WorldWideScience

Sample records for mice enable specific

  1. Cardiac overexpression of Mammalian enabled (Mena) exacerbates heart failure in mice.

    Science.gov (United States)

    Belmonte, Stephen L; Ram, Rashmi; Mickelsen, Deanne M; Gertler, Frank B; Blaxall, Burns C

    2013-09-15

    Mammalian enabled (Mena) is a key regulator of cytoskeletal actin dynamics, which has been implicated in heart failure (HF). We have previously demonstrated that cardiac Mena deletion produced cardiac dysfunction with conduction abnormalities and hypertrophy. Moreover, elevated Mena expression correlates with HF in human and animal models, yet the precise role of Mena in cardiac pathophysiology is unclear. In these studies, we evaluated mice with cardiac myocyte-specific Mena overexpression (TTA/TgTetMena) comparable to that observed in cardiac pathology. We found that the hearts of TTA/TgTetMena mice were functionally and morphologically comparable to wild-type littermates, except for mildly increased heart mass in the transgenic mice. Interestingly, TTA/TgTetMena mice were particularly susceptible to cardiac injury, as these animals experienced pronounced decreases in ejection fraction and fractional shortening as well as heart dilatation and hypertrophy after transverse aortic constriction (TAC). By "turning off" Mena overexpression in TTA/TgTetMena mice either immediately prior to or immediately after TAC surgery, we discovered that normalizing Mena levels eliminated cardiac hypertrophy in TTA/TgTetMena animals but did not preclude post-TAC cardiac functional deterioration. These findings indicate that hearts with increased levels of Mena fare worse when subjected to cardiac injury and suggest that Mena contributes to HF pathophysiology.

  2. Molecular-targeted nanotherapies in cancer: enabling treatment specificity.

    Science.gov (United States)

    Blanco, Elvin; Hsiao, Angela; Ruiz-Esparza, Guillermo U; Landry, Matthew G; Meric-Bernstam, Funda; Ferrari, Mauro

    2011-12-01

    Chemotherapy represents a mainstay and powerful adjuvant therapy in the treatment of cancer. The field has evolved from drugs possessing all-encompassing cell-killing effects to those with highly targeted, specific mechanisms of action; a direct byproduct of enhanced understanding of tumorigenic processes. However, advances regarding development of agents that target key molecules and dysregulated pathways have had only modest impacts on patient survival. Several biological barriers preclude adequate delivery of drugs to tumors, and remain a formidable challenge to overcome in chemotherapy. Currently, the field of nanomedicine is enabling the delivery of chemotherapeutics, including repositioned drugs and siRNAs, by giving rise to carriers that provide for protection from degradation, prolonged circulation times, and increased tumor accumulation, all the while resulting in reduced patient morbidity. This review aims to highlight several innovative, nanoparticle-based platforms with the potential of providing clinical translation of several novel chemotherapeutic agents. We will also summarize work regarding the development of a multistage drug delivery strategy, a robust carrier platform designed to overcome several biological barriers while en route to tumors. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. EO Domain Specific Knowledge Enabled Services (KES-B)

    Science.gov (United States)

    Varas, J.; Busto, J.; Torguet, R.

    2004-09-01

    This paper recovers and describes a number of major statements with respect to the vision, mission and technological approaches of the Technological Research Project (TRP) "EO Domain Specific Knowledge Enabled Services" (project acronym KES-B), which is currently under development at the European Space Research Institute (ESRIN) under contract "16397/02/I- SB". Resulting from the on-going R&D activities, the KES-B project aims are to demonstrate with a prototype system the feasibility of the application of innovative knowledge-based technologies to provide services for easy, scheduled and controlled exploitation of EO resources (e.g.: data, algorithms, procedures, storage, processors, ...), to automate the generation of products, and to support users in easily identifying and accessing the required information or products by using their own vocabulary, domain knowledge and preferences. The ultimate goals of KES-B are summarized in the provision of the two main types of KES services: 1st the Search service (also referred to as Product Exploitation or Information Retrieval; and 2nd the Production service (also referred to as Information Extraction), with the strategic advantage that they are enabled by Knowledge consolidated (formalized) within the system. The KES-B system technical solution approach is driven by a strong commitment for the adoption of industry (XML-based) language standards, aiming to have an interoperable, scalable and flexible operational prototype. In that sense, the Search KES services builds on the basis of the adoption of consolidated and/or emergent W3C semantic-web standards. Remarkably the languages/models Dublin Core (DC), Universal Resource Identifier (URI), Resource Description Framework (RDF) and Ontology Web Language (OWL), and COTS like Protege [1] and JENA [2] are being integrated in the system as building bricks for the construction of the KES based Search services. On the other hand, the Production KES services builds on top of

  4. Domain-specific modeling enabling full code generation

    CERN Document Server

    Kelly, Steven

    2007-01-01

    Domain-Specific Modeling (DSM) is the latest approach tosoftware development, promising to greatly increase the speed andease of software creation. Early adopters of DSM have been enjoyingproductivity increases of 500–1000% in production for over adecade. This book introduces DSM and offers examples from variousfields to illustrate to experienced developers how DSM can improvesoftware development in their teams. Two authorities in the field explain what DSM is, why it works,and how to successfully create and use a DSM solution to improveproductivity and quality. Divided into four parts, the book covers:background and motivation; fundamentals; in-depth examples; andcreating DSM solutions. There is an emphasis throughout the book onpractical guidelines for implementing DSM, including how toidentify the nece sary language constructs, how to generate fullcode from models, and how to provide tool support for a new DSMlanguage. The example cases described in the book are available thebook's Website, www.dsmbook....

  5. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  6. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  7. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  8. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

    Science.gov (United States)

    Shao, Jiawei; Xue, Shuai; Yu, Guiling; Yu, Yuanhuan; Yang, Xueping; Bai, Yu; Zhu, Sucheng; Yang, Linfeng; Yin, Jianli; Wang, Yidan; Liao, Shuyong; Guo, Sanwei; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-04-26

    With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic. Copyright © 2017, American Association for the Advancement of Science.

  9. Highly specific expression of luciferase gene in lungs of naive nude mice directed by prostate-specific antigen promoter

    International Nuclear Information System (INIS)

    Li Hongwei; Li Jinzhong; Helm, Gregory A.; Pan Dongfeng

    2005-01-01

    PSA promoter has been demonstrated the utility for tissue-specific toxic gene therapy in prostate cancer models. Characterization of foreign gene overexpression in normal animals elicited by PSA promoter should help evaluate therapy safety. Here we constructed an adenovirus vector (AdPSA-Luc), containing firefly luciferase gene under the control of the 5837 bp long prostate-specific antigen promoter. A charge coupled device video camera was used to non-invasively image expression of firefly luciferase in nude mice on days 3, 7, 11 after injection of 2 x 10 9 PFU of AdPSA-Luc virus via tail vein. The result showed highly specific expression of the luciferase gene in lungs of mice from day 7. The finding indicates the potential limitations of the suicide gene therapy of prostate cancer based on selectivity of PSA promoter. By contrary, it has encouraging implications for further development of vectors via PSA promoter to enable gene therapy for pulmonary diseases

  10. A single alcohol drinking session is sufficient to enable subsequent aversion-resistant consumption in mice.

    Science.gov (United States)

    Lei, Kelly; Wegner, Scott A; Yu, Ji-Hwan; Simms, Jeffrey A; Hopf, F Woodward

    2016-09-01

    Addiction is mediated in large part by pathological motivation for rewarding, addictive substances, and alcohol-use disorders (AUDs) continue to extract a very high physical and economic toll on society. Compulsive alcohol drinking, where intake continues despite negative consequences, is considered a particular obstacle during treatment of AUDs. Aversion-resistant drives for alcohol have been modeled in rodents, where animals continue to consume even when alcohol is adulterated with the bitter tastant quinine, or is paired with another aversive consequence. Here, we describe a two-bottle choice paradigm where C57BL/6 mice first had 24-h access to 15% alcohol or water. Afterward, they drank quinine-free alcohol (alcohol-only) or alcohol with quinine (100 μM), in a limited daily access (LDA) two-bottle-choice paradigm (2 h/day, 5 days/week, starting 3 h into the dark cycle), and achieved nearly binge-level blood alcohol concentrations. Interestingly, a single, initial 24-h experience with alcohol-only enhanced subsequent quinine-resistant drinking. In contrast, mice that drank alcohol-quinine in the 24-h session showed significantly reduced alcohol-quinine intake and preference during the subsequent LDA sessions, relative to mice that drank alcohol-only in the initial 24-h session and alcohol-quinine in LDA sessions. Thus, mice could find the concentration of quinine we used aversive, but were able to disregard the quinine after a single alcohol-only drinking session. Finally, mice had low intake and preference for quinine in water, both before and after weeks of alcohol-drinking sessions, suggesting that quinine resistance was not a consequence of increased quinine preference after weeks of drinking of alcohol-quinine. Together, we demonstrate that a single alcohol-only session was sufficient to enable subsequent aversion-resistant consumption in C57BL/6 mice, which did not reflect changes in quinine taste palatability. Given the rapid development of quinine

  11. SU-D-12A-05: Iterative Reconstruction Techniques to Enable Intrinsic Respiratory Gated CT in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, T; Sun, N; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Liu, Y; Mistry, N [University of Maryland School of Medicine, Baltimore, MD (United States)

    2014-06-01

    Purpose: Longitudinal studies of lung function in mice need the ability to image different phases of ventilation in free-breathing mice using retrospective gating. However, retrospective gating often produces under-sampled and uneven angular samples, resulting in severe reconstruction artifacts when using traditional FDK based reconstruction algorithms. We wanted to demonstrate the utility of iterative reconstruction method to enable intrinsic respiratory gating in small-animal CT. Methods: Free-breathing mice were imaged using a Siemens Inveon PET/micro-CT system. Evenly distributed projection images were acquired at 360 angles. Retrospective respiratory gating was performed using an intrinsic marker based on the average intensity in a region covering the diaphragm. Projections were classified into 4 and 6 phases (finer temporal resolution) resulting in 138 and 67 projections respectively. Reconstruction was carried out using 3 Methods: conventional FDK, iterative penalized least-square (PWLS) with total variation (TV), and PWLS with edge-preserving penalty. The performance of the methods was compared using contrast-to-noise (CNR) in a region of interest (ROI). Line profile through a specific region was plotted to evaluate the preserving of edges. Results: In both the cases with 4 and 6 phases, inadequate and non-uniform angular sampling results in artifacts using conventional FDK. However, such artifacts are minimized using both the iterative methods. Using both 4 and 6 phases, the iterative techniques outperformed FDK in terms of CNR and maintaining sharp edges. This is further evidenced especially with increased artifacts using FDK for 6 phases. Conclusion: This work indicates fewer artifacts and better image details can be achieved with iterative reconstruction methods in non-uniform under-sampled reconstruction. Using iterative methods can enable free-breathing intrinsic respiratory gating in small-animal CT. Further studies are needed to compare the

  12. Intraperitoneal alpha-radioimmunotherapy in mice using different specific activities

    DEFF Research Database (Denmark)

    Elgqvist, Jörgen; Andersson, Håkan; Haglund, Elin

    2009-01-01

    The aim of this study was to investigate the therapeutic efficacy of the alpha-radioimmunotherapy of ovarian cancer in mice, using different specific activities. This study was performed by using the monoclonal antibody, MX35 F(ab')(2), labeled with the alpha-particle-emitter, 211At.......The aim of this study was to investigate the therapeutic efficacy of the alpha-radioimmunotherapy of ovarian cancer in mice, using different specific activities. This study was performed by using the monoclonal antibody, MX35 F(ab')(2), labeled with the alpha-particle-emitter, 211At....

  13. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  14. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  15. Satellite-enabled educational services specification and requirements analysis based on user feedback

    OpenAIRE

    Tsekeridou, Sofia; Tiropanis, Thanassis; Rorris, Dimitris; Constantinos, Makropoulos; Serif, Tacha; Stergioulas, Lampros

    2008-01-01

    Advanced tele-education services provision in remote geographically dispersed user communities (such as agriculture and maritime), based on the specific needs and requirements of such communities, implies significant infrastructural and broadband connectivity requirements for rich media, timely and quality-assured content delivery and interactivity. The solution to broadband access anywhere is provided by satellite-enabled communication infrastructures. This paper aims to present such satelli...

  16. Prion-Specific Antibodies Produced in Wild-Type Mice

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Bergström, Ann-Louise; Andersen, Heidi Gertz

    2015-01-01

    Peptide-specific antibodies produced against synthetic peptides are of high value in probing protein structure and function, especially when working with challenging proteins, including not readily available, non-immunogenic, toxic, and/or pathogenic proteins. Here, we present a straightforward...... method for production of mouse monoclonal antibodies (MAbs) against peptides representing two sites of interest in the bovine prion protein (boPrP), the causative agent of bovine spongiform encephalopathy ("mad cow disease") and new variant Creutzfeldt-Jakob's disease (CJD) in humans, as well......-peptide antibodies, even against peptides very homologous to murine protein sequences. In general, using the strategies described here for selecting, synthesizing, and conjugating peptides and immunizing 4-5 mice with 2-3 different peptides, high-titered antibodies reacting with the target protein are routinely...

  17. Sex-specific mechanism of social hierarchy in mice.

    Science.gov (United States)

    van den Berg, Wouter E; Lamballais, Sander; Kushner, Steven A

    2015-05-01

    The establishment of social hierarchies is a naturally occurring, evolutionarily conserved phenomenon with a well-established impact on fitness and health. Investigations of complex social group dynamics may offer novel opportunities for translational studies of autism spectrum disorder. Here we describe a robust behavioral paradigm using an automated version of the tube test. Isogenic groups of male and female mice establish linear social hierarchies that remain highly stable for at least 14 days, the longest interval tested. Remarkably, however, their social strategy is sex-specific: females primarily utilize intrinsic attributes, whereas males are strongly influenced by prior social experience. Using both genetic and pharmacological manipulations, we identify testosterone as a critical sex-specific factor for determining which social strategy is used. Males inheriting a null mutation of the sex-determining region Y (Sry) gene used a similar social cognitive strategy as females. In contrast, females with transgenic expression of Sry utilized a typically male social strategy. Analogously, castration of males and testosterone supplementation of females yielded similar outcomes, with a reversal of their social cognitive strategy. Together, our results demonstrate a sex-specific mechanism underlying social hierarchy, in which both males and females retain the functional capacity to adapt their social strategy. More generally, we expect the automated tube test to provide an important complementary approach for both fundamental and translational studies of social behavior.

  18. The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice

    NARCIS (Netherlands)

    E.C. Townsend (Elizabeth); M.A. Murakami (Mark); A. Christodoulou (Alexandra); A.L. Christie (Amanda); J. Köster (Johannes); T.A. DeSouza (Tiffany); E.A. Morgan (Elizabeth); S.P. Kallgren (Scott); H. Liu (Huiyun); S.-C. Wu (Shuo-Chieh); O. Plana (Olivia); J. Montero (Joan); K.E. Stevenson (Kristen); P. Rao (Prakash); R. Vadhi (Raga); M. Andreeff (Michael); P. Armand (Philippe); K.K. Ballen (Karen); P. Barzaghi-Rinaudo (Patrizia); S. Cahill (Sarah); R.A. Clark (Rachael); V.G. Cooke (Vesselina); M.S. Davids (Matthew); D.J. DeAngelo (Daniel); D.M. Dorfman; H. Eaton (Hilary); B.L. Ebert (Benjamin); J. Etchin (Julia); B. Firestone (Brant); D.C. Fisher (David); A.S. Freedman (Arnold); I.A. Galinsky, () (Ilene); H. Gao (Hui); J.S. Garcia, () (Jacqueline); F. Gamache-Ottou (Francine); T.A. Graubert (Timothy); A. Gutierrez (Alejandro); E. Halilovic (Ensar); M.H. Harris (Marian); Z.T. Herbert (Zachary); S.M. Horwitz (Steven); G. Inghirami (Giorgio); A.M. Intlekofer (Andrew); M. Ito (Moriko); S. Izraeli (Shai); E.D. Jacobsen (Eric); C.A. Jacobson (Caron); S. Jeay (Sébastien); I. Jeremias (Irmela); M.A. Kelliher (Michelle); R. Koch (Raphael); M. Konopleva (Marina); N. Kopp (Nadja); S.M. Kornblau (Steven); A.L. Kung (Andrew); T.S. Kupper (Thomas); N.R. LeBoeuf (Nicole); A.S. LaCasce (Ann); E. Lees (Emma); L.S. Li (Loretta); A.T. Look (Thomas); M. Murakami (Masato); M. Muschen (Markus); D. Neuberg (Donna); S.Y. Ng (Samuel); O.O. Odejde (Oreofe); S.H. Orkin (Stuart); R.R. Paquette (Rachel); A.A. Place (Andrew); J.E. Roderick (Justine); J.A. Ryan (Jeremy); S.E. Sallan (Stephen); B. Shoji (Brent); L.B. Silverman (Lewis); R.J. Soiffer (Robert); D.P. Steensma (David); K. Stegmaier (Kimberley); R.M. Stone (Richard); J. Tamburini (Jerome); A.R. Thorner (Aaron); P. van Hummelen (Paul); M. Wadleigh (Martha); M. Wiesmann (Marion); A.P. Weng (Andrew); J.U. Wuerthner (Jens); D.A. Williams (David); B.M. Wollison (Bruce); A.A. Lane (Andrew); A. Letai (Anthony); M.M. Bertagnolli (Monica); J. Ritz (Jerome); M. Brown (Myles); H. Long (Henry); J.C. Aster (Jon); M.A. Shipp (Margaret); J.D. Griffin (James); D.M. Weinstock (David)

    2016-01-01

    textabstractMore than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address

  19. Similar efficacy from specific and non-specific mineralocorticoid receptor antagonist treatment of muscular dystrophy mice.

    Science.gov (United States)

    Lowe, Jeovanna; Floyd, Kyle T; Rastogi, Neha; Schultz, Eric J; Chadwick, Jessica A; Swager, Sarah A; Zins, Jonathan G; Kadakia, Feni K; Smart, Suzanne; Gomez-Sanchez, Elise P; Gomez-Sanchez, Celso E; Raman, Subha V; Janssen, Paul M L; Rafael-Fortney, Jill A

    2016-01-01

    Combined treatment with an angiotensin-converting enzyme inhibitor and a mineralocorticoid receptor (MR) antagonist improved cardiac and skeletal muscle function and pathology in a mouse model of Duchenne muscular dystrophy. MR is present in limb and respiratory skeletal muscles and functions as a steroid hormone receptor. The goals of the current study were to compare the efficacy of the specific MR antagonist eplerenone with the non-specific MR antagonist spironolactone, both in combination with the angiotensin-converting enzyme inhibitor lisinopril. Three groups of n=18 dystrophin-deficient, utrophin-haploinsufficient male mice were given chow containing: lisinopril plus spironolactone, lisinopril plus eplerenone, or no drug, from four to 20 weeks-of-age. Eighteen C57BL/10 male mice were used as wild-type controls. In vivo measurements included cardiac magnetic resonance imaging, conscious electrocardiography, and grip strength. From each mouse in the study, diaphragm, extensor digitorum longus , and cardiac papillary muscle force was measured ex vivo , followed by histological quantification of muscle damage in heart, diaphragm, quadriceps, and abdominal muscles. MR protein levels were also verified in treated muscles. Treatment with specific and non-specific MR antagonists did not result in any adverse effects to dystrophic skeletal muscles or heart. Both treatments resulted in similar functional and pathological improvements across a wide array of parameters. MR protein levels were not reduced by treatment. These data suggest that spironolactone and eplerenone show similar effects in dystrophic mice and support the clinical development of MR antagonists for treating skeletal muscles in Duchenne muscular dystrophy.

  20. Peer feedback: Using diciplinary-specific teaching formats as "bridges" to enable student engagement

    DEFF Research Database (Denmark)

    Jensen, Tine Wirenfeldt; Dankl, Kathrina

    2017-01-01

    Introduction Peer feedback has been proven to significantly strengthen students’ academic writing skills as well as foster meta-cognitive awareness on learning processes (Gibbs et al. 2004, Nicol et. al 2006). In order to unleash this potential, a collaborative and trusting ethos is required...... disciplinary-specific teaching formats and using these as “bridges” to enable students’ active engagement and unlock student’s co-creation skills. Method The proposed method has been applied at the Design School in Kolding at a course initiated as a part of the Master’s thesis supervision. As a method...... for a synopsis, and peer feedback was introduced for ‘shaping and co-creating’ first drafts of a synopsis. Both peer feedback and the concept of creative constraints (see freewriting format), are commonly used in design as methods to spur creativity. Results According to students own written evaluations (fifteen...

  1. Biocompatible click chemistry enabled compartment-specific pH measurement inside E. coli.

    Science.gov (United States)

    Yang, Maiyun; Jalloh, Abubakar S; Wei, Wei; Zhao, Jing; Wu, Peng; Chen, Peng R

    2014-09-19

    Bioorthogonal reactions, especially the Cu(I)-catalysed azide-alkyne cycloaddition, have revolutionized our ability to label and manipulate biomolecules under living conditions. The cytotoxicity of Cu(I) ions, however, has hindered the application of this reaction in the internal space of living cells. By systematically surveying a panel of Cu(I)-stabilizing ligands in promoting protein labelling within the cytoplasm of Escherichia coli, we identify a highly efficient and biocompatible catalyst for intracellular modification of proteins by azide-alkyne cycloaddition. This reaction permits us to conjugate an environment-sensitive fluorophore site specifically onto HdeA, an acid-stress chaperone that adopts pH-dependent conformational changes, in both the periplasm and cytoplasm of E. coli. The resulting protein-fluorophore hybrid pH indicators enable compartment-specific pH measurement to determine the pH gradient across the E. coli cytoplasmic membrane. This construct also allows the measurement of E. coli transmembrane potential, and the determination of the proton motive force across its inner membrane under normal and acid-stress conditions.

  2. Immobilization induced osteopenia is strain specific in mice

    Directory of Open Access Journals (Sweden)

    Andreas Lodberg

    2015-06-01

    Full Text Available Immobilization causes rapid and massive bone loss. By comparing Botulinum Toxin A (BTX-induced bone loss in mouse strains with different genetic backgrounds we investigated whether the genetic background had an influence on the severity of the osteopenia. Secondly, we investigated whether BTX had systemic effects on bone. Female mice from four inbred mouse strains (BALB/cJ, C57BL/6 J, DBA/2 J, and C3H/HeN were injected unilaterally with BTX (n = 10/group or unilaterally with saline (n = 10/group. Mice were euthanized after 21 days, and the bone properties evaluated using μCT, DXA, bone histomorphometry, and mechanical testing. BTX resulted in substantially lower trabecular bone volume fraction (BV/TV and trabecular thickness in all mouse strains. The deterioration of BV/TV was significantly greater in C57BL/6 J (−57% and DBA/2 J (−60% than in BALB/cJ (−45% and C3H/HeN (−34% mice. The loss of femoral neck fracture strength was significantly greater in C57BL/6 J (−47% and DBA/2 J (−45% than in C3H (−25% mice and likewise the loss of mid-femoral fracture strength was greater in C57BL/6 J (−17%, DBA/2 J (−12%, and BALB/cJ (−9% than in C3H/HeN (−1% mice, which were unaffected. Using high resolution μCT we found no evidence of a systemic effect on any of the microstructural parameters of the contralateral limb. Likewise, there was no evidence of a systemic effect on the bone strength in any mouse strain. We did, however, find a small systemic effect on aBMD in DBA/2 J and C3H/HeN mice. The present study shows that BTX-induced immobilization causes the greatest loss of cortical and trabecular bone in C57BL/6 J and DBA/2 J mice. A smaller loss of bone microstructure and fracture strength was seen in BALB/cJ mice, while the bone microstructure and fracture strength of C3H/HeN mice were markedly less affected. This indicates that BTX-induced loss of bone is mouse strain dependent. We found only minimal systemic

  3. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Science.gov (United States)

    Liang, Zhe; Xie, Yan; Dominguez, Jessica A; Breed, Elise R; Yoseph, Benyam P; Burd, Eileen M; Farris, Alton B; Davidson, Nicholas O; Coopersmith, Craig M

    2014-01-01

    Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO) exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week) Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis. Aged (20-24 months) Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival. In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005). Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice. Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  4. Intestine-specific deletion of microsomal triglyceride transfer protein increases mortality in aged mice.

    Directory of Open Access Journals (Sweden)

    Zhe Liang

    Full Text Available Mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO exhibit a complete block in chylomicron assembly together with lipid malabsorption. Young (8-10 week Mttp-IKO mice have improved survival when subjected to a murine model of Pseudomonas aeruginosa-induced sepsis. However, 80% of deaths in sepsis occur in patients over age 65. The purpose of this study was to determine whether age impacts outcome in Mttp-IKO mice subjected to sepsis.Aged (20-24 months Mttp-IKO mice and WT mice underwent intratracheal injection with P. aeruginosa. Mice were either sacrificed 24 hours post-operatively for mechanistic studies or followed seven days for survival.In contrast to young septic Mttp-IKO mice, aged septic Mttp-IKO mice had a significantly higher mortality than aged septic WT mice (80% vs. 39%, p = 0.005. Aged septic Mttp-IKO mice exhibited increased gut epithelial apoptosis, increased jejunal Bax/Bcl-2 and Bax/Bcl-XL ratios yet simultaneously demonstrated increased crypt proliferation and villus length. Aged septic Mttp-IKO mice also manifested increased pulmonary myeloperoxidase levels, suggesting increased neutrophil infiltration, as well as decreased systemic TNFα compared to aged septic WT mice.Blocking intestinal chylomicron secretion alters mortality following sepsis in an age-dependent manner. Increases in gut apoptosis and pulmonary neutrophil infiltration, and decreased systemic TNFα represent potential mechanisms for why intestine-specific Mttp deletion is beneficial in young septic mice but harmful in aged mice as each of these parameters are altered differently in young and aged septic WT and Mttp-IKO mice.

  5. Immobilization induced osteopenia is strain specific in mice

    DEFF Research Database (Denmark)

    Lodberg, Andreas; Vegger, Jens Bay; Jensen, Michael Vinkel

    2015-01-01

    systemic effects on bone. Female mice from four inbred mouse strains (BALB/cJ, C57BL/6 J, DBA/2 J, and C3H/HeN) were injected unilaterally with BTX (n = 10/group) or unilaterally with saline (n = 10/group). Mice were euthanized after 21 days, and the bone properties evaluated using μCT, DXA, bone...... resolution μCT we found no evidence of a systemic effect on any of the microstructural parameters of the contralateral limb. Likewise, there was no evidence of a systemic effect on the bone strength in any mouse strain. We did, however, find a small systemic effect on aBMD in DBA/2 J and C3H/HeN mice...

  6. Variant-specific immunity to Plasmodium berghei in pregnant mice

    DEFF Research Database (Denmark)

    Megnekou, Rosette; Hviid, Lars; Staalsoe, Trine

    2009-01-01

    for recrudescence-type IEs are related to the protection of pregnant mice from maternal anemia, low birth weight, and decreased litter size. We conclude that the model replicates many of the key parasitological and immunological features of PAM, although the P. berghei genome does not encode proteins homologous...... to the P. falciparum erythrocyte membrane protein 1 adhesins, which are of key importance in P. falciparum malaria. The study of P. berghei malaria in pregnant, immune mice can be used to gain significant new insights regarding malaria pathogenesis and immunity in general and regarding PAM in particular....

  7. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice.

    Science.gov (United States)

    Rakov, Helena; Engels, Kathrin; Hönes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; Köhrle, Josef; Zwanziger, Denise; Führer, Dagmar

    2016-01-01

    Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 (-) or T4 i.p. treatment over 7 weeks, and control animals underwent sham treatment (N = 8 animals/sex/treatment). Animals were investigated for impact of sex on body weight, food and water intake, body temperature, heart rate, behaviour (locomotor activity, motor coordination, and strength), liver function, serum thyroid hormone status, and cellular TH effects on gene expression in brown adipose tissue, heart, and liver. Male and female mice showed significant differences in behavioural, functional, metabolic, biochemical, and molecular traits of hyper- and hypothyroidism. Hyperthyroidism resulted in increased locomotor activity in female mice but decreased muscle strength and motor coordination preferably in male animals. Hypothyroidism led to increased water intake in male but not female mice and significantly higher serum cholesterol in male mice. Natural sex differences in body temperature, body weight gain, food and water intake were preserved under hyperthyroid conditions. In contrast, natural sex differences in heart rate disappeared with TH excess and deprivation. The variations of hyper- or hypothyroid traits of male and female mice were not explained by classical T3/T4 serum state. TH serum concentrations were significantly increased in female mice under hyperthyroidism, but no sex differences were found under eu- or hypothyroid conditions. Interestingly, analysis of expression of TH target genes and TH transporters revealed little sex dependency in heart, while sex differences in target genes were present in liver and brown adipose tissue

  8. Digital Watermarks Enabling E-Commerce Strategies: Conditional and User Specific Access to Services and Resources

    Science.gov (United States)

    Dittmann, Jana; Steinebach, Martin; Wohlmacher, Petra; Ackermann, Ralf

    2002-12-01

    Digital watermarking is well known as enabling technology to prove ownership on copyrighted material, detect originators of illegally made copies, monitor the usage of the copyrighted multimedia data and analyze the spread spectrum of the data over networks and servers. Research has shown that data hiding techniques can be applied successfully to other application areas like manipulations recognition. In this paper, we show our innovative approach for integrating watermark and cryptography based methods within a framework of new application scenarios spanning a wide range from dedicated and user specific services, "Try&Buy" mechanisms to general means for long-term customer relationships. The tremendous recent efforts to develop and deploy ubiquitous mobile communication possibilities are changing the demands but also possibilities for establishing new business and commerce relationships. Especially we motivate annotation watermarks and aspects of M-Commerce to show important scenarios for access control. Based on a description of the challenges of the application domain and our latest work we discuss, which methods can be used for establishing services in a fast convenient and secure way for conditional access services based on digital watermarking combined with cryptographic techniques. We introduce an example scenario for digital audio and an overview of steps in order to establish these concepts practically.

  9. Novel, Highly Specific N-Demethylases Enable Bacteria To Live on Caffeine and Related Purine Alkaloids

    Science.gov (United States)

    Summers, Ryan M.; Louie, Tai Man; Yu, Chi-Li; Gakhar, Lokesh; Louie, Kailin C.

    2012-01-01

    The molecular basis for the ability of bacteria to live on caffeine as a sole carbon and nitrogen source is unknown. Pseudomonas putida CBB5, which grows on several purine alkaloids, metabolizes caffeine and related methylxanthines via sequential N-demethylation to xanthine. Metabolism of caffeine by CBB5 was previously attributed to one broad-specificity methylxanthine N-demethylase composed of two subunits, NdmA and NdmB. Here, we report that NdmA and NdmB are actually two independent Rieske nonheme iron monooxygenases with N1- and N3-specific N-demethylation activity, respectively. Activity for both enzymes is dependent on electron transfer from NADH via a redox-center-dense Rieske reductase, NdmD. NdmD itself is a novel protein with one Rieske [2Fe-2S] cluster, one plant-type [2Fe-2S] cluster, and one flavin mononucleotide (FMN) per enzyme. All ndm genes are located in a 13.2-kb genomic DNA fragment which also contained a formaldehyde dehydrogenase. ndmA, ndmB, and ndmD were cloned as His6 fusion genes, expressed in Escherichia coli, and purified using a Ni-NTA column. NdmA-His6 plus His6-NdmD catalyzed N1-demethylation of caffeine, theophylline, paraxanthine, and 1-methylxanthine to theobromine, 3-methylxanthine, 7-methylxanthine, and xanthine, respectively. NdmB-His6 plus His6-NdmD catalyzed N3-demethylation of theobromine, 3-methylxanthine, caffeine, and theophylline to 7-methylxanthine, xanthine, paraxanthine, and 1-methylxanthine, respectively. One formaldehyde was produced from each methyl group removed. Activity of an N7-specific N-demethylase, NdmC, has been confirmed biochemically. This is the first report of bacterial N-demethylase genes that enable bacteria to live on caffeine. These genes represent a new class of Rieske oxygenases and have the potential to produce biofuels, animal feed, and pharmaceuticals from coffee and tea waste. PMID:22328667

  10. Strain-specific aggressive behavior of male mice submitted to different husbandry procedures

    NARCIS (Netherlands)

    Loo, P.L.P. van; Meer, E. van der; Kruitwagen, C.L.J.J.; Koolhaas, J.M.; Zutphen, L.F.M. van; Baumans, V.

    Severe aggression within groups of male laboratory mice can cause serious welfare problems. Previous experiments have shown that the transfer of specific olfactory cues during cage cleaning and the provision of nesting material decrease aggression and stress in group-housed male mice. In this study,

  11. Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice.

    Science.gov (United States)

    Shusterman, Vladimir; Usiene, Irmute; Harrigal, Chivonne; Lee, Joon Sup; Kubota, Toru; Feldman, Arthur M; London, Barry

    2002-06-01

    Transgenic mice are widely used to study cardiac function, but strain-dependent differences in autonomic nervous system activity (ANSA) have not been explored. We compared 1) short-term pharmacological responses of cardiac rhythm in FVB vs. C57Black6/SV129 wild-type mice and 2) long-term physiological dynamics of cardiac rhythm and survival in tumor necrosis factor (TNF)-alpha transgenic mice with heart failure (TNF-alpha mice) on defined backgrounds. Ambulatory telemetry electrocardiographic recordings and response to saline, adrenergic, and cholinergic agents were examined in FVB and C57Black6/SV129 mice. In FVB mice, baseline heart rate (HR) was higher and did not change after injection of isoproterenol or atropine but decreased with propranolol. In C57Black6/SV129 mice, HR did not change with propranolol but increased with isoproterenol or atropine. Mean HR, but not indexes of HR variability, was an excellent predictor of response to autonomic agents. The proportion of surviving animals was higher in TNF-alpha mice on an FVB background than on a mixed FVB/C57Black6 background. The homeostatic states of ANSA are strain specific, which can explain the interstrain differences in mean HR, pharmacological responses, and survival of animals with congestive heart failure. Strain-specific differences should be considered in selecting the strains of mice used for transgenic and gene targeting experiments.

  12. Sex-specific phenotypes of hyperthyroidism and hypothyroidism in mice

    OpenAIRE

    Rakov, Helena; Engels, Kathrin; H?nes, Georg Sebastian; Strucksberg, Karl-Heinz; Moeller, Lars Christian; K?hrle, Josef; Zwanziger, Denise; F?hrer, Dagmar

    2016-01-01

    Background Thyroid dysfunction is more common in the female population, however, the impact of sex on disease characteristics has rarely been addressed. Using a murine model, we asked whether sex has an influence on phenotypes, thyroid hormone status, and thyroid hormone tissue response in hyper- and hypothyroidism. Methods Hypo- and hyperthyroidism were induced in 5-month-old female and male wildtype C57BL/6N mice, by LoI/MMI/ClO4 ? or T4 i.p. treatment over 7?weeks, and control animals unde...

  13. GTL Based Internet of Things Enable Processor Specific RAM Design on 65nm FPGA

    DEFF Research Database (Denmark)

    Moudgil, Aditi; Garg, Kanika; Pandey, Bishwajeet

    2015-01-01

    In this work, we are making Energy Efficient Internet of Things (IoTs) Enable RAM. In order to make it energy efficient, we are using Gunning Transceiver Logic (GTL) IO Standard and Gunning Transceiver Logic Plus (GTLP). We are using the 4 different members of GTL and GTLP IO standards family...... and searching the most energy efficient among them. We observed that when we use 3.6 GHz operating frequency, there is 90.2% reduction in I/O power when we used GTL instead of GTLP_DCI. We are inserting 128-bit IP address in RAM to make internet of things enable RAM. Finally, we are operating our IOTs Enable...

  14. Protective effect of a non specific inflammation on bone marrow protein synthesis in irradiated mice

    International Nuclear Information System (INIS)

    Herodin, F.; Roques, P.; Court, L.

    1988-01-01

    Gamma radiations exert a decrease in mouse bone marrow total protein synthesis. A non-specific inflammatory process induced with polyacrylamide microbeads stimulates spleen and marrow protein synthesis and protects the medullar protein synthesis in irradiated mice [fr

  15. A novel system for tracking social preference dynamics in mice reveals sex- and strain-specific characteristics.

    Science.gov (United States)

    Netser, Shai; Haskal, Shani; Magalnik, Hen; Wagner, Shlomo

    2017-01-01

    Deciphering the biological mechanisms underlying social behavior in animal models requires standard behavioral paradigms that can be unbiasedly employed in an observer- and laboratory-independent manner. During the past decade, the three-chamber test has become such a standard paradigm used to evaluate social preference (sociability) and social novelty preference in mice. This test suffers from several caveats, including its reliance on spatial navigation skills and negligence of behavioral dynamics. Here, we present a novel experimental apparatus and an automated analysis system which offer an alternative to the three-chamber test while solving the aforementioned caveats. The custom-made apparatus is simple for production, and the analysis system is publically available as an open-source software, enabling its free use. We used this system to compare the dynamics of social behavior during the social preference and social novelty preference tests between male and female C57BL/6J mice. We found that in both tests, male mice keep their preference towards one of the stimuli for longer periods than females. We then employed our system to define several new parameters of social behavioral dynamics in mice and revealed that social preference behavior is segregated in time into two distinct phases. An early exploration phase, characterized by high rate of transitions between stimuli and short bouts of stimulus investigation, is followed by an interaction phase with low transition rate and prolonged interactions, mainly with the preferred stimulus. Finally, we compared the dynamics of social behavior between C57BL/6J and BTBR male mice, the latter of which are considered as asocial strain serving as a model for autism spectrum disorder. We found that BTBR mice ( n  = 8) showed a specific deficit in transition from the exploration phase to the interaction phase in the social preference test, suggesting a reduced tendency towards social interaction. We successfully

  16. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  17. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice.

    Science.gov (United States)

    Skouboe, Morten K; Knudsen, Alice; Reinert, Line S; Boularan, Cedric; Lioux, Thierry; Perouzel, Eric; Thomsen, Martin K; Paludan, Søren R

    2018-04-01

    In recent years, there has been an increasing interest in immunomodulatory therapy as a means to treat various conditions, including infectious diseases. For instance, Toll-like receptor (TLR) agonists have been evaluated for treatment of genital herpes. However, although the TLR7 agonist imiquimod was shown to have antiviral activity in individual patients, no significant effects were observed in clinical trials, and the compound also exhibited significant side effects, including local inflammation. Cytosolic DNA is detected by the enzyme cyclic GMP-AMP (2'3'-cGAMP) synthase (cGAS) to stimulate antiviral pathways, mainly through induction of type I interferon (IFN)s. cGAS is activated upon DNA binding to produce the cyclic dinucleotide (CDN) 2'3'-cGAMP, which in turn binds and activates the adaptor protein Stimulator of interferon genes (STING), thus triggering type I IFN expression. In contrast to TLRs, STING is expressed broadly, including in epithelial cells. Here we report that natural and non-natural STING agonists strongly induce type I IFNs in human cells and in mice in vivo, without stimulating significant inflammatory gene expression. Systemic treatment with 2'3'-cGAMP reduced genital herpes simplex virus (HSV) 2 replication and improved the clinical outcome of infection. More importantly, local application of CDNs at the genital epithelial surface gave rise to local IFN activity, but only limited systemic responses, and this treatment conferred total protection against disease in both immunocompetent and immunocompromised mice. In direct comparison between CDNs and TLR agonists, only CDNs acted directly on epithelial cells, hence allowing a more rapid and IFN-focused immune response in the vaginal epithelium. Thus, specific activation of the STING pathway in the vagina evokes induction of the IFN system but limited inflammatory responses to allow control of HSV2 infections in vivo.

  18. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration

    OpenAIRE

    McBrayer, Zofeyah L.; Dimova, Jiva; Pisansky, Marc T.; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C.; O’Connor, Michael B.

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not ...

  19. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  20. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  1. An experimental analysis of the specificity of actively acquired tolerance in mice

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G.

    1963-08-15

    Tolerance to CBA skin was induced in C3H mice by neonatal injection of CBA spleen cells. When two months old, the C3H recipients were grafted with CBA skin. These skin grafts showed no signs of rejection during the observation time of three months, whereas CBA skins grafted onto C3H mice non injected at birth showed complete necrosis in 11.7 days. Normal C3H and C3H mice tolerant to CBA skin were injected with rat RBC and sacrificed 12 days later for serum titration of anti-rat RBC agglutinins. The agglutinin titer was the same in both groups. This indicates that the unresponsiveness of C3H mice to CBA skin was specific, for the tolerant mice were able to respond with normal vigor to antigens (rat RBC) unrelated to C3H and CBA. Whether this response was due to the host immune system or to the CBA spleen cells which may have colonized the C3H newborns was subsequently investigated. Spleen cells from tolerant C3H mice sensitized to rat RBC were injected into two groups of lethally irradiated recipients: C3H mice preimmunized against CBA and CBA mice preimmunized against C3H. Both groups were given rat RBC immediately after the spleen cell transfer from the tolerant mice and sacrified a week later for serum titration of anti-rat RBC agglutinins. These agglutinins, due to the secondary response of the transferred spleen cells, could be detected only in the group of C3H recipients preimmunized against CBA. This shows that anti-rat RBC agglutinins in tolerant mice were produced y the immune system of the C3H host. The theoretical implications of this finding are discussed. (auth)

  2. A monoclonal antibody to inclusion body disease of cranes virus enabling specific immunohistochemistry and competitive ELISA

    Science.gov (United States)

    Letchworth, G.J.; Fishel, J.R.; Hansen, W.R.

    1997-01-01

    Inclusion body disease of cranes (IBDC) herpesvirus kills some infected cranes and persists in convalescent animals. To enable further study and rapid identification of carrier animals, we developed a monoclonal antibody (MAb) to IBDC virus and used it in immunohistochemistry and a competitive enzyme-linked immunosorbent assay (ELISA). We used conventional techniques to make murine MAbs directed against IBDC virus purified from infected duck embryo cells. Hybridomas reacting in an ELISA with IBDC virus but not uninfected duck embryo cells were characterized by radioimmunoprecipitation, in situ immunohistochemistry, and competitive ELISA with neutralizing and nonneutralizing crane sera. MAb 2C11 immunoprecipitated 59-, 61-, and 110-kD proteins from IBDC virus-infected but not uninfected cells and stained glutaraldehyde-fixed IBDC virus plaques but not surrounding uninfected duck embryo cells in vitro. Antibody 2C11 did not react with duck embryo cells infected with falcon herpesvirus, psittacine herpesvirus, infectious laryngotracheitis, pigeon herpesvirus, or duck plague virus. A competitive ELISA using antibody 2C11 identified most sera that were positive in the neutralization test. This antibody will be useful in further characterizing IBDC virus, its pathogenesis, and its natural history.

  3. Organ specific mapping of in vivo redox state in control and cigarette smoke-exposed mice using EPR/NMR co-imaging

    Science.gov (United States)

    Caia, George L.; Efimova, Olga V.; Velayutham, Murugesan; El-Mahdy, Mohamed A.; Abdelghany, Tamer M.; Kesselring, Eric; Petryakov, Sergey; Sun, Ziqi; Samouilov, Alexandre; Zweier, Jay L.

    2014-01-01

    In vivo mapping of alterations in redox status is important for understanding organ specific pathology and disease. While electron paramagnetic resonance imaging (EPRI) enables spatial mapping of free radicals, it does not provide anatomic visualization of the body. Proton MRI is well suited to provide anatomical visualization. We applied EPR/NMR co-imaging instrumentation to map and monitor the redox state of living mice under normal or oxidative stress conditions induced by secondhand cigarette smoke (SHS) exposure. A hybrid co-imaging instrument, EPRI (1.2 GHz) / proton MRI (16.18 MHz), suitable for whole-body co-imaging of mice was utilized with common magnet and gradients along with dual EPR/NMR resonators that enable co-imaging without sample movement. The metabolism of the nitroxide probe, 3–carbamoyl–proxyl (3-CP), was used to map the redox state of control and SHS-exposed mice. Co-imaging allowed precise 3D mapping of radical distribution and reduction in major organs such as the heart, lungs, liver, bladder and kidneys. Reductive metabolism was markedly decreased in SHS-exposed mice and EPR/NMR co-imaging allowed quantitative assessment of this throughout the body. Thus, in vivo EPR/NMR co-imaging enables in vivo organ specific mapping of free radical metabolism and redox stress and the alterations that occur in the pathogenesis of disease. PMID:22296801

  4. Optimal specific radioactivity of anti-HER2 Affibody molecules enables discrimination between xenografts with high and low HER2 expression levels

    Energy Technology Data Exchange (ETDEWEB)

    Tolmachev, Vladimir [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Department of Medical Sciences, Nuclear Medicine, Uppsala (Sweden); Waallberg, Helena [Royal Institute of Technology, School of Biotechnology, Stockholm (Sweden); Sandstroem, Mattias [Uppsala University Hospital, Section of Hospital Physics, Department of Oncology, Uppsala (Sweden); Hansson, Monika; Wennborg, Anders [Affibody AB, Stockholm (Sweden); Orlova, Anna [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden)

    2011-03-15

    Overexpression of the HER2 receptor is a biomarker for predicting those patients who may benefit from trastuzumab therapy. Radiolabelled Affibody molecules can be used to visualize HER2 expression in tumour xenografts with high sensitivity. However, previous studies demonstrated that the difference in uptake in xenografts with high and low HER2 expression levels is not proportional to the difference in expression levels. We hypothesized that discrimination between tumours with high and low HER2 expression may be improved by increasing the injected dose (reducing the specific activity) of the tracer. The influence of injected dose of anti-HER2 {sup 111}In-DOTA-Z{sub HER2} {sub 342} Affibody molecule on uptake in SKOV-3 (high HER2 expression) and LS174T (low expression) xenografts was investigated. The optimal range of injected doses enabling discrimination between xenografts with high and low expression was determined. To verify this, tumour uptake was measured in mice carrying both SKOV-3 and LS174T xenografts after injection of either 1 or 15 {mu}g {sup 111}In-DOTA-Z{sub HER2:342}. An increase in the injected dose caused a linear decrease in the radioactivity accumulation in the LS174T xenografts (low HER2 expression). For SKOV-3 xenografts, the dependence of the tumour uptake on the injected dose was less dramatic. The injection of 10-30 {mu}g {sup 111}In-DOTA-Z{sub HER2:342} per mouse led to the largest difference in uptake between the two types of tumour. Experiments in mice bearing two xenografts confirmed that the optimized injected dose enabled better discrimination of expression levels. Careful optimization of the injected dose of Affibody molecules is required for maximum discrimination between xenografts with high and low levels of HER2 expression. This information has potential relevance for clinical imaging applications. (orig.)

  5. A GIS-Enabled, Michigan-Specific, Hierarchical Groundwater Modeling and Visualization System

    Science.gov (United States)

    Liu, Q.; Li, S.; Mandle, R.; Simard, A.; Fisher, B.; Brown, E.; Ross, S.

    2005-12-01

    Efficient management of groundwater resources relies on a comprehensive database that represents the characteristics of the natural groundwater system as well as analysis and modeling tools to describe the impacts of decision alternatives. Many agencies in Michigan have spent several years compiling expensive and comprehensive surface water and groundwater inventories and other related spatial data that describe their respective areas of responsibility. However, most often this wealth of descriptive data has only been utilized for basic mapping purposes. The benefits from analyzing these data, using GIS analysis functions or externally developed analysis models or programs, has yet to be systematically realized. In this talk, we present a comprehensive software environment that allows Michigan groundwater resources managers and frontline professionals to make more effective use of the available data and improve their ability to manage and protect groundwater resources, address potential conflicts, design cleanup schemes, and prioritize investigation activities. In particular, we take advantage of the Interactive Ground Water (IGW) modeling system and convert it to a customized software environment specifically for analyzing, modeling, and visualizing the Michigan statewide groundwater database. The resulting Michigan IGW modeling system (IGW-M) is completely window-based, fully interactive, and seamlessly integrated with a GIS mapping engine. The system operates in real-time (on the fly) providing dynamic, hierarchical mapping, modeling, spatial analysis, and visualization. Specifically, IGW-M allows water resources and environmental professionals in Michigan to: * Access and utilize the extensive data from the statewide groundwater database, interactively manipulate GIS objects, and display and query the associated data and attributes; * Analyze and model the statewide groundwater database, interactively convert GIS objects into numerical model features

  6. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  7. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Science.gov (United States)

    Beery, Annaliese K.; Christensen, Jennifer D; Lee, Nicole S.; Blandino, Katrina L.

    2018-01-01

    Social behavior is often described as a unified concept, but highly social (group-living) species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex) during extended choice tests, although short-term preferences are not known. Mice (Mus musculus) are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT) typically used in mice (short, no direct contact), and the partner preference test (PPT) used in voles (long, direct contact). A subset of voles also underwent a PPT using barriers (long, no direct contact). In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of selective social

  8. Specificity in Sociality: Mice and Prairie Voles Exhibit Different Patterns of Peer Affiliation

    Directory of Open Access Journals (Sweden)

    Annaliese K. Beery

    2018-03-01

    Full Text Available Social behavior is often described as a unified concept, but highly social (group-living species exhibit distinct social structures and may make different social decisions. Prairie voles (Microtus ochrogaster are socially monogamous rodents that often reside in extended family groups, and exhibit robust preferences for familiar social partners (same- and opposite-sex during extended choice tests, although short-term preferences are not known. Mice (Mus musculus are gregarious and colonial, but in brief laboratory tests of social preference they typically prefer social novelty. This preference for novel vs. familiar peers may represent a species-specific difference in social decision-making between mice and prairie voles. However, the tests used to measure preferences in each species differ markedly in duration and degree of contact, such that the behaviors cannot be directly compared. We assessed whether social preferences for novelty or familiarity differed between mice and prairie voles of both sexes when assessed with matching protocols: the sociability/social preference test (SPT typically used in mice (short, no direct contact, and the partner preference test (PPT used in voles (long, direct contact. A subset of voles also underwent a PPT using barriers (long, no direct contact. In the short SPT, behavior did not differ between species. In the longer test, pronounced partner preferences emerged in prairie voles, but mice exhibited no social preferences and rarely huddled. No sex differences were evident in either test. Direct physical contact was required for partner preferences in huddling time in voles, but preference for the partner chamber was evident with or without contact. Both prairie voles and mice are social, but they exhibit important differences in the specificity and extent of their social behavior. While mice are often used to study social approach and other behaviors, voles are a more suitable species for the study of

  9. Broad substrate tolerance of tubulin tyrosine ligase enables one-step site-specific enzymatic protein labeling.

    Science.gov (United States)

    Schumacher, Dominik; Lemke, Oliver; Helma, Jonas; Gerszonowicz, Lena; Waller, Verena; Stoschek, Tina; Durkin, Patrick M; Budisa, Nediljko; Leonhardt, Heinrich; Keller, Bettina G; Hackenberger, Christian P R

    2017-05-01

    The broad substrate tolerance of tubulin tyrosine ligase is the basic rationale behind its wide applicability for chemoenzymatic protein functionalization. In this context, we report that the wild-type enzyme enables ligation of various unnatural amino acids that are substantially bigger than and structurally unrelated to the natural substrate, tyrosine, without the need for extensive protein engineering. This unusual substrate flexibility is due to the fact that the enzyme's catalytic pocket forms an extended cavity during ligation, as confirmed by docking experiments and all-atom molecular dynamics simulations. This feature enabled one-step C-terminal biotinylation and fluorescent coumarin labeling of various functional proteins as demonstrated with ubiquitin, an antigen binding nanobody, and the apoptosis marker Annexin V. Its broad substrate tolerance establishes tubulin tyrosine ligase as a powerful tool for in vitro enzyme-mediated protein modification with single functional amino acids in a specific structural context.

  10. Diet-induced obesity alters protein synthesis: Tissue-specific effects in fasted vs. fed mice

    OpenAIRE

    Anderson, Stephanie R.; Gilge, Danielle A.; Steiber, Alison L.; Previs, Stephen F.

    2008-01-01

    The influence of obesity on protein dynamics is not clearly understood. We have designed experiments to test the hypothesis that obesity impairs the stimulation of tissue-specific protein synthesis following nutrient ingestion. C57BL/6J mice were randomized into two groups: group 1 (control, n = 16) were fed a low-fat, high-carbohydrate diet and group 2 (experimental, n = 16) were fed a high-fat, low-carbohydrate diet ad libitum for 9 weeks. On the experiment day, all mice were fasted for 6 h...

