychiatric patients carrying NLGN2 mutations, indicating that dysfunction of NLGN2 contributes to the pathogenesis of certain psychiatric symptoms commonly present in various mental disorders, not limited to schizophrenia.

  10. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice

    DEFF Research Database (Denmark)

    Tencerova, Michaela; Figeac, Florence; Ditzel, Nicholas

    2018-01-01

    that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison...... to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory...... demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin...

  11. Dorsal hippocampal microinjection of chlorpheniramine reverses the anxiolytic-like effects of l-histidine and impairs emotional memory in mice.

    Science.gov (United States)

    Canto-de-Souza, L; Garção, D C; Romaguera, F; Mattioli, R

    2015-02-05

    Several findings have pointed to the role of histaminergic neurotransmission in the modulation of anxiety-like behaviors and emotional memory. The elevated plus-maze (EPM) test has been widely used to investigate the process of anxiety and also has been used to investigate the process of learning and memory. Visual cues are relevant to the formation of spatial maps, and as the hippocampus is involved in this task, experiment 1 explored this issue. Experiment 2 investigated the effects of intraperitoneal (i.p.) injections of l-histidine (LH, a precursor of histamine) and of intra-dorsal hippocampus (intra-DH) injections of chlorpheniramine (CPA, an H1 receptor antagonist) on anxiety and emotional memory in mice re-exposed to the EPM. Mice received saline (SAL) or LH i.p. and SAL or CPA (0.016, 0.052, and 0.16 nmol/0.1 μl) intra-DH prior to Trial 1 (T1) and Trial 2 (T2). No significant changes were observed in the number of enclosed-arm entries (EAE) in T1, an EPM index of general exploratory activity. LH had an anxiolytic-like effect that was reversed by intra-DH injections of CPA. T2 versus T1 analysis revealed that only the lower dose of CPA resulted in impaired emotional memory. Combined injections of LH and CPA revealed that higher doses of CPA impair emotional memory. Taken together, these results suggest that LH and H1 receptors present in the dorsal hippocampus are involved in anxiety-related behaviors and emotional memory in mice submitted to EPM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Overexpression of SIRT1 in mouse forebrain impairs lipid/glucose metabolism and motor function.

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    Full Text Available SIRT1 plays crucial roles in glucose and lipid metabolism, and has various functions in different tissues including brain. The brain-specific SIRT1 knockout mice display defects in somatotropic signaling, memory and synaptic plasticity. And the female mice without SIRT1 in POMC neuron are more sensitive to diet-induced obesity. Here we created transgenic mice overexpressing SIRT1 in striatum and hippocampus under the control of CaMKIIα promoter. These mice, especially females, exhibited increased fat accumulation accompanied by significant upregulation of adipogenic genes in white adipose tissue. Glucose tolerance of the mice was also impaired with decreased Glut4 mRNA levels in muscle. Moreover, the SIRT1 overexpressing mice showed decreased energy expenditure, and concomitantly mitochondria-related genes were decreased in muscle. In addition, these mice showed unusual spontaneous physical activity pattern, decreased activity in open field and rotarod performance. Further studies demonstrated that SIRT1 deacetylated IRS-2, and upregulated phosphorylation level of IRS-2 and ERK1/2 in striatum. Meanwhile, the neurotransmitter signaling in striatum and the expression of endocrine hormones in hypothalamus and serum T3, T4 levels were altered. Taken together, our findings demonstrate that SIRT1 in forebrain regulates lipid/glucose metabolism and motor function.

  14. Dysfunction of the RAR/RXR signaling pathway in the forebrain impairs hippocampal memory and synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Nomoto Masanori

    2012-02-01

    Full Text Available Abstract Background Retinoid signaling pathways mediated by retinoic acid receptor (RAR/retinoid × receptor (RXR-mediated transcription play critical roles in hippocampal synaptic plasticity. Furthermore, recent studies have shown that treatment with retinoic acid alleviates age-related deficits in hippocampal long-term potentiation (LTP and memory performance and, furthermore, memory deficits in a transgenic mouse model of Alzheimer's disease. However, the roles of the RAR/RXR signaling pathway in learning and memory at the behavioral level have still not been well characterized in the adult brain. We here show essential roles for RAR/RXR in hippocampus-dependent learning and memory. In the current study, we generated transgenic mice in which the expression of dominant-negative RAR (dnRAR could be induced in the mature brain using a tetracycline-dependent transcription factor and examined the effects of RAR/RXR loss. Results The expression of dnRAR in the forebrain down-regulated the expression of RARβ, a target gene of RAR/RXR, indicating that dnRAR mice exhibit dysfunction of the RAR/RXR signaling pathway. Similar with previous findings, dnRAR mice displayed impaired LTP and AMPA-mediated synaptic transmission in the hippocampus. More importantly, these mutant mice displayed impaired hippocampus-dependent social recognition and spatial memory. However, these deficits of LTP and memory performance were rescued by stronger conditioning stimulation and spaced training, respectively. Finally, we found that pharmacological blockade of RARα in the hippocampus impairs social recognition memory. Conclusions From these observations, we concluded that the RAR/RXR signaling pathway greatly contributes to learning and memory, and LTP in the hippocampus in the adult brain.

  15. Impairment of blood lipids pattern in gamma irradiated albino mice and prophylactic role of thiols and W R-2721

    Energy Technology Data Exchange (ETDEWEB)

    EL-dighidy, E A.M.; El-Kady, M H.R. [National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, (Egypt)

    1987-12-31

    The present work aims to investigate the effect of shot doses of whole body gamma irradiation at the levels, 6, 7.5, 11, 25 and 15 Gy, on the blood lipids pattern in male swiss albino mice. This has been manifested by the levels of total lipids, triglycerides, phospholipids and cholesterol. The radioprotective capacities of two sulfhydryl compounds: thiols and W R-2721, against impairment in blood lipids pattern, have been evaluated in mice received the higher shot radiation dose-level at 15 Gy. Significant increases in the levels of blood total lipid, phospholipids, triglycerides and cholesterol have been recorded on the third day post exposure under the experiment conditions, the data indicated more efficient protection of blood lipid pattern exerted by W R-2721 than in case of thiols. 2 figs., 2 tabs.

  16. Impairment of blood lipids pattern in gamma irradiated albino mice and prophylactic role of thiols and W R-2721

    International Nuclear Information System (INIS)

    EL-dighidy, E.A.M.; El-Kady, M.H.R.

    1986-01-01

    The present work aims to investigate the effect of shot doses of whole body gamma irradiation at the levels, 6, 7.5, 11, 25 and 15 Gy, on the blood lipids pattern in male swiss albino mice. This has been manifested by the levels of total lipids, triglycerides, phospholipids and cholesterol. The radioprotective capacities of two sulfhydryl compounds: thiols and W R-2721, against impairment in blood lipids pattern, have been evaluated in mice received the higher shot radiation dose-level at 15 Gy. Significant increases in the levels of blood total lipid, phospholipids, triglycerides and cholesterol have been recorded on the third day post exposure under the experiment conditions, the data indicated more efficient protection of blood lipid pattern exerted by W R-2721 than in case of thiols. 2 figs., 2 tabs

  17. Hepatic Aryl hydrocarbon Receptor Nuclear Translocator (ARNT regulates metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Christopher H Scott

    Full Text Available Aryl hydrocarbon Receptor Nuclear Translocator (ARNT and its partners hypoxia-inducible factors (HIF-1α and HIF-2α are candidate factors for the well-known link between the liver, metabolic dysfunction and elevation in circulating lipids and glucose. Methods: Hepatocyte-specific ARNT-null (LARNT, HIF-1α-null (LHIF1α and HIF-2α-null (LHIF2α mice were created.LARNT mice had increased fasting glucose, impaired glucose tolerance, increased glucose production, raised post-prandial serum triglycerides (TG and markedly lower hepatic ATP versus littermate controls. There was increased expression of G6Pase, Chrebp, Fas and Scd-1 mRNAs in LARNT animals. Surprisingly, LHIF1α and LHIF2α mice exhibited no alterations in any metabolic parameter assessed.These results provide convincing evidence that reduced hepatic ARNT can contribute to inappropriate hepatic glucose production and post-prandial dyslipidaemia. Hepatic ARNT may be a novel therapeutic target for improving post-prandial hypertriglyceridemia and glucose homeostasis.

  18. Mitochondria-targeted antioxidant SkQ1 improves impaired dermal wound healing in old mice.

    Science.gov (United States)

    Demyanenko, Ilya A; Popova, Ekaterina N; Zakharova, Vlada V; Ilyinskaya, Olga P; Vasilieva, Tamara V; Romashchenko, Valeria P; Fedorov, Artem V; Manskikh, Vasily N; Skulachev, Maxim V; Zinovkin, Roman A; Pletjushkina, Olga Yu; Skulachev, Vladimir P; Chernyak, Boris V

    2015-07-01

    The process of skin wound healing is delayed or impaired in aging animals. To investigate the possible role of mitochondrial reactive oxygen species (mtROS) in cutaneous wound healing of aged mice, we have applied the mitochondria-targeted antioxidant SkQ1. The SkQ1 treatment resulted in accelerated resolution of the inflammatory phase, formation of granulation tissue, vascularization and epithelization of the wounds. The wounds of SkQ1-treated mice contained increased amount of myofibroblasts which produce extracellular matrix proteins and growth factors mediating granulation tissue formation. This effect resembled SkQ1-induced differentiation of fibroblasts to myofibroblast, observed earlierin vitro. The Transforming Growth Factor beta (TGFb) produced by SkQ1-treated fibroblasts was found to stimulated motility of endothelial cells in vitro, an effect which may underlie pro-angiogenic action of SkQ1 in the wounds. In vitro experiments showed that SkQ1 prevented decomposition of VE-cadherin containing contacts and following increase in permeability of endothelial cells monolayer, induced by pro-inflammatory cytokine TNF. Prevention of excessive reaction of endothelium to the pro-inflammatory cytokine(s) might account for anti-inflammatory effect of SkQ1. Our findings point to an important role of mtROS in pathogenesis of age-related chronic wounds.

  19. Oral intake of beet extract provides protection against skin barrier impairment in hairless mice.

    Science.gov (United States)

    Kawano, Ken-Ichi; Umemura, Kazuo

    2013-05-01

    The epidermis acts as a functional barrier against the external environment. Disturbances in the function of this barrier cause water loss and increase the chances of penetration by various irritable stimuli, leading to skin diseases such as dry skin, atopic dermatitis, and psoriasis. Ceramides are a critical natural element of the protective epidermal barrier. The aim of this study was to evaluate whether the oral intake of beet (Beta vulgaris) extract, a natural product rich in glucosylceramide (GlcCer), may prevent disturbance in skin barrier function. When HR-1 hairless mice were fed a special diet (HR-AD), transepidermal water loss (TEWL) from the dorsal skin increased, with a compensatory increase in water intake after 5 weeks. Mice fed with HR-AD had dry skin with erythema and showed increased scratching behaviour. Histological examinations revealed a remarkable increase in the thickness of the skin at 8 weeks. Supplemental addition of beet extract, which contained GlcCer at a final concentration of 0.1%, significantly prevented an increase TEWL, water intake, cumulative scratching time, and epidermal thickness at 8 weeks. These results indicate that oral intake of beet extract shows potential for preventing skin diseases associated with impaired skin barrier function. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Impaired LRP6-TCF7L2 Activity Enhances Smooth Muscle Cell Plasticity and Causes Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Roshni Srivastava

    2015-10-01

    Full Text Available Mutations in Wnt-signaling coreceptor LRP6 have been linked to coronary artery disease (CAD by unknown mechanisms. Here, we show that reduced LRP6 activity in LRP6R611C mice promotes loss of vascular smooth muscle cell (VSMC differentiation, leading to aortic medial hyperplasia. Carotid injury augmented these effects and led to partial to total vascular obstruction. LRP6R611C mice on high-fat diet displayed dramatic obstructive CAD and exhibited an accelerated atherosclerotic burden on LDLR knockout background. Mechanistically, impaired LRP6 activity leads to enhanced non-canonical Wnt signaling, culminating in diminished TCF7L2 and increased Sp1-dependent activation of PDGF signaling. Wnt3a administration to LRP6R611C mice improved LRP6 activity, led to TCF7L2-dependent VSMC differentiation, and rescued post-carotid-injury neointima formation. These findings demonstrate the critical role of intact Wnt signaling in the vessel wall, establish a causal link between impaired LRP6/TCF7L2 activities and arterial disease, and identify Wnt signaling as a therapeutic target against CAD.

  1. The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice.

    Science.gov (United States)

    Lu, Cong; Lv, Jingwei; Dong, Liming; Jiang, Ning; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-03-01

    Sleep deprivation (SD) is associated with oxidative stress that causes learning and memory impairment. 20(S)-Protopanaxadiol (PPD), one of the protopanaxadiol-type saponins, has antioxidant and neuroprotective effect. This study was designed to research the protective effect of PPD against cognitive deficits induced by chronic sleep deprivation (CSD) in mice. The CSD model was induced by subjecting the mice to our self-made Sleep Interruption Apparatus (SIA) continuously for 14 days. The memory enhancing effects of PPD were evaluated by behavioral tests and the related mechanism was further explored by observing the oxidative stress changes in the cortex and hippocampus of mice. The results revealed that PPD (20 and 40 μmol/kg, i.p.) administration significantly improved the cognitive performance of CSD model mice in object location recognition experiment, novel object recognition task and Morris water maze test. Furthermore, PPD effectively restored the levels/activities of antioxidant defense biomarkers in the cortex and hippocampus, including the superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, glutathione (GSH), and lipid peroxidation (LPO). In conclusion, PPD could attenuate cognitive deficits induced by CSD, and the neuroprotective effect of PPD might be mediated by alleviation of oxidative stress. It was assumed that PPD has the potential to be a neuroprotective substance for cognition dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  3. Left-right asymmetry defect in the hippocampal circuitry impairs spatial learning and working memory in iv mice.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Goto

    Full Text Available Although left-right (L-R asymmetry is a fundamental feature of higher-order brain function, little is known about how asymmetry defects of the brain affect animal behavior. Previously, we identified structural and functional asymmetries in the circuitry of the mouse hippocampus resulting from the asymmetrical distribution of NMDA receptor GluR ε2 (NR2B subunits. We further examined the ε2 asymmetry in the inversus viscerum (iv mouse, which has randomized laterality of internal organs, and found that the iv mouse hippocampus exhibits right isomerism (bilateral right-sidedness in the synaptic distribution of the ε2 subunit, irrespective of the laterality of visceral organs. To investigate the effects of hippocampal laterality defects on higher-order brain functions, we examined the capacity of reference and working memories of iv mice using a dry maze and a delayed nonmatching-to-position (DNMTP task, respectively. The iv mice improved dry maze performance more slowly than control mice during acquisition, whereas the asymptotic level of performance was similar between the two groups. In the DNMTP task, the iv mice showed poorer accuracy than control mice as the retention interval became longer. These results suggest that the L-R asymmetry of hippocampal circuitry is critical for the acquisition of reference memory and the retention of working memory.

  4. Peripheral surgical wounding and age-dependent neuroinflammation in mice.

    Directory of Open Access Journals (Sweden)

    Zhipeng Xu

    Full Text Available Post-operative cognitive dysfunction is associated with morbidity and mortality. However, its neuropathogenesis remains largely to be determined. Neuroinflammation and accumulation of β-amyloid (Aβ have been reported to contribute to cognitive dysfunction in humans and cognitive impairment in animals. Our recent studies have established a pre-clinical model in mice, and have found that the peripheral surgical wounding without the influence of general anesthesia induces an age-dependent Aβ accumulation and cognitive impairment in mice. We therefore set out to assess the effects of peripheral surgical wounding, in the absence of general anesthesia, on neuroinflammation in mice with different ages. Abdominal surgery under local anesthesia was established in 9 and 18 month-old mice. The levels of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, Iba1 positive cells (the marker of microglia activation, CD33, and cognitive function in mice were determined. The peripheral surgical wounding increased the levels of TNF-α, IL-6, and Iba1 positive cells in the hippocampus of both 9 and 18 month-old mice, and age potentiated these effects. The peripheral surgical wounding increased the levels of CD33 in the hippocampus of 18, but not 9, month-old mice. Finally, anti-inflammatory drug ibuprofen ameliorated the peripheral surgical wounding-induced cognitive impairment in 18 month-old mice. These data suggested that the peripheral surgical wounding could induce an age-dependent neuroinflammation and elevation of CD33 levels in the hippocampus of mice, which could lead to cognitive impairment in aged mice. Pending further studies, anti-inflammatory therapies may reduce the risk of postoperative cognitive dysfunction in elderly patients.