  11. "Glowing head" mice: a genetic tool enabling reliable preclinical image-based evaluation of cancers in immunocompetent allografts.

    Directory of Open Access Journals (Sweden)

    Chi-Ping Day

    Full Text Available Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the "Glowing Head" or GH mouse. The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors.

  12. “Glowing Head” Mice: A Genetic Tool Enabling Reliable Preclinical Image-Based Evaluation of Cancers in Immunocompetent Allografts

    Science.gov (United States)

    Day, Chi-Ping; Carter, John; Ohler, Zoe Weaver; Bonomi, Carrie; El Meskini, Rajaa; Martin, Philip; Graff-Cherry, Cari; Feigenbaum, Lionel; Tüting, Thomas; Van Dyke, Terry; Hollingshead, Melinda; Merlino, Glenn

    2014-01-01

    Preclinical therapeutic assessment currently relies on the growth response of established human cell lines xenografted into immunocompromised mice, a strategy that is generally not predictive of clinical outcomes. Immunocompetent genetically engineered mouse (GEM)-derived tumor allograft models offer highly tractable preclinical alternatives and facilitate analysis of clinically promising immunomodulatory agents. Imageable reporters are essential for accurately tracking tumor growth and response, particularly for metastases. Unfortunately, reporters such as luciferase and GFP are foreign antigens in immunocompetent mice, potentially hindering tumor growth and confounding therapeutic responses. Here we assessed the value of reporter-tolerized GEMs as allograft recipients by targeting minimal expression of a luciferase-GFP fusion reporter to the anterior pituitary gland (dubbed the “Glowing Head” or GH mouse). The luciferase-GFP reporter expressed in tumor cells induced adverse immune responses in wildtype mouse, but not in GH mouse, as transplantation hosts. The antigenicity of optical reporters resulted in a decrease in both the growth and metastatic potential of the labeled tumor in wildtype mice as compared to the GH mice. Moreover, reporter expression can also alter the tumor response to chemotherapy or targeted therapy in a context-dependent manner. Thus the GH mice and experimental approaches vetted herein provide concept validation and a strategy for effective, reproducible preclinical evaluation of growth and response kinetics for traceable tumors. PMID:25369133

  13. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Science.gov (United States)

    Noguchi, Fumihito; Nakajima, Takeshi; Inui, Shigeki; Reddy, Janardan K; Itami, Satoshi

    2014-01-01

    MED1 (Mediator complex subunit 1) is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/-)) that develop epidermal hyperplasia. Herein, to investigate the function(s) of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/-) and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/-) mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/-) mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/-) keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/-) keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/-) keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/-) keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/-) mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/-) mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/-) mice, indicating a decreased contribution of hair

  14. Alteration of skin wound healing in keratinocyte-specific mediator complex subunit 1 null mice.

    Directory of Open Access Journals (Sweden)

    Fumihito Noguchi

    Full Text Available MED1 (Mediator complex subunit 1 is a co-activator of various transcription factors that function in multiple transcriptional pathways. We have already established keratinocyte-specific MED1 null mice (Med1(epi-/- that develop epidermal hyperplasia. Herein, to investigate the function(s of MED1 in skin wound healing, full-thickness skin wounds were generated in Med1(epi-/- and age-matched wild-type mice and the healing process was analyzed. Macroscopic wound closure and the re-epithelialization rate were accelerated in 8-week-old Med1(epi-/- mice compared with age-matched wild-type mice. Increased lengths of migrating epithelial tongues and numbers of Ki67-positive cells at the wounded epidermis were observed in 8-week-old Med1(epi-/- mice, whereas wound contraction and the area of α-SMA-positive myofibroblasts in the granulation tissue were unaffected. Migration was enhanced in Med1(epi-/- keratinocytes compared with wild-type keratinocytes in vitro. Immunoblotting revealed that the expression of follistatin was significantly decreased in Med1(epi-/- keratinocytes. Moreover, the mitogen-activated protein kinase pathway was enhanced before and after treatment of Med1(epi-/- keratinocytes with activin A in vitro. Cell-cycle analysis showed an increased ratio of S phase cells after activin A treatment of Med1(epi-/- keratinocytes compared with wild-type keratinocytes. These findings indicate that the activin-follistatin system is involved in this acceleration of skin wound healing in 8-week-old Med1(epi-/- mice. On the other hand, skin wound healing in 6-month-old Med1(epi-/- mice was significantly delayed with decreased numbers of Ki67-positive cells at the wounded epidermis as well as BrdU-positive label retaining cells in hair follicles compared with age-matched wild-type mice. These results agree with our previous observation that hair follicle bulge stem cells are reduced in older Med1(epi-/- mice, indicating a decreased contribution of hair

  15. Cardiomyocyte specific deletion of Crif1 causes mitochondrial cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Juhee Shin

    Full Text Available Mitochondria are key organelles dedicated to energy production. Crif1, which interacts with the large subunit of the mitochondrial ribosome, is indispensable for the mitochondrial translation and membrane insertion of respiratory subunits. To explore the physiological function of Crif1 in the heart, Crif1(f/f mice were crossed with Myh6-cre/Esr1 transgenic mice, which harbor cardiomyocyte-specific Cre activity in a tamoxifen-dependent manner. The tamoxifen injections were given at six weeks postnatal, and the mutant mice survived only five months due to hypertrophic heart failure. In the mutant cardiac muscles, mitochondrial mass dramatically increased, while the inner structure was altered with lack of cristae. Mutant cardiac muscles showed decreased rates of oxygen consumption and ATP production, suggesting that Crif1 plays a critical role in the maintenance of both mitochondrial structure and respiration in cardiac muscles.

  16. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  17. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.

    Directory of Open Access Journals (Sweden)

    Melissa K Friswell

    2010-01-01

    Full Text Available The gastrointestinal tract microbiota (GTM of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57. Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie embryos produced highly similar GTM profiles (c. 95% concordance between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

  18. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  19. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  20. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  1. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions.

    Directory of Open Access Journals (Sweden)

    Franck R Petry

    Full Text Available Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3, type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5, and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46. For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409 while others did not (pS199, pT205, pS396, pS404, pS422, A0024. With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i using secondary antibodies designed to bind only non-denatured Igs, ii preparation of a heat-stable fraction, iii clearing Igs from the homogenates, and iv using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes

  2. Characterization and specificity of probiotics to prevent salmonella infection in mice

    Directory of Open Access Journals (Sweden)

    Ana Andino

    2014-08-01

    Full Text Available Background: Probiotic strains of bacteria can prevent Salmonella from causing disease by preventing the pathogen from colonizing the intestines. Two strains of probiotics, Lactobacillus acidophilius and Pediococcus spp, that were obtained from poultry fecal samples have been shown to be efficacious in poultry. The objective of this study was to determine if these strains of probiotics could prevent salmonellosis in a mouse model. Methods: First, both strains of probiotics were evaluated for in vitro efficacy to inhibit the growth of and interfere with virulence gene regulation in Salmonella enterica. For in vivo efficacy, mice was used which models Typhoid illness. Mice were divided into 2 groups: Control and treatment, Lactobacillus and Pediococcus (LP; 108 Log CFU. Two experiments were conducted. In the first experiment, the mice were treated with LP in water for the first two days of the experiment and challenged with Salmonella at day three. In the second experiment, the LP treatment was given in the water for 10 days and challenge was performed on day 11. In both experiments, at day 20 post-challenge, all mice were sacrificed, intestinal tracts and organs removed and cultured for Salmonella. Results: The probiotic strains inhibited the growth of Salmonella and down-regulation of virulence genes was noted, but dependent on the strain of Salmonella being evaluated. For the in vivo experiment, the probiotics did not afford the mice protection from infection and increasing the length of time the probiotics were administered did not improve the efficacy of the probiotics. Conclusions: It appears that these strains of probiotic bacteria are effective against Salmonella in vitro. However, these isolates did not afford protection from Salmonella infection to mice which may be due to host specifity as these isolates were obtained from poultry

  3. Raman spectroscopy enables noninvasive biochemical identification of the collagen regeneration in cutaneous wound healing of diabetic mice treated with MSCs.

    Science.gov (United States)

    Yan, Wenxia; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Sun, Huimin; Li, Caiyun; Wang, Ning; Chu, Jing

    2017-07-01

    Mesenchymal stem cells (MSCs) had been reported as a novel therapeutic strategy for non-healing diabetic cutaneous wound mainly by promoting the formation of extracellular matrix (ECM) and neovasculature. Collagen regeneration is one of the key processes of ECM remodeling in wound healing. Accordingly, rapid assessment of the collagen content in a noninvasive manner can promptly provide objective evaluation for MSC therapy of cutaneous wound healing and strength evidence to adjust therapeutic regimen. In the present study, noninvasive Raman microspectroscopy was used for tracing the regeneration status of collagen during diabetic wound healing with MSCs. Wound tissues of normal mice, diabetic mice, and MSC-treated diabetic mice were subjected to Masson trichrome staining assay and submitted to spectroscopic analysis by Raman microspectroscopy after wounding 7, 14, and 21 days. Masson trichrome staining demonstrated that there was more collagen deposition in diabetic + MSCs group relative to diabetic group. The relative intensity of Raman collagen peak positions at 937, 1004, 1321, 1452, and 1662 cm -1 increased in MSC-treated diabetic group compared to diabetic group, although normal mice group had the highest relative intensity of collagen peak bands. Correlation analysis suggested that the spectral bands had a high positive correlation with the collagen intensity detected by Masson trichrome staining in wound tissues of three groups. Our results demonstrate that Raman microspectroscopy has potential application in rapidly and quantitatively assessing diabetic wound healing with MSCs by monitoring collagen variation, which may provide a novel method for the study of skin regeneration.

  4. Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans.

    Directory of Open Access Journals (Sweden)

    Lea M Beaulieu

    Full Text Available Diverse and multi-factorial processes contribute to the progression of cardiovascular disease. These processes affect cells involved in the development of this disease in varying ways, ultimately leading to atherothrombosis. The goal of our study was to compare the differential effects of specific stimuli--two bacterial infections and a Western diet--on platelet responses in ApoE-/- mice, specifically examining inflammatory function and gene expression. Results from murine studies were verified using platelets from participants of the Framingham Heart Study (FHS; n = 1819 participants.Blood and spleen samples were collected at weeks 1 and 9 from ApoE-/- mice infected with Porphyromonas gingivalis or Chlamydia pneumoniae and from mice fed a Western diet for 9 weeks. Transcripts based on data from a Western diet in ApoE-/- mice were measured in platelet samples from FHS using high throughput qRT-PCR.At week 1, both bacterial infections increased circulating platelet-neutrophil aggregates. At week 9, these cells individually localized to the spleen, while Western diet resulted in increased platelet-neutrophil aggregates in the spleen only. Microarray analysis of platelet RNA from infected or Western diet-fed mice at week 1 and 9 showed differential profiles. Genes, such as Serpina1a, Ttr, Fgg, Rpl21, and Alb, were uniquely affected by infection and diet. Results were reinforced in platelets obtained from participants of the FHS.Using both human studies and animal models, results demonstrate that variable sources of inflammatory stimuli have the ability to influence the platelet phenotype in distinct ways, indicative of the diverse function of platelets in thrombosis, hemostasis, and immunity.

  5. Monoclonal antibody-dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Togashi, K. [Kyoto Univ. (Japan). School of Medicine; Sato, N.; Saga, T.; Nakamoto, Y.; Ishimori, T.; Konishi, J. [Dept. of Nuclear Medicine and Medical Imaging, Kyoto Univ. Graduate School of Medicine, Kyoto (Japan); Toyama, S. [Inst. for Virus Research, Kyoto Univ., Kyoto (Japan); Brechbiel, M.W. [Chemistry Section, Radiation Oncology Branch, National Cancer Inst., National Inst. of Health, Bethesda, Md. (United States)

    2000-09-01

    For the purpose of radioimmunotherapy, labelling of monoclonal antibody with high specific activity is often necessary, especially when using a radionuclide with a shorter half-life. Polyamine dendrimers (PAMAM) are novel synthetic polymeric molecules with large numbers of amine residues on their spherical surface. In order to bind large numbers of radiometals to single antibody molecules, the generation-4 PAMAM (G4), which has 64 amines, was conjugated with 43 molecules of 2-(p-isothiocyanatobenzyl)-6-methyl-diethylene triamine penta-acetic acid (1B4M), a derivative of DTPA. This product [G4-(1B4M){sub 43}] was then conjugated with OST7, a murine monoclonal IgG{sub 1}. We evaluated the achievable specific activity for {sup 111}In labeling, immunore-activity, biodistribution, and tumor targeting in mice of the {sup 111}In- or {sup 153}Gd-OST7-G4-(1B4M){sub 43} as compared with radiolabeled OST7-1B4M or 56C-1B4M. The maximum specific activity of {sup 111}In-OST7-G4-(1B4M){sub 43} and {sup 111}In-OST7-1B4M was 470 and 8.7 GBq/mg (12,700 and 263 mCi/mg), respectively. Immunoreactivity of radiolabeled OST7-G4-(1B4M){sub 43} and OST7-1B4M, as determined by the binding to KT005 cells expressing the antigen, was respectively 91% and 84% of that of {sup 125}I-labelled OST7. Biodistribution studies for preparations with maximum specific activity in normal mice 3 h after injection showed that {sup 111}In- or {sup 153}Gd-OST7-G4-(1B4M){sub 43} cleared faster from the blood and accumulated more in the liver than did {sup 111}In- or {sup 153}Gd-OST7-1B4M. The dendrimer 1B4M [G4-(1B4M){sub 64}] itself showed similar saturation effects with metals. The radioactivity in all the other organs reflected the rapid clearance of radioactivity from the blood. {sup 153}Gd-OST7-G4-(1B4M){sub 43} showed specific accumulation in the KT005 tumor. In conclusion, we could successfully bind 49 times as many metal atoms to an antibody molecule as is possible with conventional metal labeling for

  6. The induction of specific immunity against Schistosoma japonicum by exposure of mice to ultraviolet attenuated cercariae

    International Nuclear Information System (INIS)

    Moloney, N.A.; Bickle, Q.D.; Webbe, G.

    1985-01-01

    Mice can be partially protected against Schistosoma japonicum by prior exposure to ultraviolet (UV)-attenuated infections which fail to survive to the adult stage and produce no overt pathology in the host. Optimum resistance was induced by parasites exposed to 40 seconds of UV, significantly lower levels of resistance being stimulated by both shorter and longer exposures. No consistent relationship between the degree of resistance induced and the number of irradiated cercariae given could be demonstrated and equivocal results were obtained when comparing the efficacy of single and multiple vaccinations. Vaccinations with UV-attenuated cercariae given intraperitoneally (i.p.) were as efficacious as those given percutaneously but mice were as or more resistant to challenges given by the i.p. route, the possible reasons are discussed. There was no observed delay in the migration of the challenge, vaccinated mice being as resistant when perfused 6 or 3.5 weeks after challenge. Vaccination was species specific since mice exposed to either UV-attenuated S. japonicum cercariae or gamma-attenuated S. mansoni cercariae were resistant to homologous but not heterologous challenge. (author)

  7. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice.

    Science.gov (United States)

    Spinelli, Valeria; Martin, Céline; Dorchies, Emilie; Vallez, Emmanuelle; Dehondt, Hélène; Trabelsi, Mohamed-Sami; Tailleux, Anne; Caron, Sandrine; Staels, Bart

    2015-10-01

    Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100%, rendering it useless (aP2-Cre strain), to ~5%, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.

  8. Minimizing the non-specific binding of nanoparticles to the brain enables active targeting of Fn14-positive glioblastoma cells.

    Science.gov (United States)

    Schneider, Craig S; Perez, Jimena G; Cheng, Emily; Zhang, Clark; Mastorakos, Panagiotis; Hanes, Justin; Winkles, Jeffrey A; Woodworth, Graeme F; Kim, Anthony J

    2015-02-01

    A major limitation in the treatment of glioblastoma (GBM), the most common and deadly primary brain cancer, is delivery of therapeutics to invading tumor cells outside of the area that is safe for surgical removal. A promising way to target invading GBM cells is via drug-loaded nanoparticles that bind to fibroblast growth factor-inducible 14 (Fn14), thereby potentially improving efficacy and reducing toxicity. However, achieving broad particle distribution and nanoparticle targeting within the brain remains a significant challenge due to the adhesive extracellular matrix (ECM) and clearance mechanisms in the brain. In this work, we developed Fn14 monoclonal antibody-decorated nanoparticles that can efficiently penetrate brain tissue. We show these Fn14-targeted brain tissue penetrating nanoparticles are able to (i) selectively bind to recombinant Fn14 but not brain ECM proteins, (ii) associate with and be internalized by Fn14-positive GBM cells, and (iii) diffuse within brain tissue in a manner similar to non-targeted brain penetrating nanoparticles. In addition, when administered intracranially, Fn14-targeted nanoparticles showed improved tumor cell co-localization in mice bearing human GBM xenografts compared to non-targeted nanoparticles. Minimizing non-specific binding of targeted nanoparticles in the brain may greatly improve the access of particulate delivery systems to remote brain tumor cells and other brain targets. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    Science.gov (United States)

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  10. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Science.gov (United States)

    McBrayer, Zofeyah L; Dimova, Jiva; Pisansky, Marc T; Sun, Mu; Beppu, Hideyuki; Gewirtz, Jonathan C; O'Connor, Michael B

    2015-01-01

    To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII) in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  11. Forebrain-Specific Loss of BMPRII in Mice Reduces Anxiety and Increases Object Exploration.

    Directory of Open Access Journals (Sweden)

    Zofeyah L McBrayer

    Full Text Available To investigate the role of Bone Morphogenic Protein Receptor Type II (BMPRII in learning, memory, and exploratory behavior in mice, a tissue-specific knockout of BMPRII in the post-natal hippocampus and forebrain was generated. We found that BMPRII mutant mice had normal spatial learning and memory in the Morris water maze, but showed significantly reduced swimming speeds with increased floating behavior. Further analysis using the Porsolt Swim Test to investigate behavioral despair did not reveal any differences in immobility between mutants and controls. In the Elevated Plus Maze, BMPRII mutants and Smad4 mutants showed reduced anxiety, while in exploratory tests, BMPRII mutants showed more interest in object exploration. These results suggest that loss of BMPRII in the mouse hippocampus and forebrain does not disrupt spatial learning and memory encoding, but instead impacts exploratory and anxiety-related behaviors.

  12. STING agonists enable antiviral cross-talk between human cells and confer protection against genital herpes in mice

    DEFF Research Database (Denmark)

    Skouboe, Morten K; Knudsen, Alice; Reinert, Line S

    2018-01-01

    In recent years, there has been an increasing interest in immunomodulatory therapy as a means to treat various conditions, including infectious diseases. For instance, Toll-like receptor (TLR) agonists have been evaluated for treatment of genital herpes. However, although the TLR7 agonist imiquimod...... herpes simplex virus (HSV) 2 replication and improved the clinical outcome of infection. More importantly, local application of CDNs at the genital epithelial surface gave rise to local IFN activity, but only limited systemic responses, and this treatment conferred total protection against disease...... to TLRs, STING is expressed broadly, including in epithelial cells. Here we report that natural and non-natural STING agonists strongly induce type I IFNs in human cells and in mice in vivo, without stimulating significant inflammatory gene expression. Systemic treatment with 2'3'-cGAMP reduced genital...

  13. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Guangming Wu

    2011-07-01

    Full Text Available Using the murine model of tyrosinemia type 1 (fumarylacetoacetate hydrolase [FAH] deficiency; FAH⁻/⁻ mice as a paradigm for orphan disorders, such as hereditary metabolic liver diseases, we evaluated fibroblast-derived FAH⁻/⁻-induced pluripotent stem cells (iPS cells as targets for gene correction in combination with the tetraploid embryo complementation method. First, after characterizing the FAH⁻/⁻ iPS cell lines, we aggregated FAH⁻/⁻-iPS cells with tetraploid embryos and obtained entirely FAH⁻/⁻-iPS cell-derived mice that were viable and exhibited the phenotype of the founding FAH⁻/⁻ mice. Then, we transduced FAH cDNA into the FAH⁻/⁻-iPS cells using a third-generation lentiviral vector to generate gene-corrected iPS cells. We could not detect any chromosomal alterations in these cells by high-resolution array CGH analysis, and after their aggregation with tetraploid embryos, we obtained fully iPS cell-derived healthy mice with an astonishing high efficiency for full-term development of up to 63.3%. The gene correction was validated functionally by the long-term survival and expansion of FAH-positive cells of these mice after withdrawal of the rescuing drug NTBC (2-(2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione. Furthermore, our results demonstrate that both a liver-specific promoter (transthyretin, TTR-driven FAH transgene and a strong viral promoter (from spleen focus-forming virus, SFFV-driven FAH transgene rescued the FAH-deficiency phenotypes in the mice derived from the respective gene-corrected iPS cells. In conclusion, our data demonstrate that a lentiviral gene repair strategy does not abrogate the full pluripotent potential of fibroblast-derived iPS cells, and genetic manipulation of iPS cells in combination with tetraploid embryo aggregation provides a practical and rapid approach to evaluate the efficacy of gene correction of human diseases in mouse models.

  14. Protection against Fasciola gigantica infection in mice by vaccination with recombinant juvenile-specific cathepsin L.

    Science.gov (United States)

    Sansri, Veerawat; Meemon, Krai; Changklungmoa, Narin; Kueakhai, Pornanan; Chantree, Pathanin; Chaichanasak, Pannigan; Lorsuwannarat, Natcha; Itagaki, Tadashi; Sobhon, Prasert

    2015-03-24

    Fasciola gigantica cathepsin L1H (FgCatL1H) is one of the major cathepsin L released by juveniles of F. gigantica to aid in the invasion of host's tissues. Due to its high sequence similarity with other cathepsin L (CatL) isoforms of late stage F. gigantica, it was considered to be a good vaccine candidate that can block all CatL-mediated protease activities and affect juveniles as well as adult parasites. In this study, recombinant proFgCatL1H protein expressed in yeast, Pichia pastoris, system was mixed with Freund's adjuvants and used to subcutaneously immunize mice that were later challenged with metacercariae of F. gigantica. The percentage of worm protection in the rproFgCatL1H-vaccinated mice compared to the non-immunized and adjuvant control mice were approximately 62.7% and 66.1%, respectively. Anti-rproFgCatL1H antisera collected from vaccinated mice reacted specifically with rproFgCatL1H and other cathepsin L isoforms of F. gigantica, but the antibodies did not cross react with antigens from other trematode and nematode parasites, including Eurytrema pancreaticum, Opisthorchis viverrini, Fischoederius cobboldi, Cotylophoron cotylophorum, Gigantocotyle explanatum, Paramphistomum cervi, and Setaria labiato-papillosa. The levels of IgG1 and IgG2a in mouse sera increased significantly at two weeks after immunization and were highest during the sixth to eighth weeks after immunization. The IgG1 level was higher than IgG2a at all periods of immunization, implicating the dominance of the Th2 response. The levels of IgG1 and IgG2a in the immune sera were shown to be strongly correlated with the numbers of worm recovery, and the correlation coefficient was higher for IgG1. The levels of serum aspartate aminotransferase and alanine transaminase were significantly lower in the sera of rproFgCatL1H-vaccinated mice than in the infected control mice indicating a lower degree of liver damage. This study demonstrated a high potential of FgCatL1H vaccine, and its

  15. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2.

    Science.gov (United States)

    Ehrke, M J; Verstovsek, S; Zaleskis, G; Ho, R L; Ujházy, P; Maccubbin, D L; Mihich, E

    1996-05-01

    This laboratory has reported the conditions for an effective, non-toxic, chemoimmunotherapy utilizing doxorubicin in combination with prolonged administration of interleukin-2 and the identification of the critical role of activated CD8+ T cells in the therapeutic effect. Mice (C57BL/6) cured in those studies have been followed for the remainder of their life spans. These mice, approximately 2 months of age when initially inoculated with syngeneic EL4 lymphoma, survived for more than 2 years, the normal life span of C57BL/6 mice. Mice 4 months old reinoculated with the EL4 cells all survived. At about 1 year of age mice were sacrificed and the ability of their thymocytes and splenocytes to develop specific CD8+ anti-EL4 activity was as high as it had been at the time of tumor rejection. At about 2 years of age EL4 was reimplanted into mice; all of them survived. These surviving mice, at 2 years 2 months of age, as well as a group of 2-year-old mice not rechallenged, were killed and functional antitumor activity and phenotype characteristics of various lymphocyte populations were determined in comparison to those of young and age-matched control mice. The phenotyping of the lymphocytes from the cured mice indicated very notable differences in subset distribution and increased CD44 expression. Functionally they developed high levels of anti-EL4 activity, which was ablated by combined treatment with monoclonal antibodies against CD8 and CD44, indicating the role of memory cells. Consistent with cells from aged mice, these same cell populations had a very reduced allogeneic responsiveness. It appears that cured mice have developed an immune memory specific for EL4.

  16. Modulation of ovomucoid-specific oral tolerance in mice fed plant extracts containing lectins

    DEFF Research Database (Denmark)

    Kjær, Tanja; Frøkiær, Hanne

    2002-01-01

    We investigated the effect of feeding extracts of four different legumes (red kidney bean (Phaseolus vulgaris), peanut (Arachis hypogaea), soyabean (Glycine max) and pea (Pisum sativum) on the specific immune response against a food protein. Mice were fed ovomucoid and the specific immune response...... influenced the immune response against ovomucoid; however, this was not as pronounced as for kidney bean and was only significant (Ppea extract was fed and peanut extract had a non-significant effect on induction of oral tolerance...... and on the general immune response. Plasma antibodies against kidney-bean lectin, but not against the three other legume lectins, were detected. Our current findings show that other dietary components can influence the specific immune response against food proteins. Various dietary components may thus contribute...

  17. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice.

    Science.gov (United States)

    Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C

    2018-02-01

    Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Disruption of NBS1 gene leads to early embryonic lethality in homozygous null mice and induces specific cancer in heterozygous mice

    Energy Technology Data Exchange (ETDEWEB)

    Kurimasa, Akihiro; Burma, Sandeep; Henrie, Melinda; Ouyang, Honghai; Osaki, Mitsuhiko; Ito, Hisao; Nagasawa, Hatsumi; Little, John B.; Oshimura, Mitsuo; Li, Gloria C.; Chen, David J.

    2002-04-15

    Nijmegen breakage syndrome (NBS) is a rare autosomal recessive chromosome instability syndrome characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition, with cellular features similar to that of ataxia telangiectasia (AT). NBS results from mutations in the mammalian gene Nbs1 that codes for a 95-kDa protein called nibrin, NBS1, or p95. To establish an animal model for NBS, we attempted to generate NBS1 knockout mice. However, NBS1 gene knockouts were lethal at an early embryonic stage. NBS1 homozygous(-/-) blastocyst cells cultured in vitro showed retarded growth and subsequently underwent growth arrest within 5 days of culture. Apoptosis, assayed by TUNEL staining, was observed in NBSI homozygous(-/-) blastocyst cells cultured for four days. NBSI heterozygous(+/-) mice were normal, and exhibited no specific phenotype for at least one year. However, fibroblast cells from NBSI heterozygous(+/-) mice displayed an enhanced frequency of spontaneous transformation to anchorage-independent growth as compared to NBS1 wild-type(+/+) cells. Furthermore, heterozygous(+/-) mice exhibited a high incidence of hepatocellular carcinoma after one year compared to wild-type mice, even though no significant differences in the incidence of other tumors such as lung adenocarcinoma and lymphoma were observed. Taken together, these results strongly suggest that NBS1 heterozygosity and reduced NBSI expression induces formation of specific tumors in mice.

  19. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity.

    Directory of Open Access Journals (Sweden)

    Cristina d'Abramo

    Full Text Available The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau. Our laboratory has begun a systematic study of different classes of tau monoclonal antibodies using mutant P301L mice. Three or seven months old mutant tau mice were inoculated weekly with tau monoclonal antibodies at a dose of 10 mg/Kg, until seven or ten months of age were reached respectively. Our data strongly support the notion that in P301L animals treated with MC1, a conformational monoclonal antibody specific for PHF-tau, the rate of development of tau pathology is effectively reduced, while injecting DA31, a high affinity tau sequence antibody, does not exert such benefit. MC1 appears superior to DA31 in overall effects, suggesting that specificity is more important than affinity in therapeutic applications. Unfortunately the survival rate of the P301L treated mice was not improved when immunizing either with MC1 or PHF1, a high affinity phospho-tau antibody previously reported to be efficacious in reducing pathological tau. These data demonstrate that passive immunotherapy in mutant tau models may be efficacious in reducing the development of tau pathology, but a great deal of work remains to be done to carefully select the tau epitopes to target.

  20. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  1. Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload.

    Science.gov (United States)

    Preziosi, Morgan E; Singh, Sucha; Valore, Erika V; Jung, Grace; Popovic, Branimir; Poddar, Minakshi; Nagarajan, Shanmugam; Ganz, Tomas; Monga, Satdarshan P

    2017-08-01

    Iron overload disorders such as hereditary hemochromatosis and iron loading anemias are a common cause of morbidity from liver diseases and increase risk of hepatic fibrosis and hepatocellular carcinoma (HCC). Treatment options for iron-induced damage are limited, partly because there is lack of animal models of human disease. Therefore, we investigated the effect of iron overload in liver-specific β-catenin knockout mice (KO), which are susceptible to injury, fibrosis and tumorigenesis following chemical carcinogen exposure. Iron overload diet was administered to KO and littermate control (CON) mice for various times. To ameliorate an oxidant-mediated component of tissue injury, N-Acetyl-L-(+)-cysteine (NAC) was added to drinking water of mice on iron overload diet. KO on iron diet (KO +Fe) exhibited remarkable inflammation, followed by steatosis, oxidative stress, fibrosis, regenerating nodules and occurrence of occasional HCC. Increased injury in KO +Fe was associated with activated protein kinase B (AKT), ERK, and NF-κB, along with reappearance of β-catenin and target gene Cyp2e1, which promoted lipid peroxidation and hepatic damage. Addition of NAC to drinking water protected KO +Fe from hepatic steatosis, injury and fibrosis, and prevented activation of AKT, ERK, NF-κB and reappearance of β-catenin. The absence of hepatic β-catenin predisposes mice to hepatic injury and fibrosis following iron overload, which was reminiscent of hemochromatosis and associated with enhanced steatohepatitis and fibrosis. Disease progression was notably alleviated by antioxidant therapy, which supports its chemopreventive role in the management of chronic iron overload disorders. Lack of animal models for iron overload disorders makes it hard to study the disease process for improving therapies. Feeding high iron diet to mice that lack the β-catenin gene in liver cells led to increased inflammation followed by fat accumulation, cell death and wound healing that mimicked

  2. Detection of herpes simplex virus-specific DNA sequences in latently infected mice and in humans.

    Science.gov (United States)

    Efstathiou, S; Minson, A C; Field, H J; Anderson, J R; Wildy, P

    1986-02-01

    Herpes simplex virus-specific DNA sequences have been detected by Southern hybridization analysis in both central and peripheral nervous system tissues of latently infected mice. We have detected virus-specific sequences corresponding to the junction fragment but not the genomic termini, an observation first made by Rock and Fraser (Nature [London] 302:523-525, 1983). This "endless" herpes simplex virus DNA is both qualitatively and quantitatively stable in mouse neural tissue analyzed over a 4-month period. In addition, examination of DNA extracted from human trigeminal ganglia has shown herpes simplex virus DNA to be present in an "endless" form similar to that found in the mouse model system. Further restriction enzyme analysis of latently infected mouse brainstem and human trigeminal DNA has shown that this "endless" herpes simplex virus DNA is present in all four isomeric configurations.

  3. Evaluating genome-wide DNA methylation changes in mice by Methylation Specific Digital Karyotyping

    Directory of Open Access Journals (Sweden)

    Maruoka Shuichiro

    2008-12-01

    Full Text Available Abstract Background The study of genome-wide DNA methylation changes has become more accessible with the development of various array-based technologies though when studying species other than human the choice of applications are limited and not always within reach. In this study, we adapted and tested the applicability of Methylation Specific Digital Karyotyping (MSDK, a non-array based method, for the prospective analysis of epigenetic changes after perinatal nutritional modifications in a mouse model of allergic airway disease. MSDK is a sequenced based method that allows a comprehensive and unbiased methylation profiling. The method generates 21 base pairs long sequence tags derived from specific locations in the genome. The resulting tag frequencies determine in a quantitative manner the methylation level of the corresponding loci. Results Genomic DNA from whole lung was isolated and subjected to MSDK analysis using the methylation-sensitive enzyme Not I as the mapping enzyme and Nla III as the fragmenting enzyme. In a pair wise comparison of the generated mouse MSDK libraries we identified 158 loci that are significantly differentially methylated (P-value = 0.05 after perinatal dietary changes in our mouse model. Quantitative methylation specific PCR and sequence analysis of bisulfate modified genomic DNA confirmed changes in methylation at specific loci. Differences in genomic MSDK tag counts for a selected set of genes, correlated well with changes in transcription levels as measured by real-time PCR. Furthermore serial analysis of gene expression profiling demonstrated a dramatic difference in expressed transcripts in mice exposed to perinatal nutritional changes. Conclusion The genome-wide methylation survey applied in this study allowed for an unbiased methylation profiling revealing subtle changes in DNA methylation in mice maternally exposed to dietary changes in methyl-donor content. The MSDK method is applicable for mouse models

  4. Dose-specific transcriptional responses in thyroid tissue in mice after 131I administration

    International Nuclear Information System (INIS)

    Rudqvist, Nils; Schüler, Emil; Parris, Toshima Z.; Langen, Britta; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    Introduction: In the present investigation, microarray analysis was used to monitor transcriptional activity in thyroids in mice 24 h after 131 I exposure. The aims of this study were to 1) assess the transcriptional patterns associated with 131 I exposure in normal mouse thyroid tissue and 2) propose biomarkers for 131 I exposure of the thyroid. Methods: Adult BALB/c nude mice were i.v. injected with 13, 130 or 260 kBq of 131 I and killed 24 h after injection (absorbed dose to thyroid: 0.85, 8.5, or 17 Gy). Mock-treated mice were used as controls. Total RNA was extracted from thyroids and processed using the Illumina platform. Results: In total, 497, 546, and 90 transcripts were regulated (fold change ≥ 1.5) in the thyroid after 0.85, 8.5, and 17 Gy, respectively. These were involved in several biological functions, e.g. oxygen access, inflammation and immune response, and apoptosis/anti-apoptosis. Approximately 50% of the involved transcripts at each absorbed dose level were dose-specific, and 18 transcripts were commonly detected at all absorbed dose levels. The Agpat9, Plau, Prf1, and S100a8 gene expression displayed a monotone decrease in regulation with absorbed dose, and further studies need to be performed to evaluate if they may be useful as dose-related biomarkers for 131I exposure. Conclusion: Distinct and substantial differences in gene expression and affected biological functions were detected at the different absorbed dose levels. The transcriptional profiles were specific for the different absorbed dose levels. We propose that the Agpat9, Plau, Prf1, and S100a8 genes might be novel potential absorbed dose-related biomarkers to 131 I exposure of thyroid. Advances in knowledge: During the recent years, genomic techniques have been developed; however, they have not been fully utilized in nuclear medicine and radiation biology. We have used RNA microarrays to investigate genome-wide transcriptional regulations in thyroid tissue in mice after low

  5. Spontaneous Pancreatitis Caused by Tissue-Specific Gene Ablation of Hhex in MiceSummary

    Directory of Open Access Journals (Sweden)

    Mark J. Ferreira

    2015-09-01

    Full Text Available Background & Aims: Perturbations in pancreatic ductal bicarbonate secretion cause chronic pancreatitis. The physiologic mechanism of ductal secretion is known, but its transcriptional control is not. We determine the role of the transcription factor hematopoietically expressed homeobox protein (Hhex in ductal secretion and pancreatitis. Methods: We derived mice with pancreas-specific, Cre-mediated Hhex gene ablation to determine the requirement of Hhex in the pancreatic duct in early life and in adult stages. Histologic and immunostaining analyses were used to detect the presence of pathology. Pancreatic primary ductal cells were isolated to discover differentially expressed transcripts upon acute Hhex ablation on a cell autonomous level. Results: Hhex protein was detected throughout the embryonic and adult ductal trees. Ablation of Hhex in pancreatic progenitors resulted in postnatal ductal ectasia associated with acinar-to-ductal metaplasia, a progressive phenotype that ultimately resulted in chronic pancreatitis. Hhex ablation in adult mice, however, did not cause any detectable pathology. Ductal ectasia in young mice did not result from perturbation of expression of Hnf6, Hnf1β, or the primary cilia genes. RNA-seq analysis of Hhex-ablated pancreatic primary ductal cells showed mRNA levels of the G-protein coupled receptor natriuretic peptide receptor 3 (Npr3, implicated in paracrine signaling, up-regulated by 4.70-fold. Conclusions: Although Hhex is dispensable for ductal cell function in the adult, ablation of Hhex in pancreatic progenitors results in pancreatitis. Our data highlight the critical role of Hhex in maintaining ductal homeostasis in early life and support ductal hypersecretion as a novel etiology of pediatric chronic pancreatitis. Keywords: Npr3, Pancreatic Ducts, Primary Cilia

  6. Tissue-Specific Expression of Monocarboxylate Transporters during Fasting in Mice

    Science.gov (United States)

    Schutkowski, Alexandra; Wege, Nicole; Stangl, Gabriele I.; König, Bettina

    2014-01-01

    Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms. PMID:25390336

  7. Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice

    Directory of Open Access Journals (Sweden)

    Céline Desseille

    2017-10-01

    Full Text Available Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR, we unexpectedly found that SOD1(G93A ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

  8. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  9. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Lukas M. von Ziegler

    2018-03-01

    Full Text Available Summary: The hippocampal formation is a brain structure essential for higher-order cognitive functions. It has a complex anatomical organization and cellular composition, and hippocampal subregions have different properties and functional roles. In this study, we used SWATH-MS to determine whether the proteomes of hippocampus areas CA1 and CA3 can explain the commonalities or specificities of these subregions in basal conditions and after recognition memory. We show that the proteomes of areas CA1 and CA3 are largely different in basal conditions and that differential changes and dynamics in protein expression are induced in these areas after recognition of an object or object location. While changes are consistent across both recognition paradigms in area CA1, they are not in area CA3, suggesting distinct proteomic responses in areas CA1 and CA3 for memory formation. : How does the proteome differ in hippocampus areas CA1 and CA3? von Ziegler et al. identify the proteomes of areas CA1 and CA3 and characterize their dynamics during different recognition processes in adult mice. Keywords: hippocampus, areas CA1 and CA3, proteome, dynamics, object memory, object location memory, mass spectrometry, SWATH-MS, mice, bioinformatic tools

  10. Phase-Specific Vocalizations of Male Mice at the Initial Encounter during the Courtship Sequence.

    Directory of Open Access Journals (Sweden)

    Yui K Matsumoto

    Full Text Available Mice produce ultrasonic vocalizations featuring a variety of syllables. Vocalizations are observed during social interactions. In particular, males produce numerous syllables during courtship. Previous studies have shown that vocalizations change according to sexual behavior, suggesting that males vary their vocalizations depending on the phase of the courtship sequence. To examine this process, we recorded large sets of mouse vocalizations during male-female interactions and acoustically categorized these sounds into 12 vocal types. We found that males emitted predominantly short syllables during the first minute of interaction, more long syllables in the later phases, and mainly harmonic sounds during mounting. These context- and time-dependent changes in vocalization indicate that vocal communication during courtship in mice consists of at least three stages and imply that each vocalization type has a specific role in a phase of the courtship sequence. Our findings suggest that recording for a sufficiently long time and taking the phase of courtship into consideration could provide more insights into the role of vocalization in mouse courtship behavior in future study.

  11. Cushing's syndrome and fetal features resurgence in adrenal cortex-specific Prkar1a knockout mice.

    Directory of Open Access Journals (Sweden)

    Isabelle Sahut-Barnola

    2010-06-01

    Full Text Available Carney complex (CNC is an inherited neoplasia syndrome with endocrine overactivity. Its most frequent endocrine manifestation is primary pigmented nodular adrenocortical disease (PPNAD, a bilateral adrenocortical hyperplasia causing pituitary-independent Cushing's syndrome. Inactivating mutations in PRKAR1A, a gene encoding the type 1 alpha-regulatory subunit (R1alpha of the cAMP-dependent protein kinase (PKA have been found in 80% of CNC patients with Cushing's syndrome. To demonstrate the implication of R1alpha loss in the initiation and development of PPNAD, we generated mice lacking Prkar1a specifically in the adrenal cortex (AdKO. AdKO mice develop pituitary-independent Cushing's syndrome with increased PKA activity. This leads to autonomous steroidogenic genes expression and deregulated adreno-cortical cells differentiation, increased proliferation and resistance to apoptosis. Unexpectedly, R1alpha loss results in improper maintenance and centrifugal expansion of cortisol-producing fetal adrenocortical cells with concomitant regression of adult cortex. Our data provide the first in vivo evidence that loss of R1alpha is sufficient to induce autonomous adrenal hyper-activity and bilateral hyperplasia, both observed in human PPNAD. Furthermore, this model demonstrates that deregulated PKA activity favors the emergence of a new cell population potentially arising from the fetal adrenal, giving new insight into the mechanisms leading to PPNAD.

  12. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  13. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    Science.gov (United States)

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  14. Cross-species mapping of bidirectional promoters enables prediction of unannotated 5' UTRs and identification of species-specific transcripts

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2009-04-01

    Full Text Available Abstract Background Bidirectional promoters are shared regulatory regions that influence the expression of two oppositely oriented genes. This type of regulatory architecture is found more frequently than expected by chance in the human genome, yet many specifics underlying the regulatory design are unknown. Given that the function of most orthologous genes is similar across species, we hypothesized that the architecture and regulation of bidirectional promoters might also be similar across species, representing a core regulatory structure and enabling annotation of these regions in additional mammalian genomes. Results By mapping the intergenic distances of genes in human, chimpanzee, bovine, murine, and rat, we show an enrichment for pairs of genes equal to or less than 1,000 bp between their adjacent 5' ends ("head-to-head" compared to pairs of genes that fall in the same orientation ("head-to-tail" or whose 3' ends are side-by-side ("tail-to-tail". A representative set of 1,369 human bidirectional promoters was mapped to orthologous sequences in other mammals. We confirmed predictions for 5' UTRs in nine of ten manual picks in bovine based on comparison to the orthologous human promoter set and in six of seven predictions in human based on comparison to the bovine dataset. The two predictions that did not have orthology as bidirectional promoters in the other species resulted from unique events that initiated transcription in the opposite direction in only those species. We found evidence supporting the independent emergence of bidirectional promoters from the family of five RecQ helicase genes, which gained their bidirectional promoters and partner genes independently rather than through a duplication process. Furthermore, by expanding our comparisons from pairwise to multispecies analyses we developed a map representing a core set of bidirectional promoters in mammals. Conclusion We show that the orthologous positions of bidirectional

  15. Frequency-specific corticofugal modulation of the dorsal cochlear nucleus in mice.

    Science.gov (United States)

    Kong, Lingzhi; Xiong, Colin; Li, Liang; Yan, Jun

    2014-01-01

    The primary auditory cortex (AI) modulates the sound information processing in the lemniscal subcortical nuclei, including the anteroventral cochlear nucleus (AVCN), in a frequency-specific manner. The dorsal cochlear nucleus (DCN) is a non-lemniscal subcortical nucleus but it is tonotopically organized like the AVCN. However, it remains unclear how the AI modulates the sound information processing in the DCN. This study examined the impact of focal electrical stimulation of AI on the auditory responses of the DCN neurons in mice. We found that the electrical stimulation induced significant changes in the best frequency (BF) of DCN neurons. The changes in the BFs were highly specific to the BF differences between the stimulated AI neurons and the recorded DCN neurons. The DCN BFs shifted higher when the AI BFs were higher than the DCN BFs and the DCN BFs shifted lower when the AI BFs were lower than the DCN BFs. The DCN BFs showed no change when the AI and DCN BFs were similar. Moreover, the BF shifts were linearly correlated to the BF differences. Thus, our data suggest that corticofugal modulation of the DCN is also highly specific to frequency information, similar to the corticofugal modulation of the AVCN. The frequency-specificity of corticofugal modulation does not appear limited to the lemniscal ascending pathway.

  16. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    Directory of Open Access Journals (Sweden)

    Gladys Ferrere

    Full Text Available The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD. To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  17. Megalin-mediated specific uptake of chitosan/siRNA nanoparticles in mouse kidney proximal tubule epithelial cells enables AQP1 gene silencing.

    Science.gov (United States)

    Gao, Shan; Hein, San; Dagnæs-Hansen, Frederik; Weyer, Kathrin; Yang, Chuanxu; Nielsen, Rikke; Christensen, Erik I; Fenton, Robert A; Kjems, Jørgen

    2014-01-01

    RNAi-based strategies provide a great therapeutic potential for treatment of various human diseases including kidney disorders, but face the challenge of in vivo delivery and specific targeting. The chitosan delivery system has previously been shown to target siRNA specifically to the kidneys in mice when administered intravenously. Here we confirm by 2D and 3D bioimaging that chitosan formulated siRNA is retained in the kidney for more than 48 hours where it accumulates in proximal tubule epithelial cells (PTECs), a process that was strongly dependent on the molecular weight of chitosan. Chitosan/siRNA nanoparticles, administered to chimeric mice with conditional knockout of the megalin gene, distributed almost exclusively in cells that expressed megalin, implying that the chitosan/siRNA particle uptake was mediated by a megalin-dependent endocytotic pathway. Knockdown of the water channel aquaporin 1 (AQP1) by up to 50% in PTECs was achieved utilizing the systemic i.v. delivery of chitosan/AQP1 siRNA in mice. In conclusion, specific targeting PTECs with the chitosan nanoparticle system may prove to be a useful strategy for knockdown of specific genes in PTECs, and provides a potential therapeutic strategy for treating various kidney diseases.

  18. A shorter and more specific oral sensitization-based experimental model of food allergy in mice.

    Science.gov (United States)

    Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Rodríguez-Ruiz, Judith; Garrido-Mesa, Natividad; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica

    2012-07-31

    Cow's milk protein allergy (CMPA) is one of the most prevalent human food-borne allergies, particularly in children. Experimental animal models have become critical tools with which to perform research on new therapeutic approaches and on the molecular mechanisms involved. However, oral food allergen sensitization in mice requires several weeks and is usually associated with unspecific immune responses. To overcome these inconveniences, we have developed a new food allergy model that takes only two weeks while retaining the main characters of allergic response to food antigens. The new model is characterized by oral sensitization of weaned Balb/c mice with 5 doses of purified cow's milk protein (CMP) plus cholera toxin (CT) for only two weeks and posterior challenge with an intraperitoneal administration of the allergen at the end of the sensitization period. In parallel, we studied a conventional protocol that lasts for seven weeks, and also the non-specific effects exerted by CT in both protocols. The shorter protocol achieves a similar clinical score as the original food allergy model without macroscopically affecting gut morphology or physiology. Moreover, the shorter protocol caused an increased IL-4 production and a more selective antigen-specific IgG1 response. Finally, the extended CT administration during the sensitization period of the conventional protocol is responsible for the exacerbated immune response observed in that model. Therefore, the new model presented here allows a reduction not only in experimental time but also in the number of animals required per experiment while maintaining the features of conventional allergy models. We propose that the new protocol reported will contribute to advancing allergy research. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Glial and tissue-specific regulation of Kynurenine Pathway dioxygenases by acute stress of mice

    Directory of Open Access Journals (Sweden)

    Carlos R. Dostal

    2017-12-01

    Full Text Available Stressors activate the hypothalamic-pituitary-adrenal (HPA axis and immune system eliciting changes in cognitive function, mood and anxiety. An important link between stress and altered behavior is stimulation of the Kynurenine Pathway which generates neuroactive and immunomodulatory kynurenines. Tryptophan entry into this pathway is controlled by rate-limiting indoleamine/tryptophan 2,3-dioxygenases (DOs: Ido1, Ido2, Tdo2. Although implicated as mediating changes in behavior, detecting stress-induced DO expression has proven inconsistent. Thus, C57BL/6J mice were used to characterize DO expression in brain-regions, astrocytes and microglia to characterize restraint-stress-induced DO expression. Stress increased kynurenine in brain and plasma, demonstrating increased DO activity. Of three Ido1 transcripts, only Ido1-v1 expression was increased by stress and within astrocytes, not microglia, indicating transcript- and glial-specificity. Stress increased Ido1-v1 only in frontal cortex and hypothalamus, indicating brain-region specificity. Of eight Ido2 transcripts, Ido2-v3 expression was increased by stress, again only within astrocytes. Likewise, stress increased Tdo2-FL expression in astrocytes, not microglia. Interestingly, Ido2 and Tdo2 transcripts were not correspondingly induced in Ido1-knockout (Ido1KO mice, suggesting that Ido1 is necessary for the central DO response to acute stress. Unlike acute inflammatory models resulting in DO induction within microglia, only astrocyte DO expression was increased by acute restraint-stress, defining their unique role during stress-dependent activation of the Kynurenine Pathway. Keywords: Stress, Ido, Tdo, Kynurenine, Astrocyte, Liver

  20. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    Science.gov (United States)

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  1. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation.

    Directory of Open Access Journals (Sweden)

    Jeffrey B Carroll

    Full Text Available The HTT CAG expansion mutation causes Huntington's Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue, using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219 in the striatum to 12% (25/212 in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219 of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224 in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and

  2. Gene expression signatures of radiation response are specific, durable and accurate in mice and humans.

    Directory of Open Access Journals (Sweden)

    Sarah K Meadows

    2008-04-01

    Full Text Available Previous work has demonstrated the potential for peripheral blood (PB gene expression profiling for the detection of disease or environmental exposures.We have sought to determine the impact of several variables on the PB gene expression profile of an environmental exposure, ionizing radiation, and to determine the specificity of the PB signature of radiation versus other genotoxic stresses. Neither genotype differences nor the time of PB sampling caused any lessening of the accuracy of PB signatures to predict radiation exposure, but sex difference did influence the accuracy of the prediction of radiation exposure at the lowest level (50 cGy. A PB signature of sepsis was also generated and both the PB signature of radiation and the PB signature of sepsis were found to be 100% specific at distinguishing irradiated from septic animals. We also identified human PB signatures of radiation exposure and chemotherapy treatment which distinguished irradiated patients and chemotherapy-treated individuals within a heterogeneous population with accuracies of 90% and 81%, respectively.We conclude that PB gene expression profiles can be identified in mice and humans that are accurate in predicting medical conditions, are specific to each condition and remain highly accurate over time.

  3. Activated macrophages create lineage-specific microenvironments for pancreatic acinar- and β-cell regeneration in mice.

    Science.gov (United States)

    Criscimanna, Angela; Coudriet, Gina M; Gittes, George K; Piganelli, Jon D; Esni, Farzad

    2014-11-01

    Although the cells that contribute to pancreatic regeneration have been widely studied, little is known about the mediators of this process. During tissue regeneration, infiltrating macrophages debride the site of injury and coordinate the repair response. We investigated the role of macrophages in pancreatic regeneration in mice. We used a saporin-conjugated antibody against CD11b to reduce the number of macrophages in mice following diphtheria toxin receptor-mediated cell ablation of pancreatic cells, and evaluated the effects on pancreatic regeneration. We analyzed expression patterns of infiltrating macrophages after cell-specific injury or from the pancreas of nonobese diabetic mice. We developed an in vitro culture system to study the ability of macrophages to induce cell-specific regeneration. Depletion of macrophages impaired pancreatic regeneration. Macrophage polarization, as assessed by expression of tumor necrosis factor-α, interleukin 6, interleukin 10, and CD206, depended on the type of injury. The signals provided by polarized macrophages promoted lineage-specific generation of acinar or endocrine cells. Macrophage from nonobese diabetic mice failed to provide signals necessary for β-cell generation. Macrophages produce cell type-specific signals required for pancreatic regeneration in mice. Additional study of these processes and signals might lead to new approaches for treating type 1 diabetes or pancreatitis. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  4. Disturbed α-Cell Function in Mice with β-Cell Specific Overexpression of Human Islet Amyloid Polypeptide

    Directory of Open Access Journals (Sweden)

    Bo Ahrén

    2008-01-01

    Full Text Available Exogenous administration of islet amyloid polypeptide (IAPP has been shown to inhibit both insulin and glucagon secretion. This study examined α-cell function in mice with β-cell specific overexpression of human IAPP (hIAPP after an oral protein gavage (75 mg whey protein/mouse. Baseline glucagon levels were higher in transgenic mice (41±4.0 pg/mL, n=6 than in wildtype animals (19±5.1 pg/mL, n=5, P=.015. In contrast, the glucagon response to protein was impaired in transgenic animals (21±2.7 pg/mL in transgenic mice versus 38±5.7 pg/mL in wildtype mice at 15 minutes; P=.027. Baseline insulin levels did not differ between the groups, while the insulin response, as the glucagon response, was impaired after protein challenge (P=.018. Glucose levels were not different between the groups and did not change significantly after protein gavage. Acetaminophen was given through gavage to the animals (2 mg/mouse to estimate gastric emptying. The plasma acetaminophen profile was similar in the two groups of mice. We conclude that disturbances in glucagon secretion exist in mice with β-cell specific overexpression of human IAPP, which are not secondary to changes in gastric emptying. The reduced glucagon response to protein challenge may reflect a direct inhibitory influence of hIAPP on glucagon secretion.

  5. Fshb-iCre mice are efficient and specific Cre deleters for the gonadotrope lineage.

    Science.gov (United States)

    Wang, Huizhen; Hastings, Richard; Miller, William L; Kumar, T Rajendra

    2016-01-05

    Genetic analysis of development and function of the gonadotrope cell lineage within mouse anterior pituitary has been greatly facilitated by at least three currently available Cre strains in which Cre was either knocked into the Gnrhr locus or expressed as a transgene from Cga and Lhb promoters. However, in each case there are some limitations including CRE expression in thyrotropes within pituitary or ectopic expression outside of pituitary, for example in some populations of neurons or gonads. Hence, these Cre strains often pose problems with regard to undesirable deletion of alleles in non-gonadotrope cells, fertility and germline transmission of mutant alleles. Here, we describe generation and characterization of a new Fshb-iCre deleter strain using 4.7 kb of ovine Fshb promoter regulatory sequences driving iCre expression exclusively in the gonadotrope lineage within anterior pituitary. Fshb-iCre mice develop normally, display no ectopic CRE expression in gonads and are fertile. When crossed onto a loxP recombination-mediated red to green color switch reporter mouse genetic background, in vivo CRE recombinase activity is detectable in gonadotropes at more than 95% efficiency and the GFP-tagged gonadotropes readily purified by fluorescence activated cell sorting. We demonstrate the applicability of this Fshb-iCre deleter strain in a mouse model in which Dicer is efficiently and selectively deleted in gonadotropes. We further show that loss of DICER-dependent miRNAs in gonadotropes leads to profound suppression of gonadotropins resulting in male and female infertility. Thus, Fshb-iCre mice serve as a new genetic tool to efficiently manipulate gonadotrope-specific gene expression in vivo. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. Bordetella bronchiseptica antigen enhances the production of Mycoplasma hyopneumoniae antigen-specific immunoglobulin G in mice.

    Science.gov (United States)

    Yim, Seol-Hwa; Hahn, Tae-Wook; Joo, Hong-Gu

    2017-09-30

    We previously demonstrated that Bordetella ( B .) bronchiseptica antigen (Ag) showed high immunostimulatory effects on mouse bone marrow cells (BMs) while Mycoplasma ( M .) hyopneumoniae Ag showed low effects. The focus of this study was to determine if B. bronchiseptica Ag can enhance the M. hyopneumoniae Ag-specific immune response and whether the host's immune system can recognize both Ags. MTT assay results revealed that each or both Ags did not significantly change BM metabolic activity. Flow cytometry analysis using carboxyfluorescein succinimidyl ester showed that B. bronchiseptica Ag can promote the division of BMs. In cytokine and nitric oxide (NO) assays, B. bronchiseptica Ag boosted production of tumor necrosis factor-alpha in M. hyopneumoniae Ag-treated BMs, and combined treatment with both Ags elevated the level of NO in BMs compared to that from treatment of M. hyopneumoniae Ag alone. Immunoglobulin (Ig)G enzyme-linked immunosorbent assay using the sera of Ag-injected mice clearly indicated that B. bronchiseptica Ag can increase the production of M. hyopneumoniae Ag-specific IgG. This study provided information valuable in the development of M. hyopneumoniae vaccines and showed that B. bronchiseptica Ag can be used both as a vaccine adjuvant and as a vaccine Ag.

  7. Effect of tumour mass animal gender on specific uptake of [99Tc] pertechnetate in the EMT6 tumor in mice

    International Nuclear Information System (INIS)

    Maddalena, D.J.; Snowdon, G.M.

    1990-01-01

    The effects of tumour mass and animal gender on tumour uptake of [ 99m Tc] pertechnetate were examined in balb/c mice bearing an EMT-6 tumour showing high affinity for pertechnetate. The injected dose per gram found in the tumours appears to be inversely related to the tumour mass with good correlation suggesting a high specific uptake. The tumours grown in female mice had greater uptakes and rates of uptake than those grown in the male mice. Studies carried out in animals treated with perchlorate to block active anion transport showed low pertechnetate uptake into the tumours suggesting that the high affinity of 99m TcO 4 - for the tumour was due to a specific 99m TcO 4 - transport mechanism. 15 refs., 3 tabs., 3 figs

  8. Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.

    Science.gov (United States)

    Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A

    2010-09-01

    Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.

  9. D-Aspartate Modulates Nociceptive-Specific Neuron Activity and Pain Threshold in Inflammatory and Neuropathic Pain Condition in Mice

    Directory of Open Access Journals (Sweden)

    Serena Boccella

    2015-01-01

    Full Text Available D-Aspartate (D-Asp is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO. D-Asp acts as an agonist on NMDA receptors (NMDARs. Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo−/− or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo−/− mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo−/− mice show an increased evoked activity of the nociceptive specific (NS neurons of the dorsal horn of the spinal cord (L4–L6 and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.

  10. Gender-specific reduction of hepatic Mrp2 expression by high-fat diet protects female mice from ANIT toxicity

    International Nuclear Information System (INIS)

    Kong, Bo; Csanaky, Iván L.; Aleksunes, Lauren M.; Patni, Meghan; Chen, Qi; Ma, Xiaochao; Jaeschke, Hartmut; Weir, Scott; Broward, Melinda; Klaassen, Curtis D.; Guo, Grace L.

    2012-01-01

    Emerging evidence suggests that feeding a high-fat diet (HFD) to rodents affects the expression of genes involved in drug transport. However, gender-specific effects of HFD on drug transport are not known. The multidrug resistance-associated protein 2 (Mrp2, Abcc2) is a transporter highly expressed in the hepatocyte canalicular membrane and is important for biliary excretion of glutathione-conjugated chemicals. The current study showed that hepatic Mrp2 expression was reduced by HFD feeding only in female, but not male, C57BL/6J mice. In order to determine whether down-regulation of Mrp2 in female mice altered chemical disposition and toxicity, the biliary excretion and hepatotoxicity of the Mrp2 substrate, α-naphthylisothiocyanate (ANIT), were assessed in male and female mice fed control diet or HFD for 4 weeks. ANIT-induced biliary injury is a commonly used model of experimental cholestasis and has been shown to be dependent upon Mrp2-mediated efflux of an ANIT glutathione conjugate that selectively injures biliary epithelial cells. Interestingly, HFD feeding significantly reduced early-phase biliary ANIT excretion in female mice and largely protected against ANIT-induced liver injury. In summary, the current study showed that, at least in mice, HFD feeding can differentially regulate Mrp2 expression and function and depending upon the chemical exposure may enhance or reduce susceptibility to toxicity. Taken together, these data provide a novel interaction between diet and gender in regulating hepatobiliary excretion and susceptibility to injury. -- Highlights: ► High-fat diet decreases hepatic Mrp2 expression only in female but not in male mice. ► HFD significantly reduces early-phase biliary ANIT excretion in female mice. ► HFD protects female mice against ANIT-induced liver injury.

  11. Altered consolidation of extinction-like inhibitory learning in genotype-specific dysfunctional coping fostered by chronic stress in mice.

    Science.gov (United States)

    Campus, P; Maiolati, M; Orsini, C; Cabib, S

    2016-12-15

    Genetic and stress-related factors interact to foster mental disorders, possibly through dysfunctional learning. In a previous study we reported that a temporary experience of reduced food availability increases forced swim (FS)-induced helplessness tested 14days after a first experience in mice of the standard inbred C57BL/6(B6) strain but reduces it in mice of the genetically unrelated DBA/2J (D2) strain. Because persistence of FS-induced helplessness influences adaptive coping with stress challenge and involve learning processes the present study tested whether the behavioral effects of restricted feeding involved altered consolidation of FS-related learning. First, we demonstrated that restricted feeding does not influence behavior expressed on the first FS experience, supporting a specific effect on persistence rather then development of helplessness. Second, we found that FS-induced c-fos expression in the infralimbic cortex (IL) was selectively enhanced in food-restricted (FR) B6 mice and reduced in FR D2 mice, supporting opposite alterations of consolidation processes involving this brain area. Third, we demonstrated that immediate post-FS inactivation of IL prevents 24h retention of acquired helplessness by continuously free-fed mice of both strains, indicating the requirement of a functioning IL for consolidation of FS-related learning in either mouse strain. Finally, in line with the known role of IL in consolidation of extinction memories, we found that restricted feeding selectively facilitated 24h retention of an acquired extinction in B6 mice whereas impairing it in D2 mice. These findings support the conclusion that an experience of reduced food availability strain-specifically affects persistence of newly acquired passive coping strategies by altering consolidation of extinction-like inhibitory learning. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Diminished primary and secondary influenza virus-specific CD8(+) T-cell responses in CD4-depleted Ig(-/-) mice

    DEFF Research Database (Denmark)

    Riberdy, J M; Christensen, Jan Pravsgaard; Branum, K

    2000-01-01

    Optimal expansion of influenza virus nucleoprotein (D(b)NP(366))-specific CD8(+) T cells following respiratory challenge of naive Ig(-/-) microMT mice was found to require CD4(+) T-cell help, and this effect was also observed in primed animals. Absence of the CD4(+) population was consistently...

  13. Site-specific induction of nuclear anomalies (apoptotic bodies and micronuclei) by carcinogens in mice

    International Nuclear Information System (INIS)

    Ronen, A.; Heddle, J.A.

    1984-01-01

    The usefulness of nuclear anomalies (NA) as a short-term test for indication of carcinogens in the mouse colon has been suggested previously by experiments in which colon-specific carcinogens induced NA in the colon, whereas non-colon carcinogens were, in general, impotent in that organ. We have extended this work to other sites in the digestive tract of female C57BL/6 mice treated with gamma-rays, 1,2-dimethylhydrazine dihydrochloride, or N-methylnitrosourea. Each agent induced NA at all of the sites examined. The frequency of NA at different times after treatment depended upon both the agent used and the site examined. 1,2-Dimethylhydrazine dihydrochloride (which is known to induce tumors predominantly in the colon) induces NA with the highest efficiency (relative to gamma-rays) in the descending colon. N-Methylnitrosourea (which induces tumors mainly in the forestomach) induces NA with the highest efficiency in the forestomach. These results further support the usefulness of the assay in that the frequency of NA produced at the various sites by 1,2-dimethylhydrazine dihydrochloride and N-methylnitrosourea correlates with that found in the carcinogenicity studies

  14. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  15. Peripheral erythrocytes decrease upon specific respiratory challenge with grass pollen allergen in sensitized mice and in human subjects.

    Directory of Open Access Journals (Sweden)

    Galateja Jordakieva

    Full Text Available BACKGROUND AND AIMS: Specific hyper-responsiveness towards an allergen and non-specific airway hyperreactivity both impair quality of life in patients with respiratory allergic diseases. We aimed to investigate cellular responses following specific and non-specific airway challenges locally and systemically in i sensitized BALB/c mice challenged with grass pollen allergen Phl p 5, and in ii grass pollen sensitized allergic rhinitis subjects undergoing specific airway challenge in the Vienna Challenge Chamber (VCC. METHODS AND RESULTS: BALB/c mice (n = 20 were intraperitoneally immunized with grass pollen allergen Phl p 5 and afterwards aerosol challenged with either the specific allergen Phl p 5 (n = 10 or the non-specific antigen ovalbumin (OVA (n = 10. A protocol for inducing allergic asthma as well as allergic rhinitis, according to the united airway concept, was used. Both groups of exposed mice showed significantly reduced physical activity after airway challenge. Specific airway challenge further resulted in goblet cell hyperplasia, enhanced mucous secretion, intrapulmonary leukocyte infiltration and lymphoid follicle formation, associated with significant expression of IL-4, IL-5 and IL-13 in splenocytes and also partially in lung tissue. Concerning circulating blood cell dynamics, we observed a significant drop of erythrocyte counts, hemoglobin and hematocrit levels in both mouse groups, challenged with allergen or OVA. A significant decrease in circulating erythrocytes and hematocrit levels after airway challenges with grass pollen allergen was also found in grass pollen sensitized human rhinitis subjects (n = 42 at the VCC. The effects on peripheral leukocyte counts in mice and humans however were opposed, possibly due to the different primary inflammation sites. CONCLUSION: Our data revealed that, besides significant leukocyte dynamics, particularly erythrocytes are involved in acute hypersensitivity reactions to respiratory allergens

  16. No beneficial effect of general and specific anti-inflammatory therapies on aortic dilatation in Marfan mice.

    Directory of Open Access Journals (Sweden)

    Romy Franken

    Full Text Available AIMS: Patients with Marfan syndrome have an increased risk of life-threatening aortic complications, mostly preceded by aortic dilatation. In the FBN1(C1039G/+ Marfan mouse model, losartan decreases aortic root dilatation. We recently confirmed this beneficial effect of losartan in adult patients with Marfan syndrome. The straightforward translation of this mouse model to man is reassuring to test novel treatment strategies. A number of studies have shown signs of inflammation in aortic tissue of Marfan patients. This study examined the efficacy of anti-inflammatory therapies in attenuating aortic root dilation in Marfan syndrome and compared effects to the main preventative agent, losartan. METHODS AND RESULTS: To inhibit inflammation in FBN1(C1039G/+ Marfan mice, we treated the mice with losartan (angiotensin II receptor type 1 inhibitor, methylprednisolone (corticosteroid or abatacept (T-cell-specific inhibitor. Treatment was initiated in adult Marfan mice with already existing aortic root dilatation, and applied for eight weeks. Methylprednisolone- or abatacept-treated mice did not reveal a reduction in aortic root dilatation. In this short time frame, losartan was the only treatment that significantly reduced aorta inflammation, transforming growth factor-beta (TGF-β signaling and aortic root dilatation rate in these adult Marfan mice. Moreover, the methylprednisolone-treated mice had significantly more aortic alcian blue staining as a marker for aortic damage. CONCLUSION: Anti-inflammatory agents do not reduce the aortic dilatation rate in Marfan mice, but possibly increase aortic damage. Currently, the most promising therapeutic drug in Marfan syndrome is losartan, by blocking the angiotensin II receptor type 1 and thereby inhibiting pSmad2 signaling.

  17. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  18. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    Directory of Open Access Journals (Sweden)

    Natalya P. Bondar

    2018-01-01

    Full Text Available Stressful events in an early postnatal period have critical implications for the individual’s life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day or handling (HD, 15 min once a day on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling, which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior.

  20. Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Carlson Bradley A

    2008-07-01

    Full Text Available Abstract Background Selenoproteins contain selenocysteine (Sec, commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes. Methods C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/- and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed. Results After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(PH dehydrogenase, quinone 1. Conclusion Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(PH dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.

  1. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  2. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2.

    Science.gov (United States)

    Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A

    2013-10-01

    Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.

  3. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum enables it to infect caterpillars.

    Directory of Open Access Journals (Sweden)

    Sibao Wang

    2011-06-01

    Full Text Available An enduring theme in pathogenic microbiology is poor understanding of the mechanisms of host specificity. Metarhizium is a cosmopolitan genus of invertebrate pathogens that contains generalist species with broad host ranges such as M. robertsii (formerly known as M. anisopliae var. anisopliae as well as specialists such as the acridid-specific grasshopper pathogen M. acridum. During growth on caterpillar (Manduca sexta cuticle, M. robertsii up-regulates a gene (Mest1 that is absent in M. acridum and most other fungi. Disrupting M. robertsii Mest1 reduced virulence and overexpression increased virulence to caterpillars (Galleria mellonella and M. sexta, while virulence to grasshoppers (Melanoplus femurrubrum was unaffected. When Mest1 was transferred to M. acridum under control of its native M. robertsii promoter, the transformants killed and colonized caterpillars in a similar fashion to M. robertsii. MEST1 localized exclusively to lipid droplets in M. robertsii conidia and infection structures was up-regulated during nutrient deprivation and had esterase activity against lipids with short chain fatty acids. The mobilization of stored lipids was delayed in the Mest1 disruptant mutant. Overall, our results suggest that expression of Mest1 allows rapid hydrolysis of stored lipids, and promotes germination and infection structure formation by M. robertsii during nutrient deprivation and invasion, while Mest1 expression in M. acridum broadens its host range by bypassing the regulatory signals found on natural hosts that trigger the mobilization of endogenous nutrient reserves. This study suggests that speciation in an insect pathogen could potentially be driven by host shifts resulting from changes in a single gene.

  4. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    Energy Technology Data Exchange (ETDEWEB)

    Lingappan, Krithika, E-mail: lingappa@bcm.edu [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I. [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Barrios, Roberto [Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, 6565 Fannin Street, Suite M227, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States)

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  5. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    International Nuclear Information System (INIS)

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-01-01

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO 2 > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F 2 alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure

  6. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  7. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  8. Visceral hyperalgesia induced by forebrain-specific suppression of native Kv7/KCNQ/M-current in mice

    Directory of Open Access Journals (Sweden)

    Bian Xiling

    2011-10-01

    Full Text Available Abstract Background Dysfunction of brain-gut interaction is thought to underlie visceral hypersensitivity which causes unexplained abdominal pain syndromes. However, the mechanism by which alteration of brain function in the brain-gut axis influences the perception of visceral pain remains largely elusive. In this study we investigated whether altered brain activity can generate visceral hyperalgesia. Results Using a forebrain specific αCaMKII promoter, we established a line of transgenic (Tg mice expressing a dominant-negative pore mutant of the Kv7.2/KCNQ2 channel which suppresses native KCNQ/M-current and enhances forebrain neuronal excitability. Brain slice recording of hippocampal pyramidal neurons from these Tg mice confirmed the presence of hyperexcitable properties with increased firing. Behavioral evaluation of Tg mice exhibited increased sensitivity to visceral pain induced by intraperitoneal (i.p. injection of either acetic acid or magnesium sulfate, and intracolon capsaicin stimulation, but not cutaneous sensation for thermal or inflammatory pain. Immunohistological staining showed increased c-Fos expression in the somatosensory SII cortex and insular cortex of Tg mice that were injected intraperitoneally with acetic acid. To mimic the effect of cortical hyperexcitability on visceral hyperalgesia, we injected KCNQ/M channel blocker XE991 into the lateral ventricle of wild type (WT mice. Intracerebroventricular injection of XE991 resulted in increased writhes of WT mice induced by acetic acid, and this effect was reversed by co-injection of the channel opener retigabine. Conclusions Our findings provide evidence that forebrain hyperexcitability confers visceral hyperalgesia, and suppression of central hyperexcitability by activation of KCNQ/M-channel function may provide a therapeutic potential for treatment of abdominal pain syndromes.

  9. Generation of Oxtr cDNA(HA)-Ires-Cre Mice for Gene Expression in an Oxytocin Receptor Specific Manner.

    Science.gov (United States)

    Hidema, Shizu; Fukuda, Tomokazu; Hiraoka, Yuichi; Mizukami, Hiroaki; Hayashi, Ryotaro; Otsuka, Ayano; Suzuki, Shingo; Miyazaki, Shinji; Nishimori, Katsuhiko

    2016-05-01

    The neurohypophysial hormone oxytocin (OXT) and its receptor (OXTR) have critical roles in the regulation of pro-social behaviors, including social recognition, pair bonding, parental behavior, and stress-related responses. Supporting this hypothesis, a portion of patients suffering from autism spectrum disorder have mutations, such as single nucleotide polymorphisms, or epigenetic modifications in their OXTR gene. We previously reported that OXTR-deficient mice exhibit pervasive social deficits, indicating the critical role of OXTR in social behaviors. In the present study, we generated Oxtr cDNA(HA)-Ires-Cre knock-in mice, expressing both OXTR and Cre recombinase under the control of the endogenous Oxtr promoter. Knock-in cassette of Oxtr cDNA(HA)-Ires-Cre consisted of Oxtr cDNA tagged with the hemagglutinin epitope at the 3' end (Oxtr cDNA(HA)), internal ribosomal entry site (Ires), and Cre. Cre was expressed in the uterus, mammary gland, kidney, and brain of Oxtr cDNA(HA)-Ires-Cre knock-in mice. Furthermore, the distribution of Cre in the brain was similar to that observed in Oxtr-Venus fluorescent protein expressing mice (Oxtr-Venus), another animal model previously generated by our group. Social behavior of Oxtr cDNA(HA)-Ires-Cre knock-in mice was similar to that of wild-type animals. We demonstrated that this construct is expressed in OXTR-expressing neurons specifically after an infection with the recombinant adeno-associated virus carrying the flip-excision switch vector. Using this system, we showed the transport of the wheat-germ agglutinin tracing molecule from the OXTR-expressing neurons to the innervated neurons in knock-in mice. This study might contribute to the monosynaptic analysis of neuronal circuits and to the optogenetic analysis of neurons expressing OXTR. © 2015 Wiley Periodicals, Inc.

  10. Specific Macronutrients Exert Unique Influences on the Adipose-Liver Axis to Promote Hepatic Steatosis in Mice.

    Science.gov (United States)

    Duwaerts, Caroline C; Amin, Amin M; Siao, Kevin; Her, Chris; Fitch, Mark; Beysen, Carine; Turner, Scott M; Goodsell, Amanda; Baron, Jody L; Grenert, James P; Cho, Soo-Jin; Maher, Jacquelyn J

    2017-09-01

    The factors that distinguish metabolically healthy obesity from metabolically unhealthy obesity are not well understood. Diet has been implicated as a determinant of the unhealthy obesity phenotype, but which aspects of the diet induce dysmetabolism are unknown. The goal of this study was to investigate whether specific macronutrients or macronutrient combinations provoke dysmetabolism in the context of isocaloric, high-energy diets. Mice were fed 4 high-energy diets identical in calorie and nutrient content but different in nutrient composition for 3 weeks to 6 months. The test diets contained 42% carbohydrate (sucrose or starch) and 42% fat (oleate or palmitate). Weight and glucose tolerance were monitored; blood and tissues were collected for histology, gene expression, and immunophenotyping. Mice gained weight on all 4 test diets but differed significantly in other metabolic outcomes. Animals fed the starch-oleate diet developed more severe hepatic steatosis than those on other formulas. Stable isotope incorporation showed that the excess hepatic steatosis in starch-oleate-fed mice derived from exaggerated adipose tissue lipolysis. In these mice, adipose tissue lipolysis coincided with adipocyte necrosis and inflammation. Notably, the liver and adipose tissue abnormalities provoked by starch-oleate feeding were reproduced when mice were fed a mixed-nutrient Western diet with 42% carbohydrate and 42% fat. The macronutrient composition of the diet exerts a significant influence on metabolic outcome, independent of calories and nutrient proportions. Starch-oleate appears to cause hepatic steatosis by inducing progressive adipose tissue injury. Starch-oleate phenocopies the effect of a Western diet; consequently, it may provide clues to the mechanism whereby specific nutrients cause metabolically unhealthy obesity.

  11. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    Science.gov (United States)

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney

  12. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  13. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  14. Health surveillance of specific pathogen-free and conventionally-housed mice and rats in Korea.

    Science.gov (United States)

    Seok, Seunghyeok; Park, Jonghwan; Cho, Suna; Baek, Minwon; Lee, Huiyoung; Kim, Dongjae; Yang, Kihwa; Jang, Dongdeuk; Han, Beomseok; Nam, Kitaek; Park, Jaehak

    2005-01-01

    The present study contains information about proper microbiological monitoring of laboratory animals' health and the standardization of microbiological monitoring methods in Korea. Microbiological quality control for laboratory animals, composed of biosecurity and health surveillance, is essential to guard against research complications and public health dangers that have been associated with adventitious infections. In this study, one hundred and twenty-two mice and ninety rats from laboratory animal breeding companies and one animal facility of the national universities in Korea were monitored in 2000-2003. Histopathologically, thickening of the alveolar walls and lymphocytic infiltration around the bronchioles were observed in mice and rats from microbiologically contaminated facilities. Cryptosporidial oocysts were observed in the gastric pits of only conventionally-housed mice and rats. Helicobacter spp. infection was also detected in 1 of 24 feces DNA samples in mice and 9 of 40 feces DNA samples in rats by PCR in 2003, but they were not Helicobacter hepaticus. This paper describes bacteriological, parasitological, and virological examinations of the animals.

  15. Specific modulation of mucosal immune response, tolerance and proliferation in mice colonized with A. muciniphila

    NARCIS (Netherlands)

    Derrien, M.M.N.; Baarlen, van Peter; Hooiveld, Guido; Norin, Elisabeth; Muller, Michael; Vos, de Willem

    2011-01-01

    Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host response, germ-free mice were colonized with

  16. Ontogeny of Contextual Fear Memory Formation, Specificity, and Persistence in Mice

    Science.gov (United States)

    Akers, Katherine G.; Arruda-Carvalho, Maithe; Josselyn, Sheena A.; Frankland, Paul W.

    2012-01-01

    Pinpointing the precise age when young animals begin to form memories of aversive events is valuable for understanding the onset of anxiety and mood disorders and for detecting early cognitive impairment in models of childhood-onset disorders. Although these disorders are most commonly modeled in mice, we know little regarding the development of…

  17. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    Science.gov (United States)

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  18. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  19. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  20. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  1. X-Ray-Induced Damage to the Submandibular Salivary Glands in Mice: An Analysis of Strain-Specific Responses

    Science.gov (United States)

    Kamiya, Mana; Kawase, Tomoyuki; Hayama, Kazuhide; Tsuchimochi, Makoto; Okuda, Kazuhiro; Yoshie, Hiromasa

    2015-01-01

    Abstract Radiation therapy for head and neck cancers often causes xerostomia (dry mouth) by acutely damaging the salivary glands through the induction of severe acute inflammation. By contrast, the mechanism underlying the X-ray-induced delayed salivary dysfunction is unknown and has attracted increasing attention. To identify and develop a mouse model that distinguishes the delayed from the acute effects, we examined three different mouse strains (C57BL/6, ICR, and ICR-nu/nu) that showed distinct T-cell activities to comparatively analyze their responses to X-ray irradiation. Three strains were irradiated with X-rays (25 Gy), and functional changes of the submandibular glands were examined by determining pilocarpine-induced saliva secretion. Structural changes were evaluated using histopathological and immunohistochemical examinations of CD3, cleaved poly (ADP-ribose) polymerase (PARP), and Bcl-xL. In C57BL/6 mice, the X-ray irradiation induced acute inflammation accompanied by severe inflammatory cell infiltration at 4 days postirradiation, causing substantial destruction and significant dysfunction at 2 weeks. Fibrotic repair was observed at 16 weeks. In ICR-nu/nu mice, the inflammation and organ destruction were much milder than in the other mice strains, but increased apoptotic cells and a significant reduction in salivary secretion were observed at 4 and 8 weeks and beyond, respectively. These results suggest that in C57BL/6 mice, X-ray-induced functional and structural damage to the salivary glands is caused mainly by acute inflammation. By contrast, although neither acute inflammation nor organ destruction was observed in ICR-nu/nu mice, apoptotic cell death preceded the dysfunction in salivary secretion in the later phase. These data suggest that the X-ray-irradiated ICR-nu/nu mouse may be a useful animal model for developing more specific therapeutic methods for the delayed dysfunction of salivary glands. PMID:26309806

  2. Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice.

    Directory of Open Access Journals (Sweden)

    Olga Antsiferova

    2014-08-01

    Full Text Available Epstein Barr virus (EBV infection expands CD8+ T cells specific for lytic antigens to high frequencies during symptomatic primary infection, and maintains these at significant numbers during persistence. Despite this, the protective function of these lytic EBV antigen-specific cytotoxic CD8+ T cells remains unclear. Here we demonstrate that lytic EBV replication does not significantly contribute to virus-induced B cell proliferation in vitro and in vivo in a mouse model with reconstituted human immune system components (huNSG mice. However, we report a trend to reduction of EBV-induced lymphoproliferation outside of lymphoid organs upon diminished lytic replication. Moreover, we could demonstrate that CD8+ T cells against the lytic EBV antigen BMLF1 can eliminate lytically replicating EBV-transformed B cells from lymphoblastoid cell lines (LCLs and in vivo, thereby transiently controlling high viremia after adoptive transfer into EBV infected huNSG mice. These findings suggest a protective function for lytic EBV antigen-specific CD8+ T cells against EBV infection and against virus-associated tumors in extra-lymphoid organs. These specificities should be explored for EBV-specific vaccine development.

  3. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a ...

  4. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  5. Strain-specific induction of experimental autoimmune prostatitis (EAP) in mice.

    Science.gov (United States)

    Jackson, Christopher M; Flies, Dallas B; Mosse, Claudio A; Parwani, Anil; Hipkiss, Edward L; Drake, Charles G

    2013-05-01

    Prostatitis, a clinical syndrome characterized by pelvic pain and inflammation, is common in adult males. Although several induced and spontaneous murine models of prostatitis have been explored, the role of genetic background on induction has not been well-defined. Using a standard methodology for the induction of experimental autoimmune prostatitis (EAP), we investigated both acute and chronic inflammation on several murine genetic backgrounds. In our colony, nonobese diabetic (NOD) mice evinced spontaneous prostatitis that was not augmented by immunization with rat prostate extract (RPE). In contrast, the standard laboratory strain Balb/c developed chronic inflammation in response to RPE immunization. Development of EAP in other strains was variable. These data suggest that Balb/c mice injected with RPE may provide a useful model for chronic prostatic inflammation. Copyright © 2012 Wiley Periodicals, Inc.

  6. Analysis of specific 3H-diazepam binding in the brain of emotionally difference mice

    International Nuclear Information System (INIS)

    Blednov, Yu.A.; Gordei, M.L.; Seredenin, S.B.

    1987-01-01

    A study of the behavior of inbred animals under conditions of emotional stress, of the biochemical parameters of the stress reaction, and of the effects of benzodiazepine tranquilizers, conducted in the authors' laboratory, showed that the character of the response to stress and the manifestation of the action of benzodiazepine depend on hereditary factors. The aim of this investigation was to study reception of tritium-labelled diazepam by brain cell membranes of C57BL/6 and BALB/c mice

  7. Tissue-specific down-regulation of RIPK 2 in Mycobacterium leprae-infected nu/nu mice

    Directory of Open Access Journals (Sweden)

    Gue-Tae Chae

    1992-01-01

    Full Text Available RIPK 2 is adapter molecule in the signal pathway involved in Toll-like receptors. However, there has been no reported association between receptor-interacting serine/threonine kinase 2 (RIPK 2 expression and the infectious diseases involving mycobacterial infection. This study found that its expression was down-regulated in the footpads and skin but was up-regulated in the liver of Mycobacterium leprae-infected nu/nu mice compared with those of the M. leprae non-infected nu/nu mice. It was observed that the interlukin-12p40 and interferon-γ genes involved in the susceptibility of M. leprae were down-regulated in the skin but were up-regulated in the liver. Overall, this suggests that regulation of RIPK 2 expression is tissue-specifically associated with M. leprae infection.

  8. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty.

    Science.gov (United States)

    Meng, Xiu-Hong; Liu, Ping; Wang, Hua; Zhao, Xian-Feng; Xu, Zhong-Mei; Chen, Gui-Hai; Xu, De-Xiang

    2011-06-24

    In human and rodent models, endocrine disrupting chemicals (EDCs) interfere with the development of cognition and behaviors. Fenvalerate is a potential EDC. The purpose of this study was to examine whether pubertal fenvalerate exposure altered behavioral development. Mice were orally administered with either vehicle or fenvalerate (7.5 or 30 mg/kg/day) from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris Water Maze. Aggressive performance was evaluated by aggressive behavior test. Anxiety-related activities were detected by three tests: open-field, plus-maze and black-white alley. Sensorimotor function was analyzed using beam walking and tightrope. Results found that the impairment for spatial learning and memory was more severe in fenvalerate-exposed female mice than in male mice. In addition, pubertal fenvalerate exposure inhibited aggressive behavior in males. Moreover, pubertal fenvalerate exposure increased anxiety activities in females. Altogether, these results suggest that pubertal fenvalerate exposure impairs spatial cognition and behavioral development in a gender-dependent manner. These findings identify fenvalerate as candidate environmental risk factors for cognitive and behavioral development, especially in the critical period of development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Heart-specific overexpression of (pro)renin receptor induces atrial fibrillation in mice.

    Science.gov (United States)

    Lian, Hong; Wang, Xiaojian; Wang, Juan; Liu, Ning; Zhang, Li; Lu, Yingdong; Yang, Yanmin; Zhang, Lianfeng

    2015-04-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia, causing substantial cardiovascular morbidity and mortality. The renin-angiotensin system (RAS) has been shown to be involved in the pathophysiology of AF. The (pro)renin receptor [(p)RR] is the last identified member of RAS. However, the role of (p)RR in AF is still unknown. Circulating levels of (p)RR were determined using an immunosorbent assay in 22 patients with AF (paroxysmal or persistent) and 22 healthy individuals. The plasma levels of (p)RR increased 3.6-fold in AF patients (Patrial flutter since 2 months, then spontaneously converted to atrial fibrillation by 10 months. The atria of the transgenic mice demonstrated significant dilation and fibrosis, and exhibited a high incidence of sudden death. Additionally, the genes of SERCA and HCN4, which are involved in the electrophysiology of AF, were significantly down-regulated and up-regulated respectively in transgenic mice atria. The phosphorylation of Erk1/2 significantly increased in the atria of the transgenic mice, and the activated Erk1/2 was found predominantly in cardiac fibroblasts, suggesting that the transgenic (p)RR gene may induce atrial fibrillation by activation of Erk1/2 in the cardiac fibroblasts of the atria. (p)RR promotes atrial structural and electrical remodeling in vivo, which indicates that (p)RR plays an important role in the pathological development of AF. Copyright © 2015. Published by Elsevier Ireland Ltd.

  10. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.

  11. Changes in antigen-specific T cell number and function during oral desensitization in cow’s milk allergy enabled with omalizumab

    Science.gov (United States)

    Bedoret, D; Singh, A K; Shaw, V; Hoyte, E G; Hamilton, R; DeKruyff, R H; Schneider, L C; Nadeau, K C; Umetsu, D T

    2012-01-01

    Food allergy is a major public health problem for which there is no effective treatment. We examined the immunological changes that occurred in a group of children with significant cow’s milk allergy undergoing a novel and rapid high dose oral desensitization protocol enabled by treatment with omalizumab (anti-IgE mAb). Within a week of treatment, the CD4+ T cell response to milk was nearly eliminated, suggesting anergy in, or deletion of, milk-specific CD4+ T cells. Over the following three months while the subjects remained on high doses of daily oral milk, the CD4+ T cell response returned, characterized by a shift from IL-4 to IFN-γ production. Desensitization was also associated with reduction in milk-specific IgE and a 15-fold increase in milk-specific IgG4. These studies suggest that high dose oral allergen desensitization may be associated with deletion of allergen-specific T cells, without the apparent development of allergen-specific Foxp3+ regulatory T cells. PMID:22318492

  12. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.

    Science.gov (United States)

    Egawa, Junji; Schilling, Jan M; Cui, Weihua; Posadas, Edmund; Sawada, Atsushi; Alas, Basheer; Zemljic-Harpf, Alice E; Fannon-Pavlich, McKenzie J; Mandyam, Chitra D; Roth, David M; Patel, Hemal H; Patel, Piyush M; Head, Brian P

    2017-08-01

    Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. © FASEB.

  13. Generation of Recombinant Monoclonal Antibodies from Immunised Mice and Rabbits via Flow Cytometry and Sorting of Antigen-Specific IgG+ Memory B Cells.

    Directory of Open Access Journals (Sweden)

    Dale O Starkie

    Full Text Available Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytometry single-cell sorting technique for the generation of antigen-specific recombinant monoclonal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC from immunised animals were used as a source of B cells. Reagents staining both B cells and other unwanted cell types enabled efficient identification of class-switched IgG+ memory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both antigen conjugates (double-positive. These cells were then typically sorted at one cell per well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix. Following production of cDNA, PCR was performed to amplify cognate heavy and light chain variable region genes and generate transcriptionally-active PCR (TAP fragments. These linear expression cassettes were then used directly in a mammalian cell transfection to generate recombinant antibody for further testing. We were able to successfully generate antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B cell subset within one week. This included the generation of an anti-TNFR2 blocking

  14. Sex-specific effects of docosahexaenoic acid (DHA) on the microbiome and behavior of socially-isolated mice.

    Science.gov (United States)

    Davis, Daniel J; Hecht, Patrick M; Jasarevic, Eldin; Beversdorf, David Q; Will, Matthew J; Fritsche, Kevin; Gillespie, Catherine H

    2017-01-01

    Dietary supplementation with the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) has been shown to have a beneficial effect on reducing the symptoms associated with several neuropsychiatric conditions including anxiety and depression. However, the mechanisms underlying this effect remain largely unknown. Increasing evidence suggests that the vast repertoire of commensal bacteria within the gut plays a critical role in regulating various biological processes in the brain and may contribute to neuropsychiatric disease risk. The present study determined the contribution of DHA on anxiety and depressive-like behaviors through modulation of the gut microbiota in a paradigm of social isolation. Adult male and female mice were subjected to social isolation for 28days and then placed either on a control diet or a diet supplemented with 0.1% or 1.0% DHA. Fecal pellets were collected both 24h and 7days following the introduction of the new diets. Behavioral testing revealed that male mice fed a DHA diet, regardless of dose, exhibited reduced anxiety and depressive-like behaviors compared to control fed mice while no differences were observed in female mice. As the microbiota-brain-axis has been recently implicated in behavior, composition of microbial communities were analyzed to examine if these sex-specific effects of DHA may be associated with changes in the gut microbiota (GM). Clear sex differences were observed with males and females showing distinct microbial compositions prior to DHA supplementation. The introduction of DHA into the diet also induced sex-specific interactions on the GM with the fatty acid producing a significant effect on the microbial profiles in males but not in females. Interestingly, levels of Allobaculum and Ruminococcus were found to significantly correlate with the behavioral changes observed in the male mice. Predictive metagenome analysis using PICRUSt was performed on the fecal samples collected from males and

  15. An Object Location Detector Enabling People with Developmental Disabilities to Control Environmental Stimulation through Simple Occupational Activities with Battery-Free Wireless Mice

    Science.gov (United States)

    Shih, Ching-Hsiang

    2011-01-01

    This study assessed whether two persons with developmental disabilities would be able to actively perform simple occupational activities by controlling their favorite environmental stimulation using battery-free wireless mice with a newly developed object location detection program (OLDP, i.e., a new software program turning a battery-free…

  16. In Vivo Imaging of Prostate Cancer Tumors and Metastasis Using Non-Specific Fluorescent Nanoparticles in Mice

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2017-12-01

    Full Text Available With the growing interest in the use of nanoparticles (NPs in nanomedicine, there is a crucial need for imaging and targeted therapies to determine NP distribution in the body after systemic administration, and to achieve strong accumulation in tumors with low background in other tissues. Accumulation of NPs in tumors results from different mechanisms, and appears extremely heterogeneous in mice models and rather limited in humans. Developing new tumor models in mice, with their low spontaneous NP accumulation, is thus necessary for screening imaging probes and for testing new targeting strategies. In the present work, accumulation of LipImageTM 815, a non-specific nanosized fluorescent imaging agent, was compared in subcutaneous, orthotopic and metastatic tumors of RM1 cells (murine prostate cancer cell line by in vivo and ex vivo fluorescence imaging techniques. LipImageTM 815 mainly accumulated in liver at 24 h but also in orthotopic tumors. Limited accumulation occurred in subcutaneous tumors, and very low fluorescence was detected in metastasis. Altogether, these different tumor models in mice offered a wide range of NP accumulation levels, and a panel of in vivo models that may be useful to further challenge NP targeting properties.

  17. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    Science.gov (United States)

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  18. Bifidobacterium adolescentis Exerts Strain-Specific Effects on Constipation Induced by Loperamide in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Linlin Wang

    2017-02-01

    Full Text Available Constipation is one of the most common gastrointestinal complaints worldwide. This study was performed to determine whether Bifidobacterium adolescentis exerts inter-strain differences in alleviating constipation induced by loperamide in BALB/c mice and to analyze the main reasons for these differences. BALB/c mice underwent gavage with B. adolescentis (CCFM 626, 667, and 669 once per day for 17 days. The primary outcome measures included related constipation indicators, and the secondary outcome measures were the basic biological characteristics of the strains, the concentration changes of short-chain fatty acids in feces, and the changes in the fecal flora. B. adolescentis CCFM 669 and 667 relieved constipation symptoms by adhering to intestinal epithelial cells, growing quickly in vitro and increasing the concentrations of propionic and butyric acids. The effect of B. adolescentis on the gut microbiota in mice with constipation was investigated via 16S rRNA metagenomic analysis. The results revealed that the relative abundance of Lactobacillus increased and the amount of Clostridium decreased in the B. adolescentis CCFM 669 and 667 treatment groups. In conclusion, B. adolescentis exhibits strain-specific effects in the alleviation of constipation, mostly due to the strains’ growth rates, adhesive capacity and effects on the gut microbiome and microenvironment.

  19. Insulin, IGF-1, and GH Receptors Are Altered in an Adipose Tissue Depot-Specific Manner in Male Mice With Modified GH Action.

    Science.gov (United States)

    Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J

    2017-05-01

    Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.

  20. Formation and Expansion of Leukemia-Specific Chromosome Aberrations in Hematopoietic Cells of X-ray Irradiated Mice

    International Nuclear Information System (INIS)

    Ban, N.; Kai, M.; Kusama, T.

    2004-01-01

    C3H/He mice develop acute myeloid leukemia (AML) after whole-body irradiation, and typical chromosome 2 deletions are found in the leukemia cells. To investigate a process of the formation and the expansion of the AML-specific deletions, we have examined its frequency in primitive hematopoietic cells that could be the target of the leukemogenesis. Male C3H/He mice were exposed to 3Gy x-rays and sacrificed after certain periods of time. Bone marrow cells were collected from the femora and a single-cell suspension from each animal was divided into two parts. One part of the cell suspension was cultured in methylcellulose medium and metaphase spreads were prepared from each growing colony. The other part was sorted to obtain Lin+ and Lin Scal cells and those cells were scored with FISH for the AML-specific deletions. Karyotyping of the cultured cells detected signs of the delayed chromosomal instability, but an aberration involving chromosome 2 has not been found so far. FISH to the sorted cells, however, revealed the ANL-specific deletions could be produced in the primitive hematopoietic cells as an early event of radiation exposure. (Author) 16 refs

  1. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  2. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs

    Energy Technology Data Exchange (ETDEWEB)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram, E-mail: ekas2009@buc.edu.in

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe{sub 2}O{sub 3}-NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe{sub 2}O{sub 3}-NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe{sub 2}O{sub 3}-NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe{sub 2}O{sub 3}-NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe{sub 2}O{sub 3}-NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe{sub 2}O{sub 3}-NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe{sub 2}O{sub 3}-NPs could be an environmental risk factor for reproductive disease. - Highlights: • Fe{sub 2}O{sub 3}-NPs caused adverse effects on the seminal vesicle and prostate gland of mice • Heat shock proteins (Hsp60, 70 and 90) were

  3. Cardiomyocyte-Specific Ablation of Med1 Subunit of the Mediator Complex Causes Lethal Dilated Cardiomyopathy in Mice.

    Science.gov (United States)

    Jia, Yuzhi; Chang, Hsiang-Chun; Schipma, Matthew J; Liu, Jing; Shete, Varsha; Liu, Ning; Sato, Tatsuya; Thorp, Edward B; Barger, Philip M; Zhu, Yi-Jun; Viswakarma, Navin; Kanwar, Yashpal S; Ardehali, Hossein; Thimmapaya, Bayar; Reddy, Janardan K

    2016-01-01

    Mediator, an evolutionarily conserved multi-protein complex consisting of about 30 subunits, is a key component of the polymerase II mediated gene transcription. Germline deletion of the Mediator subunit 1 (Med1) of the Mediator in mice results in mid-gestational embryonic lethality with developmental impairment of multiple organs including heart. Here we show that cardiomyocyte-specific deletion of Med1 in mice (csMed1-/-) during late gestational and early postnatal development by intercrossing Med1fl/fl mice to α-MyHC-Cre transgenic mice results in lethality within 10 days after weaning due to dilated cardiomyopathy-related ventricular dilation and heart failure. The csMed1-/- mouse heart manifests mitochondrial damage, increased apoptosis and interstitial fibrosis. Global gene expression analysis revealed that loss of Med1 in heart down-regulates more than 200 genes including Acadm, Cacna1s, Atp2a2, Ryr2, Pde1c, Pln, PGC1α, and PGC1β that are critical for calcium signaling, cardiac muscle contraction, arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy and peroxisome proliferator-activated receptor regulated energy metabolism. Many genes essential for oxidative phosphorylation and proper mitochondrial function such as genes coding for the succinate dehydrogenase subunits of the mitochondrial complex II are also down-regulated in csMed1-/- heart contributing to myocardial injury. Data also showed up-regulation of about 180 genes including Tgfb2, Ace, Atf3, Ctgf, Angpt14, Col9a2, Wisp2, Nppa, Nppb, and Actn1 that are linked to cardiac muscle contraction, cardiac hypertrophy, cardiac fibrosis and myocardial injury. Furthermore, we demonstrate that cardiac specific deletion of Med1 in adult mice using tamoxifen-inducible Cre approach (TmcsMed1-/-), results in rapid development of cardiomyopathy and death within 4 weeks. We found that the key findings of the csMed1-/- studies described above are highly reproducible in TmcsMed1-/- mouse heart

  4. Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs.

    Science.gov (United States)

    Sundarraj, Kiruthika; Raghunath, Azhwar; Panneerselvam, Lakshmikanthan; Perumal, Ekambaram

    2017-02-15

    With increased industrial utilization of iron oxide nanoparticles (Fe 2 O 3 -NPs), concerns on adverse reproductive health effects following exposure have been immensely raised. In the present study, the effects of Fe 2 O 3 -NPs exposure in the seminal vesicle and prostate gland were studied in mice. Mice were exposed to two different doses (25 and 50 mg/kg) of Fe 2 O 3 -NPs along with the control and analyzed the expressions of heat shock proteins (HSP60, HSP70 and HSP90) and organ specific markers (Caltrin, PSP94, and SSLP1). Fe 2 O 3 -NPs decreased food consumption, water intake, and organo-somatic index in mice with elevated iron levels in serum, urine, fecal matter, seminal vesicle and prostate gland. FTIR spectra revealed alterations in the functional groups of biomolecules on Fe 2 O 3 -NPs treatment. These changes are accompanied by increased lactate dehydrogenase levels with decreased total protein and fructose levels. The investigation of oxidative stress biomarkers demonstrated a significant increase in reactive oxygen species, nitric oxide, lipid peroxidation, protein carbonyl content and glutathione peroxidase with a concomitant decrement in the glutathione and ascorbic acid in the male accessory organs which confirmed the induction of oxidative stress. An increase in NADPH-oxidase-4 with a decrease in glutathione-S-transferase was observed in the seminal vesicle and prostate gland of the treated groups. An alteration in HSP60, HSP70, HSP90, Caltrin, PSP94, and SSLP1 expression was also observed. Moreover, accumulation of Fe 2 O 3 -NPs brought pathological changes in the seminal vesicle and prostate gland of treated mice. These findings provide evidence that Fe 2 O 3 -NPs could be an environmental risk factor for reproductive disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  6. Datasets in Gene Expression Omnibus used in the study ORD-020969: Genomic effects of androstenedione and sex-specific liver cancer susceptibility in mice

    Data.gov (United States)

    U.S. Environmental Protection Agency — Datasets in Gene Expression Omnibus used in the study ORD-020969: Genomic effects of androstenedione and sex-specific liver cancer susceptibility in mice. This...

  7. The transcriptional repressor Zbtb20 is essential for specification of hippocampal projection neurons and territory in mice

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    for specification of both hippocampal pyramidal neurons and territory in a mouse knockout model. Homozygous Zbtb20-/- mice are viable at birth, but display dwarfism and die during the first month of postnatal life. Characterization of the Zbtb20-/- brain phenotype reveals a small vestigial hippocampus...... with a dramatic change in the molecular patterning of the subiculum and Ammon’s horn. In absence of Zbtb20, the pattern of expression of distinct molecular markers was altered at four borders: retrosplenial cortex/subiculum, subiculum/CA1, CA1/CA2, and CA2/CA3, leading to a replacement of Ammon’s horn...

  8. Biochemical behavior of Trypanosoma cruzi strains isolated from mice submitted to specific chemotherapy

    Directory of Open Access Journals (Sweden)

    Jesila Pinto M. Marretto

    1994-12-01

    Full Text Available To investigate the influence of chemotherapy on the biochemical beha vior of Trypanosoma cruzi strains, three groups of mice were infected with one of three strains of T. cruzi of different biological and isoenzymic patterns (Peruvian, 21 SF and Colombian strains. Each group was subdivided into subgroups: 1 - treated with nifurtimox; 2 - treated with benznidazole and 3 - untreated infected controls. At the end of treatment, that lasted for 90 days, xenodiagnosis, sub inoculation of blood into new born mice and haemoculture were performed as tests of cure. From the positive tests, 22 samples of T. cruzi were isolated from all subgroups. Electrophoretic analysis of the isoenzymes PGM, GP1, ALAT and AS AT failed to show any difference between parasite strains isolated from treated and untreated mice, which indicates that no detectable clonal selection or parasite genetic markers alterations concerning the isoenzymes analysed have been determined by treatment with drugs of recognized antiparasitic effect, suggesting stability of the phenotypic characteristics of the three biological types of T. cruzi strains.Com o objetivo de investigar a influência da quimioterapia no padrão bioquímico de diferentes cepas do Trypanosoma cruzi, três grupos de camundongos foram infectados respectivamente com as cepas Peruana, 21 SF e Colombiana, que correspondem a diferentes padrões biológicos e isoenzimáticos. Cada grupo foi subdividido em subgrupos: 1 - tratados com nifurtimox; 2 - tratados com benzonidazol; 3- controles infectados não tratados. Ao final do tratamento que durou 90 dias, os animais foram submetidos a testes parasitológicos de cura: xenodiagnóstico, subinoculação do sangue em camundongos recém-nascidos e hemocultura em meio Warren. A partir da positivação destes testes, foram isoladas 22 amostras do T. cruzi dos três subgrupos. A análise eletroforética dos extratos enzimáticos obtidos após cultura para as enzimas PGM, GPI, ALAT e

  9. Heterozygosity for a Bub1 mutation causes female-specific germ cell aneuploidy in mice

    Energy Technology Data Exchange (ETDEWEB)

    Leland, Shawn; Nagarajan, Prabakaran; Polyzos, Aris; Thomas, Sharon; Samaan, George; Donnell, Robert; Marchetti, Francesco; Venkatachalam, Sundaresan

    2009-06-24

    Aneuploidy, the most common chromosomal abnormality at birth and the main ascertained cause of pregnancy loss in humans, originates primarily from chromosome segregation errors during oogenesis. Here we report that heterozygosity for a mutation in the mitotic checkpoint kinase gene, Bub1, induces aneuploidy in female germ cells of mice, and that the effect increases with advancing maternal age. Analysis of Bub1 heterozygous oocytes showed that aneuploidy occurred primarily during the first meiotic division and involved premature sister chromatid separation. Furthermore, aneuploidy was inherited in zygotes and resulted in the loss of embryos after implantation. The incidence of aneuploidy in zygotes was sufficient to explain the reduced litter size in matings with Bub1 heterozygous females. No effects were seen in germ cells from heterozygous males. These findings show that Bub1 dysfunction is linked to inherited aneuploidy in female germ cells and may contribute to the maternal age-related increase in aneuploidy and pregnancy loss.