  5. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  6. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles

    International Nuclear Information System (INIS)

    Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve; Hung, Yao-Ching; Lin, Li-Wei; Liau, Ian

    2010-01-01

    We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg -1 . ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.

  7. Size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu-Shiun; Hong, Meng-Yeng; Huang, G Steve [Institute of Nanotechnology, Department of Materials Science and Engineering, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Hung, Yao-Ching [Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, China Medical University and Hospital, 91 Hsueh Shih Road, Taichung 404, Taiwan (China); Lin, Li-Wei [School of Chinese Medicine for Post-Baccalaureate, I-Shou University, 8 Yida Road, Yanchao Township, Kaohsiung Country 82445, Taiwan (China); Liau, Ian, E-mail: gstevehuang@mail.nctu.edu.tw [Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China)

    2010-12-03

    We explored the size-dependent impairment of cognition in mice caused by the injection of gold nanoparticles (GNPs). GNPs of 17 and 37 nm in diameter were injected intraperitoneally into BALB/c mice at doses ranging from 0.5 to 14.6 mg kg{sup -1}. ICP-MS was performed on brain tissue collected 1, 14 and 21 days after the injection. A passive-avoidance test was performed on day 21. Monoamine levels were determined on day 21. The microscopic distribution of GNPs in the hippocampus was examined using coherent anti-Stokes Raman scattering (CARS) microscopy and transmission electron microscopy (TEM). The results indicated that 17 nm GNPs passed through the blood-brain barrier more rapidly than 37 nm GNPs. Treatment with 17 nm GNPs decreased the latency time, which was comparable to the effect of scopolamine treatment, while 37 nm GNPs showed no significant effect. Dopamine levels and serotonin levels in the brain were significantly altered by the injection of 17 and 37 nm GNPs. GNPs affected dopaminergic and serotonergic neurons. CARS microscopy indicated that 17 nm GNPs entered the Cornu Ammonis (CA) region of the hippocampus, while 37 nm GNPs were excluded from the CA region. TEM verified the presence of 17 nm GNPs in the cytoplasm of pyramidal cells. In this study, we showed that the ability of GNPs to damage cognition in mice was size-dependent and associated with the ability of the particles to invade the hippocampus. The dosage and duration of the treatment should be taken into account if GNPs are used in the future as vehicles to carry therapeutic agents into the brain.

  8. Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity.

    Science.gov (United States)

    Jais, Alexander; Solas, Maite; Backes, Heiko; Chaurasia, Bhagirath; Kleinridders, André; Theurich, Sebastian; Mauer, Jan; Steculorum, Sophie M; Hampel, Brigitte; Goldau, Julia; Alber, Jens; Förster, Carola Y; Eming, Sabine A; Schwaninger, Markus; Ferrara, Napoleone; Karsenty, Gerard; Brüning, Jens C

    2016-05-05

    High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Congenital amegakaryocytic thrombocytopenia iPS cells exhibit defective MPL-mediated signaling.

    Science.gov (United States)

    Hirata, Shinji; Takayama, Naoya; Jono-Ohnishi, Ryoko; Endo, Hiroshi; Nakamura, Sou; Dohda, Takeaki; Nishi, Masanori; Hamazaki, Yuhei; Ishii, Ei-ichi; Kaneko, Shin; Otsu, Makoto; Nakauchi, Hiromitsu; Kunishima, Shinji; Eto, Koji

    2013-09-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) is caused by the loss of thrombopoietin receptor-mediated (MPL-mediated) signaling, which causes severe pancytopenia leading to bone marrow failure with onset of thrombocytopenia and anemia prior to leukopenia. Because Mpl(-/-) mice do not exhibit the human disease phenotype, we used an in vitro disease tracing system with induced pluripotent stem cells (iPSCs) derived from a CAMT patient (CAMT iPSCs) and normal iPSCs to investigate the role of MPL signaling in hematopoiesis. We found that MPL signaling is essential for maintenance of the CD34+ multipotent hematopoietic progenitor (MPP) population and development of the CD41+GPA+ megakaryocyte-erythrocyte progenitor (MEP) population, and its role in the fate decision leading differentiation toward megakaryopoiesis or erythropoiesis differs considerably between normal and CAMT cells. Surprisingly, complimentary transduction of MPL into normal or CAMT iPSCs using a retroviral vector showed that MPL overexpression promoted erythropoiesis in normal CD34+ hematopoietic progenitor cells (HPCs), but impaired erythropoiesis and increased aberrant megakaryocyte production in CAMT iPSC-derived CD34+ HPCs, reflecting a difference in the expression of the transcription factor FLI1. These results demonstrate that impaired transcriptional regulation of the MPL signaling that normally governs megakaryopoiesis and erythropoiesis underlies CAMT.

  10. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The SocioBox: A novel paradigm to assess complex social recognition in male mice

    Directory of Open Access Journals (Sweden)

    Dilja Krueger-Burg

    2016-08-01

    Full Text Available Impairments in social skills are central to mental disease, and developing tools for their assessment in mouse models is essential. Here we present the SocioBox, a new behavioral paradigm to measure social recognition memory. Using this paradigm, we show that male wildtype mice of different strains can readily identify an unfamiliar mouse among 5 newly acquainted animals. In contrast, female mice exhibit lower locomotor activity during social exploration in the SocioBox compared to males and do not seem to discriminate between acquainted and unfamiliar mice, likely reflecting inherent differences in gender-specific territorial tasks. In addition to a simple quantification of social interaction time of mice grounded on predefined spatial zones (zone-based method, we developed a set of unbiased, data-driven analysis tools based on heat map representations and characterized by greater sensitivity. First proof-of-principle that the SocioBox allows diagnosis of social recognition memory deficits is provided using male PSD-95 heterozygous knockout mice, a mouse model related to psychiatric pathophysiology.

  12. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity.

    Science.gov (United States)

    Lo, Fu-Sun; Erzurumlu, Reha S; Powell, Elizabeth M

    2016-03-30

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated geneMETtyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAAreceptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAAreceptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAAreceptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. Copyright © 2016 the authors 0270-6474/16/363691-07$15.00/0.

  13. Fabp4-Cre-mediated Sirt6 deletion impairs adipose tissue function and metabolic homeostasis in mice.

    Science.gov (United States)

    Xiong, Xiwen; Zhang, Cuicui; Zhang, Yang; Fan, Rui; Qian, Xinlai; Dong, X Charlie

    2017-06-01

    SIRT6 is a member of sirtuin family of deacetylases involved in diverse processes including genome stability, metabolic homeostasis and anti-inflammation. However, its function in the adipose tissue is not well understood. To examine the metabolic function of SIRT6 in the adipose tissue, we generated two mouse models that are deficient in Sirt6 using the Cre-lox approach. Two commonly used Cre lines that are driven by either the mouse Fabp4 or Adipoq gene promoter were chosen for this study. The Sirt6- knockout mice generated by the Fabp4-Cre line ( Sirt6 f/f : Fabp4-Cre) had a significant increase in both body weight and fat mass and exhibited glucose intolerance and insulin resistance as compared with the control wild-type mice. At the molecular levels, the Sirt6 f/f :Fabp4-Cre-knockout mice had increased expression of inflammatory genes including F4/80, TNFα, IL-6 and MCP-1 in both white and brown adipose tissues. Moreover, the knockout mice showed decreased expression of the adiponectin gene in the white adipose tissue and UCP1 in the brown adipose tissue, respectively. In contrast, the Sirt6 knockout mice generated by the Adipoq-Cre line ( Sirt6 f/f :Adipoq-Cre) only had modest insulin resistance. In conclusion, our data suggest that the function of SIRT6 in the Fabp4-Cre-expressing cells in addition to mature adipocytes plays a critical role in body weight maintenance and metabolic homeostasis. © 2017 Society for Endocrinology.

  14. Diet-induced obesity, energy metabolism and gut microbiota in C57BL/6J mice fed Western diets based on lean seafood or lean meat mixtures.

    Science.gov (United States)

    Holm, Jacob Bak; Rønnevik, Alexander; Tastesen, Hanne Sørup; Fjære, Even; Fauske, Kristin Røen; Liisberg, Ulrike; Madsen, Lise; Kristiansen, Karsten; Liaset, Bjørn

    2016-05-01

    High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.

    Science.gov (United States)

    Allende, Maria L; Cook, Emily K; Larman, Bridget C; Nugent, Adrienne; Brady, Jacqueline M; Golebiowski, Diane; Sena-Esteves, Miguel; Tifft, Cynthia J; Proia, Richard L

    2018-03-01

    Sandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of β-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells using CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB -corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids, but not the HEXB -corrected organoids, accumulated GM2 ganglioside and exhibited increased size and cellular proliferation compared with the HEXB -corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses.

  16. Cognitive performance of male and female C57BL/6J mice after repetitive concussive brain injuries.

    Science.gov (United States)

    Velosky, Alexander G; Tucker, Laura B; Fu, Amanda H; Liu, Jiong; McCabe, Joseph T

    2017-05-01

    In contact sports, repetitive concussive brain injury (rCBI) is the prevalent form of head injury seen in athletes. The need for effective treatment is urgent as rCBI has been associated with a host of cognitive, behavioral and neurological complaints. There has been a growing trend in the use of female animals in pre-clinical research, but few studies have investigated possible sex differences following rCBI. The goal of the current study was to determine any differences between male and female C57BL/6J mice on assessments of learning and memory after repetitive concussive injury. Following rCBI by impact to the scalp, male mice exhibited longer righting reflexes during acute recovery. In both sexes, there were no evident histopathological changes observed in the underlying cerebral cortex or hippocampus. Reactive astrogliosis was elevated in the corpus callosum and optic tract, and astrogliosis was slightly less in the optic tract of female mice. rCBI mice exhibited impairment during the learning phase of the Morris water maze (MWM), but female mice, in comparison to male mice, were observed to have superior spatial memory during standard MWM probe trials. Female mice were overall more active, evidenced by greater distances traveled in the y-maze and greater swim speeds in the MWM. The results of this study demonstrate sex differences in cognitive performance following rCBI and support previous research suggesting the neuroprotective role of sex in brain injury. Published by Elsevier B.V.

  17. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  18. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    Science.gov (United States)

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  19. Constitutive β-catenin activation in osteoblasts impairs terminal osteoblast differentiation and bone quality

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Quanwei; Chen, Sixu; Qin, Hao [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Feng, Jianquan [Department of Biomedical Sciences, Baylor College of Dentistry, Texas A& M Health Science Center, Dallas, TX 75246 (United States); Liu, Huayu; Liu, Daocheng; Li, Ang; Shen, Yue; Zhong, Xiaozheng; Li, Junfeng [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China); Zong, Zhaowen, E-mail: zongzhaowen@sina.cn [State Key Laboratory of Trauma, Burn and Combined injury, Department of Trauma Surgery, Daping Hospital, Third Military Medical University, ChongQing 400042 (China)

    2017-01-01

    Accumulating evidence suggests that Wnt/β-catenin signaling plays a central role in controlling bone mass. We previously reported that constitutive activation of β-catenin (CA-β-catenin) in osteoblasts potentially has side effects on the bone growth and bone remodeling process, although it could increase bone mass. The present study aimed to observe the effects of osteoblastic CA-β-catenin on bone quality and to investigate possible mechanisms of these effects. It was found that CA-β-catenin mice exhibited lower mineralization levels and disorganized collagen in long bones as confirmed by von Kossa staining and sirius red staining, respectively. Also, bone strength decreased significantly in CA-β-catenin mice. Then the effect of CA-β-catenin on biological functions of osteoblasts were investigated and it was found that the expression levels of osteocalcin, a marker for the late differentiation of osteoblasts, decreased in CA-β-catenin mice, while the expression levels of osterix and alkaline phosphatase, two markers for the early differentiation of osteoblasts, increased in CA-β-catenin mice. Furthermore, higher proliferation rate were revealed in osteoblasts that were isolated from CA-β-catenin mice. The Real-time PCR and western blot examination found that the expression level of c-myc and cyclin D1, two G1 progression-related molecules, increased in osteoblasts that were isolated from the CA-β-catenin mice, and the expression levels of CDK14 and cyclin Y, two mitotic-related molecules that can accelerate cells entering into S and G2/M phases, increased in osteoblasts that were isolated from the CA-β-catenin mice. In summary, osteoblastic CA-β-catenin kept osteoblasts in high proliferative state and impaired the terminal osteoblast differentiation, and this led to changed bone structure and decreased bone strength. - Highlights: • Wnt/β-catenin signaling plays a central role in controlling bone mass. • CA-β-catenin has side effects on the bone

  20. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Katrina L Paumier

    Full Text Available Parkinson's disease (PD pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn. Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age. Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1-2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD. Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic

  1. Hyperandrogenemia Induced by Letrozole Treatment of Pubertal Female Mice Results in Hyperinsulinemia Prior to Weight Gain and Insulin Resistance.

    Science.gov (United States)

    Skarra, Danalea V; Hernández-Carretero, Angelina; Rivera, Alissa J; Anvar, Arya R; Thackray, Varykina G

    2017-09-01

    Women with polycystic ovary syndrome (PCOS) diagnosed with hyperandrogenism and ovulatory dysfunction have an increased risk of developing metabolic disorders, including type 2 diabetes and cardiovascular disease. We previously developed a model that uses letrozole to elevate endogenous testosterone levels in female mice. This model has hallmarks of PCOS, including hyperandrogenism, anovulation, and polycystic ovaries, as well as increased abdominal adiposity and glucose intolerance. In the current study, we further characterized the metabolic dysfunction that occurs after letrozole treatment to determine whether this model represents a PCOS-like metabolic phenotype. We focused on whether letrozole treatment results in altered pancreatic or liver function as well as insulin resistance. We also investigated whether hyperinsulinemia occurs secondary to weight gain and insulin resistance in this model or if it can occur independently. Our study demonstrated that letrozole-treated mice developed hyperinsulinemia after 1 week of treatment and without evidence of insulin resistance. After 2 weeks of letrozole treatment, mice became significantly heavier than placebo mice, demonstrating that weight gain was not required to develop hyperinsulinemia. After 5 weeks of letrozole treatment, mice exhibited blunted glucose-stimulated insulin secretion, insulin resistance, and impaired insulin-induced phosphorylation of AKT in skeletal muscle. Moreover, letrozole-treated mice exhibited dyslipidemia after 5 weeks of treatment but no evidence of hepatic disease. Our study demonstrated that the letrozole-induced PCOS mouse model exhibits multiple features of the metabolic dysregulation observed in obese, hyperandrogenic women with PCOS. This model will be useful for mechanistic studies investigating how hyperandrogenemia affects metabolism in females. Copyright © 2017 Endocrine Society.

  2. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    Directory of Open Access Journals (Sweden)

    Toru eNakamura

    2014-07-01

    Full Text Available Both D1R and D2R knock out (KO mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT mice. First, we examined spontaneous motor activity in the home cage environment for consecutive five days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT

  3. Medan Convention & Exhibition Center (Arsitektur Ekspresionisme)

    OpenAIRE

    Iskandar, Nurul Auni

    2015-01-01

    Medan is one of the third largest city in Indonesia, which is currently being developed, and a city with lots of activities. In the city of Medan has a high investment opportunities for a convention, because of its strategic position in Southeast Asia and also supported by the facility and the potential for tourism in North Sumatra, Medan city has the potential for industrial MICE (Meeting, Incentive, Conference, Exhibition). The construction of Medan Convention & Exhibition Cente...

  4. Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice.