  10. Factors influencing the vaccinia-specific cytotoxic response of thymocytes from normal and chimeric mice

    International Nuclear Information System (INIS)

    Doherty, P.C.; Schwartz, D.H.; Bennink, J.R.; Korngold, R.

    1981-01-01

    Following adoptive transfer into irradiated recipients, thymocytes can be induced to respond strongly to vaccinia virus. High levels of cytotoxic T-lymphocyte (CTL) activity may be generated from thymus, but not from spleen, of 3-day-old mice. The capacity of thymocytes to differentiate into effector CTL tends to be lost with age. Some of this loss may reflect positive suppression: a single, low dose of cyclophosphamide allows the reemergence of responsiveness in at least one mouse strain. Thymocytes from [A leads to (A x B)F1] and [(A x B)F1 leads to A] chimeras show the response patterns that would by predicted from previous studies of lymph node and spleen cells. However, thymic function seems to be rapidly lost in the [A leads to (A x B)F1] Chimeras

  11. A developmental stage-specific switch from DAZL to BOLL occurs during fetal oogenesis in humans, but not mice.

    Directory of Open Access Journals (Sweden)

    Jing He

    Full Text Available The Deleted in Azoospermia gene family encodes three germ cell-specific RNA-binding proteins (DAZ, DAZL and BOLL that are essential for gametogenesis in diverse species. Targeted disruption of Boll in mice causes male-specific spermiogenic defects, but females are apparently fertile. Overexpression of human BOLL promotes the derivation of germ cell-like cells from genetically female (XX, but not male (XY human ES cells however, suggesting a functional role for BOLL in regulating female gametogenesis in humans. Whether BOLL is expressed during oogenesis in mammals also remains unclear. We have therefore investigated the expression of BOLL during fetal oogenesis in humans and mice. We demonstrate that BOLL protein is expressed in the germ cells of the human fetal ovary, at a later developmental stage than, and almost mutually-exclusive to, the expression of DAZL. Strikingly, BOLL is downregulated, and DAZL re-expressed, as primordial follicles form, revealing BOLL expression to be restricted to a narrow window during fetal oogenesis. By quantifying the extent of co-expression of DAZL and BOLL with markers of meiosis, we show that this window likely corresponds to the later stages of meiotic prophase I. Finally, we demonstrate that Boll is also transiently expressed during oogenesis in the fetal mouse ovary, but is simultaneously co-expressed within the same germ cells as Dazl. These data reveal significant similarities and differences between the expression of BOLL homologues during oogenesis in humans and mice, and raise questions as to the validity of the Boll(-/- mouse as a model for understanding BOLL function during human oogenesis.

  12. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  13. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  14. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    Science.gov (United States)

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  15. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  16. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase

    Directory of Open Access Journals (Sweden)

    Hogan Shelly

    2010-08-01

    Full Text Available Abstract Background Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. Methods The extracts of red wine grape pomace (Cabernet Franc and white wine grape pomace (Chardonnay were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. Results The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight significantly suppressed the postprandial hyperglycemia by 35% in streptozocin

  17. Antioxidant rich grape pomace extract suppresses postprandial hyperglycemia in diabetic mice by specifically inhibiting alpha-glucosidase.

    Science.gov (United States)

    Hogan, Shelly; Zhang, Lei; Li, Jianrong; Sun, Shi; Canning, Corene; Zhou, Kequan

    2010-08-27

    Postprandial hyperglycemia is an early defect of type 2 diabetes and one of primary anti-diabetic targets. Treatment of postprandial hyperglycemia can be achieved by inhibiting intestinal α-glucosidase, the key enzyme for oligosaccharide digestion and further glucose absorption. Grape pomace is winemaking byproduct rich in bioactive food compounds such as phenolic antioxidants. This study evaluated the anti-diabetic potential of two specific grape pomace extracts by determining their antioxidant and anti-postprandial hyperglycemic activities in vitro and in vivo. The extracts of red wine grape pomace (Cabernet Franc) and white wine grape pomace (Chardonnay) were prepared in 80% ethanol. An extract of red apple pomace was included as a comparison. The radical scavenging activities and phenolic profiles of the pomace extracts were determined through the measurement of oxygen radical absorbance capacity, DPPH radical scavenging activity, total phenolic content and flavonoids. The inhibitory effects of the pomace extracts on yeast and rat intestinal α-glucosidases were determined. Male 6-week old C57BLKS/6NCr mice were treated with streptozocin to induce diabetes. The diabetic mice were then treated with vehicle or the grape pomace extract to determine whether the oral intake of the extract can suppress postprandial hyperglycemia through the inhibition of intestinal α-glucosidases. The red grape pomace extract contained significantly higher amounts of flavonoids and phenolic compounds and exerted stronger oxygen radical absorbance capacity than the red apple pomace extract. Both the grape pomace extracts but not the apple pomace extract exerted significant inhibition on intestinal α-glucosidases and the inhibition appears to be specific. In the animal study, the oral intake of the grape pomace extract (400 mg/kg body weight) significantly suppressed the postprandial hyperglycemia by 35% in streptozocin-induced diabetic mice following starch challenge. This is the

  18. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    International Nuclear Information System (INIS)

    Ishizaka, Masanori; Gohda, Tomohito; Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji; Oliva Trejo, Juan Alejandro; Asao, Rin; Hidaka, Teruo; Asanuma, Katsuhiko; Horikoshi, Satoshi; Tomino, Yasuhiko

    2015-01-01

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  19. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Masanori [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Gohda, Tomohito, E-mail: goda@juntendo.ac.jp [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Oliva Trejo, Juan Alejandro [Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Asao, Rin; Hidaka, Teruo [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Asanuma, Katsuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Horikoshi, Satoshi [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Tomino, Yasuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023 (Japan)

    2015-11-20

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  20. Acute and long-term administration of palmitoylcarnitine induces muscle-specific insulin resistance in mice.

    Science.gov (United States)

    Liepinsh, Edgars; Makrecka-Kuka, Marina; Makarova, Elina; Volska, Kristine; Vilks, Karlis; Sevostjanovs, Eduards; Antone, Unigunde; Kuka, Janis; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Grinberga, Solveiga; Dambrova, Maija

    2017-09-10

    Acylcarnitine accumulation has been linked to perturbations in energy metabolism pathways. In this study, we demonstrate that long-chain (LC) acylcarnitines are active metabolites involved in the regulation of glucose metabolism in vivo. Single-dose administration of palmitoylcarnitine (PC) in fed mice induced marked insulin insensitivity, decreased glucose uptake in muscles, and elevated blood glucose levels. Increase in the content of LC acylcarnitine induced insulin resistance by impairing Akt phosphorylation at Ser473. The long-term administration of PC using slow-release osmotic minipumps induced marked hyperinsulinemia, insulin resistance, and glucose intolerance, suggesting that the permanent accumulation of LC acylcarnitines can accelerate the progression of insulin resistance. The decrease of acylcarnitine content significantly improved glucose tolerance in a mouse model of diet-induced glucose intolerance. In conclusion, we show that the physiological increase in content of acylcarnitines ensures the transition from a fed to fasted state in order to limit glucose metabolism in the fasted state. In the fed state, the inability of insulin to inhibit LC acylcarnitine production induces disturbances in glucose uptake and metabolism. The reduction of acylcarnitine content could be an effective strategy to improve insulin sensitivity. © 2017 BioFactors, 43(5):718-730, 2017. © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  1. Gender-Specific Neuroimmunoendocrine Response to Treadmill Exercise in 3xTg-AD Mice

    Directory of Open Access Journals (Sweden)

    Lydia Giménez-Llort

    2010-01-01

    Full Text Available The 3xTg-AD mouse develops a progressive Alzheimer's disease- (AD- like brain pathology that causes cognitive- and neuropsychiatric-like symptoms of dementia. Since its neuroimmunoendocrine axis is likewise impaired, this mouse is also useful for modelling complex age-related neurodegeneration. This study analyzed behavioral, physiological, neurochemical, pathological and immunoendocrine alterations in male and female 3xTg-AD mice and assayed the effects of a short therapy of forced physical exercise at the moderate pathology stage of 6 months of age. Gender effects were observed in most AD-related pathology and dysfunctions. Five weeks of treadmill training produced beneficial effects, such as the reduction of brain oxidative stress and GABA-A receptor dysfunction in males and improvement of sensorimotor function in females. In both sexes, exercise decreased the brain amyloid 42/40 ratio levels. The results highlight the importance of analyzing experimental therapies in both mouse model genders in order to improve our understanding of the disease and develop more appropriate therapies.

  2. Gender-specific induction of cytochrome P450s in nonylphenol-treated FVB/NJ mice

    International Nuclear Information System (INIS)

    Hernandez, Juan P.; Chapman, Laura M.; Kretschmer, Xiomara C.; Baldwin, William S.

    2006-01-01

    Nonylphenol (NP) is a breakdown product of nonylphenol ethoxylates, which are used in a variety of industrial, agricultural, household cleaning, and beauty products. NP is one of the most commonly found toxicants in the United States and Europe and is considered a toxicant of concern because of its long half-life. NP is an environmental estrogen that also activates the pregnane X-receptor (PXR) and in turn induces P450s. No study to date has examined the gender-specific effects of NP on hepatic P450 expression. We provided NP at 0, 50 or 75 mg/kg/day for 7 days to male and female FVB/NJ mice and compared their P450 expression profiles. Q-PCR was performed on hepatic cDNA using primers to several CYP isoforms regulated by PXR or its relative, the constitutive androstane receptor (CAR). In female mice, NP induced Cyp2b10 and Cyp2b13, and downregulated the female-specific P450s, Cyp3a41 and Cyp3a44. In contrast, male mice treated with NP showed increased expression of Cyp2a4, Cyp2b9, and Cyp2b10. Western blots confirmed induction of Cyp2b subfamily members in both males and females. Consistent with the Q-PCR data, Western blots showed dose-dependent downregulation of Cyp3a only in females and induction of Cyp2a only in males. The overall increase in female-predominant P450s in males (Cyp2a4, 2b9) and the decrease in female-predominant P450s in females (Cyp3a41, 3a44) suggest that NP is in part feminizing the P450 profile in males and masculinizing the P450 profile in females. Testosterone hydroxylation was also altered in a gender-specific manner, as testosterone 16α-hydroxylase activity was only induced in NP-treated males. In contrast, NP-treated females demonstrated a greater propensity for metabolizing zoxazolamine probably due to greater Cyp2b induction in females. In conclusion, NP causes gender-specific P450 induction and therefore exposure to NP may cause distinct pharmacological and toxicological effects in males compared to females

  3. Decreased spontaneous activity in AMPK alpha 2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism

    DEFF Research Database (Denmark)

    Møller, Lisbeth Liliendal Valbjørn; Sylow, Lykke; Gøtzsche, Casper René

    2016-01-01

    was tested in an open field test. Furthermore, we investigated maximal running capacity and voluntary running over a period of 19 days. AMPK α2 KD mice ran 30% less in daily distance compared to WT. Furthermore, AMPK α2 KD mice showed significantly decreased locomotor activity in the open field test compared...... through alterations of the brain dopamine levels specifically in the striatal region. To test this hypothesis, transgenic mice overexpressing an inactivatable dominant negative α2 AMPK construct (AMPK α2 KD) in muscles and littermate wildtype (WT) mice were tested. AMPK α2 KD mice have impaired running...... capacity and display reduced voluntary wheel running activity. Striatal content of dopamine and its metabolites were measured under basal physiological conditions and after cocaine-induced dopamine efflux from the ventral striatum by in vivo microdialysis. Moreover, cocaine-induced locomotor activity...

  4. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  5. Intermediate rough Brucella abortus S19Δper mutant is DIVA enable, safe to pregnant guinea pigs and confers protection to mice.

    Science.gov (United States)

    Lalsiamthara, Jonathan; Gogia, Neha; Goswami, Tapas K; Singh, R K; Chaudhuri, Pallab

    2015-05-21

    Brucella abortus S19 is a smooth strain used as live vaccine against bovine brucellosis. Smooth lipopolysaccharide (LPS) is responsible for its residual virulence and serological interference. Rough mutants defective of LPS are more attenuated but confers lower level of protection. We describe a modified B. abortus S19 strain, named as S19Δper, which exhibits intermediate rough phenotype with residual O-polysaccharide (OPS). Deletion of perosamine synthetase gene resulted in substantial attenuation of S19Δper mutant without affecting immunogenic properties. It mounted strong immune response in Swiss albino mice and conferred protection similar to S19 vaccine. Immunized mice produced higher levels of IFN-γ, IgG2a and thus has immune response inclined towards Th1 cell mediated immunity. Sera from immunized animals did not show agglutination reaction with RBPT antigen and thus could serve as DIVA (Differentiating Infected from Vaccinated Animals) vaccine. S19Δper mutant displayed more susceptibility to serum complement mediated killing and sensitivity to polymyxin B. Pregnant guinea pigs injected with S19Δper mutant completed full term of pregnancy and did not cause abortion, still birth or birth of weak offspring. S19Δper mutant with intermediate rough phenotype displayed remarkable resemblance to S19 vaccine strain with improved properties of safety, immunogenicity and DIVA capability for control of bovine brucellosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evolution of hepatic steatosis to fibrosis and adenoma formation in liver specific growth hormone receptor knockout (GHRLD mice

    Directory of Open Access Journals (Sweden)

    Yong eFan

    2014-12-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common forms of chronic liver diseases closely associated with obesity and insulin resistance; deficient growth hormone (GH action in liver has been implicated as a mechanism. Here, we investigated the evolution of NAFLD in aged mice with liver-specific GHR deletion. Methods: We examined glucose tolerance, insulin responsiveness and lipid profiles in aged male mice (44-50 weeks with GHRLD. We performed proteomics analysis, pathway-based Superarray assay, as well as quantitative RT-PCR to gain molecular insight into the mechanism(s of GHR-deficiency mediated NAFLD. In addition, we examined the pathological changes of livers of aged GHRLD male mice. Results: The biochemical profile was consistent with that of the metabolic syndrome: abnormal glucose tolerance, impaired insulin secretion, and hyperlipidemia. RT-qPCR analysis of key markers of inflammation revealed a 3-5 fold increase in TNFα and CCL3, confirming the presence of inflammation. Expression of fibrotic markers (e.g., Col1A2 and Col3A1 was significantly increased, together with a 2-3 fold increase in TGFβ transcripts. Proteomics analyses showed a marked decrease of Mup1 and Selenbp2. In addition, pathway-analysis showed that the expression of cell cycle and growth relevant genes (i.e., Ccnd1, Socs2, Socs3 and Egfr were markedly affected in GHRLD liver. Microscopic analyses (H&E of GHRLD livers revealed the presence of hepatic adenomas of different stages of malignancy. Conclusion: Abrogation of GH-signaling in male liver leads to metabolic syndrome, hepatic steatosis, increased inflammation and fibrosis, and development of hepatic tumor. Since obesity, a common precursor of NAFLD, is a state of deficient GH secretion and action, the GHRLD model could be used to unravel the contribution of compromised hepatic GH-signaling in these pathological processes, and help to identify potential targets for intervention.

  7. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  8. JTC801 Induces pH-dependent Death Specifically in Cancer Cells and Slows Growth of Tumors in Mice.

    Science.gov (United States)

    Song, Xinxin; Zhu, Shan; Xie, Yangchun; Liu, Jiao; Sun, Lingyi; Zeng, Dexing; Wang, Pengcheng; Ma, Xiaochao; Kroemer, Guido; Bartlett, David L; Billiar, Timothy R; Lotze, Michael T; Zeh, Herbert J; Kang, Rui; Tang, Daolin

    2018-04-01

    lineage kinase domain like pseudokinase [MLKL]), or ferroptosis (degradation of glutathione peroxidase 4 [GPX4]). Inhibitors of apoptosis (Z-VAD-FMK), necroptosis (necrosulfonamide), ferroptosis (ferrostatin-1), or autophagy (hydroxychloroquine) did not prevent JTC801-induced death of PANC1 or MiaPaCa2 cells. The cytotoxic effects of JTC801 in immortalized fibroblast cell lines was not affected by disruption of genes that promote apoptosis (Bax -/- /Bak -/- cells), necroptosis (Ripk1 -/- , Ripk3 -/- , or Mlkl -/- cells), ferroptosis (Gpx4 -/- cells), or autophagy (Atg3 -/- , Atg5 -/- , Atg7 -/- , or Sqstm1 -/- cells). We found JTC801 to induce a pH-dependent form cell death (alkaliptosis) in cancer cells but not normal cells (hepatocytes, bone marrow CD34 + progenitor cells, peripheral blood mononuclear cells, or dermal fibroblasts) or healthy tissues of C57BL/6 mice. JTC801 induced alkaliptosis in cancer cells by activating NF-κB, which repressed expression of the carbonic anhydrase 9 gene (CA9), whose product regulates pH balance in cells. In analyses of Cancer Genome Atlas data and tissue microarrays, we associated increased tumor level of CA9 mRNA or protein with shorter survival times of patients with pancreatic, kidney, or lung cancers. Knockdown of CA9 reduced the protective effects of NF-κB inhibition on JTC801-induced cell death and intracellular alkalinization in PANC1 and MiaPaCa2 cell lines. Oral administration of JTC801 inhibited growth of xenograft tumors (from PANC1, MiaPaCa2, SK-MEL-28, PC-3, 786-0, SF-295, HCT116, OV-CAR3, and HuH7 cells), orthotropic tumors (from KPC cells), lung metastases (from KPC cells) of mice, and slowed growth of tumors in KCH mice. In a screen of agents that interact with GPCR pathways, we found JTC801 to induce pH-dependent cell death (alkaliptosis) specifically in cancer cells such as PDAC cells, by reducing expression of CA9. Levels of CA9 are increased in human cancer tissues. JTC801 might be developed for treatment of

  9. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations.

    Science.gov (United States)

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E

    2015-05-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.

  10. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  11. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice.

    Directory of Open Access Journals (Sweden)

    Linghua Qiu

    Full Text Available Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination.

  13. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  14. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  15. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  16. Coadministration of Hedera helix L. Extract Enabled Mice to Overcome Insufficient Protection against Influenza A/PR/8 Virus Infection under Suboptimal Treatment with Oseltamivir.

    Science.gov (United States)

    Hong, Eun-Hye; Song, Jae-Hyoung; Shim, Aeri; Lee, Bo-Ra; Kwon, Bo-Eun; Song, Hyuk-Hwan; Kim, Yeon-Jeong; Chang, Sun-Young; Jeong, Hyeon Gun; Kim, Jong Geal; Seo, Sang-Uk; Kim, HyunPyo; Kwon, YongSoo; Ko, Hyun-Jeong

    2015-01-01

    Several anti-influenza drugs that reduce disease manifestation exist, and although these drugs provide clinical benefits in infected patients, their efficacy is limited by the emergence of drug-resistant influenza viruses. In the current study, we assessed the therapeutic strategy of enhancing the antiviral efficacy of an existing neuraminidase inhibitor, oseltamivir, by coadministering with the leaf extract from Hedera helix L, commonly known as ivy. Ivy extract has anti-inflammatory, antibacterial, antifungal, and antihelminthic properties. In the present study, we investigated its potential antiviral properties against influenza A/PR/8 (PR8) virus in a mouse model with suboptimal oseltamivir that mimics a poor clinical response to antiviral drug treatment. Suboptimal oseltamivir resulted in insufficient protection against PR8 infection. Oral administration of ivy extract with suboptimal oseltamivir increased the antiviral activity of oseltamivir. Ivy extract and its compounds, particularly hedrasaponin F, significantly reduced the cytopathic effect in PR8-infected A549 cells in the presence of oseltamivir. Compared with oseltamivir treatment alone, coadministration of the fraction of ivy extract that contained the highest proportion of hedrasaponin F with oseltamivir decreased pulmonary inflammation in PR8-infected mice. Inflammatory cytokines and chemokines, including tumor necrosis factor-alpha and chemokine (C-C motif) ligand 2, were reduced by treatment with oseltamivir and the fraction of ivy extract. Analysis of inflammatory cell infiltration in the bronchial alveolar of PR8-infected mice revealed that CD11b+Ly6G+ and CD11b+Ly6Cint cells were recruited after virus infection; coadministration of the ivy extract fraction with oseltamivir reduced infiltration of these inflammatory cells. In a model of suboptimal oseltamivir treatment, coadministration of ivy extract fraction that includes hedrasaponin F increased protection against PR8 infection that could be

  17. Coadministration of Hedera helix L. Extract Enabled Mice to Overcome Insufficient Protection against Influenza A/PR/8 Virus Infection under Suboptimal Treatment with Oseltamivir.

    Directory of Open Access Journals (Sweden)

    Eun-Hye Hong

    Full Text Available Several anti-influenza drugs that reduce disease manifestation exist, and although these drugs provide clinical benefits in infected patients, their efficacy is limited by the emergence of drug-resistant influenza viruses. In the current study, we assessed the therapeutic strategy of enhancing the antiviral efficacy of an existing neuraminidase inhibitor, oseltamivir, by coadministering with the leaf extract from Hedera helix L, commonly known as ivy. Ivy extract has anti-inflammatory, antibacterial, antifungal, and antihelminthic properties. In the present study, we investigated its potential antiviral properties against influenza A/PR/8 (PR8 virus in a mouse model with suboptimal oseltamivir that mimics a poor clinical response to antiviral drug treatment. Suboptimal oseltamivir resulted in insufficient protection against PR8 infection. Oral administration of ivy extract with suboptimal oseltamivir increased the antiviral activity of oseltamivir. Ivy extract and its compounds, particularly hedrasaponin F, significantly reduced the cytopathic effect in PR8-infected A549 cells in the presence of oseltamivir. Compared with oseltamivir treatment alone, coadministration of the fraction of ivy extract that contained the highest proportion of hedrasaponin F with oseltamivir decreased pulmonary inflammation in PR8-infected mice. Inflammatory cytokines and chemokines, including tumor necrosis factor-alpha and chemokine (C-C motif ligand 2, were reduced by treatment with oseltamivir and the fraction of ivy extract. Analysis of inflammatory cell infiltration in the bronchial alveolar of PR8-infected mice revealed that CD11b+Ly6G+ and CD11b+Ly6Cint cells were recruited after virus infection; coadministration of the ivy extract fraction with oseltamivir reduced infiltration of these inflammatory cells. In a model of suboptimal oseltamivir treatment, coadministration of ivy extract fraction that includes hedrasaponin F increased protection against PR8

  18. Branched-chain amino acid (BCAA) supplementation enhances adaptability to exercise training of mice with a muscle-specific defect in the control of BCAA catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Shindo, Daichi; Shimomura, Yoshiharu

    2018-03-01

    Branched-chain α-keto acid dehydrogenase (BCKDH) kinase (BDK) suppresses the branched-chain amino acid (BCAA) catabolism by inactivation of the BCKDH complex. The muscle-specific BDK-deficient (BDK-mKO) mice showed accelerated BCAA oxidation in muscle and decreased endurance capacity after training (Xu et al. PLoS One. 12 (2017) e0180989). We here report that BCAA supplementation overcompensated endurance capacity in BDK-mKO mice after training.

  19. Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice.

    Science.gov (United States)

    Holland, Michelle L; Lowe, Robert; Caton, Paul W; Gemma, Carolina; Carbajosa, Guillermo; Danson, Amy F; Carpenter, Asha A M; Loche, Elena; Ozanne, Susan E; Rakyan, Vardhman K

    2016-07-29

    A suboptimal early-life environment, due to poor nutrition or stress during pregnancy, can influence lifelong phenotypes in the progeny. Epigenetic factors are thought to be key mediators of these effects. We show that protein restriction in mice from conception until weaning induces a linear correlation between growth restriction and DNA methylation at ribosomal DNA (rDNA). This epigenetic response remains into adulthood and is restricted to rDNA copies associated with a specific genetic variant within the promoter. Related effects are also found in models of maternal high-fat or obesogenic diets. Our work identifies environmentally induced epigenetic dynamics that are dependent on underlying genetic variation and establishes rDNA as a genomic target of nutritional insults. Copyright © 2016, American Association for the Advancement of Science.

  20. Evaluation of sex specificity on oxidative stress induced in lungs of mice irradiated by 12C6+ ions

    International Nuclear Information System (INIS)

    Liu Yang; Zhang Hong; Zhang Luwei

    2008-01-01

    The aim of this work is to identify if there is sex specificity on 12 C 6+ ion-induced oxidative damage in mouse lung at different time points. Kun-Ming mice were divided into two groups, each composed of six males and six females: control group and irradiation group with a single acute dose of 4 Gy. Animals were sacrificed at 2, 4 and 12 h respectively, there lungs were removed immediately, and the oxidative stress-related biomarkers were measured by Diagnostic Reagent Kits. The results showed that the relative activities of superoxide dismutase (4 h), catalase (2 h) and Se-dependent glutathione peroxidase (12 h) have significant changes (P 12 C 6+ ion is pronounced in the lungs of males. We thought that these sex-responded differences may be attributed to the influence of sex hormones. (authors)

  1. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice.

    Science.gov (United States)

    Lippert, Rachel N; Ellacott, Kate L J; Cone, Roger D

    2014-05-01

    The melanocortin-3 receptor (MC3R) and MC4R are known to play critical roles in energy homeostasis. However, the physiological functions of the MC3R remain poorly understood. Earlier reports indicated that the ventral tegmental area (VTA) is one of the highest sites of MC3R expression, and we sought to determine the function of the receptor in this brain region. A MC3R-green-fluorescent protein transgenic mouse and a MC3R knockout mouse strain were used to characterize the neurochemical identity of the MC3R neurons in the VTA and to determine the effects of global MC3R deletion on VTA dopamine (DA) homeostasis. We demonstrate that the MC3R, but not MC4R, is expressed in up to a third of dopaminergic neurons of the VTA. Global deletion of the MC3R increases total dopamine by 42% in the VTA and decreases sucrose intake and preference in female but not male mice. Ovariectomy restores dopamine levels to normal, but aberrant decreased VTA dopamine levels are also observed in prepubertal female mice. Because arcuate Agouti-related peptide/neuropeptide Y neurons are known to innervate and regulate VTA signaling, the MC3R in dopaminergic neurons provides a specific input for communication of nutritional state within the mesolimbic dopamine system. Data provided here suggest that this input may be highly sexually dimorphic, functioning as a specific circuit regulating effects of estrogen on VTA dopamine levels and on sucrose preference. Overall, this data support a sexually dimorphic function of MC3R in regulation of the mesolimbic dopaminergic system and reward.

  2. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  3. MRP-1 expression levels determine strain-specific susceptibility to sodium arsenic-induced renal injury between C57BL/6 and BALB/c mice

    International Nuclear Information System (INIS)

    Kimura, Akihiko; Ishida, Yuko; Wada, Takashi; Yokoyama, Hitoshi; Mukaida, Naofumi; Kondo, Toshikazu

    2005-01-01

    To clarify the pathophysiological mechanism underlying acute renal injury caused by acute exposure to arsenic, we subcutaneously injected both BALB/c and C57BL/6 mice with sodium arsenite (NaAs; 13.5 mg/kg). BALB/c mice exhibited exaggerated elevation of serum blood urea nitrogen (BUN) and creatinine (CRE) levels, compared with C57BL/6 mice. Moreover, half of BALB/c mice died by 24 h, whereas all C57BL/6 mice survived. Histopathological examination on kidney revealed severe hemorrhages, acute tubular necrosis, neutrophil infiltration, cast formation, and disappearance of PAS-positive brush borders in BALB/c mice, later than 10 h. These pathological changes were remarkably attenuated in C57BL/6 mice, accompanied with lower intrarenal arsenic concentrations, compared with BALB/c mice. Among heavy metal inducible proteins including multidrug resistance-associated protein (MRP)-1, multidrug resistance gene (MDR)-1, metallothionein (MT)-1, and arsenite inducible, cysteine- and histidine-rich RNA-associated protein (AIRAP), intrarenal MDR-1, MT-1, and AIRAP gene expression was enhanced to a similar extent in both strains, whereas NaAs challenge augmented intrarenal MRP-1 mRNA and protein expression levels in C57BL/6 but not BALB/c mice. Moreover, the administration of a specific inhibitor of MRP-1, MK-571, significantly exaggerated acute renal injury in C57BL/6 mice. Thus, MRP-1 is crucially involved in arsenic efflux and eventually prevention of acute renal injury upon acute exposure to NaAs

  4. Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6

    Directory of Open Access Journals (Sweden)

    Isaac Mohar

    2014-01-01

    Full Text Available The mechanism by which acetaminophen (APAP causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD compared to male C57BL/6 mice in order to identify the cause(s of sensitivity. Furthermore, we use mice that are either heterozygous (HZ or null (KO for glutamate cysteine ligase modifier subunit (Gclm, in order to titrate the toxicity relative to wild-type (WT mice. Gclm is important for efficient de novo synthesis of glutathione (GSH. APAP (300 mg/kg, ip or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP–protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.

  5. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  6. Specific cytoarchitectureal changes in hippocampal subareas in daDREAM mice.

    Science.gov (United States)

    Mellström, Britt; Kastanauskaite, Asta; Knafo, Shira; Gonzalez, Paz; Dopazo, Xose M; Ruiz-Nuño, Ana; Jefferys, John G R; Zhuo, Min; Bliss, Tim V P; Naranjo, Jose R; DeFelipe, Javier

    2016-02-29

    Transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a Ca(2+)-binding protein that regulates Ca(2+) homeostasis through gene regulation and protein-protein interactions. It has been shown that a dominant active form (daDREAM) is implicated in learning-related synaptic plasticity such as LTP and LTD in the hippocampus. Neuronal spines are reported to play important roles in plasticity and memory. However, the possible role of DREAM in spine plasticity has not been reported. Here we show that potentiating DREAM activity, by overexpressing daDREAM, reduced dendritic basal arborization and spine density in CA1 pyramidal neurons and increased spine density in dendrites in dentate gyrus granule cells. These microanatomical changes are accompanied by significant modifications in the expression of specific genes encoding the cytoskeletal proteins Arc, Formin 1 and Gelsolin in daDREAM hippocampus. Our results strongly suggest that DREAM plays an important role in structural plasticity in the hippocampus.

  7. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Science.gov (United States)

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  8. A Postnatal Diet Containing Phospholipids, Processed to Yield Large, Phospholipid-Coated Lipid Droplets, Affects Specific Cognitive Behaviors in Healthy Male Mice.

    Science.gov (United States)

    Schipper, Lidewij; van Dijk, Gertjan; Broersen, Laus M; Loos, Maarten; Bartke, Nana; Scheurink, Anton Jw; van der Beek, Eline M

    2016-06-01

    Infant cognitive development can be positively influenced by breastfeeding rather than formula feeding. The composition of breast milk, especially lipid quality, and the duration of breastfeeding have been linked to this effect. We investigated whether the physical properties and composition of lipid droplets in milk may contribute to cognitive development. From postnatal day (P) 16 to P44, healthy male C57BL/6JOlaHsd mice were fed either a control or a concept rodent diet, in which the dietary lipid droplets were large and coated with milk phospholipids, resembling more closely the physical properties and composition of breast milk lipids. Thereafter, all mice were fed an AIN-93M semisynthetic rodent diet. The mice were subjected to various cognitive tests during adolescence (P35-P44) and adulthood (P70-P101). On P102, mice were killed and brain phospholipids were analyzed. The concept diet improved performance in short-term memory tasks that rely on novelty exploration during adolescence (T-maze; spontaneous alternation 87% in concept-fed mice compared with 74% in mice fed control diet; P diet. Brain phospholipid composition at P102 was not different between diet groups. Exposure to a diet with lipids mimicking more closely the structure and composition of lipids in breast milk improved specific cognitive behaviors in mice. These data suggest that lipid structure should be considered as a relevant target to improve dietary lipid quality in infant milk formulas. © 2016 American Society for Nutrition.

  9. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    Directory of Open Access Journals (Sweden)

    Minjun Xu

    Full Text Available It is known that the catabolism of branched-chain amino acids (BCAAs in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK. In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  10. The role of CD80/CD86 in generation and maintenance of functional virus-specific CD8+ T cells in mice infected with lymphocytic choriomeningitis virus

    DEFF Research Database (Denmark)

    Grujic, Mirjana; Bartholdy, Christina; Remy, Melissa

    2010-01-01

    Lymphocytic choriomeningitis virus (LCMV)-specific CD8(+) T cell responses are considered to be independent of CD28-B7 costimulation. However, the LCMV-specific response has never been evaluated in B7.1/B7.2(-/-) mice. For this reason, we decided to study the T cell response in B7.1/B7.2(-/-) mice......, but no chronic infection. Taken together, these results indicate that B7 costimulation is required for induction and maintenance of LCMV-specific CD8(+) T cell memory, irrespective of the LCMV strain used for priming. However, the erosion of CD8(+) T cell memory in B7.1/B7.2(-/-) mice was more pronounced...

  11. Evaluation of organ-specific glucose metabolism by 18F-FDG in insulin receptor substrate-1 (IRS-1) knockout mice as a model of insulin resistance

    International Nuclear Information System (INIS)

    Cheng, Chao; Nakamura, Akinobu; Minamimoto, Ryogo; Shinoda, Kazuaki; Tateishi, Ukihide; Terauchi, Yasuo; Inoue, Tomio; Goto, Atsuhi; Kadowaki, Takashi

    2011-01-01

    Insulin resistance (IR) is a physiological condition in which the body produces insulin but does not result in a sufficient biological effect. Insulin resistance is usually asymptomatic but is associated with health problems and is a factor in the metabolic syndrome. The aim of the present study is to clarify organ-specific insulin resistance in normal daily conditions using [ 18 F]-2-fluoro-2-deoxy-D-glucose ([ 18 F]-FDG). The biodistribution of [ 18 F]-FDG was examined in insulin receptor substrate-1 (IRS-1) knockout mice, an animal model of skeletal muscle insulin resistance, and C57BL/6J (wild-type) mice with and without insulin loading. Mice received 0.5 MBq of [ 18 F]-FDG injected into the tail vein, immediately followed by nothing (control cohorts) or an intraperitoneal injection of 1.5 mU/g body weight of human insulin as an insulin loading test. Blood glucose concentrations for all of the experimental animals were assessed at 0, 20, 40, and 60 min post-injection. The mice were subsequently killed, and tissue was collected for evaluation of [ 18 F]-FDG biodistribution. The radioactivity of each organ was measured using a gamma counter. In the absence of insulin, the blood glucose concentrations of wild-type mice (132±26 mg/dl) and IRS-1 knockout mice (134±18 mg/dl) were not significantly different. Blood glucose concentrations decreased following insulin administration, with lower concentrations in wild-type mice than in knockout mice at 20, 40, and 60 min. A statistically significant difference in [ 18 F]-FDG uptake between wild-type mice and IRS-1 knockout mice was confirmed in the heart, abdominal muscle, and femoral muscle. With insulin loading, [ 18 F]-FDG uptake in the heart, back muscle, and abdominal muscle was significantly increased compared to without insulin loading in both wild-type mice and knockout mice. Our results showed that IR significantly affected [ 18 F]-FDG uptake in the heart in normal daily conditions. IR was associated with

  12. The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.

    Science.gov (United States)

    Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian

    2017-06-19

    This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young's modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm², 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells ( n cell = 202); 1.88 ± 0.31 μF/cm², 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells ( n cell = 257); 2.11 ± 0.38 μF/cm², 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells ( n cell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties.

  13. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes

    Directory of Open Access Journals (Sweden)

    Telonis-Scott Marina

    2010-09-01

    Full Text Available Abstract Background Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2 and biotypes (1 and 2 was used for comparative genomic analysis. Results Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. Conclusions We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.

  14. L1 Cell Adhesion Molecule-Specific Chimeric Antigen Receptor-Redirected Human T Cells Exhibit Specific and Efficient Antitumor Activity against Human Ovarian Cancer in Mice.

    Directory of Open Access Journals (Sweden)

    Hao Hong

    Full Text Available New therapeutic modalities are needed for ovarian cancer, the most lethal gynecologic malignancy. Recent clinical trials have demonstrated the impressive therapeutic potential of adoptive therapy using chimeric antigen receptor (CAR-redirected T cells to target hematological cancers, and emerging studies suggest a similar impact may be achieved for solid cancers. We sought determine whether genetically-modified T cells targeting the CE7-epitope of L1-CAM, a cell adhesion molecule aberrantly expressed in several cancers, have promise as an immunotherapy for ovarian cancer, first demonstrating that L1-CAM was highly over-expressed on a panel of ovarian cancer cell lines, primary ovarian tumor tissue specimens, and ascites-derived primary cancer cells. Human central memory derived T cells (TCM were then genetically modified to express an anti-L1-CAM CAR (CE7R, which directed effector function upon tumor antigen stimulation as assessed by in vitro cytokine secretion and cytotoxicity assays. We also found that CE7R+ T cells were able to target primary ovarian cancer cells. Intraperitoneal (i.p. administration of CE7R+ TCM induced a significant regression of i.p. established SK-OV-3 xenograft tumors in mice, inhibited ascites formation, and conferred a significant survival advantage compared with control-treated animals. Taken together, these studies indicate that adoptive transfer of L1-CAM-specific CE7R+ T cells may offer a novel and effective immunotherapy strategy for advanced ovarian cancer.

  15. Lol p I-specific IgE and IgG synthesis by peripheral blood mononuclear cells from atopic subjects in SCID mice.

    Science.gov (United States)

    Gagnon, R; Boutin, Y; Hébert, J

    1995-06-01

    The development of an animal model representative of the in vivo situation of human atopic diseases is always of interest for a better understanding of IgE production and regulation. Along these lines, mice with severe combined immunodeficiency (SCID mice) engrafted with lymphocytes from atopic subjects might be a suitable model for such studies. This study aims to analyze the production of Lol p I-specific IgE and IgG antibodies in SCID mice after transplantation of human peripheral blood mononuclear cells from atopic patients sensitive to grass pollens and from nonatopic donors. Peripheral blood mononuclear cells were transplanted into SCID mice, which were then challenged with Lol p I, and antibody responses (IgG and IgE) were analyzed over a 6-week period. Total IgG antibody was measured in each mouse serum after transplantation. Also, most mice (regardless of whether donors were atopic) that were challenged with Lol p I produced specific IgG antibody. Total IgE antibody production was observed only in mice grafted with cells from atopic patients. Lol p I-specific IgE antibodies were also produced after immunization with Lol p I. Although IgG antibody/response tended to plateau, the IgE antibody response increased until it peaked and declined thereafter. Interferon-gamma was detected in sera from mice producing IgE antibody, which supports a possible role of interferon-gamma in the decrease of IgE response. This study suggests that the SCID mouse model could represent an interesting approach to studying specific, total IgG and IgE antibody production, and ultimately their regulation.

  16. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs

    International Nuclear Information System (INIS)

    Turowska, Agnieszka; Librizzi, Damiano; Baumgartl, Nadja; Kuhlmann, Jens; Dicke, Tanja; Merkel, Olivia; Homburg, Ursula; Höffken, Helmut; Renz, Harald; Garn, Holger

    2013-01-01

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mouse lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No

  17. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs

    Energy Technology Data Exchange (ETDEWEB)

    Turowska, Agnieszka [sterna biologicals GmbH and Co. KG, Marburg (Germany); Librizzi, Damiano [Department of Nuclear Medicine, University Hospital Giessen and Marburg GmbH, Baldingerstrasse, 35043 Marburg (Germany); Baumgartl, Nadja [Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps University of Marburg (Germany); Kuhlmann, Jens; Dicke, Tanja [sterna biologicals GmbH and Co. KG, Marburg (Germany); Merkel, Olivia [Department of Pharmaceutical Sciences, Wayne State University, Detroit (United States); Homburg, Ursula [sterna biologicals GmbH and Co. KG, Marburg (Germany); Höffken, Helmut [Department of Nuclear Medicine, University Hospital Giessen and Marburg GmbH, Baldingerstrasse, 35043 Marburg (Germany); Renz, Harald [Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps University of Marburg (Germany); Garn, Holger, E-mail: garn@staff.uni-marburg.de [Institute of Laboratory Medicine and Pathobiochemistry-Molecular Diagnostics, Philipps University of Marburg (Germany)

    2013-10-15

    The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. Furthermore, we evaluated the pharmacokinetics as a function of dose following single and repeated administration in rats and dogs. Using intranasal administration of fluorescently labeled hgd40 we demonstrated that the DNAzyme was evenly distributed in inflamed asthmatic mouse lungs within minutes after single dose application. Systemic distribution was investigated in mice using radioactive labeled hgd40. After intratracheal application, highest amounts of hgd40 were detected in the lungs. High amounts were also detected in the bladder indicating urinary excretion as a major elimination pathway. In serum, low systemic hgd40 levels were detected already at 5 min post application (p.a.), subsequently decreasing over time to non-detectable levels at 2 h p.a. As revealed by Single Photon Emission Computed Tomography, trace amounts of hgd40 were detectable in lungs up to 7 days p.a. Also in the toxicologically relevant rats and dogs, hgd40 was detectable in blood only shortly after inhalative application. The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen. - Highlights: • Local and systemic distribution of GATA-3-specific DNAzyme hgd40 was investigated. • Pharmacokinetics of hgd40 was tested in rats and dogs. • hgd40 dissolved in PBS was easily taken up into the lungs after local application. • No

  18. Cis-acting sequences from a human surfactant protein gene confer pulmonary-specific gene expression in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Korfhagen, T.R.; Glasser, S.W.; Wert, S.E.; Bruno, M.D.; Daugherty, C.C.; McNeish, J.D.; Stock, J.L.; Potter, S.S.; Whitsett, J.A. (Cincinnati College of Medicine, OH (USA))

    1990-08-01

    Pulmonary surfactant is produced in late gestation by developing type II epithelial cells lining the alveolar epithelium of the lung. Lack of surfactant at birth is associated with respiratory distress syndrome in premature infants. Surfactant protein C (SP-C) is a highly hydrophobic peptide isolated from pulmonary tissue that enhances the biophysical activity of surfactant phospholipids. Like surfactant phospholipid, SP-C is produced by epithelial cells in the distal respiratory epithelium, and its expression increases during the latter part of gestation. A chimeric gene containing 3.6 kilobases of the promoter and 5{prime}-flanking sequences of the human SP-C gene was used to express diphtheria toxin A. The SP-C-diphtheria toxin A fusion gene was injected into fertilized mouse eggs to produce transgenic mice. Affected mice developed respiratory failure in the immediate postnatal period. Morphologic analysis of lungs from affected pups showed variable but severe cellular injury confined to pulmonary tissues. Ultrastructural changes consistent with cell death and injury were prominent in the distal respiratory epithelium. Proximal components of the tracheobronchial tree were not severely affected. Transgenic animals were of normal size at birth, and structural abnormalities were not detected in nonpulmonary tissues. Lung-specific diphtheria toxin A expression controlled by the human SP-C gene injured type II epithelial cells and caused extensive necrosis of the distal respiratory epithelium. The absence of type I epithelial cells in the most severely affected transgenic animals supports the concept that developing type II cells serve as precursors to type I epithelial cells.

  19. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    Science.gov (United States)

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chronic Giardia muris infection in anti-IgM-treated mice. I. Analysis of immunoglobulin and parasite-specific antibody in normal and immunoglobulin-deficient animals.

    Science.gov (United States)

    Snider, D P; Gordon, J; McDermott, M R; Underdown, B J

    1985-06-01

    To investigate the role of B cells and antibody in the immune response of mice to the murine intestinal parasite Giardia muris, we used mice treated from birth with rabbit anti-IgM antisera (aIgM). Such mice developed in serum and in gut secretions extreme Ig deficiency (IgM, IgA, and IgG) relative to control animals. The aIgM-treated mice showed no anti-G. muris antibody in serum or in gut wash material. Infections of G. muris in these mice were chronic, with a high load of parasite present in the small bowel, as reflected by prolonged cyst excretion (greater than 11 wk) and high trophozoite counts. In contrast, normal, untreated mice or NRS-treated animals developed anti-parasite IgA and IgG antibody in serum, demonstrated IgA antibody against the parasite in gut washings, and expelled the parasite within 9 wk. These effects of aIgM treatment on the murine response to primary infection with G. muris were demonstrated in two strains of mice: BALB/c and (C57BL/6 X C3H/He) F1. It was also observed that the response to G. muris infection in untreated animals was characterized by higher than normal total secretion of IgA into the gut and a concomitant increase in the serum polymeric IgA level. Mice treated with aIgM had a marked decrease of both monomeric and polymeric IgA in serum, and little detectable IgA in the intestinal lumen. These experiments provide the first demonstration that anti-IgM treatment suppresses a specific intestinal antibody response to antigen, and provide evidence that B cells and antibody play a role in the development of an effective response to a primary infection with G. muris in mice.

  1. Cytolytic T lymphocyte precursor cells in congenitally athymic C57BL/6 nu/nu mice: Quantitation, enrichment, and specificity

    Energy Technology Data Exchange (ETDEWEB)

    Maryanski, J.L. (Ludwig Inst. for Cancer Research, Epalinges, Switzerland); MacDonald, H.R.; Sordat, B.; Cerottini, J.C.

    1981-03-01

    A sensitive limiting dilution microculture system was used to obtain minimal estimates of the frequency of CTL precursor cells (CTL-P) in spleens from 5- to 14-mo-old C57BL/6 nu/nu mice. Frequency determinations of CTL-P directed against H-2delta alloantigens ranged from 1/159,000 to 1/12,400. The relatively low frequency of CTL-P was enriched nearly 10-fold (to 1/2300) by passage of nude spleen cells over a column of nylon wool. After priming nude spleen cells for 7 days in conventional MLC, 1 to 3% of the MLC cells could be operationally identified as CTL-P. Furthermore, the progeny of MLC-primed nude CTL-P were specifically cytolytic for target cells of the strain used for priming. Such a system may be useful for analyzing the specificity repertoires of cells of the T cell lineage that have not undergone thymic influence.

  2. Contrasting effects of exercise and NOS inhibition on tissue-specific fatty acid and glucose uptake in mice.

    Science.gov (United States)

    Rottman, Jeffrey N; Bracy, Deanna; Malabanan, Carlo; Yue, Zou; Clanton, Jeff; Wasserman, David H

    2002-07-01

    Isotopic techniques were used to test the hypothesis that exercise and nitric oxide synthase (NOS) inhibition have distinct effects on tissue-specific fatty acid and glucose uptakes in a conscious, chronically catheterized mouse model. Uptakes were measured using the radioactive tracers (125)I-labeled beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) and deoxy-[2-(3)H]glucose (DG) during treadmill exercise with and without inhibition of NOS. [(125)I]BMIPP uptake at rest differed substantially among tissues with the highest levels in heart. With exercise, [(125)I]BMIPP uptake increased in both heart and skeletal muscles. In sedentary mice, NOS inhibition induced by nitro-L-arginine methyl ester (L-NAME) feeding increased heart and soleus [(125)I]BMIPP uptake. In contrast, exercise, but not L-NAME feeding, resulted in increased heart and skeletal muscle [2-(3)H]DG uptake. Significant interactions were not observed in the effects of combined exercise and L-NAME feeding on [(125)I]BMIPP and [2-(3)H]DG uptakes. In the conscious mouse, exercise and NOS inhibition produce distinct patterns of tissue-specific fatty acid and glucose uptake; NOS is not required for important components of exercise-associated metabolic signaling, or other mechanisms compensate for the absence of this regulatory mechanism.

  3. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  4. RhD Specific Antibodies Are Not Detectable in HLA-DRB11501* Mice Challenged with Human RhD Positive Erythrocytes

    Directory of Open Access Journals (Sweden)

    Lidice Bernardo

    2014-01-01

    Full Text Available The ability to study the immune response to the RhD antigen in the prevention of hemolytic disease of the fetus and newborn has been hampered by the lack of a mouse model of RhD immunization. However, the ability of transgenic mice expressing human HLA DRB11501* to respond to immunization with purified RhD has allowed this question to be revisited. In this work we aimed at inducing anti-RhD antibodies by administering human RhD+ RBCs to mice transgenic for the human HLA DRB11501* as well as to several standard inbred and outbred laboratory strains including C57BL/6, DBA1/J, CFW(SW, CD1(ICR, and NSA(CF-1. DRB11501* mice were additionally immunized with putative extracellular immunogenic RhD peptides. DRB11501* mice immunized with RhD+ erythrocytes developed an erythrocyte-reactive antibody response. Antibodies specific for RhD could not however be detected by flow cytometry. Despite this, DRB11501* mice were capable of recognizing immunogenic sequences of Rh as injection with Rh peptides induced antibodies reactive with RhD sequences, consistent with the presence of B cell repertoires capable of recognizing RhD. We conclude that while HLA DRB11501* transgenic mice may have the capability of responding to immunogenic sequences within RhD, an immune response to human RBC expressing RhD is not directly observed.

  5. A male-specific QTL for social interaction behavior in mice mapped with automated pattern detection by a hidden Markov model incorporated into newly developed freeware.

    Science.gov (United States)

    Arakawa, Toshiya; Tanave, Akira; Ikeuchi, Shiho; Takahashi, Aki; Kakihara, Satoshi; Kimura, Shingo; Sugimoto, Hiroki; Asada, Nobuhiko; Shiroishi, Toshihiko; Tomihara, Kazuya; Tsuchiya, Takashi; Koide, Tsuyoshi

    2014-08-30

    Owing to their complex nature, social interaction tests normally require the observation of video data by a human researcher, and thus are difficult to use in large-scale studies. We previously established a statistical method, a hidden Markov model (HMM), which enables the differentiation of two social states ("interaction" and "indifference"), and three social states ("sniffing", "following", and "indifference"), automatically in silico. Here, we developed freeware called DuoMouse for the rapid evaluation of social interaction behavior. This software incorporates five steps: (1) settings, (2) video recording, (3) tracking from the video data, (4) HMM analysis, and (5) visualization of the results. Using DuoMouse, we mapped a genetic locus related to social interaction. We previously reported that a consomic strain, B6-Chr6C(MSM), with its chromosome 6 substituted for one from MSM/Ms, showed more social interaction than C57BL/6 (B6). We made four subconsomic strains, C3, C5, C6, and C7, each of which has a shorter segment of chromosome 6 derived from B6-Chr6C, and conducted social interaction tests on these strains. DuoMouse indicated that C6, but not C3, C5, and C7, showed higher interaction, sniffing, and following than B6, specifically in males. The data obtained by human observation showed high concordance to those from DuoMouse. The results indicated that the MSM-derived chromosomal region present in C6-but not in C3, C5, and C7-associated with increased social behavior. This method to analyze social interaction will aid primary screening for difference in social behavior in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Liver-specific rescuing of CEACAM1 reverses endothelial and cardiovascular abnormalities in male mice with null deletion of Ceacam1 gene

    Directory of Open Access Journals (Sweden)

    Lucia Russo

    2018-03-01

    Full Text Available Objective: Mice with global null mutation of Ceacam1 (Cc1−/−, display impairment of insulin clearance that causes hyperinsulinemia followed by insulin resistance, elevated hepatic de novo lipogenesis, and visceral obesity. In addition, they manifest abnormal vascular permeability and elevated blood pressure. Liver-specific rescuing of Ceacam1 reversed all of the metabolic abnormalities in Cc1−/−liver+ mice. The current study examined whether Cc1−/− male mice develop endothelial and cardiac dysfunction and whether this relates to the metabolic abnormalities caused by defective insulin extraction. Methods and results: Myography studies showed reduction of agonist-stimulated nitric oxide production in resistance arterioles in Cc1−/−, but not Cc1−/−liver+ mice. Liver-based rescuing of CEACAM1 also attenuated the abnormal endothelial adhesiveness to circulating leukocytes in parallel to reducing plasma endothelin-1 and recovering plasma nitric oxide levels. Echocardiography studies revealed increased septal wall thickness, cardiac hypertrophy and reduced cardiac performance in Cc1−/−, but not Cc1−/−xliver+ mice. Insulin signaling experiments indicated compromised IRS1/Akt/eNOS pathway leading to lower nitric oxide level, and activated Shc/MAPK pathway leading to more endothelin-1 production in the aortae and hearts of Cc1−/−, but not Cc1−/−xliver+ mice. The increase in the ratio of endothelin-1 receptor A/B indicated an imbalance in the vasomotor activity of Cc1−/− mice, which was normalized in Cc1−/−xliver+ mice. Conclusions: The data underscore a critical role for impaired CEACAM1-dependent hepatic insulin clearance pathways and resulting hyperinsulinemia and lipid accumulation in aortae and heart in regulating the cardiovascular function. Keywords: Insulin clearance, Hyperinsulinemia, Insulin resistance, Endothelial function, Cardiomyopathy

  7. Low-level human equivalent gestational lead exposure produces sex-specific motor and coordination abnormalities and late-onset obesity in year-old mice.