    Science.gov (United States)

    Qiao, Yanhua; Wang, Xingyue; Ma, Lian; Li, Shengguang; Liang, Jing

    2017-10-01

    Deficits in behavioral flexibility and recognition memory are commonly observed in mental illnesses and neurodegenerative diseases. Abnormality of the striatum has been implicated in an association with the pathology of these diseases. However, the exact roles of striatal heterogeneous structures in these cognitive functions are still unknown. In the present study, we investigated the effects of suppressing neuronal activity in the dorsomedial striatum (DMStr) and nucleus accumbens core (NAcC) on reversal learning and novelty recognition in mice. In addition, the locomotor activity, anxiety-like behavior and social interaction were analyzed. Neuronal inactivation was performed by expressing lentivirus-mediated tetanus toxin (TeNT) in the target regions. The results showed that reversal learning was facilitated by neuronal inactivation in the DMStr but not the NAcC, which was attributable to accelerated extinction of acquired strategy but not to impaired memory retention. Furthermore, mice with NAcC inactivation spent more time exploring a novel object than a familiar one, comparable to control mice. In contrast, mice with DMStr inactivation exhibited no preference to a novel environment during the novel object or place recognition test. The DMStr mice also exhibited decreased anxiety level. No phenotypic effect was observed in the locomotion or social interaction in mice with either DMStr or NAcC inactivation. Altogether, these findings suggest that the DMStr but not the ventral area of the striatum plays a crucial role in learning and memory by coordinating spatial exploration as well as mediating information updating. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  6. Exploring the Invisible Universe: A Tactile and Braille Exhibit of Astronomical Images

    Science.gov (United States)

    Arcand, K. K.; Watzke, M.; de Pree, C.

    2010-06-01

    A tactile/Braille exhibit for the visually impaired community in the USA was launched in July 2009. The exhibit is part of the global From Earth to the Universe (FETTU) project, a Cornerstone of the International Year of Astronomy 2009. The science content of the travelling tactile/Braille exhibit includes explanations of our Sun, Eta Carinae, the Crab Nebula, the Whirlpool Galaxy and the electromagnetic spectrum, and was adapted from the tactile/Braille book Touch the Invisible Sky. We present some of the early observations and findings on the tactile/Braille FETTU exhibit. The new exhibit opens a wider door to experiencing and understanding astronomy for the underserved visually impaired population.

  7. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  8. Liver Cholesterol Overload Aggravates Obstructive Cholestasis by Inducing Oxidative Stress and Premature Death in Mice

    Directory of Open Access Journals (Sweden)

    Natalia Nuño-Lámbarri

    2016-01-01

    Full Text Available Nonalcoholic steatohepatitis is one of the leading causes of liver disease. Dietary factors determine the clinical presentation of steatohepatitis and can influence the progression of related diseases. Cholesterol has emerged as a critical player in the disease and hence consumption of cholesterol-enriched diets can lead to a progressive form of the disease. The aim was to investigate the impact of liver cholesterol overload on the progression of the obstructive cholestasis in mice subjected to bile duct ligation surgery. Mice were fed with a high cholesterol diet for two days and then were subjected to surgery procedure; histological, biochemical, and molecular analyses were conducted to address the effect of cholesterol in liver damage. Mice under the diet were more susceptible to damage. Results show that cholesterol fed mice exhibited increased apoptosis and oxidative stress as well as reduction in cell proliferation. Mortality following surgery was higher in HC fed mice. Liver cholesterol impairs the repair of liver during obstructive cholestasis and aggravates the disease with early fatal consequences; these effects were strongly associated with oxidative stress.

  9. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available BACKGROUND: The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma. METHODOLOGY/PRINCIPAL FINDINGS: C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.

  10. Syndecan-4 shedding impairs macrovascular angiogenesis in diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ran; Xie, Jun; Wu, Han; Li, Guannan; Chen, Jianzhou; Chen, Qinhua; Wang, Lian; Xu, Biao, E-mail: xubiao@medmail.com.cn

    2016-05-20

    Purpose: Syndecan-4 (synd4) is a ubiquitous heparan sulfate proteoglycan cell surface receptor that modulates cell proliferation, migration, mechanotransduction, and endocytosis. The extracellular domain of synd4 sheds heavily in acute inflammation, but the shedding of synd4 in chronic inflammation, such as diabetes mellitus (DM), is still undefined. We investigated the alterations of synd4 endothelial expression in DM and the influence of impaired synd4 signaling on angiogenesis in human umbilical vein endothelial cells (HUVECs), diabetic rats, synd4 null mice, and db/db mice. Material and methods: HUVECs were incubated with advanced glycation end products (AGEs). Western blot analysis was used to determine synd4 protein expression and ELISA was used to detect soluble synd4 fragments. The concentration of synd4 in the aortic endothelia of diabetic rats was detected by immunohistochemical staining. Aortic ring assays were performed to study the process of angiogenesis in the diabetic rats and in synd4 null and db/db mice. Recombinant adenoviruses containing the synd4 gene or null were constructed to enhance synd4 aortic expression in db/db mice. Results: Western blot analysis showed decreased expression of the synd4 extracellular domain in HUVECs, and ELISA detected increased soluble fragments of synd4 in the media. Synd4 endothelial expression in the aortas of diabetic rats was decreased. Aortic ring assay indicated impaired angiogenesis in synd4 null and db/db mice, which was partially reversed by synd4 overexpression in db/db mice. Conclusion: Synd4 shedding from vascular endothelial cells played an important role in the diabetes-related impairment of angiogenesis. -- Highlights: •Synd4 shedding from endothelial cells is accelerated under the stimulation of AGEs. •Extracellular domain of synd4 is diminished in the endothelium of DM rats. •Aortic rings of synd4 null mice showed impaired angiogenesis. •Overexpression of synd4 partly rescues macrovascular

  11. BRIT1/MCPH1 is essential for mitotic and meiotic recombination DNA repair and maintaining genomic stability in mice.

    Directory of Open Access Journals (Sweden)

    Yulong Liang

    2010-01-01

    Full Text Available BRIT1 protein (also known as MCPH1 contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1(-/- mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1(-/- mice and mouse embryonic fibroblasts (MEFs were hypersensitive to gamma-irradiation. BRIT1(-/- MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1(-/- mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2's function and as a result leads to infertility and genomic instability in mice.

  12. Mechanism of impaired regeneration of fatty liver in mouse partial hepatectomy model.

    Science.gov (United States)

    Murata, Hiroshi; Yagi, Takahito; Iwagaki, Hiromi; Ogino, Tetsuya; Sadamori, Hiroshi; Matsukawa, Hiroyoshi; Umeda, Yuzoh; Haga, Sanae; Takaka, Noriaki; Ozaki, Michitaka

    2007-12-01

    The mechanism of injury in steatotic liver under pathological conditions been extensively examined. However, the mechanism of an impaired regeneration is still not well understood. The aim of this study was to analyze the mechanism of impaired regeneration of steatotic liver after partial hepatectomy (PH). db/db fatty mice and lean littermates were used for the experiments. Following 70% PH, the survival rate and recovery of liver mass were examined. Liver tissue was histologically examined and analyzed by western blotting and RT-PCR. Of 35 db/db mice, 25 died within 48 h of PH, while all of the control mice survived. Liver regeneration of surviving db/db mice was largely impaired. In db/db mice, mitosis of hepatocytes after PH was disturbed, even though proliferating cell nuclear antigen (PCNA) expression (G1 to S phase marker) in hepatocytes was equally observed in both mice groups. Interestingly, phosphorylation of Cdc2 in db/db mice was suppressed by reduced expression of Wee1 and Myt1, which phosphorylate Cdc2 in S to G2 phase. In steatotic liver, cell-cycle-related proliferative disorders occurred at mid-S phase after PCNA expression. Reduced expression of Wee1 and Myt1 kinases may therefore maintain Cdc2 in an unphosphorylated state and block cell cycle progression in mid-S phase. These kinases may be critical factors involved in the impaired liver regeneration in fatty liver.

  13. Oocyte quality in mice is affected by a mycotoxin-contaminated diet.

    Science.gov (United States)

    Hou, Yan-Jun; Xiong, Bo; Zheng, Wei-Jiang; Duan, Xing; Cui, Xiang-Shun; Kim, Nam-Hyung; Wang, Qiang; Xu, Yin-Xue; Sun, Shao-Chen

    2014-05-01

    Mycotoxins, such as deoxynivalenol (DON), zearalenone (ZEN), and aflatoxin (AF), are commonly found in many food commodities and may impair the growth and reproductive efficiency of animals and humans. We investigated the effects of a mycotoxin-contaminated diet on mouse oocyte quality. Maize contaminated with DON (3.875 mg/kg), ZEN (1,897 μg/kg), and AF (806 μg/kg) was incorporated into a mouse diet at three different levels (0, 15, and 30% w/w). After 4 weeks, ovarian and germinal vesicle oocyte indices decreased in mycotoxin-fed mice. Oocytes from these mice exhibited low developmental competence with reduced germinal vesicle breakdown and polar body extrusion rates. Embryo developmental competence also showed a similar pattern, and the majority of embryos could not develop to the morula stage. Actin expression was also reduced in both the oocyte cortex and cytoplasm, which was accompanied by decreased expression of the actin nucleation factors profilin-1 and mDia1. Moreover, a large percentage of oocytes derived from mice that were fed a mycotoxin-contaminated diet exhibited aberrant spindle morphology, a loss of the cortical granule-free domain, and abnormal mitochondrial distributions, which further supported the decreased oocyte quality. Thus, our results demonstrate that mycotoxins are toxic to the mouse reproductive system by affecting oocyte quality. Copyright © 2013 Wiley Periodicals, Inc.

  14. Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease

    Science.gov (United States)

    Paumier, Katrina L.; Sukoff Rizzo, Stacey J.; Berger, Zdenek; Chen, Yi; Gonzales, Cathleen; Kaftan, Edward; Li, Li; Lotarski, Susan; Monaghan, Michael; Shen, Wei; Stolyar, Polina; Vasilyev, Dmytro; Zaleska, Margaret; D. Hirst, Warren; Dunlop, John

    2013-01-01

    Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments

  15. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization.

    Directory of Open Access Journals (Sweden)

    Mohun Ramratnam

    Full Text Available Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+ recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i, and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/- mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.

  16. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment.

    Science.gov (United States)

    Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping

    2014-09-01

    This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.

  17. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice

    International Nuclear Information System (INIS)

    Viberg, Henrik; Fredriksson, Anders; Eriksson, Per

    2003-01-01

    Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Flame retardants are used to suppress or inhibit combustion processes in an effort to reduce the risk of fire. One class of flame retardants, polybrominated diphenyl ethers (PBDEs), are present and increasing in the environment and in human milk. The present study shows that neonatal exposure to 2,2',4,4',5,5'-hexaBDE (PBDE 153), a PBDE persistent both in environment and in human milk, can induce developmental neurotoxic effects, such as changes in spontaneous behaviour (hyperactivity), impairments in learning and memory, and reduced amounts of nicotinic receptors, effects that get worse with age. Neonatal NMRI male mice were orally exposed on day 10 to 0.45, 0.9, or 9.0 mg of PBDE 153/kg of body weight. Spontaneous behaviour (locomotion, rearing, and total activity) was observed in 2-, 4-, and 6-month-old mice, Morris water maze at an age of 6 months. The behaviour tests showed that the effects were dose-response and time-response related. Animals showing defects in learning and memory also showed significantly reduced amounts of nicotinic receptors in hippocampus, using α-bungarotoxin binding assay. The observed developmental neurotoxic effects seen for PBDE 153 are similar to those seen for PBDE 99 and for certain PCBs. Furthermore, PBDEs appear to as potent as the PCBs

  18. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Science.gov (United States)

    Li, Zihui; Kuhn, Gisela; Schirmer, Michael; Müller, Ralph; Ruffoni, Davide

    2017-01-01

    Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (re)modeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (re)modeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  20. Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography.

    Directory of Open Access Journals (Sweden)

    Zihui Li

    Full Text Available Although osteoporotic bone, with low bone mass and deteriorated bone architecture, provides a less favorable mechanical environment than healthy bone for implant fixation, there is no general agreement on the impact of osteoporosis on peri-implant bone (remodeling, which is ultimately responsible for the long term stability of the bone-implant system. Here, we inserted an implant in a mouse model mimicking estrogen deficiency-induced bone loss and we monitored with longitudinal in vivo micro-computed tomography the spatio-temporal changes in bone (remodeling and architecture, considering the separate contributions of trabecular, endocortical and periosteal surfaces. Specifically, 12 week-old C57BL/6J mice underwent OVX/SHM surgery; 9 weeks after we inserted special metal-ceramics implants into the 6th caudal vertebra and we measured bone response with in vivo micro-CT weekly for the following 6 weeks. Our results indicated that ovariectomized mice showed a reduced ability to increase the thickness of the cortical shell close to the implant because of impaired peri-implant bone formation, especially at the periosteal surface. Moreover, we observed that healthy mice had a significantly higher loss of trabecular bone far from the implant than estrogen depleted animals. Such behavior suggests that, in healthy mice, the substantial increase in peri-implant bone formation which rapidly thickened the cortex to secure the implant may raise bone resorption elsewhere and, specifically, in the trabecular network of the same bone but far from the implant. Considering the already deteriorated bone structure of estrogen depleted mice, further bone loss seemed to be hindered. The obtained knowledge on the dynamic response of diseased bone following implant insertion should provide useful guidelines to develop advanced treatments for osteoporotic fracture fixation based on local and selective manipulation of bone turnover in the peri-implant region.

  1. Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction.

    Science.gov (United States)

    Yu, Tao; Guo, Ming; Garza, Jacob; Rendon, Samantha; Sun, Xue-Li; Zhang, Wei; Lu, Xin-Yun

    2011-04-01

    Human depression is associated with cognitive deficits. It is critical to have valid animal models in order to investigate mechanisms and treatment strategies for these associated conditions. The goal of this study was to determine the association of cognitive dysfunction with depression-like behaviour in an animal model of depression and investigate the neural circuits underlying the behaviour. Mice that were exposed to social defeat for 14 d developed depression-like behaviour, i.e. anhedonia and social avoidance as indicated by reduced sucrose preference and decreased social interaction. The assessment of cognitive performance of defeated mice demonstrated impaired working memory in the T-maze continuous alternation task and enhanced fear memory in the contextual and cued fear-conditioning tests. In contrast, reference learning and memory in the Morris water maze test were intact in defeated mice. Neuronal activation following chronic social defeat was investigated by c-fosin-situ hybridization. Defeated mice exhibited preferential neural activity in the prefrontal cortex, cingulate cortex, hippocampal formation, septum, amygdala, and hypothalamic nuclei. Taken together, our results suggest that the chronic social defeat mouse model could serve as a valid animal model to study depression with cognitive impairments. The patterns of neuronal activation provide a neural basis for social defeat-induced changes in behaviour.

  2. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  3. Postnatal Ablation of Synaptic Retinoic Acid Signaling Impairs Cortical Information Processing and Sensory Discrimination in Mice.

    Science.gov (United States)

    Park, Esther; Tjia, Michelle; Zuo, Yi; Chen, Lu

    2018-06-06

    Retinoic acid (RA) and its receptors (RARs) are well established essential transcriptional regulators during embryonic development. Recent findings in cultured neurons identified an independent and critical post-transcriptional role of RA and RARα in the homeostatic regulation of excitatory and inhibitory synaptic transmission in mature neurons. However, the functional relevance of synaptic RA signaling in vivo has not been established. Here, using somatosensory cortex as a model system and the RARα conditional knock-out mouse as a tool, we applied multiple genetic manipulations to delete RARα postnatally in specific populations of cortical neurons, and asked whether synaptic RA signaling observed in cultured neurons is involved in cortical information processing in vivo Indeed, conditional ablation of RARα in mice via a CaMKIIα-Cre or a layer 5-Cre driver line or via somatosensory cortex-specific viral expression of Cre-recombinase impaired whisker-dependent texture discrimination, suggesting a critical requirement of RARα expression in L5 pyramidal neurons of somatosensory cortex for normal tactile sensory processing. Transcranial two-photon imaging revealed a significant increase in dendritic spine elimination on apical dendrites of somatosensory cortical layer 5 pyramidal neurons in these mice. Interestingly, the enhancement of spine elimination is whisker experience-dependent as whisker trimming rescued the spine elimination phenotype. Additionally, experiencing an enriched environment improved texture discrimination in RARα-deficient mice and reduced excessive spine pruning. Thus, RA signaling is essential for normal experience-dependent cortical circuit remodeling and sensory processing. SIGNIFICANCE STATEMENT The importance of synaptic RA signaling has been demonstrated in in vitro studies. However, whether RA signaling mediated by RARα contributes to neural circuit functions in vivo remains largely unknown. In this study, using a RARα conditional

  4. Impairment of the natriuretic peptide system in follitropin receptor knockout mice and reversal by estradiol: implications for obesity-associated hypertension in menopause.