    Science.gov (United States)

    Leasure, J Leigh; Giddabasappa, Anand; Chaney, Shawntay; Johnson, Jerry E; Pothakos, Konstantinos; Lau, Yuen Sum; Fox, Donald A

    2008-03-01

    Low-level developmental lead exposure is linked to cognitive and neurological disorders in children. However, the long-term effects of gestational lead exposure (GLE) have received little attention. Our goals were to establish a murine model of human equivalent GLE and to determine dose-response effects on body weight, motor functions, and dopamine neurochemistry in year-old offspring. We exposed female C57BL/6 mice to water containing 0, 27 (low), 55 (moderate), or 109 ppm (high) of lead from 2 weeks prior to mating, throughout gestation, and until postnatal day 10 (PN10). Maternal and litter measures, blood lead concentrations ([BPb]), and body weights were obtained throughout the experiment. Locomotor behavior in the absence and presence of amphetamine, running wheel activity, rotarod test, and dopamine utilization were examined in year-old mice. Peak [BPb] were obesity. Similarly, we observed male-specific decreased spontaneous motor activity, increased amphetamine-induced motor activity, and decreased rotarod performance in year-old GLE mice. Levels of dopamine and its major metabolite were altered in year-old male mice, although only forebrain utilization increased. GLE-induced alterations were consistently larger in low-dose GLE mice. Our novel results show that GLE produced permanent male-specific deficits. The nonmonotonic dose-dependent responses showed that low-level GLE produced the most adverse effects. These data reinforce the idea that lifetime measures of dose-response toxicant exposure should be a component of the neurotoxic risk assessment process.

  8. RETINOIC ACID INDUCTION OF CLEFT PALATE IN EGF AND TGF-ALPHA KNOCKOUT MICE: STAGE SPECIFIC INFLUENCES OF GROWTH FACTOR EXPRESSION

    Science.gov (United States)

    ABBOTT, B. D., LEFFLER, K.E. AND BUCKALEW, A.R, Reproductive Toxicology Division, NHEERL, ORD, US EPA, Research Triangle Park, North Carolina. Retinoic acid induction of cleft palate (CP) in EGF and TGF knockout mice: Stage specific influences of growth factor expression.<...

  9. Increased histone H3 phosphorylation in neurons in specific brain structures after induction of status epilepticus in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuji Mori

    Full Text Available Status epilepticus (SE induces pathological and morphological changes in the brain. Recently, it has become clear that excessive neuronal excitation, stress and drug abuse induce chromatin remodeling in neurons, thereby altering gene expression. Chromatin remodeling is a key mechanism of epigenetic gene regulation. Histone H3 phosphorylation is frequently used as a marker of chromatin remodeling and is closely related to the upregulation of mRNA transcription. In the present study, we analyzed H3 phosphorylation levels in vivo using immunohistochemistry in the brains of mice with pilocarpine-induced SE. A substantial increase in H3 phosphorylation was detected in neurons in specific brain structures. Increased H3 phosphorylation was dependent on neuronal excitation. In particular, a robust upregulation of H3 phosphorylation was detected in the caudate putamen, and there was a gradient of phosphorylated H3(+ (PH3(+ neurons along the medio-lateral axis. After unilateral ablation of dopaminergic neurons in the substantia nigra by injection of 6-hydroxydopamine, the distribution of PH3(+ neurons changed in the caudate putamen. Moreover, our histological analysis suggested that, in addition to the well-known MSK1 (mitogen and stress-activated kinase/H3 phosphorylation/c-fos pathway, other signaling pathways were also activated. Together, our findings suggest that a number of genes involved in the pathology of epileptogenesis are upregulated in PH3(+ brain regions, and that H3 phosphorylation is a suitable indicator of strong neuronal excitation.

  10. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice.

    Science.gov (United States)

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S; Gores, Gregory J; Wu, Hong; Gao, Bin; Deng, Chu-Xia

    2006-07-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from bile ducts of mutant mice at 2 months of age and continue to grow, leading to tumor formation in all animals at 4-7 months of age. We show that CC formation follows a multistep progression of histopathological changes that are associated with significant alterations, including increased levels of phosphorylated AKT, FOXO1, GSK-3beta, mTOR, and ERK and increased nuclear levels of cyclin D1. We further demonstrate that SMAD4 and PTEN regulate each other through a novel feedback mechanism to maintain an expression balance and synergistically repress CC formation. Finally, our analysis of human CC detected PTEN inactivation in a majority of p-AKT-positive CCs, while about half also lost SMAD4 expression. These findings elucidate the relationship between SMAD4 and PTEN and extend our understanding of CC formation.

  11. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    Directory of Open Access Journals (Sweden)

    Susan J. Harrison

    2012-05-01

    Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5. These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS.

  12. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    Science.gov (United States)

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  13. The Cstf2t Polyadenylation Gene Plays a Sex-Specific Role in Learning Behaviors in Mice.

    Directory of Open Access Journals (Sweden)

    Jaryse C Harris

    Full Text Available Polyadenylation is an essential mechanism for the processing of mRNA 3' ends. CstF-64 (the 64,000 Mr subunit of the cleavage stimulation factor; gene symbol Cstf2 is an RNA-binding protein that regulates mRNA polyadenylation site usage. We discovered a paralogous form of CstF-64 called τCstF-64 (Cstf2t. The Cstf2t gene is conserved in all eutherian mammals including mice and humans, but the τCstF-64 protein is expressed only in a subset of mammalian tissues, mostly testis and brain. Male mice that lack Cstf2t (Cstf2t-/- mice experience disruption of spermatogenesis and are infertile, although female fertility is unaffected. However, a role for τCstF-64 in the brain has not yet been determined. Given the importance of RNA polyadenylation and splicing in neuronal gene expression, we chose to test the hypothesis that τCstF-64 is important for brain function. Male and female 185-day old wild type and Cstf2t-/- mice were examined for motor function, general activity, learning, and memory using rotarod, open field activity, 8-arm radial arm maze, and Morris water maze tasks. Male wild type and Cstf2t-/- mice did not show differences in learning and memory. However, female Cstf2t-/- mice showed significantly better retention of learned maze tasks than did female wild type mice. These results suggest that τCstf-64 is important in memory function in female mice. Interestingly, male Cstf2t-/- mice displayed less thigmotactic behavior than did wild type mice, suggesting that Cstf2t may play a role in anxiety in males. Taken together, our studies highlight the importance of mRNA processing in cognition and behavior as well as their established functions in reproduction.

  14. ß-cell specific overexpression of suppressor of cytokine signalling-3 does not protect against multiple low dose streptozotocin induced type 1 diabetes in mice

    DEFF Research Database (Denmark)

    Börjesson, A; Rønn, S G; Karlsen, A E

    2011-01-01

    We investigated the impact of ß-cell specific overexpression of suppressor of cytokine signalling-3 (SOCS-3) on the development of multiple low dose streptozotocin (MLDSTZ) induced Type 1 diabetes and the possible mechanisms involved. MLDSTZ treatment was administered to RIP-SOCS-3 transgenic......RNA in islet cells and secretion of IL-1Ra into culture medium. MLDSTZ treatment caused gradual hyperglycemia both in the wt mice and in the transgenic mice with the latter tending to be more sensitive. In vitro experiments on wt and transgenic islets did not reveal any differences in sensitivity to damaging...

  15. Insulin signaling displayed a differential tissue-specific response to low-dose dihydrotestosterone in female mice.

    Science.gov (United States)

    Andrisse, Stanley; Billings, Katelyn; Xue, Ping; Wu, Sheng

    2018-04-01

    Hyperandrogenemia and hyperinsulinemia are believed to play prominent roles in polycystic ovarian syndrome (PCOS). We explored the effects of low-dose dihydrotestosterone (DHT), a model of PCOS, on insulin signaling in metabolic and reproductive tissues in a female mouse model. Insulin resistance in the energy storage tissues is associated with type 2 diabetes. Insulin signaling in the ovaries and pituitary either directly or indirectly stimulates androgen production. Energy storage and reproductive tissues were isolated and molecular assays were performed. Livers and white adipose tissue (WAT) from DHT mice displayed lower mRNA and protein expression of insulin signaling intermediates. However, ovaries and pituitaries of DHT mice exhibited higher expression levels of insulin signaling genes/proteins. Insulin-stimulated p-AKT levels were blunted in the livers and WAT of the DHT mice but increased or remained the same in the ovaries and pituitaries compared with controls. Glucose uptake decreased in liver and WAT but was unchanged in pituitary and ovary of DHT mice. Plasma membrane GLUTs were decreased in liver and WAT but increased in ovary and pituitary of DHT mice. Skeletal muscle insulin-signaling genes were not lowered in DHT mice compared with control. DHT mice did not display skeletal muscle insulin resistance. Insulin-stimulated glucose transport increased in skeletal muscles of DHT mice compared with controls. DHT mice were hyperinsulinemic. However, the differential mRNA and protein expression pattern was independent of hyperinsulinemia in cultured hepatocytes and pituitary cells. These findings demonstrate a differential effect of DHT on the insulin-signaling pathway in energy storage vs. reproductive tissues independent of hyperinsulinemia.

  16. Hormesis of specific IgG antibody to rabies virus in serum of mice irradiated with low dose γ-rays

    International Nuclear Information System (INIS)

    Liu Qingjie; Chen Deqing

    1998-01-01

    Objective: To explore the effect of low dose ionizing radiation on specific antibody in mouse serum. Methods: Kunming strain male mice, weighing 18-22 g, aged 6-8 weeks, were immunized intraperitoneally with rabies vaccine after exposure to cobalt-60 γ-rays. The specific IgG antibody against rabies virus in mouse serum was measured. Results: (1) The serum levels of specific IgG in mice irradiated with 5-30 cGy γ-rays were significantly elevated in comparison with those in control mice (P<0.01), the optimum stimulating dose being 10 cGy. (2) Exposure to 10 cGy caused significant enhancement and earlier emergence of the peak level of specific IgG in serum. (3) The hormesis of specific IgG to rabies virus induced by 10 cGy γ-rays could last one week at least. Conclusion: Low dose ionizing radiation can enhance the level of specific antibody in mouse serum, and this effect can last for one week at least

  17. Morphological changes in different populations of bladder afferent neurons detected by herpes simplex virus (HSV) vectors with cell-type-specific promoters in mice with spinal cord injury.

    Science.gov (United States)

    Shimizu, Nobutaka; Doyal, Mark F; Goins, William F; Kadekawa, Katsumi; Wada, Naoki; Kanai, Anthony J; de Groat, William C; Hirayama, Akihide; Uemura, Hirotsugu; Glorioso, Joseph C; Yoshimura, Naoki

    2017-11-19

    Functional and morphological changes in C-fiber bladder afferent pathways are reportedly involved in neurogenic detrusor overactivity (NDO) after spinal cord injury (SCI). This study examined the morphological changes in different populations of bladder afferent neurons after SCI using replication-defective herpes simplex virus (HSV) vectors encoding the mCherry reporter driven by neuronal cell-type-specific promoters. Spinal intact (SI) and SCI mice were injected into the bladder wall with HSV mCherry vectors driven by the cytomegalovirus (CMV) promoter, CGRP promoter, TRPV1 promoter or neurofilament 200 (NF200) promoter. Two weeks after vector inoculation into the bladder wall, L1 and L6 dorsal root ganglia (DRG) were removed bilaterally for immunofluorescent staining using anti-mCherry antibody. The number of CMV promoter vector-labeled neurons was not altered after SCI. The number of CGRP and TRPV1 promoter vector-labeled neurons was significantly increased whereas the number of NF200 vector-labeled neurons was decreased in L6 DRG after SCI. The median size of CGRP promoter-labeled C-fiber neurons was increased from 247.0 in SI mice to 271.3μm 2 in SCI mice whereas the median cell size of TRPV1 promoter vector-labeled neurons was decreased from 245.2 in SI mice to 216.5μm 2 in SCI mice. CGRP and TRPV1 mRNA levels of laser-captured bladder afferent neurons labeled with Fast Blue were significantly increased in SCI mice compared to SI mice. Thus, using a novel HSV vector-mediated neuronal labeling technique, we found that SCI induces expansion of the CGRP- and TRPV1-expressing C-fiber cell population, which could contribute to C-fiber afferent hyperexcitability and NDO after SCI. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    Science.gov (United States)

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  20. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  1. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    Science.gov (United States)

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  2. Tofogliflozin, a potent and highly specific sodium/glucose cotransporter 2 inhibitor, improves glycemic control in diabetic rats and mice.

    Science.gov (United States)

    Suzuki, Masayuki; Honda, Kiyofumi; Fukazawa, Masanori; Ozawa, Kazuharu; Hagita, Hitoshi; Kawai, Takahiro; Takeda, Minako; Yata, Tatsuo; Kawai, Mio; Fukuzawa, Taku; Kobayashi, Takamitsu; Sato, Tsutomu; Kawabe, Yoshiki; Ikeda, Sachiya

    2012-06-01

    Sodium/glucose cotransporter 2 (SGLT2) is the predominant mediator of renal glucose reabsorption and is an emerging molecular target for the treatment of diabetes. We identified a novel potent and selective SGLT2 inhibitor, tofogliflozin (CSG452), and examined its efficacy and pharmacological properties as an antidiabetic drug. Tofogliflozin competitively inhibited SGLT2 in cells overexpressing SGLT2, and K(i) values for human, rat, and mouse SGLT2 inhibition were 2.9, 14.9, and 6.4 nM, respectively. The selectivity of tofogliflozin toward human SGLT2 versus human SGLT1, SGLT6, and sodium/myo-inositol transporter 1 was the highest among the tested SGLT2 inhibitors under clinical development. Furthermore, no interaction with tofogliflozin was observed in any of a battery of tests examining glucose-related physiological processes, such as glucose uptake, glucose oxidation, glycogen synthesis, hepatic glucose production, glucose-stimulated insulin secretion, and glucosidase reactions. A single oral gavage of tofogliflozin increased renal glucose clearance and lowered the blood glucose level in Zucker diabetic fatty rats. Tofogliflozin also improved postprandial glucose excursion in a meal tolerance test with GK rats. In db/db mice, 4-week tofogliflozin treatment reduced glycated hemoglobin and improved glucose tolerance in the oral glucose tolerance test 4 days after the final administration. No blood glucose reduction was observed in normoglycemic SD rats treated with tofogliflozin. These findings demonstrate that tofogliflozin inhibits SGLT2 in a specific manner, lowers blood glucose levels by increasing renal glucose clearance, and improves pathological conditions of type 2 diabetes with a low hypoglycemic potential.

  3. Induction of an antigen specific gut inflammatory reaction in mice and rats: a model for human Inflammatory Bowel Disease

    Directory of Open Access Journals (Sweden)

    Gerlinde Agate Platais Brasil Teixeira

    2009-06-01

    Full Text Available Food allergy is an adverse reaction that occurs in susceptible people when they eat sensitizing foods and is one of the causes of Inflammatory Bowel Disease (IBD. The effort to understand the induction process of these diseases is important as IBD is increasing worldwide, including in Brazil. The aim of this study was to develop an experimental antigen specific inflammatory process of the gut of mice and rats, using peanut seeds. Animals were immunized with peanut protein extract before their exposure to the in natura peanut seeds. Results showed that systemic immunization with peanut protein extracts rendered significantly higher antibody titers than control groups and that immunized animals submitted to a challenge diet containing peanuts presented time dependent alterations of the gut similar to celiac disease. In conclusion, results suggested that this experimental model was a convenient tool to study the evolution of alterations in chronic antigen specific gut inflammatory process.A alergia alimentar consiste em uma reação adversa que ocorre em pessoas susceptíveis quando ingerem alimentos sensibilizantes, sendo uma das causas das Doenças Inflamatórias Intestinais (IBD. O objetivo deste estudo foi desenvolver um protocolo experimental de indução de um processo inflamatório intestinal antígeno-específico em camundongos e ratos. Foi escolhida para a indução deste processo a semente de amendoim. Os animais foram imunizados com o extrato protéico previamente à exposição com a semente in natura. Nossos resultados mostram que a imunização sistêmica com extratos protéicos de amendoim ocasiona títulos significativamente maiores de anticorpos quando comparado ao grupo controle e que os animais imunizados submetidos ao desafio com a dieta contendo exclusivamente amendoim apresentam alterações intestinais tempo-dependente similares àquelas observadas na doença celíaca. Os resultados obtidos sugerem que este modelo

  4. Liver-specific expression of the agouti gene in transgenic mice promotes liver carcinogenesis in the absence of obesity and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Kuklin, Alexander [ORNL; Mynatt, Randall [ORNL; Klebig, Mitch [ORNL; Kiefer, Laura [Glaxo Wellcome, Research Triangle Park, NC; Wilkison, William O [Glaxo Wellcome, Research Triangle Park, NC; Woychik, Richard P [Jackson Laboratory, The, Bar Harbor, ME; Michaud III, Edward J [ORNL

    2004-01-01

    of liver tumors compared to non-transgenic control mice. Conclusions: The data demonstrate that liver-specific expression of the agouti gene is not sufficient to induce obesity or diabetes, but, in the absence of these factors, agouti continues to promote hepatocellular carcinogenesis.

  5. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

    Science.gov (United States)

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R

    2015-03-24

    antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment. Copyright © 2015 Gebhart et al.

  6. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  7. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    Science.gov (United States)

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  8. Double transduction of a Cre/LoxP lentiviral vector: a simple method to generate kidney cell-specific knockdown mice.

    Science.gov (United States)

    Nam, Bo Young; Kim, Dong Ki; Park, Jung Tak; Kang, Hye-Young; Paeng, Jisun; Kim, Seonghun; Park, Jimin; Um, Jae Eun; Oh, Hyung Jung; Han, Seung Hyeok; Yoo, Tae-Hyun; Kang, Shin-Wook

    2015-12-15

    In a lentivirus-based gene delivery system, the incorporated gene is continuously expressed for a long time. In this study, we devised a simple way to knock down a specific gene in a kidney cell-specific pattern in adult mice by lentivirus-assisted transfer of short hairpin RNA (shRNA). Kidney collecting duct (CD)-specific aquaporin-3 (AQP3)-knockdown mice were generated by consecutive injection of Hoxb7-Cre-expressing lentivirus (LV-Hoxb7 Cre) and loxP-AQP3 shRNA-expressing lentivirus (LV-loxP shAQP3) in adult C57BL6/J mice. LV-Hoxb7 Cre was designed to express mCherry, while LV-loxP shAQP3 was designed with a floxed enhanced green fluorescent protein (EGFP)-tagged stop sequence, and thus EGFP would be expressed only in the absence of Cre recombination. In mice treated with LV-Hoxb7 Cre alone, mCherry protein expression, which indicates the presence of Cre recombinase, occurred only in CD cells. However, LV-loxP shAQP3 injection alone resulted in an increase in EGFP expression in all kidney cells, indicating the transcription of the floxed region. When LV-Hoxb7 Cre and LV-loxP shAQP3 were sequentially transduced, EGFP expression was attenuated while mCherry expression was sustained in CD cells, demonstrating a CD cell-specific recombination of the floxed region. AQP3 expression in mice injected with LV-Hoxb7 Cre or LV-loxP shAQP3 alone did not differ, but consecutive injection of LV-Hoxb7 Cre and LV-loxP shAQP3 significantly reduced AQP3 expression in CD cells. However, the expression levels of AQP3 were not altered in other cell types. Double transduction of Cre- and loxP-based lentivirus can easily generate kidney cell-specific knockdown mice, and this method might be applicable to other species. Copyright © 2015 the American Physiological Society.

  9. Self-recognition specificity expressed by T cells from nude mice. Absence of detectable Ia-restricted T cells in nude mice that do exhibit self-K/D-restricted T cell responses

    International Nuclear Information System (INIS)

    Kruisbeek, A.M.; Davis, M.L.; Matis, L.A.; Longo, D.L.

    1984-01-01

    The presence in athymic nude mice of precursor T cells with self-recognition specificity for either H-2 K/D or H-2 I region determinants was investigated. Chimeras were constructed of lethally irradiated parental mice receiving a mixture of F1 nude mouse (6-8 wk old) spleen and bone marrow cells. The donor inoculum was deliberately not subjected to any T cell depletion procedure, so that any potential major histocompatibility complex-committed precursor T cells were allowed to differentiate and expand in the normal parental recipients. 3 mo after reconstitution, the chimeras were immunized with several protein antigens in complete Freund's adjuvant in the footpads and their purified draining lymph node T cells tested 10 d later for ability to recognize antigen on antigen-presenting cells of either parental haplotype. Also, their spleen and lymph node cells were tested for ability to generate a cytotoxic T lymphocyte (CTL) response to trinitrophenyl (TNP)-modified stimulator cells of either parental haplotype. It was demonstrated that T cell proliferative responses of these F1(nude)----parent chimeras were restricted solely to recognizing parental host I region determinants as self and expressed the Ir gene phenotype of the host. In contrast, CTL responses could be generated (in the presence of interleukin 2) to TNP-modified stimulator cells of either parental haplotype. Thus these results indicate that nude mice which do have CTL with self-specificity for K/D region determinants lack proliferating T cells with self-specificity for I region determinants. These results provide evidence for the concepts that development of the I region-restricted T cell repertoire is strictly an intrathymically determined event and that young nude mice lack the unique thymic elements responsible for education of I region-restricted T cells

  10. Human papillomavirus type 16 E6-specific antitumor immunity is induced by oral administration of HPV16 E6-expressing Lactobacillus casei in C57BL/6 mice.

    Science.gov (United States)

    Lee, Tae-Young; Kim, Yang-Hyun; Lee, Kyung-Soon; Kim, Jeong-Ki; Lee, Il-Han; Yang, Jai-Myung; Sung, Moon-Hee; Park, Jong-Sup; Poo, Haryoung

    2010-11-01

    Given that local cell-mediated immunity (CMI) against the human papillomavirus type 16 E6 (HPV16 E6) protein is important for eradication of HPV16 E6-expressing cancer cells in the cervical mucosa, the HPV16 E6 protein may be a target for the mucosal immunotherapy of cervical cancer. Here, we expressed the HPV16 E6 antigen on Lactobacillus casei (L. casei) and investigated E6-specific CMI following oral administration of the L. casei-PgsA-E6 to mice. Surface expression of HPV16 E6 antigens was confirmed and mice were orally inoculated with the L. casei-PgsA or the L. casei-PgsA-E6. Compared to the L. casei-PgsA-treated mice, significantly higher levels of serum IgG and mucosal IgA were observed in L. casei-PgsA-E6-immunized mice; these differences were significantly enhanced after boost. Consistent with this, systemic and local CMI were significantly increased after the boost, as shown by increased counts of IFN-gamma-secreting cells in splenocytes, mesenteric lymph nodes (MLN), and vaginal samples. Furthermore, in the TC-1 tumor model, animals receiving the orally administered L. casei-PgsA-E6 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. We also found that L. casei-PgsA-E6-induced antitumor effect was decreased by in vivo depletion of CD4(+) or CD8(+) T cells. Collectively, these results indicate that the oral administration of lactobacilli bearing the surface-displayed E6 protein induces T cell-mediated cellular immunity and antitumor effects in mice.

  11. Low dose irradiation does not stimulate in vivo primary antibody response in specific-pathogen-free mice

    International Nuclear Information System (INIS)

    Kamisaku, H.; Sado, T.; Muto, M.; Pongpiachan, P.; Magnemi, U.

    1991-01-01

    Recent studies from other laboratories indicated that exposure of mice to low dose radiation resulted in the enhancement of primary anti-SRBC PFC response in mice. We have repeated these experiments using four strains of mice that are known to differ in radiosensitivity of immune response potential in vivo. In one study mice were exposed to 2.5-25 cGy of X-rays. Nine hours later they were injected with SRBC and the number of PFCs per spleen was assessed individually at 4.5 days. The results indicated no evidence for the enhancement of PFC response at all exposure levels examined. In another study, groups of C57BL/6J mice were immunized with SRBC and exposed to 0, 150, or 300 cGy of X-rays 2 days later. Numbers of direct as well as indirect PFCs per spleen were then assessed individually at frequent intervals thereafter. The results indicated that exposure of mice to 150 cGy resulted in a significant increase in the number of indirect PFCs assessed at day 11 after SRBC injection, or 9 days after radiation exposure. Dose-response analysis of radiation-induced enhancement of indirect PFC response by this protocol indicated that only after exposure to 150 and 300 cGy for C57BL/6 and C3H/He strain, respectively, a significant enhancement of indirect PFC response was demonstrated. Flow cytometric analysis of spleen cells from these animals indicated that CD4+/CD+ cell ratios increased rapidly during the first three days after radiation exposure, followed by a rapid decline, suggesting that relative proportion of helper/inducer as compared to cytotoxic/suppressor T cell subset changed rapidly in favor of the former shortly after radiation exposure and possibly contributed to the observed enhancement of indirect PFC response. (author)

  12. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    Science.gov (United States)

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  13. Sex-Specific Life Course Changes in the Neuro-Metabolic Phenotype of Glut3 Null Heterozygous Mice: Ketogenic Diet Ameliorates Electroencephalographic Seizures and Improves Sociability.

    Science.gov (United States)

    Dai, Yun; Zhao, Yuanzi; Tomi, Masatoshi; Shin, Bo-Chul; Thamotharan, Shanthie; Mazarati, Andrey; Sankar, Raman; Wang, Elizabeth A; Cepeda, Carlos; Levine, Michael S; Zhang, Jingjing; Frew, Andrew; Alger, Jeffry R; Clark, Peter M; Sondhi, Monica; Kositamongkol, Sudatip; Leibovitch, Leah; Devaskar, Sherin U

    2017-04-01

    We tested the hypothesis that exposure of glut3+/- mice to a ketogenic diet ameliorates autism-like features, which include aberrant behavior and electrographic seizures. We first investigated the life course sex-specific changes in basal plasma-cerebrospinal fluid (CSF)-brain metabolic profile, brain glucose transport/uptake, glucose and monocarboxylate transporter proteins, and adenosine triphosphate (ATP) in the presence or absence of systemic insulin administration. Glut3+/- male but not female mice (5 months of age) displayed reduced CSF glucose/lactate concentrations with no change in brain Glut1, Mct2, glucose uptake or ATP. Exogenous insulin-induced hypoglycemia increased brain glucose uptake in glut3+/- males alone. Higher plasma-CSF ketones (β-hydroxybutyrate) and lower brain Glut3 in females vs males proved protective in the former while enhancing vulnerability in the latter. As a consequence, increased synaptic proteins (neuroligin4 and SAPAP1) with spontaneous excitatory postsynaptic activity subsequently reduced hippocampal glucose content and increased brain amyloid β1-40 deposition in an age-dependent manner in glut3+/- males but not females (4 to 24 months of age). We then explored the protective effect of a ketogenic diet on ultrasonic vocalization, sociability, spatial learning and memory, and electroencephalogram seizures in male mice (7 days to 6 to 8 months of age) alone. A ketogenic diet partially restored sociability without affecting perturbed vocalization, spatial learning and memory, and reduced seizure events. We conclude that (1) sex-specific and age-dependent perturbations underlie the phenotype of glut3+/- mice, and (2) a ketogenic diet ameliorates seizures caused by increased cortical excitation and improves sociability, but fails to rescue vocalization and cognitive deficits in glut3+/- male mice. Copyright © 2017 Endocrine Society.

  14. Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-γ-knockout (CM-PGKO mice.

    Directory of Open Access Journals (Sweden)

    Michelangela Barbieri

    Full Text Available Understanding the molecular regulatory mechanisms controlling for myocardial lipid metabolism is of critical importance for the development of new therapeutic strategies for heart diseases. The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. The aim of our study was to assess the role of PPARγ on myocardial lipid metabolism and function and differentiate local/from systemic actions of PPARs agonists using cardiomyocyte-specific PPARγ -knockout (CM-PGKO mice. To this aim, the effect of PPARγ, PPARγ/PPARα and PPARα agonists on cardiac function, intra-myocyte lipid accumulation and myocardial expression profile of genes and proteins, affecting lipid oxidation, uptake, synthesis, and storage (CD36, CPT1MIIA, AOX, FAS, SREBP1-c and ADPR was evaluated in cardiomyocyte-specific PPARγ-knockout (CM-PGKO and littermate control mice undergoing standard and high fat diet (HFD. At baseline, protein levels and mRNA expression of genes involved in lipid uptake, oxidation, synthesis, and accumulation of CM-PGKO mice were not significantly different from those of their littermate controls. At baseline, no difference in myocardial lipid content was found between CM-PGKO and littermate controls. In standard condition, pioglitazone and rosiglitazone do not affect myocardial metabolism while, fenofibrate treatment significantly increased CD36 and CPT1MIIA gene expression. In both CM-PGKO and control mice submitted to HFD, six weeks of treatment with rosiglitazone, fenofibrate and pioglitazone lowered myocardial lipid accumulation shifting myocardial substrate utilization towards greater contribution of glucose. In conclusion, at baseline, PPARγ does not play a crucial role in regulating cardiac metabolism in mice, probably due to its low myocardial expression. PPARs agonists, indirectly protect myocardium from lipotoxic damage likely reducing fatty acids delivery to the heart through the actions on adipose

  15. Genes involved in the astrocyte-neuron lactate shuttle (ANLS) are specifically regulated in cortical astrocytes following sleep deprivation in mice.

    Science.gov (United States)

    Petit, Jean-Marie; Gyger, Joël; Burlet-Godinot, Sophie; Fiumelli, Hubert; Martin, Jean-Luc; Magistretti, Pierre J

    2013-10-01

    There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. 6-hour instrumental sleep deprivation (TSD). Animal sleep research laboratory. Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.

  16. Cell-type-specific H+-ATPase activity in root tissues enables K+ retention and mediates acclimation of barley (Hordeum vulgare) to salinity stress

    DEFF Research Database (Denmark)

    Shabala, Lana; Zhang, Jingyi; Pottosin, Igor

    2016-01-01

    While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms confe...

  17. Highly Active and Specific Tyrosine Ammonia-Lyases from Diverse Origins Enable Enhanced Production of Aromatic Compounds in Bacteria and Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jendresen, Christian Bille; Stahlhut, Steen Gustav; Li, Mingji

    2015-01-01

    Phenylalanine and tyrosine ammonia-lyases form cinnamic acid and p-coumaric acid, which are precursors of a wide range of aromatic compounds of biotechnological interest. Lack of highly active and specific tyrosine ammonia-lyases has previously been a limitation in metabolic engineering approaches...

  18. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles.

    Directory of Open Access Journals (Sweden)

    Veronica Rainone

    Full Text Available Mucosae-associated epithelial chemokine (MEC or CCL28 binds to CCR3 and CCR10 and recruits IgA-secreting plasma cells (IgA-ASCs in the mucosal lamina propria. The ability of this chemokine to enhance migration of IgA-ASCs to mucosal sites was assessed in a mouse immunization model using HIV-1(IIIB Virus-like particles (VLPs. Mice receiving either HIV-1(IIIB VLPs alone, CCL28 alone, or the irrelevant CCL19 chemokine were used as controls. Results showed a significantly increased CCR3 and CCR10 expression on CD19(+ splenocytes of HIV-1(IIIB VPL-CCL28-treated mice. HIV-1 Env-specific IFN-γ, IL-4 and IL-5 production, total IgA, anti-Env IgA as well as gastro-intestinal mucosal IgA-secreting plasma cells were also significantly augmented in these mice. Notably, sera and vaginal secretions from HIV-1(IIIB VLP-CCL28-treated mice exhibited an enhanced neutralizing activity against both a HIV-1/B-subtype laboratory strain and a heterologous HIV-1/C-subtype primary isolate. These data suggest that CCL28 could be useful in enhancing the IgA immune response that will likely play a pivotal role in prophylactic HIV vaccines.

  19. Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J.; Liaw, Lucy

    2012-01-01

    We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss. PMID:22142492

  20. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice.

    Directory of Open Access Journals (Sweden)

    Sindhu K Madathil

    Full Text Available Traumatic brain injury (TBI survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1, a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal overexpression of IGF-1 using the controlled cortical impact (CCI injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI.

  1. Astrocyte-Specific Overexpression of Insulin-Like Growth Factor-1 Protects Hippocampal Neurons and Reduces Behavioral Deficits following Traumatic Brain Injury in Mice

    Science.gov (United States)

    Madathil, Sindhu K.; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Ye, Ping; D’Ercole, A. Joseph; Saatman, Kathryn E.

    2013-01-01

    Traumatic brain injury (TBI) survivors often suffer from long-lasting cognitive impairment that stems from hippocampal injury. Systemic administration of insulin-like growth factor-1 (IGF-1), a polypeptide growth factor known to play vital roles in neuronal survival, has been shown to attenuate posttraumatic cognitive and motor dysfunction. However, its neuroprotective effects in TBI have not been examined. To this end, moderate or severe contusion brain injury was induced in mice with conditional (postnatal) overexpression of IGF-1 using the controlled cortical impact (CCI) injury model. CCI brain injury produces robust reactive astrocytosis in regions of neuronal damage such as the hippocampus. We exploited this regional astrocytosis by linking expression of hIGF-1 to the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, effectively targeting IGF-1 delivery to vulnerable neurons. Following brain injury, IGF-1Tg mice exhibited a progressive increase in hippocampal IGF-1 levels which was coupled with enhanced hippocampal reactive astrocytosis and significantly greater GFAP levels relative to WT mice. IGF-1 overexpression stimulated Akt phosphorylation and reduced acute (1 and 3d) hippocampal neurodegeneration, culminating in greater neuron survival at 10d after CCI injury. Hippocampal neuroprotection achieved by IGF-1 overexpression was accompanied by improved motor and cognitive function in brain-injured mice. These data provide strong support for the therapeutic efficacy of increased brain levels of IGF-1 in the setting of TBI. PMID:23826235

  2. The protein DIIIC-2, aggregated with a specific oligodeoxynucleotide and adjuvanted in alum, protects mice and monkeys against DENV-2.

    Science.gov (United States)

    Gil, Lázaro; Marcos, Ernesto; Izquierdo, Alienys; Lazo, Laura; Valdés, Iris; Ambala, Peris; Ochola, Lucy; Hitler, Rikoi; Suzarte, Edith; Álvarez, Mayling; Kimiti, Prisilla; Ndung'u, James; Kariuki, Thomas; Guzmán, María Guadalupe; Guillén, Gerardo; Hermida, Lisset

    2015-01-01

    Previously, we reported the ability of the chimeric protein DIIIC-2 (domain III of the dengue envelope protein fused to the capsid protein of dengue-2 virus), to induce immunity and protection in mice, when it is highly aggregated with a non-defined oligodeoxynucleotide (ODN) and adjuvanted in alum. In this work, three different defined ODNs were studied as aggregating agents. Our results suggest that the nature of the ODN influences the capacity of protein DIIIC-2 to activate cell-mediated immunity in mice. Consequently, the ODN 39M was selected to perform further experiments in mice and nonhuman primates. Mice receiving the preparation 39M-DIIIC-2 were solidly protected against dengue virus (DENV) challenge. Moreover, monkeys immunized with the same preparation developed neutralizing antibodies, as measured by four different neutralization tests varying the virus strains and the cell lines used. Two of the immunized monkeys were completely protected against challenge, whereas the third animal had a single day of low-titer viremia. This is the first work describing the induction of short-term protection in monkeys by a formulation that is suitable for human use combining a recombinant protein from DENV with alum.

  3. Lactococcus lactis NCC 2287 Alleviates Food Allergic Manifestations in Sensitized Mice by Reducing IL-13 Expression Specifically in the Ileum

    Directory of Open Access Journals (Sweden)

    Adrian W. Zuercher

    2012-01-01

    Full Text Available Objective. Utilizing a food allergy murine model, we have investigated the intrinsic antiallergic potential of the Lactococcus lactis NCC 2287 strain. Methods. BALB/c mice were sensitized at weekly intervals with ovalbumin (OVA plus cholera toxin (CT by the oral route for 7 weeks. In this model, an oral challenge with a high dose of OVA at the end of the sensitization period leads to clinical symptoms. Lactococcus lactis NCC 2287 was given to mice via the drinking water during sensitization (prevention phase or after sensitization (management phase. Results. Lactococcus lactis NCC 2287 administration to sensitized mice strikingly reduced allergic manifestations in the management phase upon challenge, when compared to control mice. No preventive effect was observed with the strain. Lactococcus lactis NCC 2287 significantly decreased relative expression levels of the Th-2 cytokine, IL-13, and associated chemokines CCL11 (eotaxin-1 and CCL17 (TARC in the ileum. No effect was observed in the jejunum. Conclusion/Significance. These results taken together designate Lactococcus lactis NCC 2287 as a candidate probiotic strain appropriate in the management of allergic symptoms.

  4. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth eSpröwitz

    2013-10-01

    Full Text Available In humans and animals cognitive training during childhood plays an important role in shaping neural circuits and thereby determines learning capacity later in life. Using a negative feedback learning paradigm, the two-way active avoidance (TWA learning, we aimed to investigate in mice (i the age-dependency of TWA learning, (ii the consequences of pretraining in childhood on adult learning capacity and (iii the impact of sex on the learning paradigm in mice. Taken together, we show here for the first time that the beneficial or detrimental outcome of pretraining in childhood depends on the age during which TWA training is encountered, indicating that different, age-dependent long-term memory traces might be formed, which are recruited during adult TWA training and thereby either facilitate or impair adult TWA learning. While pretraining during infancy results in learning impairment in adulthood, pretraining in late adolescence improved avoidance learning.The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  5. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    Science.gov (United States)

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  6. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice.

    Science.gov (United States)

    Mineur, Yann S; Bentham, Matthew P; Zhou, Wen-Liang; Plantenga, Margreet E; McKee, Sherry A; Picciotto, Marina R

    2015-10-01

    The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions. The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine. The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood. Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression. Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.

  7. The acute glucose lowering effect of specific GPR120 activation in mice is mainly driven by glucagon-like peptide 1.

    Directory of Open Access Journals (Sweden)

    Linda Sundström

    Full Text Available The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro. The acute glucose lowering effect was studied in lean wild-type and GPR120 null mice following oral or intravenous glucose tolerance tests. In vitro, in GPR120 overexpressing cells, both agonists signaled through Gαq, Gαs and the β-arrestin pathway. However, in mouse islets the signaling pathway was different since the agonists reduced cAMP production. The GPR120 agonists stimulated GLP-1 secretion both in vitro in STC-1 cells and in vivo following oral administration. In vivo GPR120 activation induced significant glucose lowering and increased insulin secretion after intravenous glucose administration in lean mice, while the agonists had no effect in GPR120 null mice. Exendin 9-39, a GLP-1 receptor antagonist, abolished the GPR120 induced effects on glucose and insulin following an intravenous glucose challenge. In conclusion, GLP-1 secretion is an important mechanism behind the acute glucose lowering effect following specific GPR120 activation.

  8. Mechanisms of dietary response in mice and primates: a role for EGR1 in regulating the reaction to human-specific nutritional content.

    Directory of Open Access Journals (Sweden)

    Kai Weng

    Full Text Available Humans have a widely different diet from other primate species, and are dependent on its high nutritional content. The molecular mechanisms responsible for adaptation to the human diet are currently unknown. Here, we addressed this question by investigating whether the gene expression response observed in mice fed human and chimpanzee diets involves the same regulatory mechanisms as expression differences between humans and chimpanzees.Using mouse and primate transcriptomic data, we identified the transcription factor EGR1 (early growth response 1 as a putative regulator of diet-related differential gene expression between human and chimpanzee livers. Specifically, we predict that EGR1 regulates the response to the high caloric content of human diets. However, we also show that close to 90% of the dietary response to the primate diet found in mice, is not observed in primates. This might be explained by changes in tissue-specific gene expression between taxa.Our results suggest that the gene expression response to the nutritionally rich human diet is partially mediated by the transcription factor EGR1. While this EGR1-driven response is conserved between mice and primates, the bulk of the mouse response to human and chimpanzee dietary differences is not observed in primates. This result highlights the rapid evolution of diet-related expression regulation and underscores potential limitations of mouse models in dietary studies.

  9. CRISPR/Cas9 DNA cleavage at SNP-derived PAM enables both in vitro and in vivo KRT12 mutation-specific targeting.

    Science.gov (United States)

    Courtney, D G; Moore, J E; Atkinson, S D; Maurizi, E; Allen, E H A; Pedrioli, D M L; McLean, W H I; Nesbit, M A; Moore, C B T

    2016-01-01

    CRISPR/Cas9-based therapeutics hold the possibility for permanent treatment of genetic disease. The potency and specificity of this system has been used to target dominantly inherited conditions caused by heterozygous missense mutations through inclusion of the mutated base in the short-guide RNA (sgRNA) sequence. This research evaluates a novel approach for targeting heterozygous single-nucleotide polymorphisms (SNPs) using CRISPR/Cas9. We determined that a mutation within KRT12, which causes Meesmann's epithelial corneal dystrophy (MECD), leads to the occurrence of a novel protospacer adjacent motif (PAM). We designed an sgRNA complementary to the sequence adjacent to this SNP-derived PAM and evaluated its potency and allele specificity both in vitro and in vivo. This sgRNA was found to be highly effective at reducing the expression of mutant KRT12 mRNA and protein in vitro. To assess its activity in vivo we injected a combined Cas9/sgRNA expression construct into the corneal stroma of a humanized MECD mouse model. Sequence analysis of corneal genomic DNA revealed non-homologous end-joining repair resulting in frame-shifting deletions within the mutant KRT12 allele. This study is the first to demonstrate in vivo gene editing of a heterozygous disease-causing SNP that results in a novel PAM, further highlighting the potential for CRISPR/Cas9-based therapeutics.

  10. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae

    Directory of Open Access Journals (Sweden)

    Deguo Wang

    2015-05-01

    Full Text Available Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  11. Development of Primer Sets for Loop-Mediated Isothermal Amplification that Enables Rapid and Specific Detection of Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Deguo; Liu, Yanhong

    2015-05-26

    Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.

  12. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  13. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Formation of the accumulative human metabolite and human-specific glutathione conjugate of diclofenac in TK-NOG chimeric mice with humanized livers.

    Science.gov (United States)

    Kamimura, Hidetaka; Ito, Satoshi; Nozawa, Kohei; Nakamura, Shota; Chijiwa, Hiroyuki; Nagatsuka, Shin-ichiro; Kuronuma, Miyuki; Ohnishi, Yasuyuki; Suemizu, Hiroshi; Ninomiya, Shin-ichi

    2015-03-01

    3'-Hydroxy-4'-methoxydiclofenac (VI) is a human-specific metabolite known to accumulate in the plasma of patients after repeated administration of diclofenac sodium. Diclofenac also produces glutathione-conjugated metabolites, some of which are human-specific. In the present study, we investigated whether these metabolites could be generated in humanized chimeric mice produced from TK-NOG mice. After a single oral administration of diclofenac to humanized mice, the unchanged drug in plasma peaked at 0.25 hour and then declined with a half-life (t1/2) of 2.4 hours. 4'-Hydroxydiclofenac (II) and 3'-hydroxydiclofenac also peaked at 0.25 hour and were undetectable within 24 hours. However, VI peaked at 8 hours and declined with a t1/2 of 13 hours. When diclofenac was given once per day, peak and trough levels of VI reached plateau within 3 days. Studies with administration of II suggested VI was generated via II as an intermediate. Among six reported glutathione-conjugated metabolites of diclofenac, M1 (5-hydroxy-4-(glutathion-S-yl)diclofenac) to M6 (2'-(glutathion-S-yl)monoclofenac), we found three dichlorinated conjugates [M1, M2 (4'-hydroxy-3'-(glutathion-S-yl)diclofenac), and M3 (5-hydroxy-6-(glutathion-S-yl)diclofenac)], and a single monochlorinated conjugate [M4 (2'-hydroxy-3'-(glutathion-S-yl)monoclofenac) or M5 (4'-hydroxy-2'-(glutathion-S-yl)monoclofenac)], in the bile of humanized chimeric mice. M4 and M5 are positional isomers and have been previously reported as human-specific in vitro metabolites likely generated via arene oxide and quinone imine-type intermediates, respectively. The biliary monochlorinated metabolite exhibited the same mass spectrum as those of M4 and M5, and we discuss whether this conjugate corresponded to M4 or M5. Overall, humanized TK-NOG chimeric mice were considered to be a functional tool for the study of drug metabolism of diclofenac in humans. Copyright © 2015 by The American Society for Pharmacology and Experimental

  15. Site-Specific Fat-1 Knock-In Enables Significant Decrease of n-6PUFAs/n-3PUFAs Ratio in Pigs

    Directory of Open Access Journals (Sweden)

    Mengjing Li

    2018-05-01

    Full Text Available The fat-1 gene from Caenorhabditis elegans encodes a fatty acid desaturase which was widely studied due to its beneficial function of converting n-6 polyunsaturated fatty acids (n-6PUFAs to n-3 polyunsaturated fatty acids (n-3PUFAs. To date, many fat-1 transgenic animals have been generated to study disease pathogenesis or improve meat quality. However, all of them were generated using a random integration method with variable transgene expression levels and the introduction of selectable marker genes often raise biosafety concern. To this end, we aimed to generate marker-free fat-1 transgenic pigs in a site-specific manner. The Rosa26 locus, first found in mouse embryonic stem cells, has become one of the most common sites for inserting transgenes due to its safe and ubiquitous expression. In our study, the fat-1 gene was inserted into porcine Rosa 26 (pRosa26 locus via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/CRISPR-associated 9 (Cas9 system. The Southern blot analysis of our knock-in pigs indicated a single copy of the fat-1 gene at the pRosa26 locus. Furthermore, this single-copy fat-1 gene supported satisfactory expression in a variety of tissues in F1 generation pigs. Importantly, the gas chromatography analysis indicated that these fat-1 knock-in pigs exhibited a significant increase in the level of n-3PUFAs, leading to an obvious decrease in the n-6PUFAs/n-3PUFAs ratio from 9.36 to 2.12 (***P < 0.0001. Altogether, our fat-1 knock-in pigs hold great promise for improving the nutritional value of pork and serving as an animal model to investigate therapeutic effects of n-3PUFAs on various diseases.

  16. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity.

    Directory of Open Access Journals (Sweden)

    Martin Kreutz

    Full Text Available Antibody-antigen conjugates, which promote antigen-presentation by dendritic cells (DC by means of targeted delivery of antigen to particular DC subsets, represent a powerful vaccination approach. To ensure immunity rather than tolerance induction the co-administration of a suitable adjuvant is paramount. However, co-administration of unlinked adjuvant cannot ensure that all cells targeted by the antibody conjugates are appropriately activated. Furthermore, antigen-presenting cells (APC that do not present the desired antigen are equally strongly activated and could prime undesired responses against self-antigens. We, therefore, were interested in exploring targeted co-delivery of antigen and adjuvant in cis in form of antibody-antigen-adjuvant conjugates for the induction of anti-tumour immunity. In this study, we report on the assembly and characterization of conjugates consisting of DEC205-specific antibody, the model antigen ovalbumin (OVA and CpG oligodeoxynucleotides (ODN. We show that such conjugates are more potent at inducing cytotoxic T lymphocyte (CTL responses than control conjugates mixed with soluble CpG. However, our study also reveals that the nucleic acid moiety of such antibody-antigen-adjuvant conjugates alters their binding and uptake and allows delivery of the antigen and the adjuvant to cells partially independently of DEC205. Nevertheless, antibody-antigen-adjuvant conjugates are superior to antibody-free antigen-adjuvant conjugates in priming CTL responses and efficiently induce anti-tumour immunity in the murine B16 pseudo-metastasis model. A better understanding of the role of the antibody moiety is required to inform future conjugate vaccination strategies for efficient induction of anti-tumour responses.

  17. OXIDATION OF POLYCHLORINATED BIPHENYLS BY LIVER TISSUE SLICES FROM PHENOBARBITAL-PRETREATED MICE IS CONGENER-SPECIFIC AND ATROPSELECTIVE

    OpenAIRE

    Wu, Xianai; Duffel, Michael; Lehmler, Hans-Joachim

    2013-01-01

    Mouse models are powerful tools to study the developmental neurotoxicity of polychlorinated biphenyls (PCBs); however, studies of the oxidation of chiral PCB congeners to potentially neurotoxic hydroxylated metabolites (OH-PCBs) in mice have not been reported. Here we investigate the atropselective oxidation of chiral PCB 91 (2,2',3,4',6-pentachlorobiphenyl), PCB 95 (2,2',3,5',6-pentachlorobiphenyl), PCB 132 (2,2',3,3',4,6'-hexachlorobiphenyl), PCB 136 (2,2',3,3',6,6'-hexachlorobiphenyl) and ...

  18. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance

    DEFF Research Database (Denmark)

    Vernochet, Cecile; Mourier, Arnaud; Bezy, Olivier

    2012-01-01

    Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated...... oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has...... positive metabolic effects, suggesting that regulation of adipose tissue mitochondria may be a potential therapeutic target for the treatment of obesity....

  19. Parental resistance of irradiated mice to (CBAXM523)F/sub 1/ lymphocytes: the destiny of transplanted cells, duration of resistance and its specificity

    Energy Technology Data Exchange (ETDEWEB)

    Kondrat' eva, T K; Fontalin, L N; Nagurskaya, E V; Novikova, T K; Blandova, Z K; Chernousov, A D [Akademiya Meditsinskikh Nauk SSSR, Moscow. Inst. Ehpidemiologii i Mikrobiologii

    1979-05-01

    The immunologic reactivity of mouse (CBAxM523)F/sub 1/ lymphocytes to alien antigens (ram erythrocytes) in the organisms of lethally irradiated CBA mice was studied. If the irradiation, cell transfer and antigen test-injection were performed on the same day, the activity of the transplant was suppressed as compared to the syngenic system. If the intervals between these procedures increased to three days the activity of donor cells was recovered. The retransplantation of recipient spleen cells to the irradiated CBA and F/sub 1/ mice demonstrated the viability of the transplanted cells and the absence of their transadaptation to nonsyngenic microenvironment. The resistance of the recipients could be overcome specifically by preliminary injection of F/sub 1/ mouse cells in combination with cyclophosphamide or without it. The results obtained suggest to conclude, that the genetic parental resistance of CBA mice to F/sub 1/ mouse cells is caused by the immunologically competent recipient cells that are inactivated after three days following irradiation. They do not produce a cytotoxic effect on donor cells, but limit temporarily the activity of the latter.

  20. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  1. Biochemical changes after subchronic and chronic interaction of Schistosoma mansoni infection in Swiss albino mice with two specific compounds.

    Science.gov (United States)

    Hanna, Laila S; Medhat, Amina M; Abdel-Menem, Hanan A

    2003-04-01

    In Egypt, infection with Schistosoma mansoni (S.m.) and residues of pesticides have been considered as major environmental pollutants that adversely affect health. Effects of diazinon (DZN) and/or praziquantel (PZQ) on the levels of plasma triiodothyronine (T3), thyroxine (T4), activities of brain acetylcholinesterase (AchE) and liver alanine aminotransferase (ALT) in addition to blood reduced glutathione (GSH) in healthy and S.m. infected mice were investigated after 9 and 17 weeks of either infection or intoxication with DZN. Triiodothyronine showed significant differences among the different treatments. The group of mice treated with PZQ showed the highest levels of T3 at both time intervals. Thyroxine level showed significant differences between the two time intervals. The lowest levels of T4 were observed in the infected-PZQ group at week 17. The maximum inhibition of brain AchE activity was noticed in DZN-PZQ treated group after 9 and 17 weeks. The different treatments significantly reduced the activities of liver ALT. The highest decrease was recorded in the infected-DZN-PZQ group at week 9. All treatments significantly lowered the levels of blood GSH after 9 weeks.

  2. Trp53 deficient mice predisposed to preterm birth display region-specific lipid alterations at the embryo implantation site

    Energy Technology Data Exchange (ETDEWEB)

    Lanekoff, Ingela; Cha, Jeeyeon; Kyle, Jennifer E.; Dey, Sudhansu K.; Laskin, Julia; Burnum-Johnson, Kristin E.

    2016-09-13

    Here we demonstrate that conditional deletion of mouse uterine Trp53 (p53d/d), molecularly linked to mTORC1 activation and causally linked to premature uterine senescence and preterm birth, results in aberrant lipid signatures within the heterogeneous cell types of embryo implantation sites on day 8 of pregnancy. In situ nanospray desorption electrospray ionization mass spectrometry imaging (nano-DESI MSI) was used to characterize the molecular speciation of free fatty acids, monoacylglycerols, unmodified and oxidized phosphatidylcholine (PC/Ox-PC), and diacylglycerol (DG) species within implantation sites of p53d/d mice and floxed littermates. Implantation sites from p53d/d mice exhibited distinct spatially resolved changes demonstrating accumulation of DG species, depletion of Ox-PC species, and increase in species with more unsaturated acyl chains, including arachidonic and docosahexaenoic acid. Understanding abnormal changes in the abundance and localization of individual lipid species early in the progression to premature birth is important for discovering novel targets for treatments and diagnosis.

  3. Biodistribution and elimination kinetics of systemic Stx2 by the Stx2A and Stx2B subunit-specific human monoclonal antibodies in mice

    Directory of Open Access Journals (Sweden)

    Sheoran Abhineet

    2012-06-01

    Full Text Available Abstract Background Hemolytic uremic syndrome (HUS leading to acute kidney failure, is a condition linked to the production of primarily Shiga toxin 2 (Stx2 by some E. coli serotypes. We have previously shown that Stx2 A subunit-specific human monoclonal antibody (HuMAb 5C12, and B subunit-specific HuMAb 5H8 inhibit cultured cell death, and protect mice and piglets from fatal Stx2-intoxication. We have also shown that 5H8 blocks binding of Stx2 to its cell-surface receptor globotriaosyl ceramide (Gb3, whereas Stx2 when complexed with 5C12 binds Gb3 with higher affinity than Stx2. The mechanism by which 5C12 neutralizes Stx2 in vitro involves trapping of Stx2 in the recycling endosomes and releasing it into the extracellular environment. Because of the clinical implications associated with the formation of Stx2/antibody complexes and the potential for trapping and clearance through a severely damaged kidney associated with HUS, we investigated the likely site(s of Stx2/antibody localization and clearance in intoxicated mice treated with antibody or placebo. Results Mice were injected with radiolabeled Stx2 (125I-Stx2 4 hours after administration of 5C12, 5H8, or phosphate buffered saline (PBS and the sites of localization of labeled Stx2, were investigated 3, 24 and 48 hours later. The liver recorded statistically much higher concentrations of labeled Stx2 for groups receiving 5C12 and 5H8 antibodies after 3, 24 and 48 hours, as compared with the PBS group. In contrast, highest levels of labeled Stx2 were detected in the kidneys of the PBS group at all 3 sampling times. Mice receiving either of the two HuMAbs were fully protected against the lethal effect of Stx2, as compared with the fatal outcome of the control group. Conclusions The results suggest that HuMAbs 5C12 and 5H8 promoted hepatic accumulation and presumably clearance of toxin/antibody complexes, significantly diverting Stx2 localization in the kidneys, the target of Stx2 and the

  4. Specific dose-dependent damage of Lieberkuehn crypts promoted by large doses of type 2 ribosome-inactivating protein nigrin b intravenous injection to mice

    International Nuclear Information System (INIS)

    Gayoso, M.J.; Munoz, R.; Arias, Y.; Villar, R.; Rojo, M.A.; Jimenez, P.; Ferreras, J.M.; Aranguez, I.; Girbes, T.

    2005-01-01

    Nigrin b is a non-toxic type 2 ribosome-inactivating protein as active as ricin at ribosomal level but 10 5 and 5 x 10 3 times less toxic for animal cell cultures and mice, respectively, than ricin. The purpose of the present study was to analyze the effects of intravenous injection of large amounts of nigrin b to the mouse. Injection through the tail vein of 16 mg/kg body weight killed all mice studied before 2 days. Analysis of several major tissues by light microscopy did not reveal gross nigrin b-promoted changes, except in the intestines which appeared highly damaged. As a consequence of the injury, the villi and crypt structures of the small intestine disappeared, leading to profuse bleeding and death. In contrast, intravenous injection of 5 mg/kg body weight was not lethal to mice but did trigger reversible toxic effects. In both cases, lethal and sub-lethal doses, the target of nigrin b appeared to be the highly proliferating stem cells of the intestinal crypts, which had undergone apoptotic changes. In contrast to nigrin b, the injection of 3 μg/kg of ricin kills all mice in 5 days but does not trigger apoptosis in the crypts. Therefore, the effect seen with sub-lethal nigrin b concentrations seems to be specific. Nigrin b killed COLO 320 human colon adenocarcinoma cells with an IC 50 of 3.1 x 10 -8 M and the effect was parallel to the extent of DNA fragmentation of these cells. Accordingly, despite the low general toxicity exerted by nigrin b as compared with ricin, intravenous injection of large amounts of nigrin b is able to kill mouse intestinal stem cells without threatening the lives of the animals, thereby opening a door for its use for the targeting of intestinal stem cells

  5. Liver-specific deletion of the signal transducer and activator of transcription 5 gene aggravates fatty liver in response to a high-fat diet in mice.

    Science.gov (United States)

    Baik, Myunggi; Nam, Yoon Seok; Piao, Min Yu; Kang, Hyeok Joong; Park, Seung Ju; Lee, Jae-Hyuk

    2016-03-01

    Growth hormone (GH) signal is mediated by signal transducer and activator of transcription 5 (STAT5), which controls hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) is clinically associated with a deficiency in GH. This study was performed to understand the role of local STAT5 signaling on hepatic lipid and glucose metabolism utilizing liver-specific STAT5 gene deletion (STAT5 LKO) mice under both normal diet and high-fat diet (HFD) feeding conditions. STAT5 LKO induced hepatic steatosis under HFD feeding, while this change was not observed in mice on normal diet. STAT5 LKO caused hyperglycemia, hyperinsulinemia, hyperleptinemia and elevated free fatty acid and cholesterol concentrations under HFD feeding but induced only hyperglycemia on normal diet. At the molecular level, STAT5 LKO up-regulated the expression of genes involved in lipid uptake (CD36), very low-density lipoprotein receptor (VLDLR), lipogenic stearoyl-CoA desaturase and adipogenic peroxisome proliferator-activated receptor gamma, in both diet groups. In response to HFD feeding, further increases in CD36 and VLDLR expression were found in STAT5 LKO mice. In conclusion, our study suggests that low STAT5 signaling on normal diet predisposes STAT5 LKO mice to early development of fatty liver by hyperglycemia and activation of lipid uptake and adipogenesis. A deficiency in STAT5 signaling under HFD feeding deregulates hepatic and body glucose and lipid metabolism, leading to the development of hepatic steatosis. Our study indicates that low STAT5 signaling, due to low GH secretion, may increase a chance for NAFLD development in elderly people. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1A (Dyrk1A.

    Directory of Open Access Journals (Sweden)

    Glòria Arqué

    Full Text Available BACKGROUND: Pathogenic aneuploidies involve the concept of dosage-sensitive genes leading to over- and underexpression phenotypes. Monosomy 21 in human leads to mental retardation and skeletal, immune and respiratory function disturbances. Most of the human condition corresponds to partial monosomies suggesting that critical haploinsufficient genes may be responsible for the phenotypes. The DYRK1A gene is localized on the human chromosome 21q22.2 region, and has been proposed to participate in monosomy 21 phenotypes. It encodes a dual-specificity kinase involved in neuronal development and in adult brain physiology, but its possible role as critical haploinsufficient gene in cognitive function has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: We used mice heterozygous for a Dyrk1A targeted mutation (Dyrk1A+/- to investigate the implication of this gene in the cognitive phenotypes of monosomy 21. Performance of Dyrk1A+/- mice was assayed 1/ in a navigational task using the standard hippocampally related version of the Morris water maze, 2/ in a swimming test designed to reveal potential kinesthetic and stress-related behavioral differences between control and heterozygous mice under two levels of aversiveness (25 degrees C and 17 degrees C and 3/ in a long-term novel object recognition task, sensitive to hippocampal damage. Dyrk1A+/- mice showed impairment in the development of spatial learning strategies in a hippocampally-dependent memory task, they were impaired in their novel object recognition ability and were more sensitive to aversive conditions in the swimming test than euploid control animals. CONCLUSIONS/SIGNIFICANCE: The present results are clear examples where removal of a single gene has a profound effect on phenotype and indicate that haploinsufficiency of DYRK1A might contribute to an impairment of cognitive functions and stress coping behavior in human monosomy 21.

  7. Tissue-specific expression of Sprouty1 in mice protects against high-fat diet-induced fat accumulation, bone loss and metabolic dysfunction.

    Science.gov (United States)

    Urs, Sumithra; Henderson, Terry; Le, Phuong; Rosen, Clifford J; Liaw, Lucy

    2012-09-28

    We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.

  8. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    Science.gov (United States)

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification

  9. Radiolabeling of anti-human prostatic specific membrane antigen antibody with 99Tcm and its biodistribution in nude mice bearing human prostate cancer

    International Nuclear Information System (INIS)

    Tu Shaohua; Shen Jiangfan; Tao Rong; Ji Xiaowen; Wang Yancheng

    2012-01-01

    Objective: To study the binding affinity of 99 Tc m labeled anti-human prostatic specific membrane antigen (PSMA) monoclonal antibody (McAb) J591 to prostate cancer cells and the biodistribution of 99 Tc m -J591 in nude mice bearing human prostate cancer. Methods: The McAb J591 was labeled with vTcm by improved Schwarz method and the labeled McAb was purified by Sephadex G-50. The binding affinity of J591 with prostate cancer cells was measured by Flow Cytometry. The nude mice bearing PSMA-positive C4-2 prostate carcinoma xenografts were served as experiment groups, mice with PSMA-negative pc3 tumors served as controls. The biodistribution of 99 Tc m -J591 were carried out in both model nude mice. Results: The radiolabeling efficiency of 99 Tc m -J591 was 78.9±6.2%, and radiochemical purity was more than 90% after purification. The 99 Tc m -J591 showed a good combination with PSMA-positive C4-2 cells and no combination with PSMA-negative PC3 cells in vitro. The biodistribution results showed that 99 Tcm-J591 was accumulated in tumor tissue during the 2-24 hours after injection in experiment groups, and no significant uptake in control group. The uptake of 99 Tcm-J591 in tumor tissue reached a maximum 15.91±5.16 % ID/g in experimental group at 12h post-injection. There was a significant difference compared with controls (P 0.05). Conclusion: The monoclonal antibody J591 exhibits an excellent immuno-reactivity and tumor targeting property, and it may be used in diagnosis and target therapy of prostate cancer. (authors)

  10. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  11. The expression of a motoneuron-specific serine protease, motopsin (PRSS12), after facial nerve axotomy in mice.

    Science.gov (United States)

    Numajiri, Toshiaki; Mitsui, Shinichi; Hisa, Yasuo; Ishida, Toshihiro; Nishino, Kenichi; Yamaguchi, Nozomi

    2006-01-01

    Motopsin (PRSS12) is a mosaic serine protease that is preferentially expressed in motor neurons. To study the relationship between motopsin and motoneuron function, we investigated the expression of motopsin mRNA in facial nerve nuclei after facial nerve axotomy at the anterior margin of the parotid gland in mice. Neuronal function was monitored by assessing vibrissal motion in 3 months. Vibrissal behaviour on the injured side disappeared until the day 14 post-operation, and then recovered between the day 21 and 35. Motopsin expression decreased at the day 14, but markedly recovered by the day 21. In contrast, expression of growth-associated protein-43 (GAP-43) was induced at the day 3. These results suggest that the recovery of motopsin expression is correlated with the recovery of the facial motor neuronal function.

  12. Lysosomal Storage of Subunit c of Mitochondrial ATP Synthase in Brain-Specific Atp13a2-Deficient Mice.

    Science.gov (United States)

    Sato, Shigeto; Koike, Masato; Funayama, Manabu; Ezaki, Junji; Fukuda, Takahiro; Ueno, Takashi; Uchiyama, Yasuo; Hattori, Nobutaka

    2016-12-01

    Kufor-Rakeb syndrome (KRS) is an autosomal recessive form of early-onset parkinsonism linked to the PARK9 locus. The causative gene for KRS is Atp13a2, which encodes a lysosomal type 5 P-type ATPase. We recently showed that KRS/PARK9-linked mutations lead to several lysosomal alterations, including reduced proteolytic processing of cathepsin D in vitro. However, it remains unknown how deficiency of Atp13a2 is connected to lysosomal impairments. To address this issue, we analyzed brain tissues of Atp13a2 conditional-knockout mice, which exhibited characteristic features of neuronal ceroid lipofuscinosis, including accumulation of lipofuscin positive for subunit c of mitochondrial ATP synthase, suggesting that a common pathogenic mechanism underlies both neuronal ceroid lipofuscinosis and Parkinson disease. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Effects of Specific Multi-Nutrient Enriched Diets on Cerebral Metabolism, Cognition and Neuropathology in AβPPswe-PS1dE9 Mice

    Science.gov (United States)

    Jansen, Diane; Zerbi, Valerio; Arnoldussen, Ilse A. C.; Wiesmann, Maximilian; Rijpma, Anne; Fang, Xiaotian T.; Dederen, Pieter J.; Mutsaers, Martina P. C.; Broersen, Laus M.; Lütjohann, Dieter; Miller, Malgorzata; Joosten, Leo A. B.; Heerschap, Arend; Kiliaan, Amanda J.

    2013-01-01

    Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD). In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU) diet enriched with uridine monophosphate (UMP) and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), or the Fortasyn® Connect (FC) diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can influence AD

  14. Effects of specific multi-nutrient enriched diets on cerebral metabolism, cognition and neuropathology in AβPPswe-PS1dE9 mice.

    Directory of Open Access Journals (Sweden)

    Diane Jansen

    Full Text Available Recent studies have focused on the use of multi-nutrient dietary interventions in search of alternatives for the treatment and prevention of Alzheimer's disease (AD. In this study we investigated to which extent long-term consumption of two specific multi-nutrient diets can modulate AD-related etiopathogenic mechanisms and behavior in 11-12-month-old AβPPswe-PS1dE9 mice. Starting from 2 months of age, male AβPP-PS1 mice and wild-type littermates were fed either a control diet, the DHA+EPA+UMP (DEU diet enriched with uridine monophosphate (UMP and the omega-3 fatty acids docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, or the Fortasyn® Connect (FC diet enriched with the DEU diet plus phospholipids, choline, folic acid, vitamins and antioxidants. We performed behavioral testing, proton magnetic resonance spectroscopy, immunohistochemistry, biochemical analyses and quantitative real-time PCR to gain a better understanding of the potential mechanisms by which these multi-nutrient diets exert protective properties against AD. Our results show that both diets were equally effective in changing brain fatty acid and cholesterol profiles. However, the diets differentially affected AD-related pathologies and behavioral measures, suggesting that the effectiveness of specific nutrients may depend on the dietary context in which they are provided. The FC diet was more effective than the DEU diet in counteracting neurodegenerative aspects of AD and enhancing processes involved in neuronal maintenance and repair. Both diets elevated interleukin-1β mRNA levels in AβPP-PS1 and wild-type mice. The FC diet additionally restored neurogenesis in AβPP-PS1 mice, decreased hippocampal levels of unbound choline-containing compounds in wild-type and AβPP-PS1 animals, suggesting diminished membrane turnover, and decreased anxiety-related behavior in the open field behavior. In conclusion, the current data indicate that specific multi-nutrient diets can

  15. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Science.gov (United States)

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  16. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice.

    Science.gov (United States)

    Poo, Haryoung; Pyo, Hyun-Mi; Lee, Tae-Young; Yoon, Sun-Woo; Lee, Jong-Soo; Kim, Chul-Joong; Sung, Moon-Hee; Lee, Seung-Hoon

    2006-10-01

    The mounting of a specific immune response against the human papillomavirus type 16 E7 protein (HPV16 E7) is important for eradication of HPV16 E7-expressing cancer cells from the cervical mucosa. To induce a mucosal immune response by oral delivery of the E7 antigen, we expressed the HPV16 E7 antigen on the surface of Lactobacillus casei by employing a novel display system in which the poly-gamma-glutamic acid (gamma-PGA) synthetase complex A (PgsA) from Bacillus subtilis (chungkookjang) was used as an anchoring motif. After surface expression of the HPV16 E7 protein was confirmed by Western blot, flow cytometry and immunofluorescence microscopy, mice were orally inoculated with L. casei-PgsA-E7. E7-specific serum IgG and mucosal IgA productions were enhanced after oral administration and significantly enhanced after boosting. Systemic and local cellular immunities were significantly increased after boosting, as shown by increased counts of lymphocytes (SI = 9.7 +/- 1.8) and IFN-gamma secreting cells [510 +/- 86 spot-forming cells/10(6)cells] among splenocytes and increased IFN-gamma in supernatants of vaginal lymphocytes. Furthermore, in an E7-based mouse tumor model, animals receiving orally administered L. casei-PgsA-E7 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. These results collectively indicate that the oral administration of E7 displayed on lactobacillus induces cellular immunity and antitumor effects in mice. Copyright 2006 Wiley-Liss, Inc.

  17. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    Science.gov (United States)

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genetic markers of a Munc13 protein family member, BAIAP3, are gender specifically associated with anxiety and benzodiazepine abuse in mice and humans.

    Science.gov (United States)

    Wojcik, Sonja M; Tantra, Martesa; Stepniak, Beata; Man, Kwun-Nok M; Müller-Ribbe, Katja; Begemann, Martin; Ju, Anes; Papiol, Sergi; Ronnenberg, Anja; Gurvich, Artem; Shin, Yong; Augustin, Iris; Brose, Nils; Ehrenreich, Hannelore

    2013-07-24

    Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I-associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders.

  19. Premature Aging Phenotype in Mice Lacking High-Affinity Nicotinic Receptors: Region-Specific Changes in Layer V Pyramidal Cell Morphology.

    Science.gov (United States)

    Konsolaki, Eleni; Skaliora, Irini

    2015-08-01

    The mechanisms by which aging leads to alterations in brain structure and cognitive deficits are unclear. Α deficient cholinergic system has been implicated as one of the main factors that could confer a heightened vulnerability to the aging process, and mice lacking high-affinity nicotinic receptors (β2(-/-)) have been proposed as an animal model of accelerated cognitive aging. To date, however, age-related changes in neuronal microanatomy have not been studied in these mice. In the present study, we examine the neuronal structure of yellow fluorescent protein (YFP(+)) layer V neurons in 2 cytoarchitectonically distinct cortical regions in wild-type (WT) and β2(-/-) animals. We find that (1) substantial morphological differences exist between YFP(+) cells of the anterior cingulate cortex (ACC) and primary visual cortex (V1), in both genotypes; (2) in WT animals, ACC cells are more susceptible to aging compared with cells in V1; and (3) β2 deletion is associated with a regionally and temporally specific increase in vulnerability to aging. ACC cells exhibit a prematurely aged phenotype already at 4-6 months, whereas V1 cells are spared in adulthood but strongly affected in old animals. Collectively, our data reveal region-specific synergistic effects of aging and genotype and suggest distinct vulnerabilities in V1 and ACC neurons. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Cell specificity of the cytoplasmic Ca2+ response to tolbutamide is impaired in beta-cells from hyperglycemic mice

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Larsson-Nyrén, Gerd; Lindström, Per

    2006-01-01

    We recently reported that the timing and magnitude of the nutrient-induced Ca(2+) response are specific and reproducible for each isolated beta-cell. We have now used tolbutamide and arginine to test if the cell specificity exists also for the response to non-nutrient stimulation of beta-cells an...

  1. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice.

    Science.gov (United States)

    Welborn, Joshua P; Davis, Matthew G; Ebers, Steven D; Stodden, Genna R; Hayashi, Kanako; Cheatwood, Joseph L; Rao, Manjeet K; MacLean, James A

    2015-07-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. © 2015 by the Society for the Study of Reproduction, Inc.

  2. Rhox8 Ablation in the Sertoli Cells Using a Tissue-Specific RNAi Approach Results in Impaired Male Fertility in Mice1

    Science.gov (United States)

    Welborn, Joshua P.; Davis, Matthew G.; Ebers, Steven D.; Stodden, Genna R.; Hayashi, Kanako; Cheatwood, Joseph L.; Rao, Manjeet K.; MacLean, James A.

    2015-01-01

    The reproductive homeobox X-linked, Rhox, genes encode transcription factors that are selectively expressed in reproductive tissues. While there are 33 Rhox genes in mice, only Rhox and Rhox8 are expressed in Sertoli cells, suggesting that they may regulate the expression of somatic-cell gene products crucial for germ cell development. We previously characterized Rhox5-null mice, which are subfertile, exhibiting excessive germ cell apoptosis and compromised sperm motility. To assess the role of Rhox8 in Sertoli cells, we used a tissue-specific RNAi approach to knockdown RHOX8 in vivo, in which the Rhox5 promoter was used to drive Rhox8-siRNA transgene expression in the postnatal Sertoli cells. Western and immunohistochemical analysis confirmed Sertoli-specific knockdown of RHOX8. However, other Sertoli markers, Gata1 and Rhox5, maintained normal expression patterns, suggesting that the knockdown was specific. Interestingly, male RHOX8-knockdown animals showed significantly reduced spermatogenic output, increased germ cell apoptosis, and compromised sperm motility, leading to impaired fertility. Importantly, our results revealed that while some RHOX5-dependent factors were also misregulated in Sertoli cells of RHOX8-knockdown animals, the majority were not, and novel putative RHOX8-regulated genes were identified. This suggests that while reduction in levels of RHOX5 and RHOX8 in Sertoli cells elicits similar phenotypes, these genes are not entirely redundant. Taken together, our study underscores the importance of Rhox genes in male fertility and suggests that Sertoli cell-specific expression of Rhox5 and Rhox8 is critical for complete male fertility. PMID:25972016

  3. Neuroleptic binding sites: specific labeling in mice with [18F]haloperidol, a potential tracer for positron emission tomography

    International Nuclear Information System (INIS)

    Zanzonico, P.B.; Bigler, R.E.; Schmall, B.

    1983-01-01

    Haloperidol labeled with fluorine- 18 (T 1/2 . 110 min, positron emission 97%), prepared yielding .04 Ci/millimole by the Balz-Schiemann reaction, was evaluated in a murine model as a potential radiotracer for noninvasive determination, by positron-emission tomography, of regional concentrations of brain dopamine receptors in patients. As the haloperidol dose in mice was increased from 0.01 to 1000 micrograms/kg, the relative concentration of [ 18 F]haloperidol (microCi per g specimen/microCi per g of body mass), at one hour after injection decreased from 30 to 1.0 in the striatum and from 8.0 to 1.0 in the cerebellum. The striatal radioactivity, plotted as relative concentration against log of dose, decreased sigmoidally, presumably reflecting competition between labeled and unlabeled haloperidol for a single class of accessible binding sites. Because the cerebellum is relatively deficient in dopamine receptors, the observed decrease in cerebellar radioactivity may reflect a saturable component of haloperidol transport into brain. The high brain concentrations and the unexpectedly high striatum-to-cerebellum concentration ratios (greater than 4 at haloperidol doses less than or equal to 1 microgram/kg) suggest that [ 18 F]haloperidol warrants further investigation as a potential radiotracer for dopamine receptors

  4. Cardiac-specific inducible overexpression of human plasma membrane Ca2+ ATPase 4b is cardioprotective and improves survival in mice following ischemic injury.

    Science.gov (United States)

    Sadi, Al Muktafi; Afroze, Talat; Siraj, M Ahsan; Momen, Abdul; White-Dzuro, Colin; Zarrin-Khat, Dorrin; Handa, Shivalika; Ban, Kiwon; Kabir, M Golam; Trivieri, Maria G; Gros, Robert; Backx, Peter; Husain, Mansoor

    2018-03-30

    Background: Heart failure (HF) is associated with reduced expression of plasma membrane Ca 2+ -ATPase 4 (PMCA4). Cardiac-specific overexpression of human PMCA4b in mice inhibited nNOS activity and reduced cardiac hypertrophy by inhibiting calcineurin. Here we examine temporally regulated cardiac-specific overexpression of hPMCA4b in mouse models of myocardial ischemia reperfusion injury (IRI) ex vivo , and HF following experimental myocardial infarction (MI) in vivo Methods and results: Doxycycline-regulated cardiomyocyte-specific overexpression and activity of hPMCA4b produced adaptive changes in expression levels of Ca 2+ -regulatory genes, and induced hypertrophy without significant differences in Ca 2+ transients or diastolic Ca 2+ concentrations. Total cardiac NOS and nNOS-specific activities were reduced in mice with cardiac overexpression of hPMCA4b while nNOS, eNOS and iNOS protein levels did not differ. hMPCA4b-overexpressing mice also exhibited elevated systolic blood pressure vs. controls, with increased contractility and lusitropy in vivo In isolated hearts undergoing IRI, hPMCA4b overexpression was cardioprotective. NO donor-treated hearts overexpressing hPMCA4b showed reduced LVDP and larger infarct size versus vehicle-treated hearts undergoing IRI, demonstrating that the cardioprotective benefits of hPMCA4b-repressed nNOS are lost by restoring NO availability. Finally, both pre-existing and post-MI induction of hPMCA4b overexpression reduced infarct expansion and improved survival from HF. Conclusions: Cardiac PMCA4b regulates nNOS activity, cardiac mass and contractility, such that PMCA4b overexpression preserves cardiac function following IRI, heightens cardiac performance and limits infarct progression, cardiac hypertrophy and HF, even when induced late post-MI. These data identify PMCA4b as a novel therapeutic target for IRI and HF. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Enhancing specific-antibody production to the ragB vaccine with GITRL that expand Tfh, IFN-γ(+ T cells and attenuates Porphyromonas gingivalis infection in mice.

    Directory of Open Access Journals (Sweden)

    Dong Zheng

    Full Text Available The outer membrane protein RagB is one of the major virulence factors of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis. In order to induce protective immune response against P. gingivalis infection, an mGITRL gene-linked ragB DNA vaccine (pIRES-ragB-mGITRL was constructed. Six-week-old female BALB/c mice were immunized with pIRES-ragB-mGITRL through intramuscular injection and then challenged by subcutaneous injection in the abdomen with P. gingivalis. RagB-specific antibody-forming cells were evaluated by an Enzyme-linked immunosorbent spot, and specific antibody was determined by enzyme-linked immunosorbent assay. In addition, the frequencies of Tfh and IFN-γ(+ T cells in spleen were measured using flow cytometer, and the levels of IL-21 and IFN-γ mRNA or proteins were detected by real time RT-PCR or ELISA. The data showed that the mGITRL-linked ragB DNA vaccine induced higher levels of RagB-specific IgG in serum and RagB-specific antibody-forming cells in spleen. The frequencies of Tfh and IFN-γ(+ T cells were obviously expanded in mice immunized by pIRES-ragB-mGITRL compared with other groups (pIRES or pIRES-ragB . The levels of Tfh and IFN-γ(+ T cells associated cytokines were also significantly increased in pIRES-ragB-mGITRL group. Therefore, the mice immunized with ragB plus mGITRL showed the stronger resistant to P. gingivalis infection and a significant reduction of the lesion size caused by P. gingivalis infection comparing with other groups. Taken together, our findings demonstrated that intramuscular injection of DNA vaccine ragB together with mGITRL induced protective immune response dramatically by increasing Tfh and IFN-γ(+ T cells and antibody production to P. gingivalis.

  6. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    OpenAIRE

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. Ho...

  7. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    Directory of Open Access Journals (Sweden)

    Niwanthi W Rajapakse

    Full Text Available Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1 can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13 and CAT1 overexpressing mice (CAT+; n=13 were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p. on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%. The depressor response to pentolinium was 65% greater in obese WT than lean WT (P < 0.001, but was similar in obese and lean CAT+ (P = 0.65. In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001. Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001, but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%, but greater in obese CAT+ (37 ± 2%, when compared to respective lean WT (31 ± 3% and lean CAT+ controls (27 ± 2%; P ≤ 0.02. We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  8. Augmented Endothelial-Specific L-Arginine Transport Blunts the Contribution of the Sympathetic Nervous System to Obesity Induced Hypertension in Mice.

    Science.gov (United States)

    Rajapakse, Niwanthi W; Karim, Florian; Evans, Roger G; Kaye, David M; Head, Geoffrey A

    2015-01-01

    Augmenting endothelial specific transport of the nitric oxide precursor L-arginine via cationic amino acid transporter-1 (CAT1) can prevent obesity related hypertension. We tested the hypotheses that CAT1 overexpression prevents obesity-induced hypertension by buffering the influence of the sympathetic nervous system (SNS) on the maintenance of arterial pressure and by buffering pressor responses to stress. Wild type (WT; n=13) and CAT1 overexpressing mice (CAT+; n=13) were fed a normal or a high fat diet for 20 weeks. Mice fed a high fat diet were returned to the control diet before experiments commenced. Baseline mean arterial pressure (MAP) and effects of restraint-, shaker- and almond feeding-stress and ganglionic blockade (pentolinium; 5 mg/kg; i.p.) on MAP were determined in conscious mice. Fat feeding increased body weight to a similar extent in WT and CAT+ but MAP was greater only in WT compared to appropriate controls (by 29%). The depressor response to pentolinium was 65% greater in obese WT than lean WT (P lean CAT+ (P = 0.65). In lean WT and CAT+, pressor responses to shaker and feeding stress, but not restraint stress, were less in the latter genotype compared to the former (P ≤ 0.001). Pressor responses to shaker and feeding stress were less in obese WT than lean WT (P ≤ 0.001), but similar in obese and lean CAT+. The increase in MAP in response to restraint stress was less in obese WT (22 ± 2%), but greater in obese CAT+ (37 ± 2%), when compared to respective lean WT (31 ± 3%) and lean CAT+ controls (27 ± 2%; P ≤ 0.02). We conclude that CAT1 overexpression prevents obesity-induced hypertension by reducing the influence of the SNS on the maintenance of arterial pressure but not by buffering pressor responses to stress.

  9. Time-specific blockade of PDGFR with Imatinib (Glivec®) causes cataract and disruption of lens fiber cells in neonatal mice.

    Science.gov (United States)

    Zhou, Yin-Pin; He, Yang-Tao; Chen, Cheng-Li; Ji, Jun; Niu, Jian-Qin; Wang, Han-Zhi; Li, Shi-Feng; Huang, Lan; Mei, Feng

    2011-03-01

    This study aimed at investigating the response of lens epithelial cells in postnatal mice to Imatinib (Glivec®, a potent inhibitor of platelet-derived growth factor receptor (PDGFR)) treatment. Mouse eyes were sampled 10 days after administration of Imatinib (0.5 mg·g(-1)·day(-1)) for 3 days, at either 7, 14, or 21 days postpartum. Structural changes of lens were revealed by routine H.E. staining. Levels of proliferation and apoptosis were revealed by BrdU incorporation and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, respectively, and immunofluorescent staining with anti-PDGFRα antibody was carried out on the sections of eyeball. PDGFRα and p-PDGFRαprotein levels were evaluated by Western blot. Our results indicated that administration of Imatinib led to blockade of PDGFR signaling. Formation of cataracts was found only in those mice where treatment started from 7 days postpartum (P7), but was not observed in those samples from P14 nor P21. Fiber cells were disorganized in cataract lens core as observed histologically, and migration of epithelial cells was also inhibited. No apoptosis was detected with the TUNEL method. Our results indicated blockade of PDGFR at the neonatal stage (P7) would lead to cataracts and lens fiber cells disorganization, suggesting that PDGFR signaling plays a time-specific and crucial role in the postnatal development of lens in the mouse, and also may provide a new approach to produce a congenital cataract animal model.

  10. Antigens of worms and eggs showed a differentiated detection of specific IgG according to the time of Schistosoma mansoni infection in mice

    Directory of Open Access Journals (Sweden)

    Rafaella Fortini Queiroz Grenfell

    2012-08-01

    Full Text Available INTRODUCTION: The correlation between the immunological assay and the antibody titer can offer a tool for the experimental analysis of different phases of the disease. METHODS: Two simple immunological assays for Schistosoma mansoni in mice sera samples based on specific IgG detection for worms soluble antigens and eggs soluble antigens were standardized and evaluated in our laboratory. Fifty mice were used in negative and positive groups and the results obtained by enzyme-linked immunosorbent assays (ELISA assays were compared with the number of worms counted and the IgG titers at different times of infection. RESULTS: Data showed that ELISA using adult worm antigens (ELISA-SWAP presented a satisfactory correlation between the absorbance value of IgG titers and the individual number of worms counted after perfusion technique (R²=0.62. In addition, ELISA-SWAP differentially detected positive samples with 30 and 60 days post infection (p=0.011 and 0.003, respectively, whereas ELISA using egg antigens (ELISA-SEA detected samples after 140 days (p=0.03. CONCLUSIONS: These data show that the use of different antigens in immunological methods can be used as potential tools for the analysis of the chronological evolution of S. mansoni infection in murine schistosomiasis. Correlations with human schistosomiasis are discussed.

  11. Hepatocyte-specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice

    DEFF Research Database (Denmark)

    Yuan, Haixin; Zhang, Hong; Wu, Xunwei

    2009-01-01

    Cdc42, a member of the Rho guanosine triphosphatase (GTPase) family, plays important roles in the regulation of the cytoskeleton, cell proliferation, cell polarity, and cellular transport, but little is known about its specific function in mammalian liver. We investigated the function of Cdc42...... in regulating liver regeneration. Using a mouse model with liver-specific knockout of Cdc42 (Cdc42LK), we studied liver regeneration after partial hepatectomy. Histological analysis, immunostaining, and western blot analysis were performed to characterize Cdc42LK livers and to explore the role of Cdc42 in liver...... regeneration. In control mouse livers, Cdc42 became activated between 3 and 24 hours after partial hepatectomy. Loss of Cdc42 led to a significant delay of liver recovery after partial hepatectomy, which was associated with reduced and delayed DNA synthesis indicated by 5-bromo-2'-deoxyuridine staining...

  12. Specificity of exogenous acetate and glutamate as astrocyte substrates examined in acute brain slices from female mice using methionine sulfoximine (MSO) to inhibit glutamine synthesis

    DEFF Research Database (Denmark)

    Andersen, Jens Velde; McNair, Laura Frendrup; Schousboe, Arne

    2017-01-01

    Removal of endogenously released glutamate is mediated primarily by astrocytes and exogenous (13) C-labeled glutamate has been applied to study glutamate metabolism in astrocytes. Likewise, studies have clearly established the relevance of (13) C-labeled acetate as an astrocyte specific metabolic...... cortical slices from female NMRI mice were incubated in media containing [1,2-(13) C]acetate or [U-(13) C]glutamate, with or without methionine sulfoximine (MSO) to inhibit glutamine synthetase (GS). Tissue extracts were analyzed by gas chromatography-mass spectrometry. Blocking GS abolished the majority...... of glutamine (13) C-labeling from [1,2-(13) C]acetate as intended. However, (13) C-labeling of GABA was only 40-50% reduced by MSO, suggesting considerable neuronal uptake of acetate. Moreover, labeling of glutamate from [1,2-(13) C]acetate in the presence of MSO exceeded the level probable from exclusive...

  13. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice.

    Science.gov (United States)

    Liu, Yawei; Teige, Anna; Mondoc, Emma; Ibrahim, Saleh; Holmdahl, Rikard; Issazadeh-Navikas, Shohreh

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.

  14. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice

    OpenAIRE

    Xu, Xiaoling; Kobayashi, Shogo; Qiao, Wenhui; Li, Cuiling; Xiao, Cuiying; Radaeva, Svetlana; Stiles, Bangyan; Wang, Rui-Hong; Ohara, Nobuya; Yoshino, Tadashi; LeRoith, Derek; Torbenson, Michael S.; Gores, Gregory J.; Wu, Hong; Gao, Bin

    2006-01-01

    Cholangiocellular carcinoma (CC), the second most common primary liver cancer, is associated with a poor prognosis. It has been shown that CCs harbor alterations of a number of tumor-suppressor genes and oncogenes, yet key regulators for tumorigenesis remain unknown. Here we have generated a mouse model that develops CC with high penetrance using liver-specific targeted disruption of tumor suppressors SMAD4 and PTEN. In the absence of SMAD4 and PTEN, hyperplastic foci emerge exclusively from ...

  15. Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Anna; Mondoc, Emma

    2011-01-01

    NKT cells in the mouse recognize antigen in the context of the MHC class I-like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition...... in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707-721), was not associated...... with either MHC class I or II. Activation of CD1d-restricted mCII707-721-specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707-721-specific NKT cells induced T cell death through Fas/FasL, in an IL-17A-independent fashion. Moreover, mCII707-721-specific NKT cells...

  16. Nucleolin forms a specific complex with a fragment of the viral (minus) strand of minute virus of mice DNA.

    Science.gov (United States)

    Barrijal, S; Perros, M; Gu, Z; Avalosse, B L; Belenguer, P; Amalric, F; Rommelaere, J

    1992-01-01

    Nucleolin, a major nucleolar protein, forms a specific complex with the genome (a single-stranded DNA molecule of minus polarity) of parvovirus MVMp in vitro. By means of South-western blotting experiments, we mapped the binding site to a 222-nucleotide motif within the non-structural transcription unit, referred to as NUBE (nucleolin-binding element). The specificity of the interaction was confirmed by competitive gel retardation assays. DNaseI and nuclease S1 probing showed that NUBE folds into a secondary structure, in agreement with a computer-assisted conformational prediction. The whole NUBE may be necessary for the interaction with nucleolin, as suggested by the failure of NUBE subfragments to bind the protein and by the nuclease footprinting experiments. The present work extends the previously reported ability of nucleolin to form a specific complex with ribosomal RNA, to a defined DNA substrate. Considering the tropism of MVMp DNA replication for host cell nucleoli, these data raise the possibility that nucleolin may contribute to the regulation of the parvoviral life-cycle. Images PMID:1408821

  17. Enabling People with Developmental Disabilities to Actively Follow Simple Instructions and Perform Designated Occupational Activities According to Simple Instructions with Battery-Free Wireless Mice by Controlling Environmental Stimulation

    Science.gov (United States)

    Shih, Ching-Hsiang; Chang, Man-Ling

    2012-01-01

    This study extended Battery-free wireless mouse functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple occupational activities according to simple instructions by controlling their favorite environmental stimulation using Battery-free wireless mice with a newly developed…

  18. Blood as a surrogate marker for tissue-specific DNA methylation and changes due to folate depletion in post-partum female mice.

    Science.gov (United States)

    McKay, Jill A; Xie, Long; Harris, Sarah; Wong, Yi K; Ford, Dianne; Mathers, John C

    2011-07-01

    DNA methylation patterns are tissue specific and may influence tissue-specific gene regulation. Human studies investigating DNA methylation in relation to environmental factors primarily use blood-derived DNA as a surrogate for DNA from target tissues. It is therefore important to know if DNA methylation changes in blood in response to environmental changes reflect those in target tissues. Folate intake can influence DNA methylation, via altered methyl donor supply. Previously, manipulations of maternal folate intake during pregnancy altered the patterns of DNA methylation in offspring but, to our knowledge, the consequences for maternal DNA methylation are unknown. Given the increased requirement for folate during pregnancy, mothers may be susceptible to aberrant DNA methylation due to folate depletion. Female mice were fed folate-adequate (2 mg folic acid/kg diet) or folate-deplete (0.4 mg folic acid/kg diet) diets prior to mating and during pregnancy and lactation. Following weaning, dams were killed and DNA methylation was assessed by pyrosequencing® in blood, liver, and kidney at the Esr1, Igf2 differentially methylated region (DMR)1, Igf2 DMR2, Slc39a4CGI1, and Slc39a4CGI2 loci. We observed tissue-specific differences in methylation at all loci. Folate depletion reduced Igf2 DMR1 and Slc39a4CGI1 methylation across all tissues and altered Igf2 DMR2 methylation in a tissue-specific manner (pmethylation measurements may not always reflect methylation within other tissues. Further measurements of blood-derived and tissue-specific methylation patterns are warranted to understand the complexity of tissue-specific responses to altered nutritional exposure. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    International Nuclear Information System (INIS)

    Jambaldorj, Jamiyansuren; Makino, Satoshi; Munkhbat, Batmunkh; Tamiya, Gen

    2012-01-01

    Highlights: ► We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). ► Taf1 mRNA was expressed in most tissues and cell lines. ► N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. ► Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II–mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  20. Sustained expression of a neuron-specific isoform of the Taf1 gene in development stages and aging in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jambaldorj, Jamiyansuren [Department of Pharmacology, Institute of Health Biosciences, Graduate School, The University of Tokushima, Tokushima 770-8503 (Japan); Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan); Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Makino, Satoshi, E-mail: smakino@genetix-h.com [Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu 520-2192 (Japan); Munkhbat, Batmunkh [Central Scientific Research Laboratory, Institute of Medical Sciences, Ulaanbaatar (Mongolia); Tamiya, Gen [Advanced Molecular Epidemiology Research Institute, Yamagata University Faculty of Medicine, Yamagata 990-9585 (Japan)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We identified the mouse homologue of neuron-specific TAF1 (N-Taf1). Black-Right-Pointing-Pointer Taf1 mRNA was expressed in most tissues and cell lines. Black-Right-Pointing-Pointer N-Taf1 mRNA was expressed in the brain and Neuroblastoma N2a cell lines. Black-Right-Pointing-Pointer Taf1 and N-Taf1 showed different expression profile in development stage and aging. -- Abstract: TATA-box binding protein associated factor 1 (TAF1) protein is the largest and the essential component of the TFIID complex in the pathway of RNA polymerase II-mediated gene transcription, and it regulates transcription of a large number of genes related to cell division. The neuron-specific isoform of the TAF1 gene (N-TAF1), which we reported previously, may have an essential role in neurons through transcriptional regulation of many neuron-specific genes. In the present study, we cloned the full-length cDNA that encodes the mouse homologue of N-TAF1 (N-Taf1) protein. By carrying out of real time RT-PCR, we investigated the expression analysis of the N-Taf1 mRNA in mouse tissues and cell lines. As well as the human N-TAF1, the N-Taf1 showed limited expression in the brain and neuroblastoma, whereas Taf1 expressed elsewhere. Furthermore, in mouse embryo head or mouse brain, mRNA expression of TAF1 changes dramatically during development but N-Taf1 showed sustained expression. Our result suggests that the N-Taf1 gene has an important role in non-dividing neuronal cell rather than in cell division and proliferation during neurogenesis.

  1. Local and sex-specific biases in crossover vs. noncrossover outcomes at meiotic recombination hot spots in mice

    Science.gov (United States)

    de Boer, Esther; Jasin, Maria; Keeney, Scott

    2015-01-01

    Meiotic recombination initiated by programmed double-strand breaks (DSBs) yields two types of interhomolog recombination products, crossovers and noncrossovers, but what determines whether a DSB will yield a crossover or noncrossover is not understood. In this study, we analyzed the influence of sex and chromosomal location on mammalian recombination outcomes by constructing fine-scale recombination maps in both males and females at two mouse hot spots located in different regions of the same chromosome. These include the most comprehensive maps of recombination hot spots in oocytes to date. One hot spot, located centrally on chromosome 1, behaved similarly in male and female meiosis: Crossovers and noncrossovers formed at comparable levels and ratios in both sexes. In contrast, at a distal hot spot, crossovers were recovered only in males even though noncrossovers were obtained at similar frequencies in both sexes. These findings reveal an example of extreme sex-specific bias in recombination outcome. We further found that estimates of relative DSB levels are surprisingly poor predictors of relative crossover frequencies between hot spots in males. Our results demonstrate that the outcome of mammalian meiotic recombination can be biased, that this bias can vary depending on location and cellular context, and that DSB frequency is not the only determinant of crossover frequency. PMID:26251527

  2. Ovalbumin-coated pH-sensitive microneedle arrays effectively induce ovalbumin-specific antibody and T-cell responses in mice.

    Science.gov (United States)

    van der Maaden, Koen; Varypataki, Eleni Maria; Romeijn, Stefan; Ossendorp, Ferry; Jiskoot, Wim; Bouwstra, Joke

    2014-10-01

    The aim of this work was to study the applicability of antigen-coated pH-sensitive microneedle arrays for effective vaccination strategies. Therefore, a model antigen (ovalbumin) was coated onto pH-sensitive (pyridine-modified) microneedle arrays to test pH-triggered antigen release by applying the coated arrays onto ex vivo human skin, and by conducting a dermal immunization study in mice. The release of antigen into ex vivo human skin from the coated microneedles was determined by using radioactively labeled ovalbumin. To investigate the induction of antigen-specific IgG, and CD4(+) and CD8(+) T-cell responses, BALB/c mice were immunized with antigen-coated pH-sensitive microneedles by the 'coat and poke' approach. These responses were compared to responses induced by the 'poke and patch' approach, and subcutaneous and intradermal vaccination with classic hypodermic needles. The pH-sensitive microneedle arrays were efficiently coated with ovalbumin (95% coating efficiency) and upon application of six microneedle arrays 4.27 of 7 μg ovalbumin was delivered into the skin, showing a release efficiency of 70%. In contrast, the 'poke and patch' approach led to a delivery of only 6.91 of 100 μg ovalbumin (7% delivery efficiency). Immunization by means of ovalbumin-coated microneedles resulted in robust CD4(+) and CD8(+) T-cell responses comparable to those obtained after subcutaneous or intradermal immunization with conventional needles. Moreover, it effectively induced IgG responses; however, it required prime-boost immunizations before antibodies were produced. In conclusion, antigen delivery into ex vivo human skin by antigen-coated pH-sensitive microneedle arrays is more efficient than the 'poke-and-patch' approach and in vivo vaccination studies show the applicability of pH-sensitive microneedles for the induction of both T cell and B cell responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Protective specific immunity induced by doxorubicin plus TNF-alpha combination treatment of EL4 lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Ehrke, M J; Verstovsek, S; Maccubbin, D L; Ujházy, P; Zaleskis, G; Berleth, E; Mihich, E

    2000-07-01

    The therapeutic efficacy of a single (day 8), moderate dose (4 mg/kg, i.v.) of doxorubicin (DOX, Adriamycin) combined with recombinant human TNF-alpha (3 different doses and 5 different schedules, i.v.) was evaluated in C57BL/6 mice bearing an implant (s.c.) of the DOX-sensitive, TNF-alpha-resistant EL4 lymphoma. In parallel to monitoring survival, the levels of several host anti-tumor cytolytic effector functions of splenocytes and thymocytes were evaluated throughout the treatment period and in long-term survivors (LTS). DOX treatment alone resulted in a moderate (approx. 20%) increase in life span but no cures. TNF-alpha alone, at any tested dose or schedule, had little or no positive effect on survival. The combinations of DOX and TNF-alpha were only slightly better than DOX alone with respect to the time to death of mice that died (approx. 29% increase); however, each of the combinations involving 1,000 U TNF-alpha/injection produced a fraction (20% to 80%) of LTS. The host defense activities examined included those of splenic and thymic cytolytic T lymphocytes (CTL) and lymphokine-activated killer cells as well as splenic tumoricidal macrophages. Although most activities were modulated by tumor growth and/or treatment, only CTL responsiveness appeared to correlate with survival. CTL activity in the treated groups with LTS was significantly higher than in control groups late in the treatment period. Finally, ex vivo analyses of splenocytes and thymocytes together with the rejection of implanted tumor at 17 months established that LTS displayed specific long-term immune memory. Copyright 2000 Wiley-Liss, Inc.

  4. Early expression of pregnancy-specific glycoprotein 22 (PSG22) by trophoblast cells modulates angiogenesis in mice.

    Science.gov (United States)

    Blois, Sandra M; Tirado-González, Irene; Wu, Julie; Barrientos, Gabriela; Johnson, Briana; Warren, James; Freitag, Nancy; Klapp, Burghard F; Irmak, Ster; Ergun, Suleyman; Dveskler, Gabriela S

    2012-06-01

    Mouse and human pregnancy-specific glycoproteins (PSG) are known to exert immunomodulatory functions during pregnancy by inducing maternal leukocytes to secrete anti-inflammatory cytokines that promote a tolerogenic decidual microenvironment. Many such anti-inflammatory mediators also function as proangiogenic factors, which, along with the reported association of murine PSG with the uterine vasculature, suggest that PSG may contribute to the vascular adaptations necessary for successful implantation and placental development. We observed that PSG22 is strongly expressed around the embryonic crypt on Gestation Day 5.5, indicating that trophoblast giant cells are the main source of PSG22 during the early stages of pregnancy. PSG22 treatment up-regulated the secretion of transforming growth factor beta 1 and vascular endothelial growth factor A (VEGFA) in murine macrophages, uterine dendritic cells, and natural killer cells. A possible role of PSGs in uteroplacental angiogenesis is further supported by the finding that incubation of endothelial cells with PSG22 resulted in the formation of tubes in the presence and absence of VEGFA. We determined that PSG22, like human PSG1 and murine PSG17 and PSG23, binds to the heparan sulfate chains in syndecans. Therefore, our findings indicate that despite the independent evolution and expansion of human and rodent PSG, members in both families have conserved functions that include their ability to induce anti-inflammatory cytokines and proangiogenic factors as well as to induce the formation of capillary structures by endothelial cells. In summary, our results indicate that PSG22, the most abundant PSG expressed during mouse early pregnancy, is likely a major contributor to the establishment of a successful pregnancy.

  5. Knowledge about Sounds – Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields and Layers in House Mice

    Directory of Open Access Journals (Sweden)

    Diana B. Geissler

    2016-03-01

    Full Text Available Activation of the auditory cortex (AC by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF, the ultrasonic field (UF, the secondary field (AII, and the dorsoposterior field (DP suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers and brains which acquired knowledge via implicit learning (naïve females. In this way, auditory cortical activation discriminates between instinctive (mothers and learned (naïve females cognition.

  6. Selection of SARS-Coronavirus-specific B cell epitopes by phage peptide library screening and evaluation of the immunological effect of epitope-based peptides on mice

    International Nuclear Information System (INIS)

    Yu Hua; Jiang Lifang; Fang Danyun; Yan Huijun; Zhou Jingjiao; Zhou Junmei; Liang Yu; Gao Yang; Zhao, Wei; Long Beiguo

    2007-01-01

    Antibodies to SARS-Coronavirus (SARS-CoV)-specific B cell epitopes might recognize the pathogen and interrupt its adherence to and penetration of host cells. Hence, these epitopes could be useful for diagnosis and as vaccine constituents. Using the phage-displayed peptide library screening method and purified Fab fragments of immunoglobulin G (IgG Fab) from normal human sera and convalescent sera from SARS-CoV-infected patients as targets, 11 B cell epitopes of SARS-CoV spike glycoprotein (S protein) and membrane protein (M protein) were screened. After a bioinformatics tool was used to analyze these epitopes, four epitope-based S protein dodecapeptides corresponding to the predominant epitopes were chosen for synthesis. Their antigenic specificities and immunogenicities were studied in vitro and in vivo. Flow cytometry and ELISPOT analysis of lymphocytes as well as a serologic analysis of antibody showed that these peptides could trigger a rapid, highly effective, and relatively safe immune response in BALB/c mice. These findings might aid development of SARS diagnostics and vaccines. Moreover, the role of S and M proteins as important surface antigens is confirmed

  7. Chloroform-Methanol Residue of Coxiella burnetii Markedly Potentiated the Specific Immunoprotection Elicited by a Recombinant Protein Fragment rOmpB-4 Derived from Outer Membrane Protein B of Rickettsia rickettsii in C3H/HeN Mice.