    Science.gov (United States)

    Belo, Najara O; Sairam, M Ram; Dos Reis, Adelina M

    2008-03-01

    Estrogen is considered a major regulator of adipose tissue in females. Estrogen increases circulating levels of atrial natriuretic peptide (ANP), a hormone with renal and cardiovascular effects. The aim of this study was to determine the status of the natriuretic peptide system in female follitropin-receptor knockout (FORKO) mice that could be associated with obesity and hypertension observed in these mutants. Furthermore, estradiol treatment was used to reverse alterations observed. FORKO and wild-type (WT) mice received daily injections of estradiol for 4 d. On the fifth day, blood was collected for determination of plasma ANP levels, and selected tissues were collected for determination of ANP, natriuretic peptide receptor type-A (NPR-A) and type-C (NPR-C) gene expression by RT-PCR and binding of [(125)I]ANP by autoradiography. At 5 months of age, FORKO mice were heavier and had more adipose tissue than WT mice. FORKO mice had lower plasma ANP levels and atrial ANP gene expression and higher renal and adipocyte NPR-C gene expression than WT mice. Estradiol treatment reduced weight gain and increased atrial ANP synthesis as well as decreased ANP clearance NPR-C receptors, resulting in elevation of circulating ANP level. In conclusion, this study shows that FORKO females have an impaired natriuretic peptide system, which may contribute to the susceptibility of FORKO mice to developing age-related hypertension previously shown in these animals. This study establishes a relation between estrogen, adipose tissue, and ANP, which may have important implications in menopausal women.

  5. Mice Deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) Have Impaired Learning and Memory.

    Science.gov (United States)

    Bradley, Ryan M; Mardian, Emily B; Bloemberg, Darin; Aristizabal Henao, Juan J; Mitchell, Andrew S; Marvyn, Phillip M; Moes, Katherine A; Stark, Ken D; Quadrilatero, Joe; Duncan, Robin E

    2017-11-15

    We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaat δ -/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaat δ -/- mice was unchanged. Importantly, we found that Lpaat δ -/- mice have a significantly and drastically lower brain content of the N -methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaat δ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors. Copyright © 2017 American Society for Microbiology.

  6. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Science.gov (United States)

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  7. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo.

    Science.gov (United States)

    Esakky, Prabagaran; Hansen, Deborah A; Drury, Andrea M; Felder, Paul; Cusumano, Andrew; Moley, Kelle H

    2018-01-01

    Male exposure to cigarette smoke is associated with seminal defects and with congenital anomalies and childhood cancers in offspring. In mice, paternal exposure to cigarette smoke condensate (CSC) causes molecular defects in germ cells and phenotypic effects in their offspring. Here we used an ex vivo testicular explant model and in vivo exposure to determine the concentration at which CSC impairs spermatogenesis and offspring development. We explanted testis tissue at postnatal day (P)5.5 and cultured it until P11.5. Assessment of growth parameters by analyzing expression of cell-specific markers revealed that the explant system maintained structural and functional integrity. We exposed the P5.5 to -11.5 explants to various concentrations (40-160 µg/ml) of CSC and confirmed that nicotine in the CSC was metabolized to cotinine. We assessed various growth and differentiation parameters, as well as testosterone production, and observed that many spermatogenesis features were impaired at 160 µg/ml CSC. The same parameters were impaired by a similar CSC concentration in vivo Finally, females mated to males that were exposed to 160 µg/ml CSC neonatally had increased rates of pup resorption. We conclude that male exposure to CSC impairs offspring development and that the concentration at which CSC impairs spermatogenesis is similar in vivo and ex vivo. Given that the concentrations of CSC we used contained similar doses of nicotine as human smokers are exposed to, we argue that our model mimics human male reproductive effects of smoking.-Esakky, P., Hansen, D. A., Drury, A. M., Felder, P., Cusumano, A., Moley, K. H. Testicular cells exhibit similar molecular responses to cigarette smoke condensate ex vivo and in vivo . © FASEB.

  8. Prenatal Nicotine Exposure Impairs the Proliferation of Neuronal Progenitors, Leading to Fewer Glutamatergic Neurons in the Medial Prefrontal Cortex

    Science.gov (United States)

    Aoyama, Yuki; Toriumi, Kazuya; Mouri, Akihiro; Hattori, Tomoya; Ueda, Eriko; Shimato, Akane; Sakakibara, Nami; Soh, Yuka; Mamiya, Takayoshi; Nagai, Taku; Kim, Hyoung-Chun; Hiramatsu, Masayuki; Nabeshima, Toshitaka; Yamada, Kiyofumi

    2016-01-01

    Cigarette smoking during pregnancy is associated with various disabilities in the offspring such as attention deficit/hyperactivity disorder, learning disabilities, and persistent anxiety. We have reported that nicotine exposure in female mice during pregnancy, in particular from embryonic day 14 (E14) to postnatal day 0 (P0), induces long-lasting behavioral deficits in offspring. However, the mechanism by which prenatal nicotine exposure (PNE) affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that PNE disrupted the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and subventricular zones. In addition, using a cumulative 5-bromo-2′-deoxyuridine labeling assay, we evaluated the rate of cell cycle progression causing the impairment of neuronal progenitor proliferation, and uncovered anomalous cell cycle kinetics in mice with PNE. Accordingly, the density of glutamatergic neurons in the medial prefrontal cortex (medial PFC) was reduced, implying glutamatergic dysregulation. Mice with PNE exhibited behavioral impairments in attentional function and behavioral flexibility in adulthood, and the deficits were ameliorated by microinjection of D-cycloserine into the PFC. Collectively, our findings suggest that PNE affects the proliferation and maturation of progenitor cells to glutamatergic neuron during neurodevelopment in the medial PFC, which may be associated with cognitive deficits in the offspring. PMID:26105135

  9. Antidepressant effects of insulin in streptozotocin induced diabetic mice: Modulation of brain serotonin system.

    Science.gov (United States)

    Gupta, Deepali; Kurhe, Yeshwant; Radhakrishnan, Mahesh

    2014-04-22

    Diabetes is a persistent metabolic disorder, which often leads to depression as a result of the impaired neurotransmitter function. Insulin is believed to have antidepressant effects in depression associated with diabetes; however, the mechanism underlying the postulated effect is poorly understood. In the present study, it is hypothesized that insulin mediates an antidepressant effect in streptozotocin (STZ) induced diabetes in mice through modulation of the serotonin system in the brain. Therefore, the current study investigated the antidepressant effect of insulin in STZ induced diabetes in mice and insulin mediated modulation in the brain serotonin system. In addition, the possible pathways that lead to altered serotonin levels as a result of insulin administration were examined. Experimentally, Swiss albino mice of either sex were rendered diabetic by a single intraperitoneal (i.p.) injection of STZ. After one week, diabetic mice received a single dose of either insulin or saline or escitalopram for 14days. Thereafter, behavioral studies were conducted to test the behavioral despair effects using forced swim test (FST) and tail suspension test (TST), followed by biochemical estimations of serotonin concentrations and monoamine oxidase (MAO) activity in the whole brain content. The results demonstrated that, STZ treated diabetic mice exhibited an increased duration of immobility in FST and TST as compared to non-diabetic mice, while insulin treatment significantly reversed the effect. Biochemical assays revealed that administration of insulin attenuated STZ treated diabetes induced neurochemical alterations as indicated by elevated serotonin levels and decreased MAO-A and MAO-B activities in the brain. Collectively, the data indicate that insulin exhibits antidepressant effects in depression associated with STZ induced diabetes in mice through the elevation of the brain serotonin levels. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Ketogenic Diet Impairs FGF21 Signaling and Promotes Differential Inflammatory Responses in the Liver and White Adipose Tissue.

    Directory of Open Access Journals (Sweden)

    Mohamed Asrih

    Full Text Available Beside its beneficial effects on weight loss, ketogenic diet (KD causes dyslipidemia, a pro-inflammatory state involved in the development of hepatic steatosis, glucose intolerance and insulin resistance, although the latter is still being debated. Additionally, KD is known to increase fibroblast growth factor 21 (FGF21 plasma levels. However, FGF21 cannot initiate its beneficial actions on metabolism in these conditions. We therefore hypothesized and tested in the present study that KD may impair FGF21 signaling.Using indirect calorimetry, we found that KD-fed mice exhibited higher energy expenditure than regular chow (RC-fed mice associated with increased Ucp1 levels in white adipose tissue (WAT, along with increased plasma FGF21 levels. We then assessed the effect of KD on FGF21 signaling in both the liver and WAT. We found that Fgfr4 and Klb (β-klotho were downregulated in the liver, while Fgfr1 was downregulated in WAT of KD-fed mice. Because inflammation could be one of the mechanisms linking KD to impaired FGF21 signaling, we measured the expression levels of inflammatory markers and macrophage accumulation in WAT and liver and found an increased inflammation and macrophage accumulation in the liver, but surprisingly, a reduction of inflammation in WAT.We also showed that KD enhances lipid accumulation in the liver, which may explain hepatic inflammation and impaired Fgfr4 and Klb expression. In contrast, import of lipids from the circulation was significantly reduced in WAT of KD-fed mice, as suggested by a downregulation of Lpl and Cd36. This was further associated with reduced inflammation in WAT.Altogether, these results indicate that KD could be beneficial for a given tissue but deleterious for another.

  11. Caffeine impairs the acquisition and retention, but not the consolidation of Pavlovian conditioned freezing in mice

    Science.gov (United States)

    Dubroqua, Sylvain; Low, Samuel R.L.; Yee, Benjamin K.; Singer, Philipp

    2014-01-01

    Rationale The psychoactive substance, caffeine may improve cognitive performance, but its direct impact on learning and memory remains ill-defined. Conflicting reports suggest that caffeine may impair as well as enhance Pavlovian fear conditioning in animals, and its effect may vary across different phases of learning. Objectives To dissect the effect of a motor-stimulant dose of caffeine (30 mg/kg i.p.) on acquisition, retrieval or consolidation of conditioned fear in C57BL/6 mice. Methods Fear conditioning was evaluated in a conditioned freezing paradigm comprising 3 tone-shock pairings and a two-way active avoidance paradigm lasting two consecutive days with 80 conditioning trials per test session. Results Conditioning to both the discrete tone conditioned stimulus (CS) and the context was markedly impaired by caffeine. The deficits were similarly evident when caffeine was administered prior to acquisition or retrieval (48 and 72 h after conditioning); and the most severe impairment was seen in animals given caffeine before acquisition and before retrieval. A comparable deficit was observed in the conditioned active avoidance test. By contrast, caffeine administered immediately following acquisition neither affected the expression of tone freezing nor context freezing. Conclusions The present study challenges the previous report that caffeine primarily disrupts hippocampus-dependent conditioning to the context. At the relevant dose range, acute caffeine likely exerts more widespread impacts beyond the hippocampus, including amygdala and striatum that are anatomically connected to the hippocampus; and together they support the acquisition and retention of fear memories to discrete stimuli as well as diffused contextual cues. PMID:25172668

  12. Caffeine impairs the acquisition and retention, but not the consolidation of Pavlovian conditioned freezing in mice.

    Science.gov (United States)

    Dubroqua, Sylvain; Low, Samuel R L; Yee, Benjamin K; Singer, Philipp

    2015-02-01

    The psychoactive substance, caffeine, may improve cognitive performance, but its direct impact on learning and memory remains ill defined. Conflicting reports suggest that caffeine may impair as well as enhance Pavlovian fear conditioning in animals and its effect may vary across different phases of learning. The purpose of this study is to dissect the effect of a motor-stimulant dose of caffeine (30 mg/kg intraperitoneal (i.p.)) on acquisition, retrieval or consolidation of conditioned fear in C57BL/6 mice. Fear conditioning was evaluated in a conditioned freezing paradigm comprising 3 tone-shock pairings and a two-way active avoidance paradigm lasting two consecutive days with 80 conditioning trials per test session. Conditioning to both the discrete tone-conditioned stimulus (CS) and the context was markedly impaired by caffeine. The deficits were similarly evident when caffeine was administered prior to acquisition or retrieval (48 and 72 h after conditioning); and the most severe impairment was seen in animals given caffeine before acquisition and before retrieval. A comparable deficit was observed in the conditioned active avoidance test. By contrast, caffeine administered immediately following acquisition neither affected the expression of tone freezing nor context freezing. The present study challenges the previous report that caffeine primarily disrupts hippocampus-dependent conditioning to the context. At the relevant dose range, acute caffeine likely exerts more widespread impacts beyond the hippocampus, including the amygdala and striatum that are anatomically connected to the hippocampus; together, they support the acquisition and retention of fear memories to discrete stimuli as well as diffused contextual cues.

  13. Heterozygous Hfe gene deletion leads to impaired glucose homeostasis, but not liver injury in mice fed a high-calorie diet.

    Science.gov (United States)

    Britton, Laurence; Jaskowski, Lesley; Bridle, Kim; Santrampurwala, Nishreen; Reiling, Janske; Musgrave, Nick; Subramaniam, V Nathan; Crawford, Darrell

    2016-06-01

    Heterozygous mutations of the Hfe gene have been proposed as cofactors in the development and progression of nonalcoholic fatty liver disease (NAFLD). Homozygous Hfe deletion previously has been shown to lead to dysregulated hepatic lipid metabolism and accentuated liver injury in a dietary mouse model of NAFLD We sought to establish whether heterozygous deletion of Hfe is sufficient to promote liver injury when mice are exposed to a high-calorie diet (HCD). Eight-week-old wild-type and Hfe(+/-) mice received 8 weeks of a control diet or HCD Liver histology and pathways of lipid and iron metabolism were analyzed. Liver histology demonstrated that mice fed a HCD had increased NAFLD activity score (NAS), steatosis, and hepatocyte ballooning. However, liver injury was unaffected by Hfe genotype. Hepatic iron concentration (HIC) was increased in Hfe(+/-) mice of both dietary groups. HCD resulted in a hepcidin-independent reduction in HIC Hfe(+/-) mice demonstrated raised fasting serum glucose concentrations and HOMA-IR score, despite unaltered serum adiponectin concentrations. Downstream regulators of hepatic de novo lipogenesis (pAKT, SREBP-1, Fas, Scd1) and fatty acid oxidation (AdipoR2, Pparα, Cpt1) were largely unaffected by genotype. In summary, heterozygous Hfe gene deletion is associated with impaired iron and glucose metabolism. However, unlike homozygous Hfe deletion, heterozygous gene deletion did not affect lipid metabolism pathways or liver injury in this model. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  14. Inflammatory Th17 cells promote depression-like behavior in mice

    Science.gov (United States)

    Beurel, Eléonore; Harrington, Laurie E.; Jope, Richard S.

    2012-01-01

    Background Recognition of substantial immune-neural interactions is revising dogmas about their insular actions and revealing that immune-neural interactions can substantially impact CNS functions. The inflammatory cytokine interleukin-6 promotes susceptibility to depression and drives production of inflammatory T helper 17 (Th17) T cells, raising the hypothesis that in mouse models Th17 cells promote susceptibility to depression-like behaviors. Methods Behavioral characteristics were measured in male mice administered Th17 cells, CD4+ cells, or vehicle, and in RORγT+/GFP mice or male mice treated with RORγT inhibitor or anti-IL-17A antibodies. Results Mouse brain Th17 cells were elevated by learned helplessness and chronic restraint stress, two common depression-like models. Th17 cell administration promoted learned helplessness in 89% of mice in a paradigm where no vehicle-treated mice developed learned helplessness, and impaired novelty suppressed feeding and social interaction behaviors. Mice deficient in the RORγT transcription factor necessary for Th17 cell production exhibited resistance to learned helplessness, identifying modulation of RORγT as a potential intervention. Treatment with the RORγT inhibitor SR1001, or anti-IL-17A antibodies to abrogate Th17 cell function, reduced Th17-dependent learned helplessness. Conclusions These findings indicate that Th17 cells are increased in the brain during depression-like states, promote depression-like behaviors in mice, and specifically inhibiting the production or function of Th17 cells reduces vulnerability to depression-like behavior, suggesting antidepressant effects may be attained by targeting Th17 cells. PMID:23174342

  15. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  16. Sildenafil (Viagra® Prevents Cox-1/ TXA2 Pathway-Mediated Vascular Hypercontractility in ApoE-/- Mice

    Directory of Open Access Journals (Sweden)

    Marcos A.S. Leal

    2017-12-01

    Full Text Available Background/Aims: The atherosclerotic apolipoprotein E-deficient (apoE-/- mouse exhibits impaired vasodilation and enhanced vasoconstriction responsiveness. The objectives of this study were: a to determine the relative contribution of cyclooxygenases (Cox-1 and Cox-2, thromboxane A2 (TXA2 and endothelin-1 (ET-1 to enhancing vascular hyperresponsiveness in this model of atherosclerosis and b to investigate the beneficial effects of the phosphodiesterase 5 inhibitor sildenafil on this endothelial dysfunction. Methods: Adult male apoE-/- mice were treated with sildenafil (40 mg/kg/day, for 3 weeks and compared with non-treated ApoE-/- and wild-type mice. The beneficial effects of sildenafil on vascular contractile response to phenylephrine (PE in aortic rings were evaluated before and after incubation with Cox-1 (SC-560 or Cox-2 (NS-398 inhibitors or the TP antagonist SQ-29548, and on contractile responsiveness to ET-1. Results: ApoE-/- mice exhibited enhanced vasoconstriction to PE (Rmax ∼35%, p<0.01, which was prevented by treatment with sildenafil. The enhanced PE-induced contractions were abolished by both Cox-1 inhibition and TP antagonist, but were not modified by Cox-2 inhibition. Aortic rings from ApoE-/- mice also exhibited enhanced contractions to ET-1 (Rmax ∼30%, p<0.01, which were attenuated in sildenafil-treated ApoE-/- mice. In addition, we observed augmented levels of vascular proinflammatory cytokines in ApoE-/- mice, which were partially corrected by treatment with sildenafil (IL-6, IL-10/IL-6 ratio and MCP-1. Conclusion: The present data show that the Cox-1/TXA2 pathway prevails over the Cox-2 isoform in the mediation of vascular hypercontractility observed in apoE-/-mice. The results also show a beneficial effect of sildenafil on this endothelial dysfunction and on the proinflammatory cytokines in atherosclerotic animals, opening new perspectives for the treatment of other endothelium-related cardiovascular abnormalities.

  17. Food restriction affects Y-maze spatial recognition memory in developing mice.

    Science.gov (United States)

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice

    Directory of Open Access Journals (Sweden)

    Vincenzo Sorrenti

    2018-03-01

    Full Text Available Systemic lipopolysaccharide (LPS induces an acute inflammatory response in the central nervous system (CNS (“neuroinflammation” characterized by altered functions of microglial cells, the major resident immune cells of the CNS, and an increased inflammatory profile that can result in long-term neuronal cell damage and severe behavioral and cognitive consequences. Curcumin, a natural compound, exerts CNS anti-inflammatory and neuroprotective functions mainly after chronic treatment. However, its effect after acute treatment has not been well investigated. In the present study, we provide evidence that 50 mg/kg of curcumin, orally administered for 2 consecutive days before a single intraperitoneal injection of a high dose of LPS (5 mg/kg in young adult mice prevents the CNS immune response. Curcumin, able to enter brain tissue in biologically relevant concentrations, reduced acute and transient microglia activation, pro-inflammatory mediator production, and the behavioral symptoms of sickness. In addition, short-term treatment with curcumin, administered at the time of LPS challenge, anticipated the recovery from memory impairments observed 1 month after the inflammatory stimulus, when mice had completely recovered from the acute neuroinflammation. Together, these results suggest that the preventive effect of curcumin in inhibiting the acute effects of neuroinflammation could be of value in reducing the long-term consequences of brain inflammation, including cognitive deficits such as memory dysfunction.

  19. Chronic exposure to glufosinate-ammonium induces spatial memory impairments, hippocampal MRI modifications and glutamine synthetase activation in mice.

    Science.gov (United States)

    Calas, André-Guilhem; Richard, Olivier; Même, Sandra; Beloeil, Jean-Claude; Doan, Bich-Thuy; Gefflaut, Thierry; Même, William; Crusio, Wim E; Pichon, Jacques; Montécot, Céline

    2008-07-01

    Glufosinate-ammonium (GLA), the active compound of a worldwide-used herbicide, acts by inhibiting the plant glutamine synthetase (GS) leading to a lethal accumulation of ammonia. GS plays a pivotal role in the mammalian brain where it allows neurotransmitter glutamate recycling within astroglia. Clinical studies report that an acute GLA ingestion induces convulsions and memory impairment in humans. Toxicological studies performed at doses used for herbicidal activity showed that GLA is probably harmless at short or medium range periods. However, effects of low doses of GLA on chronically exposed subjects are not known. In our study, C57BL/6J mice were treated during 10 weeks three times a week with 2.5, 5 and 10mg/kg of GLA. Effects of this chronic treatment were assessed at behavioral, structural and metabolic levels by using tests of spatial memory, locomotor activity and anxiety, hippocampal magnetic resonance imaging (MRI) texture analysis, and hippocampal GS activity assay, respectively. Chronic GLA treatments have effects neither on anxiety nor on locomotor activity of mice but at 5 and 10mg/kg induce (1) mild memory impairments, (2) a modification of hippocampal texture and (3) a significant increase in hippocampal GS activity. It is suggested that these modifications may be causally linked one to another. Since glutamate is the main neurotransmitter in hippocampus where it plays a crucial role in spatial memory, hippocampal MRI texture and spatial memory alterations might be the consequences of hippocampal glutamate homeostasis modification revealed by increased GS activity in hippocampus. The present study provides the first data that show cerebral alterations after chronic exposure to GLA.

  20. Intestinal IgA responses to Giardia muris in mice depleted of helper T lymphocytes and in immunocompetent mice.

    Science.gov (United States)

    Heyworth, M F

    1989-04-01

    Immunocompetent mice infected with Giardia muris generate an intestinal antibody response to this parasite and clear G. muris infection. Previous work has shown that G. muris infection is prolonged in mice that have been depleted of helper (CD4+) T lymphocytes by treatment with a monoclonal antibody (mAb) directed against the murine CD4 antigen. The aim of the present study was to compare the intestinal anti-Giardia antibody response in immunocompetent mice and in mice depleted of helper T (Th) lymphocytes by treatment with anti-CD4 mAb. Immunocompetent mice generated an IgA response to G. muris, as judged by the presence of IgA on Giardia trophozoites harvested from the intestine of these animals more than 10 days after the start of the infection. The anti-Giardia IgA response was impaired in mice depleted of Th lymphocytes, as judged by virtual absence of immunofluorescent staining of trophozoites from these animals for surface-bound IgA. Clearance of G. muris infection was impaired by treatment of mice with anti-CD4 mAb. The results suggest that Th (CD4+) lymphocytes are important for the generation of a local IgA response against G. muris trophozoites in the mouse intestine and that IgA anti-trophozoite antibody may contribute to the clearance of G. muris from the intestine of immunocompetent mice.

  1. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice.

    Science.gov (United States)

    Hashikawa-Hobara, Narumi; Mishima, Shuta; Nagase, Shotaro; Morita, Keishi; Otsuka, Ami; Hashikawa, Naoya

    2018-04-24

    Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.

  2. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice.

    Science.gov (United States)

    Ismail, Nurul Iman W; Jayabalan, Nanthini; Mansor, Sharif Mahsufi; Müller, Christian P; Muzaimi, Mustapha

    2017-07-01

    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential. © 2016 Society for the Study of Addiction.

  3. Loss of Myh14 Increases Susceptibility to Noise-Induced Hearing Loss in CBA/CaJ Mice

    Directory of Open Access Journals (Sweden)

    Xiaolong Fu

    2016-01-01

    Full Text Available MYH14 is a member of the myosin family, which has been implicated in many motile processes such as ion-channel gating, organelle translocation, and the cytoskeleton rearrangement. Mutations in MYH14 lead to a DFNA4-type hearing impairment. Further evidence also shows that MYH14 is a candidate noise-induced hearing loss (NIHL susceptible gene. However, the specific roles of MYH14 in auditory function and NIHL are not fully understood. In the present study, we used CRISPR/Cas9 technology to establish a Myh14 knockout mice line in CBA/CaJ background (now referred to as Myh14−/− mice and clarify the role of MYH14 in the cochlea and NIHL. We found that Myh14−/− mice did not exhibit significant hearing loss until five months of age. In addition, Myh14−/− mice were more vulnerable to high intensity noise compared to control mice. More significant outer hair cell loss was observed in Myh14−/− mice than in wild type controls after acoustic trauma. Our findings suggest that Myh14 may play a beneficial role in the protection of the cochlea after acoustic overstimulation in CBA/CaJ mice.

  4. Apolipoprotein E4 causes early olfactory network abnormalities and short-term olfactory memory impairments.

    Science.gov (United States)

    Peng, Katherine Y; Mathews, Paul M; Levy, Efrat; Wilson, Donald A

    2017-02-20

    While apolipoprotein (Apo) E4 is linked to increased incidence of Alzheimer's disease (AD), there is growing evidence that it plays a role in functional brain irregularities that are independent of AD pathology. However, ApoE4-driven functional differences within olfactory processing regions have yet to be examined. Utilizing knock-in mice humanized to ApoE4 versus the more common ApoE3, we examined a simple olfactory perceptual memory that relies on the transfer of information from the olfactory bulb (OB) to the piriform cortex (PCX), the primary cortical region involved in higher order olfaction. In addition, we have recorded in vivo resting and odor-evoked local field potentials (LPF) from both brain regions and measured corresponding odor response magnitudes in anesthetized young (6-month-old) and middle-aged (12-month-old) ApoE mice. Young ApoE4 compared to ApoE3 mice exhibited a behavioral olfactory deficit coinciding with hyperactive odor-evoked response magnitudes within the OB that were not observed in older ApoE4 mice. Meanwhile, middle-aged ApoE4 compared to ApoE3 mice exhibited heightened response magnitudes in the PCX without a corresponding olfactory deficit, suggesting a shift with aging in ApoE4-driven effects from OB to PCX. Interestingly, the increased ApoE4-specific response in the PCX at middle-age was primarily due to a dampening of baseline spontaneous activity rather than an increase in evoked response power. Our findings indicate that early ApoE4-driven olfactory memory impairments and OB network abnormalities may be a precursor to later network dysfunction in the PCX, a region that not only is targeted early in AD, but may be selectively vulnerable to ApoE4 genotype. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    Directory of Open Access Journals (Sweden)

    Miwa Masaya

    2011-11-01

    Full Text Available Abstract Background Betaine (glycine betaine or trimethylglycine plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2, a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v., respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c. prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection and acute administration (1 hr after LPS injection of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect.

  6. Increase of arginase activity in old apolipoprotein-E deficient mice under Western diet associated with changes in neurovascular unit

    Directory of Open Access Journals (Sweden)

    Badaut Jérôme

    2012-06-01

    Full Text Available Abstract Aging and atherosclerosis are well-recognized risk factors for cardiac and neurovascular diseases. The Apolipoprotein E deficient (ApoE−/− mouse on a high-fat diet is a classical model of atherosclerosis, characterized by the presence of atherosclerotic plaques in extracranial vessels but not in cerebral arteries. Increase in arginase activity was shown to participate in vascular dysfunction in the peripheral arteries of atherosclerotic mice by changing the level of nitric oxide (NO. NO plays a key role in the physiological functions of the neurovascular unit (NVU. However, the regulation of arginase expression and activity in the brain was never investigated in association with changes in the NVU, ApoE deficiency and high fat diet. Fourteen-month-old ApoE−/− mice on high-fat diet exhibited deposition of lipids in the NVU, impairment of blood–brain barrier properties, astrogliosis and an increase of aquaporin 4 staining. In association with these changes, brain arginase activity was significantly increased in the old ApoE−/− mice as compared to old wild type mice, with an increase in the level of arginase type I in the blood vessels. In conclusion, aging in this classical mouse model of atherosclerosis induces an increase in the level and activity of arginase I that may impair NO synthesis and contribute to changes in the NVU leading to blood–brain barrier leakage and inflammation.

  7. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer’s Disease and Affects Mice with Normal Aging

    Directory of Open Access Journals (Sweden)

    Raquel Baeta-Corral

    2018-02-01

    Full Text Available Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer’s disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD. The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg counterparts with normal aging. Animals were treated (water or caffeine in drinking water from adulthood (6 months of age until middle-aged (13 months of age, that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical

  8. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    Science.gov (United States)

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.

  9. Whole body proton irradiation causes acute damage to bone marrow hematopoietic progenitor and stem cells in mice.

    Science.gov (United States)

    Chang, Jianhui; Wang, Yingying; Pathak, Rupak; Sridharan, Vijayalakshmi; Jones, Tamako; Mao, Xiao Wen; Nelson, Gregory; Boerma, Marjan; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2017-12-01

    Exposure to proton irradiation during missions in deep space can lead to bone marrow injury. The acute effects of proton irradiation on hematopoietic stem and progenitor cells remain undefined and thus were investigated. We exposed male C57BL/6 mice to 0.5 and 1.0 Gy proton total body irradiation (proton-TBI, 150 MeV) and examined changes in peripheral blood cells and bone marrow (BM) progenitors and LSK cells 2 weeks after exposure. 1.0 Gy proton-TBI significantly reduced the numbers of peripheral blood cells compared to 0.5 Gy proton-TBI and unirradiated animals, while the numbers of peripheral blood cell counts were comparable between 0.5 Gy proton-TBI and unirradiated mice. The frequencies and numbers of LSK cells and CMPs in BM of 0.5 and 1.0 Gy irradiated mice were decreased in comparison to those of normal controls. LSK cells and CMPs and their progeny exhibited a radiation-induced impairment in clonogenic function. Exposure to 1.0 Gy increased cellular apoptosis but not the production of reactive oxygen species (ROS) in CMPs two weeks after irradiation. LSK cells from irradiated mice exhibited an increase in ROS production and apoptosis. Exposure to proton-TBI can induce acute damage to BM progenitors and LSK cells.

  10. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    Full Text Available High-fat diet (HFD-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group or a HFD (60% of calorie from fat; HFD group for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a a significant decrease of insulin receptor substrate (IRS-1 phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment; this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a an inactivation of the IRS-1 and, consequentially, (b a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c a suppression of the ERK/CREB pathway, and (d a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity. It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  11. Infliximab ameliorates AD-associated object recognition memory impairment.

    Science.gov (United States)

    Kim, Dong Hyun; Choi, Seong-Min; Jho, Jihoon; Park, Man-Seok; Kang, Jisu; Park, Se Jin; Ryu, Jong Hoon; Jo, Jihoon; Kim, Hyun Hee; Kim, Byeong C

    2016-09-15

    Dysfunctions in the perirhinal cortex (PRh) are associated with visual recognition memory deficit, which is frequently detected in the early stage of Alzheimer's disease. Muscarinic acetylcholine receptor-dependent long-term depression (mAChR-LTD) of synaptic transmission is known as a key pathway in eliciting this type of memory, and Tg2576 mice expressing enhanced levels of Aβ oligomers are found to have impaired mAChR-LTD in this brain area at as early as 3 months of age. We found that the administration of Aβ oligomers in young normal mice also induced visual recognition memory impairment and perturbed mAChR-LTD in mouse PRh slices. In addition, when mice were treated with infliximab, a monoclonal antibody against TNF-α, visual recognition memory impaired by pre-administered Aβ oligomers dramatically improved and the detrimental Aβ effect on mAChR-LTD was annulled. Taken together, these findings suggest that Aβ-induced inflammation is mediated through TNF-α signaling cascades, disturbing synaptic transmission in the PRh, and leading to visual recognition memory deficits. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Amelioration of Metabolic Syndrome-Associated Cognitive Impairments in Mice via a Reduction in Dietary Fat Content or Infusion of Non-Diabetic Plasma

    Directory of Open Access Journals (Sweden)

    Lance A. Johnson

    2016-01-01

    Full Text Available Obesity, metabolic syndrome (MetS and type 2 diabetes (T2D are associated with decreased cognitive function. While weight loss and T2D remission result in improvements in metabolism and vascular function, it is less clear if these benefits extend to cognitive performance. Here, we highlight the malleable nature of MetS-associated cognitive dysfunction using a mouse model of high fat diet (HFD-induced MetS. While learning and memory was generally unaffected in mice with type 1 diabetes (T1D, multiple cognitive impairments were associated with MetS, including deficits in novel object recognition, cued fear memory, and spatial learning and memory. However, a brief reduction in dietary fat content in chronic HFD-fed mice led to a complete rescue of cognitive function. Cerebral blood volume (CBV, a measure of vascular perfusion, was decreased during MetS, was associated with long term memory, and recovered following the intervention. Finally, repeated infusion of plasma collected from age-matched, low fat diet-fed mice improved memory in HFD mice, and was associated with a distinct metabolic profile. Thus, the cognitive dysfunction accompanying MetS appears to be amenable to treatment, related to cerebrovascular function, and mitigated by systemic factors.