    Directory of Open Access Journals (Sweden)

    Wenping Gong

    Full Text Available The obligate intracellular bacteria, Rickettsia rickettsii and Coxiella burnetii, are the potential agents of bio-warfare/bio-terrorism. Here C3H/HeN mice were immunized with a recombinant protein fragment rOmp-4 derived from outer membrane protein B, a major protective antigen of R. rickettsii, combined with chloroform-methanol residue (CMR extracted from phase I C. burnetii organisms, a safer Q fever vaccine. These immunized mice had significantly higher levels of IgG1 and IgG2a to rOmpB-4 and interferon-γ (IFN-γ and tumor necrosis factor-α (TNF-α, two crucial cytokines in resisting intracellular bacterial infection, as well as significantly lower rickettsial loads and slighter pathological lesions in organs after challenge with R. rickettsii, compared with mice immunized with rOmpB-4 or CMR alone. Additionally, after challenge with C. burnetii, the coxiella loads in the organs of these mice were significantly lower than those of mice immunized with rOmpB-4 alone. Our results prove that CMR could markedly potentiate enhance the rOmpB-4-specific immunoprotection by promoting specific and non-specific immunoresponses and the immunization with the protective antigen of R. rickettsii combined with CMR of C. burnetii could confer effective protection against infection of R. rickettsii or C. burnetii.

  8. Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice

    Science.gov (United States)

    Faulk, Christopher; Barks, Amanda; Liu, Kevin; Goodrich, Jaclyn M; Dolinoy, Dana C

    2013-01-01

    Aims Epidemiological and animal data suggest that the development of adult chronic conditions is influenced by early-life exposure-induced changes to the epigenome. This study investigates the effects of perinatal lead (Pb) exposure on DNA methylation and bodyweight in weanling mice. Materials & methods Viable yellow agouti (Avy) mouse dams were exposed to 0, 2.1, 16 and 32 ppm Pb acetate before conception through weaning. Epigenetic effects were evaluated by scoring coat color of Avy/a offspring and quantitative bisulfite sequencing of two retrotransposon-driven (Avy and CDK5 activator-binding protein intracisternal A particle element) and two imprinted (Igf2 and Igf2r) loci in tail DNA. Results Maternal blood Pb levels were below the limit of detection in controls, and 4.1, 25.1 and 32.1 μg/dl for each dose, respectively. Pb exposure was associated with a trend of increased wean bodyweight in males (p = 0.03) and altered coat color in Avy/a offspring. DNA methylation at Avy and the CDK5 activator-binding protein intracisternal A-particle element was significantly different from controls following a cubic trend (p = 0.04; p = 0.01), with male-specific effects at the Avy locus. Imprinted genes did not shift in methylation across exposures. Conclusion Dose- and sex-specific responses in bodyweight and DNA methylation indicate that Pb acts on the epigenome in a locus-specific fashion, dependent on the genomic feature hosting the CpG site of interest, and that sex is a factor in epigenetic response. PMID:24059796

  9. Protective specific immunity induced by cyclophosphamide plus tumor necrosis factor alpha combination treatment of EL4-lymphoma-bearing C57BL/6 mice.

    Science.gov (United States)

    Krawczyk, C M; Verstovsek, S; Ujházy, P; Maccubbin, D; Ehrke, M J

    1995-06-01

    A combination treatment protocol initiated 12 days after tumor injection, when the tumor was large, by administering cyclophosphamide (CY, 150 or 250 mg/kg) intraperitoneally followed by intravenous tumor necrosis factor alpha (TNF alpha, 1000 units injection) on days 13, 16, 18, 21, and 23, resulted in about 60% long-term survival (i.e., survival for at least 60 days) in the syngeneic C57BL/6 mouse/EL4 lymphoma model system. The establishment of a specific antitumor immune memory and its possible therapeutic relevance was verified by reinjecting 60-day survivors with EL4 cells; all 60-day survivors that had received the combination treatments rejected the implants and survived for a further 60 days. Thymic cellularity was reduced during treatment and its recovery appeared to correlate with long-term survival and immunity. Thymocytes from mice treated with the combination were found to express significant levels of specific anti-EL4 cytolytic activity following a 4-day stimulation culture with X-irradiated EL4 cells and low concentrations of interleukin-2. This response could not be generated with thymocytes from naive animals. In each case the effect seen with the combination of a moderate CY dose (150 mg/kg) with TNF alpha was better than that seen with either dose of CY alone and equal to or better than that seen with the higher dose of CY combined with TNF alpha. These results indicate that treatment with a single moderate dose of CY in combination with TNF alpha is effective against a large, established tumor in this murine model. Furthermore, all the long-term survivors induced by this treatment developed protective immunity against reimplanted tumor and demonstrated a long-term specific immune memory in the thymus.

  10. Enabling immersive simulation.

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Josh (University of California Santa Cruz, Santa Cruz, CA); Mateas, Michael (University of California Santa Cruz, Santa Cruz, CA); Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  11. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Directory of Open Access Journals (Sweden)

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  12. Follicles in gut-associated lymphoid tissues create preferential survival niches for follicular Th cells escaping Thy-1-specific depletion in mice.

    Science.gov (United States)

    Mihalj, Martina; Kellermayer, Zoltán; Balogh, Peter

    2013-07-01

    Although a substantial number of T cells may escape depletion following in vivo mAb treatment in patients undergoing immunosuppression, their specific tissue location and phenotypic characteristics in different peripheral lymphoid tissues have not been analyzed in detail. Here we investigated the survival of CD4(+) T cells immediately following anti-Thy-1 mAb treatment in mice. We found a preferential survival of CD4(+) T cells expressing Thy-1 antigen in the Peyer's patches (PP) and also in mesenteric lymph nodes (MLN), where the relative majority of the surviving CD4(+) T cells displayed CD44(high)/CD62L(-) phenotype corresponding to effector memory T-cell features. These CD4(+) T cells also expressed CXCR5 and PD-1 (programmed cell death-1) markers characteristic for follicular Th cells (TFH). We also demonstrate that the immediate survival of these cells does not involve proliferation and is independent of IL-7. Induction of germinal center formation in spleen enhanced while the dissolution of follicular architecture by lymphotoxin-β receptor antagonist treatment slightly reduced TFH survival. Our results thus raise the possibility that the follicles within PP and MLN may create natural support niches for the preferential survival of TFH cells of the memory phenotype, thus allowing their escape during T-cell depletion.

  13. Using Patient-Specific Induced Pluripotent Stem Cells and Wild-Type Mice to Develop a Gene Augmentation-Based Strategy to Treat CLN3-Associated Retinal Degeneration.

    Science.gov (United States)

    Wiley, Luke A; Burnight, Erin R; Drack, Arlene V; Banach, Bailey B; Ochoa, Dalyz; Cranston, Cathryn M; Madumba, Robert A; East, Jade S; Mullins, Robert F; Stone, Edwin M; Tucker, Budd A

    2016-10-01

    Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.

  14. The hominoid-specific gene TBC1D3 promotes generation of basal neural progenitors and induces cortical folding in mice

    Science.gov (United States)

    Ju, Xiang-Chun; Hou, Qiong-Qiong; Sheng, Ai-Li; Wu, Kong-Yan; Zhou, Yang; Jin, Ying; Wen, Tieqiao; Yang, Zhengang; Wang, Xiaoqun; Luo, Zhen-Ge

    2016-01-01

    Cortical expansion and folding are often linked to the evolution of higher intelligence, but molecular and cellular mechanisms underlying cortical folding remain poorly understood. The hominoid-specific gene TBC1D3 undergoes segmental duplications during hominoid evolution, but its role in brain development has not been explored. Here, we found that expression of TBC1D3 in ventricular cortical progenitors of mice via in utero electroporation caused delamination of ventricular radial glia cells (vRGs) and promoted generation of self-renewing basal progenitors with typical morphology of outer radial glia (oRG), which are most abundant in primates. Furthermore, down-regulation of TBC1D3 in cultured human brain slices decreased generation of oRGs. Interestingly, localized oRG proliferation resulting from either in utero electroporation or transgenic expression of TBC1D3, was often found to underlie cortical regions exhibiting folding. Thus, we have identified a hominoid gene that is required for oRG generation in regulating the cortical expansion and folding. DOI: http://dx.doi.org/10.7554/eLife.18197.001 PMID:27504805

  15. Total lymphoid irradiation reduces IgG autoantibody production and enhances specific antibody responses in NZB/NZW F1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Farinas, M.C.; Strober, S.

    1989-07-01

    Thymus-independent primary antibody responses were studied in young and old (9 months) untreated and TLI-treated NZB/NZW and BALB/c mice. Untreated old NZB/NZW mice had a low primary response to Brucella abortus (BA) as compared to that of young NZB/NZW and BALB/c mice. However, TLI treatment resulted in a 130-fold increase in the IgG anti-BA primary antibody response at day 21 postimmunization, achieving similar levels to those of young NZB/NZW or nonautoimmune BALB/c mice. Anti-TNP responses to trinitrophenylated BA or Ficoll were masked by high background levels of anti-TNP antibodies. Despite the increase in the anti-BA response, spontaneous immunoglobulin secretion and autoantibody levels were markedly decreased after TLI in old NZB/NZW mice.

  16. Total lymphoid irradiation reduces IgG autoantibody production and enhances specific antibody responses in NZB/NZW F1 mice

    International Nuclear Information System (INIS)

    Farinas, M.C.; Strober, S.

    1989-01-01

    Thymus-independent primary antibody responses were studied in young and old (9 months) untreated and TLI-treated NZB/NZW and BALB/c mice. Untreated old NZB/NZW mice had a low primary response to Brucella abortus (BA) as compared to that of young NZB/NZW and BALB/c mice. However, TLI treatment resulted in a 130-fold increase in the IgG anti-BA primary antibody response at day 21 postimmunization, achieving similar levels to those of young NZB/NZW or nonautoimmune BALB/c mice. Anti-TNP responses to trinitrophenylated BA or Ficoll were masked by high background levels of anti-TNP antibodies. Despite the increase in the anti-BA response, spontaneous immunoglobulin secretion and autoantibody levels were markedly decreased after TLI in old NZB/NZW mice

  17. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  18. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.

    Science.gov (United States)

    Huffaker, Thomas B; Lee, Soh-Hyun; Tang, William W; Wallace, Jared A; Alexander, Margaret; Runtsch, Marah C; Larsen, Dane K; Thompson, Jacob; Ramstead, Andrew G; Voth, Warren P; Hu, Ruozhen; Round, June L; Williams, Matthew A; O'Connell, Ryan M

    2017-11-10

    MicroRNA-155 (miR-155) regulates antitumor immune responses. However, its specific functions within distinct immune cell types have not been delineated in conditional KO mouse models. In this study, we investigated the role of miR-155 specifically within T cells during the immune response to syngeneic tumors. We found that miR-155 expression within T cells is required to limit syngeneic tumor growth and promote IFNγ production by T cells within the tumor microenvironment. Consequently, we found that miR-155 expression by T cells is necessary for proper tumor-associated macrophage expression of IFNγ-inducible genes. We also found that immune checkpoint-blocking (ICB) antibodies against programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) restored antitumor immunity in miR-155 T cell-conditional KO mice. We noted that these ICB antibodies rescued the levels of IFNγ-expressing T cells, expression of multiple activation and effector genes expressed by tumor-infiltrating CD8 + and CD4 + T cells, and tumor-associated macrophage activation. Moreover, the ICB approach partially restored expression of several derepressed miR-155 targets in tumor-infiltrating, miR-155-deficient CD8 + T cells, suggesting that miR-155 and ICB regulate overlapping pathways to promote antitumor immunity. Taken together, our findings highlight the multifaceted role of miR-155 in T cells, in which it promotes antitumor immunity. These results suggest that the augmentation of miR-155 expression could be used to improve anticancer immunotherapies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1 neg plasma cells which mainly provide non-parasite-specific antibodies.

    Science.gov (United States)

    Merino, Maria C; Montes, Carolina L; Acosta-Rodriguez, Eva V; Bermejo, Daniela A; Amezcua-Vesely, Maria C; Gruppi, Adriana

    2010-05-01

    Humoral immunity during experimental Chagas disease has been considered a double-edge sword, critical to control Trypanosoma cruzi spreading but also associated to tissue damage. Peritoneal B-1 cells have been linked to the pathogenesis of Chagas disease; however, they may also help to control the infection by providing a fast wave of antibodies. In the present work, we determined that peritoneal B-cell response to T. cruzi is characterized by a marked reduction of CD19(+) B cells due to plasma cell differentiation rather than to cell death. Both peritoneal B-2 and B-1 cells decrease after parasite infection, but with different kinetics. Thus, the reduction in B-2 cell number can be detected from day 4 postinfection while the number of B-1 cells decreases only after 15 days of infection. Differentiation of peritoneal B-1 and B-2 cells into IgM-secreting cells was triggered by parasites but not by cytokines produced by peritoneal cells. Electron microscopy studies showed that peritoneum of infected mice lodges plasma cells with typical morphology as well as atypical plasma cells named 'Mott-like cells' containing high number of cytoplasmatic Ig(+) granules. The plasma cells induced during the infection showed a phenotype that may allow their persistence in peritoneum and they may contribute to the high levels of antibodies exhibited at the chronic phase of infection. We also showed that the peritoneal B-cell response is scarcely specific for the invading pathogen and rather constitute an important source of non-parasite-specific IgM and IgG in the infected host.

  20. Isolation and characterization of a pseudoautosomal region-specific genetic marker in C57BL/6 mice using genomic representational difference analysis.

    Science.gov (United States)

    Kalcheva, I D; Matsuda, Y; Plass, C; Chapman, V M

    1995-12-19

    Representational difference analysis was used to identify strain-specific differences in the pseudoautosomal region (PAR) of mouse X and Y chromosomes. One second generation (C57BL/6 x Mus spretus) x Mus spretus interspecific backcross male carrying the C57BL/6 (B6) PAR was used for tester DNA. DNA from five backcross males from the same generation that were M. spretus-type for the PAR was pooled for the driver. A cloned probe designated B6-38 was recovered that is B6-specific in Southern analysis. Analysis of genomic DNA from several inbred strains of laboratory mice and diverse Mus species and subspecies identified a characteristic Pst I pattern of fragment sizes that is present only in the C57BL family of strains. Hybridization was observed with sequences in DBA/2J and to a limited extent with Mus musculus (PWK strain) and Mus castaneus DNA. No hybridization was observed in DNA of different Mus species, M. spretus, M. hortulanus, and M. caroli. Genetic analyses of B6-38 was conducted using C57BL congenic males that carry M. spretus alleles for distal X chromosome loci and the PAR and outcrosses of heterozygous congenic females with M. spretus. These analyses demonstrated that the B6-38 sequences were inherited with both the X and Y chromosome. B6-38 sequences were genetically mapped as a locus within the PAR using two interspecific backcrosses. The locus defined by B6-38 is designated DXYRp1. Preliminary analyses of recombination between the distal X chromosome gene amelogenin (Amg) and the PAR loci for either TelXY or sex chromosome association (Sxa) suggest that the locus DXYRp1 maps to the distal portion of the PAR.

  1. High treatment efficacy by dual targeting of Burkitt's lymphoma xenografted mice with a {sup 177}Lu-based CD22-specific radioimmunoconjugate and rituximab

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Tobias; Boetticher, Benedikt; Keller, Armin; Schlegelmilch, Anne; Jaeger, Dirk; Krauss, Juergen [Heidelberg University Hospital, Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg (Germany); Mier, Walter; Kraemer, Susanne; Leotta, Karin [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); Sauter, Max; Haberkorn, Uwe [Heidelberg University Hospital, Department of Nuclear Medicine, Heidelberg (Germany); German Cancer Research Center (DKFZ), Clinical Cooperation Unit Nuclear Medicine, Heidelberg (Germany); Grosse-Hovest, Ludger [University of Tuebingen, Department of Immunology, Tuebingen (Germany); Arndt, Michaela A.E. [Heidelberg University Hospital, Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg (Germany); German Cancer Research Center (DKFZ), Immunotherapy Program, National Center for Tumor Diseases, Heidelberg (Germany)

    2016-03-15

    Dual-targeted therapy has been shown to be a promising treatment option in recurrent and/or refractory B-cell non-Hodgkin's lymphoma (B-NHL). We generated radioimmunoconjugates (RICs) comprising either a novel humanized anti-CD22 monoclonal antibody, huRFB4, or rituximab, and the low-energy β-emitter {sup 177}Lu. Both RICs were evaluated as single agents in a human Burkitt's lymphoma xenograft mouse model. To increase the therapeutic efficacy of the anti-CD22 RIC, combination therapy with unlabelled anti-CD20 rituximab was explored. The binding activity of CHX-A''-DTPA-conjugated antibodies to target cells was analysed by flow cytometry. To assess tumour targeting of {sup 177}Lu-labelled antibodies, in vivo biodistribution experiments were performed. For radioimmunotherapy (RIT) studies, non-obese diabetic recombination activating gene-1 (NOD-Rag1{sup null}) interleukin-2 receptor common gamma chain (IL2r γ {sup null}) null mice (NRG mice) were xenografted subcutaneously with Raji Burkitt's lymphoma cells. {sup 177}Lu-conjugated antibodies were administered at a single dose of 9.5 MBq per mouse. For dual-targeted therapy, rituximab was injected at weekly intervals (0.5 - 1.0 mg). Tumour accumulation of RICs was monitored by planar scintigraphy. Conjugation of CHX-A''-DTPA resulted in highly stable RICs with excellent antigen-binding properties. Biodistribution experiments revealed higher tumour uptake of the {sup 177}Lu-labelled anti-CD22 IgG than of {sup 177}Lu-labelled rituximab. Treatment with {sup 177}Lu-conjugated huRFB4 resulted in increased tumour growth inhibition and significantly longer survival than treatment with {sup 177}Lu-conjugated rituximab. The therapeutic efficacy of the anti-CD22 RIC could be markedly enhanced by combination with unlabelled rituximab. These findings suggest that dual targeting with {sup 177}Lu-based CD22-specific RIT in combination with rituximab is a promising new treatment option for

  2. Regulation of the Bcas1 and Baiap3 transcripts in the subthalamic nucleus in mice recovering from MPTP toxicity

    DEFF Research Database (Denmark)

    Lauridsen, J B; Johansen, J L; Rekling, J C

    2011-01-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure leads to significant and irreversible damage to dopaminergic neurons in both mice and humans. While MPTP exposure in humans causes permanent symptoms of Parkinson's disease, MPTP treated mice will recover behaviorally over a 3-week period....... This mouse specific recovery might be linked to transcriptional changes in the basal ganglia enabling mice to maintain normal motor function in spite of low striatal dopamine levels. Laser microdissection was used to isolate the subthalamic nucleus from mice 7 and 28 days following MPTP exposure. High...

  3. Ca2+-clock-dependent pacemaking in the sinus node is impaired in mice with a cardiac specific reduction in SERCA2 abundance

    Directory of Open Access Journals (Sweden)

    Sunil Jit Ramamoorthy Jeewanlal Logantha

    2016-06-01

    Full Text Available Background: The sarcoplasmic reticulum Ca2+-ATPase (SERCA2 pump is an important component of the Ca2+-clock pacemaker mechanism that provides robustness and flexibility to sinus node pacemaking. We have developed transgenic mice with reduced cardiac SERCA2 abundance (Serca2 KO as a model for investigating SERCA2’s role in sinus node pacemaking.Methods and Results: In Serca2 KO mice, ventricular SERCA2a protein content measured by Western blotting was 75% (P70% Serca2 downregulation.Conclusions: Serca2 KO mice show a disrupted Ca2+-clock-dependent pacemaker mechanism contributing to impaired sinus node and atrioventricular node function.

  4. Variant BDNF-Val66Met Polymorphism is Associated with Layer-Specific Alterations in GABAergic Innervation of Pyramidal Neurons, Elevated Anxiety and Reduced Vulnerability of Adolescent Male Mice to Activity-Based Anorexia.

    Science.gov (United States)

    Chen, Yi-Wen; Surgent, Olivia; Rana, Barkha S; Lee, Francis; Aoki, Chiye

    2017-08-01

    Previously, we determined that rodents' vulnerability to food restriction (FR)-evoked wheel running during adolescence (activity-based anorexia, ABA) is associated with failures to increase GABAergic innervation of hippocampal and medial prefrontal pyramidal neurons. Since brain-derived neurotrophic factor (BDNF) promotes GABAergic synaptogenesis, we hypothesized that individual differences in this vulnerability may arise from differences in the link between BDNF bioavailability and FR-evoked wheel running. We tested this hypothesis in male BDNF-Val66Met knock-in mice (BDNFMet/Met), known for reduction in the activity-dependent BDNF secretion and elevated anxiety-like behaviors. We found that 1) in the absence of FR or a wheel (i.e., control), BDNFMet/Met mice are more anxious than wild-type (WT) littermates, 2) electron microscopically verified GABAergic innervations of pyramidal neurons of BDNFMet/Met mice are reduced at distal dendrites in hippocampal CA1 and medial prefrontal cortex, 3) following ABA, WT mice exhibit anxiety equal to those of the BDNFMet/Met mice and have lost GABAergic innervation along distal dendrites, 4) BDNFMet/Met mice show blunted ABA vulnerability, and 5) unexpectedly, GABAergic innervation is higher at somata of BDNFMet/Met mice than of WT. We conclude that lamina-specific GABAergic inhibition is important for regulating anxiety, whether arising from environmental stress, such as food deprivation, or genetically, such as BDNFMet/Met single nucleotide polymorphism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Repeated administration of phytocannabinoid Δ(9)-THC or synthetic cannabinoids JWH-018 and JWH-073 induces tolerance to hypothermia but not locomotor suppression in mice, and reduces CB1 receptor expression and function in a brain region-specific manner.

    Science.gov (United States)

    Tai, S; Hyatt, W S; Gu, C; Franks, L N; Vasiljevik, T; Brents, L K; Prather, P L; Fantegrossi, W E

    2015-12-01

    These studies probed the relationship between intrinsic efficacy and tolerance/cross-tolerance between ∆(9)-THC and synthetic cannabinoid drugs of abuse (SCBs) by examining in vivo effects and cellular changes concomitant with their repeated administration in mice. Dose-effect relationships for hypothermic effects were determined in order to confirm that SCBs JWH-018 and JWH-073 are higher efficacy agonists than ∆(9)-THC in mice. Separate groups of mice were treated with saline, sub-maximal hypothermic doses of JWH-018 or JWH-073 (3.0mg/kg or 10.0mg/kg, respectively) or a maximally hypothermic dose of 30.0mg/kg ∆(9)-THC once per day for 5 consecutive days while core temperature and locomotor activity were monitored via biotelemetry. Repeated administration of all drugs resulted in tolerance to hypothermic effects, but not locomotor effects, and this tolerance was still evident 14 days after the last drug administration. Further studies treated mice with 30.0mg/kg ∆(9)-THC once per day for 4 days, then tested with SCBs on day 5. Mice with a ∆(9)-THC history were cross-tolerant to both SCBs, and this cross-tolerance also persisted 14 days after testing. Select brain regions from chronically treated mice were examined for changes in CB1 receptor expression and function. Expression and function of hypothalamic CB1Rs were reduced in mice receiving chronic drugs, but cortical CB1R expression and function were not altered. Collectively, these data demonstrate that repeated ∆(9)-THC, JWH-018 and JWH-073 can induce long-lasting tolerance to some in vivo effects, which is likely mediated by region-specific downregulation and desensitization of CB1Rs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    Directory of Open Access Journals (Sweden)

    Xue-Yuan Li

    2016-10-01

    Full Text Available Alzheimer’s disease (AD is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1 transgenic (Tg mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr. Morris water maze (MWM was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD. By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD. Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals.

  7. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET.

    Science.gov (United States)

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  8. Mouse mammary tumor viruses expressed by RIII/Sa mice with a high incidence of mammary tumors interact with the Vβ-2- and Vβ-8-specific T cells during viral infection

    International Nuclear Information System (INIS)

    Uz-Zaman, Taher; Ignatowicz, Leszek; Sarkar, Nurul H.

    2003-01-01

    The mouse mammary tumor viruses (MMTVs) that induce mammary adenocarcinomas in mice are transmitted from mother to offspring through milk. MMTV infection results in the deletion of specific T cells as a consequence of interaction between the MMTV-encoded superantigen (Sag) and specific Vβ chains of the T cell receptor. The specificity and kinetics of T cell deletion for a number of highly oncogenic MMTVs, such as C3H- and GR-MMTVs, have been studied in great detail. Some work has also been done with the MMTVs expressed in two substrains of RIII mice, BR6 and RIIIS/J, but the nature of the interaction between T cells and the virus(es) that the parental RIII-strain of mice express has not been investigated. Since RIII mice (designated henceforth as RIII/Sa) have a very high incidence (90-98%) of mammary tumors, and they have been extensively used in studies of the biology of mammary tumor development, we have presently determined the pattern of Vβ-T cell deletion caused by RIII/Sa-MMTV-Sag(s) during viral infection. T cells were isolated from lymph nodes and thymus of young RIII/Sa mice, as well as from BALB/c (BALB/cfRIII/Sa), C57BL (C57BLfRIII/Sa), and RIIIS/J (RIIIS/JfRIII/Sa) mice after they were infected with RIII/Sa-MMTV(s) by foster nursing. The composition of the T cells was analyzed by FACS using a panel of monoclonal antibodies specific to a variety of Vβs. Our results show that milk-borne RIII/Sa-MMTV(s) infection leads to the deletion of CD4 + Vβ-2, and to a lesser extent Vβ-8 bearing peripheral and central T cells in RIII/Sa, RIIIS/J, BALB/c, and C57BL mice. Our results are in contrast to the findings that C3H-, GR-, and BR6-MMTVs delete Vβ-14- and/or Vβ-15-specific T cells

  9. Supplementation of Mice with Specific Nondigestible Oligosaccharides during Pregnancy or Lactation Leads to Diminished Sensitization and Allergy in the Female Offspring

    NARCIS (Netherlands)

    Hogenkamp, Astrid; Knippels, Leon M J; Garssen, Johan; van Esch, Betty C A M

    2015-01-01

    BACKGROUND: The maternal environment and early life exposure affect immune development in offspring. OBJECTIVE: We investigated whether development of food allergy in offspring is affected by supplementing pregnant or lactating sensitized or nonsensitized mice with a mixture of nondigestible

  10. Organising to Enable Innovation

    DEFF Research Database (Denmark)

    Brink, Tove

    2016-01-01

    The purpose of this conceptual paper is to reveal how organising can enable innovation across organisational layers and organisational units. This approach calls for a cross-disciplinary literature review. The aim is to provide an integrated understanding of innovation in an organisational approach....... The findings reveal a continous organising process between individual/ team creativity and organisational structures/control to enable innovation at firm level. Organising provides a dynamic approach and contains the integrated reconstruction of creativity, structures and boundaries for enhanced balance...... of explorative and exploitative learning in uncertain environments. Shedding light on the cross-disciplinary theories to organise innovation provides a contribution at the firm level to enable innovation....

  11. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Skeletal muscle-specific overexpression of IGFBP-2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology.

    Science.gov (United States)

    Swiderski, Kristy; Martins, Karen Janet Bernice; Chee, Annabel; Trieu, Jennifer; Naim, Timur; Gehrig, Stefan Martin; Baum, Dale Michael; Brenmoehl, Julia; Chau, Luong; Koopman, René; Gregorevic, Paul; Metzger, Friedrich; Hoeflich, Andreas; Lynch, Gordon Stuart

    The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Systemic co-delivery of doxorubicin and siRNA using nanoparticles conjugated with EGFR-specific targeting peptide to enhance chemotherapy in ovarian tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. W.; Lin, W. J., E-mail: wjlin@ntu.edu.tw [National Taiwan University, Graduate Institute of Pharmaceutical Sciences, School of Pharmacy (China)

    2013-10-15

    This aim of this study was to develop peptide-conjugated nanoparticles (NPs) for systemic co-delivery of siRNA and doxorubicin to enhance chemotherapy in epidermal growth factor receptor (EGFR) high-expressed ovarian tumor bearing mice. The active targeting NPs were prepared using heptapeptide-conjugated poly(d,l-lactic-co-glycolic acid)-poly(ethylene glycol). The particle sizes of peptide-free and peptide-conjugated NPs were 159.3 {+-} 32.5 and 184.0 {+-} 52.9 nm, respectively, with zeta potential -21.3 {+-} 3.8 and -15.3 {+-} 2.8 mV. The peptide-conjugated NPs uptake were more efficient in EGFR high-expressed SKOV3 cells than in EGFR low-expressed HepG2 cells due to heptapeptide specificity. The NPs were used to deliver small molecule anticancer drug (e.g., doxorubicin) and large molecule genetic agent (e.g., siRNA). The IC{sub 50} of doxorubicin-loaded peptide-conjugated NPs (0.09 {+-} 0.06 {mu}M) was significantly lower than peptide-free NPs (5.72 {+-} 2.64 {mu}M). The similar result was observed in siRNA-loaded NPs. The peptide-conjugated NPs not only served as a nanocarrier to efficiently deliver doxorubicin and siRNA to EGFR high-expressed ovarian cancer cells but also increased the intracellular accumulation of the therapeutic agents to induce assured anti-tumor growth effect in vivo.

  14. In vivo imaging and specific targeting of P-glycoprotein expression in multidrug resistant nude mice xenografts with [125I]MRK-16 monoclonal antibody

    International Nuclear Information System (INIS)

    Scott, Andrew M.; Rosa, Eddie; Mehta, Bippin M.; Divgi, Chaitanya R.; Finn, Ronald D.; Biedler, June L.; Tsuruo, Takashi; Kalaigian, Hovannes; Larson, Steven M.

    1995-01-01

    Multidrug resistance (MDR) in tumors is associated with P-glycoprotein (Pgp) expression. In vivo quantitation of Pgp may allow MDR to be evaluated noninvasively prior to treatment planning. The purpose of this study was to radiolabel MRK-16, a monoclonal antibody that targets an external epitope of P-glycoprotein, and perform in vivo quantitation of P-glycoprotein in a MDR xenograft nude mouse model. MRK-16 was labeled with 125 I by the iodogen method, with subsequent purification by size exclusion chromatography. Groups of 10 Balb/c mice were each xenografted with colchicine-resistant or -sensitive neuroblastoma cell lines, respectively. Whole body clearance and tumor uptake over time was quantitated by gamma camera imaging, and biodistribution studies were performed with [ 125 ]MRK-16 and an isotype matched control antibody, A33. Quantitative autoradiography and immunohistochemistry analysis of tumors was also evaluated to confirm specific targeting of [ 125 I]MRK-16. Peak tumor uptake was at 2-3 days post-injection, and was significantly greater in resistance compared to sensitive tumors (mean % injected dose/g ± SD) (18.76 ± 2.94 vs 10.93 ± 0.96; p 125 I]MRK-16 was confirmed by comparison to [ 131 I]A33 in biodistribution studies, and localized to cellular components of tissue stroma by comparison of histologic and autoradiographic sections of sensitive and resistant tumors. Immunoblot analysis demonstrated a 4.5-fold difference in P-glycoprotein expression between sensitive and resistant cell lines without colchicine selective pressure. We conclude that in vivo quantitation of P-glycoprotein in MDR tumors can be performed with [ 125 I]MRK-16. These findings suggest a potential clinical application for radiolabeled MRK-16 in the in vivo evaluation of multidrug resistance in tumors

  15. Fat-Specific DsbA-L Overexpression Promotes Adiponectin Multimerization and Protects Mice From Diet-Induced Obesity and Insulin Resistance

    Science.gov (United States)

    Liu, Meilian; Xiang, Ruihua; Wilk, Sarah Ann; Zhang, Ning; Sloane, Lauren B.; Azarnoush, Kian; Zhou, Lijun; Chen, Hongzhi; Xiang, Guangda; Walter, Christi A.; Austad, Steven N.; Musi, Nicolas; DeFronzo, Ralph A.; Asmis, Reto; Scherer, Philipp E.; Dong, Lily Q.; Liu, Feng

    2012-01-01

    The antidiabetic and antiatherosclerotic effects of adiponectin make it a desirable drug target for the treatment of metabolic and cardiovascular diseases. However, the adiponectin-based drug development approach turns out to be difficult due to extremely high serum levels of this adipokine. On the other hand, a significant correlation between adiponectin multimerization and its insulin-sensitizing effects has been demonstrated, suggesting a promising alternative therapeutic strategy. Here we show that transgenic mice overexpressing disulfide bond A oxidoreductase-like protein in fat (fDsbA-L) exhibited increased levels of total and the high-molecular-weight form of adiponectin compared with wild-type (WT) littermates. The fDsbA-L mice also displayed resistance to diet-induced obesity, insulin resistance, and hepatic steatosis compared with WT control mice. The protective effects of DsbA-L overexpression on diet-induced insulin resistance, but not increased body weight and fat cell size, were significantly decreased in adiponectin-deficient fDsbA-L mice (fDsbA-L/Ad−/−). In addition, the fDsbA-L/Ad−/− mice displayed greater activity and energy expenditure compared with adiponectin knockout mice under a high-fat diet. Taken together, our results demonstrate that DsbA-L protects mice from diet-induced obesity and insulin resistance through adiponectin-dependent and independent mechanisms. In addition, upregulation of DsbA-L could be an effective therapeutic approach for the treatment of obesity and its associated metabolic disorders. PMID:22807031

  16. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  17. Dietary Intervention with β-Lactoglobulin-Derived Peptides and a Specific Mixture of Fructo-Oligosaccharides and Bifidobacterium breve M-16V Facilitates the Prevention of Whey-Induced Allergy in Mice by Supporting a Tolerance-Prone Immune Environment

    Directory of Open Access Journals (Sweden)

    Atanaska I. Kostadinova

    2017-10-01

    Full Text Available Cow’s milk allergy (CMA prevails in infants and brings increased risk of developing other allergic diseases. Oral administration of specific β-lactoglobulin (BLG-derived peptides (PepMix and a specific blend of short- and long-chain fructo-oligosaccharides and Bifidobacterium breve M-16V (FF/Bb was found to partially prevent CMA development in mice. In this study, we aimed to expand the knowledge on the preventive potential and the underlying mechanisms of this approach. Three-week-old female C3H/HeOuJ mice were orally exposed to PepMix±FF/Bb prior to a 5-week oral sensitization with whole whey and cholera toxin as an adjuvant. The acute allergic skin response was determined after an intradermal challenge with whole whey protein. Following an oral challenge with whey, regulatory T cells (Tregs in the small intestine lamina propria (SI-LP and mRNA expression of immune markers in the Peyer’s patches (PP were investigated. The early impact of PepMix and FF/Bb interventions on the immune system during the oral tolerance (OT induction phase was investigated after the last OT administration. Pre-exposing mice to PepMix+FF/Bb partially prevented the acute allergic skin response compared to PBS and increased Tregs and activated T cells in the SI-LP compared to sham-sensitized mice. It also increased the mRNA expression of Tbet over GATA3 in the PP of whey-sensitized mice. Directly upon the 6-day OT phase, FF/Bb intervention enhanced cecal content levels of propionic and butyric acid in PepMix-fed mice and the former was positively correlated with Foxp3+ cell numbers in the colon. In the PP of PepMix+FF/Bb-exposed mice, IL-22 mRNA expression increased and IL-10 followed the same tendency, while the Foxp3 expression was increased over GATA3 and RorγT. In the colon, the Tbet mRNA expression increased over GATA3, while IL-22 decreased. In addition, the Foxp3+/GATA3+ and regulatory/effector T cell ratios in the mesenteric lymph nodes and the CD11b

  18. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Slaug, Bjørn; Brandt, Åse

    2010-01-01

    This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients and their home environments. The instrument was translated...... from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland and Iceland. This iterative process involved occupational therapists, architects, building engineers and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently from each other, collected data from 106 cases by means of the Nordic Housing...

  19. Pilot project as enabler?

    DEFF Research Database (Denmark)

    Neisig, Margit; Glimø, Helle; Holm, Catrine Granzow

    This article deals with a systemic perspective on transition. The field of study addressed is a pilot project as enabler of transition in a highly complex polycentric context. From a Luhmannian systemic approach, a framework is created to understand and address barriers of change occurred using...... pilot projects as enabler of transition. Aspects of how to create trust and deal with distrust during a transition are addressed. The transition in focus is the concept of New Public Management and how it is applied in the management of the Employment Service in Denmark. The transition regards...

  20. Effect of maternal and post weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult Apc+/Min and wild type mice.

    Directory of Open Access Journals (Sweden)

    Jill Ann Mckay

    2011-05-01

    Full Text Available Increasing evidence supports the developmental origins of adult health and disease hypothesis which argues for a causal relationship between adverse early life nutrition and increased disease risk in adulthood. Modulation of epigenetic marks, e.g. DNA methylation and consequential altered gene expression, has been proposed as a mechanism mediating these effects. Via its role as a methyl donor, dietary folate supply may influence DNA methylation. As aberrant methylation is an early event in colorectal cancer (CRC pathogenesis, we hypothesised low maternal and/or post-weaning folate intake may influence methylation of genes involved in CRC development. We investigated the effects of maternal folate depletion during pregnancy and lactation on selected gene methylation in the small intestine (SI of wild type (WT and Apc+/Min mice at weaning and as adults. We also investigated the effects of folate depletion post-weaning on gene methylation in adult mice. Female C57Bl6/J mice were fed low or normal folate diets from mating with Apc+/Min males to the end of lactation. A sub set of offspring were killed at weaning. Remaining offspring were weaned on to low or normal folate diets, resulting in 4 treatment groups of Apc+/Min and WT mice. p53 was more methylated in weaning and adult WT compared with Apc+/Min mice (p>0.001. Igf2 and Apc were hypermethylated in adult Apc+/Mi n compared with WT mice (p=0.004 & p=0.012 respectively. Low maternal folate reduced p53 methylation in adults (p=0.04. Low post-weaning folate increased Apc methylation in Apc+/Min mice only (p=0.008 for interaction. These observations demonstrate that folate depletion in early life can alter epigenetic marks in a gene specific manner. Also, the differential effects of altered folate supply on DNA methylation in WT and Apc+/Min mice suggest that genotype may modulate epigenetic responses to environmental cues and may have implications for the development of personalised nutrition.

  1. Enabling distributed collaborative science

    DEFF Research Database (Denmark)

    Hudson, T.; Sonnenwald, Diane H.; Maglaughlin, K.

    2000-01-01

    To enable collaboration over distance, a collaborative environment that uses a specialized scientific instrument called a nanoManipulator is evaluated. The nanoManipulator incorporates visualization and force feedback technology to allow scientists to see, feel, and modify biological samples bein...

  2. The Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, T.; Nygren, C.; Slaug, B.

    2014-01-01

    This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument was transla......This study addresses development of a content-valid cross-Nordic version of the Housing Enabler and investigation of its inter-rater reliability when used in occupational therapy rating situations, involving occupational therapists, clients, and their home environments. The instrument...... was translated from the original Swedish version of the Housing Enabler, and adapted according to accessibility norms and guidelines for housing design in Sweden, Denmark, Finland, and Iceland. This iterative process involved occupational therapists, architects, building engineers, and professional translators......, resulting in the Nordic Housing Enabler. For reliability testing, the sampling strategy and data collection procedures used were the same in all countries. Twenty voluntary occupational therapists, pair-wise but independently of each other, collected data from 106 cases by means of the Nordic Housing...

  3. Specific spatial learning deficits become severe with age in beta -amyloid precursor protein transgenic mice that harbor diffuse beta -amyloid deposits but do not form plaques

    Czech Academy of Sciences Publication Activity Database

    Koistinaho, M.; Ort, Michael; Cimadevilla, Jose Maria; Vondrous, R.; Cordell, B.; Koistinaho, J.; Bureš, Jan; Higgins, L.

    2001-01-01

    Roč. 98, č. 4 (2001), s. 14675-14680 ISSN 0027-8424 R&D Projects: GA ČR GA309/00/1656 Institutional research plan: CEZ:AV0Z5011922 Keywords : spatial memory * transgenic mice * alzheimer Subject RIV: FH - Neurology Impact factor: 10.890, year: 2001

  4. Genetic manipulation of the ghrelin signaling system in male mice reveals bone compartment specificity of acylated and unacylated ghrelin in the regulation of bone remodeling

    Science.gov (United States)

    Ghrelin receptor-deficient (Ghsr-/-) mice that lack acylated ghrelin (AG) signaling retain a metabolic response to unacylated ghrelin (UAG). Recently, we showed that Ghsr-deficiency affects bone metabolism. The aim of this study was to further establish the impact of AG and UAG on bone metabolism. W...

  5. Antiproliferative effects of TRPV1 ligands on nonspecific and enteroantigen-specific T cells from wild-type and Trpv1 KO mice

    DEFF Research Database (Denmark)

    Belmaáti, Mohammed-Samir; Diemer, Sanne; Hvarness, Tine

    2014-01-01

    BACKGROUND: Treatment with the TRPV1 agonist, capsaicin, was previously shown to protect against experimental colitis in the severe combined immunodeficiency (SCID) T-cell transfer model. Here, we investigate trpv1 gene expression in lymphoid organs and cells from SCID and BALB/c mice to identify...

  6. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    Full Text Available Angiotensin-converting enzyme (ACE regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS. Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  7. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Science.gov (United States)

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  8. Identifying a size-specific hazard of silica nanoparticles after intravenous administration and its relationship to the other hazards that have negative correlations with the particle size in mice

    Science.gov (United States)

    Handa, Takayuki; Hirai, Toshiro; Izumi, Natsumi; Eto, Shun-ichi; Tsunoda, Shin-ichi; Nagano, Kazuya; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-03-01

    Many of the beneficial and toxic biological effects of nanoparticles have been shown to have a negative correlation with particle size. However, few studies have demonstrated biological effects that only occur at specific nanoparticle sizes. Further elucidation of the size-specific biological effects of nanoparticles may reveal not only unknown toxicities, but also novel benefits of nanoparticles. We used surface-unmodified silica particles with a wide range of diameters and narrow size intervals between the diameters (10, 30, 50, 70, 100, 300, and 1000 nm) to investigate the relationship between particle size and acute toxicity after intravenous administration in mice. Negative correlations between particle size and thrombocytopenia, liver damage, and lethal toxicity were observed. However, a specific size-effect was observed for the severity of hypothermia, where silica nanoparticles with a diameter of 50 nm induced the most severe hypothermia. Further investigation revealed that this hypothermia was mediated not by histamine, but by platelet-activating factor, and it was independent of the thrombocytopenia and the liver damage. In addition, macrophages/Kupffer cells and platelets, but not neutrophils, play a critical role in the hypothermia. The present results reveal that silica nanoparticles have particle size-specific toxicity in mice, suggesting that other types of nanoparticles may also have biological effects that only manifest at specific particle sizes. Further study of the size-specific effects of nanoparticles is essential for safer and more effective nanomedicines.

  9. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice

    International Nuclear Information System (INIS)

    Bardullas, U.; Limon-Pacheco, J.H.; Giordano, M.; Carrizales, L.; Mendoza-Trejo, M.S.; Rodriguez, V.M.

    2009-01-01

    Arsenic (As) is a toxic metalloid widely present in the environment. Human exposure to As has been associated with the development of skin and internal organ cancers and cardiovascular disorders, among other diseases. A few studies report decreases in intelligence quotient (IQ), and sensory and motor alterations after chronic As exposure in humans. On the other hand, studies of rodents exposed to high doses of As have found alterations in locomotor activity, brain neurochemistry, behavioral tasks, and oxidative stress. In the present study both male and female C57Bl/6J mice were exposed to environmentally relevant doses of As such as 0.05, 0.5, 5.0, or 50 mg As/L of drinking water for 4 months, and locomotor activity was assessed every month. Male mice presented hyperactivity in the group exposed to 0.5 mg As/L and hypoactivity in the group exposed to 50 mg As/L after 4 months of As exposure, whereas female mice exposed to 0.05, 0.5, and 5.0 mg As/L exhibited hyperactivity in every monthly test during As exposure. Furthermore, striatal and hypothalamic dopamine content was decreased only in female mice. Also decreases in tyrosine hydroxylase (TH) and cytosolic thioredoxin (Trx-1) mRNA expression in striatum and nucleus accumbens were observed in male and female mice, respectively. These results indicate that chronic As exposure leads to gender-dependent alterations in dopaminergic markers and spontaneous locomotor activity, and down-regulation of the antioxidant capacity of the brain.

  10. Spatially enabled land administration

    DEFF Research Database (Denmark)

    Enemark, Stig

    2006-01-01

    enabling of land administration systems managing tenure, valuation, planning, and development will allow the information generated by these activities to be much more useful. Also, the services available to private and public sectors and to community organisations should commensurably improve. Knowledge....... In other words: Good governance and sustainable development is not attainable without sound land administration or - more broadly – sound land management. The paper presents a land management vision that incorporates the benefits of ICT enabled land administration functions. The idea is that spatial...... the communication between administrative systems and also establish more reliable data due to the use the original data instead of copies. In Denmark, such governmental guidelines for a service-oriented ITarchitecture in support of e-government are recently adopted. Finally, the paper presents the role of FIG...

  11. Nordic Housing Enabler

    DEFF Research Database (Denmark)

    Helle, Tina; Brandt, Åse

    Development and reliability testing of the Nordic Housing Enabler – an instrument for accessibility assessment of the physical housing. Tina Helle & Åse Brandt University of Lund, Health Sciences, Faculty of Medicine (SE) and University College Northern Jutland, Occupational Therapy department (DK......). Danish Centre for Assistive Technology. Abstract. For decades, accessibility to the physical housing environment for people with functional limitations has been of interest politically, professionally and for the users. Guidelines and norms on accessible housing design have gradually been developed......, however, the built environment shows serious deficits when it comes to accessibility. This study addresses development of a content valid cross-Nordic version of the Housing Enabler and investigation of inter-rater reliability, when used in occupational therapy practice. The instrument was translated from...

  12. Enabling Wind Power Nationwide

    Energy Technology Data Exchange (ETDEWEB)

    Jose Zayas, Michael Derby, Patrick Gilman and Shreyas Ananthan,

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  13. Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice

    Directory of Open Access Journals (Sweden)

    LaFerla Frank M

    2005-10-01

    Full Text Available Abstract Background Alzheimer's disease is a complex neurodegenerative disorder characterized pathologically by a temporal and spatial progression of beta-amyloid (Aβ deposition, neurofibrillary tangle formation, and synaptic degeneration. Inflammatory processes have been implicated in initiating and/or propagating AD-associated pathology within the brain, as inflammatory cytokine expression and other markers of inflammation are pronounced in individuals with AD pathology. The current study examines whether inflammatory processes are evident early in the disease process in the 3xTg-AD mouse model and if regional differences in inflammatory profiles exist. Methods Coronal brain sections were used to identify Aβ in 2, 3, and 6-month 3xTg-AD and non-transgenic control mice. Quantitative real-time RT-PCR was performed on microdissected entorhinal cortex and hippocampus tissue of 2, 3, and 6-month 3xTg-AD and non-transgenic mice. Microglial/macrophage cell numbers were quantified using unbiased stereology in 3xTg-AD and non-transgenic entorhinal cortex and hippocampus containing sections. Results We observed human Aβ deposition at 3 months in 3xTg-AD mice which is enhanced by 6 months of age. Interestingly, we observed a 14.8-fold up-regulation of TNF-α and 10.8-fold up-regulation of MCP-1 in the entorhinal cortex of 3xTg-AD mice but no change was detected over time in the hippocampus or in either region of non-transgenic mice. Additionally, this increase correlated with a specific increase in F4/80-positive microglia and macrophages in 3xTg-AD entorhinal cortex. Conclusion Our data provide evidence for early induction of inflammatory processes in a model that develops amyloid and neurofibrillary tangle pathology. Additionally, our results link inflammatory processes within the entorhinal cortex, which represents one of the earliest AD-affected brain regions.

  14. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner.

    Directory of Open Access Journals (Sweden)

    Tommy Noh

    Full Text Available We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/- females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR (tfm mutants. The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/- female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.

  15. Recipient micro-environment does not dictate the Igh-V restriction specificity of T cell suppressor inducer factor (TsiF) from allogeneic bone marrow chimera in mice

    International Nuclear Information System (INIS)

    Noguchi, M.; Ogasawara, M.; Iwabuchi, K.; Osgasawara, K.; Ishihara, T.; Good, R.A.; Morikawa, K.; Onoe, K.

    1985-01-01

    The authors have ascertained previously from a study of fully allogeneic irradiation chimeras in mice that the H-2 restriction of the suppressor factor (Ly-2 T suppressor factor) is determined by the post-thymic environment protected by the donor cells, rather than by the thymic environment of the recipient. In the present study, the author analyzed differentiation influences that determine the Igh restriction specificities of the suppressor inducer T cell factor(s) (TsiF) that are produced by Ly-1+ splenic T cells in fully allogeneic bone marrow chimeras in mice. AKR mice that had been lethally irradiated and reconstituted with B10 marrow cells, [B10----AKR] chimeras, produced Ly-1 TsiF after hyper-immunization with sheep erythrocytes (SRBC) which suppressed antigen--specifically the primary antibody responses to SRBC that were generated in cells of the same Igh-Vb haplotype of donor strain and not those generated in cells of the recipient Igh-Va type. Similar results were obtained when Ly-1 TsiF from [B6----BALB/c] and [BALB/c----B6] chimeras were analyzed. Furthermore, the Ly-1 TsiF from [BALB/c----B6] chimeras suppressed the primary antibody responses of both BALB/c [H-2d, Igh-Va, Igh-Ca] and BAB-14 (H-2d, Igh-Va, Igh-Cb), but not those of CAL-20 (H-2d, Igh-Vd, Igh-Cd). These results demonstrate clearly that the Ly-1 TsiF from allogeneic bone marrow chimeras are donor Igh-V-restricted and are not influenced by the recipient micro-environment, presumably that were provided by the thymuses of the recipient mice

  16. Rapid and selective expansion of nonclonotypic T cells in regulatory T cell-deficient, foreign antigen-specific TCR-transgenic scurfy mice: antigen-dependent expansion and TCR analysis.

    Science.gov (United States)

    Sharma, Rahul; Ju, Angela Chiao-Ying; Kung, John T; Fu, Shu Man; Ju, Shyr-Te

    2008-11-15

    Foreign Ag-specific TCR-transgenic (Tg) mice contain a small fraction of T cells bearing the endogenous Vbeta and Valpha chains as well as a population expressing an intermediate level of Tg TCR. Importantly, these minor nonclonotypic populations contain > or = 99% of the CD4(+)Foxp3(+) regulatory T cells (Treg) and, despite low overall Treg expression, peripheral tolerance is maintained. In the OT-II TCR (OVA-specific, Vbeta5(high)Valpha2(high)) Tg scurfy (Sf) mice (OT-II Sf) that lack Treg, nonclonotypic T cells markedly expanded in the periphery but not in the thymus. Expanded T cells expressed memory/effector phenotype and were enriched in blood and inflamed lungs. In contrast, Vbeta5(high)Valpha2(high) clonotypic T cells were not expanded, displayed the naive phenotype, and found mainly in the lymph nodes. Importantly, Vbeta5(neg) T cells were able to transfer multiorgan inflammation in Rag1(-/-) recipients. T cells bearing dual TCR (dual Vbeta or dual Valpha) were demonstrated frequently in the Vbeta5(int) and Valpha2(int) populations. Our study demonstrated that in the absence of Treg, the lack of peripheral expansion of clonotypic T cells is due to the absence of its high-affinity Ag OVA. Thus, the rapid expansion of nonclonotypic T cells in OT-II Sf mice must require Ag (self and foreign) with sufficient affinity. Our study has implications with respect to the roles of Ag and dual TCR in the selection and regulation of Treg and Treg-controlled Ag-dependent T cell expansion in TCR Tg and TCR Tg Sf mice, respectively.

  17. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.

    Science.gov (United States)

    Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore

    2017-10-01

    Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO 2 max) was also unaffected by maternal WD, but HR had

  18. EnableATIS strategy assessment.

    Science.gov (United States)

    2014-02-01

    Enabling Advanced Traveler Information Systems (EnableATIS) is the traveler information component of the Dynamic Mobility Application (DMA) program. The objective of : the EnableATIS effort is to foster transformative traveler information application...

  19. Enabling Digital Literacy

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Georgsen, Marianne

    2010-01-01

    There are some tensions between high-level policy definitions of “digital literacy” and actual teaching practice. We need to find workable definitions of digital literacy; obtain a better understanding of what digital literacy might look like in practice; and identify pedagogical approaches, which...... support teachers in designing digital literacy learning. We suggest that frameworks such as Problem Based Learning (PBL) are approaches that enable digital literacy learning because they provide good settings for engaging with digital literacy. We illustrate this through analysis of a case. Furthermore......, these operate on a meso-level mediating between high-level concepts of digital literacy and classroom practice....