  13. Group 3 innate lymphoid cells accumulate and exhibit disease-induced activation in the meninges in EAE.

    Science.gov (United States)

    Hatfield, Julianne K; Brown, Melissa A

    2015-10-01

    Innate lymphoid cells are immune cells that reside in tissues that interface with the external environment and contribute to the first line defense against pathogens. However, they also have roles in promoting chronic inflammation. Here we demonstrate that group 3 ILCs, (ILC3s - CD45+Lin-IL-7Rα+RORγt+), are normal residents of the meninges and exhibit disease-induced accumulation and activation in EAE. In addition to production of the pro-inflammatory cytokines IL-17 and GM-CSF, ILC3s constitutively express CD30L and OX40L, molecules required for memory T cell survival. We show that disease-induced trafficking of transferred wild type T cells to the meninges is impaired in ILC3-deficient Rorc-/- mice. Furthermore, lymphoid tissue inducer cells, a c-kit+ ILC3 subset that promotes ectopic lymphoid follicle development, a hallmark of many autoimmune diseases, are reduced in the meninges of EAE-resistant c-kit mutant Kit(W/Wv) mice. We propose that ILC3s sustain neuroinflammation by supporting T cell survival and reactivation in the meninges. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi; Tanaka, Teruyuki

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  15. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Kosuke Okuda

    Full Text Available Mutations in the Cyclin-dependent kinase-like 5 (CDKL5 gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be

  16. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  17. Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice.

    Science.gov (United States)

    Jiang, Shan; Miao, Bei; Chen, Ying

    2017-05-03

    Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.

  18. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  19. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  20. Exposure of BALB/c mice to diesel engine exhaust origin secondary organic aer-osol (DE-SOA during the developmental stages impairs the social behavior in adult life of the males

    Directory of Open Access Journals (Sweden)

    Tin-Tin eWin-Shwe

    2016-01-01

    Full Text Available Secondary organic aerosol (SOA is a component of particulate matter (PM 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE originated SOA (DE-SOA affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the de-velopmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control, DE, DE-SOA and gas without any particulate matter in the inhala-tion chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty pref-erence as well as social interaction were remarkably impaired, expression levels of es-trogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, ex-pression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxi-city and impair social behavior in the males.

  1. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation.

    Science.gov (United States)

    Sakai, Mari; Suzuki, Tokiko; Tomita, Kengo; Yamashita, Shigeyuki; Palikhe, Sailesh; Hattori, Kohshi; Yoshimura, Naoki; Matsuda, Naoyuki; Hattori, Yuichi

    2017-06-01

    Dobutamine has been used in septic shock for many years as an only inotrope, but its benefit has been questioned. We weighed the effects of dobutamine and milrinone as inotropes in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. CLP-induced septic mice exhibited significant cardiac inflammation, as indicated by greatly increased mRNAs of proinflammatory cytokines and robust infiltration of inflammatory cells in the ventricular myocardium. Elevations of plasma cardiac troponin-I showed cardiac injury in CLP mice. Noninvasive echocardiographic assessment of cardiac function revealed that despite preserved left ventricular function in the presence of fluid replacement, the dobutamine inotropic response was significantly impaired in CLP mice compared with sham-operated controls. By contrast, milrinone exerted inotropic effects in sham-operated and CLP mice in an equally effective manner. Surface expression levels of β 1 -adrenoceptors and α-subunits of three main G protein families in the myocardium were unaffected by CLP-induced sepsis. Plasma cAMP levels were significantly elevated in both sham-operated and CLP mice in response to milrinone but only in sham-operated controls in response to dobutamine. Of phosphodiesterase (PDE) isoforms, PDE4D, but not PDE3A, both of which are responsible for cardiac cAMP hydrolysis, was significantly upregulated in CLP mouse myocardium. We define a novel mechanism for the impaired responsiveness to dobutamine as an inotrope in sepsis, and understanding the role of PDE4D in modulating cardiac functional responsiveness in sepsis may open the potential of a PDE4D-targeted therapeutic option in septic patients with low cardiac output who have a need for inotropic support. NEW & NOTEWORTHY Advisability of the usefulness of dobutamine in septic shock management is limited. Here, we reveal that the effect of dobutamine as a positive inotrope is impaired in mice with cecal ligation and puncture-induced sepsis

  2. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    Science.gov (United States)

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    OpenAIRE

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A ...

  4. Intermittent hypoxia impairs glucose homeostasis in C57BL6/J mice: partial improvement with cessation of the exposure.

    Science.gov (United States)

    Polak, Jan; Shimoda, Larissa A; Drager, Luciano F; Undem, Clark; McHugh, Holly; Polotsky, Vsevolod Y; Punjabi, Naresh M

    2013-10-01

    Obstructive sleep apnea is associated with insulin resistance, glucose intolerance, and type 2 diabetes mellitus. Although several studies have suggested that intermittent hypoxia in obstructive sleep apnea may induce abnormalities in glucose homeostasis, it remains to be determined whether these abnormalities improve after discontinuation of the exposure. The objective of this study was to delineate the effects of intermittent hypoxia on glucose homeostasis, beta cell function, and liver glucose metabolism and to investigate whether the impairments improve after the hypoxic exposure is discontinued. C57BL6/J mice were exposed to 14 days of intermittent hypoxia, 14 days of intermittent air, or 7 days of intermittent hypoxia followed by 7 days of intermittent air (recovery paradigm). Glucose and insulin tolerance tests were performed to estimate whole-body insulin sensitivity and calculate measures of beta cell function. Oxidative stress in pancreatic tissue and glucose output from isolated hepatocytes were also assessed. Intermittent hypoxia increased fasting glucose levels and worsened glucose tolerance by 67% and 27%, respectively. Furthermore, intermittent hypoxia exposure was associated with impairments in insulin sensitivity and beta cell function, an increase in liver glycogen, higher hepatocyte glucose output, and an increase in oxidative stress in the pancreas. While fasting glucose levels and hepatic glucose output normalized after discontinuation of the hypoxic exposure, glucose intolerance, insulin resistance, and impairments in beta cell function persisted. Intermittent hypoxia induces insulin resistance, impairs beta cell function, enhances hepatocyte glucose output, and increases oxidative stress in the pancreas. Cessation of the hypoxic exposure does not fully reverse the observed changes in glucose metabolism.

  5. Hepatic toxicity of dronedarone in mice: Role of mitochondrial β-oxidation

    International Nuclear Information System (INIS)

    Felser, Andrea; Stoller, Andrea; Morand, Réjane; Schnell, Dominik; Donzelli, Massimiliano; Terracciano, Luigi; Bouitbir, Jamal; Krähenbühl, Stephan

    2014-01-01

    Highlights: • Dronedarone is not hepatotoxic to mice up to 200 mg/kg/day. • At 400 mg/kg/day dronedarone decreases food intake and inhibits hepatic fatty acid metabolism. • Impaired hepatic fatty acid metabolism is associated with increased hepatocyte apoptosis and serum transaminases. • Mice with subclinical impairment of β-oxidation are slightly more susceptible to dronaderone than wild type mice. - Abstract: Dronedarone is an amiodarone-like antiarrhythmic drug associated with severe liver injury. Since dronedarone inhibits mitochondrial respiration and β-oxidation in vitro, mitochondrial toxicity may also explain dronedarone-associated hepatotoxicity in vivo. We therefore studied hepatotoxicity of dronedarone (200 mg/kg/day for 2 weeks or 400 mg/kg/day for 1 week by intragastric gavage) in heterozygous juvenile visceral steatosis (jvs +/− ) and wild-type mice. Jvs +/− mice have reduced carnitine stores and are sensitive for mitochondrial β-oxidation inhibitors. Treatment with dronedarone 200 mg/kg/day had no effect on body weight, serum transaminases and bilirubin, and hepatic mitochondrial function in both wild-type and jvs +/− mice. In contrast, dronedarone 400 mg/kg/day was associated with a 10–15% drop in body weight, and a 3–5-fold increase in transaminases and bilirubin in wild-type mice and, more accentuated, in jvs +/− mice. In vivo metabolism of intraperitoneal 14 C-palmitate was impaired in wild-type, and, more accentuated, in jvs +/− mice treated with 400 mg/kg/day dronedarone compared to vehicle-treated mice. Impaired β-oxidation was also found in isolated mitochondria ex vivo. A likely explanation for these findings was a reduced activity of carnitine palmitoyltransferase 1a in liver mitochondria from dronedarone-treated mice. In contrast, dronedarone did not affect the activity of the respiratory chain ex vivo. We conclude that dronedarone inhibits mitochondrial β-oxidation in and ex vivo, but not the respiratory chain

  6. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2017-02-01

    Full Text Available Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory using two different environmental cues (rectangular geometry, striped landmark in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12 and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12. This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  7. Developmental alterations in motor coordination and medium spiny neuron markers in mice lacking pgc-1α.

    Directory of Open Access Journals (Sweden)

    Elizabeth K Lucas

    Full Text Available Accumulating evidence implicates the transcriptional coactivator peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α in the pathophysiology of Huntington Disease (HD. Adult PGC-1α (-/- mice exhibit striatal neurodegeneration, and reductions in the expression of PGC-1α have been observed in striatum and muscle of HD patients as well as in animal models of the disease. However, it is unknown whether decreased expression of PGC-1α alone is sufficient to lead to the motor phenotype and striatal pathology characteristic of HD. For the first time, we show that young PGC-1α (-/- mice exhibit severe rotarod deficits, decreased rearing behavior, and increased occurrence of tremor in addition to the previously described hindlimb clasping. Motor impairment and striatal vacuolation are apparent in PGC-1α (-/- mice by four weeks of age and do not improve or decline by twelve weeks of age. The behavioral and pathological phenotype of PGC-1α (-/- mice can be completely recapitulated by conditional nervous system deletion of PGC-1α, indicating that peripheral effects are not responsible for the observed abnormalities. Evaluation of the transcriptional profile of PGC-1α (-/- striatal neuron populations and comparison to striatal neuron profiles of R6/2 HD mice revealed that PGC-1α deficiency alone is not sufficient to cause the transcriptional changes observed in this HD mouse model. In contrast to R6/2 HD mice, PGC-1α (-/- mice show increases in the expression of medium spiny neuron (MSN markers with age, suggesting that the observed behavioral and structural abnormalities are not primarily due to MSN loss, the defining pathological feature of HD. These results indicate that PGC-1α is required for the proper development of motor circuitry and transcriptional homeostasis in MSNs and that developmental disruption of PGC-1α leads to long-term alterations in motor functioning.

  8. Missense mutation in DISC1 C-terminal coiled-coil has GSK3β signaling and sex-dependent behavioral effects in mice

    Science.gov (United States)

    Dachtler, James; Elliott, Christina; Rodgers, R. John; Baillie, George S.; Clapcote, Steven J.

    2016-01-01

    Disrupted-in-Schizophrenia 1 (DISC1) is a risk factor for schizophrenia and affective disorders. The full-length DISC1 protein consists of an N-terminal ‘head’ domain and a C-terminal tail domain that contains several predicted coiled-coils, structural motifs involved in protein-protein interactions. To probe the in vivo effects of missense mutation of DISC1’s C-terminal tail, we tested mice carrying mutation D453G within a predicted α-helical coiled-coil region. We report that, relative to wild-type littermates, female DISC1D453G mice exhibited novelty-induced hyperlocomotion, an anxiogenic profile in the elevated plus-maze and open field tests, and reduced social exploration of unfamiliar mice. Male DISC1D453G mice displayed a deficit in passive avoidance, while neither males nor females exhibited any impairment in startle reactivity or prepulse inhibition. Whole brain homogenates showed normal levels of DISC1 protein, but decreased binding of DISC1 to GSK3β, decreased phospho-inhibition of GSK3β at serine 9, and decreased levels of β-catenin in DISC1D453G mice of either sex. Interrupted GSK3β signaling may thus be part of the mechanism underlying the behavioral phenotype associated with D453G, in common with the previously described N-terminal domain mutations Q31L and L100P in mice, and the schizophrenia risk-conferring variant R264Q in humans. PMID:26728762

  9. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  10. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism.

    Directory of Open Access Journals (Sweden)

    Michael J Kane

    Full Text Available Autism is a complex neurodevelopmental disorder characterized by impaired reciprocal social interaction, communication deficits and repetitive behaviors. A very large number of genes have been linked to autism, many of which encode proteins involved in the development and function of synaptic circuitry. However, the manner in which these mutated genes might participate, either individually or together, to cause autism is not understood. One factor known to exert extremely broad influence on brain development and network formation, and which has been linked to autism, is the neurotransmitter serotonin. Unfortunately, very little is known about how alterations in serotonin neuronal function might contribute to autism. To test the hypothesis that serotonin dysfunction can contribute to the core symptoms of autism, we analyzed mice lacking brain serotonin (via a null mutation in the gene for tryptophan hydroxylase 2 (TPH2 for behaviors that are relevant to this disorder. Mice lacking brain serotonin (TPH2-/- showed substantial deficits in numerous validated tests of social interaction and communication. These mice also display highly repetitive and compulsive behaviors. Newborn TPH2-/- mutant mice show delays in the expression of key developmental milestones and their diminished preference for maternal scents over the scent of an unrelated female is a forerunner of more severe socialization deficits that emerge in weanlings and persist into adulthood. Taken together, these results indicate that a hypo-serotonin condition can lead to behavioral traits that are highly characteristic of autism. Our findings should stimulate new studies that focus on determining how brain hyposerotonemia during critical neurodevelopmental periods can alter the maturation of synaptic circuits known to be mis-wired in autism and how prevention of such deficits might prevent this disorder.

  11. A novel radial water tread maze tracks age-related cognitive decline in mice

    Directory of Open Access Journals (Sweden)

    Christina Pettan-Brewer

    2013-10-01

    Full Text Available There is currently no treatment and cure for age-related dementia and cognitive impairment in humans. Mice suffer from age-related cognitive decline just as people do, but assessment is challenging because of cumbersome and at times stressful performance tasks. We developed a novel radial water tread (RWT maze and tested male C57BL/6 (B6 and C57BL/6 x Balb/c F1 (CB6F1 mice at ages 4, 12, 20, and 28 months. B6 mice showed a consistent learning experience and memory retention that gradually decreased with age. CB6F1 mice showed a moderate learning experience in the 4 and 12 month groups, which was not evident in the 20 and 28 month groups. In conclusion, CB6F1 mice showed more severe age-related cognitive impairment compared to B6 mice and might be a suitable model for intervention studies. In addition, the RWT maze has a number of operational advantages compared to currently accepted tasks and can be used to assess age-related cognition impairment in B6 and CB6F1 mice as early as 12 months of age.

  12. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice.

    Science.gov (United States)

    Pan, Xiaoli; Gong, Neng; Zhao, Jing; Yu, Zhe; Gu, Fenghua; Chen, Jia; Sun, Xiaojing; Zhao, Lei; Yu, Meijing; Xu, Zhiru; Dong, Wenxin; Qin, Yan; Fei, Guoqiang; Zhong, Chunjiu; Xu, Tian-Le

    2010-05-01

    Reduction of glucose metabolism in brain is one of the main features of Alzheimer's disease. Thiamine (vitamin B1)-dependent processes are critical in glucose metabolism and have been found to be impaired in brains from patients with Alzheimer's disease. However, thiamine treatment exerts little beneficial effect in these patients. Here, we tested the effect of benfotiamine, a thiamine derivative with better bioavailability than thiamine, on cognitive impairment and pathology alterations in a mouse model of Alzheimer's disease, the amyloid precursor protein/presenilin-1 transgenic mouse. We show that after a chronic 8 week treatment, benfotiamine dose-dependently enhanced the spatial memory of amyloid precursor protein/presenilin-1 mice in the Morris water maze test. Furthermore, benfotiamine effectively reduced both amyloid plaque numbers and phosphorylated tau levels in cortical areas of the transgenic mice brains. Unexpectedly, these effects were not mimicked by another lipophilic thiamine derivative, fursultiamine, although both benfotiamine and fursultiamine were effective in increasing the levels of free thiamine in the brain. Most notably, benfotiamine, but not fursultiamine, significantly elevated the phosphorylation level of glycogen synthase kinase-3alpha and -3beta, and reduced their enzymatic activities in the amyloid precursor protein/presenilin-1 transgenic brain. Therefore, in the animal Alzheimer's disease model, benfotiamine appears to improve the cognitive function and reduce amyloid deposition via thiamine-independent mechanisms, which are likely to include the suppression of glycogen synthase kinase-3 activities. These results suggest that, unlike many other thiamine-related drugs, benfotiamine may be beneficial for clinical Alzheimer's disease treatment.

  13. Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice.

    Science.gov (United States)

    Zhang, Hao; Xu, Hao; Weihrauch, Dorothee; Jones, Deron W; Jing, Xigang; Shi, Yang; Gourlay, David; Oldham, Keith T; Hillery, Cheryl A; Pritchard, Kirkwood A

    2013-11-01

    Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO₂Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD.

  14. Influence of fluoride on streptozotocin induced diabetic nephrotoxicity in mice: Protective role of Asian ginseng (Panax ginseng & banaba (Lagerstroemia speciosa on mitochondrial oxidative stress

    Directory of Open Access Journals (Sweden)

    Mahaboob P Basha

    2013-01-01

    Full Text Available Background & objectives: Chronic fluoride intoxication through drinking water is a serious health problem. Patients with diabetes are known to have impaired renal function and elimination of fluoride from the body is mainly done through kidney. Fluoride toxicity in diabetes patients may aggravate complications. In this study, the influence of fluoride was assessed on streptozotocin (STZ induced diabetes in mice as also the efficacy/protective effective of oral supplementation of ginseng (GE and banaba leaf extracts (BLE. Methods: The efficacy of plant extracts, GE and BLE at doses of 50, 150, 250 mg/kg b.w./day alone and in combination, was tested for a period of 15 days on fluoride treated STZ induced diabetic animals. Results: Fluoride exposure to mice with STZ-induced diabetes produced significant changes in OSI (organo-somatic index, fluoride content, blood glucose, urea, serum creatinine and oxidative stress indices in kidney tissues with evident histological alterations. Among the antioxidant treatments, combination therapy of GE and BLE at 150 mg/kg b.w. significantly normalized the impaired biochemical variables in kidney tissues of fluoride toxicated diabetic mice. Interpretations & conclusions: High fluoride uptake was found to be diabetogenic and further aggravated the renal oxidative damage and thereby the toxicity in mice with STZ induced diabetes mice. GE and BLE exposure individually or in combination at a dose of 150 mg/kg b.w./day for 15 days exhibited protective effects on fluoride toxicated STZ induced nephrotoxicity in mice.

  15. Quantitative immunofluorescence microscopy of renal glomeruli from mice exhibiting murien lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R H [Lawrence Livermore Lab., CA; Greenspan, J S; Moore, D II; Talal, N; Roubinian, J R

    1981-01-01

    Pathologic changes in renal glomeruli of mice with systemic murine lupus erythematosus were quantified using microfluorophotometry. Cryostat sections were taken from kidneys of affected mice, stained with fluorescein-conjugated anti-mouse immunoglobulin, and the extent of immune complex glomerulonephritis was determined. A subjective microscopic examination procedure, which has been used previously, was compared with quantitative microfluorophotometry and a close correlation between the results using each of the two methods was found. Since the microfluorometric procedure measures the total fluorescence per glomerulus, subjective microscopy must estimate that same quantity in a linear fashion. The present advance in measuring capability indicates good potential for rapid, quantitive measurements for further studies on systemic lupus erythematosus, and on other tissue sections stained with fluorescent antibodies.

  16. Glucocorticoid-mediated activation of GSK3β promotes tau phosphorylation and impairs memory in type 2 diabetes.

    Science.gov (United States)

    Dey, Aditi; Hao, Shuai; Wosiski-Kuhn, Marlena; Stranahan, Alexis M

    2017-09-01

    Type 2 diabetes is increasingly recognized as a risk factor for Alzheimer's disease, but the underlying mechanisms remain poorly understood. Hyperphosphorylation of the microtubule-associated protein tau has been reported in rodent models of diabetes, including db/db mice, which exhibit insulin resistance and chronically elevated glucocorticoids due to leptin receptor insufficiency. In this report, we investigated endocrine mechanisms for hippocampal tau phosphorylation in db/db and wild-type mice. By separately manipulating peripheral and intrahippocampal corticosterone levels, we determined that hippocampal corticosteroid exposure promotes tau phosphorylation and activates glycogen synthase kinase 3β (GSK3β). Subsequent experiments in hippocampal slice preparations revealed evidence for a nongenomic interaction between glucocorticoids and GSK3β. To examine whether GSK3β activation mediates tau phosphorylation and impairs memory in diabetes, db/db and wild-type mice received intrahippocampal infusions of TDZD-8, a non-ATP competitive thiadiazolidinone inhibitor of GSK3β. Intrahippocampal TDZD-8 blocked tau hyperphosphorylation and normalized hippocampus-dependent memory in db/db mice, suggesting that pathological synergy between diabetes and Alzheimer's disease may involve glucocorticoid-mediated activation of GSK3β. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    Science.gov (United States)

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice

    Directory of Open Access Journals (Sweden)

    Lina M. Ruiz

    2015-01-01

    Full Text Available Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2∙- production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined.

  19. Chronic Exposure to Subtherapeutic Antibiotics Aggravates Ischemic Stroke Outcome in Mice

    Directory of Open Access Journals (Sweden)

    Xiao-Hui Dong

    2017-10-01

    Full Text Available Subtherapeutic antibiotics have been widely used in agriculture since the 1950s, which can be accumulated in human body through various approaches and may have long-term consequences. However, there is limited information about the link between chronic subtherapeutic antibiotic exposure and the outcome of ischemic brain injury. Here we showed that long-term treatment with subtherapeutic chlortetracycline, penicillin or vancomycin, which were widely used in agriculture approved by US Food and Drug Administration (FDA, could impair EPC functions, reduce ischemic brain angiogenesis and aggravate cerebral ischemic injury and long-term stroke outcomes in mice. In addition, transplantated EPCs from chronic antibiotic-treated mice showed a lower therapeutic effect on cerebral ischemic injury reduction and local angiogenesis promotion compared to those from control mice, and EPCs from the donor animals could integrate into the recipient ischemic brain in mice. Furthermore, transplanted EPCs might exert paracrine effects on cerebral ischemic injury reduction in mice, which could be impaired by chronic antibiotic exposure. In conclusion, chronic subtherapeutic antibiotic exposure aggravated cerebral ischemic injury in mice, which might be partly attributed to the impairment of both EPC-mediated angiogenesis and EPCs' paracrine effects. These findings reveal a previously unrecognized impact of chronic subtherapeutic antibiotic exposure on ischemic injury.

  20. Loss of molars early in life develops behavioral lateralization and impairs hippocampus-dependent recognition memory.

    Science.gov (United States)

    Kawahata, Masatsuna; Ono, Yumie; Ohno, Akinori; Kawamoto, Shoichi; Kimoto, Katsuhiko; Onozuka, Minoru

    2014-01-04

    Using senescence-accelerated mouse prone 8 (SAMP8), we examined whether reduced mastication from a young age affects hippocampal-dependent cognitive function. We anesthetized male SAMP8 mice at 8 weeks of age and extracted all maxillary molar teeth of half the animals. The other animals were treated similarly, except that molar teeth were not extracted. At 12 and 24 weeks of age, their general behavior and their ability to recognize novel objects were tested using the open-field test (OFT) and the object-recognition test (ORT), respectively. The body weight of molarless mice was reduced significantly compared to that of molar-intact mice after the extraction and did not recover to the weight of age-matched molar-intact mice throughout the experimental period. At 12 weeks of age, molarless mice showed significantly greater locomotor activity in the OFT than molar-intact mice. However, the ability of molarless mice to discriminate a novel object in the ORT was impaired compared to that of molar-intact mice. The ability of both molarless and molar-intact SAMP8 mice to recognize objects was impaired at 24 weeks of age. These results suggest that molarless SAMP8 mice develop a deficit of cognitive function earlier than molar-intact SAMP8 mice. Interestingly, both at 12 and 24 weeks of age, molarless mice showed a lateralized preference of object location in the encoding session of the ORT, in which two identical objects were presented. Their lateralized preference of object location was positively correlated with the rightward turning-direction preference, which reached statistical significance at 24 weeks of age. Loss of masticatory function in early life causes malnutrition and chronic stress and impairs the ability to recognize novel objects. Hyperactivation and lateralized rotational behavior are commonly observed with dysfunction of the dopaminergic system, therefore, reduced masticatory function may deplete the mesolimbic and mesocorticolimbic dopaminergic systems

  1. Balanced Diet-Fed Fat-1 Transgenic Mice Exhibit Lower Hindlimb Suspension-Induced Soleus Muscle Atrophy

    Directory of Open Access Journals (Sweden)

    Gabriel Nasri Marzuca-Nassr

    2017-10-01

    Full Text Available The consequences of two-week hindlimb suspension (HS on skeletal muscle atrophy were investigated in balanced diet-fed Fat-1 transgenic and C57BL/6 wild-type mice. Body composition and gastrocnemius fatty acid composition were measured. Skeletal muscle force, cross-sectional area (CSA, and signaling pathways associated with protein synthesis (protein kinase B, Akt; ribosomal protein S6, S6, eukaryotic translation initiation factor 4E-binding protein 1, 4EBP1; glycogen synthase kinase3-beta, GSK3-beta; and extracellular-signal-regulated kinases 1/2, ERK 1/2 and protein degradation (atrophy gene-1/muscle atrophy F-box, atrogin-1/MAFbx and muscle RING finger 1, MuRF1 were evaluated in the soleus muscle. HS decreased soleus muscle wet and dry weights (by 43% and 26%, respectively, muscle isotonic and tetanic force (by 29% and 18%, respectively, CSA of the soleus muscle (by 36%, and soleus muscle fibers (by 45%. Fat-1 transgenic mice had a decrease in the ω-6/ω-3 polyunsaturated fatty acids (PUFAs ratio as compared with C57BL/6 wild-type mice (56%, p < 0.001. Fat-1 mice had lower soleus muscle dry mass loss (by 10% and preserved absolute isotonic force (by 17% and CSA of the soleus muscle (by 28% after HS as compared with C57BL/6 wild-type mice. p-GSK3B/GSK3B ratio was increased (by 70% and MuRF-1 content decreased (by 50% in the soleus muscle of Fat-1 mice after HS. Balanced diet-fed Fat-1 mice are able to preserve in part the soleus muscle mass, absolute isotonic force and CSA of the soleus muscle in a disuse condition.

  2. A Modified Bacillus Calmette-Guérin (BCG Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence

    Directory of Open Access Journals (Sweden)

    Douglas S. Kernodle

    2013-01-01

    Full Text Available Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.

  3. Infralimbic Neurotrophin-3 Infusion Rescues Fear Extinction Impairment in a Mouse Model of Pathological Fear.

    Science.gov (United States)

    D'Amico, Davide; Gener, Thomas; de Lagrán, Maria Martínez; Sanchez-Vives, Maria V; Santos, Mónica; Dierssen, Mara

    2017-01-01

    The inability to properly extinguish fear memories constitutes the foundation of several anxiety disorders, including panic disorder. Recent findings show that boosting prefrontal cortex synaptic plasticity potentiates fear extinction, suggesting that therapies that augment synaptic plasticity could prove useful in rescue of fear extinction impairments in this group of disorders. Previously, we reported that mice with selective deregulation of neurotrophic tyrosine kinase receptor, type 3 expression (TgNTRK3) exhibit increased fear memories accompanied by impaired extinction, congruent with an altered activation pattern of the amygdala-hippocampus-medial prefrontal cortex fear circuit. Here we explore the specific role of neurotrophin 3 and its cognate receptor in the medial prefrontal cortex, and its involvement in fear extinction in a pathological context. In this study we combined molecular, behavioral, in vivo pharmacology and ex vivo electrophysiological recordings in TgNTRK3 animals during contextual fear extinction processes. We show that neurotrophin 3 protein levels are increased upon contextual fear extinction in wild-type animals but not in TgNTRK3 mice, which present deficits in infralimbic long-term potentiation. Importantly, infusion of neurotrophin 3 to the medial prefrontal cortex of TgNTRK3 mice rescues contextual fear extinction and ex vivo local application improves medial prefrontal cortex synaptic plasticity. This effect is blocked by inhibition of extracellular signal-regulated kinase phosphorylation through peripheral administration of SL327, suggesting that rescue occurs via this pathway. Our results suggest that stimulating neurotrophin 3-dependent medial prefrontal cortex plasticity could restore contextual fear extinction deficit in pathological fear and could constitute an effective treatment for fear-related disorders.

  4. Early-Life Stress Does Not Aggravate Spatial Memory or the Process of Hippocampal Neurogenesis in Adult and Middle-Aged APP/PS1 Mice

    Directory of Open Access Journals (Sweden)

    Lianne Hoeijmakers

    2018-03-01

    Full Text Available Life-time experiences are thought to influence the risk to develop the neurodegenerative disorder Alzheimer’s disease (AD. In particular, early-life stress (ES may modulate the onset and progression of AD. There is recent evidence by our group and others that AD-related neuropathological progression and the associated neuroimmune responses are modulated by ES in the classic APPswe/PS1dE9 mouse model for AD. We here extend our previous study on ES mediated modulation of neuropathology and neuroinflammation and address in the same cohort of mice whether ES accelerates and/or aggravates AD-induced cognitive decline and alterations in the process of adult hippocampal neurogenesis (AHN, a form of brain plasticity. Chronic ES was induced by limiting bedding and nesting material during the first postnatal week and is known to induce cognitive deficits by 4 months in wild type (WT mice. The onset of cognitive decline in APP/PS1 mice generally starts around 6 months of age. We here tested mice at ages 2–4 months to study acceleration and at ages 8–10 months for aggravation of the APP/PS1 phenotype. ES-exposed WT and APP/PS1 mice were able to perform the object recognition (ORT and location tasks (OLT at 2 months of age. Interestingly, at 3 months, ES induced impairments in the performance of the OLT in WT, but not in APP/PS1 mice. APP/PS1 mice exhibited alterations in hippocampal cell proliferation and differentiation, but ES exposure did not further change this. At 9 months, APP/PS1 mice exhibited impaired performance in the Morris Water Maze (MWM task, as well as reductions in markers of the AHN process, which were not further modulated by ES exposure. In addition, we observed a so far unreported hyperactivity in ES-exposed mice at 8 months of age, which hampered assessment of cognitive functions in the ORT and OLT. In conclusion, while ES has been reported to modulate AD neuropathology and neuroinflammation before, it failed to accelerate or

  5. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury

    Science.gov (United States)

    Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.

    2007-01-01

    Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing. PMID:17197044

  6. Adaptation of a ladder beam walking task to assess locomotor recovery in mice following spinal cord injury.

    Science.gov (United States)

    Cummings, Brian J; Engesser-Cesar, Christie; Cadena, Gilbert; Anderson, Aileen J

    2007-02-27

    Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing.

  7. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice.

    Science.gov (United States)

    Reza, Abu Musa Md Talimur; Choi, Yun-Jung; Kim, Jin-Hoi

    2018-02-27

    The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  8. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice

    Directory of Open Access Journals (Sweden)

    Abu Musa Md Talimur Reza

    2018-02-01

    Full Text Available The Rag2 knockout (KO mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs and messenger RNAs (mRNAs in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  9. Increasing Muscle Mass Improves Vascular Function in Obese (db/db) Mice

    Science.gov (United States)

    Qiu, Shuiqing; Mintz, James D.; Salet, Christina D.; Han, Weihong; Giannis, Athanassios; Chen, Feng; Yu, Yanfang; Su, Yunchao; Fulton, David J.; Stepp, David W.