  20. CtOS Enabler

    OpenAIRE

    Crespo Cepeda, Rodrigo; El Yamri El Khatibi, Meriem; Carrera García, Juan Manuel

    2015-01-01

    Las Smart Cities son, indudablemente, el futuro próximo de la tecnología al que nos acercamos cada día, lo que se puede observar en la abundancia de dispositivos móviles entre la población, que informatizan la vida cotidiana mediante el uso de la geolocalización y la información. Pretendemos unir estos dos ámbitos con CtOS Enabler para crear un estándar de uso que englobe todos los sistemas de Smart Cities y facilite a los desarrolladores de dicho software la creación de nuevas herramientas. ...

  1. Smart Grid Enabled EVSE

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-01-12

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  2. Editor's Highlight: Congener-Specific Disposition of Chiral Polychlorinated Biphenyls in Lactating Mice and Their Offspring: Implications for PCB Developmental Neurotoxicity.

    Science.gov (United States)

    Kania-Korwel, Izabela; Lukasiewicz, Tracy; Barnhart, Christopher D; Stamou, Marianna; Chung, Haeun; Kelly, Kevin M; Bandiera, Stelvio; Lein, Pamela J; Lehmler, Hans-Joachim

    2017-07-01

    Chiral polychlorinated biphenyl (PCB) congeners have been implicated by laboratory and epidemiological studies in PCB developmental neurotoxicity. These congeners are metabolized by cytochrome P450 (P450) enzymes to potentially neurotoxic hydroxylated metabolites (OH-PCBs). The present study explores the enantioselective disposition and toxicity of 2 environmentally relevant, neurotoxic PCB congeners and their OH-PCB metabolites in lactating mice and their offspring following dietary exposure of the dam. Female C57BL/6N mice (8-weeks old) were fed daily, beginning 2 weeks prior to conception and continuing throughout gestation and lactation, with 3.1 µmol/kg bw/d of racemic 2,2',3,5',6-pentachlorobiphenyl (PCB 95) or 2,2',3,3',6,6'-hexachlorobiphenyl (PCB 136) in peanut butter; controls received vehicle (peanut oil) in peanut butter. PCB 95 levels were higher than PCB 136 levels in both dams and pups, consistent with the more rapid metabolism of PCB 136 compared with PCB 95. In pups and dams, both congeners were enriched for the enantiomer eluting second on enantioselective gas chromatography columns. OH-PCB profiles in lactating mice and their offspring were complex and varied according to congener, tissue and age. Developmental exposure to PCB 95 versus PCB 136 differentially affected the expression of P450 enzymes as well as neural plasticity (arc and ppp1r9b) and thyroid hormone-responsive genes (nrgn and mbp). The results suggest that the enantioselective metabolism of PCBs to OH-PCBs may influence neurotoxic outcomes following developmental exposures, a hypothesis that warrants further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Induction of Neuron-Specific Degradation of Coenzyme A Models Pantothenate Kinase-Associated Neurodegeneration by Reducing Motor Coordination in Mice.

    Directory of Open Access Journals (Sweden)

    Stephanie A Shumar

    Full Text Available Pantothenate kinase-associated neurodegeneration, PKAN, is an inherited disorder characterized by progressive impairment in motor coordination and caused by mutations in PANK2, a human gene that encodes one of four pantothenate kinase (PanK isoforms. PanK initiates the synthesis of coenzyme A (CoA, an essential cofactor that plays a key role in energy metabolism and lipid synthesis. Most of the mutations in PANK2 reduce or abolish the activity of the enzyme. This evidence has led to the hypothesis that lower CoA might be the underlying cause of the neurodegeneration in PKAN patients; however, no mouse model of the disease is currently available to investigate the connection between neuronal CoA levels and neurodegeneration. Indeed, genetic and/or dietary manipulations aimed at reducing whole-body CoA synthesis have not produced a desirable PKAN model, and this has greatly hindered the discovery of a treatment for the disease.Cellular CoA levels are tightly regulated by a balance between synthesis and degradation. CoA degradation is catalyzed by two peroxisomal nudix hydrolases, Nudt7 and Nudt19. In this study we sought to reduce neuronal CoA in mice through the alternative approach of increasing Nudt7-mediated CoA degradation. This was achieved by combining the use of an adeno-associated virus-based expression system with the synapsin (Syn promoter. We show that mice with neuronal overexpression of a cytosolic version of Nudt7 (scAAV9-Syn-Nudt7cyt exhibit a significant decrease in brain CoA levels in conjunction with a reduction in motor coordination. These results strongly support the existence of a link between CoA levels and neuronal function and show that scAAV9-Syn-Nudt7cyt mice can be used to model PKAN.

  4. Enabling graphene nanoelectronics.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  5. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice

    International Nuclear Information System (INIS)

    Andres, A.C.; Schoenenberger, C.A.; Groner, B.; Henninghausen, L.; LeMeur, M.; Gelinger, P.

    1987-01-01

    The activated human Ha-ras oncogene was subjected to the control of the promoter region of the murine whey acidic protein (Wap) gene, which is expressed in mammary epithelial cells in response to lactogenic hormones. The Wap-ras gene was stably introduced into the mouse germ line of five transgenic mice (one male and four females). Wap-ras expression was observed in the mammary glands of lactating females in two lines derived from female founders. The tissue-directed and hormone-dependent Wap expression was conferred on the Ha-ras oncogene. The signals governing Wap expression are located within 2.5 kilobases of 5' flanking sequence. The other two lines derived from female founders did not express the chimeric gene. In the line derived from the male founder the Wap-ras gene is integrated into the Y chromosome. Expression was found in the salivary gland of male animals only. After a long latency, Wap-ras-expressing mice developed tumors. The tumors arose in tissues expressing Wap-ras - i.e., mammary or salivary glands. Compared to the corresponding nonmalignant tissues, Wap-ras expression was enhanced in the tumors

  6. Relative expression of bacterial and host specific genes associated with probiotic survival and viability in the mice gut fed with Lactobacillus plantarum Lp91.

    Science.gov (United States)

    Chandran, Archana; Duary, Raj Kumar; Grover, Sunita; Batish, Virender Kumar

    2013-11-07

    The present investigation was aimed at studying the relative expression of atpD (a key part of F1F0-ATPase operon), bsh (bile salt hydrolase), mub (mucus-binding protein) and MUC2 (mucin) genes in mouse model for establishing the in vivo functional efficacy of Lactobacillus plantarum Lp91 (MTCC5690) by reverse transcription-quantitative PCR (RT-qPCR). The atpD gene was significantly up-regulated to 2.0, 2.4 and 3.2 folds in Lp91 after 15, 30 and 60 min transit in the stomach of mice. The maximal significant (Pstrain Lp5276 after seven days of mice feeding. Simultaneously, mub gene expression increased to 12.8 and 22.7 fold in both Lp91 and Lp5276, respectively. The expression level of MUC2 was at the level of 1.6 and 2.1 fold in the host colon on administration with Lp91 and Lp5276 feeding, respectively. Hence, the expression of atpD, bsh, mub, MUC2 could be considered as prospective and potential biomarkers for screening of novel probiotic lactobacillus strains for optimal functionality in the gut. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Modifying effects of lemongrass essential oil on specific tissue response to the carcinogen N-methyl-N-nitrosurea in female BALB/c mice.

    Science.gov (United States)

    Bidinotto, Lucas T; Costa, Celso A R A; Costa, Mirtes; Rodrigues, Maria A M; Barbisan, Luís F

    2012-02-01

    Lemongrass (Cymbopogon citratus Stapf) essential oil has been used worldwide because of its ethnobotanical and medicinal usefulness. Regarding its medicinal usefulness, the present study evaluated the beneficial effects of lemongrass essential oil (LGEO) oral treatment on cell proliferation and apoptosis events and on early development of hyperplastic lesions in the mammary gland, colon, and urinary bladder induced by N-methyl-N-nitrosourea (MNU) in female BALB/c mice. The animals were allocated into three groups: G1, treated with LGEO vehicle for 5 weeks (five times per week); G2, treated with LGEO vehicle as for G1 and MNU (two injections each of 30 mg/kg of body weight at weeks 3 and 5); and G3, treated with LGEO (five times each with 500 mg/kg of body weight per week) and MNU as for G2. Twenty-four hours after the last MNU application, all animals were euthanized, and mammary glands, colon, and urinary bladder were collected for histological and immunohistochemical analysis. LGEO oral treatment significantly changed the indexes of apoptosis and/or cellular proliferation for the tissues analyzed. In particular, the treatment reduced the incidence of hyperplastic lesions and increased apoptosis in mammary epithelial cells. This increment in the apoptosis response may be related to a favorable balance in Bcl-2/Bax immunoreactivity in mammary epithelial cells. These findings indicate that LGEO presented a protective role against early MNU-induced mammary gland alterations in BALB/c mice.

  8. Grid-Enabled Measures

    Science.gov (United States)

    Moser, Richard P.; Hesse, Bradford W.; Shaikh, Abdul R.; Courtney, Paul; Morgan, Glen; Augustson, Erik; Kobrin, Sarah; Levin, Kerry; Helba, Cynthia; Garner, David; Dunn, Marsha; Coa, Kisha

    2011-01-01

    Scientists are taking advantage of the Internet and collaborative web technology to accelerate discovery in a massively connected, participative environment —a phenomenon referred to by some as Science 2.0. As a new way of doing science, this phenomenon has the potential to push science forward in a more efficient manner than was previously possible. The Grid-Enabled Measures (GEM) database has been conceptualized as an instantiation of Science 2.0 principles by the National Cancer Institute with two overarching goals: (1) Promote the use of standardized measures, which are tied to theoretically based constructs; and (2) Facilitate the ability to share harmonized data resulting from the use of standardized measures. This is done by creating an online venue connected to the Cancer Biomedical Informatics Grid (caBIG®) where a virtual community of researchers can collaborate together and come to consensus on measures by rating, commenting and viewing meta-data about the measures and associated constructs. This paper will describe the web 2.0 principles on which the GEM database is based, describe its functionality, and discuss some of the important issues involved with creating the GEM database, such as the role of mutually agreed-on ontologies (i.e., knowledge categories and the relationships among these categories— for data sharing). PMID:21521586

  9. Enabling distributed petascale science

    International Nuclear Information System (INIS)

    Baranovski, Andrew; Bharathi, Shishir; Bresnahan, John

    2007-01-01

    Petascale science is an end-to-end endeavour, involving not only the creation of massive datasets at supercomputers or experimental facilities, but the subsequent analysis of that data by a user community that may be distributed across many laboratories and universities. The new SciDAC Center for Enabling Distributed Petascale Science (CEDPS) is developing tools to support this end-to-end process. These tools include data placement services for the reliable, high-performance, secure, and policy-driven placement of data within a distributed science environment; tools and techniques for the construction, operation, and provisioning of scalable science services; and tools for the detection and diagnosis of failures in end-to-end data placement and distributed application hosting configurations. In each area, we build on a strong base of existing technology and have made useful progress in the first year of the project. For example, we have recently achieved order-of-magnitude improvements in transfer times (for lots of small files) and implemented asynchronous data staging capabilities; demonstrated dynamic deployment of complex application stacks for the STAR experiment; and designed and deployed end-to-end troubleshooting services. We look forward to working with SciDAC application and technology projects to realize the promise of petascale science

  10. Displays enabling mobile multimedia

    Science.gov (United States)

    Kimmel, Jyrki

    2007-02-01

    With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.

  11. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    Science.gov (United States)

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  12. Simulation enabled safeguards assessment methodology

    International Nuclear Information System (INIS)

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  13. Simulation Enabled Safeguards Assessment Methodology

    International Nuclear Information System (INIS)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment Methodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed

  14. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    Science.gov (United States)

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  15. Enabling cleanup technology transfer

    International Nuclear Information System (INIS)

    Ditmars, J. D.

    2002-01-01

    Technology transfer in the environmental restoration, or cleanup, area has been challenging. While there is little doubt that innovative technologies are needed to reduce the times, risks, and costs associated with the cleanup of federal sites, particularly those of the Departments of Energy (DOE) and Defense, the use of such technologies in actual cleanups has been relatively limited. There are, of course, many reasons why technologies do not reach the implementation phase or do not get transferred from developing entities to the user community. For example, many past cleanup contracts provided few incentives for performance that would compel a contractor to seek improvement via technology applications. While performance-based contracts are becoming more common, they alone will not drive increased technology applications. This paper focuses on some applications of cleanup methodologies and technologies that have been successful and are illustrative of a more general principle. The principle is at once obvious and not widely practiced. It is that, with few exceptions, innovative cleanup technologies are rarely implemented successfully alone but rather are implemented in the context of enabling processes and methodologies. And, since cleanup is conducted in a regulatory environment, the stage is better set for technology transfer when the context includes substantive interactions with the relevant stakeholders. Examples of this principle are drawn from Argonne National Laboratory's experiences in Adaptive Sampling and Analysis Programs (ASAPs), Precise Excavation, and the DOE Technology Connection (TechCon) Program. The lessons learned may be applicable to the continuing challenges posed by the cleanup and long-term stewardship of radioactive contaminants and unexploded ordnance (UXO) at federal sites

  16. Pancreatic beta cells from db/db mice show cell-specific [Ca2+]i and NADH responses to glucose but not to alpha-ketoisocaproic acid

    DEFF Research Database (Denmark)

    Gustavsson, Natalia; Larsson-Nyrén, Gerd; Lindström, Per

    2005-01-01

    OBJECTIVE: We recently showed that timing and magnitude of the glucose-induced cytoplasmic calcium [Ca2+]i response are reproducible and specific for the individual beta cell. We now wanted to identify which step(s) of stimulus-secretion coupling determine the cell specificity of the [Ca2+]i resp...

  17. FOILFEST :community enabled security.

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr. (.,; .)

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological

  18. Surveying selected European feed and livestock production chains for features enabling the case-specific post-market monitoring of livestock for intake and potential health impacts of animal feeds derived from genetically modified crops.

    Science.gov (United States)

    Kleter, Gijs; McFarland, Sarah; Bach, Alex; Bernabucci, Umberto; Bikker, Paul; Busani, Luca; Kok, Esther; Kostov, Kaloyan; Nadal, Anna; Pla, Maria; Ronchi, Bruno; Terre, Marta; Einspanier, Ralf

    2017-10-06

    This review, which has been prepared within the frame of the European Union (EU)-funded project MARLON, surveys the organisation and characteristics of specific livestock and feed production chains (conventional, organic, GM-free) within the EU, with an emphasis on controls, regulations, traceability, and common production practices. Furthermore, an overview of the origin of animal feed used in the EU as well as an examination of the use of genetically modified organisms (GMOs) in feed is provided. From the data, it shows that livestock is traceable at the herd or individual level, depending on the species. Husbandry practices can vary widely according to geography and animal species, whilst controls and checks are in place for notifiable diseases and general health symptoms (such as mortality, disease, productive performance). For feeds, it would be possible only to make coarse estimates, at best, for the amount of GM feed ingredients that an animal is exposed to. Labeling requirements are apparently correctly followed. Provided that confounding factors are taken into account, practices such as organic agriculture that explicitly involve the use of non-GM feeds could be used for comparison to those involving the use of GM feed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Catalyst Architecture for Stable Single Atom Dispersion Enables Site-Specific Spectroscopic and Reactivity Measurements of CO Adsorbed to Pt Atoms, Oxidized Pt Clusters, and Metallic Pt Clusters on TiO2.

    Science.gov (United States)

    DeRita, Leo; Dai, Sheng; Lopez-Zepeda, Kimberly; Pham, Nicholas; Graham, George W; Pan, Xiaoqing; Christopher, Phillip

    2017-10-11

    Oxide-supported precious metal nanoparticles are widely used industrial catalysts. Due to expense and rarity, developing synthetic protocols that reduce precious metal nanoparticle size and stabilize dispersed species is essential. Supported atomically dispersed, single precious metal atoms represent the most efficient metal utilization geometry, although debate regarding the catalytic activity of supported single precious atom species has arisen from difficulty in synthesizing homogeneous and stable single atom dispersions, and a lack of site-specific characterization approaches. We propose a catalyst architecture and characterization approach to overcome these limitations, by depositing ∼1 precious metal atom per support particle and characterizing structures by correlating scanning transmission electron microscopy imaging and CO probe molecule infrared spectroscopy. This is demonstrated for Pt supported on anatase TiO 2 . In these structures, isolated Pt atoms, Pt iso , remain stable through various conditions, and spectroscopic evidence suggests Pt iso species exist in homogeneous local environments. Comparing Pt iso to ∼1 nm preoxidized (Pt ox ) and prereduced (Pt metal ) Pt clusters on TiO 2 , we identify unique spectroscopic signatures of CO bound to each site and find CO adsorption energy is ordered: Pt iso ≪ Pt metal atoms bonded to TiO 2 and that Pt iso exhibits optimal reactivity because every atom is exposed for catalysis and forms an interfacial site with TiO 2 . This approach should be generally useful for studying the behavior of supported precious metal atoms.

  20. Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R. solani AG1-IA, AG1-IB, AG3 and AG8 Isolates.

    Directory of Open Access Journals (Sweden)

    Daniel Wibberg

    Full Text Available Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags--ESTs were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI and Average Amino-acid Identity (AAI analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.

  1. Enabling individualized therapy through nanotechnology.

    Science.gov (United States)

    Sakamoto, Jason H; van de Ven, Anne L; Godin, Biana; Blanco, Elvin; Serda, Rita E; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I; De Rosa, Enrica; Martinez, Jonathan O; Smid, Christine A; Buchanan, Rachel M; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-08-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of 'losing sight of the forest for the trees'. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of "-omic" technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon "-omic" technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology "snapshot" of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to "self-correct" in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. Copyright 2010 Elsevier Ltd. All rights

  2. Enabling individualized therapy through nanotechnology

    Science.gov (United States)

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  3. Neuron-specific deletion of peroxisome proliferator-activated receptor delta (PPARδ in mice leads to increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Heidi E Kocalis

    Full Text Available Central nervous system (CNS lipid accumulation, inflammation and resistance to adipo-regulatory hormones, such as insulin and leptin, are implicated in the pathogenesis of diet-induced obesity (DIO. Peroxisome proliferator-activated receptors (PPAR α, δ, γ are nuclear transcription factors that act as environmental fatty acid sensors and regulate genes involved in lipid metabolism and inflammation in response to dietary and endogenous fatty acid ligands. All three PPAR isoforms are expressed in the CNS at different levels. Recent evidence suggests that activation of CNS PPARα and/or PPARγ may contribute to weight gain and obesity. PPARδ is the most abundant isoform in the CNS and is enriched in the hypothalamus, a region of the brain involved in energy homeostasis regulation. Because in peripheral tissues, expression of PPARδ increases lipid oxidative genes and opposes inflammation, we hypothesized that CNS PPARδ protects against the development of DIO. Indeed, genetic neuronal deletion using Nes-Cre loxP technology led to elevated fat mass and decreased lean mass on low-fat diet (LFD, accompanied by leptin resistance and hypothalamic inflammation. Impaired regulation of neuropeptide expression, as well as uncoupling protein 2, and abnormal responses to a metabolic challenge, such as fasting, also occur in the absence of neuronal PPARδ. Consistent with our hypothesis, KO mice gain significantly more fat mass on a high-fat diet (HFD, yet are surprisingly resistant to diet-induced elevations in CNS inflammation and lipid accumulation. We detected evidence of upregulation of PPARγ and target genes of both PPARα and PPARγ, as well as genes of fatty acid oxidation. Thus, our data reveal a previously underappreciated role for neuronal PPARδ in the regulation of body composition, feeding responses, and in the regulation of hypothalamic gene expression.

  4. Host specificity and genealogy of the louse Polyplax serrata on field mice, Apodemus species: a case of parasite duplication or colonisation?

    Science.gov (United States)

    Stefka, Jan; Hypsa, Václav

    2008-05-01

    The genealogy, population structure and population dynamics of the sucking louse Polyplax serrata were analysed across four host species of the genus Apodemus. An analysis of 126 sequences of cytochrome c oxidase subunit I using phylogenetic approaches and haplotype networking revealed a clear structure of European samples, forming three distinct and genetically distant clades with different host specificities. Although a clear connection was detected between the host and parasite genealogies/phylogenies, a uniform pattern of co-speciation was not found. For example, a dramatic shift in the degree of host specificity was demonstrated for two related louse lineages living in sympatry and sharing one of their host species. While one of the louse lineages frequently parasitised two different host taxa (Apodemus sylvaticus and Apodemus flavicollis), the other louse lineage was strictly specific to A. flavicollis. The estimate of divergence time between the two louse lineages indicates that they may have arisen due to parasite duplication on A. flavicollis.

  5. 1 kb of the lactase-phlorizin hydrolase promoter directs post-weaning decline and small intestinal-specific expression in transgenic mice

    DEFF Research Database (Denmark)

    Troelsen, J T; Mehlum, A; Spodsberg, N

    1994-01-01

    Adult-type hypolactasia is a genetic condition making approximately one half of the human population intolerant to milk because of abdominal symptoms. The cause is a post-weaning down-regulation of the intestinal-specific enzyme lactase-phlorizin hydrolase (LPH) reducing the intestinal capacity...... to hydrolyze lactose. We here demonstrate that the stretch -17 to -994 in the pig LPH-promoter carries cis-elements which direct a small intestinal-specific expression and a post-weaning decline of a linked rabbit beta-globin gene. These data demonstrate that the post-weaning decline of LPH is mainly due...

  6. Targeting annexin A7 by a small molecule suppressed the activity of phosphatidylcholine-specific phospholipase C in vascular endothelial cells and inhibited atherosclerosis in apolipoprotein E⁻/⁻mice.

    Science.gov (United States)

    Li, H; Huang, S; Wang, S; Zhao, J; Su, L; Zhao, B; Zhang, Y; Zhang, S; Miao, J

    2013-09-19

    Phosphatidylcholine-specific phospholipase C (PC-PLC) is a key factor in apoptosis and autophagy of vascular endothelial cells (VECs), and involved in atherosclerosis in apolipoprotein E⁻/⁻ (apoE⁻/⁻) mice. But the endogenous regulators of PC-PLC are not known. We recently found a small chemical molecule (6-amino-2, 3-dihydro-3-hydroxymethyl-1, 4-benzoxazine, ABO) that could inhibit oxidized low-density lipoprotein (oxLDL)-induced apoptosis and promote autophagy in VECs, and further identified ABO as an inhibitor of annexin A7 (ANXA7) GTPase. Based on these findings, we hypothesize that ANXA7 is an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO may inhibit atherosclerosis in apoE⁻/⁻ mice. In this study, we tested our hypothesis. The results showed that ABO suppressed oxLDL-induced increase of PC-PLC level and activity and promoted the co-localization of ANXA7 and PC-PLC in VECs. The experiments of ANXA7 knockdown and overexpression demonstrated that the action of ABO was ANXA7-dependent in cultured VECs. To investigate the relation of ANXA7 with PC-PLC in atherosclerosis, apoE⁻/⁻ mice fed with a western diet were treated with 50 or 100 mg/kg/day ABO. The results showed that ABO decreased PC-PLC levels in the mouse aortic endothelium and PC-PLC activity in serum, and enhanced the protein levels of ANXA7 in the mouse aortic endothelium. Furthermore, both dosages of ABO significantly enhanced autophagy and reduced apoptosis in the mouse aortic endothelium. As a result, ABO significantly reduced atherosclerotic plaque area and effectively preserved a stable plaques phenotype, including reduced lipid deposition and pro-inflammatory macrophages, increased anti-inflammatory macrophages, collagen content and smooth muscle cells, and less cell death in the plaques. In conclusion, ANXA7 was an endogenous regulator of PC-PLC, and targeting ANXA7 by ABO inhibited atherosclerosis in apoE⁻/⁻ mice.

  7. Impact of brown rice-specific γ-oryzanol on epigenetic modulation of dopamine D2 receptors in brain striatum in high-fat-diet-induced obesity in mice.

    Science.gov (United States)

    Kozuka, Chisayo; Kaname, Tadashi; Shimizu-Okabe, Chigusa; Takayama, Chitoshi; Tsutsui, Masato; Matsushita, Masayuki; Abe, Keiko; Masuzaki, Hiroaki

    2017-08-01

    Overeating of dietary fats causes obesity in humans and rodents. Recent studies in humans and rodents have demonstrated that addiction to fats shares a common mechanism with addiction to alcohol, nicotine and narcotics in terms of a dysfunction of brain reward systems. It has been highlighted that a high-fat diet (HFD) attenuates dopamine D2 receptor (D2R) signalling in the striatum, a pivotal regulator of the brain reward system, resulting in hedonic overeating. We previously reported that the brown rice-specific bioactive constituent γ-oryzanol attenuated the preference for an HFD via hypothalamic control. We therefore explored the possibility that γ-oryzanol would modulate functioning of the brain reward system in mice. Male C57BL/6J mice fed an HFD were orally treated with γ-oryzanol, and striatal levels of molecules involved in D2R signalling were evaluated. The impact of γ-oryzanol on DNA methylation of the D2R promoter and subsequent changes in preferences for dietary fat was examined. In addition, the effects of 5-aza-2'-deoxycytidine, a potent inhibitor of DNA methyltransferases (DNMTs), on food preference, D2R signalling and the levels of DNMTs in the striatum were investigated. The inhibitory effects of γ-oryzanol on the activity of DNMTs were enzymatically evaluated in vitro. In striatum from mice fed an HFD, the production of D2Rs was decreased via an increase in DNA methylation of the promoter region of the D2R. Oral administration of γ-oryzanol decreased the expression and activity of DNMTs, thereby restoring the level of D2Rs in the striatum. Pharmacological inhibition of DNMTs by 5-aza-2'-deoxycytidine also ameliorated the preference for dietary fat. Consistent with these findings, enzymatic in vitro assays demonstrated that γ-oryzanol inhibited the activity of DNMTs. We demonstrated that γ-oryzanol ameliorates HFD-induced DNA hypermethylation of the promoter region of D2R in the striatum of mice. Our experimental paradigm highlights

  8. Immunization with the conjugate vaccine Vi-CRM₁₉₇ against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice.

    Science.gov (United States)

    Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata

    2012-09-21

    Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jenny J Sun

    Full Text Available CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD. Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.

  10. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    Science.gov (United States)

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  11. Amino acids 16-275 of minute virus of mice NS1 include a domain that specifically binds (ACCA)2-3-containing DNA.

    Science.gov (United States)

    Mouw, M; Pintel, D J

    1998-11-10

    GST-NS1 purified from Escherichia coli and insect cells binds double-strand DNA in an (ACCA)2-3-dependent fashion under similar ionic conditions, independent of the presence of anti-NS1 antisera or exogenously supplied ATP and interacts with single-strand DNA and RNA in a sequence-independent manner. An amino-terminal domain (amino acids 1-275) of NS1 [GST-NS1(1-275)], representing 41% of the full-length NS1 molecule, includes a domain that binds double-strand DNA in a sequence-specific manner at levels comparable to full-length GST-NS1, as well as single-strand DNA and RNA in a sequence-independent manner. The deletion of 15 additional amino-terminal amino acids yielded a molecule [GST-NS1(1-275)] that maintained (ACCA)2-3-specific double-strand DNA binding; however, this molecule was more sensitive to increasing ionic conditions than full-length GST-NS1 and GST-NS1(1-275) and could not be demonstrated to bind single-strand nucleic acids. A quantitative filter binding assay showed that E. coli- and baculovirus-expressed GST-NS1 and E. coli GST-NS1(1-275) specifically bound double-strand DNA with similar equilibrium kinetics [as measured by their apparent equilibrium DNA binding constants (KD)], whereas GST-NS1(16-275) bound 4- to 8-fold less well. Copyright 1998 Academic Press.

  12. Celiac Disease-Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics.

    Directory of Open Access Journals (Sweden)

    Suvi Kalliokoski

    Full Text Available A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2, reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility.

  13. Celiac Disease–Specific TG2-Targeted Autoantibodies Inhibit Angiogenesis Ex Vivo and In Vivo in Mice by Interfering with Endothelial Cell Dynamics

    Science.gov (United States)

    Kalliokoski, Suvi; Sulic, Ana-Marija; Korponay-Szabó, Ilma R.; Szondy, Zsuzsa; Frias, Rafael; Perez, Mileidys Alea; Martucciello, Stefania; Roivainen, Anne; Pelliniemi, Lauri J.; Esposito, Carla; Griffin, Martin; Sblattero, Daniele; Mäki, Markku; Kaukinen, Katri; Lindfors, Katri; Caja, Sergio

    2013-01-01

    A characteristic feature of celiac disease is the presence of circulating autoantibodies targeted against transglutaminase 2 (TG2), reputed to have a function in angiogenesis. In this study we investigated whether TG2-specific autoantibodies derived from celiac patients inhibit angiogenesis in both ex vivo and in vivo models and sought to clarify the mechanism behind this phenomenon. We used the ex vivo murine aorta-ring and the in vivo mouse matrigel-plug assays to address aforementioned issues. We found angiogenesis to be impaired as a result of celiac disease antibody supplementation in both systems. Our results also showed the dynamics of endothelial cells was affected in the presence of celiac antibodies. In the in vivo angiogenesis assays, the vessels formed were able to transport blood despite impairment of functionality after treatment with celiac autoantibodies, as revealed by positron emission tomography. We conclude that celiac autoantibodies inhibit angiogenesis ex vivo and in vivo and impair vascular functionality. Our data suggest that the anti-angiogenic mechanism of the celiac disease-specific autoantibodies involves extracellular TG2 and inhibited endothelial cell mobility. PMID:23824706

  14. Mammary-specific inactivation of E-cadherin and p53 impairs functional gland development and leads to pleomorphic invasive lobular carcinoma in mice

    Directory of Open Access Journals (Sweden)

    Patrick W. B. Derksen

    2011-05-01

    Breast cancer is the most common malignancy in women of the Western world. Even though a large percentage of breast cancer patients show pathological complete remission after standard treatment regimes, approximately 30–40% are non-responsive and ultimately develop metastatic disease. To generate a good preclinical model of invasive breast cancer, we have taken a tissue-specific approach to somatically inactivate p53 and E-cadherin, the cardinal cell-cell adhesion receptor that is strongly associated with tumor invasiveness. In breast cancer, E-cadherin is found mutated or otherwise functionally silenced in invasive lobular carcinoma (ILC, which accounts for 10–15% of all breast cancers. We show that mammary-specific stochastic inactivation of conditional E-cadherin and p53 results in impaired mammary gland function during pregnancy through the induction of anoikis resistance of mammary epithelium, resulting in loss of epithelial organization and a dysfunctional mammary gland. Moreover, combined inactivation of E-cadherin and p53 induced lactation-independent development of invasive and metastatic mammary carcinomas, which showed strong resemblance to human pleomorphic ILC. Dissemination patterns of mouse ILC mimic the human malignancy, showing metastasis to the gastrointestinal tract, peritoneum, lung, lymph nodes and bone. Our results confirm that loss of E-cadherin contributes to both mammary tumor initiation and metastasis, and establish a preclinical mouse model of human ILC that can be used for the development of novel intervention strategies to treat invasive breast cancer.

  15. Enabling Concise and Modular Specifications in Separation Logic

    DEFF Research Database (Denmark)

    Jensen, Jonas Buhrkal

    2014-01-01

    logics and examples of using these logics to verify challenging programs. The article Modular Verification of Linked Lists with Views via Separation Logic reports on verification of a practical data structure with separation logic. The challenges identified in this work has served as motivation for later...... unstructured control flow and the lack of basic facilities in the language such as memory allocation and procedure calls. Finally, the chapter Techniques for Model Construction in Separation Logic surveys the mathematical techniques used to develop the previous separation logics and many other logics...

  16. Oligonucleotide recombination enabled site-specific mutagenesis in bacteria

    Science.gov (United States)

    Recombineering refers to a strategy for engineering DNA sequences using a specialized mode of homologous recombination. This technology can be used for rapidly constructing precise changes in bacterial genome sequences in vivo. Oligo recombination is one type of recombineering that uses ssDNA olig...

  17. Contribution of small conductance K+ channels to sinoatrial node pacemaker activity: insights from atrial-specific Na+ /Ca2+ exchange knockout mice.

    Science.gov (United States)

    Torrente, Angelo G; Zhang, Rui; Wang, Heidi; Zaini, Audrey; Kim, Brian; Yue, Xin; Philipson, Kenneth D; Goldhaber, Joshua I

    2017-06-15

    Repolarizing currents through K + channels are essential for proper sinoatrial node (SAN) pacemaking, but the influence of intracellular Ca 2+ on repolarization in the SAN is uncertain. We identified all three isoforms of Ca 2+ -activated small conductance K + (SK) channels in the murine SAN. SK channel blockade slows repolarization and subsequent depolarization of SAN cells. In the atrial-specific Na + /Ca 2+ exchanger (NCX) knockout mouse, cellular Ca 2+ accumulation during spontaneous SAN pacemaker activity produces intermittent hyperactivation of SK channels, leading to arrhythmic pauses alternating with bursts of pacing. These findings suggest that Ca 2+ -sensitive SK channels can translate changes in cellular Ca 2+ into a repolarizing current capable of modulating pacemaking. SK channels are a potential pharmacological target for modulating SAN rate or treating SAN dysfunction, particularly under conditions characterized by abnormal increases in diastolic Ca 2+ . Small conductance K + (SK) channels have been implicated as modulators of spontaneous depolarization and electrical conduction that may be involved in cardiac arrhythmia. However, neither their presence nor their contribution to sinoatrial node (SAN) pacemaker activity has been investigated. Using quantitative PCR (q-PCR), immunostaining and patch clamp recordings of membrane current and voltage, we identified all three SK isoforms (SK1, SK2 and SK3) in mouse SAN. Inhibition of SK channels with the specific blocker apamin prolonged action potentials (APs) in isolated SAN cells. Apamin also slowed diastolic depolarization and reduced pacemaker rate in isolated SAN cells and intact tissue. We investigated whether the Ca 2+ -sensitive nature of SK channels could explain arrhythmic SAN pacemaker activity in the atrial-specific Na + /Ca 2+ exchange (NCX) knockout (KO) mouse, a model of cellular Ca 2+ overload. SAN cells isolated from the NCX KO exhibited higher SK current than wildtype (WT) and apamin

  18. Geo-Enabled, Mobile Services

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard

    2006-01-01

    We are witnessing the emergence of a global infrastructure that enables the widespread deployment of geo-enabled, mobile services in practice. At the same time, the research community has also paid increasing attention to data management aspects of mobile services. This paper offers me...

  19. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  20. The ENABLER - Based on proven NERVA technology

    International Nuclear Information System (INIS)

    Livingston, J.M.; Pierce, B.L.

    1991-01-01

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs

  1. The ENABLER - Based on proven NERVA technology

    Science.gov (United States)

    Livingston, Julie M.; Pierce, Bill L.

    The ENABLER reactor for use in a nuclear thermal propulsion engine uses the technology developed in the NERVA/Rover program, updated to incorporate advances in the technology. Using composite fuel, higher power densities per fuel element, improved radiation resistant control components and the advancements in use of carbon-carbon materials; the ENABLER can provide a specific impulse of 925 seconds, an engine thrust to weight (excluding reactor shield) approaching five, an improved initial mass in low Earth orbit and a consequent reduction in launch costs and logistics problems. This paper describes the 75,000 lbs thrust ENABLER design which is a low cost, low risk approach to meeting tommorrow's space propulsion needs.

  2. Toward genome-enabled mycology.

    Science.gov (United States)

    Hibbett, David S; Stajich, Jason E; Spatafora, Joseph W

    2013-01-01

    Genome-enabled mycology is a rapidly expanding field that is characterized by the pervasive use of genome-scale data and associated computational tools in all aspects of fungal biology. Genome-enabled mycology is integrative and often requires teams of researchers with diverse skills in organismal mycology, bioinformatics and molecular biology. This issue of Mycologia presents the first complete fungal genomes in the history of the journal, reflecting the ongoing transformation of mycology into a genome-enabled science. Here, we consider the prospects for genome-enabled mycology and the technical and social challenges that will need to be overcome to grow the database of complete fungal genomes and enable all fungal biologists to make use of the new data.

  3. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism

    Science.gov (United States)

    Yan, Fang; Cao, Hanwei; Cover, Timothy L.; Washington, M. Kay; Shi, Yan; Liu, LinShu; Chaturvedi, Rupesh; Peek, Richard M.; Wilson, Keith T.; Polk, D. Brent

    2011-01-01

    Probiotic bacteria can potentially have beneficial effects on the clinical course of several intestinal disorders, but our understanding of probiotic action is limited. We have identified a probiotic bacteria–derived soluble protein, p40, from Lactobacillus rhamnosus GG (LGG), which prevents cytokine-induced apoptosis in intestinal epithelial cells. In the current study, we analyzed the mechanisms by which p40 regulates cellular responses in intestinal epithelial cells and p40’s effects on experimental colitis using mouse models. We show that the recombinant p40 protein activated EGFR, leading to Akt activation. Activation of EGFR by p40 was required for inhibition of cytokine-induced apoptosis in intestinal epithelial cells in vitro and ex vivo. Furthermore, we developed a pectin/zein hydrogel bead system to specifically deliver p40 to the mouse colon, which activated EGFR in colon epithelial cells. Administration of p40-containing beads reduced intestinal epithelial apoptosis and disruption of barrier function in the colon epithelium in an EGFR-dependent manner, thereby preventing and treating DSS-induced intestinal injury and acute colitis. Furthermore, p40 activation of EGFR was required for ameliorating colon epithelial cell apoptosis and chronic inflammation in oxazolone-induced colitis. These data define what we believe to be a previously unrecognized mechanism of probiotic-derived soluble proteins in protecting the intestine from injury and inflammation. PMID:21606592

  4. Comparison of efficacy of the disease-specific LOX1- and constitutive cytomegalovirus-promoters in expressing interleukin 10 through adeno-associated virus 2/8 delivery in atherosclerotic mice.

    Directory of Open Access Journals (Sweden)

    Hongqing Zhu

    Full Text Available The development of gene therapy vectors for treating diseases of the cardiovascular system continues at a steady pace. Moreover, in the field of gene therapy the utility of "disease-specific promoters" has strong appeal. Many therapeutic genes, including transforming growth factor beta 1 or interleukin 10, are associated to adverse effects. The use of a disease-specific promoter might minimize toxicity. The lectin-like oxidized low density lipoprotein receptor 1 is a marker of cardiovascular disease and a potential therapeutic target. The lectin-like oxidized low density lipoprotein receptor 1 is known to be up-regulated early during disease onset in a number of cell types at the sites where the disease will be clinically evident. In this study an adeno-associated virus-2 DNA vector (AAV2 using the AAV8 capsid, and containing the full length The lectin-like oxidized low density lipoprotein receptor 1 promoter, was generated and assayed for its ability to express human interleukin 10 in low density lipoprotein receptor knockout mice on high cholesterol diet. The cytomegalovirus early promoter was used for comparison in a similarly structured vector. The two promoters were found to have equal efficacy in reducing atherogenesis as measured by aortic systolic blood velocity, aortic cross sectional area, and aortic wall thickness. This is the first head-to-head comparison of a constitutive with a disease-specific promoter in a therapeutic context. These data strongly suggest that the use of a disease-specific promoter is appropriate for therapeutic gene delivery.

  5. Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array.

    Science.gov (United States)

    Hosokawa, Masahito; Asami, Marie; Yoshino, Tomoko; Tsujimura, Noriyuki; Takahashi, Masayuki; Nakasono, Satoshi; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2013-02-15

    Monitoring of hematotoxicity, which requires serial blood collection, is difficult to carry out in small animals due to a lack of non-invasive, individual animal-appropriate techniques that enable enumeration of leukocyte subsets from limited amounts of whole blood. In this study, a microfluidic device equipped with a microcavity array that enables highly efficient separation of leukocytes from submicroliters of whole blood was applied for hematotoxicity monitoring in mice. The microcavity array can specifically separate leukocytes from whole blood based on differences in the size and deformability between leukocytes and other blood cells. Mouse leukocytes recovered on aligned microcavities were continuously processed for image-based immunophenotypic analysis. Our device successfully recovered almost 100% of mouse leukocytes in 0.1 μL of whole blood without the effect of serial blood collection such as changes in body weight and total leukocyte count. We assessed benzene-associated hematotoxicity in mice using this system. Mice were administered with benzene once daily and the depression of leukocyte numbers induced in individual mice was successfully monitored from tail vein blood collected every other day for 2 weeks. Serial monitoring of the leukocyte number in individual mice will contribute to the understanding of hematotoxicity and reduction of the number of animal experiment trials. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Site Specific Discrete PEGylation of 124I-Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    Science.gov (United States)

    Ding, Haiming; Carlton, Michelle M.; Povoski, Stephen P.; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H.; Colcher, David; Brody, Rich; Davis, Paul D.; Pokora, Alex; Phelps, Mitchell; Martin, Edward W.; Tweedle, Michael F.

    2014-01-01

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 (124I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A. PMID:24175669

  7. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  8. Computer Security Systems Enable Access.

    Science.gov (United States)

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  9. How GNSS Enables Precision Farming

    Science.gov (United States)

    2014-12-01

    Precision farming: Feeding a Growing Population Enables Those Who Feed the World. Immediate and Ongoing Needs - population growth (more to feed) - urbanization (decrease in arable land) Double food production by 2050 to meet world demand. To meet thi...

  10. Immunobiology of congenitally athymic-asplenic mice

    International Nuclear Information System (INIS)

    Gershwin, M.E.; Ahmed, A.; Ikeda, R.M.; Shifrine, M.; Wilson, F.

    1978-01-01

    A study has been made of congenitally athymic-asplenic mice obtained by the mating of nude by hereditarily asplenic (Dh/+) mice. The mice survived for up to 9 months, under specific pathogen-free conditions, with no evidence for increased risk of spontaneous neoplasia. Although lymphocyte surface markers and sera immunoglobulin levels of athymic-asplenic mice were similar to those of their nude and asplenic littermates, there were a number of major immunologic differences. The athymic-asplenic mice appeared more immunologically compromised than nude mice. There was an elevated rate of growth and a lower inoculated cell threshold needed for successful transplantation of a human malignant melanoma. There was no evidence for auto-antibody production in mice up to 9 months of age. Congenitally athymic-asplenic mice can be used for a variety of studies in which other immunologically deprived mouse mutants are desired. (author)

  11. Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with {sup 111}In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Malmberg, Jennie; Varasteh, Zohreh; Orlova, Anna [Uppsala University, Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala (Sweden); Perols, Anna; Braun, Alexis; Eriksson Karlstroem, Amelie [AlbaNova University Centre, Division of Molecular Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm (Sweden); Altai, Mohamed; Tolmachev, Vladimir [Uppsala University, Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Sandstroem, Mattias [Uppsala University Hospital, Section of Medical Physics, Department of Oncology, Uppsala (Sweden); Garske, Ulrike [Uppsala University Hospital, Department of Medical Sciences, Section of Nuclear Medicine, Uppsala (Sweden)

    2012-03-15

    In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. A synthetic variant of the anti-HER2 Z{sub HER2:342} Affibody molecule, Z{sub HER2:S1}, was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with {sup 111}In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z{sub HER2:S1}, NOTA-Z{sub HER2:S1} and NODAGA-Z{sub HER2:S1}, respectively. A comparative study of {sup 111}In-labelled DOTA-Z{sub HER2:S1}, NOTA-Z{sub HER2:S1} and NODAGA-Z{sub HER2:S1} in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. {sup 111}In-NODAGA-Z{sub HER2:S1} had the most rapid clearance from blood and healthy tissues. {sup 111}In-NOTA-Z{sub HER2:S1} showed high hepatic uptake and was excluded from further evaluation. {sup 111}In-DOTA-Z{sub HER2:S1} and {sup 111}In-NODAGA-Z{sub HER2:S1} demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of {sup 111}In-NODAGA-Z{sub HER2:S1}, 5.6 {+-} 0.4%ID/g, was significantly lower than the uptake of {sup 111}In-DOTA-Z{sub HER2:S1

  12. A maternal high-fat, high-sucrose diet has sex-specific effects on fetal glucocorticoids with little consequence for offspring metabolism and voluntary locomotor activity in mice.

    Directory of Open Access Journals (Sweden)

    Eunice H Chin

    Full Text Available Maternal overnutrition and obesity during pregnancy can have long-term effects on offspring physiology and behaviour. These developmental programming effects may be mediated by fetal exposure to glucocorticoids, which is regulated in part by placental 11β-hydroxysteroid dehydrogenase (11β-HSD type 1 and 2. We tested whether a maternal high-fat, high-sucrose diet would alter expression of placental 11β-HSD1 and 2, thereby increasing fetal exposure to maternal glucocorticoids, with downstream effects on offspring physiology and behaviour. C57BL/6J mice were fed a high-fat, high-sucrose (HFHS diet or a nutrient-matched low-fat, no-sucrose control diet prior to and during pregnancy and lactation. At day 17 of gestation, HFHS dams had ~20% lower circulating corticosterone levels than controls. Furthermore, there was a significant interaction between maternal diet and fetal sex for circulating corticosterone levels in the fetuses, whereby HFHS males tended to have higher corticosterone than control males, with no effect in female fetuses. However, placental 11β-HSD1 or 11β-HSD2 expression did not differ between diets or show an interaction between diet and sex. To assess potential long-term consequences of this sex-specific effect on fetal corticosterone, we studied locomotor activity and metabolic traits in adult offspring. Despite a sex-specific effect of maternal diet on fetal glucocorticoids, there was little evidence of sex-specific effects on offspring physiology or behaviour, although HFHS offspring of both sexes had higher circulating corticosterone at 9 weeks of age. Our results suggest the existence of as yet unknown mechanisms that mitigate the effects of altered glucocorticoid exposure early in development, making offspring resilient to the potentially negative effects of a HFHS maternal diet.

  13. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class I-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay

    International Nuclear Information System (INIS)

    Zinkernagel, R.M.; Haenseler, E.; Leist, T.; Cerny, A.; Hengartner, H.; Althage, A.

    1986-01-01

    A model for immunologically T cell-mediated hepatitis was established in mice infected with lymphocytic choriomeningitis virus (LCMV). The severity of hepatitis was monitored histologically and by determination of changes in serum levels of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glutamate dehydrogenase (GLDH), and alkaline phosphatase (AP). Kinetics of histological disease manifestations, increases of liver enzyme levels in the serum, and cytotoxic T cell activities in livers and spleens all correlated and were dependent upon several parameters: LCMV-isolate; LCMV-WE caused extensive hepatitis, LCMV-Armstrong virtually none. Virus dose. Route of infection; i.v. or i.p. infection caused hepatitis, whereas infection into the footpad did not. The general genetic background of the murine host; of the strains tested, Swiss mice and A-strain mice were more susceptible than C57BL or CBA mice; BALB/c and DBA/2 mice were least susceptible. The degree of immunocompetence of the murine host; T cell deficient nu/nu mice never developed hepatitis, whereas nu/+ or +/+ mice always did. B cell-depleted anti-IgM-treated mice developed immune-mediated hepatitis comparably or even more extensively than control mice. Local cytotoxic T cell activity; mononuclear cells isolated from livers during the period of overt hepatitis were two to five times more active than equal numbers of spleen cells. Adoptive transfer of nylon wool-nonadherent anti-Thy-1.2 and anti-Lyt-2 plus C-sensitive, anti-L3T4 plus C-resistant lymphocytes into irradiated mice preinfected with LCMV-WE caused a rapid time- and dose-dependent linear increase of serum enzyme levels. This increase was caused by adoptive transfer of lymphocytes if immune cell donors and recipient mice shared class I, but not when they shared class II histocompatibility antigens

  14. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  15. p21-LacZ reporter mice reflect p53-dependent toxic insult

    International Nuclear Information System (INIS)

    Vasey, Douglas B.; Wolf, C. Roland; MacArtney, Thomas; Brown, Ken; Whitelaw, C. Bruce A.

    2008-01-01

    There is an urgent need to discover less toxic and more selective drugs to treat disease. The use of transgenic mice that report on toxic insult-induced transcription can provide a valuable tool in this regard. To exemplify this strategy, we have generated transgenic mice carrying a p21-LacZ transgene. Transgene activity reflected endogenous p21 gene activation in various tissues, displayed compound-specific spatial expression signatures in the brain and immune tissues and enabled p53-dependent and p53-independent responses to be identified. We discuss the application of these mice in delineating the molecular events in normal cellular growth and disease and for the evaluation of drug toxicity

  16. Novel Epstein-Barr virus-like particles incorporating gH/gL-EBNA1 or gB-LMP2 induce high neutralizing antibody titers and EBV-specific T-cell responses in immunized mice.

    Science.gov (United States)

    Perez, Elizabeth M; Foley, Joslyn; Tison, Timelia; Silva, Rute; Ogembo, Javier Gordon

    2017-03-21

    Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.

  17. OGC® Sensor Web Enablement Standards

    Directory of Open Access Journals (Sweden)

    George Percivall

    2006-09-01

    Full Text Available This article provides a high-level overview of and architecture for the Open Geospatial Consortium (OGC standards activities that focus on sensors, sensor networks, and a concept called the “Sensor Web”. This OGC work area is known as Sensor Web Enablement (SWE. This article has been condensed from "OGC® Sensor Web Enablement: Overview And High Level Architecture," an OGC White Paper by Mike Botts, PhD, George Percivall, Carl Reed, PhD, and John Davidson which can be downloaded from http://www.opengeospatial.org/pt/15540. Readers interested in greater technical and architecture detail can download and read the OGC SWE Architecture Discussion Paper titled “The OGC Sensor Web Enablement Architecture” (OGC document 06-021r1, http://www.opengeospatial.org/pt/14140.

  18. Identification of a spatially specific enhancer element in the chicken Msx-2 gene that regulates its expression in the apical ectodermal ridge of the developing limb buds of transgenic mice.

    Science.gov (United States)

    Sumoy, L; Wang, C K; Lichtler, A C; Pierro, L J; Kosher, R A; Upholt, W B

    1995-07-01

    Msx-2 is a member of the Msx family of homeobox-containing genes expressed in a variety of embryonic tissues involved in epithelial-mesenchymal interactions and pattern formation. In the developing chick limb bud, Msx-2 is expressed in the apical ectodermal ridge, which plays a crucial role in directing the growth and patterning of limb mesoderm. In addition, Msx-2 is expressed in the anterior nonskeletal-forming mesoderm of the limb bud, in the posterior necrotic zone, and in the interdigital mesenchyme. Studies of the altered expression patterns of Msx-2 in amelic and polydactylous mutant chick limbs have suggested that the apical ectodermal ridge and mesodermal domains of Msx-2 expression are independently regulated and that there might be separate cis-regulatory elements in the Msx-2 gene controlling its spatially distinct domains of expression. To test this hypothesis, we have isolated the chicken Msx-2 gene and have tested the ability of various regions of the gene to target expression of LacZ reporter gene to specific regions of the limbs of transgenic mice. A variety of these constructs are consistently expressed only in the apical ectodermal ridge and the ectoderm of the genital tubercle and are not expressed in the mesoderm of the limb bud or in other regions of the embryo where the endogenous Msx-2 gene is expressed. These results suggest the presence of spatially specific cis-regulatory elements in the Msx-2 gene. We identified a 348-bp region in the 5' flanking region of the Msx-2 gene which can act as an apical ectodermal ridge enhancer element when placed in reverse orientation in front of the reporter gene with transcription initiation directed by the minimal hsp68 promoter.

  19. Organizational Enablers for Project Governance

    DEFF Research Database (Denmark)

    Müller, Ralf; Shao, Jingting; Pemsel, Sofia

    and their relationships to organizational success. Based on these results, the authors discovered that organizational enablers (including key factors such as leadership, governance, and influence of project managers) have a critical impact on how organizations operate, adapt to market fluctuations and forces, and make......While corporate culture plays a significant role in the success of any corporation, governance and “governmentality” not only determine how business should be conducted, but also define the policies and procedures organizations follow to achieve business functions and goals. In their book......, Organizational Enablers for Project Governance, Ralf Müller, Jingting Shao, and Sofia Pemsel examine the interaction of governance and governmentality in various types of companies and demonstrate how these factors drive business success and influence project work, efficiency, and profitability. The data...