    2014-01-01

    Background A sedentary lifestyle is an independent risk factor for cardiovascular disease and exercise has been shown to ameliorate this risk. Inactivity is associated with a loss of muscle mass, which is also reversed with isometric exercise training. The relationship between muscle mass and vascular function is poorly defined. The aims of the current study were to determine whether increasing muscle mass by genetic deletion of myostatin, a negative regulator of muscle growth, can influence vascular function in mesenteric arteries from obese db/db mice. Methods and Results Myostatin expression was elevated in skeletal muscle of obese mice and associated with reduced muscle mass (30% to 50%). Myostatin deletion increased muscle mass in lean (40% to 60%) and obese (80% to 115%) mice through increased muscle fiber size (PMyostatin deletion decreased adipose tissue in lean mice, but not obese mice. Markers of insulin resistance and glucose tolerance were improved in obese myostatin knockout mice. Obese mice demonstrated an impaired endothelial vasodilation, compared to lean mice. This impairment was improved by superoxide dismutase mimic Tempol. Deletion of myostatin improved endothelial vasodilation in mesenteric arteries in obese, but not in lean, mice. This improvement was blunted by nitric oxide (NO) synthase inhibitor l‐NG‐nitroarginine methyl ester (l‐NAME). Prostacyclin (PGI2)‐ and endothelium‐derived hyperpolarizing factor (EDHF)‐mediated vasodilation were preserved in obese mice and unaffected by myostatin deletion. Reactive oxygen species) was elevated in the mesenteric endothelium of obese mice and down‐regulated by deletion of myostatin in obese mice. Impaired vasodilation in obese mice was improved by NADPH oxidase inhibitor (GKT136901). Treatment with sepiapterin, which increases levels of tetrahydrobiopterin, improved vasodilation in obese mice, an improvement blocked by l‐NAME. Conclusions Increasing muscle mass by genetic deletion of

  10. 5-HT2A receptor antagonists improve motor impairments in the MPTP mouse model of Parkinson's disease.

    Science.gov (United States)

    Ferguson, Marcus C; Nayyar, Tultul; Deutch, Ariel Y; Ansah, Twum A

    2010-01-01

    Clinical observations have suggested that ritanserin, a 5-HT(2A/C) receptor antagonist may reduce motor deficits in persons with Parkinson's Disease (PD). To better understand the potential antiparkinsonian actions of ritanserin, we compared the effects of ritanserin with the selective 5-HT(2A) receptor antagonist M100907 and the selective 5-HT(2C) receptor antagonist SB 206553 on motor impairments in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-treated mice exhibited decreased performance on the beam-walking apparatus. These motor deficits were reversed by acute treatment with L-3,4-dihydroxyphenylalanine (levodopa). Both the mixed 5-HT(2A/C) antagonist ritanserin and the selective 5-HT(2A) antagonist M100907 improved motor performance on the beam-walking apparatus. In contrast, SB 206553 was ineffective in improving the motor deficits in MPTP-treated mice. These data suggest that 5-HT(2A) receptor antagonists may represent a novel approach to ameliorate motor symptoms of Parkinson's disease. Published by Elsevier Ltd.

  11. ``From Earth to the Solar System'' Traveling Exhibit Visits Puerto Rico

    Science.gov (United States)

    Pantoja, C. A.; Lebrón, M. E.; Isidro, G. M.

    2013-04-01

    Puerto Rico was selected as one of the venues for the exhibit “From Earth to the Solar System” (FETTSS) during the month of October 2011. A set of outreach activities were organized to take place during the month of October aligned with the FETTSS themes. These activities included the following: 1) Main Exhibit, 2) Guided tours for school groups, 3) Planet Festival, 4) Film Festival and 5) Astronomy Conferences. We describe this experience and in particular the work with a group of undergraduate students from the University of Puerto Rico (UPR) that assisted in the outreach events. Among this group were three blind students. The FETTSS exhibit included a set of tactile and Braille images for the blind and visually impaired. A special exhibit was prepared with additional adapted materials for the visually impaired. This allowed blind visitors to participate and the general public to become more aware of the needs of this population.

  12. Circadian rhythm resynchronization improved isoflurane-induced cognitive dysfunction in aged mice.

    Science.gov (United States)

    Song, Jia; Chu, Shuaishuai; Cui, Yin; Qian, Yue; Li, Xiuxiu; Xu, Fangxia; Shao, Xueming; Ma, Zhengliang; Xia, Tianjiao; Gu, Xiaoping

    2018-04-13

    Postoperative cognitive dysfunction (POCD) is a common clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery. Advanced age is a significant independent risk factor for POCD. We previously reported that in young mice, sleep-wake rhythm is involved in the isoflurane-induced memory impairment. In present study, we sought to determine whether advanced age increased the risk of POCD through aggravated and prolonged post-anesthetic circadian disruption in the elderly. We constructed POCD model by submitting the mice to 5-h 1.3% isoflurane anesthesia from Zeitgeber Time (ZT) 14 to ZT19. Under novel object recognition assay (NOR) and Morris water maze (MWM) test, We found 5-h isoflurane anesthesia impaired the cognition of young mice for early 3 days after anesthesia but damaged the aged for at least 1 week. With Mini-Mitter continuously monitoring, a 3.22 ± 0.75 h gross motor activity acrophase delay was manifested in young mice on D1, while in the aged mice, the gross motor activity phase shift lasted for 3 days, consistent with the body temperature rhythm trends of change. Melatonin has been considered as an effective remedy for circadian rhythm shift. In aged mice, melatonin was pretreated intragastrically at the dose of 10 mg/kg daily for 7 consecutive days before anesthesia. We found that melatonin prevented isoflurane-induced cognitive impairments by restoring the locomotor activity and temperature circadian rhythm via clock gene resynchronization. Overall, these results indicated that Long-term isoflurane anesthesia induced more aggravated and prolonged memory deficits and circadian rhythms disruption in aged mice. Melatonin could prevent isoflurane-induced cognitive impairments by circadian rhythm resynchronization. Copyright © 2018. Published by Elsevier Inc.

  13. Amygdala activity associated with social choice in mice.

    Science.gov (United States)

    Mihara, Takuma; Mensah-Brown, Kobina; Sobota, Rosanna; Lin, Robert; Featherstone, Robert; Siegel, Steven J

    2017-08-14

    Studies suggest that the amygdala is a key region for regulation of anxiety, fear and social function. Therefore, dysfunction of the amygdala has been proposed as a potential mechanism for negative symptoms in schizophrenia. This may be due to NMDA receptor-mediated hypofunction, which is thought to be related to the pathogenesis of schizophrenia. In this study, electroencephalographic amygdala activity was assessed in mice during the three-chamber social test. This activity was also evaluated following exposure to the NMDA receptor antagonist ketamine. Vehicle-treated mice spent significantly more time in the social than the non-social chamber. This social preference was eliminated by ketamine. However, ketamine-treated mice spent significantly less time in the social chamber and significantly more time in the nonsocial chamber than vehicle-treated mice. There were no significant differences in induced powers between social and non-social chamber entries in vehicle-treated mice, except for theta frequencies, which featured greater induced theta power during non-social chamber entry. Ketamine eliminated differences in induced theta power between social and non-social chamber entries. Moreover, ketamine increased the induced gamma power during social chamber entry compared to that of vehicle-treated mice. All other frequency ranges were not significantly influenced by zone or drug condition. All significant findings were upon entry to chambers not during interaction. Results suggest that impaired function of NMDA receptor-mediated glutamate transmission can induce social impairments and amygdala dysfunction, similar to the pattern in schizophrenia. Future studies will utilize this method to evaluate mechanisms of social dysfunction and development of treatments of social impairments in schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  14. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    Science.gov (United States)

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  15. Superior effects of quetiapine compared with aripiprazole and iloperidone on MK-801-induced olfactory memory impairment in female mice.

    Science.gov (United States)

    Mutlu, Ahmet; Mutlu, Oguz; Ulak, Guner; Akar, Furuzan; Kaya, Havva; Erden, Faruk; Tanyeri, Pelin

    2017-05-01

    Cognitive dysfunction is commonly observed in schizophrenic patients and the administration of antipsychotic treatments results in different outcomes. Although the typical antipsychotic treatments, such as haloperidol, appear to be unable to improve cognition dysfunction, the atypical antipsychotic drugs (quetiapine, aripiprazole and iloperidone) exert a beneficial effect. The purpose of the current study was to investigate the effects of atypical antipsychotics on olfactory memory in mice, utilizing the social transmission of food preference (STFP) tests to evaluate the effects of drugs on MK-801-induced cognitive dysfunction. Female BALB/c mice were treated with quetiapine (5 and 10 mg/kg), aripiprazole (3 and 6 mg/kg), iloperidone (0.5 and 1 mg/kg) or MK-801 (0.1 mg/kg) alone or concurrently prior to retention sessions of STFP tests. In the STFP tests, quetiapine (10 mg/kg; P<0.05), aripiprazole (3 and 6 mg/kg; P<0.01 and P<0.001, respectively), iloperidone (0.5 and 1 mg/kg; P<0.01 and P<0.001, respectively) and MK-801 (P<0.001) significantly decreased cued/total food eaten (%). Quetiapine (5 mg/kg; P<0.05) significantly increased MK-801-induced decreases in cued/total food eaten (%), while aripiprazole and iloperidone demonstrated no significant effects. The results revealed that all of the drugs disturbed olfactory memory in the naive mice; however, only quetiapine reversed MK-801-induced memory impairment in the STFP test.

  16. Characterization of somatostatin receptors and associated signaling pathways in pancreas of R6/2 transgenic mice.

    Science.gov (United States)

    Somvanshi, Rishi K; Jhajj, Amrit; Heer, Michael; Kumar, Ujendra

    2018-02-01

    The present study describes the status of somatostatin receptors (SSTRs) and their colocalization with insulin (β), glucagon (α) and somatostatin (δ) producing cells in the pancreatic islets of 11weeks old R6/2 Huntington's Disease transgenic (HD tg) and age-matched wild type (wt) mice. We also determined expression of tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and presynaptic marker synaptophysin (SYP) in addition to signal transduction pathways associated with diabetes. In R6/2 mice, islets are relatively smaller in size, exhibit enhanced expression and nuclear inclusion of mHtt along with the loss of insulin, glucagon and somatostatin expression. In comparison to wt, R6/2 mice display enhanced mRNA for all SSTRs except SSTR2. In the pancreatic lysate, SSTR1, 4 and 5 immunoreactivity decreases whereas SSTR3 immunoreactivity increases with no discernible changes in SSTR2 immunoreactivity. Furthermore, at the cellular level, R6/2 mice exhibit a receptor specific distributional pattern of SSTRs like immunoreactivity and colocalization with β, α and δ cells. While GAD expression is increased, TH and SYP immunoreactivity was decreased in R6/2 mice, anticipating a cross-talk between the CNS and pancreas in diabetes pathophysiology. We also dissected out the changes in signaling pathway and found decreased activation and expression of PKA, AKT, ERK1/2 and STAT3 in R6/2 mice pancreas. These findings suggest that the impaired organization of SSTRs within islets may lead to perturbed hormonal regulation and signaling. These interconnected complex events might shed new light on the pathogenesis of diabetes in neurodegenerative diseases and the role of SSTRs in potential therapeutic intervention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Kv1.1 knock-in ataxic mice exhibit spontaneous myokymic activity exacerbated by fatigue, ischemia and low temperature.

    Science.gov (United States)

    Brunetti, Orazio; Imbrici, Paola; Botti, Fabio Massimo; Pettorossi, Vito Enrico; D'Adamo, Maria Cristina; Valentino, Mario; Zammit, Christian; Mora, Marina; Gibertini, Sara; Di Giovanni, Giuseppe; Muscat, Richard; Pessia, Mauro

    2012-09-01

    Episodic ataxia type 1 (EA1) is an autosomal dominant neurological disorder characterized by myokymia and attacks of ataxic gait often precipitated by stress. Several genetic mutations have been identified in the Shaker-like K(+) channel Kv1.1 (KCNA1) of EA1 individuals, including V408A, which result in remarkable channel dysfunction. By inserting the heterozygous V408A, mutation in one Kv1.1 allele, a mouse model of EA1 has been generated (Kv1.1(V408A/+)). Here, we investigated the neuromuscular transmission of Kv1.1(V408A/+) ataxic mice and their susceptibility to physiologically relevant stressors. By using in vivo preparations of lateral gastrocnemius (LG) nerve-muscle from Kv1.1(+/+) and Kv1.1(V408A/+) mice, we show that the mutant animals exhibit spontaneous myokymic discharges consisting of repeated singlets, duplets or multiplets, despite motor nerve axotomy. Two-photon laser scanning microscopy from the motor nerve, ex vivo, revealed spontaneous Ca(2+) signals that occurred abnormally only in preparations dissected from Kv1.1(V408A/+) mice. Spontaneous bursting activity, as well as that evoked by sciatic nerve stimulation, was exacerbated by muscle fatigue, ischemia and low temperatures. These stressors also increased the amplitude of compound muscle action potential. Such abnormal neuromuscular transmission did not alter fiber type composition, neuromuscular junction and vascularization of LG muscle, analyzed by light and electron microscopy. Taken together these findings provide direct evidence that identifies the motor nerve as an important generator of myokymic activity, that dysfunction of Kv1.1 channels alters Ca(2+) homeostasis in motor axons, and also strongly suggest that muscle fatigue contributes more than PNS fatigue to exacerbate the myokymia/neuromyotonia phenotype. More broadly, this study points out that juxtaparanodal K(+) channels composed of Kv1.1 subunits exert an important role in dampening the excitability of motor nerve axons during

  18. Atrophy in distinct corticolimbic networks in frontotemporal dementia relates to social impairments measured using the Social Impairment Rating Scale

    Science.gov (United States)

    Bickart, Kevin C; Brickhouse, Michael; Negreira, Alyson; Sapolsky, Daisy

    2015-01-01

    Patients with frontotemporal dementia (FTD) often exhibit prominent, early and progressive impairments in social behaviour. We developed the Social Impairment Rating Scale (SIRS), rated by a clinician after a structured interview, which grades the types and severity of social behavioural symptoms in seven domains. In 20 FTD patients, we used the SIRS to study the anatomic basis of social impairments. In support of hypotheses generated from a prior study of healthy adults, we found that the relative magnitude of brain atrophy in three partially dissociable corticolimbic networks anchored in the amygdala predicted the severity of distinct social impairments measured using the SIRS. Patients with the greatest atrophy in a mesolimbic, reward-related (affiliation) network exhibited the most severe socioemotional detachment, whereas patients with the greatest atrophy in an interoceptive, pain-related (aversion) network exhibited the most severe lack of social apprehension. Patients with the greatest atrophy in a perceptual network exhibited the most severe lack of awareness or understanding of others’ social and emotional behaviour. Our findings underscore observations that FTD is associated with heterogeneous social symptoms that can be understood in a refined manner by measuring impairments in component processes subserved by dissociable neural networks. Furthermore, these findings support the validity of the SIRS as an instrument to measure the social symptoms of patients with FTD. Ultimately, we hope it will be useful as a longitudinal outcome measure in natural history studies and in clinical trials of putative interventions to improve social functioning. PMID:24133285

  19. Extensive metabolic disorders are present in APC(min) tumorigenesis mice.

    Science.gov (United States)

    Liu, Zhenzhen; Xiao, Yi; Zhou, Zhengxiang; Mao, Xiaoxiao; Cai, Jinxing; Xiong, Lu; Liao, Chaonan; Huang, Fulian; Liu, Zehao; Ali Sheikh, Md Sayed; Plutzky, Jorge; Huang, He; Yang, Tianlun; Duan, Qiong

    2016-05-15

    Wnt signaling plays essential role in mesenchymal stem cell (MSC) differentiation. Activation of Wnt signaling suppresses adipogenesis, but promotes osteogenesis in MSC. Adenomatous polyposis coli (APC) is a negative regulator of β-catenin and Wnt signaling activity. The mutation of APC gene leads to the activation of Wnt signaling and is responsible for tumorigenesis in APC(min) mouse; however, very few studies focused on its metabolic abnormalities. The present study reports a widespread metabolic disorder phenotype in APC(min) mice. The old APC(min) mice have decreased body weight and impaired adipogenesis, but severe hyperlipidemia, which mimic the phenotypes of Familial Adenomatous Polyposis (FAP), an inherited disease also caused by APC gene mutation in human. We found that the expression of lipid metabolism and free fat acids (FA) use genes in the white adipose tissue (WAT) of the APC(min) mice is much lower than those of control. The changed gene expression pattern may lead to the disability of circulatory lipid transportation and storage at WAT. Moreover, the APC(min) mice could not maintain the core body temperature in cold condition. PET-CT determination revealed that the BAT of APC(min) mice has significantly impaired ability to take up (18)FDG from the blood. Morphological studies identified that the brown adipocytes of APC(min) mice were filled with lipid droplets but fewer mitochondria. These results matched with the findings of impaired BAT function in APC(min) mice. Collectively, our study explores a new mechanism that explains abnormal metabolism in APC(min) mice and provides insights into studying the metabolic disorders of FAP patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA