WorldWideScience

Sample records for mice developed significantly

  1. Manipulation of Ovarian Function Significantly Influenced Sarcopenia in Postreproductive-Age Mice

    Directory of Open Access Journals (Sweden)

    Rhett L. Peterson

    2016-01-01

    Full Text Available Previously, transplantation of ovaries from young cycling mice into old postreproductive-age mice increased life span. We anticipated that the same factors that increased life span could also influence health span. Female CBA/J mice received new (60 d ovaries at 12 and 17 months of age and were evaluated at 16 and 25 months of age, respectively. There were no significant differences in body weight among any age or treatment group. The percentage of fat mass was significantly increased at 13 and 16 months of age but was reduced by ovarian transplantation in 16-month-old mice. The percentages of lean body mass and total body water were significantly reduced in 13-month-old control mice but were restored in 16- and 25-month-old recipient mice by ovarian transplantation to the levels found in six-month-old control mice. In summary, we have shown that skeletal muscle mass, which is negatively influenced by aging, can be positively influenced or restored by reestablishment of active ovarian function in aged female mice. These findings provide strong incentive for further investigation of the positive influence of young ovaries on restoration of health in postreproductive females.

  2. Development of resistance to serotonin-induced itch in bile duct ligated mice.

    Science.gov (United States)

    Ostadhadi, Sattar; Haddadi, Nazgol-Sadat; Foroutan, Arash; Azimi, Ehsan; Elmariah, Sarina; Dehpour, Ahmad-Reza

    2017-06-01

    Cholestatic itch can be severe and significantly impair the quality of life of patients. The serotonin system is implicated in cholestatic itch; however, the pruritogenic properties of serotonin have not been evaluated in cholestatic mice. Here, we investigated the serotonin-induced itch in cholestatic mice which was induced by bile duct ligation (BDL). Serotonin, sertraline or saline were administered intradermally to the rostral back area in BDL and sham operated (SHAM) mice, and the scratching behaviour was videotaped for 1 hour. Bile duct ligated mice had significantly increased scratching responses to saline injection on the seventh day after surgery. Additionally, serotonin or sertraline significantly induced scratching behaviour in BDL mice compared to saline at day 7 after surgery, while it did not induce itch at day 5. The scratching behaviour induced by serotonin or sertraline was significantly less in BDL mice compared to SHAM mice. Likewise, the locomotor activity of BDL or SHAM mice was not significantly different from unoperated (UNOP) mice on the fifth and seventh day, suggesting that the scratching behaviour was not affected by motor dysfunctions. Our data suggest that despite the potentiation of evoked itch, a resistance to serotonin-induced itch is developed in cholestatic mice. © 2017 John Wiley & Sons Australia, Ltd.

  3. Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.

    Science.gov (United States)

    Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J

    2017-04-01

    Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.

  4. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  5. The dual role of scavenger receptor class A in development of diabetes in autoimmune NOD mice.

    Directory of Open Access Journals (Sweden)

    Mami Shimizu

    Full Text Available Human type 1 diabetes is an autoimmune disease that results from the autoreactive destruction of pancreatic β cells by T cells. Antigen presenting cells including dendritic cells and macrophages are required to activate and suppress antigen-specific T cells. It has been suggested that antigen uptake from live cells by dendritic cells via scavenger receptor class A (SR-A may be important. However, the role of SR-A in autoimmune disease is unknown. In this study, SR-A-/- nonobese diabetic (NOD mice showed significant attenuation of insulitis, lower levels of insulin autoantibodies, and suppression of diabetes development compared with NOD mice. We also found that diabetes progression in SR-A-/- NOD mice treated with low-dose polyinosinic-polycytidylic acid (poly(I:C was significantly accelerated compared with that in disease-resistant NOD mice treated with low-dose poly(I:C. In addition, injection of high-dose poly(I: C to mimic an acute RNA virus infection significantly accelerated diabetes development in young SR-A-/- NOD mice compared with untreated SR-A-/- NOD mice. Pathogenic cells including CD4+CD25+ activated T cells were increased more in SR-A-/- NOD mice treated with poly(I:C than in untreated SR-A-/- NOD mice. These results suggested that viral infection might accelerate diabetes development even in diabetes-resistant subjects. In conclusion, our studies demonstrated that diabetes progression was suppressed in SR-A-/- NOD mice and that acceleration of diabetes development could be induced in young mice by poly(I:C treatment even in SR-A-/- NOD mice. These results suggest that SR-A on antigen presenting cells such as dendritic cells may play an unfavorable role in the steady state and a protective role in a mild infection. Our findings imply that SR-A may be an important target for improving therapeutic strategies for type 1 diabetes.

  6. Development of an Allergic Conjunctivitis Model in Mice

    Directory of Open Access Journals (Sweden)

    Tolga Kocatürk

    2012-12-01

    Full Text Available Pur po se: To develop an animal model that simulates human allergic conjunctivitis to understand the physiopathogenesis of allergic diseases and for developing novel therapeutic interventions. Ma te ri al and Met hod: BALB/c mice (12 males were divided into two groups each comprised of six mice. For sensitization, on the 1st and 8th days, a 0.2 ml mixed solution, adjusted to a concentration to 5mg/ml of ovalbumin (OVA and 15mg/ml of aluminium hydroxide, was administered intraperitoneally to the mice in Group 1 and 0.2 ml saline solution to the mice in Group 2. To induce experimental allergic conjunctivitis, an antigen challenge was made on days 15 and 18, using an OVA solution (5mg/ml instilled into both eyes of the mice in Group 1; while the mice in Group 2 received Human Balanced Salt Solution instead of OVA. For the clinical evaluation, the occurrence of conjunctival and palpebral oedema, conjunctival hyperaemia, and lacrimation were observed. For the histological examination, eyeballs, eyelids, and lacrimal glands were removed and prepared according to the routine processing method of the tissue laboratory. Immunohistochemical examination was made with mast cell tryptase using the labeled streptavidin–biotin amplification method and 3.3´-diaminobenzidine, in addition to hematoxylin-eosin (HE, and toluidine blue (TB staining. Re sults: Evident conjunctival oedema, palpebral oedema, conjunctival hyperaemia, and lacrimation were observed in Group 1. Mean mast cell density in cells/mm2, infiltrating the subconjunctival tissue was significantly high in Group 1 (allergy group, 23.17±7.46, p<0.0001 when compared to Group 2 (5.58±3.12. There was no increase in eosinophil and lymphocyte counts as well as vascular intensity in the subconjunctival tissue in any group. Dis cus si on: The murine model developed is similar to the human allergic conjunctivitis both clinically and histopathologically and can be used as a template for future studies

  7. Food restriction affects Y-maze spatial recognition memory in developing mice.

    Science.gov (United States)

    Fu, Yu; Chen, Yanmei; Li, Liane; Wang, Yumei; Kong, Xiangyang; Wang, Jianhong

    2017-08-01

    The ambiguous effects of food restriction (FR) on cognition in rodents have been mostly explored in the aged brain by a variety of paradigms, in which either rewards or punishments are involved. This study aims to examine the effects of chronic and acute FR with varying intensities on spatial recognition memory in developing mice. We have used a Y-maze task that is based on the innate tendency of rodents to explore novel environments. In chronic FR, mice had 70-30% chow of control for seven weeks. In acute FR, mice were food restricted for 12-48h before the tests. We found that chronic FR had no effect on the preference of mice for novelty in the Y-maze, but severe FR (50-30% of control) caused impairment on spatial recognition memory. The impairment significantly correlated with the slow weight growth induced by FR. Acute FR also did not affect the novelty preference of mice, but either improved or impaired the memory retention. These data suggest chronic FR impairs Y-maze spatial recognition memory in developing mice depending on FR intensity and individual tolerability of the FR. Moreover, acute FR exerts diverse effects on the memory, either positive or negative. Our findings have revealed new insights on the effects of FR on spatial recognition memory in developing animals. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  8. Cell-extrinsic defective lymphocyte development in Lmna(-/- mice.

    Directory of Open Access Journals (Sweden)

    J Scott Hale

    2010-04-01

    Full Text Available Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna(-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna(-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.Lmna(-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna(-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4(+ and CD8(+ T cells. Transplantation of Lmna(-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna(-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna(-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.

  9. In vitro development of embryos from experimentally Kerack-addicted Mice

    Directory of Open Access Journals (Sweden)

    Elham Mohammadzadeh

    2017-08-01

    Full Text Available Background: Prenatal drug exposure, as a common public health concern, is associated with an increased risk of adverse effects on early embryo development. Objective: To investigate the in vitro development of - embryo from experimentally Kerack-addicted mice. Materials and Methods: Twenty-five female mice were studied in five groups: control, vehicle, and three experimental groups of Kerack-dependent mice (I, II, and III which received different doses of Kerack for 14 days. After the establishment of addiction model (7 days, experimental groups I, II, and III were given Kerack intraperitoneally at the doses of 5, 35, and 70 mg/kg, twice a day for a period of 7 days, respectively. The vehicle group received normal saline and lemon juice whilst the control group just received water and food. Morulae were obtained through oviduct flashing. The survived embryos were cultured in T6+ 5mg/ml bovine serum albumin. The developmental rates up to hatched stage daily and embryo quality (differential staining and Tunnel staining were also assessed Results: The developmental potential of embryos obtained from the addicted mother was significantly decreased in comparison with control group. There was a significant reduction in the rate of blastocyst formation in the high dose Kerack dependent group. However, in addicted mice there was reduction in the total cell number (40.92% vs. 65.08% in control and, inner cell mass percentage (17.17% vs. 26.15% in control while apoptotic cells numbers were increased (7.17 vs. 1.46 in control (p<0.05. Conclusion: The Kerack addiction during pregnancy retards preimplantation development and induces apoptosis.

  10. Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice

    Directory of Open Access Journals (Sweden)

    Shudong Wang

    2017-03-01

    Full Text Available Diabetic cardiomyopathy (DCM is highly prevalent in type 2 diabetes (T2DM patients. Zinc is an important essential trace metal, whose deficiency is associated with various chronic ailments, including vascular diseases. We assessed T2DM B6.BKS(D-Leprdb/J (db/db mice fed for six months on a normal diet containing three zinc levels (deficient, adequate, and supplemented, to explore the role of zinc in DCM development and progression. Cardiac function, reflected by ejection fraction, was significantly decreased, along with increased left ventricle mass and heart weight to tibial length ratio, in db/db mice. As a molecular cardiac hypertrophy marker, atrial natriuretic peptide levels were also significantly increased. Cardiac dysfunction and hypertrophy were accompanied by significantly increased fibrotic (elevated collagen accumulation as well as transforming growth factor β and connective tissue growth factor levels and inflammatory (enhanced expression of tumor necrosis factor alpha, interleukin-1β, caspase recruitment domain family member 9, and B-cell lymphoma/leukemia 10, and activated p38 mitogen-activated protein kinase responses in the heart. All these diabetic effects were exacerbated by zinc deficiency, and not affected by zinc supplementation, respectively. Mechanistically, oxidative stress and damage, mirrored by the accumulation of 3-nitrotyrosine and 4-hydroxy-2-nonenal, was significantly increased along with significantly decreased expression of Nrf2 and its downstream antioxidants (NQO-1 and catalase. This was also exacerbated by zinc deficiency in the db/db mouse heart. These results suggested that zinc deficiency promotes the development and progression of DCM in T2DM db/db mice. The exacerbated effects by zinc deficiency on the heart of db/db mice may be related to further suppression of Nrf2 expression and function.

  11. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy.

    Science.gov (United States)

    Mader, Jessica R; Resch, Zachary T; McLean, Gary R; Mikkelsen, Jakob H; Oxvig, Claus; Marler, Ronald J; Conover, Cheryl A

    2013-10-01

    We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.

  12. EFFECTS OF VITEX AGNUS CASTUS ON MICE FETUS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Azarnia; S. Ejtemaee-Mehr; A. Shakoor A. Ansari

    2007-07-01

    Full Text Available Vitex agnus castus (chasteberry is a popular treatment for the management of female reproductive disorders including corpus luteum insufficiency, premenstrual syndrome (PMS, menopausal symptoms, and insufficient milk production. According to developing situation of complementary medicine, and frequent use of this herb, it is important to examine its effects during pregnancy. In this research we studied its effects on mice development, and we focused on macroscopic parameters, such as CRL (Crown-Rump length and the weight of embryos, and diameter and the weight of placenta, and microscopic parameters such as the diameters of eye and lens of embryos. We found that Vitex has special effects during different stages of mice development, for example it can improve the growth of embryos in 8th and 9th day of pregnancy (it causes significant increase in CRL and weight of embryos. Also, it may changes some microscopic parameters. These founding suggest that it should be used more cautiously during pregnancy.

  13. Excessive Sensory Stimulation during Development Alters Neural Plasticity and Vulnerability to Cocaine in Mice.

    Science.gov (United States)

    Ravinder, Shilpa; Donckels, Elizabeth A; Ramirez, Julian S B; Christakis, Dimitri A; Ramirez, Jan-Marino; Ferguson, Susan M

    2016-01-01

    Early life experiences affect the formation of neuronal networks, which can have a profound impact on brain function and behavior later in life. Previous work has shown that mice exposed to excessive sensory stimulation during development are hyperactive and novelty seeking, and display impaired cognition compared with controls. In this study, we addressed the issue of whether excessive sensory stimulation during development could alter behaviors related to addiction and underlying circuitry in CD-1 mice. We found that the reinforcing properties of cocaine were significantly enhanced in mice exposed to excessive sensory stimulation. Moreover, although these mice displayed hyperactivity that became more pronounced over time, they showed impaired persistence of cocaine-induced locomotor sensitization. These behavioral effects were associated with alterations in glutamatergic transmission in the nucleus accumbens and amygdala. Together, these findings suggest that excessive sensory stimulation in early life significantly alters drug reward and the neural circuits that regulate addiction and attention deficit hyperactivity. These observations highlight the consequences of early life experiences and may have important implications for children growing up in today's complex technological environment.

  14. Asic3(-/- female mice with hearing deficit affects social development of pups.

    Directory of Open Access Journals (Sweden)

    Wei-Li Wu

    Full Text Available BACKGROUND: Infant crying is an important cue for mothers to respond adequately. Inappropriate response to infant crying can hinder social development in infants. In rodents, the pup-mother interaction largely depends on pup's calls. Mouse pups emit high frequency to ultrasonic vocalization (2-90 kHz to communicate with their dam for maternal care. However, little is known about how the maternal response to infant crying or pup calls affects social development over the long term. METHODOLOGY/PRINCIPAL FINDINGS: Here we used mice lacking acid-sensing ion channel 3 (Asic3(-/- to create a hearing deficit to probe the effect of caregiver hearing on maternal care and adolescent social development. Female Asic3(-/- mice showed elevated hearing thresholds for low to ultrasonic frequency (4-32 kHz on auditory brain stem response, which thus hindered their response to their pups' wriggling calls and ultrasonic vocalization, as well as their retrieval of pups. In adolescence, pups reared by Asic3(-/- mice showed a social deficit in juvenile social behaviors as compared with those reared by wild-type or heterozygous dams. The social-deficit phenotype in juvenile mice reared by Asic3(-/- mice was associated with the reduced serotonin transmission of the brain. However, Asic3(-/- pups cross-fostered to wild-type dams showed rescued social deficit. CONCLUSIONS/SIGNIFICANCE: Inadequate response to pups' calls as a result of ASIC3-dependent hearing loss confers maternal deficits in caregivers and social development deficits in their young.

  15. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    International Nuclear Information System (INIS)

    Hamrick, Mark W.; Herberg, Samuel; Arounleut, Phonepasong; He, Hong-Zhi; Shiver, Austin; Qi, Rui-Qun; Zhou, Li; Isales, Carlos M.

    2010-01-01

    Research highlights: → Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. → We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. → Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. → Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient-related hormones such as leptin

  16. The adipokine leptin increases skeletal muscle mass and significantly alters skeletal muscle miRNA expression profile in aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Hamrick, Mark W., E-mail: mhamrick@mail.mcg.edu [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Herberg, Samuel; Arounleut, Phonepasong [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); He, Hong-Zhi [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Shiver, Austin [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Qi, Rui-Qun [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Zhou, Li [Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI (United States); Department of Dermatology, Henry Ford Health System, Detroit, MI (United States); Department of Internal Medicine, Henry Ford Health System, Detroit, MI (United States); Isales, Carlos M. [Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); Department of Orthopaedic Surgery, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA (United States); others, and

    2010-09-24

    Research highlights: {yields} Aging is associated with muscle atrophy and loss of muscle mass, known as the sarcopenia of aging. {yields} We demonstrate that age-related muscle atrophy is associated with marked changes in miRNA expression in muscle. {yields} Treating aged mice with the adipokine leptin significantly increased muscle mass and the expression of miRNAs involved in muscle repair. {yields} Recombinant leptin therapy may therefore be a novel approach for treating age-related muscle atrophy. -- Abstract: Age-associated loss of muscle mass, or sarcopenia, contributes directly to frailty and an increased risk of falls and fractures among the elderly. Aged mice and elderly adults both show decreased muscle mass as well as relatively low levels of the fat-derived hormone leptin. Here we demonstrate that loss of muscle mass and myofiber size with aging in mice is associated with significant changes in the expression of specific miRNAs. Aging altered the expression of 57 miRNAs in mouse skeletal muscle, and many of these miRNAs are now reported to be associated specifically with age-related muscle atrophy. These include miR-221, previously identified in studies of myogenesis and muscle development as playing a role in the proliferation and terminal differentiation of myogenic precursors. We also treated aged mice with recombinant leptin, to determine whether leptin therapy could improve muscle mass and alter the miRNA expression profile of aging skeletal muscle. Leptin treatment significantly increased hindlimb muscle mass and extensor digitorum longus fiber size in aged mice. Furthermore, the expression of 37 miRNAs was altered in muscles of leptin-treated mice. In particular, leptin treatment increased the expression of miR-31 and miR-223, miRNAs known to be elevated during muscle regeneration and repair. These findings suggest that aging in skeletal muscle is associated with marked changes in the expression of specific miRNAs, and that nutrient

  17. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-10-01

    pair-fed female NEXLPL−/− mice. ERα mRNA levels were not significantly modified in other brain regions examined, nor in the hypothalamus of male NEXLPL−/− mice compared to control mice. Conclusions: These results suggest that the mechanism underlying ERα regulation of body weight interacts with the LPL-dependent lipid processing in the hypothalamus in a sex specific way. ERα could provide the link between brain lipid sensing and sex differences in obesity development. This study has the potential important clinical implication to provide better management for women who suffer from obesity and obesity-related co-morbidities. Keywords: Lipoprotein lipase, Pair feeding, Sex-differences, Estrogen receptor, Obesity

  18. Rate of lens lesion development and the age of mice at time of irradiation

    International Nuclear Information System (INIS)

    Gajewski, A.K.; Majewska, K.; Slowikowska, M.G.

    1976-01-01

    The rate of lens lesion development has been studied in mice irradiated at different age ranging from one day up to one year old mice. The time needed for the first appearance of lens lesion was shortest in groups of mice irradiated at the age of one, two and three days of life, and longest in groups of mice irradiated at the age of 5 days, 1 week and 2 weeks of life. The time needed for the first appearance of lens lesion for mice irradiated between the third week and one year of life was constant. It was longer than for mice irradiated during the first three days of life and shorter than for mice irradiated at 5 up to 14 days of life. In all but one irradiated groups the age at which the first lens lesion occurred differed significantly from the age at which the first senile changes occurred in the lens of control mice. The one exception was the group of mice irradiated at the age of one year. (author)

  19. Food restriction by intermittent fasting induces diabetes and obesity and aggravates spontaneous atherosclerosis development in hypercholesterolaemic mice.

    Science.gov (United States)

    Dorighello, Gabriel G; Rovani, Juliana C; Luhman, Christopher J F; Paim, Bruno A; Raposo, Helena F; Vercesi, Anibal E; Oliveira, Helena C F

    2014-03-28

    Different regimens of food restriction have been associated with protection against obesity, diabetes and CVD. In the present study, we hypothesised that food restriction would bring benefits to atherosclerosis- and diabetes-prone hypercholesterolaemic LDL-receptor knockout mice. For this purpose, 2-month-old mice were submitted to an intermittent fasting (IF) regimen (fasting every other day) over a 3-month period, which resulted in an overall 20 % reduction in food intake. Contrary to our expectation, epididymal and carcass fat depots and adipocyte size were significantly enlarged by 15, 72 and 68 %, respectively, in the IF mice compared with the ad libitum-fed mice. Accordingly, plasma levels of leptin were 50 % higher in the IF mice than in the ad libitum-fed mice. In addition, the IF mice showed increased plasma levels of total cholesterol (37 %), VLDL-cholesterol (195 %) and LDL-cholesterol (50 %). As expected, in wild-type mice, the IF regimen decreased plasma cholesterol levels and epididymal fat mass. Glucose homeostasis was also disturbed by the IF regimen in LDL-receptor knockout mice. Elevated levels of glycaemia (40 %), insulinaemia (50 %), glucose intolerance and insulin resistance were observed in the IF mice. Systemic inflammatory markers, TNF-α and C-reactive protein, were significantly increased and spontaneous atherosclerosis development were markedly increased (3-fold) in the IF mice. In conclusion, the IF regimen induced obesity and diabetes and worsened the development of spontaneous atherosclerosis in LDL-receptor knockout mice. Although being efficient in a wild-type background, this type of food restriction is not beneficial in the context of genetic hypercholesterolaemia.

  20. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE−/− mice

    Science.gov (United States)

    Prasad, Sakamuri Siva Sankara Vara; Higashi, Yusuke; Sukhanov, Sergiy; Siddesha, Jalahalli M; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani

    2016-01-01

    Background and aims Atherosclerosis is a major cause of heart attack and stroke. Inflammation plays a critical role in the development of atherosclerosis. Since the cytoplasmic adaptor molecule TRAF3IP2 (TRAF3-Interacting Protein 2) plays a causal role in various autoimmune and inflammatory diseases, we hypothesized that TRAF3IP2 mediates atherosclerotic plaque development. Methods TRAF3IP2/ApoE double knockout (DKO) mice were generated by crossing TRAF3IP2−/− and ApoE−/− mice. ApoE−/− mice served as controls. Both DKO and control mice were fed a high-fat diet for 12 weeks. Plasma lipids were measured by ELISA, atherosclerosis by en face analysis of aorta and plaque cross-section measurements at the aortic valve region, plaque necrotic core area, collagen and smooth muscle cell content by histomorphometry, and aortic gene expression by RT-qPCR. Results The plasma lipoprotein profile was not altered by TRAF3IP2 gene deletion in ApoE−/− mice. While total aortic plaque area was decreased in DKO female, but not male mice, the plaque necrotic area was significantly decreased in DKO mice of both genders. Plaque collagen and smooth muscle cell contents were increased significantly in both female and male DKO mice compared to respective controls. Aortic expression of proinflammatory cytokine (Tumor necrosis factor α, TNFα), chemokine (Chemokine (C-X-C motif) Ligand 1, CXCL1) and adhesion molecule (Vascular cell adhesion molecule 1, VCAM1; and Intercellular adhesion molecule 1, ICAM1) gene expression were decreased in both male and female DKO mice. In addition, the male DKO mice showed a markedly reduced expression of extracellular matrix (ECM)-related genes, including TIMP1 (Tissue inhibitor of metalloproteinase 1), RECK (Reversion-Inducing- Cysteine-Rich Protein with Kazal Motifs) and ADAM17 (A Disintegrin And Metalloproteinase 17). Conclusions TRAF3IP2 plays a causal role in atherosclerotic plaque development and vulnerability, possibly by inducing the

  1. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    International Nuclear Information System (INIS)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki

    2001-01-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  2. Effects of a 4.7 T static magnetic field on fetal development in ICR mice

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Ryuji; Ootsuyama, Akira; Uchida, Soshi; Norimura, Toshiyuki [Univ. of Occupational and Environmental Health, Kitakyushu, Fukuoka (Japan). School of Medicine

    2001-09-01

    In order to determine the effects of a 4.7 T static magnetic field (SMF) on fetal development in mice, we evaluated fetal teratogenesis and endochondral ossification following exposure in utero. Pregnant ICR mice were exposed to a 4.7 T SMF from day 7.5 to 9.5 of gestation in a whole-body dose, and sacrificed on day 18.5 of gestation. We examined with incidence of prenatal death, external malformations and fetal skeletal malformations. There were no significant differences observed in the incidence of prenatal death and/or malformations between SMF-exposed mice and control mice. Further, we evaluated the immunoreactivity for the vascular endothelial growth factor (VEGF), which is implicated in angiogenesis and osteogenesis, in the sternum of fetal mice following magnetic exposure. Our studies also indicated that on day 16.5 of gestation following SMF exposure, the immunoreactivity for VEGF was increased compared to unexposed controls. However, it was decreased in the exposed group compared to the control group on day 18.5 of gestation. DNA and proteoglycan (PG) synthesis were also measured in rabbit costal growth plate chondrocytes in vitro. No significant differences were observed in DNA synthesis between the SMF exposed chondrocytes and the control chondrocytes; however, PG synthesis in SMF exposed chondrocytes increased compared to the controls. Based on these results, we suggest that while SMF exposure promoted the endochondral ossification of chondrocytes, it did not induce any harmful effects on fetal development in ICR mice. (author)

  3. Prenatal exposure to fenugreek impairs sensorimotor development and the operation of spinal cord networks in mice.

    Directory of Open Access Journals (Sweden)

    Loubna Khalki

    Full Text Available Fenugreek is a medicinal plant whose seeds are widely used in traditional medicine, mainly for its laxative, galactagogue and antidiabetic effects. However, consumption of fenugreek seeds during pregnancy has been associated with a range of congenital malformations, including hydrocephalus, anencephaly and spina bifida in humans. The present study was conducted to evaluate the effects of prenatal treatment of fenugreek seeds on the development of sensorimotor functions from birth to young adults. Pregnant mice were treated by gavage with 1 g/kg/day of lyophilized fenugreek seeds aqueous extract (FSAE or distilled water during the gestational period. Behavioral tests revealed in prenatally treated mice a significant delay in righting, cliff avoidance, negative geotaxis responses and the swimming development. In addition, extracellular recording of motor output in spinal cord isolated from neonatal mice showed that the frequency of spontaneous activity and fictive locomotion was reduced in FSAE-exposed mice. On the other hand, the cross-correlation coefficient in control mice was significantly more negative than in treated animals indicating that alternating patterns are deteriorated in FSAE-treated animals. At advanced age, prenatally treated mice displayed altered locomotor coordination in the rotarod test and also changes in static and dynamic parameters assessed by the CatWalk automated gait analysis system. We conclude that FSAE impairs sensorimotor and coordination functions not only in neonates but also in adult mice. Moreover, spinal neuronal networks are less excitable in prenatally FSAE-exposed mice suggesting that modifications within the central nervous system are responsible, at least in part, for the motor impairments.

  4. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  5. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    Directory of Open Access Journals (Sweden)

    Takayuki Mito

    Full Text Available Mitochondrial DNA (mtDNA mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0 mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  6. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  7. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  8. A neurorobotic platform for locomotor prosthetic development in rats and mice

    Science.gov (United States)

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  9. Isoflurane Damages the Developing Brain of Mice and Induces Subsequent Learning and Memory Deficits through FASL-FAS Signaling

    Directory of Open Access Journals (Sweden)

    Xiuwen Yi

    2015-01-01

    Full Text Available Background. Isoflurane disrupts brain development of neonatal mice, but its mechanism is unclear. We explored whether isoflurane damaged developing hippocampi through FASL-FAS signaling pathway, which is a well-known pathway of apoptosis. Method. Wild type and FAS- or FASL-gene-knockout mice aged 7 days were exposed to either isoflurane or pure oxygen. We used western blotting to study expressions of caspase-3, FAS (CD95, and FAS ligand (FASL or CD95L proteins, TUNEL staining to count apoptotic cells in hippocampus, and Morris water maze (MWM to evaluate learning and memory. Result. Isoflurane increased expression of FAS and FASL proteins in wild type mice. Compared to isoflurane-treated FAS- and FASL-knockout mice, isoflurane-treated wild type mice had higher expression of caspase-3 and more TUNEL-positive hippocampal cells. Expression of caspase-3 in wild isoflurane group, wild control group, FAS/FASL-gene-knockout control group, and FAS/FASL-gene-knockout isoflurane group showed FAS or FASL gene knockout might attenuate increase of caspase-3 caused by isoflurane. MWM showed isoflurane treatment of wild type mice significantly prolonged escape latency and reduced platform crossing times compared with gene-knockout isoflurane-treated groups. Conclusion. Isoflurane induces apoptosis in developing hippocampi of wild type mice but not in FAS- and FASL-knockout mice and damages brain development through FASL-FAS signaling.

  10. Characterization of a sensitive mouse Aβ40 PD biomarker assay for Alzheimer's disease drug development in wild-type mice.

    Science.gov (United States)

    Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E

    2016-05-01

    Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.

  11. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Kim, D.; Lee, E.K. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Kim, S. [Komipharm International Co. Ltd., 3188, Seongnam-dong, Jungwon-gu, Seongnam-si, Gyeonggi-do 462-827 (Korea, Republic of); Choi, C.S. [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Endocrinology, Internal Medicine, Gachon University Gil Medical Center, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of); Jun, H.S., E-mail: hsjun@gachon.ac.kr [Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840 (Korea, Republic of); Gachon Medical Research Institute, Gil Hospital, 1198 Guwol-Dong, Namdong-Gu, Incheon 405-760 (Korea, Republic of)

    2015-04-15

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  12. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    International Nuclear Information System (INIS)

    Lee, Y.S.; Kim, D.; Lee, E.K.; Kim, S.; Choi, C.S.; Jun, H.S.

    2015-01-01

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA on the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of glucose

  13. Development of an experimental model of neutrophilic pulmonary response induction in mice

    Directory of Open Access Journals (Sweden)

    Leonardo Araújo Pinto

    2003-08-01

    Full Text Available BACKGROUND: Several lung diseases are characterized by a predominantly neutrophilic inflammation. A better understanding of the mechanisms of action of some drugs on the airway inflammation of such diseases may bring advances to the treatment. OBJECTIVE: To develop a method to induce pulmonary neutrophilic response in mice, without active infection. METHODS: Eight adult Swiss mice were used. The study group (n = 4 received an intranasal challenge with 1 x 10(12 CFU/ml of Pseudomonas aeruginosa (Psa, frozen to death. The control group (n = 4 received an intranasal challenge with saline solution. Two days after the intranasal challenge, a bron­choalveolar lavage (BAL was performed with total cell and differential cellularity counts. RESULTS: The total cell count was significantly higher in the group with Psa, as compared to the control group (median of 1.17 x 10(6 and 0.08 x 10(6, respectively, p = 0.029. In addition to this, an absolute predominance of neutrophils was found in the differential cellularity of the mice that had received the Psa challenge. CONCLUSIONS: The model of inducing a neutrophilic pulmonary disease using frost-dead bacteria was successfully developed. This neutrophilic inflammatory response induction model in Swiss mice lungs may be an important tool for testing the anti-inflammatory effect of some antimicrobial drugs on the inflammation of the lower airways.

  14. Environmental change during postnatal development alters behaviour, cognitions and neurogenesis of mice.

    Science.gov (United States)

    Iso, Hiroyuki; Simoda, Shigero; Matsuyama, Tomohiro

    2007-04-16

    Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.

  15. Phenotypic characterization of miR-92a-/- mice reveals an important function of miR-92a in skeletal development.

    Directory of Open Access Journals (Sweden)

    Daniela Penzkofer

    Full Text Available MicroRNAs (miRNAs, miRs emerged as key regulators of gene expression. Germline hemizygous deletion of the gene that encodes the miR-17∼92 miRNA cluster was associated with microcephaly, short stature and digital abnormalities in humans. Mice deficient for the miR-17∼92 cluster phenocopy several features such as growth and skeletal development defects and exhibit impaired B cell development. However, the individual contribution of miR-17∼92 cluster members to this phenotype is unknown. Here we show that germline deletion of miR-92a in mice is not affecting heart development and does not reduce circulating or bone marrow-derived hematopoietic cells, but induces skeletal defects. MiR-92a-/- mice are born at a reduced Mendelian ratio, but surviving mice are viable and fertile. However, body weight of miR-92a-/- mice was reduced during embryonic and postnatal development and adulthood. A significantly reduced body and skull length was observed in miR-92a-/- mice compared to wild type littermates. µCT analysis revealed that the length of the 5th mesophalanx to 5th metacarpal bone of the forelimbs was significantly reduced, but bones of the hindlimbs were not altered. Bone density was not affected. These findings demonstrate that deletion of miR-92a is sufficient to induce a developmental skeletal defect.

  16. Polyyne-Enriched Extract from Oplopanax elatus Significantly Ameliorates the Progression of Colon Carcinogenesis in ApcMin/+ Mice

    Directory of Open Access Journals (Sweden)

    Xin Qiao

    2017-09-01

    Full Text Available Colorectal cancer (CRC is the third most common cancer in the world. Oplopanax elatus is widely used in traditional medicine. However, little is known about its pharmacological effects and bioactive compounds. We evaluated the effects of the polyyne-enriched extract from O. elatus (PEO on the progression of colon carcinogenesis in ApcMin/+ mice. In addition, these effects were also investigated in HCT116 and SW480 cells. After PEO oral administration (0.2% diet for 12 weeks, PEO significantly improved body weight changes and reduced the tumor burden and tumor multiplicity compared with the untreated mice. Meanwhile, western blot and immunohistochemistry results showed PEO significantly reduced the expression of β-catenin and cyclinD1 in both small intestine and the colon tissues compared with the untreated mice. In addition, PEO treatment significant decreased the cell viability in both HCT116 and SW480 cell lines. It also decreased the levels of β-catenin, cyclinD1, c-myc and p-GSK-3β in HCT116 and SW480 cells at 25 μM. These results indicate that PEO may have potential value in prevention of colon cancer by down-regulating Wnt-related protein.

  17. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura E Pascal

    Full Text Available ELL-associated factor 2 (EAF2 is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2(-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2(-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2(-/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.

  18. Targeting surface nucleolin with a multivalent pseudopeptide delays development of spontaneous melanoma in RET transgenic mice

    International Nuclear Information System (INIS)

    El Khoury, Diala; Courty, José; Hovanessian, Ara G; Prévost-Blondel, Armelle; Destouches, Damien; Lengagne, Renée; Krust, Bernard; Hamma-Kourbali, Yamina; Garcette, Marylène; Niro, Sandra; Kato, Masashi; Briand, Jean-Paul

    2010-01-01

    The importance of cell-surface nucleolin in cancer biology was recently highlighted by studies showing that ligands of nucleolin play critical role in tumorigenesis and angiogenesis. By using a specific antagonist that binds the C-terminal tail of nucleolin, the HB-19 pseudopeptide, we recently reported that HB-19 treatment markedly suppressed the progression of established human breast tumor cell xenografts in the athymic nude mice without apparent toxicity. The in vivo antitumoral action of HB-19 treatment was assessed on the spontaneous development of melanoma in the RET transgenic mouse model. Ten days old RET mice were treated with HB-19 in a prophylactic setting that extended 300 days. In parallel, the molecular basis for the action of HB-19 was investigated on a melanoma cell line (called TIII) derived from a cutaneous nodule of a RET mouse. HB-19 treatment of RET mice caused a significant delay in the onset of cutaneous tumors, several-months delay in the incidence of large tumors, a lower frequency of cutaneous nodules, and a reduction of visceral metastatic nodules while displaying no toxicity to normal tissue. Moreover, microvessel density was significantly reduced in tumors recovered from HB-19 treated mice compared to corresponding controls. Studies on the melanoma-derived tumor cells demonstrated that HB-19 treatment of TIII cells could restore contact inhibition, impair anchorage-independent growth, and reduce their tumorigenic potential in mice. Moreover, HB-19 treatment caused selective down regulation of transcripts coding matrix metalloproteinase 2 and 9, and tumor necrosis factor-α in the TIII cells and in melanoma tumors of RET mice. Although HB-19 treatment failed to prevent the development of spontaneous melanoma in the RET mice, it delayed for several months the onset and frequency of cutaneous tumors, and exerted a significant inhibitory effect on visceral metastasis. Consequently, HB-19 could provide a novel therapeutic agent by itself or

  19. Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer.

    Directory of Open Access Journals (Sweden)

    Emily L Lowe

    2010-09-01

    Full Text Available Inflammatory bowel disease (IBD is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC in wild type (WT and TLR2(-/- mice. Colons harvested from WT and TLR2(-/- mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/- mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/- colons exhibited a significant increase in aberrant crypt foci (ACF, resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.

  20. Sildenafil citrate (Viagra) impairs fertilization and early embryo development in mice.

    Science.gov (United States)

    Glenn, David R J; McClure, Neil; Cosby, S Louise; Stevenson, Michael; Lewis, Sheena E M

    2009-03-01

    To determine the effects of sildenafil citrate, a cyclic monophosphate-specific type 5 phosphodiesterase inhibitor known to affect sperm function, on fertilization and early embryo cleavage. This acute mammal study included male and female mice assigned randomly, the females sacrificed after mating and their oocytes/embryos evaluated at four time periods after treatment. Academic research environment. Male and female CBAB(6) mice. Female mice were injected intraperitoneally with 5 IU gonadotropin (hCG) to stimulate follicular growth and induce ovulation. They were each caged with a male that had been gavaged with sildenafil citrate (0.06 mg/0.05 mL) and allowed to mate. After 12, 36, 60, and 84 h, females were killed, their oviducts were dissected out, and retrieved embryos were assessed for blastomere number and quality. Fertilization rates and numbers of embryos were evaluated after treatment. Fertilization rates (day 1) were markedly reduced (-33%) in matings where the male had taken sildenafil citrate. Over days 2-4, the numbers of embryos developing in the treated group were significantly fewer than in the control group. There was also a trend for impaired cleavage rates within those embryos, although this did not reach significance. The impairments to fertility caused by sildenafil citrate have important implications for infertility centers and for couples who are using this drug precoitally while attempting to conceive.

  1. Mice null for the deubiquitinase USP18 spontaneously develop leiomyosarcomas

    International Nuclear Information System (INIS)

    Chinyengetere, Fadzai; Sekula, David J.; Lu, Yun; Giustini, Andrew J.; Sanglikar, Aarti; Kawakami, Masanori; Ma, Tian; Burkett, Sandra S.; Eisenberg, Burton L.; Wells, Wendy A.; Hoopes, Paul J.; Demicco, Elizabeth G.; Lazar, Alexander J; Torres, Keila E.; Memoli, Vincent; Freemantle, Sarah J.; Dmitrovsky, Ethan

    2015-01-01

    USP18 (ubiquitin-specific protease 18) removes ubiquitin-like modifier interferon stimulated gene 15 (ISG15) from conjugated proteins. USP18 null mice in a FVB/N background develop tumors as early as 2 months of age. These tumors are leiomyosarcomas and thus represent a new murine model for this disease. Heterozygous USP18 +/− FVB/N mice were bred to generate wild-type, heterozygous and homozygous cohorts. Tumors were characterized immunohistochemically and two cell lines were derived from independent tumors. Cell lines were karyotyped and their responses to restoration of USP18 activity assessed. Drug testing and tumorigenic assays were also performed. USP18 immunohistochemical staining in a large series of human leiomyosacomas was examined. USP18 −/− FVB/N mice spontaneously develop tumors predominantly on the back of the neck with most tumors evident between 6–12 months (80 % penetrance). Immunohistochemical characterization of the tumors confirmed they were leiomyosarcomas, which originate from smooth muscle. Restoration of USP18 activity in sarcoma-derived cell lines did not reduce anchorage dependent or independent growth or xenograft tumor formation demonstrating that these cells no longer require USP18 suppression for tumorigenesis. Karyotyping revealed that both tumor-derived cell lines were aneuploid with extra copies of chromosomes 3 and 15. Chromosome 15 contains the Myc locus and MYC is also amplified in human leiomyosarcomas. MYC protein levels were elevated in both murine leiomyosarcoma cell lines. Stabilized P53 protein was detected in a subset of these murine tumors, another feature of human leiomyosarcomas. Immunohistochemical analyses of USP18 in human leiomyosarcomas revealed a range of staining intensities with the highest USP18 expression in normal vascular smooth muscle. USP18 tissue array analysis of primary leiomyosarcomas from 89 patients with a clinical database revealed cases with reduced USP18 levels had a significantly

  2. Effects of prenatal cocaine exposure on social development in mice.

    Science.gov (United States)

    Kabir, Zeeba D; Kennedy, Bruce; Katzman, Aaron; Lahvis, Garet P; Kosofsky, Barry E

    2014-01-01

    Prenatal cocaine exposure (PCE) in humans and animals has been shown to impair social development. Molecules that mediate synaptic plasticity and learning in the medial prefrontal cortex (mPFC), specifically brain-derived neurotrophic factor (BDNF) and its downstream signaling molecule, early growth response protein 1 (egr1), have been shown to affect the regulation of social interactions (SI). In this study we determined the effects of PCE on SI and the corresponding ultrasonic vocalizations (USVs) in developing mice. Furthermore, we studied the PCE-induced changes in the constitutive expression of BDNF, egr1 and their transcriptional regulators in the mPFC as a possible molecular mechanism mediating the altered SI. In prenatal cocaine-exposed (PCOC) mice we identified increased SI and USV production at postnatal day (PD) 25, and increased SI but not USVs at PD35. By PD45 the expression of both social behaviors normalized in PCOC mice. At the molecular level, we found increased BDNF exon IV and egr1 mRNA in the mPFC of PCOC mice at PD30 that normalized by PD45. This was concurrent with increased EGR1 protein in the mPFC of PCOC mice at PD30, suggesting a role of egr1 in the enhanced SI observed in juvenile PCOC mice. Additionally, by measuring the association of acetylation of histone 3 at lysine residues 9 and 14 (acH3K9,14) and MeCP2 at the promoters of BDNF exons I and IV and egr1, our results provide evidence of promoter-specific alterations in the mPFC of PCOC juvenile mice, with increased association of acH3K9,14 only at the BDNF exon IV promoter. These results identify a potential PCE-induced molecular alteration as the underlying neurobiological mechanism mediating the altered social development in juvenile mice. © 2014 S. Karger AG, Basel.

  3. The development of lower respiratory tract microbiome in mice.

    Science.gov (United States)

    Singh, Nisha; Vats, Asheema; Sharma, Aditi; Arora, Amit; Kumar, Ashwani

    2017-06-21

    Although culture-independent methods have paved the way for characterization of the lung microbiome, the dynamic changes in the lung microbiome from neonatal stage to adult age have not been investigated. In this study, we tracked changes in composition and diversity of the lung microbiome in C57BL/6N mice, starting from 1-week-old neonates to 8-week-old mice. Towards this, the lungs were sterilely excised from mice of different ages from 1 to 8 weeks. High-throughput DNA sequencing of the 16S rRNA gene followed by composition and diversity analysis was utilized to decipher the microbiome in these samples. Microbiome analysis suggests that the changes in the lung microbiome correlated with age. The lung microbiome was primarily dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in all the stages from week 1 to week 8 after birth. Although Defluvibacter was the predominant genus in 1-week-old neonatal mice, Streptococcus became the dominant genus at the age of 2 weeks. Lactobacillus, Defluvibacter, Streptococcus, and Achromobacter were the dominant genera in 3-week-old mice, while Lactobacillus and Achromobacter were the most abundant genera in 4-week-old mice. Interestingly, relatively greater diversity (at the genus level) during the age of 5 to 6 weeks was observed as compared to the earlier weeks. The diversity of the lung microbiome remained stable between 6 and 8 weeks of age. In summary, we have tracked the development of the lung microbiome in mice from an early age of 1 week to adulthood. The lung microbiome is dominated by the phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria. However, dynamic changes were observed at the genus level. Relatively higher richness in the microbial diversity was achieved by age of 6 weeks and then maintained at later ages. We believe that this study improves our understanding of the development of the mice lung microbiome and will facilitate further analyses of the role of

  4. Development of mice without Cip/Kip CDK inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Tateishi, Yuki; Matsumoto, Akinobu; Kanie, Tomoharu [Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Hara, Eiji [Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550 (Japan); Nakayama, Keiko [Department of Developmental Genetics, Center for Translational and Advanced Animal Research, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 (Japan); Nakayama, Keiichi I., E-mail: nakayak1@bioreg.kyushu-u.ac.jp [Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Mice lacking Cip/Kip CKIs (p21, p27, and p57) survive until embryonic day 13.5. Black-Right-Pointing-Pointer Proliferation of MEFs lacking all three Cip/Kip CKIs appears unexpectedly normal. Black-Right-Pointing-Pointer CDK2 kinase activity of the triple mutant MEFs is increased in G0 phase. -- Abstract: Timely exit of cells from the cell cycle is essential for proper cell differentiation during embryogenesis. Cyclin-dependent kinase (CDK) inhibitors (CKIs) of the Cip/Kip family (p21, p27, and p57) are negative regulators of cell cycle progression and are thought to be essential for development. However, the extent of functional redundancy among Cip/Kip family members has remained largely unknown. We have now generated mice that lack all three Cip/Kip CKIs (TKO mice) and compared them with those lacking each possible pair of these proteins (DKO mice). We found that the TKO embryos develop normally until midgestation but die around embryonic day (E) 13.5, slightly earlier than p27/p57 DKO embryos. The TKO embryos manifested morphological abnormalities as well as increased rates of cell proliferation and apoptosis in the placenta and lens that were essentially indistinguishable from those of p27/p57 DKO mice. Unexpectedly, the proliferation rate and cell cycle profile of mouse embryonic fibroblasts (MEFs) lacking all three Cip/Kip CKIs did not differ substantially from those of control MEFs. The abundance and kinase activity of CDK2 were markedly increased, whereas CDK4 activity and cyclin D1 abundance were decreased, in both p27/p57 DKO and TKO MEFs during progression from G{sub 0} to S phase compared with those in control MEFs. The extents of the increase in CDK2 activity and the decrease in CDK4 activity and cyclin D1 abundance were greater in TKO MEFs than in p27/p57 DKO MEFs. These results suggest that p27 and p57 play an essential role in mouse development after midgestation, and that p21 plays only an auxiliary role in

  5. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  6. Effects of catechins and caffeine on the development of atherosclerosis in mice.

    Science.gov (United States)

    Liu, Litong; Nagai, Izumi; Gao, Ying; Matsushima, Yoshibumi; Kawai, Yoshichika; Sayama, Kazutoshi

    2017-10-01

    Atherosclerosis is one of the diseases related to metabolic syndrome which is caused by obesity. Previous reports have shown that green tea and its components have anti-obesity effect. We examined whether catechins and caffeine can prevent the development of atherosclerosis by oral administration, singly or in combination to the atherosclerosis model mice. Results demonstrated that the number of atherosclerotic regions in the aorta was significantly reduced by the combined treatment, and the atherosclerotic area was also improved. Serum HDL-C increased by caffeine single treatment, but no effect on the TG and TC by any treatments. Moreover, ECG illuviated to atheromatous lesions in aorta and the illuviation was enhanced by caffeine. The mRNA expression levels of LOX-1 and TNF-α showed a tendency to suppress by the combined treatment. These results indicated that the combined administration of catechins and caffeine has the inhibitory effect on the development of atherosclerosis in mice.

  7. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  8. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression.

    Science.gov (United States)

    Chen, Xia; Sun, Chang-Kai; Han, Guo-Zhu; Peng, Jin-Yong; Li, Ying; Liu, Yan-Xia; Lv, Yuan-Yuan; Liu, Ke-Xin; Zhou, Qin; Sun, Hui-Jun

    2009-04-21

    To investigate the hepatoprotective activity of tea polyphenols (TP) and its relation with cytochrome P450 (CYP450) expression in mice. Hepatic CYP450 and CYPb(5) levels were measured by UV-spectrophotometry in mice 2 d after intraperitoneal TP (25, 50 and 100 mg/kg per day). Then the mice were intragastricly pre-treated with TP (100, 200 and 400 mg/kg per day) for six days before paracetamol (1000 mg/kg) was given. Their acute mortality was compared with that of control mice. The mice were pre-treated with TP (100, 200, and 400 mg/kg per day) for five days before paracetamol (500 mg/kg) was given. Hepatic CYP2E1 and CYP1A2 protein and mRNA expression levels were evaluated by Western blotting, immunohistochemical staining and transcriptase-polymerase chain reaction. The hepatic CYP450 and CYPb(5) levels in mice of TP-treated groups (100, 200 and 400 mg/kg per day) were decreased in a dose-dependent manner compared with those in the negative control mice. TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner. TP possess potential hepatoprotective properties and can suppress CYP450 expression.

  9. FTO is a relevant factor for the development of the metabolic syndrome in mice.

    Directory of Open Access Journals (Sweden)

    Kathrin Ikels

    Full Text Available The metabolic syndrome is a worldwide problem mainly caused by obesity. FTO was found to be a obesity-risk gene in humans and FTO deficiency in mice led to reduction in adipose tissue. Thus, FTO is an important factor for the development of obesity. Leptin-deficient mice are a well characterized model for analysing the metabolic syndrome. To determine the relevance of FTO for the development of the metabolic syndrome we analysed different parameters in combined homozygous deficient mice (Lep(ob/ob;Fto(-/-. Lep(ob/ob;Fto(-/- mice showed an improvement in analysed hallmarks of the metabolic syndrome in comparison to leptin-deficient mice wild type or heterozygous for Fto. Lep(ob/ob;Fto(-/- mice did not develop hyperglycaemia and showed an improved glucose tolerance. Furthermore, extension of beta-cell mass was prevented in Lep(ob/ob;Fto(-/-mice and accumulation of ectopic fat in the liver was reduced. In conclusion this study demonstrates that FTO deficiency has a protective effect not only on the development of obesity but also on the metabolic syndrome. Thus, FTO plays an important role in the development of metabolic disorders and is an interesting target for therapeutic agents.

  10. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  11. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice.

    Science.gov (United States)

    Li, Bin; Cui, Wei; Liu, Jia; Li, Ru; Liu, Qian; Xie, Xiao-Hua; Ge, Xiao-Li; Zhang, Jing; Song, Xiu-Juan; Wang, Ying; Guo, Li

    2013-12-01

    Sulforaphane (SFN) is an organosulfur compound present in vegetables and has potent anti-oxidant and anti-inflammatory activities. This study was aimed at investigating the effect of treatment with SFN on inflammation and oxidative stress, and the potential mechanisms underlying the action of SFN in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. Treatment with SFN significantly inhibited the development and severity of EAE in mice, accompanied by mitigating inflammatory infiltration and demyelination in the spinal cord of mice. The protective effect of SFN was associated with significantly improved distribution of claudin-5 and occludin, and decreased levels of MMP-9 expression, preserving the blood-brain barrier. Furthermore, the protection of SFN was also related to decreased levels of oxidative stress in the brains of mice by enhanced activation of the Nrf2/ARE pathway and increased levels of anti-oxidant HO-1 and NQO1 expression. In addition, treatment with SFN inhibited antigen-specific Th17 responses and enhanced IL-10 responses. Our data indicated that treatment with SFN inhibited EAE development and severity in mice by its anti-oxidant activity and antagonizing autoimmune inflammation. Our findings suggest that SFN and its analogues may be promising reagents for intervention of multiple sclerosis and other autoimmune diseases. © 2013.

  12. Effects of neonatal oxytocin manipulation on development of social behaviors in mice.

    Science.gov (United States)

    Mogi, Kazutaka; Ooyama, Rumi; Nagasawa, Miho; Kikusui, Takefumi

    2014-06-22

    The oxytocin (OT) neural system is thought to be involved in the underlying mechanisms that guide the development of social behaviors. In the present study, we examined the effects of neonatal oxytocin manipulation in mice. Within 24 hours after birth, pups in the treatment group randomly received an intraperitoneal injection of OT or OT antagonist (OTA), and those in the control group received a saline injection or handling only. Some of these mice underwent a test that counted the number of isolation-induced ultrasound vocalizations they made on postnatal day 6, and they were further tested for sociability at 8-9 weeks of age and for neuroendocrine stress response to novel environments at 19-20 weeks of age. Another group of mice was tested for alloparental responsiveness at 13-15 weeks of age. The OT injection affected sociability and alloparental responsiveness. In an approach/avoidance test, most of the mice made a social approach to an unfamiliar conspecific of the same sex, but females that had received a neonatal injection of 3 μg of OTA did not show this response. The neonatal OTA treatment appeared to inhibit females' sociability in a dose-dependent fashion. In a retrieving test, females that had received a neonatal injection of 3 μg of OT retrieved significantly more pups than did those that had received 3 μg of OTA, although neither of the treatments caused the females to behave significantly differently from control group females. Meanwhile, a neonatal injection of 3 μg of OTA increased the latency to retrieve pups in males. These results suggested that neonatal OT action may positively regulate alloparental responsiveness in adulthood. Considering that the organizational effects of OT have also been shown in voles and rats, the mechanism by which neonatal OT modifies the development of social behaviors appears to be common to all rodents. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi; Tanaka, Teruyuki

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  14. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Kosuke Okuda

    Full Text Available Mutations in the Cyclin-dependent kinase-like 5 (CDKL5 gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be

  15. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  16. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  17. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

    Science.gov (United States)

    Endo, Toyoshi; Kobayashi, Tetsuro

    2013-09-01

    Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.

  18. Development of electrocardiogram intervals during growth of FVB/N neonate mice

    Science.gov (United States)

    2010-01-01

    Background Electrocardiography remains the best diagnostic tool and therapeutic biomarker for a spectrum of pediatric diseases involving cardiac or autonomic nervous system defects. As genetic links to these disorders are established and transgenic mouse models produced in efforts to understand and treat them, there is a surprising lack of information on electrocardiograms (ECGs) and ECG abnormalities in neonate mice. This is likely due to the trauma and anaesthesia required of many legacy approaches to ECG recording in mice, exacerbated by the fragility of many mutant neonates. Here, we use a non-invasive system to characterize development of the heart rate and electrocardiogram throughout the growth of conscious neonate FVB/N mice. Results We examine ECG waveforms as early as two days after birth. At this point males and females demonstrate comparable heart rates that are 50% lower than adult mice. Neonatal mice exhibit very low heart rate variability. Within 12 days of birth PR, QRS and QTc interval durations are near adult values while heart rate continues to increase until weaning. Upon weaning FVB/N females quickly develop slower heart rates than males, though PR intervals are comparable between sexes until a later age. This suggests separate developmental events may contribute to these gender differences in electrocardiography. Conclusions We provide insight with a new level of detail to the natural course of heart rate establishment in neonate mice. ECG can now be conveniently and repeatedly used in neonatal mice. This should serve to be of broad utility, facilitating further investigations into development of a diverse group of diseases and therapeutics in preclinical mouse studies. PMID:20735846

  19. Diet-induced obesity promotes colon tumor development in azoxymethane-treated mice.

    Directory of Open Access Journals (Sweden)

    Iina Tuominen

    Full Text Available Obesity is an important risk factor for colon cancer in humans, and numerous studies have shown that a high fat diet enhances colon cancer development. As both increased adiposity and high fat diet can promote tumorigenesis, we examined the effect of diet-induced obesity, without ongoing high fat diet, on colon tumor development. C57BL/6J male mice were fed regular chow or high fat diet for 8 weeks. Diets were either maintained or switched resulting in four experimental groups: regular chow (R, high fat diet (H, regular chow switched to high fat diet (RH, and high fat diet switched to regular chow (HR. Mice were then administered azoxymethane to induce colon tumors. Tumor incidence and multiplicity were dramatically smaller in the R group relative to all groups that received high fat diet at any point. The effect of obesity on colon tumors could not be explained by differences in aberrant crypt foci number. Moreover, diet did not alter colonic expression of pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, interleukin-1β, and interferon-γ, which were measured immediately after azoxymethane treatment. Crypt apoptosis and proliferation, which were measured at the same time, were increased in the HR relative to all other groups. Our results suggest that factors associated with obesity - independently of ongoing high fat diet and obesity - promote tumor development because HR group animals had significantly more tumors than R group, and these mice were fed the same regular chow throughout the entire carcinogenic period. Moreover, there was no difference in the number of aberrant crypt foci between these groups, and thus the effect of obesity appears to be on subsequent stages of tumor development when early preneoplastic lesions transition into adenomas.

  20. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  1. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  2. [Changes and significance of peripheral blood platelet count in tumor shrinkage induced by a low dose of CTX in T739 mice].

    Science.gov (United States)

    Li, Mo-lin; Jia, Yu-jie; Jiang, Miao-na; Shu, Xiao-hong; Li, Chuan-gang

    2008-06-01

    To establish a mouse model for BTT739 tumor-bearing mice cured by a low dose of cyclophosphamide (CTX). And then to observe the dynamic changes and significance of peripheral blood counts especially blood platelet count during tumor shrinkage induced by a low dose of CTX in T739 mice. Mouse bladder carcinoma tissues were inoculated subcutaneously into T739 mice. Seven days later, different doses of CTX or the same volume of NS were administered intraperitoneally to treat these tumor-bearing T739 mice. Tumor sizes were observed and recorded subsequently to find out the minimal dose of CTX that could cure most of these tumor-bearing mice. Then another 12 tumor-bearing mice were randomly divided into 15 mg/kg CTX treatment group and control group. Blood samples were obtained from orbital venous sinus on different times after CTX treatment. Complete blood counts were performed and the relationship between peripheral blood platelet counts and tumor shrinkage was analyzed. Within 2 weeks after CTX treatment, the speed of tumor shrinkage had a positive relationship with the dose of CTX used; but the survival rate of the tumor-bearing mice had a negative relationship with the dose of CTX used in 2 months after CTX treatment. 15 mg/kg CTX could cure most of the tumor bearing mice, while it had no remarkably inhibitive effects on peripheral blood cells. The perpherial platelet count increased to (1483.4+/-184.4)x10(9)/L in mice 6 h after CTX treatment. There was significant difference compared with that in mice of control group (1086.6+/-81.0)x10(9)/L (P0.05). CTX 15 mg/kg could cure most of bladder tumor-bearing T739 mice. The transient increase of the peripheral platelet count in 6 h after CTX treatment may relate to the antitumor effects of CTX.

  3. ATP catabolism by tissue nonspecific alkaline phosphatase contributes to development of ARDS in influenza-infected mice.

    Science.gov (United States)

    Woods, Parker S; Doolittle, Lauren M; Hickman-Davis, Judy M; Davis, Ian C

    2018-01-01

    Influenza A viruses are highly contagious respiratory pathogens that are responsible for significant morbidity and mortality worldwide on an annual basis. We have shown previously that influenza infection of mice leads to increased ATP and adenosine accumulation in the airway lumen. Moreover, we demonstrated that A 1 -adenosine receptor activation contributes significantly to influenza-induced acute respiratory distress syndrome (ARDS). However, we found that development of ARDS in influenza-infected mice does not require catabolism of ATP to adenosine by ecto-5'-nucleotidase (CD73). Hence, we hypothesized that increased adenosine generation in response to infection is mediated by tissue nonspecific alkaline phosphatase (TNAP), which is a low-affinity, high-capacity enzyme that catabolizes nucleotides in a nonspecific manner. In the current study, we found that whole lung and BALF TNAP expression and alkaline phosphatase enzymatic activity increased as early as 2 days postinfection (dpi) of C57BL/6 mice with 10,000 pfu/mouse of influenza A/WSN/33 (H1N1). Treatment at 2 and 4 dpi with a highly specific quinolinyl-benzenesulfonamide TNAP inhibitor (TNAPi) significantly reduced whole lung alkaline phosphatase activity at 6 dpi but did not alter TNAP gene or protein expression. TNAPi treatment attenuated hypoxemia, lung dysfunction, histopathology, and pulmonary edema at 6 dpi without impacting viral replication or BALF adenosine. Treatment also improved epithelial barrier function and attenuated cellular and humoral immune responses to influenza infection. These data indicate that TNAP inhibition can attenuate influenza-induced ARDS by reducing inflammation and fluid accumulation within the lung. They also further emphasize the importance of adenosine generation for development of ARDS in influenza-infected mice.

  4. Reduced immune responses in chimeric mice engrafted with bone marrow cells from mice with airways inflammation.

    Science.gov (United States)

    Scott, Naomi M; Ng, Royce L X; McGonigle, Terence A; Gorman, Shelley; Hart, Prue H

    2015-11-01

    During respiratory inflammation, it is generally assumed that dendritic cells differentiating from the bone marrow are immunogenic rather than immunoregulatory. Using chimeric mice, the outcomes of airways inflammation on bone marrow progenitor cells were studied. Immune responses were analyzed in chimeric mice engrafted for >16 weeks with bone marrow cells from mice with experimental allergic airways disease (EAAD). Responses to sensitization and challenge with the allergen causing inflammation in the bone marrow-donor mice were significantly reduced in the chimeric mice engrafted with bone marrow cells from mice with EAAD (EAAD-chimeric). Responses to intranasal LPS and topical fluorescein isothiocyanate (non-specific challenges) were significantly attenuated. Fewer activated dendritic cells from the airways and skin of the EAAD-chimeric mice could be tracked to the draining lymph nodes, and may contribute to the significantly reduced antigen/chemical-induced hypertrophy in the draining nodes, and the reduced immune responses to sensitizing allergens. Dendritic cells differentiating in vitro from the bone marrow of >16 weeks reconstituted EAAD-chimeric mice retained an ability to poorly prime immune responses when transferred into naïve mice. Dendritic cells developing from bone marrow progenitors during airways inflammation are altered such that daughter cells have reduced antigen priming capabilities.

  5. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  6. [Study on the effect of promoting intelligence development and preventing hypoxia/reoxygenation injury of selenium-banqiao-Codonopsis pilosula-overground part in mice].

    Science.gov (United States)

    Xiao, Benjian; Chen, Guodong; Lan, Zongping

    2005-08-01

    To study on the effect of promoting intelligence development and preventing Hypoxia/Reoxygenation injury of Selenium-Banqiao-Codonopsis pilosula-overground part in mice. Promoting Intelligence Development experiment was induced by PIA; Hypoxia/reoxygenation ingury model was established to observe the activity of ROS, SOD, MOD and CAT in blood. Selenium-Banqiao-Codonopsis pilosula-overground part could enhance the learning and memory ability of old mice and obviously extend the swimming time of mice. It could also decrease the quality of ROS and MDA, increase the activity of SOD, but no significant effect on CAT. Selenium-Banqiao-Codonopsis pilosula-overground part has effect on promoting intelligence development and preventing hypoxia/reoxygenation injury.

  7. Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice

    DEFF Research Database (Denmark)

    Kiilerich, Pia; Myrmel, Lene Secher; Fjære, Even

    2016-01-01

    Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein....../sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our...... findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue...

  8. Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient mice

    DEFF Research Database (Denmark)

    Andersen, Sonja; Ericsson, Madelene; Dai, Hong Yan

    2005-01-01

    causes a significant reduction of T-helper cells, and 50% of the young Ung(-/-) mice investigated have no detectable NK/NKT-cell population in their spleen. The immunological imbalance is confirmed in experiments with spleen cells where the production of the cytokines interferon gamma, interleukin 6....... The immunological imbalances shown here in the Ung-deficient mice may be central in the development of lymphomas in a background of generalised lymphoid hyperplasia....

  9. Chronic Pelvic Pain Development and Prostate Inflammation in Strains of Mice With Different Susceptibility to Experimental Autoimmune Prostatitis.

    Science.gov (United States)

    Breser, Maria L; Motrich, Ruben D; Sanchez, Leonardo R; Rivero, Virginia E

    2017-01-01

    Experimental autoimmune prostatitis (EAP) is an autoimmune inflammatory disease of the prostate characterized by peripheral prostate-specific autoimmune responses associated with prostate inflammation. EAP is induced in rodents upon immunization with prostate antigens (PAg) plus adjuvants and shares important clinical and immunological features with the human disease chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). EAP was induced in young NOD, C57BL/6, and BALB/c male mice by immunization with PAg plus complete Freund́s adjuvant. Tactile allodynia was assessed using Von Frey fibers as a measure of pelvic pain at baseline and at different time points after immunization. Using conventional histology, immunohistochemistry, FACS analysis, and protein arrays, an interstrain comparative study of prostate cell infiltration and inflammation was performed. Chronic pelvic pain development was similar between immunized NOD and C57BL/6 mice, although the severity of leukocyte infiltration was greater in the first case. Coversely, minimal prostate cell infiltration was observed in immunized BALB/c mice, who showed no pelvic pain development. Increased numbers of mast cells, mostly degranulated, were detected in prostate samples from NOD and C57BL/6 mice, while lower total counts and resting were observed in BALB/c mice. Prostate tissue from NOD mice revealed markedly increased expression levels of inflammatory cytokines, chemokines, adhesion molecules, vascular endothelial growth factor, and metalloproteinases. Similar results, but to a lesser extent, were observed when analyzing prostate tissue from C57BL/6 mice. On the contrary, the expression of the above mediators was very low in prostate tissue from immunized BALB/c mice, showing significantly slight increments only for CXCL1 and IL4. Our results provide new evidence indicating that NOD, C57BL/6, and BALB/c mice develop different degrees of chronic pelvic pain, type, and amount of prostate cell infiltration

  10. Effect of early postnatal exposure to valproate on neurobehavioral development and regional BDNF expression in two strains of mice.

    Science.gov (United States)

    Bath, Kevin G; Pimentel, Tiare

    2017-05-01

    Valproate has been used for over 30years as a first-line treatment for epilepsy. In recent years, prenatal exposure to valproate has been associated with teratogenic effects, limiting its use in women that are pregnant or of childbearing age. However, despite its potential detrimental effects on development, valproate continues to be prescribed at high rates in pediatric populations in some countries. Animal models allow us to test hypotheses regarding the potential effects of postnatal valproate exposure on neurobehavioral development, as well as identify potential mechanisms mediating observed effects. Here, we tested the effect of early postnatal (P4-P11) valproate exposure (100mg/kg and 200mg/kg) on motor and affective development in two strains of mice, SVE129 and C57Bl/6N. We also assessed the effect of early valproate exposure on regional BDNF protein levels, a potential target of valproate, and mediator of neurodevelopmental outcomes. We found that early life valproate exposure led to significant motor impairments in both SVE129 and C57Bl/6N mice. Both lines of mice showed significant delays in weight gain, as well as impairments in the righting reflex (P7-8), wire hang (P17), open field (P12 and P21), and rotarod (P25 and P45) tasks. Interestingly, some of the early locomotor effects were strain- and dose-dependent. We observed no effects of valproate on early markers of anxiety-like behavior. Importantly, early life valproate exposure had significant effects on regional BDNF expression, leading to a near 50% decrease in BDNF levels in the cerebellum of both strains of mice, while not impacting hippocampal BDNF protein levels. These observations indicate that postnatal exposure to valproate may have significant, and region-specific effects, on neural and behavioral development, with specific consequences for cerebellar development and motor function. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ghrelin treatment prevents development of activity based anorexia in mice.

    Science.gov (United States)

    Legrand, Romain; Lucas, Nicolas; Breton, Jonathan; Azhar, Saïda; do Rego, Jean-Claude; Déchelotte, Pierre; Coëffier, Moïse; Fetissov, Sergueï O

    2016-06-01

    Stimulation of feeding is necessary for treatment of pathological conditions of chronic malnutrition due to anorexia. Ghrelin, a hunger hormone, is one of the candidate for pharmacological treatments of anorexia, but because of its instability in plasma has limited efficacy. We previously showed that plasmatic IgG protect ghrelin from degradation and that IgG from obese subjects and mice may increase ghrelin׳s orexigenic effect. In this study we tested if ghrelin alone or combined with IgG may improve feeding in chronically food-restricted mice with or without physical activity-based anorexia (ABA) induced by free access to a running wheel. Mice received a single daily intraperitoneal injection of ghrelin (1nM) together or not with total IgG (1nM) from obese ob/ob or lean mice before access to food during 8 days of 3h/day feeding time. We found that both ghrelin and ghrelin combined with IgG from obese, but not lean mice, prevented ABA, however, they were not able to diminish body weight loss. Physical activity was lower during the feeding period and was increased shortly after feeding in mice receiving ghrelin together with IgG from obese mice. In food-restricted mice without ABA, ghrelin treatments did not have significant effects on food intake. Thus, this study supports pharmacological use of ghrelin or ghrelin combined with IgG from obese animals for treatment of anorexia accompanied by elevated physical activity. The utility of combining ghrelin with protective IgG should be further determined in animal models of anorexia with unrestricted access to food. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  12. Development of ghrelin transgenic mice for elucidation of clinical implication of ghrelin.

    Science.gov (United States)

    Aotani, Daisuke; Ariyasu, Hiroyuki; Shimazu-Kuwahara, Satoko; Shimizu, Yoshiyuki; Nomura, Hidenari; Murofushi, Yoshiteru; Kaneko, Kentaro; Izumi, Ryota; Matsubara, Masaki; Kanda, Hajime; Noguchi, Michio; Tanaka, Tomohiro; Kusakabe, Toru; Miyazawa, Takashi; Nakao, Kazuwa

    2017-01-01

    To elucidate the clinical implication of ghrelin, we have been trying to generate variable models of transgenic (Tg) mice overexpressing ghrelin. We generated Tg mice overexpressing des-acyl ghrelin in a wide variety of tissues under the control of β-actin promoter. While plasma des-acyl ghrelin level in the Tg mice was 44-fold greater than that of control mice, there was no differences in the plasma ghrelin level between des-acyl ghrelin Tg and the control mice. The des-acyl ghrelin Tg mice exhibited the lower body weight and the shorter body length due to modulation of GH-IGF-1 axis. We tried to generate Tg mice expressing a ghrelin analog, which possessed ghrelin-like activity (Trp 3 -ghrelin Tg mice). The plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was approximately 85-fold higher than plasma ghrelin (acylated ghrelin) concentration seen in the control mice. Because Trp 3 -ghrelin is approximately 24-fold less potent than ghrelin, the plasma Trp 3 -ghrelin concentration in Trp 3 -ghrelin Tg mice was calculated to have approximately 3.5-fold biological activity greater than that of ghrelin (acylated ghrelin) in the control mice. Trp 3 -ghrelin Tg mice did not show any phenotypes except for reduced insulin sensitivity in 1-year old. After the identification of ghrelin O-acyltransferase (GOAT), we generated doubly Tg mice overexpressing both mouse des-acyl ghrelin and mouse GOAT in the liver by cross-mating the two kinds of Tg mice. The plasma ghrelin concentration of doubly Tg mice was approximately 2-fold higher than that of the control mice. No apparent phenotypic changes in body weight and food intake were observed in doubly Tg mice. Further studies are ongoing in our laboratory to generate Tg mice with the increased plasma ghrelin level to a greater extent. The better understanding of physiological and pathophysiological significance of ghrelin from experiments using an excellent animal model may provide a new therapeutic approach for human

  13. Potential contribution of progesterone receptors to the development of sexual behavior in male and female mice.

    Science.gov (United States)

    Desroziers, Elodie; Brock, Olivier; Bakker, Julie

    2017-04-01

    We previously showed that estradiol can have both defeminizing and feminizing effects on the developing mouse brain. Pre- and early postnatal estradiol defeminized the ability to show lordosis in adulthood, whereas prepubertal estradiol feminized this ability. Furthermore, we found that estradiol upregulates progesterone receptors (PR) during development, inducing both a male-and female-typical pattern of PR expression in the mouse hypothalamus. In the present study, we took advantage of a newly developed PR antagonist (ZK 137316) to determine whether PR contributes to either male- or female-typical sexual differentiation. Thus groups of male and female C57Bl/6j mice were treated with ZK 137316 or OIL as control: males were treated neonatally (P0-P10), during the critical period for male sexual differentiation, and females were treated prepubertally (P15-P25), during the critical period for female sexual differentiation. In adulthood, mice were tested for sexual behavior. In males, some minor effects of neonatal ZK treatment on sexual behavior were observed: latencies to the first mount, intromission and ejaculation were decreased in neonatally ZK treated males; however, this effect disappeared by the second mating test. By contrast, female mice treated with ZK during the prepubertal period showed significantly less lordosis than OIL-treated females. Mate preferences were not affected in either males or females treated with ZK during development. Taken together, these results suggest a role for PR and thus perhaps progesterone in the development of lordosis behavior in female mice. By contrast, no obvious role for PR can be discerned in the development of male sexual behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Study of Sperm Parameters and Sperm Fertility in Mice were Exposed to Tamoxifen during Embryonic Development

    Directory of Open Access Journals (Sweden)

    J Soleimanirad

    2017-05-01

    Full Text Available Introduction: Tamoxifen is steroidal drug, which mainly treats breast cancer and also used to stimulate ovulation. The purpose of the present study was the evaluation of sperm parameters and fertility of mice whose mothers had received tamoxifen during pregnancy. Methods: In this study, 30 female and 15 male mice of NMRI were selected for mating. After mating female mice were randomly divided into two groups, the first group (control and second group (experimental. All of which contained 15 mice. From the day 13th day of pregnancy, experimental group has received tamoxifen with the dosage of 5 mg/kg for 7 days. After childbirth of the mated mice, male infants were selected. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation. After take sperm, sperm parameters (count, normality and motility, and sperm fertility was performed. In this study SPSS software and statistical t-test was used (p <0.001. Results: Studies showed that sperm parameters and sperm fertilization were significantly different. The number of sperm in the control group was 83.50±28.20 million, and in the experimental group was 60±14.14 million. There was a decrease in average sperm count in the experimental group compared with the control group (p <0.001. Our findings from in vitro fertilization culture media showed that embryos formation and oocyte disruption between control and experimental groups significantly different (p <0.001. Conclusion: The results showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility.

  15. [Effect of Huanglian Jiedu Decoction on Monocyte Development in apoE Gene Knockout Mice].

    Science.gov (United States)

    Chen, Bing; Kong, Ya-xian; Ll, Yu-mei; Xue, Xin; Zhang, Jian-ping; Zeng, Hui; Hu, Jing- qing; Ma, Ya-luan

    2016-01-01

    To observe monocyte (Mo) development in wild type C57BL/6 mice and apoE gene knockout (apoE(-/-)) mice, and to evaluate the immuno-regulatory effect of Huanglian Jiedu Decoction (HJD) on peripheral Mo development in apoE(-/-) mice. Four, 8, 12, and 16 weeks old female C57BL/6 mice were set up as control groups of different ages, while 4, 8, 12, and 16 weeks old female apoE(-/-) mice were set up as hyperlipidemia groups of different ages. Four-week old female C57BL/6 mice were recruited as a blank group. Four-week old female apoE(-/-) mice were randomly divided into the control group, the Western medicine group, and the Chinese medicine group by paired comparison, 5 in each group. Equivalent clinical dose was administered to mice according to body weight. Mice in the Western medicine group were administered with Atrovastatin at the daily dose of 10 mg/kg by gastrogavage, while those in the Chinese medicine group were administered with HJD at the daily dose of 5 g/kg by gastrogavage. Body weight was detected each week. After 4 weeks blood lipids levels (such as TG, TC, LDL-C, and HDL-C), and the proportions of Mo and Ly6c(hi) were detected. Compared with 4-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05). Levels of TC and TG, and the proportion of Ly6c(hi) subtype increased, but the proportion of Mo de- creased in 8-week-old apoE(-/-) mice (P <0. 05). Levels of TC, TG, and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05). Levels of TC, TG, LDL-C, and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with 8-week-old homogenic mice, the proportion of Mo decreased in 16-week-old C57BL/6 mice (P < 0.05); levels of TC and LDL-C increased in 12-week-old apoE(-/-) mice (P < 0.05); levels of TC and HDL-C increased in 16-week-old apoE(-/-) mice (P < 0.05, P < 0.01). Compared with C57BL/6 mice of the same age, TC and TG increased, HDL-C decreased (P < 0.01) in 4-and 8-week-old apoE(-/-) mice (P

  16. Overactivation of Hedgehog Signaling Alters Development of the Ovarian Vasculature in Mice1

    Science.gov (United States)

    Ren, Yi; Cowan, Robert G.; Migone, Fernando F.; Quirk, Susan M.

    2012-01-01

    ABSTRACT The hedgehog (HH) signaling pathway is critical for ovarian function in Drosophila, but its role in the mammalian ovary has not been defined. Previously, expression of a dominant active allele of the HH signal transducer protein smoothened (SMO) in Amhr2cre/+SmoM2 mice caused anovulation in association with a lack of smooth muscle in the theca of developing follicles. The current study examined events during the first 2 wk of life in Amhr2cre/+SmoM2 mice to gain insight into the cause of anovulation. Expression of transcriptional targets of HH signaling, Gli1, Ptch1, and Hhip, which are used as measures of pathway activity, were elevated during the first several days of life in Amhr2cre/+SmoM2 mice compared to controls but were similar to controls in older mice. Microarray analysis showed that genes with increased expression in 2-day-old mutants compared to controls were enriched for the processes of vascular and tube development and steroidogenesis. The density of platelet endothelial cell adhesion molecule (PECAM)-labeled endothelial tubes was increased in the cortex of newborn ovaries of mutant mice. Costaining of preovulatory follicles for PECAM and smooth muscle actin showed that muscle-type vascular support cells are deficient in theca of mutant mice. Expression of genes for steroidogenic enzymes that are normally expressed in the fetal adrenal gland were elevated in newborn ovaries of mutant mice. In summary, overactivation of HH signaling during early life alters gene expression and vascular development and this is associated with the lifelong development of anovulatory follicles in which the thecal vasculature fails to mature appropriately. PMID:22402963

  17. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  18. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    Science.gov (United States)

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P Defibrotide plus rhG-CSF resulted in a significant increase (P Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed progenitor cells. These data might have relevant implications for autologous and allogeneic anticancer therapy in humans.

  19. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  20. NFC Evaluation in the Development of Mobile Applications for MICE in Tourism

    Directory of Open Access Journals (Sweden)

    David Silva-Pedroza

    2017-10-01

    Full Text Available This paper presents an analysis and implementation of a service for the deployment of events in the Meetings, Incentives, Conferences, and Exhibitions (MICE category, to answer the question: how can Near Field Communication (NFC and mobile applications contribute to the development of tourism in the MICE category? First is an analysis of the applications that are currently on the market and an extraction of the features of greater relevance; later, we define the functionalities for our service, and finally we provide a performance test in a MICE-type event, the seventh Seminar on Emerging Technologies in Telecommunications “TET 2016” developed in Popayán, Colombia and the results of the experience are analyzed. The use of NFC technology with a mobile application allows the experience to be improved when a MICE event was made, for both the user and the organizer.

  1. Cell-cycle arrest in mature adipocytes impairs BAT development but not WAT browning, and reduces adaptive thermogenesis in mice.

    Science.gov (United States)

    Okamatsu-Ogura, Yuko; Fukano, Keigo; Tsubota, Ayumi; Nio-Kobayashi, Junko; Nakamura, Kyoko; Morimatsu, Masami; Sakaue, Hiroshi; Saito, Masayuki; Kimura, Kazuhiro

    2017-07-27

    We previously reported brown adipocytes can proliferate even after differentiation. To test the involvement of mature adipocyte proliferation in cell number control in fat tissue, we generated transgenic (Tg) mice over-expressing cell-cycle inhibitory protein p27 specifically in adipocytes, using the aP2 promoter. While there was no apparent difference in white adipose tissue (WAT) between wild-type (WT) and Tg mice, the amount of brown adipose tissue (BAT) was much smaller in Tg mice. Although BAT showed a normal cellular morphology, Tg mice had lower content of uncoupling protein 1 (UCP1) as a whole, and attenuated cold exposure- or β3-adrenergic receptor (AR) agonist-induced thermogenesis, with a decrease in the number of mature brown adipocytes expressing proliferation markers. An agonist for the β3-AR failed to increase the number of proliferating brown adipocytes, UCP1 content in BAT, and oxygen consumption in Tg mice, although the induction and the function of beige adipocytes in inguinal WAT from Tg mice were similar to WT mice. These results show that brown adipocyte proliferation significantly contributes to BAT development and adaptive thermogenesis in mice, but not to induction of beige adipocytes.

  2. Protective effect of urinary trypsin inhibitor on the development of radiation-induced lung fibrosis in mice

    International Nuclear Information System (INIS)

    Katoh, Hiroyuki; Ishikawa, Hitoshi; Suzuki, Yoshiyuki; Ohno, Tatsuya; Takahashi, Takeo; Nakano, Takashi; Hasegawa, Masatoshi; Yoshida, Yukari

    2010-01-01

    This study aimed to analyze whether Ulinastatin, a urinary trypsin inhibitor (UTI), inhibits the transforming growth factor (TGF)-β signaling pathway and lung fibrosis induced by thoracic irradiation in a lung injury mouse model. The thoraces of 9-week-old female fibrosis-sensitive C57BL/6 mice were irradiated with a single X-ray dose of 12 Gy or 24 Gy. UTI was administrated intraperitoneally at a dose of 200,000 units/kg concurrently with radiation (concurrent UTI) or daily during the post-irradiation period for 8-14 days (post-RT UTI). Mice were sacrificed at 16 weeks after irradiation to assess the histological grade of lung fibrosis and immunohistochemical TGF-β expression. Survival rates of mice given 24 Gy to the whole lung ±UTI were also compared. Post-RT UTI reduced the score of lung fibrosis in mice, but concurrent UTI had no beneficial effects in irradiated mice. The fibrosis score in post-RT UTI mice was 3.2±1.0, which was significantly smaller than that of irradiated mice without UTI treatment (RT alone; 6.0±1.3; p 2 =0.26, p<0.01). The survival rate at 30 weeks for post-RT UTI mice was significantly better than that of RT alone mice (33% vs. 10%, p<0.05). The administration of post-RT UTI suppressed TGF-β expression and radiation-induced lung fibrosis, which resulted in significant survival prolongation of the irradiated mice. (author)

  3. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    International Nuclear Information System (INIS)

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Takashima, Akihiko; Mori, Yoshihide; Sasaguri, Toshiyuki

    2013-01-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β +/− mice. •The cortical and trabecular bone volumes were increased in GSK-3β +/− mice. •Regeneration of a partial bone defect was accelerated in GSK-3β +/− mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β +/− ). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β +/− mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β +/− mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β +/− mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β +/− mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway

  4. Mice do not develop conditioned taste aversion because of immunity loss.

    Science.gov (United States)

    Vidal, Jose

    2011-01-01

    This study intends to test the generation of conditioned taste aversion and conditioned immunodepression by daily paired administration of saccharin solution with cyclophosphamide, 15 mg/kg, for 4 days. One group of male mice of the outbred CD1 strain drank 0.15% saccharin and received 1 injection of cyclophosphamide, 15 mg/kg, for 4 days (paired group), another group (unpaired group) received the same doses of saccharin and cyclophosphamide noncontingently, the third group (cy60) received saccharin paired with cyclophosphamide, 60 mg/kg, and the fourth group (placebo) received saccharin in the absence of cyclophosphamide. All mice were immunized with keyhole limpet hemocyanin (KLH), 0.2 mg, 1 day before the treatments. Mice of the paired, unpaired and cy60 groups displayed a similarly decreased antibody response to KLH, but mice of the paired group did not develop an aversion to saccharin while mice of the cy60 group did. Besides, repeat presentation of saccharin to mice of the paired group did not alter their antibody response to ovalbumin compared with mice of the unpaired or placebo group. Taste aversion was not elicited in response to impaired immunity and the conditioned stimulus (saccharin) did not impair the antibody response. 2011 S. Karger AG, Basel.

  5. A high-fat diet activates oncogenic Kras and COX2 to induce development of pancreatic ductal adenocarcinoma in mice.

    Science.gov (United States)

    Philip, Bincy; Roland, Christina L; Daniluk, Jaroslaw; Liu, Yan; Chatterjee, Deyali; Gomez, Sobeyda B; Ji, Baoan; Huang, Haojie; Wang, Huamin; Fleming, Jason B; Logsdon, Craig D; Cruz-Monserrate, Zobeida

    2013-12-01

    Obesity is a risk factor for pancreatic ductal adenocarcinoma (PDAC), but it is not clear how obesity contributes to pancreatic carcinogenesis. The oncogenic form of KRAS is expressed during early stages of PDAC development and is detected in almost all of these tumors. However, there is evidence that mutant KRAS requires an additional stimulus to activate its full oncogenic activity and that this stimulus involves the inflammatory response. We investigated whether the inflammation induced by a high-fat diet, and the accompanying up-regulation of cyclooxygenase-2 (COX2), increases Kras activity during pancreatic carcinogenesis in mice. We studied mice with acinar cell-specific expression of KrasG12D (LSL-Kras/Ela-CreERT mice) alone or crossed with COX2 conditional knockout mice (COXKO/LSL-Kras/Ela-CreERT). We also studied LSL-Kras/PDX1-Cre mice. All mice were fed isocaloric diets with different amounts of fat, and a COX2 inhibitor was administered to some LSL-Kras/Ela-CreERT mice. Pancreata were collected from mice and analyzed for Kras activity, levels of phosphorylated extracellular-regulated kinase, inflammation, fibrosis, pancreatic intraepithelial neoplasia (PanIN), and PDACs. Pancreatic tissues from LSL-Kras/Ela-CreERT mice fed high-fat diets (HFDs) had increased Kras activity, fibrotic stroma, and numbers of PanINs and PDACs than LSL-Kras/Ela-CreERT mice fed control diets; the mice fed the HFDs also had shorter survival times than mice fed control diets. Administration of a COX2 inhibitor to LSL-Kras/Ela-CreERT mice prevented these effects of HFDs. We also observed a significant reduction in survival times of mice fed HFDs. COXKO/LSL-Kras/Ela-CreERT mice fed HFDs had no evidence for increased numbers of PanIN lesions, inflammation, or fibrosis, as opposed to the increases observed in LSL-Kras/Ela-CreERT mice fed HFDs. In mice, an HFD can activate oncogenic Kras via COX2, leading to pancreatic inflammation and fibrosis and development of PanINs and PDAC. This

  6. Types and rate of cataract development in mice irradiated at different ages

    International Nuclear Information System (INIS)

    Gajewski, A.K.; Majewska, K.; Slowikowska, M.G.; Chomiczewski, K.; Kulig, A.

    1977-01-01

    The effect of age on the development of radiation cataract has been investigated in an inbred A strain of mice and, as a result, the patterns of age dependence and senile mice cataract development were obtained. In general, the lenses of mice 1 to 3 days old were the most sensitive to radiation; the maximum resistance was noted in 5-day-old mice, and from this age up to 3 to 7 weeks of life there was a period of increasing sensitivity. In older animals the lens sensitivity tends to level off. The early stages of cataract occurred in all irradiated groups at a younger age than in the control group, but the late stages occurred in irradiated groups at the same age as the senile cataract occurred in the control group. Two types of cataract were observed. One was typical for young irradiated mice 1 to 5 days of age and the other was typical for all remaining irradiated groups and for a control group. Also, an attempt was made to correlate the obtained results with the cell kinetics in normal lens epithelium

  7. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    Science.gov (United States)

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  8. Targeted deletion of Nrf2 reduces urethane-induced lung tumor development in mice.

    Directory of Open Access Journals (Sweden)

    Alison K Bauer

    Full Text Available Nrf2 is a key transcription factor that regulates cellular redox and defense responses. However, permanent Nrf2 activation in human lung carcinomas promotes pulmonary malignancy and chemoresistance. We tested the hypothesis that Nrf2 has cell survival properties and lack of Nrf2 suppresses chemically-induced pulmonary neoplasia by treating Nrf2(+/+ and Nrf2(-/- mice with urethane. Airway inflammation and injury were assessed by bronchoalveolar lavage analyses and histopathology, and lung tumors were analyzed by gross and histologic analysis. We used transcriptomics to assess Nrf2-dependent changes in pulmonary gene transcripts at multiple stages of neoplasia. Lung hyperpermeability, cell death and apoptosis, and inflammatory cell infiltration were significantly higher in Nrf2(-/- mice compared to Nrf2(+/+ mice 9 and 11 wk after urethane. Significantly fewer lung adenomas were found in Nrf2(-/- mice than in Nrf2(+/+ mice at 12 and 22 wk. Nrf2 modulated expression of genes involved cell-cell signaling, glutathione metabolism and oxidative stress response, and immune responses during early stage neoplasia. In lung tumors, Nrf2-altered genes had roles in transcriptional regulation of cell cycle and proliferation, carcinogenesis, organismal injury and abnormalities, xenobiotic metabolism, and cell-cell signaling genes. Collectively, Nrf2 deficiency decreased susceptibility to urethane-induced lung tumorigenesis in mice. Cell survival properties of Nrf2 were supported, at least in part, by reduced early death of initiated cells and heightened advantage for tumor cell expansion in Nrf2(+/+ mice relative to Nrf2(-/- mice. Our results were consistent with the concept that Nrf2 over-activation is an adaptive response of cancer conferring resistance to anti-cancer drugs and promoting malignancy.

  9. Early-Onset Diabetic E1-DN Mice Develop Albuminuria and Glomerular Injury Typical of Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Mervi E. Hyvönen

    2015-01-01

    Full Text Available The transgenic E1-DN mice express a kinase-negative epidermal growth factor receptor in their pancreatic islets and are diabetic from two weeks of age due to impaired postnatal growth of β-cell mass. Here, we characterize the development of hyperglycaemia-induced renal injury in the E1-DN mice. Homozygous mice showed increased albumin excretion rate (AER at the age of 10 weeks; the albuminuria increased over time and correlated with blood glucose. Morphometric analysis of PAS-stained histological sections and electron microscopy images revealed mesangial expansion in homozygous E1-DN mice, and glomerular sclerosis was observed in the most hyperglycaemic mice. The albuminuric homozygous mice developed also other structural changes in the glomeruli, including thickening of the glomerular basement membrane and widening of podocyte foot processes that are typical for diabetic nephropathy. Increased apoptosis of podocytes was identified as one mechanism contributing to glomerular injury. In addition, nephrin expression was reduced in the podocytes of albuminuric homozygous E1-DN mice. Tubular changes included altered epithelial cell morphology and increased proliferation. In conclusion, hyperglycaemic E1-DN mice develop albuminuria and glomerular and tubular injury typical of human diabetic nephropathy and can serve as a new model to study the mechanisms leading to the development of diabetic nephropathy.

  10. Effect of probiotics on the development of dimethylhydrazine-induced preneoplastic lesions in the mice colon

    Directory of Open Access Journals (Sweden)

    Juliana Costa Liboredo

    2013-05-01

    Full Text Available PURPOSE: To determine the effect of probiotics on the development of chemically induced (1, 2-dimethylhydrazine colonic preneoplastic lesions, in mice. METHODS: The animals were divided into five groups. The control group was injected with carcinogen alone and the other groups also received probiotics (1- Lactobacillus delbrueckii UFV-H2b20; 2- Bifidobacterium animalis var. lactis Bb12; 3- L. delbrueckii UFV-H2b20 plus B. animalis var. lactis Bb12; and 4- Saccharomyces boulardii administered orally in drinking water throughout fourteen weeks. RESULTS: Consumption of lactobacilli and bifidobacteria alone resulted in a significant reduction of the total number of aberrant crypt foci (55.7% and 45.1%, respectively. Significant reduction in the number of these small foci (3 aberrant crypts crypts had no significant reduction. CONCLUSION: L. delbrueckii UFV-H2b20 and B. animalis var. lactis Bb12 administered alone protect colonic preneoplastic lesions in mice, while the combined treatment of these bacteria and the administration of S.boulardii were not effective in reducing such colonic lesions.

  11. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    Science.gov (United States)

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Masaki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Takahashi-Yanaga, Fumi, E-mail: yanaga@clipharm.med.kyushu-u.ac.jp [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Sasaki, Masanori [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Yoshihara, Tatsuya; Morimoto, Sachio [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Takashima, Akihiko [Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Oobu (Japan); Mori, Yoshihide [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Sasaguri, Toshiyuki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β{sup +/−} mice. •The cortical and trabecular bone volumes were increased in GSK-3β{sup +/−} mice. •Regeneration of a partial bone defect was accelerated in GSK-3β{sup +/−} mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β{sup +/−}). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β{sup +/−} mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β{sup +/−} mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β{sup +/−} mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β{sup +/−} mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway.

  13. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    Science.gov (United States)

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  14. Lignan precursors from flaxseed or rye bran do not protect against the development of intestinal neoplasia in Apc(Min) mice

    DEFF Research Database (Denmark)

    van Kranen, H.J.; Mortensen, Alicja; Sørensen, Ilona Kryspin

    2003-01-01

    lignan precursors, i.e., secoisolariciresinol and matairesinol. No statistically significant difference was observed in the incidence and multiplicity of small intestinal and colon tumors at terminal sacrifice between mice fed the control diet or the diet supplemented with 5% flaxseed. With the rye bran...... diet a statistically significant enhancement of the number of small intestinal tumors in female mice was observed. The number of colon tumors, however, was comparable between the control and rye bran-fed mice of either sex. Furthermore, no activating point mutations in the K-ras oncogene nor positive...... immunohistochemical staining for the p53 gene were observed in a set of 48 colon tumors. In conclusion, our results demonstrate that increased intake of lignan precursors from flaxseed or rye bran, administered in a Western-style diet, does not protect against intestinal tumor development in an appropriate animal...

  15. Hypertension is a conditional factor for the development of cardiac hypertrophy in type 2 diabetic mice.

    Directory of Open Access Journals (Sweden)

    Marc van Bilsen

    Full Text Available BACKGROUND: Type 2 diabetes is frequently associated with co-morbidities, including hypertension. Here we investigated if hypertension is a critical factor in myocardial remodeling and the development of cardiac dysfunction in type 2 diabetic db/db mice. METHODS: Thereto, 14-wks-old male db/db mice and non-diabetic db/+ mice received vehicle or angiotensin II (AngII for 4 wks to induce mild hypertension (n = 9-10 per group. Left ventricular (LV function was assessed by serial echocardiography and during a dobutamine stress test. LV tissue was subjected to molecular and (immunohistochemical analysis to assess effects on hypertrophy, fibrosis and inflammation. RESULTS: Vehicle-treated diabetic mice neither displayed marked myocardial structural remodeling nor cardiac dysfunction. AngII-treatment did not affect body weight and fasting glucose levels, and induced a comparable increase in blood pressure in diabetic and control mice. Nonetheless, AngII-induced LV hypertrophy was significantly more pronounced in diabetic than in control mice as assessed by LV mass (increase +51% and +34%, respectively, p<0.01 and cardiomyocyte size (+53% and +31%, p<0.001. This was associated with enhanced LV mRNA expression of markers of hypertrophy and fibrosis and reduced activation of AMP-activated protein kinase (AMPK, while accumulation of Advanced Glycation End products (AGEs and the expression levels of markers of inflammation were not altered. Moreover, AngII-treatment reduced LV fractional shortening and contractility in diabetic mice, but not in control mice. CONCLUSIONS: Collectively, the present findings indicate that type 2 diabetes in its early stage is not yet associated with adverse cardiac structural changes, but already renders the heart more susceptible to hypertension-induced hypertrophic remodeling.

  16. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  17. Interferon-γ Promotes Inflammation and Development of T-Cell Lymphoma in HTLV-1 bZIP Factor Transgenic Mice.

    Directory of Open Access Journals (Sweden)

    Yu Mitagami

    2015-08-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is an etiological agent of several inflammatory diseases and a T-cell malignancy, adult T-cell leukemia (ATL. HTLV-1 bZIP factor (HBZ is the only viral gene that is constitutively expressed in HTLV-1-infected cells, and it has multiple functions on T-cell signaling pathways. HBZ has important roles in HTLV-1-mediated pathogenesis, since HBZ transgenic (HBZ-Tg mice develop systemic inflammation and T-cell lymphomas, which are similar phenotypes to HTLV-1-associated diseases. We showed previously that in HBZ-Tg mice, HBZ causes unstable Foxp3 expression, leading to an increase in regulatory T cells (Tregs and the consequent induction of IFN-γ-producing cells, which in turn leads to the development of inflammation in the mice. In this study, we show that the severity of inflammation is correlated with the development of lymphomas in HBZ-Tg mice, suggesting that HBZ-mediated inflammation is closely linked to oncogenesis in CD4+ T cells. In addition, we found that IFN-γ-producing cells enhance HBZ-mediated inflammation, since knocking out IFN-γ significantly reduced the incidence of dermatitis as well as lymphoma. Recent studies show the critical roles of the intestinal microbiota in the development of Tregs in vivo. We found that even germ-free HBZ-Tg mice still had an increased number of Tregs and IFN-γ-producing cells, and developed dermatitis, indicating that an intrinsic activity of HBZ evokes aberrant T-cell differentiation and consequently causes inflammation. These results show that immunomodulation by HBZ is implicated in both inflammation and oncogenesis, and suggest a causal connection between HTLV-1-associated inflammation and ATL.

  18. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Bárbara M. Schultz

    2018-05-01

    Full Text Available Chronic intestinal inflammations are triggered by genetic and environmental components. However, it remains unclear how specific changes in the microbiota, host immunity, or pathogen exposure could promote the onset and exacerbation of these diseases. Here, we evaluated whether Salmonella enterica serovar Typhimurium (S. Typhimurium infection increases the susceptibility to develop intestinal inflammation in mice. Two mouse models were used to evaluate the impact of S. Typhimurium infection: the chemical induction of colitis by dextran sulfate sodium (DSS and interleukin (IL-10−/− mice, which develop spontaneous intestinal inflammation. We observed that S. Typhimurium infection makes DSS-treated and IL-10−/− mice more susceptible to develop intestinal inflammation. Importantly, this increased susceptibility is associated to the ability of S. Typhimurium to persist in liver and spleen of infected mice, which depends on the virulence proteins secreted by Salmonella Pathogenicity Island 2-encoded type three secretion system (TTSS-2. Although immunization with a live attenuated vaccine resulted in a moderate reduction of the IL-10−/− mice susceptibility to develop intestinal inflammation due to previous S. Typhimurium infection, it did not prevent bacterial persistence. Our results suggest that persistent S. Typhimurium infection may increase the susceptibility of mice to develop inflammation in the intestine, which could be associated with virulence proteins secreted by TTSS-2.

  19. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  20. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  1. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Directory of Open Access Journals (Sweden)

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  2. Preventive effects of andrographolide on the development of diabetes in autoimmune diabetic NOD mice by inducing immune tolerance.

    Science.gov (United States)

    Zhang, Chengliang; Gui, Ling; Xu, Yanjiao; Wu, Tao; Liu, Dong

    2013-08-01

    Andrographolide, an active component in traditional anti-diabetic herbal plants, is a diterpenoid lactone isolated from Andrographis paniculata because of its potent anti-inflammatory and hypoglycemic effects. However, the effect of andrographolide on the development of diabetes in autoimmune non-obese diabetic (NOD) mice remains unknown. This study aimed to investigate the protective effects of andrographolide on the development of autoimmune diabetes and clarify the underlying mechanism. NOD mice were randomly divided into four groups and administered with water and andrographolide at 50, 100, and 150mg/kg body weight for four weeks. ICR mice were also selected as the control group. Oral glucose tolerance and histopathological insulitis were examined. Th1/Th2/Th17 cytokine secretion was determined by ELISA. The transcriptional profiles of T-bet, GATA3, and RORγt in the pancreatic lymphatic node samples derived from the NOD mice were detected by RT-PCR. After four weeks of oral supplementation, andrographolide significantly inhibited insulitis, delayed the onset, and suppressed the development of diabetes in 30-week-old NOD mice in a dose dependent manner. This protective status was correlated with a substantially decreased production of interferon (IFN)-γ and interleukin (IL)-2, increased IL-10 and transforming growth factor (TGF)-β, and a reduced IL-17. Andrographolide also increased GATA3 mRNA expression but decreased T-bet and RORγt mRNA expressions. Our results suggested that andrographolide prevented type 1 diabetes by maintaining Th1/Th2/Th17 homeostasis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice

    Directory of Open Access Journals (Sweden)

    Hong F

    2017-08-01

    Full Text Available Fashui Hong,1–4 Yingjun Zhou,1–4 Xiaoyang Zhao,5 Lei Sheng,5 Ling Wang6 1Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, 2Jiangsu Key Laboratory for Food Safety and Nutritional Function, 3Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, 4School of Life Sciences, Huaiyin Normal University, Huaian, 5Medical College of Soochow University, Suzhou, 6Library of Soochow University, Suzhou, Jiangsu, China Abstract: Although nanoscale titanium dioxide (nano-TiO2 has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown–rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood–fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in

  4. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    Science.gov (United States)

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  5. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 slows cancer development but increases metastases in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available Macrophage inhibitory cytokine-1 (MIC-1/GDF15, a divergent member of the TGF-β superfamily, is over-expressed by many common cancers including those of the prostate (PCa and its expression is linked to cancer outcome. We have evaluated the effect of MIC-1/GDF15 overexpression on PCa development and spread in the TRAMP transgenic model of spontaneous prostate cancer. TRAMP mice were crossed with MIC-1/GDF15 overexpressing mice (MIC-1(fms to produce syngeneic TRAMP(fmsmic-1 mice. Survival rate, prostate tumor size, histopathological grades and extent of distant organ metastases were compared. Metastasis of TC1-T5, an androgen independent TRAMP cell line that lacks MIC-1/GDF15 expression, was compared by injecting intravenously into MIC-1(fms and syngeneic C57BL/6 mice. Whilst TRAMP(fmsmic-1 survived on average 7.4 weeks longer, had significantly smaller genitourinary (GU tumors and lower PCa histopathological grades than TRAMP mice, more of these mice developed distant organ metastases. Additionally, a higher number of TC1-T5 lung tumor colonies were observed in MIC-1(fms mice than syngeneic WT C57BL/6 mice. Our studies strongly suggest that MIC-1/GDF15 has complex actions on tumor behavior: it limits local tumor growth but may with advancing disease, promote metastases. As MIC-1/GDF15 is induced by all cancer treatments and metastasis is the major cause of cancer treatment failure and cancer deaths, these results, if applicable to humans, may have a direct impact on patient care.

  6. Prenatal stress challenge impairs fetal lung development and asthma severity sex-specifically in mice.

    Science.gov (United States)

    Zazara, Dimitra E; Perani, Clara V; Solano, María E; Arck, Petra C

    2018-02-01

    Allergic asthma is an increasing health problem worldwide. Interestingly, prenatal challenges such as stress have been associated with an increased risk for asthma during childhood. The underlying pathogenesis of how prenatal stress increases the risk for asthma still remains unclear. Potential targets could be that the fetal immune ontogeny or fetal lung development are compromised by prenatal challenges. Here, we aimed to identify whether prenatal stress challenge affects fetal lung development in mice. C57BL/6 pregnant mice were challenged with sound stress and fetal lung development was assessed histologically. Whilst prenatal stress challenge did not profoundly affect lung development in male fetuses, it resulted in less extensive terminal sacs, surrounded by thicker mesenchymal tissue in female fetuses. Thus, prenatal stress disrupted fetal lung development sex-specifically. Interestingly, upon prenatal stress challenge, the airway hyperresponsiveness and eosinophilic inflammation- two hallmarks of asthma - were significantly increased in adult female offspring, whilst regulatory CD4+ T cells were reduced. These findings strongly underpin the sex-specific association between s challenged fetal development and a sex-specific altered severity of asthma in adult offspring. Our model now allows to identify maternal markers through which the risk for asthma and possible other diseases is vertically transferred before birth in response to challenges. Such identification then opens avenues for primary disease prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Development of a model for marburgvirus based on severe-combined immunodeficiency mice

    Directory of Open Access Journals (Sweden)

    Kalina Warren V

    2007-10-01

    Full Text Available Abstract The filoviruses, Ebola (EBOV and Marburg (MARV, cause a lethal hemorrhagic fever. Human isolates of MARV are not lethal to immmunocompetent adult mice and, to date, there are no reports of a mouse-adapted MARV model. Previously, a uniformly lethal EBOV-Zaire mouse-adapted virus was developed by performing 9 sequential passages in progressively older mice (suckling to adult. Evaluation of this model identified many similarities between infection in mice and nonhuman primates, including viral tropism for antigen-presenting cells, high viral titers in the spleen and liver, and an equivalent mean time to death. Existence of the EBOV mouse model has increased our understanding of host responses to filovirus infections and likely has accelerated the development of countermeasures, as it is one of the only hemorrhagic fever viruses that has multiple candidate vaccines and therapeutics. Here, we demonstrate that serially passaging liver homogenates from MARV-infected severe combined immunodeficient (scid mice was highly successful in reducing the time to death in scid mice from 50–70 days to 7–10 days after MARV-Ci67, -Musoke, or -Ravn challenge. We performed serial sampling studies to characterize the pathology of these scid mouse-adapted MARV strains. These scid mouse-adapted MARV models appear to have many similar properties as the MARV models previously developed in guinea pigs and nonhuman primates. Also, as shown here, the scid-adapted MARV mouse models can be used to evaluate the efficacy of candidate antiviral therapeutic molecules, such as phosphorodiamidate morpholino oligomers or antibodies.

  8. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    International Nuclear Information System (INIS)

    Liu, Ju; Li, Yan; Dong, Fengyun; Li, Liqun; Masuda, Takahiro; Allen, Thaddeus D.; Lobe, Corrinne G.

    2015-01-01

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  9. Trichostatin A suppresses lung adenocarcinoma development in Grg1 overexpressing transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ju, E-mail: ju.liu@sdu.edu.cn [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Li, Yan [Children' s Health Care Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong 250014 (China); Dong, Fengyun; Li, Liqun [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan (China); Masuda, Takahiro; Allen, Thaddeus D. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Lobe, Corrinne G. [Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, University of Toronto, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5 (Canada); Miami Mice Research Corp., MaRS Centre, Heritage Bldg., 101 College Street, Toronto, Ontario M5G 1L7 (Canada)

    2015-08-07

    Trichostatin A (TSA) is a histone deacetylase inhibitor and a potential therapeutic for various malignancies. The in vivo effect of TSA, however, has not been investigated in a transgenic lung cancer model. Previously, we generated transgenic mice with overexpression of Groucho-related-gene 1 (Grg1) and these mice all developed mucinous lung adenocarcinoma. Grg1 is a transcriptional co-repressor protein, the function of which is thought to depend on HDAC activity. However, functions outside the nucleus have also been proposed. We tested the supposition that Grg1-induced tumorigenesis is HDAC-dependent by assaying the therapeutic effect of TSA in the Grg1 transgenic mouse model. We found that TSA significantly inhibited lung tumorigenesis in Grg1 transgenic mice (p < 0.01). TSA did not affect overall Grg1 protein levels, but instead reduced ErbB1 and ErbB2 expression, which are upregulated by Grg1 in the absence of TSA. We confirmed this effect in A549 cells. Furthermore, lapatinib, an inhibitor of both ErbB1 and ErbB2, effectively masked the effect of TSA on the inhibition of A549 cell proliferation and migration, suggesting TSA does work, at least in part, by downregulating ErbB receptors. We additionally found that TSA reduced the expression of VEGF and VEGFR2, but not basic FGF and FGFR1. Our findings indicate that TSA effectively inhibits Grg1-induced lung tumorigenesis through the down-regulation of ErbB1 and ErbB2, as well as reduced VEGF signaling. This suggests TSA and other HDAC inhibitors could have therapeutic value in the treatment of lung cancers with Grg1 overexpression. - Highlights: • TSA suppresses lung tumorigenesis in Grg1 overexpressing transgenic mice. • TSA does not affect overall Grg1 protein levels in the mice and in A549 cells. • TSA reduces ErbB1 and ErbB2 expression in the mice and in A549 cells. • Lapatinib masks TSA-induced inhibition of A549 cell proliferation and migration. • TSA inhibits VEGF signaling, but not basic FGF

  10. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis.

    Directory of Open Access Journals (Sweden)

    Anna Pérez-Bosque

    Full Text Available Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT. Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT mice and mice lacking the mdr1a gene (KO were fed diets supplemented with either SBI (2% w/w or milk proteins (Control diet, from day 21 (weaning until day 56. Leucocytes in mesenteric lymph nodes (MLN and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05. The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05 and SBI supplementation reduced this variable (p < 0.05. The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05. In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold, IL-6 (26-fold and IL-17 (19-fold, and of chemokines MIP-1β (4.5-fold and MCP-1 (7.2-fold. These effects were significantly prevented by SBI (p < 0.05. SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis.

  11. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice

    Science.gov (United States)

    Nelson, Richard K.; Gould, Karen A.

    2015-01-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB×NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4+ and CD8+ T cells, the proportion of activated CD4+ T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cells apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. PMID:26385218

  12. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  13. Junctional Adhesion Molecule (JAM)-C Deficient C57BL/6 Mice Develop a Severe Hydrocephalus

    Science.gov (United States)

    Liebner, Stefan; Mittelbronn, Michel; Deutsch, Urban; Enzmann, Gaby; Adams, Ralf H.; Aurrand-Lions, Michel; Plate, Karl H.; Imhof, Beat A.; Engelhardt, Britta

    2012-01-01

    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C. PMID:23029139

  14. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    Science.gov (United States)

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  15. Effects of gamma radiation on fetal development in mice

    Directory of Open Access Journals (Sweden)

    Tahere Dehghan

    2016-04-01

    Full Text Available Background: Many cancer patients receive radiotherapy which may lead to serious damages to the ovary storage and the matrix muscle state. Some of these patients may admit to infertility clinics for having pregnancy and on the other hand hormonal administration for superovulation induction is a routine procedure in assisted reproduction technology (ART clinics. Objective: This study aimed to investigate fertility and fetuses of hormone treated super ovulated female mice who had received whole-body gamma irradiation before mating. Materials and Methods: Female mice were randomly categorized into a control group and 3 experimental groups including: Group I (Irradiation, Group II (Superovulation, and Group III (Superovulation and Irradiation. In hormone treated groups, mice were injected with different doses of 59Tpregnant mare's serum gonadotropin59T (PMSG followed with human chorionic gonadotropin (HCG. Irradiation was done using a Co-60 gamma ray generator with doses of 2 and 4 Gy. Number of fetuses counted and the fetus’s weight, head circumference, birth height, the number of live healthy fetuses, the number of fetuses with detected anomalies in the body, the sum of resorption and arrested fetuses were all recorded as outcome of treatments. Results: In the group I and group II, increased radiation and hormone dose led to a decrease in the number of survived fetuses (45 in 2 Gy vs. 29 in 4 Gy for irradiated group as well as from 76 in 10 units into 48 in 15 units. In the group III, a higher dose of hormone in the presence of a 2 Gy irradiation boosted the slink rate; i.e. the number of aborted fetuses reached 21 cases while applying the dose of 15 Iu, whereas 6 cases of abortion were reported applying the hormone with a lower dose. Among different parameters studied, there was a significant difference in parameters of weight and height in the mouse fetuses (p=0.01. Conclusion: The data indicated that use of ovarian stimulating hormones in mice

  16. Mice lacking glutamate carboxypeptidase II develop normally, but are less susceptible to traumatic brain injury.

    Science.gov (United States)

    Gao, Yang; Xu, Siyi; Cui, Zhenwen; Zhang, Mingkun; Lin, Yingying; Cai, Lei; Wang, Zhugang; Luo, Xingguang; Zheng, Yan; Wang, Yong; Luo, Qizhong; Jiang, Jiyao; Neale, Joseph H; Zhong, Chunlong

    2015-07-01

    Glutamate carboxypeptidase II (GCPII) is a transmembrane zinc metallopeptidase found mainly in the nervous system, prostate and small intestine. In the nervous system, glia-bound GCPII mediates the hydrolysis of the neurotransmitter N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate. Inhibition of GCPII has been shown to attenuate excitotoxicity associated with enhanced glutamate transmission under pathological conditions. However, different strains of mice lacking the GCPII gene are reported to exhibit striking phenotypic differences. In this study, a GCPII gene knockout (KO) strategy involved removing exons 3-5 of GCPII. This generated a new GCPII KO mice line with no overt differences in standard neurological behavior compared to their wild-type (WT) littermates. However, GCPII KO mice were significantly less susceptible to moderate traumatic brain injury (TBI). GCPII gene KO significantly lessened neuronal degeneration and astrocyte damage in the CA2 and CA3 regions of the hippocampus 24 h after moderate TBI. In addition, GCPII gene KO reduced TBI-induced deficits in long-term spatial learning/memory tested in the Morris water maze and motor balance tested via beam walking. Knockout of the GCPII gene is not embryonic lethal and affords histopathological protection with improved long-term behavioral outcomes after TBI, a result that further validates GCPII as a target for drug development consistent with results from studies using GCPII peptidase inhibitors. © 2015 International Society for Neurochemistry.

  17. Occurrence of testicular microlithiasis in androgen insensitive hypogonadal mice

    Directory of Open Access Journals (Sweden)

    De Gendt Karl

    2009-08-01

    Full Text Available Abstract Background Testicular microliths are calcifications found within the seminiferous tubules. In humans, testicular microlithiasis (TM has an unknown etiology but may be significantly associated with testicular germ cell tumors. Factors inducing microlith development may also, therefore, act as susceptibility factors for malignant testicular conditions. Studies to identify the mechanisms of microlith development have been hampered by the lack of suitable animal models for TM. Methods This was an observational study of the testicular phenotype of different mouse models. The mouse models were: cryptorchid mice, mice lacking androgen receptors (ARs on the Sertoli cells (SCARKO, mice with a ubiquitous loss of androgen ARs (ARKO, hypogonadal (hpg mice which lack circulating gonadotrophins, and hpg mice crossed with SCARKO (hpg.SCARKO and ARKO (hpg.ARKO mice. Results Microscopic TM was seen in 94% of hpg.ARKO mice (n = 16 and the mean number of microliths per testis was 81 +/- 54. Occasional small microliths were seen in 36% (n = 11 of hpg testes (mean 2 +/- 0.5 per testis and 30% (n = 10 of hpg.SCARKO testes (mean 8 +/- 6 per testis. No microliths were seen in cryptorchid, ARKO or SCARKO mice. There was no significant effect of FSH or androgen on TM in hpg.ARKO mice. Conclusion We have identified a mouse model of TM and show that lack of endocrine stimulation is a cause of TM. Importantly, this model will provide a means with which to identify the mechanisms of TM development and the underlying changes in protein and gene expression.

  18. EFFECTS OF VITEX AGNUS CASTUS ON MICE FETUS DEVELOPMENT

    OpenAIRE

    M. Azarnia; S. Ejtemaee-Mehr; A. Shakoor A. Ansari

    2007-01-01

    Vitex agnus castus (chasteberry) is a popular treatment for the management of female reproductive disorders including corpus luteum insufficiency, premenstrual syndrome (PMS), menopausal symptoms, and insufficient milk production. According to developing situation of complementary medicine, and frequent use of this herb, it is important to examine its effects during pregnancy. In this research we studied its effects on mice development, and we focused on macroscopic parameters, such as CRL (C...

  19. TLR2 signal influences the iNOS/NO responses and worm development in C57BL/6J mice infected with Clonorchis sinensis.

    Science.gov (United States)

    Yang, Qing-Li; Shen, Ji-Qing; Jiang, Zhi-Hua; Shi, Yun-Liang; Wan, Xiao-Ling; Yang, Yi-Chao

    2017-08-07

    Although the responses of inducible nitric oxide synthase (iNOS) and associated cytokine after Clonorchis sinensis infection have been studied recently, their mechanisms remain incompletely understood. In this study, we investigated the effects of toll-like receptor 2 (TLR2) signals on iNOS/nitric oxide (NO) responses after C. sinensis infection. We also evaluated the correlations between iNOS responses and worm development, which are possibly regulated by TLR2 signal. TLR2 wild-type and mutant C57BL/6 J mice were infected with 60 C. sinensis metacercariae, and the samples were collected at 30, 60, 90 and 120 days post-infection (dpi). The total serum NO levels were detected using Griess reagent after nitrate was reduced to nitrite. Hepatic tissue samples from the infected mice were sliced and stained with hematoxylin and eosin (HE) to observe worm development in the intrahepatic bile ducts. The iNOS mRNA transcripts in the splenocytes were examined by real time reverse transcriptase polymerase chain reaction (qRT-PCR), and iNOS expression was detected by immunohistochemistry. Developing C. sinensis juvenile worms were more abundant in the intrahepatic bile ducts of TLR2 mutant mice than those of TLR2 wild-type mice. However, no eggs were found in the faeces of both mice samples. The serum levels of total NO significantly increased in TLR2 mutant mice infected with C. sinensis at 30 (t (5)  = 2.595, P = 0.049), 60 (t (5)  = 7.838, P = 0.001) and 90 dpi (t (5)  = 3.032, P = 0.029). Meanwhile, no changes occurred in TLR2 wild-type mice compared with uninfected controls during the experiment. The iNOS expression in splenocytes showed unexpected higher background levels in TLR2 mutant mice than those in TLR2 wild-type mice. Furthermore, the iNOS mRNA transcripts in splenocytes were significantly increased in the TLR2 wild-type mice infected with C. sinensis at 30 (t (5)  = 5.139, P = 0.004), 60 (t (5)  = 6.138, P = 0.002) and 90 dpi (t (5)  = 6

  20. Early and rapid development of insulin resistance, islet dysfunction and glucose intolerance after high-fat feeding in mice overexpressing phosphodiesterase 3B

    DEFF Research Database (Denmark)

    Walz, Helena A; Härndahl, Linda; Wierup, Nils

    2006-01-01

    Inadequate islet adaptation to insulin resistance leads to glucose intolerance and type 2 diabetes. Here we investigate whether beta-cell cAMP is crucial for islet adaptation and prevention of glucose intolerance in mice. Mice with a beta-cell-specific, 2-fold overexpression of the c......AMP-degrading enzyme phosphodiesterase 3B (RIP-PDE3B/2 mice) were metabolically challenged with a high-fat diet. We found that RIP-PDE3B/2 mice early and rapidly develop glucose intolerance and insulin resistance, as compared with wild-type littermates, after 2 months of high-fat feeding. This was evident from...... did not reveal reduced insulin sensitivity in these tissues. Significant steatosis was noted in livers from high-fat-fed wild-type and RIP-PDE3B/2 mice and liver triacyl-glycerol content was 3-fold higher than in wild-type mice fed a control diet. Histochemical analysis revealed severe islet...

  1. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  2. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  3. Effect of a long-term high-protein diet on survival, obesity development, and gut microbiota in mice.

    Science.gov (United States)

    Kiilerich, Pia; Myrmel, Lene Secher; Fjære, Even; Hao, Qin; Hugenholtz, Floor; Sonne, Si Brask; Derrien, Muriel; Pedersen, Lone Møller; Petersen, Rasmus Koefoed; Mortensen, Alicja; Licht, Tine Rask; Rømer, Maria Unni; Vogel, Ulla Birgitte; Waagbø, Linn Jeanette; Giallourou, Natasa; Feng, Qiang; Xiao, Liang; Liu, Chuan; Liaset, Bjørn; Kleerebezem, Michiel; Wang, Jun; Madsen, Lise; Kristiansen, Karsten

    2016-06-01

    Female C57BL/6J mice were fed a regular low-fat diet or high-fat diets combined with either high or low protein-to-sucrose ratios during their entire lifespan to examine the long-term effects on obesity development, gut microbiota, and survival. Intake of a high-fat diet with a low protein/sucrose ratio precipitated obesity and reduced survival relative to mice fed a low-fat diet. By contrast, intake of a high-fat diet with a high protein/sucrose ratio attenuated lifelong weight gain and adipose tissue expansion, and survival was not significantly altered relative to low-fat-fed mice. Our findings support the notion that reduced survival in response to high-fat/high-sucrose feeding is linked to obesity development. Digital gene expression analyses, further validated by qPCR, demonstrated that the protein/sucrose ratio modulated global gene expression over time in liver and adipose tissue, affecting pathways related to metabolism and inflammation. Analysis of fecal bacterial DNA using the Mouse Intestinal Tract Chip revealed significant changes in the composition of the gut microbiota in relation to host age and dietary fat content, but not the protein/sucrose ratio. Accordingly, dietary fat rather than the protein/sucrose ratio or adiposity is a major driver shaping the gut microbiota, whereas the effect of a high-fat diet on survival is dependent on the protein/sucrose ratio. Copyright © 2016 the American Physiological Society.

  4. The bile acid sensor FXR protects against dyslipidemia and aortic plaques development induced by the HIV protease inhibitor ritonavir in mice.

    Directory of Open Access Journals (Sweden)

    Andrea Mencarelli

    Full Text Available BACKGROUND: Although human immunodeficiency virus (HIV-related morbidity and mortality rates in patients treated with a combination of high active antiretroviral therapy (HAART have declined, significant metabolic/vascular adverse effects associated with the long term use of HIV protease inhibitors (PIs have emerged as a significant side effect. Here we illustrate that targeting the bile acid sensor farnesoid X receptor (FXR protects against dyslipidemia and vascular injury induced HIV-PIs in rodents. METHODOLOGY/PRINCIPAL FINDINGS: Administration of the HIV PI ritonavir to wild type mice increased plasma triacylglycerols and cholesterol levels and this effect was exacerbated by dosing ritonavir to mice harbouring a disrupted FXR. Dyslipidemia induced by ritonavir associated with a shift in the liver expression of signature genes, Sterol Regulatory Element-Binding Protein (SREBP-1 and fatty acid synthase. Treating wild type mice with the FXR agonist (chenodeoxycholic acid, CDCA protected against development of dyslipidemia induced by ritonavir. Administration of ritonavir to ApoE(-/- mice, a strain that develop spontaneously atherosclerosis, increased the extent of aortic plaques without worsening the dyslipidemia. Treating these mice with CDCA reduced the extent of aortic plaques by 70% without changing plasma lipoproteins or the liver expression of signature genes. A beneficial effect on aortic plaques was also obtained by treating ApoE(-/- mice with gemfibrozil, a PPARα agonist. FXR activation counter-regulated induction of expression/activity of CD36 caused by HIV-PIs in circulating monocytes and aortic plaques. In macrophages cell lines, CDCA attenuated CD36 induction and uptake of acetylated LDL caused by ritonavir. Natural and synthetic FXR ligands reduced the nuclear translocation of SREBP1c caused by ritonavir. CONCLUSIONS/SIGNIFICANCE: Activation of the bile acid sensor FXR protects against dyslipidemia and atherosclerotic caused by

  5. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    Science.gov (United States)

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  6. Effects of maternal clothianidin exposure on behavioral development in F₁ generation mice.

    Science.gov (United States)

    Tanaka, Toyohito

    2012-09-01

    Female mice were exposed maternally to clothianidin through diet at levels of 0% (control), 0.002%, 0.006%, and 0.018% during gestation and lactation periods. Selected reproductive and neurobehavioral parameters were measured in F₁ generation. There was no adverse effect of clothianidin on litter size, litter weight, or sex ratio at birth. The average body weight of male and female offspring was increased significantly in a dose-related manner during the lactation period. With respect to behavioral developmental parameters, surface righting at postnatal day 7 of female offspring was accelerated significantly in a dose-related manner (p clothianidin in the present study produced several adverse effects in the neurobehavioral parameters in mice.

  7. Hydrolyzed whey protein prevents the development of food allergy to β-lactoglobulin in sensitized mice.

    Science.gov (United States)

    Gomes-Santos, Ana Cristina; Fonseca, Roberta Cristelli; Lemos, Luisa; Reis, Daniela Silva; Moreira, Thaís Garcias; Souza, Adna Luciana; Silva, Mauro Ramalho; Silvestre, Marialice Pinto Coelho; Cara, Denise Carmona; Faria, Ana Maria Caetano

    2015-01-01

    Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed β-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Entire litters developed from transferred eggs in whole body x-irradiated female mice

    International Nuclear Information System (INIS)

    Lin, T.P.

    1980-01-01

    The sensitivity of mouse eggs to sublethal x-irradiation was determined in vitro and in vivo with regard to the development of donor litters in foster mothers. One thousand seven hundred fifty-eight unfertilized eggs of agouti dark-eyed donor mice were transferred into 293 unirradiated or x-irradiated, mated female pink-eyed mice. Two hundred thirty-nine recipients became pregnant; of these 35 produced litters containing solely dark-eyed fetuses. Sublethal doses of x-radiation administered to donor eggs in vitro before transferring into unirradiated recipients did not influence significantly the number of litters of exclusively dark-eyed fetuses produced. However, recipients irradiated by 250 roentgens (r) produced more solely dark-eyed litters than did those irradiated with 100 r. In 21 pregnant females irradiated by 100 r, only 3 (14%) developed solely dark-eyed fetuses as compared to 22 pregnant females irradiated by 250 r, of which 13 (59%) developed solely dark-eyed fetuses, all from unirradiated, transferred eggs. Of another group of 22 pregnant females which received 250 r body irradiation and subsequently received eggs also irradiated by 250 r, only 7 (32%) produced litters of dark-eyed fetuses. No one female of these three groups carried native fetuses. Such radiation-induced infertility resulting from damage of native eggs rather than loss of mother's ability to carry a pregnancy, is frequently remedied by egg transfer

  9. Adiponectin haploinsufficiency promotes mammary tumor development in MMTV-PyVT mice by modulation of phosphatase and tensin homolog activities.

    Directory of Open Access Journals (Sweden)

    Janice B B Lam

    Full Text Available Adiponectin is an adipokine possessing beneficial effects on obesity-related medical complications. A negative association of adiponectin levels with breast cancer development has been demonstrated. However, the precise role of adiponectin deficiency in mammary carcinogenesis remains elusive.In the present study, MMTV-polyomavirus middle T antigen (MMTV-PyVT transgenic mice with reduced adiponectin expressions were established and the stromal effects of adiponectin haploinsufficiency on mammary tumor development evaluated. In mice from both FVB/N and C57BL/6J backgrounds, insufficient adiponectin production promoted mammary tumor onset and development. A distinctive basal-like subtype of tumors, with a more aggressive phenotype, was derived from adiponectin haplodeficient MMTV-PyVT mice. Comparing with those from control MMTV-PyVT mice, the isolated mammary tumor cells showed enhanced tumor progression in re-implanted nude mice, accelerated proliferation in primary cultures, and hyperactivated phosphatidylinositol-3-kinase (PI3K/Akt/beta-catenin signaling, which at least partly attributed to the decreased phosphatase and tensin homolog (PTEN activities. Further analysis revealed that PTEN was inactivated by a redox-regulated mechanism. Increased association of PTEN-thioredoxin complexes was detected in tumors derived from mice with reduced adiponectin levels. The activities of thioredoxin (Trx1 and thioredoxin reductase (TrxR1 were significantly elevated, whereas treatment with either curcumin, an irreversible inhibitor of TrxR1, or adiponectin largely attenuated their activities and resulted in the re-activation of PTEN in these tumor cells. Moreover, adiponectin could inhibit TrxR1 promoter-mediated transcription and restore the mRNA expressions of TrxR1.Adiponectin haploinsufficiency facilitated mammary tumorigenesis by down-regulation of PTEN activity and activation of PI3K/Akt signalling pathway through a mechanism involving Trx1/TrxR1

  10. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  11. Hepcidin is elevated in mice injected with Mycoplasma arthritidis

    Directory of Open Access Journals (Sweden)

    Kaplan Jerry

    2009-11-01

    Full Text Available Abstract Mycoplasma arthritidis causes arthritis in specific mouse strains. M. arthritidis mitogen (MAM, a superantigen produced by M. arthritidis, activates T cells by forming a complex between the major histocompatability complex II on antigen presenting cells and the T cell receptor on CD4+ T lymphocytes. The MAM superantigen is also known to interact with Toll-like receptors (TLR 2 and 4. Hepcidin, an iron regulator protein, is upregulated by TLR4, IL-6, and IL-1. In this study, we evaluated serum hepcidin, transferrin saturation, ferritin, IL-6, IL-1, and hemoglobin levels in M. arthritidis injected C3H/HeJ (TLR2+/+, TLR4-/- mice and C3H/HeSnJ (TLR2+/+, TLR4+/+ mice over a 21 day period. C3H/HeJ mice have a defective TLR4 and an inability to produce IL-6. We also measured arthritis severity in these mice and the amount of hepcidin transcripts produced by the liver and spleen. C3H/HeJ mice developed a more severe arthritis than that of C3H/HeSnJ mice. Both mice had an increase in serum hepcidin within three days after infection. Hepcidin levels were greater in C3H/HeJ mice despite a nonfunctioning TLR4 and low serum levels of IL-6. Splenic hepcidin production in C3H/HeJ mice was delayed compared to C3H/HeSnJ mice. Unlike C3H/HeSnJ mice, C3H/HeJ mice did not develop a significant rise in serum IL-6 levels but did develop a significant increase in IL-1β during the first ten days after injection. Both mice had an increase in serum ferritin but a decrease in serum transferrin saturation. In conclusion, serum hepcidin regulation in C3H/HeJ mice does not appear to be solely dependent upon TLR4 or IL-6.

  12. Complete Plasmodium falciparum liver-stage development in liver-chimeric mice

    Science.gov (United States)

    Vaughan, Ashley M.; Mikolajczak, Sebastian A.; Wilson, Elizabeth M.; Grompe, Markus; Kaushansky, Alexis; Camargo, Nelly; Bial, John; Ploss, Alexander; Kappe, Stefan H.I.

    2012-01-01

    Plasmodium falciparum, which causes the most lethal form of human malaria, replicates in the host liver during the initial stage of infection. However, in vivo malaria liver-stage (LS) studies in humans are virtually impossible, and in vitro models of LS development do not reconstitute relevant parasite growth conditions. To overcome these obstacles, we have adopted a robust mouse model for the study of P. falciparum LS in vivo: the immunocompromised and fumarylacetoacetate hydrolase–deficient mouse (Fah–/–, Rag2–/–, Il2rg–/–, termed the FRG mouse) engrafted with human hepatocytes (FRG huHep). FRG huHep mice supported vigorous, quantifiable P. falciparum LS development that culminated in complete maturation of LS at approximately 7 days after infection, providing a relevant model for LS development in humans. The infections allowed observations of previously unknown expression of proteins in LS, including P. falciparum translocon of exported proteins 150 (PTEX150) and exported protein-2 (EXP-2), components of a known parasite protein export machinery. LS schizonts exhibited exoerythrocytic merozoite formation and merosome release. Furthermore, FRG mice backcrossed to the NOD background and repopulated with huHeps and human red blood cells supported reproducible transition from LS infection to blood-stage infection. Thus, these mice constitute reliable models to study human LS directly in vivo and demonstrate utility for studies of LS–to–blood-stage transition of a human malaria parasite. PMID:22996664

  13. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    Science.gov (United States)

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  14. Cell surface fucosylation does not affect development of colon tumors in mice with germline Smad3 mutation

    Science.gov (United States)

    Domino, Steven E.; Karnak, David M.; Hurd, Elizabeth A.

    2006-01-01

    Background/Aims: Neoplasia-related alterations in cell surface α(1,2)fucosylated glycans have been reported in multiple tumors including colon, pancreas, endometrium, cervix, bladder, lung, and choriocarcinoma. Spontaneous colorectal tumors from mice with a germline null mutation of transforming growth factor-β signaling gene Smad3 (Madh3) were tested for α(1,2)fucosylated glycan expression. Methods: Ulex Europaeus Agglutinin-I lectin staining, fucosyltransferase gene northern blot analysis, and a cross of mutant mice with Fut2 and Smad3 germline mutations were performed. Results: Spontaneous colorectal tumors from Smad3 (-/-) homozygous null mice were found to express α(1,2)fucosylated glycans in an abnormal pattern compared to adjacent nonneoplastic colon. Northern blot analysis of α(1,2)fucosyltransferase genes Fut1 and Fut2 revealed that Fut2, but not Fut1, steady-state mRNA levels were significantly increased in tumors relative to adjacent normal colonic mucosa. Mutant mice with a Fut2-inactivating germline mutation were crossed with Smad3 targeted mice. In Smad3 (-/-)/Fut2 (-/-) double knock-out mice, UEA-I lectin staining was eliminated from colon and colon tumors, however, the number and size of tumors present by 24 weeks of age did not vary regardless of the Fut2 genotype. Conclusions: In this model of colorectal cancer, cell surface α(1,2)fucosylation does not affect development of colon tumors. PMID:17264540

  15. Lauric Acid Stimulates Mammary Gland Development of Pubertal Mice through Activation of GPR84 and PI3K/Akt Signaling Pathway.

    Science.gov (United States)

    Meng, Yingying; Zhang, Jing; Zhang, Fenglin; Ai, Wei; Zhu, Xiaotong; Shu, Gang; Wang, Lina; Gao, Ping; Xi, Qianyun; Zhang, Yongliang; Liang, Xingwei; Jiang, Qingyan; Wang, Songbo

    2017-01-11

    It has been demonstrated that dietary fat affects pubertal mammary gland development. However, the role of lauric acid (LA) in this process remains unclear. Thus, this study aimed to investigate the effects of LA on mammary gland development in pubertal mice and to explore the underlying mechanism. In vitro, 100 μM LA significantly promoted proliferation of mouse mammary epithelial cell line HC11 by regulating expression of proliferative markers (cyclin D1/3, p21, PCNA). Meanwhile, LA activated the G protein-coupled receptor 84 (GPR84) and PI3K/Akt signaling pathway. In agreement, dietary 1% LA enhanced mammary duct development, increased the expression of GPR84 and cyclin D1, and activated PI3K/Akt in mammary gland of pubertal mice. Furthermore, knockdown of GPR84 or inhibition of PI3K/Akt totally abolished the promotion of HC11 proliferation induced by LA. These results showed that LA stimulated mammary gland development of pubertal mice through activation of GPR84 and PI3K/Akt signaling pathway.

  16. Lgl1 Is Required for Olfaction and Development of Olfactory Bulb in Mice

    Science.gov (United States)

    Li, Zhenzu; Zhang, Tingting; Lin, Zhuchun; Hou, Congzhe; Zhang, Jian; Men, Yuqin; Li, Huashun

    2016-01-01

    Lethal giant larvae 1 (Lgl1) was initially identified as a tumor suppressor in Drosophila and functioned as a key regulator of epithelial polarity and asymmetric cell division. In this study, we generated Lgl1 conditional knockout mice mediated by Pax2-Cre, which is expressed in olfactory bulb (OB). Next, we examined the effects of Lgl1 loss in the OB. First, we determined the expression patterns of Lgl1 in the neurogenic regions of the embryonic dorsal region of the LGE (dLGE) and postnatal OB. Furthermore, the Lgl1 conditional mutants exhibited abnormal morphological characteristics of the OB. Our behavioral analysis exhibited greatly impaired olfaction in Lgl1 mutant mice. To elucidate the possible mechanisms of impaired olfaction in Lgl1 mutant mice, we investigated the development of the OB. Interestingly, reduced thickness of the MCL and decreased density of mitral cells (MCs) were observed in Lgl1 mutant mice. Additionally, we observed a dramatic loss in SP8+ interneurons (e.g. calretinin and GABAergic/non-dopaminergic interneurons) in the GL of the OB. Our results demonstrate that Lgl1 is required for the development of the OB and the deletion of Lgl1 results in impaired olfaction in mice. PMID:27603780

  17. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  18. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  19. An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan

    Directory of Open Access Journals (Sweden)

    Tricia Hubbard-Turner, Erik A. Wikstrom, Sophie Guderian, Michael J. Turner

    2015-09-01

    Full Text Available We do not know the impact an ankle sprain has on physical activity levels across the lifespan. With the negative consequences of physical inactivity well established, understanding the effect of an ankle sprain on this outcome is critical. The objective of this study was to measure physical activity across the lifespan after a single ankle sprain in an animal model. Thirty male mice (CBA/J were randomly placed into one of three groups: the transected calcaneofibular ligament (CFL group, the transected anterior talofibular ligament (ATFL/CFL group, and a SHAM group. Three days after surgery, all of the mice were individually housed in a cage containing a solid surface running wheel. Physical activity levels were recorded and averaged every week across the mouse’s lifespan. The SHAM mice ran significantly more distance each day compared to the remaining two running groups (post hoc p = 0.011. Daily duration was different between the three running groups (p = 0.048. The SHAM mice ran significantly more minutes each day compared to the remaining two running groups (post hoc p=0.046 while the ATFL/CFL mice ran significantly less minutes each day (post hoc p = 0.028 compared to both the SHAM and CFL only group. The SHAM mice ran at a faster daily speed versus the remaining two groups of mice (post hoc p = 0.019 and the ATFL/CFL mice ran significantly slower each day compared to the SHAM and CFL group (post hoc p = 0.005. The results of this study indicate that a single ankle sprain significantly decreases physical activity across the lifespan in mice. This decrease in physical activity can potentially lead to the development of numerous chronic diseases. An ankle sprain thus has the potential to lead to significant long term health risks if not treated appropriately.

  20. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-01-01

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor flox/flox mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor flox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function

  1. Angiotensin II type 1a receptor-deficient mice develop angiotensin II-induced oxidative stress and DNA damage without blood pressure increase.

    Science.gov (United States)

    Zimnol, Anna; Amann, Kerstin; Mandel, Philipp; Hartmann, Christina; Schupp, Nicole

    2017-12-01

    Hypertensive patients have an increased risk of developing kidney cancer. We have shown in vivo that besides elevating blood pressure, angiotensin II causes DNA damage dose dependently. Here, the role of blood pressure in the formation of DNA damage is studied. Mice lacking one of the two murine angiotensin II type 1 receptor (AT1R) subtypes, AT1aR, were equipped with osmotic minipumps, delivering angiotensin II during 28 days. Parameters of oxidative stress and DNA damage of kidneys and hearts of AT1aR-knockout mice were compared with wild-type (C57BL/6) mice receiving angiotensin II, and additionally, with wild-type mice treated with candesartan, an antagonist of both AT1R subtypes. In wild-type mice, angiotensin II induced hypertension, reduced kidney function, and led to a significant formation of reactive oxygen species (ROS). Furthermore, genomic damage was markedly increased in this group. All these responses to angiotensin II could be attenuated by concurrent administration of candesartan. In AT1aR-deficient mice treated with angiotensin II, systolic pressure was not increased, and renal function was not affected. However, angiotensin II still led to an increase of ROS in kidneys and hearts of these animals. Additionally, genomic damage in the form of double-strand breaks was significantly induced in kidneys of AT1aR-deficient mice. Our results show that angiotensin II induced ROS production and DNA damage even without the presence of AT1aR and independently of blood pressure changes. Copyright © 2017 the American Physiological Society.

  2. Small heterodimer partner overexpression partially protects against liver tumor development in farnesoid X receptor knockout mice

    International Nuclear Information System (INIS)

    Li, Guodong; Kong, Bo; Zhu, Yan; Zhan, Le; Williams, Jessica A.; Tawfik, Ossama; Kassel, Karen M.; Luyendyk, James P.; Wang, Li; Guo, Grace L.

    2013-01-01

    Farnesoid X receptor (FXR, Nr1h4) and small heterodimer partner (SHP, Nr0b2) are nuclear receptors that are critical to liver homeostasis. Induction of SHP serves as a major mechanism of FXR in suppressing gene expression. Both FXR −/− and SHP −/− mice develop spontaneous hepatocellular carcinoma (HCC). SHP is one of the most strongly induced genes by FXR in the liver and is a tumor suppressor, therefore, we hypothesized that deficiency of SHP contributes to HCC development in the livers of FXR −/− mice and therefore, increased SHP expression in FXR −/− mice reduces liver tumorigenesis. To test this hypothesis, we generated FXR −/− mice with overexpression of SHP in hepatocytes (FXR −/− /SHP Tg ) and determined the contribution of SHP in HCC development in FXR −/− mice. Hepatocyte-specific SHP overexpression did not affect liver tumor incidence or size in FXR −/− mice. However, SHP overexpression led to a lower grade of dysplasia, reduced indicator cell proliferation and increased apoptosis. All tumor-bearing mice had increased serum bile acid levels and IL-6 levels, which was associated with activation of hepatic STAT3. In conclusion, SHP partially protects FXR −/− mice from HCC formation by reducing tumor malignancy. However, disrupted bile acid homeostasis by FXR deficiency leads to inflammation and injury, which ultimately results in uncontrolled cell proliferation and tumorigenesis in the liver. - Highlights: • SHP does not prevent HCC incidence nor size in FXR KO mice but reduces malignancy. • Increased SHP promotes apoptosis. • Bile acids and inflammation maybe critical for HCC formation with FXR deficiency

  3. Genetic deletion of the P2Y2 receptor offers significant resistance to development of lithium-induced polyuria accompanied by alterations in PGE2 signaling.

    Science.gov (United States)

    Zhang, Yue; Pop, Ioana L; Carlson, Noel G; Kishore, Bellamkonda K

    2012-01-01

    Lithium (Li)-induced polyuria is due to resistance of the medullary collecting duct (mCD) to the action of arginine vasopressin (AVP), apparently mediated by increased production of PGE(2). We previously reported that the P2Y(2) receptor (P2Y(2)-R) antagonizes the action of AVP on the mCD and may play a role in Li-induced polyuria by enhancing the production of PGE(2) in mCD. Hence, we hypothesized that genetic deletion of P2Y(2)-R should ameliorate Li-induced polyuria. Wild-type (WT) or P2Y(2)-R knockout (KO) mice were fed normal or Li-added diets for 14 days and euthanized. Li-induced polyuria, and decreases in urine osmolality and AQP2 protein abundance in the renal medulla, were significantly less compared with WT mice despite the lack of differences in Li intake or terminal serum or inner medullary tissue Li levels. Li-induced increased urinary excretion of PGE(2) was not affected in KO mice. However, prostanoid EP(3) receptor (EP3-R) protein abundance in the renal medulla of KO mice was markedly lower vs. WT mice, irrespective of the dietary regimen. The protein abundances of other EP-Rs were not altered across the groups irrespective of the dietary regimen. Ex vivo stimulation of mCD with PGE(2) generated significantly more cAMP in Li-fed KO mice (130%) vs. Li-fed WT mice (100%). Taken together, these data suggest 1) genetic deletion of P2Y(2)-R offers significant resistance to the development of Li-induced polyuria; and 2) this resistance is apparently due to altered PGE(2) signaling mediated by a marked decrease in EP3-R protein abundance in the medulla, thus attenuating the EP3-mediated decrease in cAMP levels in mCD.

  4. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    Science.gov (United States)

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  5. p120-Catenin Is Critical for the Development of Invasive Lobular Carcinoma in Mice.

    Science.gov (United States)

    Tenhagen, Milou; Klarenbeek, Sjoerd; Braumuller, Tanya M; Hofmann, Ilse; van der Groep, Petra; Ter Hoeve, Natalie; van der Wall, Elsken; Jonkers, Jos; Derksen, Patrick W B

    2016-12-01

    Loss of E-cadherin expression is causal to the development of invasive lobular breast carcinoma (ILC). E-cadherin loss leads to dismantling of the adherens junction and subsequent translocation of p120-catenin (p120) to the cytosol and nucleus. Although p120 is critical for the metastatic potential of ILC through the regulation of Rock-dependent anoikis resistance, it remains unknown whether p120 also contributes to ILC development. Using genetically engineered mouse models with mammary gland-specific inactivation of E-cadherin, p120 and p53, we demonstrate that ILC formation induced by E-cadherin and p53 loss is severely impaired upon concomitant inactivation of p120. Tumors that developed in the triple-knockout mice were mostly basal sarcomatoid carcinomas that displayed overt nuclear atypia and multinucleation. In line with the strong reduction in ILC incidence in triple-knockout mice compared to E-cadherin and p53 double-knockout mice, no functional redundancy of p120 family members was observed in mouse ILC development, as expression and localization of ARVCF, p0071 or δ-catenin was unaltered in ILCs from triple-knockout mice. In conclusion, we show that loss of p120 in the context of the p53-deficient mouse models is dominant over E-cadherin inactivation and its inactivation promotes the development of basal, epithelial-to-mesenchymal-transition (EMT)-type invasive mammary tumors.

  6. Pathophysiological and behavioral deficits in developing mice following rotational acceleration-deceleration traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Guoxiang Wang

    2018-01-01

    Full Text Available Abusive head trauma (AHT is the leading cause of death from trauma in infants and young children. An AHT animal model was developed on 12-day-old mice subjected to 90° head extension-flexion sagittal shaking repeated 30, 60, 80 and 100 times. The mortality and time until return of consciousness were dependent on the number of repeats and severity of the injury. Following 60 episodes of repeated head shakings, the pups demonstrated apnea and/or bradycardia immediately after injury. Acute oxygen desaturation was observed by pulse oximetry during respiratory and cardiac suppression. The cerebral blood perfusion was assessed by laser speckle contrast analysis (LASCA using a PeriCam PSI system. There was a severe reduction in cerebral blood perfusion immediately after the trauma that did not significantly improve within 24 h. The injured mice began to experience reversible sensorimotor function at 9 days postinjury (dpi, which had completely recovered at 28 dpi. However, cognitive deficits and anxiety-like behavior remained. Subdural/subarachnoid hemorrhage, damage to the brain-blood barrier and parenchymal edema were found in all pups subjected to 60 insults. Proinflammatory response and reactive gliosis were upregulated at 3 dpi. Degenerated neurons were found in the cerebral cortex and olfactory tubercles at 30 dpi. This mouse model of repetitive brain injury by rotational head acceleration-deceleration partially mimics the major pathophysiological and behavioral events that occur in children with AHT. The resultant hypoxia/ischemia suggests a potential mechanism underlying the secondary rotational acceleration-deceleration-induced brain injury in developing mice.

  7. sirt1-null mice develop an autoimmune-like condition

    International Nuclear Information System (INIS)

    Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie; Saliba, Sarah; He Xiaohong; Jardine, Karen; Kennedy, Christopher; Staines, William; Rousseaux, Colin; Mueller, Rudi; McBurney, Michael W.

    2008-01-01

    The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease

  8. Helicobacter bilis Infection Alters Mucosal Bacteria and Modulates Colitis Development in Defined Microbiota Mice.

    Science.gov (United States)

    Atherly, Todd; Mosher, Curtis; Wang, Chong; Hostetter, Jesse; Proctor, Alexandra; Brand, Meghan W; Phillips, Gregory J; Wannemuehler, Michael; Jergens, Albert E

    2016-11-01

    Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P attachment, or by invasion, and this interaction is differentially expressed over time.

  9. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Aji, W; Ravalli, S; Szabolcs, M; Jiang, X C; Sciacca, R R; Michler, R E; Cannon, P J

    1997-01-21

    The potential antiatherosclerotic actions of NO were investigated in four groups of mice (n = 10 per group) lacking functional LDL receptor genes, an animal model of familial hypercholesterolemia. Group 1 was fed a regular chow diet. Groups 2 through 4 were fed a 1.25% high-cholesterol diet. In addition, group 3 received supplemental L-arginine and group 4 received L-arginine and N omega-nitro-L-arginine (L-NA), an inhibitor of NO synthase (NOS). Animals were killed at 6 months; aortas were stained with oil red O for planimetry and with antibodies against constitutive and inducible NOSs. Plasma cholesterol was markedly increased in the animals receiving the high-cholesterol diet. Xanthomas appeared in all mice fed the high-cholesterol diet alone but not in those receiving L-arginine. Aortic atherosclerosis was present in all mice on the high-cholesterol diet. The mean atherosclerotic lesion area was reduced significantly (P < .01) in the cholesterol-fed mice given L-arginine compared with those receiving the high-cholesterol diet alone. The mean atherosclerotic lesion area was significantly larger (P < .01) in cholesterol-fed mice receiving L-arginine + L-NA than in those on the high-cholesterol diet alone. Within the atherosclerotic plaques, endothelial cells immunoreacted for endothelial cell NOS; macrophages, foam cells, and smooth muscle cells immunostained strongly for inducible NOS and nitrotyrosine residues. The data indicate that L-arginine prevents xanthoma formation and reduces atherosclerosis in LDL receptor knockout mice fed a high-cholesterol diet. The abrogation of the beneficial effects of L-arginine by L-NA suggests that the antiatherosclerotic actions of L-arginine are mediated by NOS. The data suggest that L-arginine may be beneficial in familial hypercholesterolemia.

  10. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Science.gov (United States)

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  12. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  13. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  14. A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans.

    Science.gov (United States)

    Bongers, Gerold; Muniz, Luciana R; Pacer, Michelle E; Iuga, Alina C; Thirunarayanan, Nanthakumar; Slinger, Erik; Smit, Martine J; Reddy, E Premkumar; Mayer, Lloyd; Furtado, Glaucia C; Harpaz, Noam; Lira, Sergio A

    2012-09-01

    Epithelial cancers can be initiated by activating mutations in components of the mitogen-activated protein kinase signaling pathway such as v-raf murine sarcoma viral oncogene homolog B1 (BRAF), v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS), or epidermal growth factor receptor (EGFR). Human intestinal serrated polyps are a heterogeneous group of benign lesions, but some progress to colorectal cancer. Tumors that arise from these polyps frequently contain activating mutations in BRAF or KRAS, but little is known about the role of EGFR activation in their development. Polyp samples were obtained from adults during screening colonoscopies at Mount Sinai Hospital in New York. We measured levels of EGFR protein and phosphorylation in human serrated polyps by immunohistochemical and immunoblot analyses. We generated transgenic mice that express the ligand for EGFR, Heparin-binding EGF-like growth factor (HB-EGF), in the intestine. EGFR and the extracellular-regulated kinases (ERK)1/2 were phosphorylated in serrated areas of human hyperplastic polyps (HPPs), sessile serrated adenomas, and traditional serrated adenomas. EGFR and ERK1/2 were phosphorylated in the absence of KRAS or BRAF activating mutations in a subset of HPP. Transgenic expression of the EGFR ligand HB-EGF in the intestines of mice promoted development of small cecal serrated polyps. Mice that expressed a combination of HB-EGF and US28 (a constitutively active, G-protein-coupled receptor that increases processing of HB-EGF from the membrane) rapidly developed large cecal serrated polyps. These polyps were similar to HPPs and had increased phosphorylation of EGFR and ERK1/2 within the serrated epithelium. Administration of pharmacologic inhibitors of EGFR or MAPK to these transgenic mice significantly reduced polyp development. Activation of EGFR signaling in the intestine of mice promotes development of serrated polyps. EGFR signaling also is activated in human HPPs, sessile serrated adenomas

  15. Development of new experimental platform 'MARS'-Multiple Artificial-gravity Research System-to elucidate the impacts of micro/partial gravity on mice.

    Science.gov (United States)

    Shiba, Dai; Mizuno, Hiroyasu; Yumoto, Akane; Shimomura, Michihiko; Kobayashi, Hiroe; Morita, Hironobu; Shimbo, Miki; Hamada, Michito; Kudo, Takashi; Shinohara, Masahiro; Asahara, Hiroshi; Shirakawa, Masaki; Takahashi, Satoru

    2017-09-07

    This Japan Aerospace Exploration Agency project focused on elucidating the impacts of partial gravity (partial g) and microgravity (μg) on mice using newly developed mouse habitat cage units (HCU) that can be installed in the Centrifuge-equipped Biological Experiment Facility in the International Space Station. In the first mission, 12 C57BL/6 J male mice were housed under μg or artificial earth-gravity (1 g). Mouse activity was monitored daily via downlinked videos; μg mice floated inside the HCU, whereas artificial 1 g mice were on their feet on the floor. After 35 days of habitation, all mice were returned to the Earth and processed. Significant decreases were evident in femur bone density and the soleus/gastrocnemius muscle weights of μg mice, whereas artificial 1 g mice maintained the same bone density and muscle weight as mice in the ground control experiment, in which housing conditions in the flight experiment were replicated. These data indicate that these changes were particularly because of gravity. They also present the first evidence that the addition of gravity can prevent decreases in bone density and muscle mass, and that the new platform 'MARS' may provide novel insights on the molecular-mechanisms regulating biological processes controlled by partial g/μg.

  16. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection

    Science.gov (United States)

    Terryn, Sanne; Francart, Aurélie; Rommelaere, Heidi; Stortelers, Catelijne; Van Gucht, Steven

    2016-01-01

    Post-exposure prophylaxis (PEP) against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days) and decreased mortality (60% versus 19% survival rate), when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP. PMID:27483431

  17. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection.

    Directory of Open Access Journals (Sweden)

    Sanne Terryn

    2016-08-01

    Full Text Available Post-exposure prophylaxis (PEP against rabies infection consists of a combination of passive immunisation with plasma-derived human or equine immune globulins and active immunisation with vaccine delivered shortly after exposure. Since anti-rabies immune globulins are expensive and scarce, there is a need for cheaper alternatives that can be produced more consistently. Previously, we generated potent virus-neutralising VHH, also called Nanobodies, against the rabies glycoprotein that are effectively preventing lethal disease in an in vivo mouse model. The VHH domain is the smallest antigen-binding functional fragment of camelid heavy chain-only antibodies that can be manufactured in microbial expression systems. In the current study we evaluated the efficacy of half-life extended anti-rabies VHH in combination with vaccine for PEP in an intranasal rabies infection model in mice. The PEP combination therapy of systemic anti-rabies VHH and intramuscular vaccine significantly delayed the onset of disease compared to treatment with anti-rabies VHH alone, prolonged median survival time (35 versus 14 days and decreased mortality (60% versus 19% survival rate, when treated 24 hours after rabies virus challenge. Vaccine alone was unable to rescue mice from lethal disease. As reported also for immune globulins, some interference of anti-rabies VHH with the antigenicity of the vaccine was observed, but this did not impede the synergistic effect. Post exposure treatment with vaccine and human anti-rabies immune globulins was unable to protect mice from lethal challenge. Anti-rabies VHH and vaccine act synergistically to protect mice after rabies virus exposure, which further validates the possible use of anti-rabies VHH for rabies PEP.

  18. Hyperphagia, lower body temperature, and reduced running wheel activity precede development of morbid obesity in New Zealand obese mice.

    Science.gov (United States)

    Jürgens, Hella S; Schürmann, Annette; Kluge, Reinhart; Ortmann, Sylvia; Klaus, Susanne; Joost, Hans-Georg; Tschöp, Matthias H

    2006-04-13

    Among polygenic mouse models of obesity, the New Zealand obese (NZO) mouse exhibits the most severe phenotype, with fat depots exceeding 40% of total body weight at the age of 6 mo. Here we dissected the components of energy balance including feeding behavior, locomotor activity, energy expenditure, and thermogenesis compared with the related lean New Zealand black (NZB) and obese B6.V-Lep(ob)/J (ob/ob) strains (11% and 65% fat at 23 wk, respectively). NZO mice exhibited a significant hyperphagia that, when food intake was expressed per metabolic body mass, was less pronounced than that of the ob/ob strain. Compared with NZB, NZO mice exhibited increased meal frequency, meal duration, and meal size. Body temperature as determined by telemetry with implanted sensors was reduced in NZO mice, but again to a lesser extent than in the ob/ob strain. In striking contrast to ob/ob mice, NZO mice were able to maintain a constant body temperature during a 20-h cold exposure, thus exhibiting a functioning cold-induced thermogenesis. No significant differences in spontaneous home cage activity were observed among NZO, NZB, and ob/ob strains. When mice had access to voluntary running wheels, however, running activity was significantly lower in NZO than NZB mice and even lower in ob/ob mice. These data indicate that obesity in NZO mice, just as in humans, is due to a combination of hyperphagia, reduced energy expenditure, and insufficient physical activity. Because NZO mice differ strikingly from the ob/ob strain in their resistance to cold stress, we suggest that the molecular defects causing hyperphagia in NZO mice are located distal from leptin and its receptor.

  19. EFFECTS OF RUN TRAINING ON BONE DEVELOPMENT AND BONE MINERALIZATION IN GROWING MICE

    Directory of Open Access Journals (Sweden)

    B Gönül

    2011-06-01

    Full Text Available We planned to study the body weights, bone sizes and bone mineral (Ca, Mg, Zn contents of growing mice subjected to treadmill training. Twelve 4-week-old male Swiss Albino mice were divided into sedentary and exercise groups. The mice were trained by running exercise on a flat bed treadmill with 15 m/min, 30 min/day motion, throughout 5 days per week, for 12 weeks. The body weight of animals, and length, fat-free dry weight and Ca, Mg, and Zn contents of bones were measured in both groups. Body weights of animals, and lengths and wet and dry weights of the femur and the tibia were significantly higher in the exercised group. Also, the Zn, Mg and Ca mineral contents of bones in the group that underwent exercise were higher than in the other group. Running exercise with a flat bed treadmill performed by the growing mice is an effective exercise mode, especially for bone morphology.

  20. SAP Suppresses the Development of Experimental Autoimmune Encephalomyelitis in C57BL6 Mice

    Science.gov (United States)

    Ji, Zhe; Ke, Zun-Ji; Geng, Jian-Guo

    2012-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell-mediated disease of the CNS. Serum amyloid P component (SAP) is a highly conserved plasma protein named for its universal presence in amyloid deposits. Here we report SAP transgenic mice had unexpectedly attenuated EAE due to impaired encephalitogenic responses. Following induction with myelin oligodendroglial glycoprotein (MOG) peptide 35–55 in CFA, SAP transgenic mice showed reduced spinal cord inflammation with lower severity of EAE attacks as compared with control C57BL/6 mice. However in SAP-KO mice, the severity of EAE is enhanced. Adoptive transfer of Ag-restimulated T cells from wild-type to SAP transgenic mice or transfer of SAP transgenic Ag-restimulated T cells to control mice induced milder EAE. T cells from MOG-primed SAP transgenic mice showed weak proliferative responses. Furthermore, in SAP transgenic mice, there is little infiltration of CD45-positive cells in the spinal cord. In vitro, SAP suppressed the secretion of IL-2 stimulated by P-selectin, and blocked P-selectin binding to T cells. Moreover, SAP could change the affinity between α4-integrin and T cells. These data suggested that SAP could antagonize the development of the acute phase of inflammation accompanying EAE by modulating the function of P-selectin. PMID:21647172

  1. Thymic Stromal Lymphopoietin Attenuates the Development of Atherosclerosis in ApoE−/− Mice

    Science.gov (United States)

    Yu, Kunwu; Zhu, Pengfei; Dong, Qian; Zhong, Yucheng; Zhu, Zhengfeng; Lin, Yingzhong; Huang, Ying; Meng, Kai; Ji, Qingwei; Yi, Guiwen; Zhang, Wei; Wu, Bangwei; Mao, Yi; Cheng, Peng; Zhao, Xiaoqi; Mao, Xiaobo; Zeng, Qiutang

    2013-01-01

    Background Thymic stromal lymphopoietin (TSLP) is a cytokine with multiple effects on the body. For one thing, TSLP induces Th2 immunoreaction and facilitates allergic reaction; for another, it promotes the differentiation of naturally occurring CD4+CD25+Foxp3+ regulatory T cells (nTregs) and maintains immune tolerance. However, the exact role of TSLP in atherosclerosis remains unknown. Methods and Results In vitro, we examined the phenotype of TSLP‐conditioned bone marrow dendritic cells (TSLP‐DCs) of apolipoprotein E–deficient (ApoE−/−) mice and their capacity to induce the differentiation of Tregs. Our results indicated that TSLP‐DCs obtained the characteristics of tolerogenic dendritic cells and increased a generation of CD4+ latency‐associated peptide (LAP)+ Tregs and nTregs when cocultured with naive T cells. In addition, the functional relevance of TSLP and TSLP‐DCs in the development of atherosclerosis was also determined. Interestingly, we found that TSLP was almost absent in cardiovascular tissue of ApoE−/− mice, and TSLP administration increased the levels of antioxidized low‐density lipoprotein IgM and IgG1, but decreased the levels of IgG2a in plasma. Furthermore, mice treated with TSLP and TSLP‐DCs developed significantly fewer (32.6% and 28.2%, respectively) atherosclerotic plaques in the aortic root compared with controls, along with increased numbers of CD4+LAP+ Tregs and nTregs in the spleen and decreased inflammation in the aorta, which could be abrogated by anti‐TGF‐β antibody. Conclusions Our results revealed a protective role for TSLP in atherosclerosis that is possibly mediated by reestablishing a tolerogenic immune response, which may represent a novel possibility for treatment or prevention of atherosclerosis. PMID:23985377

  2. Middle age has a significant impact on gene expression during skin wound healing in male mice.

    Science.gov (United States)

    Yanai, Hagai; Lumenta, David Benjamin; Vierlinger, Klemens; Hofner, Manuela; Kitzinger, Hugo-Benito; Kamolz, Lars-Peter; Nöhammer, Christa; Chilosi, Marco; Fraifeld, Vadim E

    2016-08-01

    The vast majority of research on the impact of age on skin wound healing (WH) compares old animals to young ones. The middle age is often ignored in biogerontological research despite the fact that many functions that decline in an age-dependent manner have starting points in mid-life. With this in mind, we examined gene expression patterns during skin WH in late middle-aged versus young adult male mice, using the head and back punch models. The rationale behind this study was that the impact of age would first be detectable at the transcriptional level. We pinpointed several pathways which were over-activated in the middle-aged mice, both in the intact skin and during WH. Among them were various metabolic, immune-inflammatory and growth-promoting pathways. These transcriptional changes were much more pronounced in the head than in the back. In summary, the middle age has a significant impact on gene expression in intact and healing skin. It seems that the head punch model is more sensitive to the effect of age than the back model, and we suggest that it should be more widely applied in aging research on wound healing.

  3. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Directory of Open Access Journals (Sweden)

    Keisuke Nagao

    Full Text Available BACKGROUND: EpCAM (CD326 is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. METHODOLOGY/PRINCIPAL FINDINGS: To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts, eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. CONCLUSION: EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  4. Abnormal placental development and early embryonic lethality in EpCAM-null mice.

    Science.gov (United States)

    Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C

    2009-12-31

    EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.

  5. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Shan, Tizhong; Liang, Xinrong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  6. Multivariate Analysis of Variance: Finding significant growth in mice with craniofacial dysmorphology caused by the Crouzon mutation

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Ólafsdóttir, Hildur; Darvann, Tron Andre

    2010-01-01

    Crouzon syndrome is characterized by growth disturbances caused by premature fusion of the cranial growth zones. A mouse model with mutation Fgfr2C342Y, equivalent to the most common Crouzon syndrome mutation (henceforth called the Crouzon mouse model), has a phenotype showing many parallels to t...... used micro-CT scans of 4-week-old mice (N=5) and 6-week-old mice (N=10) with Crouzon syndrome (Fgfr2 C342Y/+) were compared to control groups of 4-week-old wild-type mice (N=5) and 6-week-old wild-type mice (N=10), respectively....

  7. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  8. [Development of Rhodnius pictipes Stal, 1872 fed on mice and through a silicone membrane (Hemiptera, Reduviidae, Triatominae)].

    Science.gov (United States)

    Rocha, D da S; da Fonseca, A H; Costa, F A; Jurberg, J; Galvão, C

    1997-01-01

    Rhodnius pictipes (Hemiptera, Reduviidae) from Serra Norte, State of Pará, Brazil, acclimatized in an insectary at the Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Departamento de Entomologia, Instituto Oswaldo Cruz, were fed through a silicone membrane. In order to know the viability and the efficiency of this membrane compared with insects fed on mice, the number of bloodmeals taken, period of development of the five nymphal instars, longevity of adults, average amount of blood intake in each meal and percent of mortality were observed. A total of 310 insects, were used, comprising 50 nymphs of each instar, as well as 30 male and 30 female adults. Insects fed artificially had reduced minimal and maximal periods of development than the group fed on mice. The largest relative increase of body weight was observed in the 2nd instar followed by the 1st, and the amount of blood ingested increased during the development, to the 5th instar for both groups. There were no significant differences between the groups fed artificially and in vivo according to Tukey's test for p > 0.05. The percent of mortality in the 1st instar was 18% for artificially fed and 16% for the group fed on mice; these percentages decreased as insects developed until the 4th instar, without mortality, returning to increase in the 5th instar. R. pictipes was shown to be easily adaptable to artificial feeding, and could be considered as an important and viable experimental model.

  9. Effects of Lizhong Tang on gastrointestinal motility in mice.

    Science.gov (United States)

    Lee, Min Cheol; Ha, Wooram; Park, Jinhyeong; Kim, Junghoon; Jung, Yunjin; Kim, Byung Joo

    2016-09-14

    To investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice. The in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). In normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits. These results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.

  10. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice.

    Science.gov (United States)

    Nelson, R K; Gould, K A

    2016-02-01

    Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system. © The Author(s) 2015.

  11. X-rays and photocarcinogenesis in hairless mice.

    Science.gov (United States)

    Lerche, Catharina M; Philipsen, Peter A; Wulf, Hans Christian

    2013-08-01

    It is well known that excessive X-ray radiation can cause non-melanoma skin cancers. With the increased incidence of sun-related skin cancer there is a need to investigate the combination of sunlight and X-rays. Immunocompetent C3.Cg/TifBomTac mice (n = 298) were divided into 12 groups. Mice were irradiated with 12, 29 or 50 kV X-rays. The mice received a total dose of 45 Gy. They were irradiated with 3 SED simulated solar radiation (SSR) either before or after irradiation with X-rays. The groups irradiated with X-rays alone, 0, 3, 9 and 10 mice (0, 12, 29 and 50 kV, respectively) developed squamous cell carcinoma. In the groups irradiated with SSR after X-rays the development of tumours was significantly faster in the 50 kV group than in the corresponding control group (175 vs. 194 days, p X-ray radiation the development of tumours was significantly faster in the 29 and the 50 kV groups than in the corresponding control group (175 vs. 202 days, p X-ray radiation alone is a weak carcinogen in hairless mice. There is an added carcinogenic effect if X-ray radiation is given on prior sun-exposed skin or if the skin is sun-exposed after X-rays. We still believe that X-ray radiation is a safe and effective therapy for various dermatological diseases but caution should be observed if a patient has severely sun-damaged skin or has a high-risk sun behaviour.

  12. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    International Nuclear Information System (INIS)

    Xu, Qin; Zhu, Zhiwei; Xu, Jialu; Gu, Weizhong; Zhao, Zhengyan

    2012-01-01

    Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5′-GTGGCCATCGTGTCCTACCATAC-3′ and 5′-GTTTCGAGGCAGGTGGAAGCTA-3′ were used for the detection of nNOS and primers 5′-CCGTTTCTCCTGGCTCAGTTTA-3′ and 5′-CCCCAATACCACATCATCCAT-3′ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS

  13. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Qin; Zhu, Zhiwei; Xu, Jialu [Department of Children' s Health Care, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China); Gu, Weizhong [Department of Pathology, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China); Zhao, Zhengyan [Department of Children' s Health Care, Children' s Hospital, Zhejiang University, Hangzhou Zhejiang (China)

    2012-10-05

    Nitric oxide (NO), synthesized as needed by NO synthase (NOS), is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS). The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS) expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS) and male wild-type mice (WT) at postnatal day 7 (P7), P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7) and nNOS protein was estimated by Western blot (N = 3) and immunohistochemistry (N = 1). In the PCR assessment, primers 5′-GTGGCCATCGTGTCCTACCATAC-3′ and 5′-GTTTCGAGGCAGGTGGAAGCTA-3′ were used for the detection of nNOS and primers 5′-CCGTTTCTCCTGGCTCAGTTTA-3′ and 5′-CCCCAATACCACATCATCCAT-3′ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05). Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05). These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.

  14. Depressed nNOS expression during spine transition in the developing hippocampus of FMR1 KO mice

    Directory of Open Access Journals (Sweden)

    Qin Xu

    2012-12-01

    Full Text Available Nitric oxide (NO, synthesized as needed by NO synthase (NOS, is involved in spinogenesis and synaptogenesis. Immature spine morphology is characteristic of fragile X syndrome (FXS. The objective of this research was to investigate and compare changes of postnatal neuronal NOS (nNOS expression in the hippocampus of male fragile X mental retardation 1 gene knockout mice (FMR1 KO mice, the animal model of FXS and male wild-type mice (WT at postnatal day 7 (P7, P14, P21, and P28. nNOS mRNA levels were analyzed by real-time quantitative PCR (N = 4-7 and nNOS protein was estimated by Western blot (N = 3 and immunohistochemistry (N = 1. In the PCR assessment, primers 5’-GTGGCCATCGTGTCCTACCATAC-3’ and 5’-GTTTCGAGGCAGGTGGAAGCTA-3’ were used for the detection of nNOS and primers 5’-CCGTTTCTCCTGGCTCAGTTTA-3’ and 5’-CCCCAATACCACATCATCCAT-3’ were used for the detection of β-actin. Compared to the WT group, nNOS mRNA expression was significantly decreased in FMR1 KO mice at P21 (KO: 0.2857 ± 0.0150, WT: 0.5646 ± 0.0657; P < 0.05. Consistently, nNOS immunoreactivity also revealed reduced staining intensity at P21 in the FMR1 KO group. Western blot analysis validated the immunostaining results by demonstrating a significant reduction in nNOS protein levels in the FMR1 KO group compared to the WT group at P21 (KO: 0.3015 ± 0.0897, WT: 1.7542 ± 0.5455; P < 0.05. These results suggest that nNOS was involved in the postnatal development of the hippocampus in FXS and impaired NO production may retard spine maturation in FXS.

  15. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice

    Science.gov (United States)

    Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M.; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh

    2017-01-01

    ABSTRACT The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people

  16. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice.

    Science.gov (United States)

    Sharpton, Thomas; Lyalina, Svetlana; Luong, Julie; Pham, Joey; Deal, Emily M; Armour, Courtney; Gaulke, Christopher; Sanjabi, Shomyseh; Pollard, Katherine S

    2017-01-01

    The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides , correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is

  17. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  18. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Science.gov (United States)

    Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa

    2015-01-01

    Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice. First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant. Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  19. Ablation of Mrds1/Ofcc1 Induces Hyper-γ-Glutamyl Transpeptidasemia without Abnormal Head Development and Schizophrenia-Relevant Behaviors in Mice

    Science.gov (United States)

    Ohnishi, Tetsuo; Yamada, Kazuo; Watanabe, Akiko; Ohba, Hisako; Sakaguchi, Toru; Honma, Yota; Iwayama, Yoshimi; Toyota, Tomoko; Maekawa, Motoko; Watanabe, Kazutada; Detera-Wadleigh, Sevilla D.; Wakana, Shigeharu; Yoshikawa, Takeo

    2011-01-01

    Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as “the Japan Mouse Clinic”. No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia. PMID:22242126

  20. Ablation of Mrds1/Ofcc1 induces hyper-γ-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.

    Directory of Open Access Journals (Sweden)

    Tetsuo Ohnishi

    Full Text Available Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT, a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia.

  1. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  2. Nestin-Cre Mice Are Affected by Hypopituitarism, Which Is Not Due to Significant Activity of the Transgene in the Pituitary Gland

    Science.gov (United States)

    Galichet, Christophe; Lovell-Badge, Robin; Rizzoti, Karine

    2010-01-01

    Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report. PMID:20625432

  3. Development of Schistosoma incognitum in mice upon intraperitoneal inoculation with irradiated schistosomula

    International Nuclear Information System (INIS)

    Bhilegaonkar, N.G.; Sahasrabudhe, V.K.

    1987-01-01

    As a prelude to the study of the immunizing potential of gamma-irradiated Schistosoma incognitum schistosomula, experiments were conducted to study the effect of different doses of gamma irradiation (1,3,5 and 10 kr) on the development and survival of S. incognitum in mice, and its attendant pathology. The present experiments suggested that 3 and 5 kr irradiation doses can be safely used for irradiating schistosomula for immunization experiments in mice as the worms will not mature and therefore no harm will be caused which is mainly due to the eggs. (author). 7 refs

  4. Amygdala activity associated with social choice in mice.

    Science.gov (United States)

    Mihara, Takuma; Mensah-Brown, Kobina; Sobota, Rosanna; Lin, Robert; Featherstone, Robert; Siegel, Steven J

    2017-08-14

    Studies suggest that the amygdala is a key region for regulation of anxiety, fear and social function. Therefore, dysfunction of the amygdala has been proposed as a potential mechanism for negative symptoms in schizophrenia. This may be due to NMDA receptor-mediated hypofunction, which is thought to be related to the pathogenesis of schizophrenia. In this study, electroencephalographic amygdala activity was assessed in mice during the three-chamber social test. This activity was also evaluated following exposure to the NMDA receptor antagonist ketamine. Vehicle-treated mice spent significantly more time in the social than the non-social chamber. This social preference was eliminated by ketamine. However, ketamine-treated mice spent significantly less time in the social chamber and significantly more time in the nonsocial chamber than vehicle-treated mice. There were no significant differences in induced powers between social and non-social chamber entries in vehicle-treated mice, except for theta frequencies, which featured greater induced theta power during non-social chamber entry. Ketamine eliminated differences in induced theta power between social and non-social chamber entries. Moreover, ketamine increased the induced gamma power during social chamber entry compared to that of vehicle-treated mice. All other frequency ranges were not significantly influenced by zone or drug condition. All significant findings were upon entry to chambers not during interaction. Results suggest that impaired function of NMDA receptor-mediated glutamate transmission can induce social impairments and amygdala dysfunction, similar to the pattern in schizophrenia. Future studies will utilize this method to evaluate mechanisms of social dysfunction and development of treatments of social impairments in schizophrenia. Copyright © 2017. Published by Elsevier B.V.

  5. Transmaternal bisphenol A exposure accelerates diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Bølling, Anette Kocbach; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2014-02-01

    Diabetes mellitus type 1 is an autoimmune disease with a genetic predisposition that is triggered by environmental factors during early life. Epidemiological studies show that bisphenol A (BPA), an endocrine disruptor, has been detected in about 90% of all analyzed human urine samples. In this study, BPA was found to increase the severity of insulitis and the incidence of diabetes in female non obese diabetic (NOD) mice offspring after transmaternal exposure through the dams' drinking water (0, 0.1, 1, and 10mg/l). Both the severity of insulitis in the pancreatic islets at 11 weeks of age and the diabetes prevalence at 20 weeks were significantly increased for female offspring in the highest exposure group compared to the control group. Increased numbers of apoptotic cells, a reduction in tissue resident macrophages and an increase in regulatory T cells were observed in islets prior to insulitis development in transmaternally exposed offspring. The detectable apoptotic cells were identified as mostly glucagon producing alpha-cells but also tissue resident macrophages and beta-cells. In the local (pancreatic) lymph node neither regulatory T cell nor NKT cell populations were affected by maternal BPA exposure. Maternal BPA exposure may have induced systemic immune changes in offspring, as evidenced by alterations in LPS- and ConA-induced cytokine secretion in splenocytes. In conclusion, transmaternal BPA exposure, in utero and through lactation, accelerated the spontaneous diabetes development in NOD mice. This acceleration appeared to be related to early life modulatory effects on the immune system, resulting in adverse effects later in life.

  6. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization.

    Directory of Open Access Journals (Sweden)

    Mohun Ramratnam

    Full Text Available Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+ recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i, and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/- mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.

  7. Reactive oxygen species are involved in lipopolysaccharide-induced intrauterine growth restriction and skeletal development retardation in mice.

    Science.gov (United States)

    Xu, De-Xiang; Chen, Yuan-Hua; Zhao, Lei; Wang, Hua; Wei, Wei

    2006-12-01

    Maternal infection is a cause of adverse developmental outcomes including embryonic resorption, intrauterine fetal death, and preterm labor. Lipopolysaccharide-induced developmental toxicity at early gestational stages has been well characterized. The purpose of the present study was to investigate the effects of maternal lipopolysaccharide exposure at late gestational stages on intrauterine fetal growth and skeletal development and to assess the potential role of reactive oxygen species in lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation. The timed pregnant CD-1 mice were intraperitoneally injected with lipopolysaccharide (25 to 75 microg/kg per day) on gestational day 15 to 17. To investigate the role of reactive oxygen species on lipopolysaccharide-induced intrauterine fetal growth restriction and skeletal development retardation, the pregnant mice were injected with alpha-phenyl-N-t-butylnitrone (100 mg/kg, intraperitoneally) at 30 minutes before lipopolysaccharide (75 microg/kg per day, intraperitoneally), followed by an additional dose of alpha-phenyl-N-t-butylnitrone (50 mg/kg, intraperitoneally) at 3 hours after lipopolysaccharide. The number of live fetuses, dead fetuses, and resorption sites was counted on gestational day 18. Live fetuses in each litter were weighed. Crown-rump and tail lengths were examined and skeletal development was evaluated. Maternal lipopolysaccharide exposure significantly increased fetal mortality, reduced fetal weight and crown-rump and tail lengths of live fetuses, and retarded skeletal ossification in caudal vertebrae, anterior and posterior phalanges, and supraoccipital bone in a dose-dependent manner. Alpha-phenyl-N-t-butylnitrone, a free radical spin-trapping agent, almost completely blocked lipopolysaccharide-induced fetal death (63.2% in lipopolysaccharide group versus 6.5% in alpha-phenyl-N-t-butylnitrone + lipopolysaccharide group, P intrauterine growth restriction

  8. Studies on the surface antigenicity and susceptibility to antibody-dependent killing of developing schistosomula using sera from chronically infected mice and mice vaccinated with irradiated cercariae

    International Nuclear Information System (INIS)

    Bickle, Q.D.; Ford, M.J.

    1982-01-01

    Changes in the surface antigenicity and susceptibility to in vitro killing during development of schistosomula of Schistosoma mansoni were studied using serum from chronically infected mice (CIS) and from mice vaccinated with highly irradiated (20 krad) cercariae (VS). Binding of these sera was quantitated by counting the number of P388D 1 cells (a transformed, macrophage-like cell of mouse origin, bearing Fc receptors for IgG) binding to the parasite surface. Compared with schistosomula derived in vitro by mechanical transformation (MS), schistosomula recovered 3 hr after skin penetration in vitro (SS) showed a significant loss in surface binding of CIS. Schistosomula recovered 3 hr after skin penetration in vivo (SRS) showed even less binding, and this trend continued such that parasites recovered from the lungs 5 days after infection (LS) showed only minimal binding, and 10-day-old worms from the portal system showed no significant binding. In contrast, VS, which bound significantly less well to MS than CIS, showed enhanced binding to SS, and in the face of their declining antigenicity with respect to CIS, 3- to 24-hr SRS maintained this raised level of antigenicity. Although there appeared to be a decline in binding of VS thereafter, LS remained antigenic, still binding as many cells as MS did despite the fact that they also expressed host antigens detected usng antisera raised against mouse RBC. In spite of this persistence of VS binding up to the lung stage, resistance to eosinophil-mediated killing in vitro had developed by 48 hr post-infection, and LS were totally resistant to both eosinophil- and C-mediated killing

  9. Development of infection with Streptococcus bovis and Aspergillus sp. in irradiated mice after glycopeptide therapy

    International Nuclear Information System (INIS)

    Brook, I.; Tom, S.P.; Ledney, G.D.

    1993-01-01

    The use of ofloxacin and glycopeptides was evaluated for the treatment of infections arising in C3H/HeN female mice irradiated with 8.3 Gy from a 60 Co source. The 21 day regimen began 72 h after irradiation when each of five sets of experimental animals received three antimicrobial therapy regimens and a saline-treated control group. With 40 mice in each group, 20 were used to monitor survival, 20 for the recovery of bacteria from the liver culture. Treatment groups were oral ofloxacin; oral or intramuscular vancomycin oral teicoplanin, ofloxacin and vancomycin; ofloxacin and teicoplanin; or saline. Bacteria recovered from saline treated mice were Enterobacteriaceae and Streptococcus spp. By comparison, fewer Enterobacteriaceae were isolated from ofloxacin treated mice and fewer Streptococcus spp. in both vancomycin and teicoplanin treated mice. However, glycopeptide-treated mice developed infection with Aspergillis fumigatus and glycopeptide resistant Streptococcus bovis. Mortality rates within 60 days of irradiation were 100% in all treatment and control groups with the exception of ofloxacin which was 25%-35%. These data suggest that glycopeptide therapy increases rates of systemic infection with fungi and antibiotic resistant bacteria in irradiated mice. (Author)

  10. Development of infection with Streptococcus bovis and Aspergillus sp. in irradiated mice after glycopeptide therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brook, I.; Tom, S.P.; Ledney, G.D. (Armed Forces Radiobiology Research Inst., Bethesda, MD (United States))

    1993-11-01

    The use of ofloxacin and glycopeptides was evaluated for the treatment of infections arising in C3H/HeN female mice irradiated with 8.3 Gy from a [sup 60]Co source. The 21 day regimen began 72 h after irradiation when each of five sets of experimental animals received three antimicrobial therapy regimens and a saline-treated control group. With 40 mice in each group, 20 were used to monitor survival, 20 for the recovery of bacteria from the liver culture. Treatment groups were oral ofloxacin; oral or intramuscular vancomycin oral teicoplanin, ofloxacin and vancomycin; ofloxacin and teicoplanin; or saline. Bacteria recovered from saline treated mice were Enterobacteriaceae and Streptococcus spp. By comparison, fewer Enterobacteriaceae were isolated from ofloxacin treated mice and fewer Streptococcus spp. in both vancomycin and teicoplanin treated mice. However, glycopeptide-treated mice developed infection with Aspergillis fumigatus and glycopeptide resistant Streptococcus bovis. Mortality rates within 60 days of irradiation were 100% in all treatment and control groups with the exception of ofloxacin which was 25%-35%. These data suggest that glycopeptide therapy increases rates of systemic infection with fungi and antibiotic resistant bacteria in irradiated mice. (Author).

  11. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  12. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  13. K-Ras(V14I) -induced Noonan syndrome predisposes to tumour development in mice.

    Science.gov (United States)

    Hernández-Porras, Isabel; Schuhmacher, Alberto J; Garcia-Medina, Raquel; Jiménez, Beatriz; Cañamero, Marta; de Martino, Alba; Guerra, Carmen

    2016-06-01

    The Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. A significant proportion of NS patients may also develop myeloproliferative disorders (MPDs), including juvenile myelomonocytic leukaemia (JMML). Surprisingly, scarce information is available in relation to other tumour types in these patients. We have previously developed and characterized a knock-in mouse model that carries one of the most frequent KRAS-NS-related mutations, the K-Ras(V14I) substitution, which recapitulates most of the alterations described in NS patients, including MPDs. The K-Ras(V14I) mutation is a mild activating K-Ras protein; thus, we have used this model to study tumour susceptibility in comparison with mice expressing the classical K-Ras(G12V) oncogene. Interestingly, our studies have shown that these mice display a generalized tumour predisposition and not just MPDs. In fact, we have observed that the K-Ras(V14I) mutation is capable of cooperating with the p16Ink4a/p19Arf and Trp53 tumour suppressors, as well as with other risk factors such as pancreatitis, thereby leading to a higher cancer incidence. In conclusion, our results illustrate that the K-Ras(V14I) activating protein is able to induce cancer, although at a much lower level than the classical K-Ras(G12V) oncogene, and that it can be significantly modulated by both genetic and non-genetic events. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. The growth and development of Schistosoma mansoni in mice exposed to sublethal doses of radiation

    International Nuclear Information System (INIS)

    Aitken, R.; Wilson, R.A.

    1989-01-01

    The maturation of Schistosoma mansoni was studied in mice exposed to various sublethal doses of radiation. Although the treatment of mice with 500 rads of radiation prior to infection did not alter parasite maturation, doses in excess of 500 rads led to a reduction in worm burden. This could not be attributed to a delay in the arrival of parasites in the hepatic portal system. Worms developing in mice treated with 800 rads commenced egg-laying about 1 wk later than worms in intact mice, and the rate of egg deposition appeared to be lower in irradiated hosts. The data demonstrate that exposure of C57BL/6 mice to doses of radiation in excess of 500 rads impairs their ability to carry infections of S. mansoni. The findings do not support the hypothesis that primary worm burdens in the mouse are controlled by a host immune response

  15. Elastin-derived peptides are new regulators of insulin resistance development in mice

    DEFF Research Database (Denmark)

    Blaise, Sébastien; Romier, Béatrice; Kawecki, Charlotte

    2013-01-01

    . In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver......, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels...

  16. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice.

    Science.gov (United States)

    Zhang, Hongsheng; Kang, Eunchai; Wang, Yaqing; Yang, Chaojuan; Yu, Hui; Wang, Qin; Chen, Zheyu; Zhang, Chen; Christian, Kimberly M; Song, Hongjun; Ming, Guo-Li; Xu, Zhiheng

    2016-06-01

    Several genome- and proteome-wide studies have associated transcription and translation changes of CRMP2 (collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brain in vivo. Here we show that brain-specific Crmp2 knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss of Crmp2 in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown of crmp2 specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.

  17. Neurobehavioral effects of concurrent exposure to cesium-137 and paraquat during neonatal development in mice

    International Nuclear Information System (INIS)

    Heredia, Luis; Bellés, Montserrat; Llovet, Maria Isabel; Domingo, Jose L.; Linares, Victoria

    2015-01-01

    As a result of nuclear power plants accidents such as Chernobyl or Fukushima, some people were exposed to external and internal ionizing radiation (IR). Human brain is highly sensitive to IR during fetal and postnatal period when the molecular processes are not completely finished. Various studies have shown that exposure to low doses of IR causes a higher incidence of cognitive impairment. On the other hand, in industrialized countries, people are daily exposed to a number of toxicant pollutants. Exposure to environmental chemicals, such as paraquat (PQ), may potentiate the toxic effects induced by radiation on brain development. In this study, we evaluated the cognitive effects of concomitant exposure to low doses of internal radiation ( 137 Cs) and PQ during neonatal brain development. At the postnatal day 10 (PND10), two groups of mice (C57BL/6J) were exposed to 137 Cs (4000 and 8000 Bq/kg) and/or PQ (7 mg/kg). To investigate the spontaneous behavior, learning, memory capacities and anxiety, behavioral tests were conducted in the offspring at two months of age. The results showed that cognitive functions were not significantly affected when 137 Cs or PQ were administered alone. However, alterations in the working memory and anxiety were detected in mice exposed to 137 Cs combined with PQ

  18. Rosiglitazone Improves Survival and Hastens Recovery from Pancreatic Inflammation in Obese Mice

    Science.gov (United States)

    Pini, Maria; Rhodes, Davina H.; Castellanos, Karla J.; Cabay, Robert J.; Grady, Eileen F.; Fantuzzi, Giamila

    2012-01-01

    Obesity increases severity of acute pancreatitis (AP) by unclear mechanisms. We investigated the effect of the PPAR-gamma agonist rosiglitazone (RGZ, 0.01% in the diet) on severity of AP induced by administration of IL-12+ IL-18 in male C57BL6 mice fed a low fat (LFD) or high fat diet (HFD), under the hypothesis that RGZ would reduce disease severity in HFD-fed obese animals. In both LFD and HFD mice without AP, RGZ significantly increased body weight and % fat mass, with significant upregulation of adiponectin and suppression of erythropoiesis. In HFD mice with AP, RGZ significantly increased survival and hastened recovery from pancreatic inflammation, as evaluated by significantly improved pancreatic histology, reduced saponification of visceral adipose tissue and less severe suppression of erythropoiesis at Day 7 post-AP. This was associated with significantly lower circulating and pancreas-associated levels of IL-6, Galectin-3, osteopontin and TIMP-1 in HFD + RGZ mice, particularly at Day 7 post-AP. In LFD mice with AP, RGZ significantly worsened the degree of intrapancreatic acinar and fat necrosis as well as visceral fat saponification, without affecting other parameters of disease severity or inflammation. Induction of AP lead to major suppression of adiponectin levels at Day 7 in both HFD and HFD + RGZ mice. In conclusion, RGZ prevents development of severe AP in obese mice even though it significantly increases adiposity, indicating that obesity can be dissociated from AP severity by improving the metabolic and inflammatory milieu. However, RGZ worsens selective parameters of AP severity in LFD mice. PMID:22815875

  19. Characterization of the Genetic Program Linked to the Development of Atrial Fibrillation in CREM-IbΔC-X Mice.

    Science.gov (United States)

    Seidl, Matthias D; Stein, Juliane; Hamer, Sabine; Pluteanu, Florentina; Scholz, Beatrix; Wardelmann, Eva; Huge, Andreas; Witten, Anika; Stoll, Monika; Hammer, Elke; Völker, Uwe; Müller, Frank U

    2017-08-01

    Reduced expression of genes regulated by the transcription factors CREB/CREM (cAMP response element-binding protein/modulator) is linked to atrial fibrillation (AF) susceptibility in patients. Cardiomyocyte-directed expression of the inhibitory CREM isoform CREM-IbΔC-X in transgenic mice (TG) leads to spontaneous-onset AF preceded by atrial dilatation and conduction abnormalities. Here, we characterized the altered gene program linked to atrial remodeling and development of AF in CREM-TG mice. Atria of young (TGy, before AF onset) and old (TGo, after AF onset) TG mice were investigated by mRNA microarray profiling in comparison with age-matched wild-type controls (WTy/WTo). Proteomic alterations were profiled in young mice (8 TGy versus 8 WTy). Annotation of differentially expressed genes revealed distinct differences in biological functions and pathways before and after onset of AF. Alterations in metabolic pathways, some linked to altered peroxisome proliferator-activated receptor signaling, muscle contraction, and ion transport were already present in TGy. Electron microscopy revealed significant loss of sarcomeres and mitochondria and increased collagen and glycogen deposition in TG mice. Alterations in electrophysiological pathways became prominent in TGo, concomitant with altered gene expression of K + -channel subunits and ion channel modulators, relevant in human AF. The most prominent alterations of the gene program linked to CREM-induced atrial remodeling were identified in the expression of genes related to structure, metabolism, contractility, and electric activity regulation, suggesting that CREM transgenic mice are a valuable experimental model for human AF pathophysiology. © 2017 American Heart Association, Inc.

  20. Effect of different culture systems and 3, 5, 3'-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice.

    Directory of Open Access Journals (Sweden)

    Cheng Zhang

    Full Text Available The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4. Follicle-stimulating hormone (FSH and Thyroid hormone (TH are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T₃ although T₃ was ineffective alone. We also demonstrated by QRT-PCR that T₃ significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.

  1. Obesity development in neuron-specific lipoprotein lipase deficient mice is not responsive to increased dietary fat content or change in fat composition.

    Science.gov (United States)

    Wang, Hong; Taussig, Matthew D; DiPatrizio, Nicholas V; Bruce, Kimberley; Piomelli, Daniele; Eckel, Robert H

    2016-07-01

    We have previously reported that mice with neuron-specific LPL deficiency (NEXLPL-/-) become obese by 16weeks of age on chow. Moreover, these mice had reduced uptake of triglyceride (TG)-rich lipoprotein-derived fatty acids and lower levels of n-3 long chain polyunsaturated fatty acids (n-3 PUFAs) in the hypothalamus. Here, we asked whether increased dietary fat content or altered dietary composition could modulate obesity development in NEXLPL-/- mice. Male NEXLPL-/- mice and littermate controls (WT) were randomly assigned one of three synthetic diets; a high carbohydrate diet (HC, 10% fat), a high-fat diet (HF, 45% fat), or a HC diet supplemented with n-3 PUFAs (HCn-3, 10% fat, Lovaza, GSK®). After 42weeks of HC feeding, body weight and fat mass were increased in the NEXLPL-/- mice compared to WT. WT mice fed a HF diet displayed typical diet-induced obesity, but weight gain was only marginal in HF-fed NEXLPL-/- mice, with no significant difference in body composition. Dietary n-3 PUFA supplementation did not prevent obesity in NEXLPL-/- mice, but was associated with differential modifications in hypothalamic gene expression and PUFA concentration compared to WT mice. Our findings suggest that neuronal LPL is involved in the regulation of body weight and composition in response to either the change in quantity (HF feeding) or quality (n-3 PUFA-enriched) of dietary fat. The precise role of LPL in lipid sensing in the brain requires further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome.

    Science.gov (United States)

    Laurent, Julien; Paly, Evelyne; Marche, Patrice N; London, Jacqueline

    2006-06-01

    Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.

  3. Gender-specific impairments on cognitive and behavioral development in mice exposed to fenvalerate during puberty.

    Science.gov (United States)

    Meng, Xiu-Hong; Liu, Ping; Wang, Hua; Zhao, Xian-Feng; Xu, Zhong-Mei; Chen, Gui-Hai; Xu, De-Xiang

    2011-06-24

    In human and rodent models, endocrine disrupting chemicals (EDCs) interfere with the development of cognition and behaviors. Fenvalerate is a potential EDC. The purpose of this study was to examine whether pubertal fenvalerate exposure altered behavioral development. Mice were orally administered with either vehicle or fenvalerate (7.5 or 30 mg/kg/day) from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris Water Maze. Aggressive performance was evaluated by aggressive behavior test. Anxiety-related activities were detected by three tests: open-field, plus-maze and black-white alley. Sensorimotor function was analyzed using beam walking and tightrope. Results found that the impairment for spatial learning and memory was more severe in fenvalerate-exposed female mice than in male mice. In addition, pubertal fenvalerate exposure inhibited aggressive behavior in males. Moreover, pubertal fenvalerate exposure increased anxiety activities in females. Altogether, these results suggest that pubertal fenvalerate exposure impairs spatial cognition and behavioral development in a gender-dependent manner. These findings identify fenvalerate as candidate environmental risk factors for cognitive and behavioral development, especially in the critical period of development. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Development of Ethanol Withdrawal-Related Sensitization and Relapse Drinking in Mice Selected for High or Low Ethanol Preference

    Science.gov (United States)

    Lopez, Marcelo F.; Grahame, Nicholas J.; Becker, Howard C.

    2010-01-01

    Background Previous studies have shown that high alcohol consumption is associated with low withdrawal susceptiblility, while at the same time, other studies have shown that exposure to ethanol vapor increases alcohol drinking in rats and mice. In the present studies, we sought to shed light on this seeming contradiction by using mice selectively bred for High- (HAP) and Low- (LAP) Alcohol Preference, first, assessing these lines for differences in signs of ethanol withdrawal and second, for differences in the efficacy of intermittent alcohol vapor exposure on elevating subsequent ethanol intake. Methods Experiment 1 examined whether these lines of mice differed in ethanol withdrawal-induced CNS hyperexcitability and the development of sensitization to this effect following intermittent ethanol vapor exposure. Adult HAP and LAP lines (replicates 1 and 2), and the C3H/HeNcr inbred strain (included as a control genotype for comparison purposes) received intermittent exposure to ethanol vapor and were evaluated for ethanol withdrawal-induced seizures assessed by scoring handling-induced convulsions (HIC). Experiment 2 examined the influence of chronic intermittent ethanol exposure on voluntary ethanol drinking. Adult male and female HAP-2 and LAP-2 mice, along with male C57BL/6J (included as comparative controls) were trained to drink 10% ethanol using a limited access (2 hr/day) 2-bottle choice paradigm. After stable baseline daily intake was established, mice received chronic intermittent ethanol vapor exposure in inhalation chambers. Ethanol intake sessions resumed 72 hr after final ethanol (or air) exposure for 5 consecutive days. Results Following chronic ethanol treatment, LAP mice exhibited overall greater withdrawal seizure activity compared to HAP mice. In Experiment 2, chronic ethanol exposure/withdrawal resulted in a significant increase in ethanol intake in male C57BL/6J, and modestly elevated intake in HAP-2 male mice. Ethanol intake for male control mice

  5. Knock-in mice harboring a Ca(2+) desensitizing mutation in cardiac troponin C develop early onset dilated cardiomyopathy.

    Science.gov (United States)

    McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B

    2015-01-01

    The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.

  6. Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice.

    Science.gov (United States)

    Cissé, Yasmine M; Peng, Juan; Nelson, Randy J

    2017-01-01

    Appropriately timed light is critical for circadian organization; exposure to dim light at night (dLAN) disrupts temporal organization of endogenous biological timing. Exposure to dLAN in adult mice is associated with elevated body mass and changes in metabolism putatively driven by voluntary changes in the time of food intake. We predicted that exposure of young mice to LAN could affect adult metabolic function. At 3 weeks (Experiment 1) or 5 weeks (Experiment 2) of age, mice were either maintained in standard light-dark (DARK) cycles or exposed to nightly dLAN (5 lux). In the first two experiments, food intake and locomotor activity were assessed after 4 weeks and a glucose tolerance test was administered after 6 weeks in experimental lighting conditions. In Experiment 3, tissues were collected around the clock at 6 h intervals to investigate rhythmic hepatic clock gene expression in mice exposed to dLAN from 3 or 5 weeks of age. Male and female mice exposed to dLAN beginning at 3 weeks of age displayed similar growth rates and body mass to DARK-reared offspring, despite increasing day-time food intake. Exposure to dLAN beginning at 5 weeks of age increased body mass and daytime food intake in male, but not female, mice. Consistent with the body mass phenotype, clock gene expression was unaltered in the liver. In contrast to adults, dLAN exposure during the development of the peripheral circadian system has sex- and development-dependent effects on body mass gain.

  7. Effects of Dim Light at Night on Food Intake and Body Mass in Developing Mice

    Directory of Open Access Journals (Sweden)

    Yasmine M. Cissé

    2017-05-01

    Full Text Available Appropriately timed light is critical for circadian organization; exposure to dim light at night (dLAN disrupts temporal organization of endogenous biological timing. Exposure to dLAN in adult mice is associated with elevated body mass and changes in metabolism putatively driven by voluntary changes in the time of food intake. We predicted that exposure of young mice to LAN could affect adult metabolic function. At 3 weeks (Experiment 1 or 5 weeks (Experiment 2 of age, mice were either maintained in standard light-dark (DARK cycles or exposed to nightly dLAN (5 lux. In the first two experiments, food intake and locomotor activity were assessed after 4 weeks and a glucose tolerance test was administered after 6 weeks in experimental lighting conditions. In Experiment 3, tissues were collected around the clock at 6 h intervals to investigate rhythmic hepatic clock gene expression in mice exposed to dLAN from 3 or 5 weeks of age. Male and female mice exposed to dLAN beginning at 3 weeks of age displayed similar growth rates and body mass to DARK-reared offspring, despite increasing day-time food intake. Exposure to dLAN beginning at 5 weeks of age increased body mass and daytime food intake in male, but not female, mice. Consistent with the body mass phenotype, clock gene expression was unaltered in the liver. In contrast to adults, dLAN exposure during the development of the peripheral circadian system has sex- and development-dependent effects on body mass gain.

  8. Tritium toxicity on postnatally developing mice testes: a qualitative and quantitative evaluation

    International Nuclear Information System (INIS)

    Bhatia, A.L.

    1982-01-01

    The present study is an attempt to evaluate the possible radiobiological effects of tritiated water (HTO) on the testes of Swiss albino mice during postnatal development. Mice were continuously irradiated with different doses providing 46, 93 and 185 kBq of HTO per ml drinking water (after a priming injection) from day 1 after brith up to 6 weeks of age. Qualitative and quantitative studies were made at 6 weeks old mice testes and were compared with the sham-irradiated controls. A dose-dependent damage is noticed in the testes in the form of various radiopathological lesions such as intertubular edema, necrotic and pycnotic cells at various stages, mild cytoplasmic vacuolation, fibrosis, sclerosis, cellular edema etc. The number of various germ cells at their different phases were greatly reduced. 185 kBq/ml affect severely the spermatogonia and spermatid populations. The primary spermatocyte level was maintained at the range 64 +- 3.5%

  9. Tritium toxicity on postnatally developing mice testes: a qualitative and quantitative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, A.L. (Rajasthan Univ., Jaipur (India). Radiation Biology Lab.)

    1982-11-01

    The present study is an attempt to evaluate the possible radiobiological effects of tritiated water (HTO) on the testes of Swiss albino mice during postnatal development. Mice were continuously irradiated with different doses providing 46, 93 and 185 kBq of HTO per ml drinking water (after a priming injection) from day 1 after brith up to 6 weeks of age. Qualitative and quantitative studies were made at 6 weeks old mice testes and were compared with the sham-irradiated controls. A dose-dependent damage is noticed in the testes in the form of various radiopathological lesions such as intertubular edema, necrotic and pycnotic cells at various stages, mild cytoplasmic vacuolation, fibrosis, sclerosis, cellular edema etc. The number of various germ cells at their different phases were greatly reduced. 185 kBq/ml affect severely the spermatogonia and spermatid populations. The primary spermatocyte level was maintained at the range 64 +- 3.5%.

  10. Nepro is localized in the nucleolus and essential for preimplantation development in mice.

    Science.gov (United States)

    Hashimoto, Masakazu; Sato, Tatsuya; Muroyama, Yuko; Fujimura, Lisa; Hatano, Masahiko; Saito, Tetsuichiro

    2015-09-01

    We generated knockout (KO) mice of Nepro, which has been shown to be necessary to maintain neural progenitor cells downstream of Notch in the mouse developing neocortex by using knockdown experiments, to explore its function in embryogenesis. Nepro KO embryos were morphologically indistinguishable from wild type (WT) embryos until the morula stage but failed in blastocyst formation, and many cells of the KO embryos resulted in apoptosis. We found that Nepro was localized in the nucleolus at the blastocyst stage. The number of nucleolus precursor bodies (NPBs) and nucleoli per nucleus was significantly higher in Nepro KO embryos compared with WT embryos later than the 2-cell stage. Furthermore, at the morula stage, whereas 18S rRNA and ribosomal protein S6 (rpS6), which are components of the ribosome, were distributed to the cytoplasm in WT embryos, they were mainly localized in the nucleoli in Nepro KO embryos. In addition, in Nepro KO embryos, the amount of the mitochondria-associated p53 protein increased, and Cytochrome c was distributed in the cytoplasm. These findings indicate that Nepro is a nucleolus-associated protein, and its loss leads to the apoptosis before blastocyst formation in mice. © 2015 Japanese Society of Developmental Biologists.

  11. Nfib hemizygous mice are protected from hyperoxic lung injury and death.

    Science.gov (United States)

    Kumar, Vasantha H S; Chaker El Khoury, Joseph; Gronostajski, Richard; Wang, Huamei; Nielsen, Lori; Ryan, Rita M

    2017-08-01

    Nuclear Factor I ( Nfi) genes encode transcription factors essential for the development of organ systems including the lung. Nfib null mice die at birth with immature lungs. Nfib hemizygous mice have reduced lung maturation with decreased survival. We therefore hypothesized that these mice would be more sensitive to lung injury and would have lower survival to hyperoxia. Adult Nfib hemizygous mice and their wild-type (Wt) littermates were exposed to 100% O 2 for 89, 80, 72 and 66 h for survival studies with lung outcome measurements at 66 h. Nfib hemizygous and Wt controls were also studied in RA at 66 h. Cell counts and cytokines were measured in bronchoalveolar lavage (BAL); lung sections examined by histopathology; lung angiogenic and oxidative stress gene expression assessed by real-time PCR Unexpectedly, Nfib hemizygous mice (0/14-0%) had significantly lower mortality compared to Wt mice (10/22-45%) at 80 h of hyperoxia ( P  mice exposed to hyperoxia. New vessel formation, edema, congestion, and alveolar hemorrhage were noted on histopathology at 72 and 80 h in wild-type mice. Nfib hemizygous lungs had significant downregulation of genes involved in redox signaling and inflammatory pathways. Adult Nfib hemizygous mice are relatively resistant to hyperoxia compared to wild-type littermates. Mechanisms contributing to this resistance are not clear; however, transcription factors such as Nfib may regulate cell survival and play a role in modulating postnatal lung development. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  13. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  14. Investigations of DNA-repair in New Zealand mice

    Energy Technology Data Exchange (ETDEWEB)

    Tuschl, H; Kovac, R; Altmann, H

    1974-09-01

    DNA repair was investigated in New Zealand mice strains which developed murine lupus and compared with Swiss control mice. Unscheduled DNA synthesis demonstrated by autoradiography was used to measure the repair capacity of spleen cells. After gamma-irradiation DNA repair was decreased in the autoimmune strains, while it was significantly increased after UV-irradiation. A possible relationship between repair capacity after gamma-respectively UV-irradiation and the etiologic factor of autoimmunity is discussed. (auth)

  15. Effect of Clostridium butyricum supplementation on the development of intestinal flora and the immune system of neonatal mice.

    Science.gov (United States)

    Miao, Rui-Xue; Zhu, Xin-Xin; Wan, Chao-Min; Wang, Zhi-Ling; Wen, Yang; Li, Yi-Yuan

    2018-01-01

    The objective of the present study was to examine whether Clostridium butyricum supplementation has a role in the regulation of the intestinal flora and the development of the immune system of neonatal mice. A total of 30 pregnant BALB/c mice, including their offspring, were randomly divided into three groups: In the maternal intervention group (Ba), maternal mice were treated with Clostridium butyricum from birth until weaning at postnatal day 21 (PD21) followed by administration of saline to the offspring at PD21-28; in the offspring intervention group (Ab), breast-feeding maternal mice were supplemented with saline and offspring were directly supplemented with Clostridium butyricum from PD21-28; in the both maternal and offspring intervention group (Bb), both maternal mice and offspring were supplemented with Clostridium butyricum at PD 0-21 and at PD21-28. While mice in the control group were given the same volume of normal saline. Stool samples from the offspring were collected at PD14, -21 and -28 to observe the intestinal flora by colony counts of Enterococcus spp., Enterobacter spp., Bifidobacterium spp. and Lactobacillus spp. Detection of intestinal secreted immunoglobulin A (sIgA) levels and serum cytokine (interferon-γ, and interleukin-12, -4 and -10) levels in offspring was performed to evaluate the effect on their immune system. The results revealed that compared with the control group, offspring in the Ba group displayed significantly decreased stool colony counts of Enterococcus spp. (t=3.123, Pflora balance in their offspring. However, due to insignificant effects on sIgA level and the associated cytokines, Clostridium butyricum had a limited influence on the balance of type 1 vs. type 2 T-helper cells. However, using Clostridium butyricum as an invention may be a safe method for improving the balance of intestinal flora and associated processes in offspring.

  16. Investigation and identification of etiologies involved in the development of acquired hydronephrosis in aged laboratory mice with the use of high-frequency ultrasound imaging

    Science.gov (United States)

    Springer, Danielle A.; Allen, Michele; Hoffman, Victoria; Brinster, Lauren; Starost, Matthew F.; Bryant, Mark; Eckhaus, Michael

    2014-01-01

    Laboratory mice develop naturally occurring lesions that affect biomedical research. Hydronephrosis is a recognized pathologic abnormality of the mouse kidney. Acquired hydronephrosis can affect any mouse, as it is caused by any naturally occurring disease that impairs free urine flow. Many etiologies leading to this condition are of particular significance to aging mice. Non-invasive ultrasound imaging detects renal pelvic dilation, renal enlargement, and parenchymal loss for pre-mortem identification of this condition. High-frequency ultrasound transducers produce high-resolution images of small structures, ideal for detecting organ pathology in mice. Using a 40 MHz linear array transducer, we obtained high-resolution images of a diversity of pathologic lesions occurring within the abdomen of seven geriatric mice with acquired hydronephrosis that enabled a determination of the underlying etiology. Etiologies diagnosed from the imaging results include pyelonephritis, neoplasia, urolithiasis, mouse urologic syndrome, and spontaneous hydronephrosis, and were confirmed at necropsy. A retrospective review of abdominal scans from an additional 149 aging mice shows that the most common etiologies associated with acquired hydronephrosis are mouse urologic syndrome and abdominal neoplasia. This report highlights the utility of high-frequency ultrasound for surveying research mice for age-related pathology, and is the first comprehensive report of multiple cases of acquired hydronephrosis in mice. PMID:25143818

  17. Characterization of spontaneous air space enlargement in mice lacking microfibrillar-associated protein 4

    DEFF Research Database (Denmark)

    Holm, Anne Trommelholt; Wulf-Johansson, Helle; Hvidsten, Svend

    2015-01-01

    to characterize the pulmonary function changes and emphysematous changes that occur in Mfap4-deficient (Mfap4(-/-)) mice. Significant changes included increases in total lung capacity and compliance, which were evident in Mfap4(-/-) mice at 6 and 8 mo but not at 3 mo of age. Using in vivo breath-hold gated...... were both significantly decreased in Mfap4(-/-) mice by 25 and 15%, respectively. The data did not support an essential role of MFAP4 in pulmonary elastic fiber organization or content but indicated increased turnover in young Mfap4(-/-) mice. However, Mfap4(-/-) mice developed a spontaneous loss...... of lung function, which was evident at 6 mo of age, and moderate air space enlargement, with emphysema-like changes....

  18. Investigating the effects of nanoparticles on reproduction and development in Drosophila melanogaster and CD-1 mice

    Science.gov (United States)

    Philbrook, Nicola Anne

    Manufactured nanoparticles (NPs) are a class of small (≤ 100 nm) materials that are being used for a variety of purposes, including industrial lubricants, food additives, antibacterial agents, as well as delivery systems for drug and gene therapies. Their unique characteristics due to their small size as well as their parent materials allow them to be exploited in convenience applications; however, some of these properties also allow them to interact with and invade biological systems. Few studies have been performed to determine the potential harm that NPs can inflict on reproductive and developmental processes in organisms. In this study, Drosophila melanogaster and CD-1 mice were orally exposed to varying doses of titanium dioxide (TiO 2) NPs, silver (Ag) NPs, or hydroxyl-functionalized carbon nanotubes (fCNTs) and Drosophila were also exposed to microparticles (MPs) as a control for particle size. The subsequent effect of these materials on reproduction and development were evaluated. Strikingly, each type of NP studied negatively affected either reproduction or development in one or both of the two model systems. TiO2 NPs significantly negative effected both CD-1 mouse development (100 mg/kg or 1000 mg/kg) as well as Drosophila female fecundity (0.005%-0.5% w/v). Ag NPs significantly reduced mouse fetus viability after prenatal exposure to10 mg/kg. Ag NPs also significantly decreased the developmental success of Drosophila when they were directly exposed to these NPs (0.05% - 0.5% w/v) compared to both the vehicle and MP controls. fCNTs significantly increased the presence of morphological defects, resorptions and skeletal abnormalities in CD-1 mice, but had little effect on Drosophila. We speculate that the differences seen in the effects of NP types may be partially due to differences in reproductive physiology as well as each organism's ability to internalize these NPs. Whereas the differing response of each organism to a NP type was likely due in part to

  19. Enhancement of radial maze performances in CD1 mice after prenatal exposure to oxiracetam: possible role of sustained investigative responses developed during ontogeny.

    Science.gov (United States)

    Ammassari-Teule, M; D'Amato, F R; Sansone, M; Oliverio, A

    1988-01-01

    A longitudinal study aimed at analyzing the behavioral effects of prenatal exposure to the nootropic compound oxiracetam was carried out in CD1 mice. Two groups of females were injected either with oxiracetam or saline from the beginning of pregnancy until parturition. Examination of pups from birth until the first month of age revealed no-influence of the treatment on litter size, body weights, sensory motor reflexes and motility. When placed in the open field at one month of age, mice born by mothers exposed to oxiracetam displayed more self grooming and spent less time in freezing than control mice. Prenatally treated mice were then found more interactive with their environment since the introduction of a novel object in the open field was followed by increased ambulation and higher sniffing object and rearing object scores. At three months of age, mice from both groups were tested in a radial six-arm maze task. Choice accuracy was significantly higher in prenatally treated mice which also tended to optimize their exploratory sequences by frequently running the maze in a clock-wise fashion. These results suggest that the better learning performances observed in the experimental group could be viewed as a consequence of an enhanced cognitive development based upon the higher rate of interactions with the environment shown by prenatally treated mice during ontogeny.

  20. Perfluorocarbon emulsion therapy attenuates pneumococcal infection in sickle cell mice.

    Science.gov (United States)

    Helmi, Nawal; Andrew, Peter W; Pandya, Hitesh C

    2015-05-15

    Impaired immunity and tissue hypoxia-ischemia are strongly linked with Streptococcus pneumoniae pathogenesis in patients with sickle cell anemia. Perfluorocarbon emulsions (PFCEs) have high O2-dissolving capacity and can alleviate tissue hypoxia. Here, we evaluate the effects of intravenous PFCE therapy in transgenic sickle cell (HbSS) mice infected with S. pneumoniae. HbSS and C57BL/6 (control) mice intravenously infected with S. pneumoniae were treated intravenously with PFCE or phosphate-buffered saline (PBS) and then managed in either air/O2 (FiO2 proportion, 50%; hereafter referred to as the PFCE-O2 and PBS-O2 groups) or air only (hereafter, the PFCE-air and PBS-air groups) gas mixtures. Lungs were processed for leukocyte and bacterial counts and cytokine measurements. HbSS mice developed severe pneumococcal infection significantly faster than C57BL/6 mice (Kaplan-Maier analysis, P < .05). PFCE-O2-treated HbSS mice had significantly better survival at 72 hours than HBSS mice treated with PFCE-air, PBS-O2, or PBS-air (P < .05). PFCE-O2-treated HbSS mice also had significantly lower pulmonary leukocyte counts, lower interleukin 1β and interferon γ levels, and higher interleukin 10 levels than PFCE-air-treated HbSS mice. Clearance of S. pneumoniae from lungs of HbSS mice or C57BL/6 mice was not altered by PFCE treatment. Improved survival of PFCE-O₂-treated HbSS mice infected with S. pneumoniae is associated with altered pulmonary inflammation but not enhanced bacterial clearance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Chlorinated Water Modulates the Development of Colorectal Tumors with Chromosomal Instability and Gut Microbiota in Apc-Deficient Mice.

    Science.gov (United States)

    Sasada, Tatsunari; Hinoi, Takao; Saito, Yasufumi; Adachi, Tomohiro; Takakura, Yuji; Kawaguchi, Yasuo; Sotomaru, Yusuke; Sentani, Kazuhiro; Oue, Naohide; Yasui, Wataru; Ohdan, Hideki

    2015-01-01

    The gastrointestinal tract is continuously exposed to a variety of chemicals and commensal bacteria. Recent studies have shown that changes in gut microbial populations caused by chlorine or other chemicals in the drinking water influence the development of human colorectal cancer, although the mechanism of tumorigenesis in the gut epithelium is obfuscated by the diversity of microflora and complexity of the tumor microenvironment. In this regard, mouse models that recapitulate human colorectal cancer are an invaluable tool. In this study, we used two conditional adenomatous polyposis coli (Apc) knockout mouse models to investigate the effect of chlorinated water on tumorigenesis in the digestive tract. Mice with colon-specific carcinoma--caused by either chromosomal (CDX2P 9.5-NLS Cre;Apc(+/flox), abbreviated to CPC;Apc) or microsatellite (CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox)) instability, respectively--were administered chlorinated (10.0 mg/L chlorine) or tap (0.7 mg/L chlorine) water and evaluated for colon polyp formation. In CPC;Apc mice given chlorinated drinking water, tumors tended to develop in the colon, whereas in those that drank tap water, tumors were mostly observed in the small intestine. There was no difference in the rate of tumor formation of CDX2P9.5-G19Cre;Apc(flox/flox) and CDX2P9.5-G22Cre;Apc(flox/flox) mice consuming chlorinated as compared to tap water, suggesting that microsatellite instability in the Apc gene does not significantly affect tumorigenesis. Chlorinated water altered the enteric environment by reducing the fecal populations of the obligatory anaerobes Clostridium perfringens and C. difficile, as well as species belonging to the Atopobium cluster, including Enterobacteriaceae and Staphylococcus sp., which was associated with colon tumorigenesis in CPC;Apc mice. These results suggest that differences in tumorigenesis among CPC;Apc mice consuming chlorinated versus tap water may be due to differences

  2. Study Of The Effect Of Heroin Used In Iran, On Spermatogenesis Changes And Their Development In Balb/C Mice

    Directory of Open Access Journals (Sweden)

    Fazelipour S

    2005-05-01

    Full Text Available Background: Heroin is one of the opiates which is used, as the most addictive drugs, in Iran. Considering the damaging effects of these drugs on the health of opiate addicts, investigation on the effects of heroin used in Iran, on male genital indicators including daily sperm production and its development, which has an essential role in fertility, seems to be necessary. Materials and Methods: A total of 70 Bulb/c mature male mice, were divided into 5 groups of control, [intact (n=10, sham I (n=10 sham II (n=10] and experimental groups [I (n=20, II (n=20], and 50 days after addiction to heroin (50 mg/kg via intra peritoneal injection (IP, 6 mice from each groups were selected and after euthenizing, the testes and epididymes were removed. The rate of daily sperm production (DSP, epididymic sperm preservation (ESP and the rate of sperm motility were measured accurately. Results: In the study of the effect of heroin on daily sperm production and sperm preservation between the control and experimental groups, no significant differences were observed. The effect of heroin on sperm motility between control and experimental groups, the difference were significant (P<0/05. Conclusions: In this survey, it was indicated that, the heroin used in Iran, causes a decrease in healthy sperms of mice their motility, and consequently can affect on genital indicators.

  3. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    Science.gov (United States)

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required. Copyright © 2016 the American Physiological Society.

  4. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  5. Orally administered sodium 4-phenylbutyrate suppresses the development of dextran sulfate sodium-induced colitis in mice.

    Science.gov (United States)

    Ono, Kazuhiko; Nimura, Satoshi; Hideshima, Yuko; Nabeshima, Kazuki; Nakashima, Manabu

    2017-12-01

    Sodium 4-phenylbutyrate (PBA) exerts therapeutic effects in a wide range of pathologies. A previous study by the present authors revealed that intraperitoneal administration of PBA suppresses the onset of dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, the effects of orally administered PBA are investigated, as this route of administration is more clinically relevant. The therapeutic efficacy of PBA (10 mg/12 h) in mice with experimental colitis was assessed based on the disease activity index, production of inflammatory cytokines, colon length and histopathological investigations. The results of the present study demonstrated a significantly higher survival rate in the PBA-treated group compared with the PBA-untreated (DSS control) group (P=0.0156). PBA treatment improved pathological indices of experimental colitis (P<0.05). Furthermore, the oral administration of PBA significantly inhibited the DSS-induced shortening of the colon (P<0.05) and overproduction of interleukin (IL)-1β and IL-6 (both P<0.05) as measured in colonic lavage fluids. A marked attenuation of the DSS-induced overproduction of tumor necrosis factor was also observed. For histopathological analysis, a marked decrease in mature goblet cells and increase in enlarged nuclei of the absorptive cells was observed in colon lesions of DSS control mice as compared with normal untreated mice. However, in the PBA-treated mice, no such lesions were observed and the mucosa resembled that of DSS-untreated mice. The results of the present study, combined with those results of a previous study, suggest that oral and intraperitoneal administration of PBA have similar preventative effects on DSS-induced colitis, achieved by suppressing its pathogenesis.

  6. Cryptosporidium parvum infection in SCID mice infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer.

    Directory of Open Access Journals (Sweden)

    Sadia Benamrouz

    Full Text Available Dexamethasone (Dex treated Severe Combined Immunodeficiency (SCID mice were previously described as developing digestive adenocarcinoma after massive infection with Cryptosporidium parvum as soon as 45 days post-infection (P.I.. We aimed to determine the minimum number of oocysts capable of inducing infection and thereby gastrointestinal tumors in this model. Mice were challenged with calibrated oocyst suspensions containing intended doses of: 1, 10, 100 or 10(5 oocysts of C. parvum Iowa strain. All administered doses were infective for animals but increasing the oocyst challenge lead to an increase in mice infectivity (P = 0.01. Oocyst shedding was detected at 7 days P.I. after inoculation with more than 10 oocysts, and after 15 days in mice challenged with one oocyst. In groups challenged with lower inocula, parasite growth phase was significantly higher (P = 0.005 compared to mice inoculated with higher doses. After 45 days P.I. all groups of mice had a mean of oocyst shedding superior to 10,000 oocyst/g of feces. The most impressive observation of this study was the demonstration that C. parvum-induced digestive adenocarcinoma could be caused by infection with low doses of Cryptosporidium, even with only one oocyst: in mice inoculated with low doses, neoplastic lesions were detected as early as 45 days P.I. both in the stomach and ileo-caecal region, and these lesions could evolve in an invasive adenocarcinoma. These findings show a great amplification effect of parasites in mouse tissues after challenge with low doses as confirmed by quantitative PCR. The ability of C. parvum to infect mice with one oocyst and to develop digestive adenocarcinoma suggests that other mammalian species including humans could be also susceptible to this process, especially when they are severely immunocompromised.

  7. Cryptosporidium parvum infection in SCID mice infected with only one oocyst: qPCR assessment of parasite replication in tissues and development of digestive cancer.

    Science.gov (United States)

    Benamrouz, Sadia; Guyot, Karine; Gazzola, Sophie; Mouray, Anthony; Chassat, Thierry; Delaire, Baptiste; Chabé, Magali; Gosset, Pierre; Viscogliosi, Eric; Dei-Cas, Eduardo; Creusy, Colette; Conseil, Valerie; Certad, Gabriela

    2012-01-01

    Dexamethasone (Dex) treated Severe Combined Immunodeficiency (SCID) mice were previously described as developing digestive adenocarcinoma after massive infection with Cryptosporidium parvum as soon as 45 days post-infection (P.I.). We aimed to determine the minimum number of oocysts capable of inducing infection and thereby gastrointestinal tumors in this model. Mice were challenged with calibrated oocyst suspensions containing intended doses of: 1, 10, 100 or 10(5) oocysts of C. parvum Iowa strain. All administered doses were infective for animals but increasing the oocyst challenge lead to an increase in mice infectivity (P = 0.01). Oocyst shedding was detected at 7 days P.I. after inoculation with more than 10 oocysts, and after 15 days in mice challenged with one oocyst. In groups challenged with lower inocula, parasite growth phase was significantly higher (P = 0.005) compared to mice inoculated with higher doses. After 45 days P.I. all groups of mice had a mean of oocyst shedding superior to 10,000 oocyst/g of feces. The most impressive observation of this study was the demonstration that C. parvum-induced digestive adenocarcinoma could be caused by infection with low doses of Cryptosporidium, even with only one oocyst: in mice inoculated with low doses, neoplastic lesions were detected as early as 45 days P.I. both in the stomach and ileo-caecal region, and these lesions could evolve in an invasive adenocarcinoma. These findings show a great amplification effect of parasites in mouse tissues after challenge with low doses as confirmed by quantitative PCR. The ability of C. parvum to infect mice with one oocyst and to develop digestive adenocarcinoma suggests that other mammalian species including humans could be also susceptible to this process, especially when they are severely immunocompromised.

  8. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  9. Continues administration of Nano-PSO significantly increased survival of genetic CJD mice.

    Science.gov (United States)

    Binyamin, Orli; Keller, Guy; Frid, Kati; Larush, Liraz; Magdassi, Shlomo; Gabizon, Ruth

    2017-12-01

    We have shown previously that Nano-PSO, a nanodroplet formulation of pomegranate seed oil, delayed progression of neurodegeneration signs when administered for a designated period of time to TgMHu2ME199K mice, modeling for genetic prion disease. In the present work, we treated these mice with a self-emulsion formulation of Nano-PSO or a parallel Soybean oil formulation from their day of birth until a terminal disease stage. We found that long term Nano-PSO administration resulted in increased survival of TgMHu2ME199K lines by several months. Interestingly, initiation of treatment at day 1 had no clinical advantage over initiation at day 70, however cessation of treatment at 9months of age resulted in the rapid loss of the beneficial clinical effect. Pathological studies revealed that treatment with Nano-PSO resulted in the reduction of GAG accumulation and lipid oxidation, indicating a strong neuroprotective effect. Contrarily, the clinical effect of Nano-PSO did not correlate with reduction in the levels of disease related PrP, the main prion marker. We conclude that long term administration of Nano-PSO is safe and may be effective in the prevention/delay of onset of neurodegenerative conditions such as genetic CJD. Copyright © 2017. Published by Elsevier Inc.

  10. An ethanolic extract of Desmodium adscendens exhibits antipsychotic-like activity in mice.

    Science.gov (United States)

    Amoateng, Patrick; Adjei, Samuel; Osei-Safo, Dorcas; Kukuia, Kennedy K E; Karikari, Thomas K; Nyarko, Alexander K

    2017-09-26

    Desmodium adscendens extract (DAE) is used traditionally in Ghana for the management of psychosis. The present study aimed at providing pharmacological evidence for its ethnomedical use by testing the hypothesis that an ethanolic extract of Desmodium adscendens may possess antipsychotic properties. The primary behavioral effects of DAE on the central nervous system of mice were investigated using Irwin's test paradigm. Novelty-induced and apomorphine-induced locomotor and rearing behaviors in mice were explored in an open-field observational test system. Apomorphine-induced cage climbing test in mice was used as the antipsychotic animal model. The ability of DAE to induce catalepsy and enhance haloperidol-induced catalepsy was also investigated in mice. The DAE produced sedation, cholinergic-, and serotonergic-like effects in mice when evaluated using the Irwin's test. No lethality was observed after 24 h post-treatment. The LD50 in mice was estimated to be greater than 3000 mg/kg. The DAE significantly decreased the frequency of novelty- and apomorphine-induced rearing and locomotor activities in mice. It also significantly lowered the frequency and duration of apomorphine-induced climbing activities in mice. It did not induce any cataleptic event in naïve mice but only significantly enhanced haloperidol-induced catalepsy at a dose of 1000 mg/kg. The ethanolic extract of Desmodium adscendens exhibited antipsychotic-like activities in mice. Motor side effects are only likely to develop at higher doses of the extract.

  11. Glucocorticoid treatment of MCMV infected newborn mice attenuates CNS inflammation and limits deficits in cerebellar development.

    Directory of Open Access Journals (Sweden)

    Kate Kosmac

    2013-03-01

    Full Text Available Infection of the developing fetus with human cytomegalovirus (HCMV is a major cause of central nervous system disease in infants and children; however, mechanism(s of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-β and IFNγ in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV.

  12. Effect of tocotrienol on aortic atherosclerosis in diabetic mice

    International Nuclear Information System (INIS)

    Kiani, M.R.B.; Butt, S.A.; Ahmed, T.

    2015-01-01

    Effect of tocotrienol on aortic atherosclerosis in diabetic mice To study the histomorphological effect of tocotrienol on aortic atherosclerosis in diabetic mice having high fat diet. Study Design: Lab based randomized controlled trial. Place and Duration of Study: Army Medical College, Rawalpindi and National Institute of Health, Islamabad from November 2009 to June 2010. Material and Methods: Forty five female BALB/c mice were randomly divided into three groups. The diabetic mice model was established by intraperitoneal injection of streptozotocin (STZ) 40 mg/kg body weight. Group A was given normal laboratory diet, group B high fat diet and group C was given tocotrienol along with high fat diet for 32 weeks. At the end of experiment the mice were sacrificed. The hearts of animals were dissected out and ascending aortae were taken out. The specimen was fixed in 10% formol calcium and processed for paraffin embedding. Five micrometer thick sections were made for haematoxylin and eosin, and Verhoeff's staining. After staining, histomorphologic changes in slides were noted. Results: In contrast to group A, atheroscelrosis developed in groups B and C. Statistically significant atherosclerotic changes were found in the aortae of diabetic mice in group B when compared to group A. On comparison of group A to C, atherosclerotic changes were statistically insignificant. However when group B was compared with group C, the aortic atherosclerotic changes decreased significantly in group C. Conclusion: In diabetics with high fat diet intake, there is an increase in development of atherosclerosis in aorta which can be reduced by tocotrienol. (author)

  13. Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome.

    Science.gov (United States)

    Walls, G V; Stevenson, M; Lines, K E; Newey, P J; Reed, A A C; Bowl, M R; Jeyabalan, J; Harding, B; Bradley, K J; Manek, S; Chen, J; Wang, P; Williams, B O; Teh, B T; Thakker, R V

    2017-07-13

    The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73 +/- ) and conditional parathyroid-specific (Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73 +/+ and Cdc73 +/+ /PTH-Cre) littermates. Survival of Cdc73 +/- mice, when compared to Cdc73 +/+ mice was reduced (Cdc73 +/- =80%; Cdc73 +/+ =90% at 18 months of age, Pfourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73 +/- , Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73 +/- mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73 +/- mice did not develop bone or renal tumours but female Cdc73 +/- mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73 +/- mice had increased proliferation rates that were 2-fold higher than in Cdc73 +/+ mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.

  14. Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.

    Science.gov (United States)

    Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao

    2014-01-01

    Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.

  15. Neurobehavioral effects of concurrent exposure to cesium-137 and paraquat during neonatal development in mice.

    Science.gov (United States)

    Heredia, Luis; Bellés, Montserrat; Llovet, Maria Isabel; Domingo, Jose L; Linares, Victoria

    2015-03-02

    As a result of nuclear power plants accidents such as Chernobyl or Fukushima, some people were exposed to external and internal ionizing radiation (IR). Human brain is highly sensitive to IR during fetal and postnatal period when the molecular processes are not completely finished. Various studies have shown that exposure to low doses of IR causes a higher incidence of cognitive impairment. On the other hand, in industrialized countries, people are daily exposed to a number of toxicant pollutants. Exposure to environmental chemicals, such as paraquat (PQ), may potentiate the toxic effects induced by radiation on brain development. In this study, we evaluated the cognitive effects of concomitant exposure to low doses of internal radiation ((137)Cs) and PQ during neonatal brain development. At the postnatal day 10 (PND10), two groups of mice (C57BL/6J) were exposed to (137)Cs (4000 and 8000 Bq/kg) and/or PQ (7 mg/kg). To investigate the spontaneous behavior, learning, memory capacities and anxiety, behavioral tests were conducted in the offspring at two months of age. The results showed that cognitive functions were not significantly affected when (137)Cs or PQ were administered alone. However, alterations in the working memory and anxiety were detected in mice exposed to (137)Cs combined with PQ. Copyright © 2015. Published by Elsevier Ireland Ltd.

  16. The chondrogenic response to exercise in the proximal femur of normal and mdx mice

    Directory of Open Access Journals (Sweden)

    Nye David J

    2010-09-01

    Full Text Available Abstract Background Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response to voluntary exercise in dystrophin-deficient mice. Methods Control and dystrophin-deficient (mdx mice were divided into sedentary and exercise-treated groups and tested for chondral histomorphometric differences at the proximal femur. Results Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically significant (P > 0.05. However, exercised control mice exhibited significantly enlarged femur head diameter, articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary controls and exercised mdx mice (P Conclusions Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue may not be a clinical concern with dystrophinopathy.

  17. Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    Science.gov (United States)

    Lee, An Sook; Lee, Yun Jung; Lee, So Min; Yoon, Jung Joo; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-01-01

    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications. PMID:22474522

  18. Sex differences in complex regional pain syndrome type I (CRPS-I) in mice.

    Science.gov (United States)

    Tang, Chaoliang; Li, Juan; Tai, Wai Lydia; Yao, Weifeng; Zhao, Bo; Hong, Junmou; Shi, Si; Wang, Song; Xia, Zhongyuan

    2017-01-01

    Sex differences have been increasingly highlighted in complex regional pain syndrome (CRPS) in clinical practice. In CRPS type I (CRPS-I), although inflammation and oxidative stress have been implicated in its pathogenesis, whether pain behavior and the underlying mechanism are sex-specific is unclear. In the present study, we sought to explore whether sex differences have an impact on inflammation, oxidative stress, and pain sensitivity in CRPS-I. Chronic post-ischemia pain (CPIP) was established in both male and female mice as an animal model of CRPS-I. Edema and mechanical allodynia of bilateral hind paws were assessed after reperfusion. Blood samples were analyzed for serum levels of oxidative stress markers and inflammatory cytokines. Both male and female mice developed edema. Male mice developed CPIP at day 3 after reperfusion; female mice developed CPIP at day 2 after reperfusion. Female mice displayed significantly earlier and higher mechanical allodynia in the ischemic hind paw, which was associated with higher serum levels of IL-2, TNF-α, isoprostanes, 8 OhdG, and malondialdehyde at day 2 after reperfusion. Moreover, female mice showed significantly lower SOD and IL-4 compared to male mice at day 2 after reperfusion. Our results indicate that sex differences in inflammatory and oxidative stress states may play a central role in the sex-specific nociceptive hypersensitivity in CRPS-I, and offer a new insight into pharmacology treatments to improve pain management with CRPS.

  19. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  20. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ

    2013-01-01

    to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development...... and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal...

  1. Abnormal megakaryocyte development and platelet function in Nbeal2−/− mice

    Science.gov (United States)

    Lo, Richard W.; Li, Ling; Pluthero, Fred G.; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E.; Weyrich, Andrew S.; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L.

    2013-01-01

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2−/− mouse. As in GPS, Nbeal2−/− mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2−/− platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2−/− platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2−/− bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2−/− mice has deleterious effects on megakaryocyte survival, development, and platelet production. PMID:23861251

  2. DNA mismatch repair deficiency accelerates lung neoplasm development in K-rasLA1/+ mice: a brief report

    International Nuclear Information System (INIS)

    Downey, Charlene M; Jirik, Frank R

    2015-01-01

    Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2 −/− mice with the K-ras LA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-ras LA1/+ mice, K-ras LA1/+ ; Msh2 −/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression

  3. Plaque formation reduction with glutathione monoester in mice fed on atherogenic diet

    International Nuclear Information System (INIS)

    Iqbal, M.; Mehboobali, N.; Pervez, S.

    2006-01-01

    To determine the role of glutathione monoester on reducing the development of plaque formation in an animal model. Twenty-four Balb/c mice were divided into 3 equal groups. First group was fed on atherogenic diet alone, while the second group received atherogenic diet plus twice weekly injections of glutathione monoester. The third group was fed on normal diet for mice. After one year, the animals were sacrificed. Blood was analyzed for lipid levels, while liver, kidney, spleen, heart and aorta were removed to study morphological changes. Results: In the groups of mice receiving atherogenic diet (with and without glutathione monoesters), there was significant increase in levels of total cholesterol (p=0.011) and LDL cholesterol (p=0.001) compared to levels of these lipids in mice on normal diet. However, a significant decrease in levels of triglycerides (p=0.01) was observed in the group receiving atherogenic diet along with glutathione monoester. Supplementation with glutathione monoester had the most pronounced effect only on triglyceride levels. Atherosclerotic plaques were seen in heart and/or aorta of mice receiving atherogenic diet. However, such plaques were either totally absent or if seen in an animal, were extremely small and diffuse in the group receiving glutathione monoester along with atherogenic diet. Mice on normal diet had no evidence of any plaque formation. Cholesterol granuloma was seen in liver of mice on atherogenic diet alone. In mice receiving atherogenic diet plus glutathione monoester, no cholesterol granuloma was found in liver. There were no remarkable morphological changes in spleen and kidney in the three groups of mice. Glutathione monoester appears to inhibit or reduce the development of plaque formation in mice. (author)

  4. The Extract of Litsea japonica Reduced the Development of Diabetic Nephropathy via the Inhibition of Advanced Glycation End Products Accumulation in db/db Mice

    Directory of Open Access Journals (Sweden)

    Eunjin Sohn

    2013-01-01

    Full Text Available Increasing evidence indicates that advanced glycation end products (AGEs contribute to the pathogenesis of diabetic nephropathy. The aim of this study was to investigate the protective effect of L. japonica extract (LJE against renal damage in the db/db mouse. LJE (100 or 250 mg/kg per day was given to diabetic mice for 12 weeks. Body weight, blood glucose levels, glycated hemoglobin (HbA1c levels, and proteinuria were examined. In in vitro assay of the inhibition of AGE formation, immunohistochemical analysis of podocyte loss and AGE accumulations were performed. In 20-week-old db/db mice, severe hyperglycemia developed, and proteinuria was significantly increased. Diabetes induced markedly morphological alterations to the renal glomerular cells. AGE accumulations and podocyte loss were detected in renal glomeruli. LJE treatment significantly reduced proteinuria and AGE accumulations in diabetic mice. Moreover, the loss of nephrin, an important slit diaphragm component in the kidneys, was restored by LJE treatment. Our studies suggest that LJE might be beneficial for the treatment of diabetic nephropathy. The ability of LJE to attenuate proteinuria and podocyte dysfunction may be mediated by the inhibition of AGE accumulation in the context of diabetic nephropathy in db/db mice.

  5. INFLUENCE OF MICROBIOTA IN EXPERIMENTAL CUTANEOUS LEISHMANIASIS IN SWISS MICE

    Directory of Open Access Journals (Sweden)

    OLIVEIRA Marcia Rosa de

    1999-01-01

    Full Text Available Infection of Swiss/NIH mice with Leishmania major was compared with infection in isogenic resistant C57BL/6 and susceptible BALB/c mice. Swiss/NIH mice showed self-controlled lesions in the injected foot pad. The production of high levels of interferon-g (IFN-g and low levels of interleukin-4 (IL-4 by cells from these animals suggests that they mount a Th1-type immune response. The importance of the indigenous microbiota on the development of murine leishmaniasis was investigated by infecting germfree Swiss/NIH in the hind footpad with L. major and conventionalizing after 3 weeks of infection. Lesions from conventionalized Swiss/NIH mice were significantly larger than conventional mice. Histopathological analysis of lesions from conventionalized animals showed abscesses of variable shapes and sizes and high numbers of parasitized macrophages. In the lesions from conventional mice, besides the absence of abscess formation, parasites were rarely observed. On the other hand, cells from conventional and conventionalized mice produced similar Th1-type response characterized by high levels of IFN-g and low levels of IL-4. In this study, we demonstrated that Swiss/NIH mice are resistant to L. major infection and that the absence of the normal microbiota at the beginning of infection significantly influenced the lesion size and the inflammatory response at the site of infection.

  6. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings.

    Directory of Open Access Journals (Sweden)

    Xuefang Pan

    Full Text Available Vasoactive and mitogenic peptide, endothelin-1 (ET-1 plays an important role in physiology of the ocular tissues by regulating the growth of corneal epithelial cells and maintaining the hemodynamics of intraocular fluids. We have previously established that ET-1 can be degraded in vivo by two lysosomal/secreted serine carboxypeptidases, Cathepsin A (CathA and Serine Carboxypeptidase 1 (Scpep1 and that gene-targeted CathAS190A /Scpep1-/- mice, deficient in CathA and Scpep1 have a prolonged half-life of circulating ET-1 associated with systemic hypertension. In the current work we report that starting from 6 months of age, ~43% of CathAS190A /Scpep1-/- mice developed corneal clouding that eventually caused vision impairment. Histological evaluation of these mice demonstrated a selective fibrotic thickening and vacuolization of the corneas, resembling human hyperproliferative vesicular corneal stromal dystrophy and coexisting with a peculiar thickening of the skin epidermis. Moreover, we found that cultured corneal epithelial cells, skin fibroblasts and vascular smooth muscle cells derived from CathA/Scpep1-deficient mice, demonstrated a significantly higher proliferative response to treatment with exogenous ET-1, as compared with cells from wild type mice. We also detected increased activation level of ERK1/2 and AKT kinases involved in cell proliferation in the ET-1-treated cultured cells from CathA/Scpep1 deficient mice. Together, results from our experimental model suggest that; in normal tissues the tandem of serine carboxypeptidases, Scpep1 and CathA likely constitutes an important part of the physiological mechanism responsible for the balanced elimination of heightened levels of ET-1 that otherwise would accumulate in tissues and consequently contribute to development of the hyper-proliferative corneal dystrophy and abnormal skin thickening.

  7. Oral administration of Uncariae rhynchophylla inhibits the development of DNFB-induced atopic dermatitis-like skin lesions via IFN-gamma down-regulation in NC/Nga mice.

    Science.gov (United States)

    Kim, Dong-Young; Jung, Jung-A; Kim, Tae-Ho; Seo, Sang-Wan; Jung, Sung-Ki; Park, Cheung-Seog

    2009-04-21

    Uncariae rhynchophylla (UR) is an herb which has blood pressure lowering and anti-inflammatory effects and has been prescribed traditionally to treat stroke and vascular dementia. In the present study, we examined whether UR suppress Atopic dermatitis (AD)-like skin lesions in NC/Nga mice treated with 2, 4-dinitrofluorobenzene (DNFB) under SPF conditions. The effect of UR in DNFB- treated NC/Nga mice was determined by measuring the skin symptom severity, levels of serum IgE, and of the amounts of IL-4 and IFN-gamma secreted by activated T cells in draining lymph nodes. Oral administration of UR to DNFB-treated NC/Nga mice was found to inhibit ear thickness increases and the skin lesions induced by DNFB. IFN-gamma production by CD4+ T cells from the lymph nodes of DNFB-treated NC/Nga mice was significantly inhibited by UR treatment, although levels of IL-4 and total IgE in serum were not. UR may suppress the development of AD-like dermatitis in DNFB-treated NC/Nga mice by reducing IFN-gamma production.

  8. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  9. Control of Both Myeloid Cell Infiltration and Angiogenesis by CCR1 Promotes Liver Cancer Metastasis Development in Mice

    Directory of Open Access Journals (Sweden)

    Mathieu Paul Rodero

    2013-06-01

    Full Text Available Expression of the CC chemokine receptor 1 (CCR1 by tumor cells has been associated with protumoral activity; however, its role in nontumoral cells during tumor development remains elusive. Here, we investigated the role of CCR1 deletion on stromal and hematopoietic cells in a liver metastasis tumor model. Metastasis development was strongly impaired in CCR1-deficient mice compared to control mice and was associated with reduced liver monocyte infiltration. To decipher the role of myeloid cells, sublethally irradiated mice were reconstituted with CCR1-deficient bone marrow (BM and showed better survival rates than the control reconstituted mice. These results point toward the involvement of CCR1 myeloid cell infiltration in the promotion of tumor burden. In addition, survival rates were extended in CCR1-deficient mice receiving either control or CCR1-deficient BM, indicating that host CCR1 expression on nonhematopoietic cells also supports tumor growth. Finally, we found defective tumor-induced neoangiogenesis (in vitro and in vivo in CCR1-deficient mice. Overall, our results indicate that CCR1 expression by both hematopoietic and nonhematopoietic cells favors tumor aggressiveness. We propose CCR1 as a potential therapeutical target for liver metastasis therapy.

  10. Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice

    DEFF Research Database (Denmark)

    Salem, Mohammad; Mony, Jyothi T; Lobner, Morten

    2011-01-01

    . Furthermore, IRF7-deficient mice developed more severe disease. Flow cytometric analysis showed that the extent of leukocyte infiltration into the CNS was higher in IRF7-deficient mice with significantly higher number of infiltrating macrophages and T cells, and the distribution of infiltrates within......ABSTRACT: BACKGROUND: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) with unknown etiology. Interferon-beta (IFN-beta), a member of the type I IFN family, is used as a therapeutic for MS and the IFN signaling pathway is implicated in MS susceptibility...... of MS-like disease in mice. Methods The role of IRF7 in development of EAE was studied by immunizing IRF7-KO and C57BL/6 (WT) mice with myelin oligodendrocyte glycoprotein using a standard protocol for the induction of EAE. We measured leukocyte infiltration and localization in the CNS using flow...

  11. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans

    Directory of Open Access Journals (Sweden)

    Yubin Wang

    2016-06-01

    Full Text Available A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1, which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.

  12. Nos2 inactivation promotes the development of medulloblastoma in Ptch1(+/- mice by deregulation of Gap43-dependent granule cell precursor migration.

    Directory of Open Access Journals (Sweden)

    Daniel Haag

    Full Text Available Medulloblastoma is the most common malignant brain tumor in children. A subset of medulloblastoma originates from granule cell precursors (GCPs of the developing cerebellum and demonstrates aberrant hedgehog signaling, typically due to inactivating mutations in the receptor PTCH1, a pathomechanism recapitulated in Ptch1(+/- mice. As nitric oxide may regulate GCP proliferation and differentiation, we crossed Ptch1(+/- mice with mice lacking inducible nitric oxide synthase (Nos2 to investigate a possible influence on tumorigenesis. We observed a two-fold higher medulloblastoma rate in Ptch1(+/- Nos2(-/- mice compared to Ptch1(+/- Nos2(+/+ mice. To identify the molecular mechanisms underlying this finding, we performed gene expression profiling of medulloblastomas from both genotypes, as well as normal cerebellar tissue samples of different developmental stages and genotypes. Downregulation of hedgehog target genes was observed in postnatal cerebellum from Ptch1(+/+ Nos2(-/- mice but not from Ptch1(+/- Nos2(-/- mice. The most consistent effect of Nos2 deficiency was downregulation of growth-associated protein 43 (Gap43. Functional studies in neuronal progenitor cells demonstrated nitric oxide dependence of Gap43 expression and impaired migration upon Gap43 knock-down. Both effects were confirmed in situ by immunofluorescence analyses on tissue sections of the developing cerebellum. Finally, the number of proliferating GCPs at the cerebellar periphery was decreased in Ptch1(+/+ Nos2(-/- mice but increased in Ptch1(+/- Nos2(-/ (- mice relative to Ptch1(+/- Nos2(+/+ mice. Taken together, these results indicate that Nos2 deficiency promotes medulloblastoma development in Ptch1(+/- mice through retention of proliferating GCPs in the external granular layer due to reduced Gap43 expression. This study illustrates a new role of nitric oxide signaling in cerebellar development and demonstrates that the localization of pre-neoplastic cells during

  13. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  14. Potential Association of Lead Exposure During Early Development of Mice With Alteration of Hippocampus Nitric Oxide Levels and Learning Memory

    Institute of Scientific and Technical Information of China (English)

    LI SUN; ZHENG-YAN ZHAO; JIAN HU; XIE-LAI ZHOU

    2005-01-01

    Objective Chronic lead (Pb) exposure during development is known to produce learning deficits. Nitric oxide participates in the synaptic mechanisms involved in certain forms of learning and memory. This study was designed to clarify whether Pb-induced impairment in learning and memory was associated with the changes of nitric oxide levels in mice brains.Methods Sixty Balb/c mice aged 10 days were chosen. A model of lead exposure was established by drinking 0.025%, 0.05%,0.075% lead acetate, respectively for 8 weeks. The controls were orally given distilled water. The ability to learn and memorize was examined by open field test, T-water maze test. In parallel with the behavioral data, NO level of hippocampus tissue was detected by biochemical assay. Results Compared with control groups, (1) the weight of 0.075% group was significantly reduced (P<0.05); (2) The number of times in mice attaining the required standards in T-water maze test was lower in 0.075%group (P<0.01). No significant difference was found between experimental and control groups in open field test (P>0.05); (3)NO level of mouse hippocampus tissue was decreased in 0.075% group (P<0.01). Conclusions The findings suggest that decreased hippocampus NO level may contribute to the Pb-induced deficits in learning and memory processes.

  15. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  16. Mice lacking mPGES-1 are resistant to lithium-induced polyuria.

    Science.gov (United States)

    Jia, Zhanjun; Wang, Haiping; Yang, Tianxin

    2009-12-01

    Cyclooxygenase-2 activity is required for the development of lithium-induced polyuria. However, the involvement of a specific, terminal prostaglandin (PG) isomerase has not been evaluated. The present study was undertaken to assess lithium-induced polyuria in mice deficient in microsomal prostaglandin E synthase-1 (mPGES-1). A 2-wk administration of LiCl (4 mmol.kg(-1).day(-1) ip) in mPGES-1 +/+ mice led to a marked polyuria with hyposmotic urine. This was associated with elevated renal mPGES-1 protein expression and increased urine PGE(2) excretion. In contrast, mPGES-1 -/- mice were largely resistant to lithium-induced polyuria and a urine concentrating defect, accompanied by nearly complete blockade of high urine PGE(2) and cAMP output. Immunoblotting, immunohistochemistry, and quantitative (q) RT-PCR consistently detected a significant decrease in aquaporin-2 (AQP2) protein expression in both the renal cortex and medulla of lithium-treated +/+ mice. This decrease was significantly attenuated in the -/- mice. qRT-PCR detected similar patterns of changes in AQP2 mRNA in the medulla but not in the cortex. Similarly, the total protein abundance of the Na-K-2Cl cotransporter (NKCC2) in the medulla but not in the cortex of the +/+ mice was significantly reduced by lithium treatment. In contrast, the dowregulation of renal medullary NKCC2 expression was significantly attenuated in the -/- mice. We conclude that mPGES-1-derived PGE(2) mediates lithium-induced polyuria likely via inhibition of AQP2 and NKCC2 expression.

  17. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice.

    Science.gov (United States)

    Xu, Min; Han, Xiaoning; Liu, Rui; Li, Yanjun; Qi, Cui; Yang, Zhongzhou; Zhao, Chunjie; Gao, Jun

    2018-02-06

    3-Phosphoinositide-dependent protein kinase-1 (PDK1) is crucial for the development of the dentate gyrus (DG), the first gateway receiving afferent inputs from the entorhinal cortex. However, the role of PDK1 in DG development is unclear. In the present study, by crossing Pdk1fl/fl mice with the Emx1-cre line, we identified that the ablation of PDK1 disrupted the development of DG via decreasing the proliferation, and increasing the differentiation of dentate neural progenitor cells, downregulating AKT activity and upregulating GSK3β signaling. Moreover, PDK1 deletion disrupted the distribution of Reelin+ cells and decreased the level of Reelin mRNA which may contribute to the defective migration of progenitor cells and the disrupted radial glial scaffolds. Furthermore, the inhibition of GSK3β activity partially restored the decreased proliferation of primary neural stem cells in vitro. Taken together, our data indicated that the ablation of PDK1 affected the proliferation and differentiation of dentate neural progenitor cells in mice. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  19. Patterns of Glycoconjugate Distribution during Molar Tooth Germ Development in Mice

    Directory of Open Access Journals (Sweden)

    AR. Varasteh

    2007-09-01

    Full Text Available Objective: The aim of the present study was to evaluate the structure and distribution of Glycoconjugates during molar tooth germ development in mice.Materials and Methods: Sixteen tooth germs were obtained from BALB/c mice embryos 15 to 18 days post-gestation and fixed in 10% formalin. After routine tissue processing, 5μm sections were cut and stained with BSA1-B4 and PNA using the lectin histochemical method. All slides were evaluated by light microscopy.Results: Both lectins showed positive reaction in the tooth germ but with spatiotemporal differences. During bell stage, the reaction was strong with BSA1-B4 but moderate with PNA. Strong PNA uptake was observed in the odontoblastic and ameloblastic nuclei alongwith the apical cytoplasm of the ameloblasts.Conclusion: Although the lectins that were used in the present study recognize the same terminal sugar residue, they reacted with different disaccharide sequences with various penaltomer sugars. Therefore it may be assumed that the pattern of affinity for different parts of the developing tooth germ such as ameloblasts and odontoblasts is different in various lectins.

  20. Analysis of Pathogenesis of Autoimmune Insulitis in NOD Mice: Adoptive Transfer Experiments of Insulitis in ILI and NOD Nude Mice

    OpenAIRE

    Nakamura, Moritaka; Nishimura, Masahiko; Koide, Yukio; Takato, O.Yoshida

    2003-01-01

    In an effort to study the pathophysiological events in the development of insulitis in NOD mice, we have developed ILI- and NOD-nu/nu mice. ILI mice are a nondiabetic inbred strain but are derived from the same Jcl:ICR mouse as NOD mice and share the same H-2 allotype with NOD mice. Splenocytes and CD4+ cells from diabetic NOD mice appeared to transfer insulitis to ILI-nu/nu mice, suggesting that ILI mice already express autoantigen(s) responsible for insulitis. But reciprocal thymic grafts f...

  1. Human CD4 restores normal T cell development and function in mice deficient in murine CD4

    OpenAIRE

    1994-01-01

    The ability of a human coreceptor to function in mice was investigated by generating human CD4 (hCD4)-expressing transgenic mice on a mouse CD4-deficient (mCD4-/-) background. From developing thymocyte to matured T lymphocyte functions, hCD4 was shown to be physiologically active. By examining the expansion and deletion of specific V beta T cell families in mutated mice with and without hCD4, it was found that hCD4 can participate in positive and negative selection. Mature hCD4 single positiv...

  2. Adam8 Limits the Development of Allergic Airway Inflammation in Mice

    Science.gov (United States)

    Knolle, Martin D.; Nakajima, Takahiro; Hergrueter, Anja; Gupta, Kushagra; Polverino, Francesca; Craig, Vanessa J.; Fyfe, Susanne E.; Zahid, Muhammad; Permaul, Perdita; Cernadas, Manuela; Montano, Gilbert; Tesfaigzi, Yohannes; Sholl, Lynette; Kobzik, Lester; Israel, Elliot; Owen, Caroline A.

    2013-01-01

    To determine whether a disintegrin and a metalloproteinase-8 (Adam8) regulates allergic airway inflammation (AAI) and airway hyper-responsiveness (AHR), we compared AAI and AHR in wild type (WT) versus Adam8−/− mice in different genetic backgrounds sensitized and challenged with ovalbumin (OVA) or house dust mite protein extract (HDM). OVA- and HDM-treated Adam8−/− mice had higher lung leukocyte counts, more airway mucus metaplasia, greater lung levels of some TH2 cytokines, and higher methacholine-induced increases in central airway resistance than allergen-treated WT mice. Studies of OVA-treated Adam8 bone marrow chimeric mice confirmed that leukocyte-derived Adam8 predominantly mediated Adam8’s anti-inflammatory activities in murine airways. Airway eosinophils and macrophages both expressed Adam8 in WT mice with AAI. Adam8 limited AAI and AHR in mice by reducing leukocyte survival because: 1) Adam8−/− mice with AAI had fewer apoptotic eosinophils and macrophages in their airways than WT mice with AAI; and 2) Adam8−/− macrophages and eosinophils had reduced rates of apoptosis compared with WT leukocytes when the intrinsic (but not the extrinsic) apoptosis pathway was triggered in the cells in vitro. ADAM8 was robustly expressed by airway granulocytes in lung sections from human asthma patients but, surprisingly, airway macrophages had less ADAM8 staining than airway eosinophils. Thus, ADAM8 has anti-inflammatory activities during AAI in mice by activating the intrinsic apoptosis pathway in myeloid leukocytes. Strategies that increase ADAM8 levels in myeloid leukocytes may have therapeutic efficacy in asthma. PMID:23670189

  3. Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice.

    Science.gov (United States)

    Liu, Jing-yu; Feng, Cui-ping; Li, Xing; Chang, Ming-chang; Meng, Jun-long; Xu, Li-jing

    2016-05-01

    To evaluate the immune activation and reactive oxygen species scavenging activity of Cordyceps militaris polysaccharides (CMP) in vivo, 24 male and 24 female Kunming mice were randomly divided into four groups. The mice in the four experimental groups were administered 0 (normal control), 50, 100, or 200mg/kg/d body weight CMP via gavage. After 30 days, the viscera index, leukocyte count, differential leukocyte count, immunoglobulin (IgG) levels, and biochemical parameters were measured. The effect of CMP on the expression of tumor necrosis (TNF)-α, interferon (IFN)-γ, and interleukin (IL)-1β in the spleens of experimental mice was investigated by real-time polymerase chain reaction. The results showed that the administration of CMP improved the immune function in mice, significantly increased the spleen and thymus indices, the spleen lymphocyte activity, the total quantity of white blood cells, and IgG function in mice serum. CMP exhibited significant antioxidative activity in mice, and decreased malondialdehyde levels in vivo. CMP upregulated the expression of TNF-α, IFN-γ, and IL-1β mRNA in high-dose groups compared to that observed for the control mice. We can thus conclude that CMP effectively improved the immune function through protection against oxidative stress. CMP thus shows potential for development as drugs and health supplements. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Stromal Activation Associated with Development of Prostate Cancer in Prostate-Targeted Fibroblast Growth Factor 8b Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Teresa D. Elo

    2010-11-01

    Full Text Available Expression of fibroblast growth factor 8 (FGF-8 is commonly increased in prostate cancer. Experimental studies have provided evidence that it plays a role in prostate tumorigenesis and tumor progression. To study how increased FGF-8 affects the prostate, we generated and analyzed transgenic (TG mice expressing FGF-8b under the probasin promoter that targets expression to prostate epithelium. Prostates of the TG mice showed an increased size and changes in stromal and epithelialmorphology progressing fromatypia and prostatic intraepithelial neoplasia (mouse PIN, mPIN lesions to tumors with highly variable phenotype bearing features of adenocarcinoma, carcinosarcoma, and sarcoma. The development of mPIN lesions was preceded by formation of activated stroma containing increased proportion of fibroblastic cells, rich vasculature, and inflammation. The association between advancing stromal and epithelial alterations was statistically significant. Microarray analysis and validation with quantitative polymerase chain reaction revealed that expression of osteopontin and connective tissue growth factor was markedly upregulated in TG mouse prostates compared with wild type prostates. Androgen receptor staining was decreased in transformed epithelium and in hypercellular stroma but strongly increased in the sarcoma-like lesions. In conclusion, our data demonstrate that disruption of FGF signaling pathways by increased epithelial production of FGF-8b leads to strongly activated and atypical stroma, which precedes development of mPIN lesions and prostate cancer with mixed features of adenocarcinoma and sarcoma in the prostates of TG mice. The results suggest that increased FGF-8 in human prostate may also contribute to prostate tumorigenesis by stromal activation.

  5. Transgenic overexpression of p23 induces spontaneous hydronephrosis in mice

    Science.gov (United States)

    Lee, Jaehoon; Kim, Hye Jin; Moon, Jung Ah; Sung, Young Hoon; Baek, In-Jeoung; Roh, Jae-il; Ha, Na Young; Kim, Seung-Yeon; Bahk, Young Yil; Lee, Jong Eun; Yoo, Tae Hyun; Lee, Han-Woong

    2011-01-01

    p23 is a cochaperone of heat shock protein 90 and also interacts functionally with numerous steroid receptors and kinases. However, the in vivo roles of p23 remain unclear. To explore its in vivo function, we generated the transgenic (TG) mice ubiquitously overexpressing p23. The p23 TG mice spontaneously developed kidney abnormalities closely resembling human hydronephrosis. Consistently, kidney functions deteriorate significantly in the p23 TG mice compared to their wild-type (WT) littermates. Furthermore, the expression of target genes for aryl hydrocarbon receptor (AhR), such as cytochrome P450, family 1, subfamily A, polypeptide 1 (Cyp1A1) and cytochrome P450, family 1, subfamily B, polypeptide 1 (Cyp1B1), were induced in the kidneys of the p23 TG mice. These results indicate that the overexpression of p23 contributes to the development of hydronephrosis through the upregulation of the AhR pathway in vivo. PMID:21323770

  6. Remodelling at the calyx of Held-MNTB synapse in mice developing with unilateral conductive hearing loss.

    Science.gov (United States)

    Grande, Giovanbattista; Negandhi, Jaina; Harrison, Robert V; Wang, Lu-Yang

    2014-04-01

    Structure and function of central synapses are profoundly influenced by experience during developmental sensitive periods. Sensory synapses, which are the indispensable interface for the developing brain to interact with its environment, are particularly plastic. In the auditory system, moderate forms of unilateral hearing loss during development are prevalent but the pre- and postsynaptic modifications that occur when hearing symmetry is perturbed are not well understood. We investigated this issue by performing experiments at the large calyx of Held synapse. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are innervated by calyx of Held terminals that originate from the axons of globular bushy cells located in the contralateral ventral cochlear nucleus. We compared populations of synapses in the same animal that were either sound deprived (SD) or sound experienced (SE) after unilateral conductive hearing loss (CHL). Middle ear ossicles were removed 1 week prior to hearing onset (approx. postnatal day (P) 12) and morphological and electrophysiological approaches were applied to auditory brainstem slices taken from these mice at P17-19. Calyces in the SD and SE MNTB acquired their mature digitated morphology but these were structurally more complex than those in normal hearing mice. This was accompanied by bilateral decreases in initial EPSC amplitude and synaptic conductance despite the CHL being unilateral. During high-frequency stimulation, some SD synapses displayed short-term depression whereas others displayed short-term facilitation followed by slow depression similar to the heterogeneities observed in normal hearing mice. However SE synapses predominantly displayed short-term facilitation followed by slow depression which could be explained in part by the decrease in release probability. Furthermore, the excitability of principal cells in the SD MNTB had increased significantly. Despite these unilateral changes in short-term plasticity

  7. T(2)-weighted microMRI and evoked potential of the visual system measurements during the development of hypomyelinated transgenic mice.

    Science.gov (United States)

    Martin, Melanie; Reyes, Samuel D; Hiltner, Timothy D; Givogri, M Irene; Tyszka, J Michael; Fisher, Robin; Campagnoni, Anthony T; Fraser, Scott E; Jacobs, Russell E; Readhead, Carol

    2007-02-01

    Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 x 117 x 70 microm) magnetic resonance (microMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli-mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted microMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The microMRI data indicated clear, global hypomyelination during the period of peak myelination (21-42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These microMRI data correlated well with [Campagnoni AT (1995) "Molecular biology of myelination". In: Ransom B, Kettenmann H (eds) Neuroglia--a Treatise. Oxford University Press, London, pp 555-570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41-89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197-224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

  8. Generation of Human Immunosuppressive Myeloid Cell Populations in Human Interleukin-6 Transgenic NOG Mice

    Directory of Open Access Journals (Sweden)

    Asami Hanazawa

    2018-02-01

    Full Text Available The tumor microenvironment contains unique immune cells, termed myeloid-derived suppressor cells (MDSCs, and tumor-associated macrophages (TAMs that suppress host anti-tumor immunity and promote tumor angiogenesis and metastasis. Although these cells are considered a key target of cancer immune therapy, in vivo animal models allowing differentiation of human immunosuppressive myeloid cells have yet to be established, hampering the development of novel cancer therapies. In this study, we established a novel humanized transgenic (Tg mouse strain, human interleukin (hIL-6-expressing NOG mice (NOG-hIL-6 transgenic mice. After transplantation of human hematopoietic stem cells (HSCs, the HSC-transplanted NOG-hIL-6 Tg mice (HSC-NOG-hIL-6 Tg mice showed enhanced human monocyte/macrophage differentiation. A significant number of human monocytes were negative for HLA-DR expression and resembled immature myeloid cells in the spleen and peripheral blood from HSC-NOG-hIL-6 Tg mice, but not from HSC-NOG non-Tg mice. Engraftment of HSC4 cells, a human head and neck squamous cell carcinoma-derived cell line producing various factors including IL-6, IL-1β, macrophage colony-stimulating factor (M-CSF, and vascular endothelial growth factor (VEGF, into HSC-NOG-hIL-6 Tg mice induced a significant number of TAM-like cells, but few were induced in HSC-NOG non-Tg mice. The tumor-infiltrating macrophages in HSC-NOG-hIL-6 Tg mice expressed a high level of CD163, a marker of immunoregulatory myeloid cells, and produced immunosuppressive molecules such as arginase-1 (Arg-1, IL-10, and VEGF. Such cells from HSC-NOG-hIL-6 Tg mice, but not HSC-NOG non-Tg mice, suppressed human T cell proliferation in response to antigen stimulation in in vitro cultures. These results suggest that functional human TAMs can be developed in NOG-hIL-6 Tg mice. This mouse model will contribute to the development of novel cancer immune therapies targeting immunoregulatory

  9. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzak, Kazimierz S. [Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Diwan, Bhalchandra A. [Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Kaczmarek, Monika Z. [Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Logsdon, Daniel L. [Laboratory Animal Sciences Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Fivash, Mathew J. [Data Management Services, National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Salnikow, Konstantin, E-mail: salnikok@mail.nih.gov [Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702 (United States)

    2011-11-15

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black

  10. Effects of ascorbic acid on carcinogenicity and acute toxicity of nickel subsulfide, and on tumor transplants growth in gulonolactone oxidase knock-out mice and wild-type C57BL mice

    International Nuclear Information System (INIS)

    Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.; Logsdon, Daniel L.; Fivash, Mathew J.; Salnikow, Konstantin

    2011-01-01

    The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- -lactone oxidase gene knock-out mice (Gulo−/− mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni 3 S 2 ), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo−/− and WT mice and the growth of these tumors was measured for up to 3 months. The two strains of mice differed significantly with regard to (1) Ni 3 S 2 carcinogenesis: Gulo−/− mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo−/− mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni 3 S 2 . Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni 3 S 2 in Gulo−/− mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo−/− mice more susceptible to Ni 3 S 2 carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni 3 S 2 and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: ► Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. ► Gulo−/− mice unable to synthesize ascorbate were used in this study. ► The reduction in ascorbate levels in Gulo−/− mice increased acute toxicity induced by Ni 3 S 2 .

  11. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  12. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  13. MicroRNA-155 knockout mice are susceptible to Mycobacterium tuberculosis infection.

    Science.gov (United States)

    Iwai, Hiroki; Funatogawa, Keiji; Matsumura, Kazunori; Kato-Miyazawa, Masako; Kirikae, Fumiko; Kiga, Kotaro; Sasakawa, Chihiro; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2015-05-01

    MicroRNAs (miRNAs) are short, conserved, non-coding RNA molecules that repress translation, followed by the decay of miRNA-targeted mRNAs that encode molecules involved in cell differentiation, development, immunity and apoptosis. At least six miRNAs, including microRNA-155 (miR-155), were up-regulated when born marrow-derived macrophages from C57BL/6 mice were infected with Mycobacterium tuberculosis Erdman. C57BL/6 mice intravenously infected with Erdman showed up-regulation of miR-155 in livers and lungs. Following infection, miR-155-deficient C57BL/6 mice died significantly earlier and had significantly higher numbers of CFU in lungs than wild-type mice. Moreover, fewer CD4(+) T cells, but higher numbers of monocytes and neutrophils, were present in the lungs of Erdman-infected miR-155 knockout (miR-155(-/-)) than of wild-type mice. These findings indicated that miR-155 plays a critical role in immune responses to M. tuberculosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Development of a physiologically based pharmacokinetic model for bisphenol A in pregnant mice

    International Nuclear Information System (INIS)

    Kawamoto, Yuko; Matsuyama, Wakoto; Wada, Masahiro; Hishikawa, Junko; Chan, Melissa Pui Ling; Nakayama, Aki; Morisawa, Shinsuke

    2007-01-01

    Bisphenol A (BPA) is a weakly estrogenic monomer used to produce polymers for food contact and other applications, so there is potential for oral exposure of humans to trace amounts via ingestion. To date, no physiologically based pharmacokinetic (PBPK) model has been located for BPA in pregnant mice with or without fetuses. An estimate by a mathematical model is essential since information on humans is difficult to obtain experimentally. The PBPK model was constructed based on the pharmacokinetic data of our experiment following single oral administration of BPA to pregnant mice. The risk assessment of bisphenol A (BPA) on the development of human offspring is an important issue. There have been limited data on the exposure level of human fetuses to BPA (e.g. BPA concentration in cord blood) and no information is available on the pharmacokinetics of BPA in humans with or without fetuses. In the present study, we developed a physiologically based pharmacokinetic (PBPK) model describing the pharmacokinetics of BPA in a pregnant mouse with the prospect of future extrapolation to humans. The PBPK model was constructed based on the pharmacokinetic data of an experiment we executed on pregnant mice following single oral administration of BPA. The model could describe the rapid transfer of BPA through the placenta to the fetus and the slow disappearance from fetuses. The simulated time courses after three-time repeated oral administrations of BPA by the constructed model fitted well with the experimental data, and the simulation for the 10 times lower dose was also consistent with the experiment. This suggested that the PBPK model for BPA in pregnant mice was successfully verified and is highly promising for extrapolation to humans who are expected to be exposed more chronically to lower doses

  15. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.

    Science.gov (United States)

    Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim

    2014-01-01

    Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.

  16. Deregulation of mTOR signaling is involved in thymic lymphoma development in Atm-/- mice

    International Nuclear Information System (INIS)

    Kuang, Xianghong; Shen, Jianjun; Wong, Paul K.Y.; Yan, Mingshan

    2009-01-01

    Abnormal thymocyte development with thymic lymphomagenesis inevitably occurs in Atm-/- mice, indicating that ATM plays a pivotal role in regulating postnatal thymocyte development and preventing thymic lymphomagenesis. The mechanism for ATM controls these processes is unclear. We have shown previously that c-Myc, an oncoprotein regulated by the mammalian target of rapamycin (mTOR), is overexpressed in Atm-/- thymocytes. Here, we show that inhibition of mTOR signaling with its specific inhibitor, rapamycin, suppresses normal thymocyte DNA synthesis by downregulating 4EBP1, but not S6K, and that 4EBP1 phosphorylation and cyclin D1 expression are coordinately increased in Atm-/- thymocytes. Administration of rapamycin to Atm-/- mice attenuates elevated phospho-4EBP1, c-Myc and cyclin D1 in their thymocytes, and delays thymic lymphoma development. These results indicate that mTOR downstream effector 4EBP1 is essential for normal thymocyte proliferation, but deregulation of 4EBP1 in Atm deficiency is a major factor driving thymic lymphomagenesis in the animals.

  17. Mice lacking major brain gangliosides develop parkinsonism.

    Science.gov (United States)

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Amin, Ruchi; Ledeen, Robert W

    2011-09-01

    Parkinson's disease (PD) is the second most prevalent late-onset neurodegenerative disorder that affects nearly 1% of the global population aged 65 and older. Whereas palliative treatments are in use, the goal of blocking progression of motor and cognitive disability remains unfulfilled. A better understanding of the basic pathophysiological mechanisms underlying PD would help to advance that goal. The present study provides evidence that brain ganglioside abnormality, in particular GM1, may be involved. This is based on use of the genetically altered mice with disrupted gene Galgt1 for GM2/GD2 synthase which depletes GM2/GD2 and all the gangliotetraose gangliosides that constitute the major molecular species of brain. These knockout mice show overt motor disability on aging and clear indications of motor impairment with appropriate testing at an earlier age. This disability was rectified by L-dopa administration. These mice show other characteristic symptoms of PD, including depletion of striatal dopamine (DA), loss of DA neurons of the substantia nigra pars compacta, and aggregation of alpha synuclein. These manifestations of parkinsonism were largely attenuated by administration of LIGA-20, a membrane permeable analog of GM1 that penetrates the blood brain barrier and enters living neurons. These results suggest that perturbation of intracellular mechanisms mediated by intracellular GM1 may be a contributing factor to PD.

  18. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  19. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  20. Selenium inhibits UV-light-induced skin carcinogenesis in hairless mice

    International Nuclear Information System (INIS)

    Overvad, Kim; Thorling, E.B.; Bjerring, Peter; Ebbesen, Peter

    1985-01-01

    Female hairless inbred hr/hr mice were exposed to UV-B irradiation from Philips TL 40W/13 fluorescent tubes. Fractionated irradiation, given as single daily doses 5 days a week, was gradually increased from 0.04 to 0.4 J/cm 2 over 2 weeks. Irradiation at 0.4 J/cm 2 was continued for 20 weeks. Selenium supplementation given as sodium selenite in the drinking water at 2, 4 and 8 mg/l began 3 weeks before UV-irradiation and continued thereafter. Development of skin tumors was followed by weekly examinations. Statistical analyses revealed significant dose-dependent selenium-mediated protection against UV-light-induced skin cancer. Leukemia developed in 5 of 150 UV-irradiated mice as opposed to none in a group of 60 unirradiated mice. (author)

  1. Pulmonary hypertension and vascular remodeling in mice exposed to crystalline silica.

    Science.gov (United States)

    Zelko, Igor N; Zhu, Jianxin; Ritzenthaler, Jeffrey D; Roman, Jesse

    2016-11-28

    Occupational and environmental exposure to crystalline silica may lead to the development of silicosis, which is characterized by inflammation and progressive fibrosis. A substantial number of patients diagnosed with silicosis develop pulmonary hypertension. Pulmonary hypertension associated with silicosis and with related restrictive lung diseases significantly reduces survival in affected subjects. An animal model of silicosis has been described previously however, the magnitude of vascular remodeling and hemodynamic effects of inhaled silica are largely unknown. Considering the importance of such information, this study investigated whether mice exposed to silica develop pulmonary hypertension and vascular remodeling. C57BL6 mice were intratracheally injected with either saline or crystalline silica at doses 0.2 g/kg, 0.3 g/kg and 0.4 g/kg and then studied at day 28 post-exposure. Pulmonary hypertension was characterized by changes in right ventricular systolic pressure and lung histopathology. Mice exposed to saline showed normal lung histology and hemodynamic parameters while mice exposed to silica showed increased right ventricular systolic pressure and marked lung pathology characterized by a granulomatous inflammatory reaction and increased collagen deposition. Silica-exposed mice also showed signs of vascular remodeling with pulmonary artery muscularization, vascular occlusion, and medial thickening. The expression of pro-inflammatory genes such as TNF-α and MCP-1 was significantly upregulated as well as the expression of the pro-remodeling genes collagen type I, fibronectin and the metalloproteinases MMP-2 and TIMP-1. On the other hand, the expression of several vasculature specific genes involved in the regulation of endothelial function was significantly attenuated. We characterized a new animal model of pulmonary hypertension secondary to pulmonary fibrosis induced by crystalline silica. Our data suggest that silica promotes the damage of the

  2. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone

    DEFF Research Database (Denmark)

    Asa, S L; Kovacs, K; Stefaneanu, L

    1990-01-01

    It has been shown that mice transgenic for human growth hormone-releasing hormone (GRH) develop hyperplasia of pituitary somatotrophs and mammosomatotrophs, cells capable of producing both growth hormone and prolactin, by 8 months of age. We now report for the first time that old GRH-transgenic...

  3. SMOC1 is essential for ocular and limb development in humans and mice.

    Science.gov (United States)

    Okada, Ippei; Hamanoue, Haruka; Terada, Koji; Tohma, Takaya; Megarbane, Andre; Chouery, Eliane; Abou-Ghoch, Joelle; Jalkh, Nadine; Cogulu, Ozgur; Ozkinay, Ferda; Horie, Kyoji; Takeda, Junji; Furuichi, Tatsuya; Ikegawa, Shiro; Nishiyama, Kiyomi; Miyatake, Satoko; Nishimura, Akira; Mizuguchi, Takeshi; Niikawa, Norio; Hirahara, Fumiki; Kaname, Tadashi; Yoshiura, Koh-Ichiro; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Furukawa, Takahisa; Matsumoto, Naomichi; Saitsu, Hirotomo

    2011-01-07

    Microphthalmia with limb anomalies (MLA) is a rare autosomal-recessive disorder, presenting with anophthalmia or microphthalmia and hand and/or foot malformation. We mapped the MLA locus to 14q24 and successfully identified three homozygous (one nonsense and two splice site) mutations in the SPARC (secreted protein acidic and rich in cysteine)-related modular calcium binding 1 (SMOC1) in three families. Smoc1 is expressed in the developing optic stalk, ventral optic cup, and limbs of mouse embryos. Smoc1 null mice recapitulated MLA phenotypes, including aplasia or hypoplasia of optic nerves, hypoplastic fibula and bowed tibia, and syndactyly in limbs. A thinned and irregular ganglion cell layer and atrophy of the anteroventral part of the retina were also observed. Soft tissue syndactyly, resulting from inhibited apoptosis, was related to disturbed expression of genes involved in BMP signaling in the interdigital mesenchyme. Our findings indicate that SMOC1/Smoc1 is essential for ocular and limb development in both humans and mice.

  4. Cytotoxic assessment of silver nanoparticles in embryonic development and kidney tissue in pregnant mice

    Directory of Open Access Journals (Sweden)

    Bagher seyedalipour

    2015-10-01

    Full Text Available Background and Aim: Regarding the widespread use of silver nanoparticles in medecine and lack of a detailed study of toxicity effects of these particles on fetus, this study was carried out to investigate histopathological changes of the kidneys and also embryonic development following exposure to silver nanoparticles. Materials and Methods: In this experimental study, thirty five female NMRI mice were randomly divided into five equal groups i.e. one control group and four experimental groups. The experimental groups intraperitoneally (IP received silver nanoparticles at concentrations of 50, 100, 200 and 400 mg/ kg . .every other day. On the 17th day  of pregnancy, the mice were dissected and  their kidneys and embryos tissues were separated and stained with hematoxylin and eosin for histopathological examinations. .Finally, the obtained data was fed into SPSS software (V:16 using statistical tests including Kolmogrof-Smearnof, one-way variance analysis, Dante, Mann-Whitney and Kruskal-Wallis and P<0.05 was taken as the significant level. Results: Histopathological assessment of kidney tissue following IP administration of silver nanoparticle indicated pathological changes including congestion, necrosis, inflammatory cell infiltration, vacuolar degeneration compared to the control group. Our findings showed that silver nanoparticles during the gestation period affects fetal organogenesis, evolution of neural structure, liver lobulation and fetal growth retardation. Mean number of somites in groups receiving doses of 200 and 400 mg kg, . significantly reduced compared to the control group (P<0.05. Conclusion: The obtained results suggest that  passing of silver nanoparticles through placenta is possible and damage caused by the particles  could lead to the deformity or developmental retardation of the fetus.

  5. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  6. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  7. Purified blueberry anthocyanins and blueberry juice alter development of obesity in mice fed an obesogenic high-fat diet.

    Science.gov (United States)

    Prior, Ronald L; E Wilkes, Samuel; R Rogers, Theodore; Khanal, Ramesh C; Wu, Xianli; Howard, Luke R

    2010-04-14

    Male C57BL/6J mice (25 days of age) were fed either a low-fat diet (10% kcal from fat) (LF) or a high-fat diet (45% kcal from fat) (HF45) for a period of 72 days. Blueberry juice or purified blueberry anthocyanins (0.2 or 1.0 mg/mL) in the drinking water were included in LF or HF45 treatments. Sucrose was added to the drinking water of one treatment to test if the sugars in blueberry juice would affect development of obesity. Total body weights (g) and body fat (%) were higher and body lean tissue (%) was lower in the HF45 fed mice compared to the LF fed mice after 72 days, but in mice fed HF45 diet plus blueberry juice or blueberry anthocyanins (0.2 mg/mL), body fat (%) was not different from those mice fed the LF diet. Anthocyanins (ACNs) decreased retroperitoneal and epididymal adipose tissue weights. Fasting serum glucose concentrations were higher in mice fed the HF45 diet. However, it was reduced to LF levels in mice fed the HF45 diet plus 0.2 mg of ACNs/mL in the drinking water, but not with blueberry juice. beta cell function (HOMA-BCF) score was lowered with HF45 feeding but returned to normal levels in mice fed the HF45 diet plus purified ACNs (0.2 mg/mL). Serum leptin was elevated in mice fed HF45 diet, and feeding either blueberry juice or purified ACNs (0.2 mg/mL) decreased serum leptin levels relative to HF45 control. Sucrose in drinking water, when consumption was restricted to the volume of juice consumed, produced lower serum leptin and insulin levels, leptin/fat, and retroperitoneal and total fat (% BW). Blueberry juice was not as effective as the low dose of anthocyanins in the drinking water in preventing obesity. Additional studies are needed to determine factors responsible for the differing responses of blueberry juice and whole blueberry in preventing the development of obesity.

  8. Changes in hippocampal synaptic functions and protein expression in monosodium glutamate-treated obese mice during development of glucose intolerance.

    Science.gov (United States)

    Sasaki-Hamada, Sachie; Hojo, Yuki; Koyama, Hajime; Otsuka, Hayuma; Oka, Jun-Ichiro

    2015-05-01

    Glucose is the sole neural fuel for the brain and is essential for cognitive function. Abnormalities in glucose tolerance may be associated with impairments in cognitive function. Experimental obese model mice can be generated by an intraperitoneal injection of monosodium glutamate (MSG; 2 mg/g) once a day for 5 days from 1 day after birth. MSG-treated mice have been shown to develop glucose intolerance and exhibit chronic neuroendocrine dysfunction associated with marked cognitive malfunctions at 28-29  weeks old. Although hippocampal synaptic plasticity is impaired in MSG-treated mice, changes in synaptic transmission remain unknown. Here, we investigated whether glucose intolerance influenced cognitive function, synaptic properties and protein expression in the hippocampus. We demonstrated that MSG-treated mice developed glucose intolerance due to an impairment in the effectiveness of insulin actions, and showed cognitive impairments in the Y-maze test. Moreover, long-term potentiation (LTP) at Schaffer collateral-CA1 pyramidal synapses in hippocampal slices was impaired, and the relationship between the slope of extracellular field excitatory postsynaptic potential and stimulus intensity of synaptic transmission was weaker in MSG-treated mice. The protein levels of vesicular glutamate transporter 1 and GluA1 glutamate receptor subunits decreased in the CA1 region of MSG-treated mice. These results suggest that deficits in glutamatergic presynapses as well as postsynapses lead to impaired synaptic plasticity in MSG-treated mice during the development of glucose intolerance, though it remains unknown whether impaired LTP is due to altered inhibitory transmission. It may be important to examine changes in glucose tolerance in order to prevent cognitive malfunctions associated with diabetes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  10. Embryonic effects of radiation on ICR mice depending developmental stages

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yeun Hwa; Kusama, Tomoko; Kai, Michiaki [University of Tokyo, Tokyo (Japan)

    1995-06-15

    The ICR pregnant mice were irradiated at 1.5Gy in every 6 hours in the period of organogenesis in order to classify the stage specificity of the embryonic effects of radiation and the stage of development differentiation of the primordium of each major organ. Intrauterine death, fetal body weight and external malformation in live fetuses were observed on day 18 of gestation. There was no statistically significant difference in the intrauterine mortality at any stage organogenesis. The fetal body weight of the mice irradiated in the intermediate stage of organogenesis showed significantly lower. There were specific highly sensitive stages in the incidences of each external malformation, that is exencephalia, open eyelid, cleft palate, anomalies of extremities and anomalies of the tail. At these stage, the primordial of the major organs are established in ICR mice.

  11. Embryonic effects of radiation on ICR mice depending developmental stages

    International Nuclear Information System (INIS)

    Gu, Yeun Hwa; Kusama, Tomoko; Kai, Michiaki

    1995-01-01

    The ICR pregnant mice were irradiated at 1.5Gy in every 6 hours in the period of organogenesis in order to classify the stage specificity of the embryonic effects of radiation and the stage of development differentiation of the primordium of each major organ. Intrauterine death, fetal body weight and external malformation in live fetuses were observed on day 18 of gestation. There was no statistically significant difference in the intrauterine mortality at any stage organogenesis. The fetal body weight of the mice irradiated in the intermediate stage of organogenesis showed significantly lower. There were specific highly sensitive stages in the incidences of each external malformation, that is exencephalia, open eyelid, cleft palate, anomalies of extremities and anomalies of the tail. At these stage, the primordial of the major organs are established in ICR mice

  12. Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice.

    Science.gov (United States)

    Waasdorp, Maaike; Duitman, JanWillem; Florquin, Sandrine; Spek, C Arnold

    2018-04-24

    Twenty years after the onset of diabetes, up to 40% of patients develop diabetic nephropathy. Protease-activated receptor-1 (PAR-1) has recently been shown to aggravate the development of experimental diabetic nephropathy. PAR-1 deficient mice develop less albuminuria and glomerular lesions and PAR-1 stimulation induces proliferation and fibronectin production in mesangial cells in vitro . Vorapaxar is a clinically available PAR-1 inhibitor which is currently used for secondary prevention of ischemic events. The aim of this study was to investigate in a preclinical setting whether vorapaxar treatment may be a novel strategy to reduce diabetes-induced kidney damage. While control treated diabetic mice developed significant albuminuria, mesangial expansion and glomerular fibronectin deposition, diabetic mice on vorapaxar treatment did not show any signs of kidney damage despite having similar levels of hyperglycemia. These data show that PAR-1 inhibition by vorapaxar prevents the development of diabetic nephropathy in this preclinical animal model for type I diabetes and pinpoint PAR-1 as a novel therapeutic target to pursue in the setting of diabetic nephropathy. 22 C57Bl/6 mice were made diabetic using multiple low-dose streptozotocin injections (50 mg/kg) and 22 littermates served as non-diabetic controls. Four weeks after the induction of diabetes, 11 mice of each group were assigned to control or vorapaxar treatment. Mice were sacrificed after 20 weeks of treatment and kidney damage was evaluated.

  13. CORRELATION BETWEEN GUT MICROBIOTA AND DEVELOPMENT OF GLUCOSE INTOLERANCE IN B6.V-Lepob/J LEPTIN DEFICIENT MICE

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Hansen, Camilla Hartmann Friis; Nielsen, Dennis Sandris

    , a large proportion of laboratory animals are used to study such diseases, but inter-individual variation in these animal models leads to the need for larger group sizes to reach statistical significance and adequate power. By standardizing the microbial and immunological status of laboratory animals we...... may therefore be able to produce animals with a more standardized response and less variation. This would lead to more precise results and a reduced number of animals needed for statistical significance. The aim of the present study was to investigate if the composition of the GM of B6.V...... the mechanisms of how the GM influences disease development is necessary, but based on these results it seems reasonable to assume, that by controlling the GM we may also influence disease development of type 2 diabetes in B6.V-Lepob/J leptin deficient mice, and thereby produce animals with less variation, which...

  14. Morphological Findings in Trophozoites during Amoebic Abscess Development in Misoprostol-Treated BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Andrés Aceves-Cano

    2015-01-01

    Full Text Available During amoebic liver abscess (ALA formation in susceptible animals, immune response is regulated by prostaglandin E2 (PGE2 dependent mechanisms. The aim of this study was to analyze the effect of misoprostol (MPL, a PGE1 analogue, on ALA formation in BALB/c mice. Male mice from BALB/c strain were intrahepatically infected with 7.5×105 trophozoites of E. histolytica strain HM1:IMSS and treated with 10−4 M of MPL daily until sacrifice at 2, 4, and 7 days postinfection (p.i.. ALA formation was evaluated at 2, 4, and 7 days postinfection; trophozoite morphology was analyzed using immunohistochemistry and image analysis. Results showed an increase in frequency of ALA formation in infected and MPL-treated mice only at 2 days p.i. (P=0.03. A significant diminution in the size of trophozoites was detected in abscesses from mice independently of MPL treatment (from 5.8±1.1 µm at 2 days p.i. to 2.7±1.9 µm at 7 days p.i. compared with trophozoites dimensions observed in susceptible hamsters (9.6±2.7 µm (P<0.01. These results suggest that MPL treatment may modify the adequate control of inflammatory process to allow the persistence of trophozoites in the liver; however, natural resistance mechanisms cannot be discarded.

  15. Evaluate the Influence of Eupatorium adenophorum Extract with Mice Organ

    Science.gov (United States)

    Nong, Xiang; Yang, Can; Yang, Yaojun; Liang, Zi; Hu, Qiang; Zhang, Ting

    2018-01-01

    In order to study the influence of extract from Eupatorium adenophorum in mice organs, this experiment will be the basis of further study that make Eupatorium adenophorum become Phyto contraceptive, this experiment take the feeding respectively way after the completion of the 1D, 5D, 10d, 15d of Eupatorium adenophorum mice by intragastrical administration of levonorgestrel group and blank control group. After the same operation in different periods of small rat heart and kidney the uterus, testis, and other organs were observed. The results showed that after extraction of E. adenophorum changes in female mice uterus shape was perfused significantly, showed swelling larger. Data analysis of each viscera coefficient was found E. adenophorum had No obvious effect on the heart, kidneys and testicles of mice. but there are obvious differences date between the treatment group and the blank group. (5d: F=10. 800 P=0. 043 cases) from tissue sections we can see female mice uterus cell morphology changes significantly, there was a similar appearance change in the uterus of the female mice with the estradiol For a male mouse testis of E.adenophorum gavage had No obvious effect. And it is found that the heart, the treated mice kidney, testis, ovary and other organs were observed in each period of time the organization had No obvious change; only female mice uterus tissue sections of individual cells became larger, and the organization of the gap larger. This research shows that E.adenophorum extract has the potential to develop botanical contraceptives, we will conduct in-depth study.

  16. High dietary fat intake during lactation promotes development of diet-induced obesity in male offspring of mice.

    Science.gov (United States)

    Tsuduki, Tsuyoshi; Kitano, Yasuna; Honma, Taro; Kijima, Ryo; Ikeda, Ikuo

    2013-01-01

    The maternal nutritional status during pregnancy and lactation influences the risk of obesity in offspring, but the details of this phenomenon are unclear. In particular, there is little information on the influence on the offspring of the maternal nutritional status during lactation only. Therefore, in this study, we examined the influence of high dietary fat intake in dams during lactation on the risk of obesity in offspring, using C57BL/6J mice. The mice were fed a control diet (CD) during pregnancy. After birth, dams were fed a CD or a high-fat diet (HD) during lactation (3 wk). Fat and energy were significantly increased in milk from dams fed a HD during lactation. Male offspring were weaned at 3 wk old and fed a CD for 4 wk, which resulted in no significant difference in their physique. Four weeks after weaning, the offspring (7 wk old) were fed a CD or HD for 4 wk to induce obesity. High dietary fat intake in dams and offspring promoted lipid accumulation in white adipose tissue and adipocyte hypertrophy in male offspring. The underlying mechanism may involve an increase in expression of Lpl and a decrease in expression of Hsl in white adipose tissue of offspring. In conclusion, our results show that high dietary fat intake during lactation promotes development of diet-induced obesity in male offspring.

  17. Effects of Pu-erh ripened tea on hyperuricemic mice studied by serum metabolomics.

    Science.gov (United States)

    Zhao, Ran; Chen, Dong; Wu, Hualing

    2017-11-15

    To evaluate effects of Pu-erh ripened tea in hyperuricemic mice, a mouse hyperuricemia model was developed by oral administration of potassium oxonate for 7 d. Serum metabolomics, based on gas chromatography-mass spectrometry, was used to generate metabolic profiles from normal control, hyperuricemic and allopurinol-treated hyperuricemic mice, as well as hyperuricemic mice given Pu-erh ripened tea at three doses. Pu-erh ripened tea significantly lowered serum uric acid levels. Twelve potential biomarkers associated with hyperuricemia were identified. Pu-erh ripened tea and allopurinol differed in their metabolic effects in the hyperuricemic mice. Levels of glutamic acid, indolelactate, L-allothreonine, nicotinoylglycine, isoleucine, l-cysteine and glycocyamine, all involved in amino acid metabolism, were significantly changed in hyperuricemic mice treated Pu-erh ripened tea. Thus, modulating amino acid metabolism might be the primary mechanism of anti-hyperuricemia by Pu-erh ripened tea. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Overexpression of TIMP-1 under the MMP-9 promoter interferes with wound healing in transgenic mice

    OpenAIRE

    Salonurmi, T.; Parikka, M.; Kontusaari, S.; Pirila, E.; Munaut, Carine; Salo, T.; Tryggvason, K.

    2004-01-01

    We have generated transgenic mice harboring the murine matrix metalloproteinase 9 (MMP-9) promoter cloned in front of human TIMP-1 cDNA. The transgenic mice were viable and fertile and exhibited normal growth and general development. During wound healing the mice were shown to express human TIMP-1 in keratinocytes that normally express MMP-9. However, the healing of skin wounds was significantly retarded with slow migration of keratinocytes over the wound in transgenic mice. In situ zymograph...

  19. Tritiated thymidine incorporation and the development of an interstitial lesion in the bronchiolar-alveolar regions of the lungs of normal and complement deficient mice after inhalation of chrysotile asbestos

    International Nuclear Information System (INIS)

    McGavran, P.D.; Butterick, C.J.; Brody, A.R.

    1989-01-01

    Inhaled asbestos causes the proliferation of bronchiolar-alveolar epithelial and interstitial cells in rats and mice 19 to 72 hours after a single 5-hour exposure. This condition is associated with rapid macrophage accumulation and development of an interstitial fibrotic lesion at alveolar duct bifurcations. In an attempt to define the mechanisms mediating asbestos-induced cell proliferation and fibrogenesis, we studied mice exposed to chrysotile asbestos for five hours. The mice were normal and a congenic strain (B10.D2/oSn), deficient in the fifth component of complement (C5-). We knew that the latter exhibit a depressed asbestos-induced macrophage response and wanted to learn whether the depressed response correlated with measurements of cell proliferation and progression of an interstitial lesion. Sections of first alveolar duct bifurcations were prepared for light microscopic autoradiography and ultrastructural morphometry at varying times after animal exposure to asbestos. In sham-exposed C5+ and C5- animals, less than 1% of epithelial and interstitial cells of the terminal bronchioles and alveolar ducts incorporated tritiated thymidine (3H-TdR) at any time after exposure to asbestos. Between 19 and 72 hours after exposure, epithelial and interstitial cells in both strains of mice exhibited significantly increased levels of 3H-TdR incorporation. The response decreased by eight days postexposure, and 3H-TdR incorporation was normal one month after exposure. Similarly, morphometry showed that both the C5+ and C5- asbestos-exposed mice exhibited significant increases in the volume density of epithelial and interstitial cells 48 hours after exposure. However, one month after exposure, the normal C5+ asbestos-exposed mice developed a fibrotic lesion, whereas the C5- asbestos-exposed animals were no different from sham-exposed C5- controls

  20. Significance of bacterial flora in abdominal irradiation-induced inhibition of lung metastases

    International Nuclear Information System (INIS)

    Matsumoto, T.; Ando, K.; Koike, S.

    1988-01-01

    We have previously reported that abdominal irradiation prior to i.v. injection of syngeneic tumor cells reduced metastases in lung. Our report described an investigation of the significance of intestinal organisms in the radiation effect. We found that eliminating intestinal organisms with antibiotics totally abolished the radiation effect. Monoassociation of germ-free mice revealed that the radiation effect was observable only for Enterobacter cloacae, never for Streptococcus faecium, Bifidobacterium adlesentis, or Escherichia coli. After abdominal irradiation of regular mice, E. cloacae multiplied in cecal contents, adhered to mucous membranes, invaded the cecal wall, and translocated to mesenteric lymph nodes. Intravenous administration of E. cloacae in place of abdominal irradiation inhibited metastases. E. cloacae-monoassociated mice developed fewer metastases than germ-free mice, and the reduction was further enhanced by abdominal irradiation. We concluded that abdominal irradiation caused the invasion of E. cloacae from the mucous membrane of the intestine and inhibited formation of lung metastases

  1. Anti-apoptotic A1 is not essential for lymphoma development in Eµ-Myc mice but helps sustain transplanted Eµ-Myc tumour cells.

    Science.gov (United States)

    Mensink, Mark; Anstee, Natasha S; Robati, Mikara; Schenk, Robyn L; Herold, Marco J; Cory, Suzanne; Vandenberg, Cassandra J

    2018-03-01

    The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-X L , but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a -/- A1-b fl/fl A1-c -/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.

  2. Development of donor-derived thymic lymphomas after allogeneic bone marrow transplantation in AKR/J mice

    International Nuclear Information System (INIS)

    Yasumizu, R.; Hiai, H.; Sugiura, K.

    1988-01-01

    The transplantation of bone marrow cells from BALB/c (but not C57BL/6 and C3H/HeN) mice was observed to lead to the development of thymic lymphomas (leukemias) in AKR/J mice. Two leukemic cell lines, CAK1.3 and CAK4.4, were established from the primary culture of two thymic lymphoma, and surface phenotypes of these cell lines found to be H-2d and Thy-1.2+, indicating that these lymphoma cells are derived from BALB/c donor bone marrow cells. Further analyses of surface markers revealed that CAK1.3 is L3T4+ Lyt2+ IL2R-, whereas CAK4.4 is L3T4- Lyt2- IL2R+. Both CAK1.3 and CAK4.4 were transplantable into BALB/c but not AKR/J mice, further indicating that these cells are of BALB/c bone marrow donor origin. The cells were found to produce XC+-ecotropic viruses, but xenotropic and mink cell focus-forming viruses were undetectable. Inasmuch as thymic lymphomas are derived from bone marrow cells of leukemia-resistant BALB/c strain of mice under the allogeneic environment of leukemia-prone AKR/J mice, this animal model may serve as a useful tool not only for the analysis of leukemic relapse after bone marrow transplantation but also for elucidation of the mechanism of leukemogenesis

  3. Tetranectin Knockout Mice Develop Features of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Er-song Wang

    2014-07-01

    Full Text Available Background/Aims: Aggregation of insoluble α-synuclein to form Lewy bodies (LBs may contribute to the selective loss of midbrain dopaminergic neurons in Parkinson disease (PD. Lack of robust animal models has impeded elucidation of the molecular mechanisms of LB formation and other critical aspects of PD pathogenesis. Methods: We established a mouse model with targeted deletion of the plasminogen-binding protein tetranectin (TN gene (TN-/- and measured the behavioral and histopathological features of PD. Results: Aged (15-to 20-month-old TN-/- mice displayed motor deficits resembling PD symptoms, including limb rigidity and both slower ambulation (bradykinesia and reduced rearing activity in the open field. In addition, these mice exhibited more numerous α-synuclein-positive LB-like inclusions within the substantia nigra pars compacta (SNc and reduced numbers of SNc dopaminergic neurons than age-matched wild type (WT mice. These pathological changes were also accompanied by loss of dopamine terminals in the dorsal striatum. Conclusion: The TN-/- mouse exhibits several key features of PD and so may be a valuable model for studying LB formation and testing candidate neuroprotective therapies for PD and other synucleinopathies.

  4. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Takuya Kamio

    Full Text Available MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA and in 5q- myelodysplastic syndrome (MDS. DBA and 5q- MDS are associated with inherited (DBA or acquired (5q- MDS haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F, retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM, these mice showed a significant decrease in Ter119hi cells compared to wild type (WT littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01. This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko. Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK cells, accompanied by significant decreases in multipotent progenitor (MPP cells (p < 0.01. Competitive BM repopulation experiments

  5. Effects of perinatal coexposure to methylmercury and polychlorinated biphenyls on neurobehavioral development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara, Norio [Tohoku University School of Medicine, Environmental Health Sciences, Aoba-ku, Sendai (Japan); Hirosaki University Graduate School of Medicine, Department of Neuropsychiatry, Hirosaki (Japan); Ohba, Takashi; Nakai, Kunihiko; Nakamura, Tomoyuki; Suzuki, Keita; Kameo, Satomi; Shimada, Miyuki; Kurokawa, Naoyuki; Satoh, Chieko; Satoh, Hiroshi [Tohoku University School of Medicine, Environmental Health Sciences, Aoba-ku, Sendai (Japan); Kakita, Akiyoshi [Niigata University, Department of Pathological Neuroscience, Resource Branch for Brain Disease Research, Brain Research Institute, Niigata (Japan)

    2008-06-15

    Methylmercury (MeHg) and polychlorinated biphenyls (PCBs) are environmental pollutants that cause neurobehavioral deficits in humans. Because exposures to MeHg and PCBs occur through fish consumption, it is necessary to clarify the effects of the interaction of the two pollutants. Therefore, we investigated the effects of perinatal exposure to MeHg and PCBs on the neurobehavioral development in mice. Female mice (C57BL/6Cr) were divided into four groups according to the type of exposure: (1) vehicle control, (2) MeHg alone, (3) PCBs alone, and (4) MeHg + PCBs. The MeHg-exposed groups were fed with a diet containing 5 ppm MeHg (as Hg), from 4 weeks before mating, throughout pregnancy, and lactation. The PCB-exposed groups were given a commercial mixture of PCBs, Aroclor 1254, at 18 mg/kg body weight in corn oil by gavage every 3 days from day 5 after breeding and continued until postnatal day (PND) 20. Before weaning, an assessment of eye opening showed the interactive effects between MeHg and PCBs on PND 12: The coexposure group showed a similar response to the control group, whereas the MeHg- and PCB-exposed groups showed a high response than the former two groups. We also observed delay in development of grasp reflex by MeHg exposure on PNDs 12 and 14. When the offspring mice were 8 weeks old, the group exposed to PCBs alone showed increases in the frequencies of excrement defecation and urine traces in an open-field test. Analysis of the latency revealed the antagonistic interaction between the MeHg and PCBs: The latency increased by either MeHg or PCB exposure was decreased by coexposure. Treatment with MeHg decreased the distance walked by the mice, and MeHg interacted with PCBs. Moris' water maze test showed that the MeHg-treated mice took a long time to reach the submerged platform; however, this MeHg exposure showed no interaction with PCB exposure. The spontaneous locomotion activity of the mice was not affected by the chemical exposure at 9 weeks of

  6. The effect of TiO2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice

    International Nuclear Information System (INIS)

    Philbrook, Nicola A.; Winn, Louise M.; Afrooz, A.R.M. Nabiul; Saleh, Navid B.; Walker, Virginia K.

    2011-01-01

    In the last two decades, nanoparticles (NPs) have found applications in a wide variety of consumer goods. Titanium dioxide (TiO 2 ) and silver (Ag) NPs are both found in cosmetics and foods, but their increasing use is of concern due to their ability to be taken up by biological systems. While there are some reports of TiO 2 and Ag NPs affecting complex organisms, their effects on reproduction and development have been largely understudied. Here, the effects of orally administered TiO 2 or Ag NPs on reproduction and development in two different model organisms were investigated. TiO 2 NPs reduced the developmental success of CD-1 mice after a single oral dose of 100 or 1000 mg/kg to dams, resulting in a statistically significant increase in fetal deformities and mortality. Similarly, TiO 2 NP addition to food led to a significant progeny loss in the fruit fly, Drosophila, as shown by a decline in female fecundity. Ag NP administration resulted in an increase in the mortality of fetal mice. Similarly in Drosophila, Ag NP feeding led to a significant decrease in developmental success, but unlike TiO 2 NP treatment, there was no decline in fecundity. The distinct response associated with each type of NP likely reflects differences in NP administration as well as the biology of the particular model. Taken together, however, this study warns that these common NPs could be detrimental to the reproductive and developmental health of both invertebrates and vertebrates.

  7. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  8. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    Science.gov (United States)

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  9. A gain-of-function mutation in Tnni2 impeded bone development through increasing Hif3a expression in DA2B mice.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Zhu

    2014-10-01

    Full Text Available Distal arthrogryposis type 2B (DA2B is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del in troponin I type 2 (skeletal, fast (TNNI2, which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.

  10. Colitis susceptibility in p47(phox-/-) mice is mediated by the microbiome.

    Science.gov (United States)

    Falcone, E Liana; Abusleme, Loreto; Swamydas, Muthulekha; Lionakis, Michail S; Ding, Li; Hsu, Amy P; Zelazny, Adrian M; Moutsopoulos, Niki M; Kuhns, Douglas B; Deming, Clay; Quiñones, Mariam; Segre, Julia A; Bryant, Clare E; Holland, Steven M

    2016-04-05

    Chronic granulomatous disease (CGD) is caused by defects in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) complex subunits (gp91(phox) (a.k.a. Nox2), p47(phox), p67(phox), p22(phox), p40(phox)) leading to reduced phagocyte-derived reactive oxygen species production. Almost half of patients with CGD develop inflammatory bowel disease, and the involvement of the intestinal microbiome in relation to this predisposing immunodeficiency has not been explored. Although CGD mice do not spontaneously develop colitis, we demonstrate that p47(phox-/-) mice have increased susceptibility to dextran sodium sulfate colitis in association with a distinct colonic transcript and microbiome signature. Neither restoring NOX2 reactive oxygen species production nor normalizing the microbiome using cohoused adult p47(phox-/-) with B6Tac (wild type) mice reversed this phenotype. However, breeding p47(phox+/-) mice and standardizing the microflora between littermate p47(phox-/-) and B6Tac mice from birth significantly reduced dextran sodium sulfate colitis susceptibility in p47(phox-/-) mice. We found similarly decreased colitis susceptibility in littermate p47(phox-/-) and B6Tac mice treated with Citrobacter rodentium. Our findings suggest that the microbiome signature established at birth may play a bigger role than phagocyte-derived reactive oxygen species in mediating colitis susceptibility in CGD mice. These data further support bacteria-related disease in CGD colitis.

  11. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    Science.gov (United States)

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  12. Effects of gamma radiation and azathioprine on Brucella abortus infection in BALB/c mice

    Energy Technology Data Exchange (ETDEWEB)

    Elzer, P.H.; Rowe, G.E.; Enright, F.M.; Winter, A.J. (Department of Veterinary Microbiology, Immunology and Parasitology, College of Veterinary Medicine, Cornell University, Ithaca, NY (United States))

    1991-06-01

    Sublethal irradiation of BALB/c mice 4 hours prior to inoculation with 5 {times} 10(4) virulent Brucella abortus, caused significant (P less than 0.01) reductions in bacterial numbers in comparison with numbers in unirradiated controls. Numbers of brucellae in the spleen were significantly lower by 5 days after inoculation and decreased thereafter, so that at 2 and 3 weeks after inoculation, there were up to 1,000-fold fewer organisms in the spleen of irradiated mice. The number of brucellae in the spleen increased in irradiated mice thereafter. The course of events in the liver was similar, but developed more slowly, and peak differences in bacterial numbers were about 1 log less. These phenomena were not attributable to differences in implantation of brucellae in the liver or spleen, nor to an abnormal distribution of organisms in other organs of irradiated mice. Irradiation of mice during the plateau phase of infection also resulted in significant (P less than 0.05) reductions in bacterial counts in the spleen during the succeeding 4 weeks. Macrophage activation in the spleen, measured by a Listeria monocytogenes-killing assay, was significantly (P less than 0.01) increased by irradiation alone at 1 week after inoculation and at that time was significantly (P less than 0.01) greater in B abortus-infected, irradiated mice than in B abortus-infected controls. Histologic, cytologic, and immunologic studies revealed that the decrease in numbers of organisms between 1 and 2 weeks after inoculation in irradiated mice occurred at a time when their immune response to B abortus was suppressed and when numbers of neutrophils and monocytes infiltrating the spleen were significantly (P less than 0.01) diminished.

  13. Effects of gamma radiation and azathioprine on Brucella abortus infection in BALB/c mice

    International Nuclear Information System (INIS)

    Elzer, P.H.; Rowe, G.E.; Enright, F.M.; Winter, A.J.

    1991-01-01

    Sublethal irradiation of BALB/c mice 4 hours prior to inoculation with 5 x 10(4) virulent Brucella abortus, caused significant (P less than 0.01) reductions in bacterial numbers in comparison with numbers in unirradiated controls. Numbers of brucellae in the spleen were significantly lower by 5 days after inoculation and decreased thereafter, so that at 2 and 3 weeks after inoculation, there were up to 1,000-fold fewer organisms in the spleen of irradiated mice. The number of brucellae in the spleen increased in irradiated mice thereafter. The course of events in the liver was similar, but developed more slowly, and peak differences in bacterial numbers were about 1 log less. These phenomena were not attributable to differences in implantation of brucellae in the liver or spleen, nor to an abnormal distribution of organisms in other organs of irradiated mice. Irradiation of mice during the plateau phase of infection also resulted in significant (P less than 0.05) reductions in bacterial counts in the spleen during the succeeding 4 weeks. Macrophage activation in the spleen, measured by a Listeria monocytogenes-killing assay, was significantly (P less than 0.01) increased by irradiation alone at 1 week after inoculation and at that time was significantly (P less than 0.01) greater in B abortus-infected, irradiated mice than in B abortus-infected controls. Histologic, cytologic, and immunologic studies revealed that the decrease in numbers of organisms between 1 and 2 weeks after inoculation in irradiated mice occurred at a time when their immune response to B abortus was suppressed and when numbers of neutrophils and monocytes infiltrating the spleen were significantly (P less than 0.01) diminished

  14. Chronic social isolation and chronic variable stress during early development induce later elevated ethanol intake in adult C57BL/6J mice.

    Science.gov (United States)

    Lopez, Marcelo F; Doremus-Fitzwater, Tamara L; Becker, Howard C

    2011-06-01

    Experience with stress situations during early development can have long-lasting effects on stress- and anxiety-related behaviors. Importantly, this can also favor drug self-administration. These studies examined the effects of chronic social isolation and/or variable stress experiences during early development on subsequent voluntary ethanol intake in adult male and female C57BL/6J mice. The experiments were conducted to evaluate the effect of chronic isolation between weaning and adulthood (Experiment 1), chronic isolation during adulthood (Experiment 2), and chronic variable stress (CVS) alone or in combination with chronic social isolation between weaning and adulthood (Experiment 3) on subsequent voluntary ethanol intake. Mice were born in our facility and were separated into two housing conditions: isolate housed (one mouse/cage) or group housed (four mice/cage) according to sex. Separate groups were isolated for 40 days starting either at time of weaning postnatal day 21 (PD 21) (early isolation, Experiments 1 and 3) or at adulthood (PD 60: late isolation, Experiment 2). The effects of housing condition on subsequent ethanol intake were assessed starting at around PD 65 in Experiments 1 and 3 or PD 105 days in Experiment 2. In Experiment 3, starting at PD 32, isolate-housed and group-housed mice were either subjected to CVS or left undisturbed. CVS groups experienced random presentations of mild stressors for 14 days, including exposure to an unfamiliar open field, restraint, physical shaking, and forced swim, among others. All mice were tested for ethanol intake for 14 days using a two-bottle choice (ethanol 15% vol/vol vs. water) for a 2-h limited access procedure. Early social isolation resulted in greater ethanol intake compared with the corresponding group-housed mice (Experiment 1). In contrast, social isolation during adulthood (late isolation) did not increase subsequent ethanol intake compared with the corresponding group-housed mice (Experiment 2

  15. Sox9-dependent expression of Gstm6 in Sertoli cells during testis development in mice.

    Science.gov (United States)

    Beverdam, Annemiek; Svingen, Terje; Bagheri-Fam, Stefan; Bernard, Pascal; McClive, Peter; Robson, Mathew; Khojasteh, Mahdi Banan; Salehi, Mahboubeh; Sinclair, Andrew H; Harley, Vincent R; Koopman, Peter

    2009-03-01

    Glutathione S-transferases (GSTs) are an important family of multifunctional enzymes that play a role in the protection of tissues by the detoxification of hazardous and carcinogenic compounds. We found previously that Gstm6 is upregulated in the somatic cells of male mouse fetal gonads relative to female gonads. In this study, we describe the spatial and temporal expression pattern of Gstm6 during mouse development. We show that Gstm6 is predominantly expressed in the reproductive system, at significantly higher levels in XY gonads compared with XX gonads from 11.5 dpc onwards, and remains expressed in the testes in adult mice. Its expression is associated with the Sertoli cell lineage, and is dependent on the expression of the male sex-determining gene Sox9. Our data suggest that Gstm6 plays a male-specific role in gonad development or function, possibly by modulating the exposure of somatic tissue and/or germ cells to endogenous or exogenous toxicants.

  16. Complement C3 deficiency attenuates chronic hypoxia-induced pulmonary hypertension in mice.

    Directory of Open Access Journals (Sweden)

    Eileen M Bauer

    Full Text Available Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice.Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.

  17. The Endocannabinoid System across Postnatal Development in Transmembrane Domain Neuregulin 1 Mutant Mice

    Directory of Open Access Journals (Sweden)

    Rose Chesworth

    2018-02-01

    Full Text Available The use of cannabis is a well-established component risk factor for schizophrenia, particularly in adolescent individuals with genetic predisposition for the disorder. Alterations to the endocannabinoid system have been found in the prefrontal cortex of patients with schizophrenia. Thus, we assessed whether molecular alterations exist in the endocannabinoid signalling pathway during brain development in a mouse model for the schizophrenia risk gene neuregulin 1 (Nrg1. We analysed transcripts encoding key molecules of the endocannabinoid system in heterozygous transmembrane domain Nrg1 mutant mice (Nrg1 TM HET, which is known to have increased sensitivity to cannabis exposure. Tissue from the prelimbic cortex and hippocampus of male and female Nrg1 TM HET mice and wild type-like littermates was collected at postnatal days (PNDs 7, 10, 14, 21, 28, 35, 49, and 161. Quantitative polymerase chain reaction was conducted to assess mRNA levels of cannabinoid receptor 1 (CB1R and enzymes for the synthesis and breakdown of the endocannabinoid 2-arachidonoylglycerol [i.e., diacylglycerol lipase alpha (DAGLα, monoglyceride lipase (MGLL, and α/β-hydrolase domain-containing 6 (ABHD6]. No sex differences were found for any transcripts in either brain region; thus, male and female data were pooled. Hippocampal and cortical mRNA expression of DAGLα, MGLL, and ABHD6 increased until PND 21–35 and then decreased and stabilised for the rest of postnatal development. Hippocampal CB1R mRNA expression increased until PND 21 and decreased after this age. Expression levels of these endocannabinoid markers did not differ in Nrg1 TM HET compared to control mice at any time point. Here, we demonstrate dynamic changes in the developmental trajectory of several key endocannabinoid system transcripts in the mouse brain, which may correspond with periods of endocannabinoid system maturation. Nrg1 TM HET mutation did not alter the developmental trajectory of the

  18. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  19. Vitamin K2 biosynthetic enzyme, UBIAD1 is essential for embryonic development of mice.

    Science.gov (United States)

    Nakagawa, Kimie; Sawada, Natsumi; Hirota, Yoshihisa; Uchino, Yuri; Suhara, Yoshitomo; Hasegawa, Tomoka; Amizuka, Norio; Okamoto, Tadashi; Tsugawa, Naoko; Kamao, Maya; Funahashi, Nobuaki; Okano, Toshio

    2014-01-01

    UbiA prenyltransferase domain containing 1 (UBIAD1) is a novel vitamin K2 biosynthetic enzyme screened and identified from the human genome database. UBIAD1 has recently been shown to catalyse the biosynthesis of Coenzyme Q10 (CoQ10) in zebrafish and human cells. To investigate the function of UBIAD1 in vivo, we attempted to generate mice lacking Ubiad1, a homolog of human UBIAD1, by gene targeting. Ubiad1-deficient (Ubiad1(-/-)) mouse embryos failed to survive beyond embryonic day 7.5, exhibiting small-sized body and gastrulation arrest. Ubiad1(-/-) embryonic stem (ES) cells failed to synthesize vitamin K2 but were able to synthesize CoQ9, similar to wild-type ES cells. Ubiad1(+/-) mice developed normally, exhibiting normal growth and fertility. Vitamin K2 tissue levels and synthesis activity were approximately half of those in the wild-type, whereas CoQ9 tissue levels and synthesis activity were similar to those in the wild-type. Similarly, UBIAD1 expression and vitamin K2 synthesis activity of mouse embryonic fibroblasts prepared from Ubiad1(+/-) E15.5 embryos were approximately half of those in the wild-type, whereas CoQ9 levels and synthesis activity were similar to those in the wild-type. Ubiad1(-/-) mouse embryos failed to be rescued, but their embryonic lifespans were extended to term by oral administration of MK-4 or CoQ10 to pregnant Ubiad1(+/-) mice. These results suggest that UBIAD1 is responsible for vitamin K2 synthesis but may not be responsible for CoQ9 synthesis in mice. We propose that UBIAD1 plays a pivotal role in embryonic development by synthesizing vitamin K2, but may have additional functions beyond the biosynthesis of vitamin K2.

  20. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice.

    Science.gov (United States)

    Hao, Marlene M; Bornstein, Joel C; Young, Heather M

    2013-10-01

    Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time. © 2013 Wiley Periodicals, Inc.

  1. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    T. Baardman (Taco); M.V. Zwier (Mathijs V.); L.J. Wisse (Lambertus); A.C. Gittenberger-De Groot (Adriana); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.W. Hofstra (Robert); A. Jurdzinski (Angelika); B.P. Hierck (Beerend); M.R.M. Jongbloed (Monique); R.M.F. Berger (Rolf); T. Plösch (Torsten); M.C. DeRuiter (Marco)

    2016-01-01

    textabstractLipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  2. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  3. Traumatic brain injury precipitates cognitive impairment and extracellular Aβ aggregation in Alzheimer's disease transgenic mice.

    Directory of Open Access Journals (Sweden)

    Naoki Tajiri

    Full Text Available Traumatic brain injury (TBI has become a signature wound of the wars in Iraq and Afghanistan. Many American soldiers, even those undiagnosed but likely suffering from mild TBI, display Alzheimer's disease (AD-like cognitive impairments, suggesting a pathological overlap between TBI and AD. This study examined the cognitive and neurohistological effects of TBI in presymptomatic APP/PS1 AD-transgenic mice. AD mice and non-transgenic (NT mice received an experimental TBI on the right parietal cortex using the controlled cortical impact model. Animals were trained in a water maze task for spatial memory before TBI, and then reevaluated in the same task at two and six weeks post-TBI. The results showed that AD mice with TBI made significantly more errors in the task than AD mice without TBI and NT mice regardless of TBI. A separate group of AD mice and NT mice were evaluated neurohistologically at six weeks after TBI. The number of extracellular beta-amyloid (Aβ-deposits significantly increased by at least one fold in the cortex of AD mice that received TBI compared to the NT mice that received TBI or the AD and NT mice that underwent sham surgery. A significant decrease in MAP2 positive cells, indicating neuronal loss, was observed in the cortex of both the AD and NT mice that received TBI compared to the AD and NT mice subjected to sham surgery. Similar changes in extracellular Aβ deposits and MAP2 positive cells were also seen in the hippocampus. These results demonstrate for the first time that TBI precipitates cognitive impairment in presymptomatic AD mice, while also confirming extracellular Aβ deposits following TBI. The recognition of this pathological link between TBI and AD should aid in developing novel treatments directed at abrogating cellular injury and extracellular Aβ deposition in the brain.

  4. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.

    Science.gov (United States)

    Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala

    2015-09-01

    A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  6. Surgery plus anesthesia induces loss of attention in mice

    Directory of Open Access Journals (Sweden)

    Quan eRen

    2015-09-01

    Full Text Available There is a need to develop animal models to study postoperative delirium. Inattention is one of the symptoms of delirium. Increases in the levels of α-synuclein and S100β have been reported to be associated with delirium. Therefore, we set out to determine the effects of surgery plus general anesthesia on the behavioral changes (including loss of attention in mice and on the levels of α-synuclein and S100β in the brain tissues of these mice. C57BL/6J mice (2- to 8-months-old had a simple laparotomy plus isoflurane anesthesia. The behavioral changes, including attention level and the speed of movements, were determined 12, 24 and 48 hours after the surgery plus anesthesia in the mice. The levels of α-synuclein and S100β in the cortex of these mice following the surgery plus anesthesia were determined by Western blot analysis.We found that there was a loss of attention at 24, but not 12 or 48, hours following the surgery plus anesthesia (49%+5 versus 33%+2.9, P=0.011, N=12 in the mice without significantly affecting the speed of their movements. There were increases in the levels of total α-synuclein (139%+33.5 versus 100%+13.7, P=0.037, N=6 and S100β (142%+7.7 versus 100%+6, P=0.002, N=6 in the cortex of the mice 12 hours following the surgery plus anesthesia.These findings suggested that the surgery plus isoflurane anesthesia might induce behavioral and biochemical/biochemical/cellular changes associated with delirium. We could use the surgery plus anesthesia in mice to develop an animal model to study postoperative delirium.

  7. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  8. Radiation-induced pulmonary endothelial dysfunction and hydroxyproline accumulation in four strains of mice

    International Nuclear Information System (INIS)

    Ward, W.F.; Sharplin, J.; Franko, A.J.; Hinz, J.M.

    1989-01-01

    C57BL mice exposed to 14 Gy of whole-thorax irradiation develop significant histologic lung fibrosis within 52 weeks, whereas CBA and C3H mice do not exhibit substantial fibrosis during this time. The purpose of the present study was to determine whether this strain-dependent difference in radiation histopathology is associated with genetic differences in pulmonary endothelial metabolic activity or in endothelial radioresponsiveness. C57BL/6J, C57BL/10J, CBA/J, and C3H/HeJ mice were sacrificed 12 weeks after exposure to 0 or 14 Gy of 300-kV X rays to the whole thorax. Lung angiotensin converting enzyme (ACE) activity and plasminogen activator (PLA) activity were measured as indices of pulmonary endothelial function; and lung hydroxyproline (HP) content served as an index of pulmonary fibrosis. Lung ACE and PLA activities in sham-irradiated C57BL/6J and CB57BL/10J mice were only half as high as those in sham-irradiated CBA/J and C3H/HeJ mice. Exposure to 14 Gy of X rays produced a slight but nonsignificant reduction in lung ACE and PLA activity in the C57BL strains, and a significant reduction in the CBA/J and C3H/HeJ mice. Even after 14 Gy, however, lung ACE and PLA activities in CBA/J and C3H/HeJ mice were higher than those in sham-irradiated C57BL/6J and C57BL/10J mice. Lung HP content in all four strains increased significantly after irradiation, but this increase was accompanied by an increase in lung wet weight. As a result, HP concentration (per milligram wet weight) remained constant or increased slightly in both C57BL strains and actually decreased in the CBA/J and C3H/HeJ mice. These data demonstrate significant genetic differences in both intrinsic pulmonary endothelial enzyme activity and endothelial radioresponsiveness among the four strains of mice

  9. Prenatal and Lactational Exposure to Bisphenol A in Mice Alters Expression of Genes Involved in Cortical Barrel Development without Morphological Changes

    International Nuclear Information System (INIS)

    Han, Longzhe; Itoh, Kyoko; Yaoi, Takeshi; Moriwaki, Sanzo; Kato, Shingo; Nakamura, Keiko; Fushiki, Shinji

    2011-01-01

    It has been reported that premature infants in neonatal intensive care units are exposed to a high rate of bisphenol A (BPA), an endocrine disrupting chemical. Our previous studies demonstrated that corticothalamic projection was disrupted by prenatal exposure to BPA, which persisted even in adult mice. We therefore analyzed whether prenatal and lactational exposure to low doses of BPA affected the formation of the cortical barrel, the barreloid of the thalamus, and the barrelette of the brainstem in terms of the histology and the expression of genes involved in the barrel development. Pregnant mice were injected subcutaneously with 20 µg/kg of BPA daily from embryonic day 0 (E0) to postnatal 3 weeks (P3W), while the control mice received a vehicle alone. The barrel, barreloid and barrelette of the adult mice were examined by cytochrome C oxidase (COX) staining. There were no significant differences in the total and septal areas and the patterning of the posterior medial barrel subfield (PMBSF), barreloid and barrelette, between the BPA-exposure and control groups in the adult mice. The developmental study at postnatal day 1 (PD1), PD4 and PD8 revealed that the cortical barrel vaguely appeared at PD4 and completely formed at PD8 in both groups. The expression pattern of some genes was spatiotemporally altered depending on the sex and the treatment. These results suggest that the trigeminal projection and the thalamic relay to the cortical barrel were spared after prenatal and lactational exposure to low doses of BPA, although prenatal exposure to BPA was previously shown to disrupt the corticothalamic projection

  10. Heterozygous Lmna(delK32) mice develop dilated cardiomyopathy through a combined pathomechanism of haploinsufficiency and peptide toxicity

    DEFF Research Database (Denmark)

    Cattin, M. E.; Bertrand, A. T.; Schlossarek, S.

    2013-01-01

    itself has a clear deleterious effect on engineered heart tissues force of contraction, it also leads to the nuclear aggregation of viral-mediated expression of K32-lamin. In conclusion, Het mice are the first knock-in Lmna model with cardiac-specific phenotype at the heterozygous state. Altogether, our....... The pathomechanisms linking mutations to DCM remain to be elucidated. We investigated the phenotype and associated pathomechanisms of heterozygous Lmna(K32/) (Het) knock-in mice, which carry a human mutation. Het mice developed a cardiac-specific phenotype. Two phases, with two different pathomechanisms, could...... be observed that lead to the development of cardiac dysfunction, DCM and death between 35 and 70 weeks of age. In young Het hearts, there was a clear reduction in lamin A/C level, mainly due to the degradation of toxic K32-lamin. As a side effect, lamin A/C haploinsufficiency probably triggers the cardiac...

  11. Increasing Hematopoietic Stem Cell Yield to Develop Mice with Human Immune Systems

    Directory of Open Access Journals (Sweden)

    Juan-Carlos Biancotti

    2013-01-01

    Full Text Available Hematopoietic stem cells (HSCs are unique in their capacity to give rise to all mature cells of the immune system. For years, HSC transplantation has been used for treatment of genetic and neoplastic diseases of the hematopoietic and immune systems. The sourcing of HSCs from human umbilical cord blood has salient advantages over isolation from mobilized peripheral blood. However, poor sample yield has prompted development of methodologies to expand HSCs ex vivo. Cytokines, trophic factors, and small molecules have been variously used to promote survival and proliferation of HSCs in culture, whilst strategies to lower the concentration of inhibitors in the culture media have recently been applied to promote HSC expansion. In this paper, we outline strategies to expand HSCs in vitro, and to improve engraftment and reconstitution of human immune systems in immunocompromised mice. To the extent that these “humanized” mice are representative of the endogenous human immune system, they will be invaluable tools for both basic science and translational medicine.

  12. Combination of Albendazole and 2-Methoxyestradiol significantly improves the survival of HCT-116 tumor-bearing nude mice

    International Nuclear Information System (INIS)

    Ehteda, Anahid; Galettis, Peter; Pillai, Krishna; Morris, David L

    2013-01-01

    Albendazole (ABZ) is a microtubule-targeting anthelmintic with a remarkable activity against a variety of human cancer cells. In this study, we examined if the antitumor activity of ABZ could be enhanced by its combination with other microtubule-binding agents. The interactions between ABZ and microtubule-binding agents, paclitaxel, vinblastine, colchicine, and 2-methoxyestradiol were characterized using median effect analysis method in HCT-116 colorectal cancer cells and DU145 prostate cancer cell line. The mechanism underlying the synergistic interaction related to tubulin polymerization and apoptosis was then investigated. Finally, the effect of the combination therapy on the survival of HCT-116 tumor-bearing nude mice was evaluated. Among the tested drugs, a synergistic anti-proliferative effect was observed with the combination of low concentrations of ABZ plus colchicine and ABZ plus 2-methoxyestradiol (2ME). Exploring the mechanism of the interaction between ABZ and 2ME revealed that the combination therapy synergistically activated the extrinsic pathway of apoptosis. Consistent with in vitro results, the combination of low concentration of ABZ with 2ME prolonged the survival of mice-bearing HCT-116 tumors. High concentration of ABZ in combination with 2ME, however, proved to be less effective than ABZ alone. The combination of low doses of ABZ and 2ME has shown promising results in our pre-clinical model. Additionally, the finding that the combination of two microtubule-binding agents that share the same binding site can act synergistically may lead to the development of new therapeutic strategies in cancer treatment

  13. Maternal exposure to di-(2-ethylhexyl) phthalate disrupts placental growth and development in pregnant mice

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Teng; Lai, Lidan [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China); Hu, Jia [Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi (China); Guo, Meijun; Li, Mo; Zhang, Lu; Zhong, Chengxue; Yang, Bei; Wu, Lei; Zhang, Dalei; Tang, Min [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China); Kuang, Haibin, E-mail: kuanghaibin@ncu.edu.cn [Department of Physiology, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006 (China)

    2015-10-30

    Highlights: • The influence of DEHP on the development of placenta was investigated. • DEHP disrupts the growth and development of placenta. • DEHP disrupts the formation of labyrinth vascularization. • DEHP inhibits the proliferation of ectoplacental cone and placenta. • DEHP induces the apoptosis of placenta via activated MAPK signaling pathway. - Abstract: Di-(2-ethylhexyl) phthalate (DEHP) is used as a plasticizer and widely dispersed in the environment. DEHP exposure reduces embryo implantations, increases embryonic loss, and decreases fetal body weights. However, no detailed information is available about the effect of DEHP on the placentation during pregnancy. Thus, our aim was to explore the effect of DEHP on the growth and development of placenta in vivo. Mice were administered DEHP by gavages at 125, 250, 500 mg/kg/day from gestational days (GD) 1 until sacrifice. Results showed that DEHP treatment significantly reduced the weight of placenta at GD 13. Histopathologically, in DEHP-treated group, the ectoplacental cones significantly became smaller at GD9, and total area of placenta and area of spongiotrophoblast were significantly reduced at GD 13. Expression levels of Ascl2, Esx1 and Fosl1 mRNA dramatically decreased in DEHP-treated placenta at GD 13. DEHP administration disrupted labyrinth vascularization of placentas, and inhibited proliferation and induced apoptosis of placenta by the activation of caspase-3 and -8, up-regulation of Bax and down-regulation of Bcl-2 mRNA and protein at GD 13. In conclusion, these results suggest that adverse pregnancy outcomes including low birth-weight and pregnancy loss exposed to DEHP are possibly mediated, at least in part, via the suppression of placental growth and development.

  14. Therapeutic potential of flurbiprofen against obesity in mice.

    Science.gov (United States)

    Hosoi, Toru; Baba, Sachiko; Ozawa, Koichiro

    2014-06-20

    Obesity is associated with several diseases including diabetes, nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease, and cancer. Therefore, anti-obesity drugs have the potential to prevent these diseases. In the present study, we demonstrated that flurbiprofen, a nonsteroidal anti-inflammatory drug (NSAID), exhibited therapeutic potency against obesity. Mice were fed a high-fat diet (HFD) for 6 months, followed by a normal-chow diet (NCD). The flurbiprofen treatment simultaneously administered. Although body weight was significantly decreased in flurbiprofen-treated mice, growth was not affected. Flurbiprofen also reduced the HFD-induced accumulation of visceral fat. Leptin resistance, which is characterized by insensitivity to the anti-obesity hormone leptin, is known to be involved in the development of obesity. We found that one of the possible mechanisms underlying the anti-obesity effects of flurbiprofen may have been mediated through the attenuation of leptin resistance, because the high circulating levels of leptin in HFD-fed mice were decreased in flurbiprofen-treated mice. Therefore, flurbiprofen may exhibit therapeutic potential against obesity by reducing leptin resistance. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. The Genetic Landscape of Hematopoietic Stem Cell Frequency in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoying Zhou

    2015-07-01

    Full Text Available Prior efforts to identify regulators of hematopoietic stem cell physiology have relied mainly on candidate gene approaches with genetically modified mice. Here we used a genome-wide association study (GWAS strategy with the hybrid mouse diversity panel to identify the genetic determinants of hematopoietic stem/progenitor cell (HSPC frequency. Among 108 strains, we observed ∼120- to 300-fold variation in three HSPC populations. A GWAS analysis identified several loci that were significantly associated with HSPC frequency, including a locus on chromosome 5 harboring the homeodomain-only protein gene (Hopx. Hopx previously had been implicated in cardiac development but was not known to influence HSPC biology. Analysis of the HSPC pool in Hopx−/− mice demonstrated significantly reduced cell frequencies and impaired engraftment in competitive repopulation assays, thus providing functional validation of this positional candidate gene. These results demonstrate the power of GWAS in mice to identify genetic determinants of the hematopoietic system.

  16. Modulation of mammary gland development in pre-pubertal mice as affected by soya and milk protein supplements.

    Science.gov (United States)

    Alston-Mills, Brenda; Lepri, J J; Martin, C A

    2011-08-01

    The objective of the present study was to determine the effects of soya and whey milk protein, α-lactalbumin (α-LA), on mammary gland morphology and the structural support of the gland, in pre-pubertal mice after 7 d of treatment. In Expt 1, weaned (day 21) CD1 mice were given one of the four treatments, three included dietary supplements: (1) control diet, casein, (2) soya, (3) α-LA and (4) subcutaneous injection of 2·5 μg oestradiol benzoate in 20 μl maize oil and fed the control diet. All diets were isoenergetic with equal protein concentrations. All groups that were not treated with oestradiol received the vehicle. Whole-mount analyses were performed to determine longitudinal ductal growth and terminal end bud development. DNA was extracted from the gland and assessed by spectrophotometry (260/280 nm). Tissue extracts for extracellular matrix (ECM) proteins, matrix metalloproteinase-2 (MMP(2)), tissue inhibitor of MMP(2) (TIMP(2)), and serum oestradiol and mammary tissue epidermal growth factors (EGF) were measured by immunoassays. Expt 2 utilised the Her2/neu transgenic strain, with the same protocols. Statistical significance was determined by one-way ANOVA. From Expt 1 and 2, soya and α-LA significantly increased ductal elongation when compared with the oestrogen and control groups. These results were corroborated by data on total DNA and the ratio of MMP(2):TIMP(2). The ratio of MMP(2):TIMP(2) was affected by α-LA. Serum oestradiol was decreased only in the oestradiol-treated groups in both experiments. Soya is known to be oestrogenic and can act on epithelia directly. The mechanism by which α-LA affects glandular development is by modulating the ECM or by promoting the synthesis/activity of EGF.

  17. Sarcoplasmic reticulum function in slow- and fast-twitch skeletal muscles from mdx mice.

    Science.gov (United States)

    Divet, Alexandra; Huchet-Cadiou, Corinne

    2002-08-01

    The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.

  18. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque

    Science.gov (United States)

    Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi

    2016-01-01

    Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320

  19. Progression of Hepatic Adenoma to Carcinoma in Ogg1 Mutant Mice Induced by Phenobarbital

    Directory of Open Access Journals (Sweden)

    Anna Kakehashi

    2017-01-01

    Full Text Available The carcinogenic potential of phenobarbital (PB was assessed in a mouse line carrying a mutant Mmh allele of the Mmh/Ogg1 gene encoding the enzyme oxoguanine DNA glycosylase (Ogg1 responsible for the repair of 8-hydroxy-2′-deoxyguanosine (8-OHdG. Mmh homozygous mutant (Ogg1−/− and wild-type (Ogg1+/+ male and female, 10-week-old, mice were treated with 500 ppm PB in diet for 78 weeks. Hepatocellular carcinomas (HCCs were found in PB-treated Ogg1−/− mice, while Ogg1+/+ animals developed only hepatocellular adenomas (HCAs at the same rate. This was coordinated with PB-induced significant elevation of 8-OHdG formation in DNA and cell proliferation in adjacent liver of Ogg1−/− mice. Proteome analysis predicted activation of transcriptional factor Nrf2 in the livers and HCAs of PB-administered Ogg1+/+ mice; however, its activation was insufficient or absent in the livers and HCCs of Ogg1−/− mice, respectively. Significant elevation of phase I and II metabolizing enzymes was demonstrated in both Ogg1−/− and Ogg1+/+ animals. Treatment of Ogg1−/− mice with PB resulted in significant elevation of cell proliferation in the liver. These results indicate that PB induced progression from HCA to HCC in Ogg1−/− mice, due to persistent accumulation of DNA oxidative base modifications and suppression of Nrf2-mediated oxidative stress response, resulting in significant elevation of cell proliferation.

  20. The effect of TiO{sub 2} and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Philbrook, Nicola A., E-mail: 3nap@queensu.ca [School of Environmental Studies, Biosciences Complex, Queen' s University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Department of Biomedical and Molecular Sciences, Botterell Hall, 5th Floor, Queen' s University, 18 Stuart Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Winn, Louise M., E-mail: winnl@queensu.ca [School of Environmental Studies, Biosciences Complex, Queen' s University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Department of Biomedical and Molecular Sciences, Botterell Hall, 5th Floor, Queen' s University, 18 Stuart Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Afrooz, A.R.M. Nabiul [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Saleh, Navid B., E-mail: salehn@cec.sc.edu [Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [School of Environmental Studies, Biosciences Complex, Queen' s University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6 (Canada); Department of Biology, Biosciences Complex, Queen' s University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2011-12-15

    In the last two decades, nanoparticles (NPs) have found applications in a wide variety of consumer goods. Titanium dioxide (TiO{sub 2}) and silver (Ag) NPs are both found in cosmetics and foods, but their increasing use is of concern due to their ability to be taken up by biological systems. While there are some reports of TiO{sub 2} and Ag NPs affecting complex organisms, their effects on reproduction and development have been largely understudied. Here, the effects of orally administered TiO{sub 2} or Ag NPs on reproduction and development in two different model organisms were investigated. TiO{sub 2} NPs reduced the developmental success of CD-1 mice after a single oral dose of 100 or 1000 mg/kg to dams, resulting in a statistically significant increase in fetal deformities and mortality. Similarly, TiO{sub 2} NP addition to food led to a significant progeny loss in the fruit fly, Drosophila, as shown by a decline in female fecundity. Ag NP administration resulted in an increase in the mortality of fetal mice. Similarly in Drosophila, Ag NP feeding led to a significant decrease in developmental success, but unlike TiO{sub 2} NP treatment, there was no decline in fecundity. The distinct response associated with each type of NP likely reflects differences in NP administration as well as the biology of the particular model. Taken together, however, this study warns that these common NPs could be detrimental to the reproductive and developmental health of both invertebrates and vertebrates.

  1. The Combination of Mitragynine and Morphine Prevents the Development of Morphine Tolerance in Mice

    Directory of Open Access Journals (Sweden)

    Sharida Fakurazi

    2013-01-01

    Full Text Available Mitragynine (MG is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt combined with morphine (5 mg/kg b.wt respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP and cAMP response element binding (CREB was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05 increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05 in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.

  2. Clonidine treatment delays postnatal motor development and blocks short-term memory in young mice.

    Directory of Open Access Journals (Sweden)

    Cristina Calvino-Núñez

    Full Text Available During the development of the nervous system, the perinatal period is particularly sensitive as neuronal connections are still forming in the brain of the neonate. Alpha2-adrenergic receptors are overexpressed temporarily in proliferative zones in the developing brain, reaching a peak during the first postnatal week of life. Both stimulation and blocking of these receptors during this period alter the development of neural circuits, affecting synaptic connectivity and neuronal responses. They even affect motor and cognitive skills later on in the adult. It's especially important to look for the early neurological consequences resulting from such modifications, because they may go unnoticed. The main objective of the present study has been to reaffirm the importance of the maturation of alpha-adrenergic system in mice, by carrying out a comprehensive examination of motor, behavioral and cognitive effects in neonates, during early postnatal development, following chronic administration of the drug Clonidine, an alpha2 adrenergic system agonist. Our study shows that mice treated postnatally with clonidine present a temporal delay in the appearance of developmental markers, a slow execution of vestibular reflexes during first postnatal week of life and a blockade of the short term memory in the novel object recognition task. Shortly after the treatment the startle response is hyperreactive.

  3. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  4. Radon inhalation suppresses nephropathy in streptozotocin-induced type-1 diabetic mice

    International Nuclear Information System (INIS)

    Nishiyama, Yuichi; Kataoka, Takahiro; Yamato, Keiko; Etani, Reo; Taguchi, Takehito; Yamaoka, Kiyonori

    2016-01-01

    In this study, we investigated the suppressive effects of radon inhalation against nephropathy in C57BL/6J mice with type-1 diabetes induced by intraperitoneal injection of streptozotocin (50 mg/kg weight, given five times). Four weeks after diabetes induction, the diabetic mice were continuously treated with inhaled radon-222 of 2000 Bq/m3 or air only (sham) for four weeks. The results showed that radon inhalation did not affect type-1 diabetic symptoms such as body weight loss, hyperglycemia, and hypoinsulinemia. However, diabetic mice treated with radon showed lower urinary albumin excretion and fibrotic change in renal glomeruli compared with diabetic mice not treated with radon. Furthermore, renal superoxide dismutase activity and glutathione content were significantly higher in diabetic mice treated with radon than in diabetic mice not treated with radon. These findings suggested that radon inhalation enhanced renal antioxidants activities, resulting in the suppression of diabetic nephropathy. This study may contribute to the development of a novel approach in the treatment of nephropathy for diabetic patients. (author)

  5. Protective effect of Hongxue tea mixture against radiation injury in mice

    International Nuclear Information System (INIS)

    Zhao Chun; Zhang Xuehui; Wang Qi

    2005-01-01

    Objective: To develop health food of anti-radiation among biological source in Yunnan. Methods: Screening test was done of the health food of biological source of anti-radiation injury in mice. It is indicated that Hong-Xue Tea Mixture among the biological source has the effect against radiation injury, observing experiment of dose-effect of Hong-Xue Tea Mixture was done. Micronuclei in the bone marrow polychromatophilic erythrocytes in each dose group of mice were examined, leucocytes number and 30 day survival rate of mice following whole-body 5.0 Gy γ irradiation were also determined. Results: Research showed that Hong-Xue Tea Mixture and Spirulina Platensis Mixture among the biological source have protective effect against radiation injury in mice. Observing experiment of dose-effect of Hong-Xue Tea Mixture show that low, medium and high dose of Hong-Xue Tea Mixture can significantly decrease bone marrow PECMN rate of mice, increase leucocytes number and 30 day survival rate. Conclusion: Hong-Xue Tea Mixture has potent protective effects against radiation injury in mice. (authors)

  6. Impaired intervertebral disc development and premature disc degeneration in mice with notochord-specific deletion of CCN2.

    Science.gov (United States)

    Bedore, Jake; Sha, Wei; McCann, Matthew R; Liu, Shangxi; Leask, Andrew; Séguin, Cheryle A

    2013-10-01

    Currently, our ability to treat intervertebral disc (IVD) degeneration is hampered by an incomplete understanding of disc development and aging. The specific function of matricellular proteins, including CCN2, during these processes remains an enigma. The aim of this study was to determine the tissue-specific localization of CCN proteins and to characterize their role in IVD tissues during embryonic development and age-related degeneration by using a mouse model of notochord-specific CCN2 deletion. Expression of CCN proteins was assessed in IVD tissues from wild-type mice beginning on embryonic day 15.5 to 17 months of age. Given the enrichment of CCN2 in notochord-derived tissues, we generated notochord-specific CCN2-null mice to assess the impact on the IVD structure and extracellular matrix composition. Using a combination of histologic evaluation and magnetic resonance imaging (MRI), IVD health was assessed. Loss of the CCN2 gene in notochord-derived cells disrupted the formation of IVDs in embryonic and newborn mice, resulting in decreased levels of aggrecan and type II collagen and concomitantly increased levels of type I collagen within the nucleus pulposus. CCN2-knockout mice also had altered expression of CCN1 (Cyr61) and CCN3 (Nov). Mirroring its role during early development, notochord-specific CCN2 deletion accelerated age-associated degeneration of IVDs. Using a notochord-specific gene targeting strategy, this study demonstrates that CCN2 expression by nucleus pulposus cells is essential to the regulation of IVD development and age-associated tissue maintenance. The ability of CCN2 to regulate the composition of the intervertebral disc suggests that it may represent an intriguing clinical target for the treatment of disc degeneration. Copyright © 2013 by the American College of Rheumatology.

  7. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice.

    Science.gov (United States)

    Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A

    2014-01-15

    Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.

  8. Cadmium modulates adipocyte functions in metallothionein-null mice

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Takashige; Nishiyama, Kaori; Kadota, Yoshito; Sato, Masao; Inoue, Masahisa; Suzuki, Shinya, E-mail: suzukis@ph.bunri-u.ac.jp

    2013-11-01

    Our previous study has demonstrated that exposure to cadmium (Cd), a toxic heavy metal, causes a reduction of adipocyte size and the modulation of adipokine expression. To further investigate the significance of the Cd action, we studied the effect of Cd on the white adipose tissue (WAT) of metallothionein null (MT{sup −/−}) mice, which cannot form atoxic Cd–MT complexes and are used for evaluating Cd as free ions, and wild type (MT{sup +/+}) mice. Cd administration more significantly reduced the adipocyte size of MT{sup −/−} mice than that of MT{sup +/+} mice. Cd exposure also induced macrophage recruitment to WAT with an increase in the expression level of Ccl2 (MCP-1) in the MT{sup −/−} mice. The in vitro exposure of Cd to adipocytes induce triglyceride release into culture medium, decrease in the expression levels of genes involved in fatty acid synthesis and lipid hydrolysis at 24 h, and at 48 h increase in phosphorylation of the lipid-droplet-associated protein perilipin, which facilitates the degradation of stored lipids in adipocytes. Therefore, the reduction in adipocyte size by Cd may arise from an imbalance between lipid synthesis and lipolysis. In addition, the expression levels of leptin, adiponectin and resistin decreased in adipocytes. Taken together, exposure to Cd may induce unusually small adipocytes and modulate the expression of adipokines differently from the case of physiologically small adipocytes, and may accelerate the risk of developing insulin resistance and type 2 diabetes. - Highlights: • Cd causes a marked reduction in adipocyte size in MT-null mice. • Cd enhances macrophage migration into adipose tissue and disrupt adipokine secretion. • MT gene alleviates Cd-induced adipocyte dysfunctions. • Cd enhances the degradation of stored lipids in adipocytes, mediated by perilipin. • Cd induces unusually small adipocytes and the abnormal expression of adipokines.

  9. Lactation Defect in a Widely Used MMTV-Cre Transgenic Line of Mice

    Science.gov (United States)

    Yuan, Taichang; Wang, Yongping; Pao, Lily; Anderson, Steve M.; Gu, Haihua

    2011-01-01

    Background MMTV-Cre mouse lines have played important roles in our understanding about the functions of numerous genes in mouse mammary epithelial cells during mammary gland development and tumorigenesis. However, numerous studies have not included MMTV-Cre mice as controls, and many investigators have not indicated which of the different MMTV-Cre founder lines were used in their studies. Here, we describe a lactation defect that severely limits the use of one of the most commonly used MMTV-Cre founder lines. Methodology/Principal Findings To explore the role of protein tyrosine phosphatase Shp1 in mammary gland development, mice bearing the floxed Shp1 gene were crossed with MMTV-Cre mice and mammary gland development was examined by histological and biochemical techniques, while lactation competency was assessed by monitoring pup growth. Surprisingly, both the Shp1fl/+;MMTV-Cre and MMTV-Cre female mice displayed a severe lactation defect when compared to the Shp1 fl/+ control mice. Histological and biochemical analyses reveal that female mice expressing the MMTV-Cre transgene, either alone or in combination with floxed genes, exhibit defects in lobuloalveolar expansion, presence of large cytoplasmic lipid droplets in luminal alveolar epithelial cells postpartum, and precocious induction of involution. Using a PCR-based genotyping method, the three different founder lines can be distinguished, and we determined that the MMTV-Cre line A, the most widely used MMTV-Cre founder line, exhibits a profound lactation defect that limits its use in studies on mammary gland development. Conclusions/Significance The identification of a lactation defect in the MMTV-Cre line A mice indicates that investigators must use MMTV-Cre alone mice as control in studies that utilize Cre recombinase to excise genes of interest from mammary epithelial cells. Our results also suggest that previous results obtained in studies using the MMTV-Cre line A line should be re-evaluated if the

  10. Transgenic Mice Over-Expressing RBP4 Have RBP4-Dependent and Light-Independent Retinal Degeneration.

    Science.gov (United States)

    Du, Mei; Phelps, Eric; Balangue, Michael J; Dockins, Aaron; Moiseyev, Gennadiy; Shin, Younghwa; Kane, Shelley; Otalora, Laura; Ma, Jian-Xing; Farjo, Rafal; Farjo, Krysten M

    2017-08-01

    Transgenic mice overexpressing serum retinol-binding protein (RBP4-Tg) develop progressive retinal degeneration, characterized by microglia activation, yet the precise mechanisms underlying retinal degeneration are unclear. Previous studies showed RBP4-Tg mice have normal ocular retinoid levels, suggesting that degeneration is independent of the retinoid visual cycle or light exposure. The present study addresses whether retinal degeneration is light-dependent and RBP4-dependent by testing the effects of dark-rearing and pharmacological lowering of serum RBP4 levels, respectively. RBP4-Tg mice reared on normal mouse chow in normal cyclic light conditions were directly compared to RBP4-Tg mice exposed to chow supplemented with the RBP4-lowering compound A1120 or dark-rearing conditions. Quantitative retinal histological analysis was conducted to assess retinal degeneration, and electroretinography (ERG) and optokinetic tracking (OKT) tests were performed to assess retinal and visual function. Ocular retinoids and bis-retinoid A2E were quantified. Dark-rearing RBP4-Tg mice effectively reduced ocular bis-retinoid A2E levels, but had no significant effect on retinal degeneration or dysfunction in RBP4-Tg mice, demonstrating that retinal degeneration is light-independent. A1120 treatment lowered serum RBP4 levels similar to wild-type mice, and prevented structural retinal degeneration. However, A1120 treatment did not prevent retinal dysfunction in RBP4-Tg mice. Moreover, RBP4-Tg mice on A1120 diet had significant worsening of OKT response and loss of cone photoreceptors compared to RBP4-Tg mice on normal chow. This may be related to the very significant reduction in retinyl ester levels in the retina of mice on A1120-supplemented diet. Retinal degeneration in RBP4-Tg mice is RBP4-dependent and light-independent.

  11. The suitability of 129SvEv mice for studying depressive-like behaviour: both males and females develop learned helplessness.

    Science.gov (United States)

    Chourbaji, Sabine; Pfeiffer, Natascha; Dormann, Christof; Brandwein, Christiane; Fradley, Rosa; Sheardown, Malcolm; Gass, P

    2010-07-29

    Behavioural studies using transgenic techniques in mice usually require extensive backcrossing to a defined background strain, e.g. to C57BL/6. In this study we investigated whether backcrossing can be replaced by using the 129SvEv strain from which the embryonic stem cells are generally obtained for gene targeting strategies to analyze e.g. depression-like behaviour. For that purpose we subjected male and female 129SvEv mice to two frequently used depression tests and compared them with commonly used C57BL/6 mice. 129SvEv and C57BL/6 mice exhibited differing profiles with regard to locomotion and pain sensitivity. However, in the learned helplessness paradigm, a procedure, which represents a valid method to detect depressive-like behaviour, 129SvEv animals develop a similar level of helplessness as C57BL/6 mice. One great advantage of the 129SvEv animals though, is the fact that in this strain even females develop helplessness, which could not be produced in C57BL/6 mice. In the tail suspension test, both genders of 129SvEv exhibited more despair behaviour than C57BL/6 animals. We therefore suggest that this strain may be utilized in the establishment of new test procedures for affective diseases, since costly and time-consuming backcrossing can be prevented, depressive-like behaviour may be analyzed effectively, and gender-specific topics could be addressed in an adequate way. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Immunomodulatory properties of Alternanthera tenella Colla aqueous extracts in mice

    Directory of Open Access Journals (Sweden)

    R.N.M. Guerra

    2003-09-01

    Full Text Available Plants from the genus Alternanthera are thought to possess antimicrobial and antiviral properties. In Brazilian folk medicine, the aqueous extract of A. tenella Colla is used for its anti-inflammatory activity. The present study investigated the immunomodulatory property of A. tenella extract by evaluating the antibody production in male albino Swiss mice weighing 20-25 g (10 per group. The animals received standard laboratory diet and water ad libitum. The effect of A. tenella extract (5 and 50 mg/kg, ip was evaluated in mice immunized with sheep red blood cells (SRBC 10%, ip as T-dependent antigen, or in mice stimulated with mitogens (10 µg, Escherichia coli lipopolysaccharide, LPS, ip. The same doses (5 and 50 mg/kg, ip of A. tenella extract were also tested for antitumor activity, using the Ehrlich ascites carcinoma as model. The results showed that 50 mg/kg A. tenella extract ip significantly enhanced IgM (64% and IgG2a (50% antibody production in mice treated with LPS mitogen. The same dose had no effect on IgM-specific response, whereas the 5 mg/kg treatment caused a statiscally significant reduction of anti-SRBC IgM-specific antibodies (82%. The aqueous extract of A. tenella (50 mg/kg increased the life span (from 16 ± 1 to 25 ± 1 days and decreased the number of viable tumor cells (59% in mice with Ehrlich ascites carcinoma. The present findings are significant for the development of alternative, inexpensive and perhaps even safer strategies for cancer treatment.

  13. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  14. Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.

    Science.gov (United States)

    Hsieh, Lawrence S; Wen, John H; Miyares, Laura; Lombroso, Paul J; Bordey, Angélique

    2017-01-10

    Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Neurobehavioral development of CD-1 mice after combined gestational and postnatal exposure to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Dell` Omo, G [Section of Behavioral Pathophysiology, Lab. di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Rome (Italy); Fiore, M [Section of Behavioral Pathophysiology, Lab. di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Rome (Italy); Petruzzi, S [Section of Behavioral Pathophysiology, Lab. di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Rome (Italy); Alleva, E [Section of Behavioral Pathophysiology, Lab. di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Rome (Italy); Bignami, G [Section of Behavioral Pathophysiology, Lab. di Fisiopatologia di Organo e di Sistema, Istituto Superiore di Sanita, Rome (Italy)

    1995-09-01

    Outbred CD-1 mice were exposed continuously to ozone (O{sub 3}, 0.6 ppm) from 6 days prior to the formation of breeding pairs to the time of weaning of the offspring on postnatal day 22 (PND 22) or to PND 26. One half of the mice in each of eight O{sub 3} and eight control litters were subjected on PND 24 to a 20-min open-field test after IP treatment by either saline or scopolamine (2 mg/kg). The remaining mice (those exposed until PND 26) were subjected on PNDs 28-31 to a conditioned place preference (CPP) test, using a short schedule with a single IP injection on PND 29 of either d-amphetamine (3.3 mg/kg) or saline. Subsequently, the saline mice of the open-field experiment were used on PND 59 for an activity test in one of the CPP apparatus compartments after IP treatment by either d-amphetamine (same dose) or saline. In addition, the saline mice of the CPP experiment underwent a multitrial, step-through passive avoidance (PA) acquisition test on PND 59 or 60, followed 24 h later by a single-trial retention test. In the absence of effects on reproductive performance (proportion of successful pregnancies, litter size, offspring viability, and sex ratio), O{sub 3} offspring showed a long-lasting reduction in body weight without modification of sec differences. Ozone effects on neurobehavioral development were not large and quite selective, including: attenuation of the sex differences in several responses (rearing and sniffing in the open-field, activity in the final CPP test session); a change in response choices in the final CPP test, in the absence of a main effect on conditioning; a reduction of grooming in the activity test on PND 29; and impairment of PA acquisition limited to the initial period of training. (orig.)

  16. Neurobehavioral development of CD-1 mice after combined gestational and postnatal exposure to ozone.

    Science.gov (United States)

    Dell'Omo, G; Fiore, M; Petruzzi, S; Alleva, E; Bignami, G

    1995-01-01

    Outbred CD-1 mice were exposed continuously to ozone (O3, 0.6 ppm) from 6 days prior to the formation of breeding pairs to the time of weaning of the offspring on postnatal day 22 (PND 22) or to PND 26. One half of the mice in each of eight O3 and eight control litters were subjected on PND 24 to a 20-min open-field test after IP treatment by either saline or scopolamine (2 mg/kg). The remaining mice (those exposed until PND 26) were subjected on PNDs 28-31 to a conditioned place preference (CPP) test, using a short schedule with a single IP injection on PND 29 of either d-amphetamine (3.3 mg/kg) or saline. Subsequently, the saline mice of the open-field experiment were used on PND 59 for an activity test in one of the CPP apparatus compartments after IP treatment by either d-amphetamine (same dose) or saline. In addition, the saline mice of the CPP experiment underwent a multi-trial, step-through passive avoidance (PA) acquisition test on PND 59 or 60, followed 24 h later by a single-trial retention test. In the absence of effects on reproductive performance (proportion of successful pregnancies, litter size, offspring viability, and sex ratio), O3 offspring showed a long-lasting reduction in body weight without modification of sex differences. Ozone effects on neurobehavioral development were not large and quite selective, including: attenuation of the sex differences in several responses (rearing and sniffing in the open-field, activity in the final CPP test session); a change in response choices in the final CPP test, in the absence of a main effect on conditioning; a reduction of grooming in the activity test on PND 29; and impairment of PA acquisition limited to the initial period of training.

  17. Proteases in Plasma and Kidney of db/db Mice as Markers of Diabetes-Induced Nephropathy

    Science.gov (United States)

    Hadler-Olsen, E.; Winberg, J.-O.; Reinholt, F. P.; Larsen, T.; Uhlin-Hansen, L.; Jenssen, T.; Berg, E.; Kolset, S. O.

    2011-01-01

    Db/db mice are overweight, dyslipidemic and develop diabetic complications, relevant for similar complications in human type 2 diabetes. We have used db/db and db/+ control mice to investigate alterations in proteinase expression and activity in circulation and kidneys by SDS-PAGE zymography, electron microscopy, immunohistochemistry, Western blotting, and in situ zymography. Plasma from db/db mice contained larger amounts of serine proteinases compared to db/+ mice. Kidneys from the db/db mice had a significantly larger glomerular surface area and somewhat thicker glomerular basement membranes compared to the db/+ mice. Furthermore, kidney extracts from db/+ mice contained metalloproteinases with M r of approximately 92000, compatible with MMP-9, not observed in db/db mice. These results indicate that higher levels of serine proteinases in plasma may serve as potential markers for kidney changes in db/db mice, whereas a decrease in MMP-9 in the kidney may be related to the glomerular changes. PMID:22363890

  18. Induction of premalignant host responses by cathepsin x/z-deficiency in Helicobacter pylori-infected mice.

    Directory of Open Access Journals (Sweden)

    Sabine Krueger

    Full Text Available Helicobacter pylori are responsible for the induction of chronic gastric inflammation progressing to atrophy, metaplasia, and gastric cancer. The overexpression of Cathepsin X/Z (Ctsz in H. pylori-infected mucosa and gastric cancer is mediated predominantly by an augmented migration of ctsz(-/-positive macrophages and the up-regulation of Ctsz in tumor epithelium. To explore the Ctsz-function in the context of chronic inflammation and the development of preneoplastic lesions, we used Ctsz-deficient mice in a H. pylori gastritis model. Ctsz (-/- and wild-type (wt mice were infected with H. pylori strain SS1. The mice were sacrificed at 24, 36, and 50 weeks post infection (wpi. The stomach was removed, and gastric strips were snap-frozen or embedded and stained with H&E. Tissue sections were scored for epithelial lesions and inflammation. Ki-67 and F4/80 immunostaining were used to measure epithelial cell proliferation and macrophage infiltration, respectively. The upregulation of compensating cathepsins and cytokines were confirmed by Western blotting and quantitative RT-PCR. SS1-infected wt and ctsz (-/- mice showed strong inflammation, foveolar hyperplasia, atrophy, and cystically-dilated glands. However, at 50 wpi, ctsz (-/- mice developed significantly more severe spasmolytic polypeptide-expressing metaplasia (SPEM, showed enhanced epithelial proliferation, and higher levels of infiltrating macrophages. Induction of cytokines was higher and significantly prolonged in ctsz (-/- mice compared to wt. Ctsz deficiency supports H. pylori-dependent development of chronic gastritis up to metaplasia, indicating a protective, but not proteolytic, function of Ctsz in inflammatory gastric disease.

  19. The influence of selenium, vitamin E, and oestrogen on the development of tumours in mice exposed to 90Sr

    International Nuclear Information System (INIS)

    Bierke, P.

    1994-01-01

    The primary object of this experiment was to evaluate the potential role of the antioxidants, selenium and vitamin E, in the anti-tumour defence of mice internally irradiated with 90 Sr. Comparison in terms of neoplastic response was made between mice kept on a selenium and vitamin E deficient diet and mice given the same deficient diet but administered selenium and/or vitamin E in a controlled manner. The influence of simultaneous oestrogen treatment, known to promote radiogenic osteosarcoma induction, was also investigated. Non-irradiated mice were used as controls. Results are presented as crude and actuarial tumour incidence. No significant difference in tumour yield or actuarial tumour incidence was found when the differently treated mouse groups were compared, and accordingly no support was gained for the theory that the antioxidants selenium and vitamin E constitute a critical part of the complex defence system against neoplasms. (orig.)

  20. Prohibitin-induced obesity leads to anovulation and polycystic ovary in mice

    Directory of Open Access Journals (Sweden)

    Sudharsana Rao Ande

    2017-06-01

    Full Text Available Polycystic ovary syndrome (PCOS is a prevalent endocrine disorder and the most common cause of female infertility. However, its etiology and underlying mechanisms remain unclear. Here we report that a transgenic obese mouse (Mito-Ob developed by overexpressing prohibitin in adipocytes develops polycystic ovaries. Initially, the female Mito-Ob mice were equally fertile to their wild-type littermates. The Mito-Ob mice began to gain weight after puberty, became significantly obese between 3-6 months of age, and ∼25% of them had become infertile by 9 months of age. Despite obesity, female Mito-Ob mice maintained glucose homeostasis and insulin sensitivity similar to their wild-type littermates. Mito-Ob mice showed morphologically distinct polycystic ovaries and elevated estradiol, but normal testosterone and insulin levels. Histological analysis of the ovaries showed signs of impaired follicular dynamics, such as preantral follicular arrest and reduced number, or absence, of corpus luteum. The ovaries of the infertile Mito-Ob mice were closely surrounded by periovarian adipose tissue, suggesting a potential role in anovulation. Collectively, these data suggest that elevated estradiol and obesity per se might lead to anovulation and polycystic ovaries independent of hyperinsulinemia and hyperandrogenism. As obesity often coexists with other abnormalities known to be involved in the development of PCOS such as insulin resistance, compensatory hyperinsulinemia and hyperandrogenism, the precise role of these factors in PCOS remains unclear. Mito-Ob mice provide an opportunity to study the effects of obesity on anovulation and ovarian cyst formation independent of the major drivers of obesity-linked PCOS.

  1. [Anatomy and histology characteristics of lymph node in nude mice].

    Science.gov (United States)

    Sun, R; Gao, B; Guo, C B

    2017-10-18

    To compare the differences of anatomical and histological characteristics of lymph nodes between BALB/c nude mice and BALB/c mice. Firstly, twenty BALB/c nude mice and twenty BALB/c mice were dissected by using a surgical microscope. Secondly, the differences of T cells and B cells at the lymph node were compared by the expressions of CD 3 and CD 20 immunohistochemistry dyes. There were, on average, 23 nodes per mouse contained within the large lymph node assembly in the BALB/c nude mouse. The anatomical features of the lymph node distribution in the nude mice were mainly found in the neck with relatively higher density. There were two lymph nodes both in the submandible lymph nodes group and in the superficial cervical lymph nodes group (the constituent ratios were 95% and 90%, respectively) in the BALB/c nude mice, but there were four lymph nodes (the constituent ratios were 95% and 90%, respectively) in the BALB/c mice. There were significant difference between the BALB/c nude mice and the BALB/c mice. Mostly there were two lymph nodes of deep cervical lymph nodes both in the BALB/c nude mice and the BALB/c mice (the constituent ratios were 95% and 100%, respectively). There were no significant difference between the BALB/c nude mice and the BALB/c mice. We confirmed that the number of CD 3 -positive T lymphocytes in lymph nodes of the nude mice decreased greatly as compared with the BALB/c mice. Expressions of CD3 in T cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There were significant differences between the BALB/c nude mice and the BALB/c mice. Expressions of CD20 in B cells were 95% and 100% in the BALB/c nude mice and in the BALB/c mice, respectively. There was no significant difference between the BALB/c nude mice and BALB/c mice. The anatomical pictures of lymph node distribution in the nude mouse will be benefit to those who are interested. The anatomical features of the lymph node local higher density in neck of

  2. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Robert W., E-mail: robert.moore@wisc.edu [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706 (United States); Fritz, Wayne A., E-mail: Wayne.Fritz@covance.com [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706 (United States); Schneider, Andrew J., E-mail: ajschnei@wisc.edu [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Lin, Tien-Min, E-mail: tlin1@facstaff.wisc.edu [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Branam, Amanda M., E-mail: bran2117@hotmail.com [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706 (United States); Safe, Stephen, E-mail: SSAFE@cvm.tamu.edu [Department of Veterinary Physiology and Pharmacology, 4466 TAMU, Texas A& M University, College Station, TX 77843 (United States); Peterson, Richard E., E-mail: richard.peterson@wisc.edu [School of Pharmacy, 777 Highland Ave., University of Wisconsin-Madison, Madison, WI 53705 (United States); Molecular and Environmental Toxicology Center, 1400 University Ave., University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2016-08-15

    It is well established that the prototypical aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can both cause and protect against carcinogenesis in non-transgenic rodents. But because these animals almost never develop prostate cancer with old age or after carcinogen exposure, whether AHR activation can affect cancer of the prostate remained unknown. We used animals designed to develop this disease, Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, to investigate the potential role of AHR signaling in prostate cancer development. We previously reported that AHR itself has prostate tumor suppressive functions in TRAMP mice; i.e., TRAMP mice in which Ahr was knocked out developed neuroendocrine prostate carcinomas (NEPC) with much greater frequency than did those with both Ahr alleles. In the present study we investigated effects of AHR activation by three different xenobiotics. In utero and lactational TCDD exposure significantly increased NEPC tumor incidence in TRAMP males, while chronic TCDD treatment in adulthood had the opposite effect, a significant reduction in NEPC incidence. Chronic treatment of adult TRAMP mice with the low-toxicity selective AHR modulators indole-3-carbinol or 3,3′-diindolylmethane did not significantly protect against these tumors. Thus, we demonstrate, for the first time, that ligand-dependent activation of the AHR can alter prostate cancer incidence. The nature of the responses depended on the timing of AHR activation and ligand structures. - Highlights: • TRAMP mice model aggressive neuroendocrine prostate carcinomas in men • In utero/lactational TCDD exposure raised prostate cancer incidence in TRAMP mice. • TCDD treatment in adulthood lowered prostate cancer incidence in TRAMP mice. • No significant protection was seen in TRAMP mice given I3C or DIM in adulthood. • This is the first report that TCDD alters prostate cancer incidence in lab animals.

  3. 2,3,7,8-Tetrachlorodibenzo-p-dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice

    International Nuclear Information System (INIS)

    Moore, Robert W.; Fritz, Wayne A.; Schneider, Andrew J.; Lin, Tien-Min; Branam, Amanda M.; Safe, Stephen; Peterson, Richard E.

    2016-01-01

    It is well established that the prototypical aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can both cause and protect against carcinogenesis in non-transgenic rodents. But because these animals almost never develop prostate cancer with old age or after carcinogen exposure, whether AHR activation can affect cancer of the prostate remained unknown. We used animals designed to develop this disease, Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) mice, to investigate the potential role of AHR signaling in prostate cancer development. We previously reported that AHR itself has prostate tumor suppressive functions in TRAMP mice; i.e., TRAMP mice in which Ahr was knocked out developed neuroendocrine prostate carcinomas (NEPC) with much greater frequency than did those with both Ahr alleles. In the present study we investigated effects of AHR activation by three different xenobiotics. In utero and lactational TCDD exposure significantly increased NEPC tumor incidence in TRAMP males, while chronic TCDD treatment in adulthood had the opposite effect, a significant reduction in NEPC incidence. Chronic treatment of adult TRAMP mice with the low-toxicity selective AHR modulators indole-3-carbinol or 3,3′-diindolylmethane did not significantly protect against these tumors. Thus, we demonstrate, for the first time, that ligand-dependent activation of the AHR can alter prostate cancer incidence. The nature of the responses depended on the timing of AHR activation and ligand structures. - Highlights: • TRAMP mice model aggressive neuroendocrine prostate carcinomas in men • In utero/lactational TCDD exposure raised prostate cancer incidence in TRAMP mice. • TCDD treatment in adulthood lowered prostate cancer incidence in TRAMP mice. • No significant protection was seen in TRAMP mice given I3C or DIM in adulthood. • This is the first report that TCDD alters prostate cancer incidence in lab animals.

  4. Mutagenicity of nicotine in Schistosoma mansoni - infected mice ...

    African Journals Online (AJOL)

    Analysis of meiotic chromosomes showed significant elevation in the Schistosoma-infected mice. Administration of nicotine to infected mice substantially increased the percentages of micronucleated cells and total CAs. The percentage of chromosomal abnormalities in spermatocyte metaphase-I cells increased significantly ...

  5. Bodyweight Assessment of Enamelin Null Mice

    Directory of Open Access Journals (Sweden)

    Albert H.-L. Chan

    2013-01-01

    Full Text Available The Enam null mice appear to be smaller than wild-type mice, which prompted the hypothesis that enamel defects negatively influence nutritional intake and bodyweight gain (BWG. We compared the BWG of Enam−/− and wild-type mice from birth (D0 to Day 42 (D42. Wild-type (WT and Enam−/− (N mice were given either hard chow (HC or soft chow (SC. Four experimental groups were studied: WTHC, WTSC, NHC, and NSC. The mother’s bodyweight (DBW and the average litter bodyweight (ALBW were obtained from D0 to D21. After D21, the pups were separated from the mother and provided the same type of food. Litter bodyweights were measured until D42. ALBW was compared at 7-day intervals using one-way ANOVA, while the influence of DBW on ALBW was analyzed by mixed-model analyses. The ALBW of Enam−/− mice maintained on hard chow (NHC was significantly lower than the two WT groups at D21 and the differences persisted into young adulthood. The ALBW of Enam−/− mice maintained on soft chow (NSC trended lower, but was not significantly different than that of the WT groups. We conclude that genotype, which affects enamel integrity, and food hardness influence bodyweight gain in postnatal and young adult mice.

  6. Proteinuria in mice expressing PKB/SGK-resistant GSK3.

    Science.gov (United States)

    Boini, Krishna M; Amann, Kerstin; Kempe, Daniela; Alessi, Dario R; Lang, Florian

    2009-01-01

    SGK1 is critically important for mineralocorticoid/salt-induced glomerular injury. SGK1 inactivates GSK3, which downregulates Snail, a DNA-binding molecule repressing the transcription of nephrin, a protein critically important for the integrity of the glomerular slit membrane. PKB/SGK-dependent GSK regulation is disrupted in mice carrying a mutation, in which the serine in the SGK/PKB-phosphorylation consensus sequence is replaced by alanine. The present study explored whether PKB/SGK-dependent GSK3 regulation influences glomerular proteinuria. Gene-targeted knockin mice with mutated and thus PKB/SGK-resistant GSK3alpha,beta (gsk3(KI)) were compared with their wild-type littermates (gsk3(WT)). gsk3(KI) and gsk3(WT) mice were implanted with DOCA release pellets and offered 1% saline as drinking water for 21 days. Under standard diet, tap water intake and absence of DOCA, urinary flow rate, glomerular filtration rate, and urinary albumin excretion were significantly larger and blood pressure was significantly higher in gsk3(KI) than in gsk3(WT) mice. Within 18 days, DOCA/salt treatment significantly increased fluid intake and urinary flow rate, urinary protein and albumin excretion, and blood pressure in both genotypes but the respective values were significantly higher in gsk3(KI) than in gsk3(WT) mice. Plasma albumin concentration was significantly lower in gsk3(KI) than in gsk3(WT) mice. Proteinuria was abrogated by lowering of blood pressure with alpha(1)-blocker prazosin (1 microg/g body wt) in 8-mo-old mice. According to immunofluorescence, nephrin at 3 and 8 mo and podocin expression at 3 mo were significantly lower in gsk3(KI) than in gsk3(WT) mice. After 18 days, DOCA/salt treatment renal glomerular sclerosis and tubulointerstitial damage were significantly more pronounced in gsk3(KI) than in gsk3(WT) mice. The observations reveal that disruption of PKB/SGK-dependent regulation of GSK3 leads to glomerular injury with proteinuria, which may at least

  7. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice.

    Science.gov (United States)

    Bodin, Johanna; Kocbach Bølling, Anette; Wendt, Anna; Eliasson, Lena; Becher, Rune; Kuper, Frieke; Løvik, Martinus; Nygaard, Unni Cecilie

    2015-01-01

    Type 1 diabetes mellitus (T1DM) is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA) accelerates the spontaneous development of diabetes in non-obese diabetic (NOD) mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l), a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l) or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4) from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  8. Exposure to bisphenol A, but not phthalates, increases spontaneous diabetes type 1 development in NOD mice

    Directory of Open Access Journals (Sweden)

    Johanna Bodin

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is an autoimmune destruction of insulin producing pancreatic beta-cells due to a genetic predisposition and can be triggered by environmental factors. We have previously shown that bisphenol A (BPA accelerates the spontaneous development of diabetes in non-obese diabetic (NOD mice. Here, we hypothesized that oral exposure to a mixture of the endocrine disruptors BPA and phthalates, relevant for human exposure, would accelerate diabetes development compared to BPA alone. NOD mice were exposed to BPA (1 mg/l, a mixture of phthalates (DEHP 1 mg/l, DBP 0.2 mg/l, BBP 10 mg/l and DiBP 20 mg/l or a combination of BPA and the phthalate mixture through drinking water from conception and throughout life. Previous observations that BPA exposure increased the prevalence of diabetes and insulitis and decreased the number of tissue resident macrophages in pancreas were confirmed, and extended by demonstrating that BPA exposure also impaired the phagocytic activity of peritoneal macrophages. None of these effects were observed after phthalate exposure alone. The phthalate exposure in combination with BPA seemed to dampen the BPA effects on macrophage number and function as well as diabetes development, but not insulitis development. Exposure to BPA alone or in combination with phthalates decreased cytokine release (TNFα, IL-6, IL-10, IFNγ, IL-4 from in vitro stimulated splenocytes and lymph node cells, indicating systemic changes in immune function. In conclusion, exposure to BPA, but not to phthalates or mixed exposure to BPA and phthalates, accelerated diabetes development in NOD mice, apparently in part via systemic immune alterations including decreased macrophage function.

  9. Incomplete development of the spleen and the deformity in the chimeras between asplenic mutant (Dominant hemimelia) and normal mice.

    Science.gov (United States)

    Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K

    1995-08-01

    The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.

  10. C57BL/6 mice need MHC class II Aq to develop collagen-induced arthritis dependent on autoreactive T cells.

    Science.gov (United States)

    Bäcklund, Johan; Li, Cuiqin; Jansson, Erik; Carlsen, Stefan; Merky, Patrick; Nandakumar, Kutty-Selva; Haag, Sabrina; Ytterberg, Jimmy; Zubarev, Roman A; Holmdahl, Rikard

    2013-07-01

    Collagen-induced arthritis (CIA) has traditionally been performed in MHC class II A(q)-expressing mice, whereas most genetically modified mice are on the C57BL/6 background (expressing the b haplotype of the major histocompatibility complex (MHC) class II region). However, C57BL/6 mice develop arthritis after immunisation with chicken-derived collagen type II (CII), but arthritis susceptibility has been variable, and the immune specificity has not been clarified. To establish a CIA model on the C57BL/6 background with a more predictable and defined immune response to CII. Both chicken and rat CII were arthritogenic in C57BL/6 mice provided they were introduced with high doses of Mycobacterium tuberculosis adjuvant. However, contaminating pepsin was strongly immunogenic and was essential for arthritis development. H-2(b)-restricted T cell epitopes on chicken or rat CII could not be identified, but expression of A(q) on the C57BL/6 background induced T cell response to the CII260-270 epitope, and also prolonged the arthritis to be more chronic. The putative (auto)antigen and its arthritogenic determinants in C57BL/6 mice remains undisclosed, questioning the value of the model for addressing T cell-driven pathological pathways in arthritis. To circumvent this impediment, we recommend MHC class II congenic C57BL/6N.Q mice, expressing A(q), with which T cell determinants have been thoroughly characterised.

  11. Heat production during contraction in skeletal muscle of hypothyroid mice

    Energy Technology Data Exchange (ETDEWEB)

    Leijendekker, W.J.; van Hardeveld, C.; Elzinga, G. (Free Univ., Amsterdam (Netherlands))

    1987-08-01

    The effect of hypothyroidism on tension-independent and -dependent heat produced during a twitch and a tetanic contraction of extensor digitorum longus (EDL) and soleus muscle of mice was examined. The amount of heat produced during a twitch and the rate of heat development during a tetanus of EDL and soleus were measured at and above optimal length. The effect of hypothyroidism on force production was <30%. Straight lines were used to fit the relation between heat production and force. Hypothyroidism significantly decreases tension-independent heat during contraction of EDL and soleus muscle. Because the tension-independent heat is considered to be related to the Ca{sup 2+} cycling, these findings suggest that ATP splitting due to the Ca{sup 2+} cycling is reduced in hypothyroid mice. This conclusion was strengthened by the observation that the oxalate-supported {sup 45}Ca{sup 2+}-uptake activity and {sup 45}Ca{sup 2+}-loading capacity of muscle homogenates from hypothyroid mice were reduced, respectively, to 51 and to 65% in soleus and to 63 and 73% in EDL muscle as compared with euthyroid mice. The tension-dependent rate of heat development during a tetanus was also decreased in soleus muscle of hypothyroid mice. This suggests a lower rate of ATP hydrolysis related to cross-bridge cycling in this muscle due to the hypothyroid state.

  12. Inherent and antigen-induced airway hyperreactivity in NC mice

    Directory of Open Access Journals (Sweden)

    Tetsuto Kobayashi

    1999-01-01

    Full Text Available In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those strains in vivo. NC mice again showed comparable airway reactivity to that seen in A/J mice and a significantly greater reactivity than that seen in BALB/c and C57BL/6 mice. To investigate the effects of airway inflammation on airway reactivity to acetylcholine in vivo, NC and BALB/c mice were sensitized to and challenged with antigen. Sensitization to and challenge with antigen induced accumulation of inflammatory cells, especially eosinophils, in lung and increased airway reactivity in NC and BALB/c mice. These results indicate that NC mice exhibit inherent and antigen-induced airway hyperreactivity. Therefore, NC mice are a suitable strain to use in investigating the mechanisms underlying airway hyperreactivity and such studies will provide beneficial information for understanding the pathophysiology of asthma.

  13. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice

    International Nuclear Information System (INIS)

    Walker, Mary K.; Boberg, Jason R.; Walsh, Mary T.; Wolf, Valerie; Trujillo, Alisha; Duke, Melissa Skelton; Palme, Rupert; Felton, Linda A.

    2012-01-01

    Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuously for 5 h after treatment, and feces collected 6–10 h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5 h, while MAP returned to normal within 2 h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2–5 h post dosing. MAP and heart rate did not differ 24 h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic–pituitary–adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage. -- Highlights: ► Developed a novel oral dosing method using a pill that mice will readily consume. ► Assessed stress by blood pressure, heart rate, and fecal corticosterone metabolites. ► Demonstrated that pill dosing is significantly less stressful than oral gavage.

  14. A less stressful alternative to oral gavage for pharmacological and toxicological studies in mice

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Mary K., E-mail: mwalker@salud.unm.edu [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Boberg, Jason R.; Walsh, Mary T.; Wolf, Valerie; Trujillo, Alisha; Duke, Melissa Skelton [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (United States); Palme, Rupert [Department of Biomedical Sciences/Biochemistry, University of Veterinary Medicine, Vienna (Austria); Felton, Linda A. [Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM (United States)

    2012-04-01

    Oral gavage dosing can induce stress and potentially confound experimental measurements, particularly when blood pressure and heart rate are endpoints of interest. Thus, we developed a pill formulation that mice would voluntarily consume and tested the hypothesis that pill dosing would be significantly less stressful than oral gavage. C57Bl/6 male mice were singly housed and on four consecutive days were exposed to an individual walking into the room (week 1, control), a pill being placed into the cage (week 2), and a dose of water via oral gavage (week 3). Blood pressure and heart rate were recorded by radiotelemetry continuously for 5 h after treatment, and feces collected 6–10 h after treatment for analysis of corticosterone metabolites. Both pill and gavage dosing significantly increased mean arterial pressure (MAP) during the first hour, compared to control. However, the increase in MAP was significantly greater after gavage and remained elevated up to 5 h, while MAP returned to normal within 2 h after a pill. Neither pill nor gavage dosing significantly increased heart rate during the first hour, compared to control; however, pill dosing significantly reduced heart rate while gavage significantly increased heart rate 2–5 h post dosing. MAP and heart rate did not differ 24 h after dosing. Lastly, only gavage dosing significantly increased fecal corticosterone metabolites, indicating a systemic stress response via activation of the hypothalamic–pituitary–adrenal axis. These data demonstrated that this pill dosing method of mice is significantly less stressful than oral gavage. -- Highlights: ► Developed a novel oral dosing method using a pill that mice will readily consume. ► Assessed stress by blood pressure, heart rate, and fecal corticosterone metabolites. ► Demonstrated that pill dosing is significantly less stressful than oral gavage.

  15. Methylprednisolone acetate induces, and Δ7-dafachronic acid suppresses, Strongyloides stercoralis hyperinfection in NSG mice.

    Science.gov (United States)

    Patton, John B; Bonne-Année, Sandra; Deckman, Jessica; Hess, Jessica A; Torigian, April; Nolan, Thomas J; Wang, Zhu; Kliewer, Steven A; Durham, Amy C; Lee, James J; Eberhard, Mark L; Mangelsdorf, David J; Lok, James B; Abraham, David

    2018-01-02

    Strongyloides stercoralis hyperinfection causes high mortality rates in humans, and, while hyperinfection can be induced by immunosuppressive glucocorticoids, the pathogenesis remains unknown. Since immunocompetent mice are resistant to infection with S. stercoralis , we hypothesized that NSG mice, which have a reduced innate immune response and lack adaptive immunity, would be susceptible to the infection and develop hyperinfection. Interestingly, despite the presence of large numbers of adult and first-stage larvae in S. stercoralis -infected NSG mice, no hyperinfection was observed even when the mice were treated with a monoclonal antibody to eliminate residual granulocyte activity. NSG mice were then infected with third-stage larvae and treated for 6 wk with methylprednisolone acetate (MPA), a synthetic glucocorticoid. MPA treatment of infected mice resulted in 50% mortality and caused a significant >10-fold increase in the number of parasitic female worms compared with infected untreated mice. In addition, autoinfective third-stage larvae, which initiate hyperinfection, were found in high numbers in MPA-treated, but not untreated, mice. Remarkably, treatment with Δ7-dafachronic acid, an agonist of the parasite nuclear receptor Ss -DAF-12, significantly reduced the worm burden in MPA-treated mice undergoing hyperinfection with S. stercoralis Overall, this study provides a useful mouse model for S. stercoralis autoinfection and suggests a therapeutic strategy for treating lethal hyperinfection.

  16. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin.

    Science.gov (United States)

    Bergheim, Ina; Weber, Synia; Vos, Miriam; Krämer, Sigrid; Volynets, Valentina; Kaserouni, Seline; McClain, Craig J; Bischoff, Stephan C

    2008-06-01

    Consumption of refined carbohydrates in soft drinks has been postulated to be a key factor in the development of non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to test the effects of ad libitum access to different sugars consumed in drinking water on hepatic fat accumulation. For 8 weeks, C57BL/J6 mice had free access to solutions containing 30% glucose, fructose, sucrose, or water sweetened with artificial sweetener (AS) or plain water. Body weight, caloric intake, hepatic steatosis and lipid peroxidation were assessed. Total caloric intake and weight gain were highest in mice exposed to glucose. In contrast, hepatic lipid accumulation was significantly higher in mice consuming fructose compared to all other groups. Moreover, endotoxin levels in portal blood and lipid peroxidation as well as TNFalpha expression were significantly higher in fructose fed mice than in all other groups. Concomitant treatment of fructose fed mice with antibiotics (e.g., polymyxin B and neomycin) markedly reduced hepatic lipid accumulation in fructose fed mice. These data support the hypothesis that high fructose consumption may not only lead to liver damage through overfeeding but also may be directly pro-inflammatory by increasing intestinal translocation of endotoxin.

  17. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  18. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  19. Heart tissue of harlequin (hq)/Big Blue mice has elevated reactive oxygen species without significant impact on the frequency and nature of point mutations in nuclear DNA

    Energy Technology Data Exchange (ETDEWEB)

    Crabbe, Rory A. [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada); Hill, Kathleen A., E-mail: khill22@uwo.ca [Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7 (Canada)

    2010-09-10

    Age is a major risk factor for heart disease, and cardiac aging is characterized by elevated mitochondrial reactive oxygen species (ROS) with compromised mitochondrial and nuclear DNA integrity. To assess links between increased ROS levels and mutations, we examined in situ levels of ROS and cII mutation frequency, pattern and spectrum in the heart of harlequin (hq)/Big Blue mice. The hq mouse is a model of premature aging with mitochondrial dysfunction and increased risk of oxidative stress-induced heart disease with the means for in vivo mutation detection. The hq mutation produces a significant downregulation in the X-linked apoptosis-inducing factor gene (Aif) impairing both the antioxidant and oxidative phosphorylation functions of AIF. Brain and skin of hq disease mice have elevated frequencies of point mutations in nuclear DNA and histopathology characterized by cell loss. Reports of associated elevations in ROS in brain and skin have mixed results. Herein, heart in situ ROS levels were elevated in hq disease compared to AIF-proficient mice (p < 0.0001) yet, mutation frequency and pattern were similar in hq disease, hq carrier and AIF-proficient mice. Heart cII mutations were also assessed 15 days following an acute exposure to an exogenous ROS inducer (10 mg paraquat/kg). Acute paraquat exposure with a short mutant manifestation period was insufficient to elevate mutation frequency or alter mutation pattern in the post-mitotic heart tissue of AIF-proficient mice. Paraquat induction of ROS requires mitochondrial complex I and thus is likely compromised in hq mice. Results of this preliminary survey and the context of recent literature suggest that determining causal links between AIF deficiency and the premature aging phenotypes of specific tissues is better addressed with assay of mitochondrial ROS and large-scale changes in mitochondrial DNA in specific cell types.

  20. Heart tissue of harlequin (hq)/Big Blue mice has elevated reactive oxygen species without significant impact on the frequency and nature of point mutations in nuclear DNA

    International Nuclear Information System (INIS)

    Crabbe, Rory A.; Hill, Kathleen A.

    2010-01-01

    Age is a major risk factor for heart disease, and cardiac aging is characterized by elevated mitochondrial reactive oxygen species (ROS) with compromised mitochondrial and nuclear DNA integrity. To assess links between increased ROS levels and mutations, we examined in situ levels of ROS and cII mutation frequency, pattern and spectrum in the heart of harlequin (hq)/Big Blue mice. The hq mouse is a model of premature aging with mitochondrial dysfunction and increased risk of oxidative stress-induced heart disease with the means for in vivo mutation detection. The hq mutation produces a significant downregulation in the X-linked apoptosis-inducing factor gene (Aif) impairing both the antioxidant and oxidative phosphorylation functions of AIF. Brain and skin of hq disease mice have elevated frequencies of point mutations in nuclear DNA and histopathology characterized by cell loss. Reports of associated elevations in ROS in brain and skin have mixed results. Herein, heart in situ ROS levels were elevated in hq disease compared to AIF-proficient mice (p < 0.0001) yet, mutation frequency and pattern were similar in hq disease, hq carrier and AIF-proficient mice. Heart cII mutations were also assessed 15 days following an acute exposure to an exogenous ROS inducer (10 mg paraquat/kg). Acute paraquat exposure with a short mutant manifestation period was insufficient to elevate mutation frequency or alter mutation pattern in the post-mitotic heart tissue of AIF-proficient mice. Paraquat induction of ROS requires mitochondrial complex I and thus is likely compromised in hq mice. Results of this preliminary survey and the context of recent literature suggest that determining causal links between AIF deficiency and the premature aging phenotypes of specific tissues is better addressed with assay of mitochondrial ROS and large-scale changes in mitochondrial DNA in specific cell types.

  1. Genetic Mapping in Mice Reveals the Involvement of Pcdh9 in Long-Term Social and Object Recognition and Sensorimotor Development.

    Science.gov (United States)

    Bruining, Hilgo; Matsui, Asuka; Oguro-Ando, Asami; Kahn, René S; Van't Spijker, Heleen M; Akkermans, Guus; Stiedl, Oliver; van Engeland, Herman; Koopmans, Bastijn; van Lith, Hein A; Oppelaar, Hugo; Tieland, Liselotte; Nonkes, Lourens J; Yagi, Takeshi; Kaneko, Ryosuke; Burbach, J Peter H; Yamamoto, Nobuhiko; Kas, Martien J

    2015-10-01

    Quantitative genetic analysis of basic mouse behaviors is a powerful tool to identify novel genetic phenotypes contributing to neurobehavioral disorders. Here, we analyzed genetic contributions to single-trial, long-term social and nonsocial recognition and subsequently studied the functional impact of an identified candidate gene on behavioral development. Genetic mapping of single-trial social recognition was performed in chromosome substitution strains, a sophisticated tool for detecting quantitative trait loci (QTL) of complex traits. Follow-up occurred by generating and testing knockout (KO) mice of a selected QTL candidate gene. Functional characterization of these mice was performed through behavioral and neurological assessments across developmental stages and analyses of gene expression and brain morphology. Chromosome substitution strain 14 mapping studies revealed an overlapping QTL related to long-term social and object recognition harboring Pcdh9, a cell-adhesion gene previously associated with autism spectrum disorder. Specific long-term social and object recognition deficits were confirmed in homozygous (KO) Pcdh9-deficient mice, while heterozygous mice only showed long-term social recognition impairment. The recognition deficits in KO mice were not associated with alterations in perception, multi-trial discrimination learning, sociability, behavioral flexibility, or fear memory. Rather, KO mice showed additional impairments in sensorimotor development reflected by early touch-evoked biting, rotarod performance, and sensory gating deficits. This profile emerged with structural changes in deep layers of sensory cortices, where Pcdh9 is selectively expressed. This behavior-to-gene study implicates Pcdh9 in cognitive functions required for long-term social and nonsocial recognition. This role is supported by the involvement of Pcdh9 in sensory cortex development and sensorimotor phenotypes. Copyright © 2015 Society of Biological Psychiatry. Published

  2. Effects of CTLA4-Fc on glomerular injury in humorally-mediated glomerulonephritis in BALB/c mice.

    Science.gov (United States)

    Kitching, A R; Huang, X R; Ruth, A-J; Tipping, P G; Holdsworth, S R

    2002-06-01

    The effect of cytotoxic T-lymphocyte-associated molecule 4-immunoglobulin fusion protein (CTLA4-Fc) on humorally-mediated glomerulonephritis was studied in accelerated anti-glomerular basement membrane (anti-GBM) glomerulonephritis induced in BALB/c mice. This strain of mice develops antibody and complement dependent glomerulonephritis under this protocol. Sensitized BALB/c mice developed high levels of circulating autologous antibody titres, intense glomerular deposition of mouse immunoglobulin and complement, significant proteinuria, renal impairment, significant glomerular necrosis and a minor component of crescent formation 10 days after challenge with a nephritogenic antigen (sheep anti-GBM globulin). Early treatment during the primary immune response, or continuous treatment throughout the disease with CTLA4-Fc, significantly suppressed mouse anti-sheep globulin antibody titres in serum, and immunoglobulin and complement deposition in glomeruli. The degree of glomerular necrosis was improved and proteinuria was reduced, particularly in the earlier stages of disease. Late treatment by CTLA4-Fc starting one day after challenge with sheep anti-mouse GBM did not affect antibody production and did not attenuate glomerulonephritis. The low level of crescent formation found in BALB/c mice developing glomerulonephritis was not prevented by the administration of CTLA4-Fc. These results demonstrate that CTLA4-Fc is of benefit in this model of glomerulonephritis by its capacity to attenuate antibody production, without affecting the minor degree of cell-mediated glomerular injury.

  3. A ketogenic diet reduces metabolic syndrome-induced allodynia and promotes peripheral nerve growth in mice.

    Science.gov (United States)

    Cooper, Michael A; Menta, Blaise W; Perez-Sanchez, Consuelo; Jack, Megan M; Khan, Zair W; Ryals, Janelle M; Winter, Michelle; Wright, Douglas E

    2018-08-01

    Current experiments investigated whether a ketogenic diet impacts neuropathy associated with obesity and prediabetes. Mice challenged with a ketogenic diet were compared to mice fed a high-fat diet or a high-fat diet plus exercise. Additionally, an intervention switching to a ketogenic diet following 8 weeks of high-fat diet was performed to compare how a control diet, exercise, or a ketogenic diet affects metabolic syndrome-induced neural complications. When challenged with a ketogenic diet, mice had reduced bodyweight and fat mass compared to high-fat-fed mice, and were similar to exercised, high-fat-fed mice. High-fat-fed, exercised and ketogenic-fed mice had mildly elevated blood glucose; conversely, ketogenic diet-fed mice were unique in having reduced serum insulin levels. Ketogenic diet-fed mice never developed mechanical allodynia contrary to mice fed a high-fat diet. Ketogenic diet fed mice also had increased epidermal axon density compared all other groups. When a ketogenic diet was used as an intervention, a ketogenic diet was unable to reverse high-fat fed-induced metabolic changes but was able to significantly reverse a high-fat diet-induced mechanical allodynia. As an intervention, a ketogenic diet also increased epidermal axon density. In vitro studies revealed increased neurite outgrowth in sensory neurons from mice fed a ketogenic diet and in neurons from normal diet-fed mice given ketone bodies in the culture medium. These results suggest a ketogenic diet can prevent certain complications of prediabetes and provides significant benefits to peripheral axons and sensory dysfunction. Published by Elsevier Inc.

  4. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity.

    Science.gov (United States)

    Sideris, Alexandra; Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. At baseline, CB1R-/- mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R-/- mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R-/- mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/-) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R-/- mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different among genotypes. Cold allodynia and

  5. Mitochondrial-nuclear genome interactions in nonalcoholic fatty liver disease in mice

    Science.gov (United States)

    Betancourt, Angela M.; King, Adrienne L.; Fetterman, Jessica L.; Millender-Swain, Telisha; Finley, Rachel D.; Oliva, Claudia R.; Crowe, David Ralph; Ballinger, Scott W.; Bailey, Shannon M.

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation, and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. Herein, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, Mitochondrial-Nuclear eXchange (MNX) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared to wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation, and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD. PMID:24758559

  6. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2"−"/"− mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2"−"/"− mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2"−"/"− mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2"−"/"− mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2"−"/"− mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2"−"/"− mice had spontaneous nonalcoholic fatty liver

  7. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    Sidt2 is a newly discovered lysosomal membrane protein that is closely related to glucose metabolism. In the present study, we found that Sidt2 is also closely related to lipid metabolism. Gradual increases in serum triglyceride (TG) and free fatty acid, as well as elevated aspartate transaminase and alanine transaminase levels were observed in Sidt2{sup −/−} mice fed a normal diet from the age of 3 months, suggesting the presence of lipid metabolism disorders and impaired liver function in these mice. In the liver slices of 6-month-old Sidt2{sup −/−} mice, there were obvious fat degeneration and inflammatory changes. Almost all of the liver cells demonstrated different levels of lipid droplet accumulation and cell swelling, and some of the cells demonstrated balloon-like changes. Infiltration of inflammatory cells was observed in the portal area and hepatic lobule. Electron microscopy showed that macrophages tended to be attached to the endothelial cells, and a large number of lipid droplets were present in the liver cells. Oil red O staining showed that there were significantly increased number of deep straining particles in the liver cells of Sidt2{sup −/−} mice, and the TG content in liver tissue was also significantly increased. Detection of key genes and proteins related to fat synthesis showed that mRNA and protein levels of the SREBP1c in the liver of Sidt2{sup −/−} mice were significantly elevated, and the downstream genes acetyl-CoA carboxylase, fatty acid synthase, and mitochondrial glycerol 3-phosphate acyltransferase were significantly upregulated. In addition, there was severe endoplasmic reticulum stress (ERS) in the liver of Sidt2{sup −/−} mice, which had significantly increased levels of markers specific for unfolded protein response activation, Grp78 and CHOP, as well as significant elevation of downstream p-PERK, p-eIF2a, p-IRE1a, along with ER damage. These results suggest that Sidt2{sup −/−} mice had spontaneous

  8. Electroacupuncture in conscious free-moving mice reduces pain by ameliorating peripheral and central nociceptive mechanisms

    Science.gov (United States)

    Wang, Ying; Lei, Jianxun; Gupta, Mihir; Peng, Fei; Lam, Sarah; Jha, Ritu; Raduenz, Ellis; Beitz, Al J.; Gupta, Kalpna

    2016-01-01

    Integrative approaches such as electroacupuncture, devoid of drug effects are gaining prominence for treating pain. Understanding the mechanisms of electroacupuncture induced analgesia would benefit chronic pain conditions such as sickle cell disease (SCD), for which patients may require opioid analgesics throughout life. Mouse models are instructive in developing a mechanistic understanding of pain, but the anesthesia/restraint required to administer electroacupuncture may alter the underlying mechanisms. To overcome these limitations, we developed a method to perform electroacupuncture in conscious, freely moving, unrestrained mice. Using this technique we demonstrate a significant analgesic effect in transgenic mouse models of SCD and cancer as well as complete Freund’s adjuvant-induced pain. We demonstrate a comprehensive antinociceptive effect on mechanical, cold and deep tissue hyperalagesia in both genders. Interestingly, individual mice showed a variable response to electroacupuncture, categorized into high-, moderate-, and non-responders. Mechanistically, electroacupuncture significantly ameliorated inflammatory and nociceptive mediators both peripherally and centrally in sickle mice correlative to the antinociceptive response. Application of sub-optimal doses of morphine in electroacupuncture-treated moderate-responders produced equivalent antinociception as obtained in high-responders. Electroacupuncture in conscious freely moving mice offers an effective approach to develop a mechanism-based understanding of analgesia devoid of the influence of anesthetics or restraints. PMID:27687125

  9. 56Fe accelerates development of atherosclerosis in apoE -/-mice

    Science.gov (United States)

    Kucik, Dennis; Yu, Tao; Parks, Brian; Yu, Shaohua; Srivastava, Roshni; Gupta, Kiran; Wu, Xing; Khaled, Saman; Chang, Polly; Kabarowski, Janusz

    Exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. For example, for women with early breast cancer, the benefit of radiotherapy can be nearly offset by the increased risk of mortality from cardiovascular disease. Head and neck cancer patients who undergo radiation treatment are at significantly elevated risk of stroke, even in a relatively young patient population that would not normally be at risk for atheroscle-rosis. Similarly, atomic bomb survivors had an increased incidence of mortality from coronary artery disease and stroke. Even radiation technologists working before 1950 (when occupational exposure was higher) had increased mortality due to circulatory diseases. Although much is known about the cardiovascular consequences these exposures to X-raus and gamma radiation, the response to the type of radiation likely to be encountered in prolonged space flight has not been determined. A key component of this cosmic radiation is 56Fe, which is particularly damaging to tissues. Using collimated beams, we selectively irradiated aortic arches and carotids (only) of the well-established apoE -/-atherosclerosis mouse model to test directly whether 56Fe exposure is a cardiovascular risk factor. Mice were sacrificed at 13 weeks post-irradiation and dissected, and aortas were divided into areas that had been targeted by the ion beam and those that were not. The area that was covered by plaques was then quantified. Plaque area at 13 weeks post-irradiation was significantly greater in targeted areas of mice that had received 5 Gy of 56Fe as compared to age-and sex-matched un-irradiated controls. In the carotid arteries and aortic roots, significantly greater atherosclerosis was apparent for a 2Gy exposure as well (the lowest dose tested). This demonstrates that even a single exposure to heavy ion radiation is capable of triggering events that culminate in cardiovascular disease, even long after the exposure has

  10. Mesenchymal Stem Cells Promote the Osteogenesis in Collagen-Induced Arthritic Mice through the Inhibition of TNF-α

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2018-01-01

    Full Text Available Objective. To investigate the effects of umbilical cord mesenchymal stem cell (UC-MSC transplantation on joint damage and osteoporosis in collagen-induced arthritis (CIA mice and to explore the mechanisms by which UC-MSCs modulate the osteogenic differentiation. Methods. CIA mice were divided into the following treated groups: UC-MSC transplantation group, antitumor necrosis factor- (TNF- α group, and zoledronic acid (ZA group. Microcomputed tomography (micro-CT was used to analyze the bone morphology parameters. Osteogenic differentiation of treated CIA mice was determined. Bone marrow mesenchymal stem cells (BM-MSCs from CIA mice were treated with TNF-α in vitro to explore their effects on osteogenesis. Results. The arthritis score was significantly reduced in the UC-MSC transplantation and anti-TNF-α-treated CIA groups, compared with control mice (P<0.001. Micro-CT showed that CIA mice developed osteoporosis at 12 weeks after immunization. The bone morphology parameters were partially improved in UC-MSC-treated CIA mice. Impaired osteogenic differentiation functions were indicated by decreased ALP activity (P<0.001 and reduced mRNA and protein levels of osteogenic marker genes (P<0.05 in CIA mice compared with DBA/1 mice. UC-MSC treatment significantly upregulated the impaired osteogenic differentiation ability in CIA mice. Meanwhile, the serum TNF-α level was decreased significantly in the UC-MSC group. The osteogenesis was reduced with the addition of TNF-α in vitro. Conclusion. This study demonstrated that UC-MSC transplantation not only significantly improved the joint damage but also played a beneficial role in osteoporosis in CIA mice. Mechanistically, the improved osteogenic differentiation of CIA under UC-MSC treatment may be achieved by inhibition of TNF-α.

  11. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice

    Science.gov (United States)

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B.; Carter, A. Brent; Rowe, Steven M.; Matalon, Sadis; Thannickal, Victor J.; Agarwal, Anupam

    2015-01-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1+/+, HO-1−/−, and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1−/− mice exhibited more severe emphysema compared with HO-1+/+ or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1+/+, HO-1−/−, and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1−/− PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1+/+ PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema. PMID:26071551

  12. Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice.

    Science.gov (United States)

    Surolia, Ranu; Karki, Suman; Kim, Hyunki; Yu, Zhihong; Kulkarni, Tejaswini; Mirov, Sergey B; Carter, A Brent; Rowe, Steven M; Matalon, Sadis; Thannickal, Victor J; Agarwal, Anupam; Antony, Veena B

    2015-08-01

    Pulmonary exposure to cadmium, a major component of cigarette smoke, has a dramatic impact on lung function and the development of emphysema. Cigarette smoke exposure induces heme oxygenase-1 (HO-1), a cytoprotective enzyme. In this study, we employed a truncated mouse model of emphysema by intratracheal instillation of cadmium (CdCl2) solution (0.025% per 1 mg/kg body wt) in HO-1(+/+), HO-1(-/-), and overexpressing humanized HO-1 bacterial artificial chromosome (hHO-1BAC) mice. We evaluated the role of HO-1 in cadmium-induced emphysema in mice by analyzing histopathology, micro-computed tomography scans, and lung function tests. CdCl2-exposed HO-1(-/-) mice exhibited more severe emphysema compared with HO-1(+/+) or hHO-1BAC mice. Loss of pulmonary endothelial cells (PECs) from the alveolar capillary membrane is recognized to be a target in emphysema. PECs from HO-1(+/+), HO-1(-/-), and hHO-1BAC were employed to define the underlying molecular mechanism for the protection from emphysema by HO-1. Electron microscopy, expression of autophagic markers (microtubule-associated protein 1B-light chain 3 II, autophagy protein 5, and Beclin1) and apoptotic marker (cleaved caspase 3) suggested induction of autophagy and apoptosis in PECs after CdCl2 treatment. CdCl2-treated HO-1(-/-) PECs exhibited downregulation of autophagic markers and significantly increased cleaved caspase 3 expression and activity (∼4-fold higher). Moreover, hHO-1BAC PECs demonstrated upregulated autophagy and absence of cleaved caspase 3 expression or activity. Pretreatment of HO-1(+/+) PECs with rapamycin induced autophagy and resulted in reduced cell death upon cadmium treatment. Induction of autophagy following CdCl2 treatment was found to be protective from apoptotic cell death. HO-1 induced protective autophagy in PECs and mitigated cadmium-induced emphysema. Copyright © 2015 the American Physiological Society.

  13. Vulnerability of female germ cells in developing mice and monkeys to tritium, gamma rays, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Dobson, R.L.; Koehler, C.G.; Felton, J.S.; Kwan, T.C.; Wuebbles, B.J.; Jones, D.C.L.

    1978-01-01

    During development female germ cells in both mouse and monkey are extremely sensitive to destruction by low-level chronic tritium exposure (via 3 HOH in maternal drinking water). Practical significance of this stems from tritium's importance in nuclear energy production and as an environmental pollutant. In mice exposed from conception to 14 days of age, the LD 50 level for oocytes is only 2 μCi per mililiter of body water. The present studies indicate that, for female germ cells in squirrel monkeys exposed in utero, the LD 50 is even lower, about 0.5 μCi/ml. This striking sensitivity contrasts with reported radioresistance for primate oocytes, chiefly from acute x-irradiation experiments. The discrepancy is reconciled if germ cells in the fetal primate pass through a highly sensitive period of limited duration. In light of other data showing germ-cell loss following repeated semiweekly x-irradiation during late but not during mid gestation, these results indicate that exceedingly high sensitivity occurs probably about the middle of the last trimester, at which time the LD 50 for monkey germ cells is, as for that of the mouse, less than 5 rads. Whereas highest radiosensitivity in primates is before birth, in mice it is after birth. To define the period of sensitivity more sharply, we measured oocyte responses to standard gamma-ray exposures in Swiss-Webster mice at various ages and found them to be maximal between days 5 and 19. Polycyclic aromatic hydrocarbons (PAH's), important as pollutants, also can destroy female germ cells effectively

  14. Generation of induced pluripotent stem cell-derived mice by reprogramming of a mature NKT cell.

    Science.gov (United States)

    Ren, Yue; Dashtsoodol, Nyambayar; Watarai, Hiroshi; Koseki, Haruhiko; Quan, Chengshi; Taniguchi, Masaru

    2014-10-01

    NKT cells are characterized by their expression of an NKT-cell-specific invariant antigen-receptor α chain encoded by Vα14Jα18 gene segments. These NKT cells bridge the innate and acquired immune systems to mediate effective and augmented responses; however, the limited number of NKT cells in vivo hampers their analysis. Here, two lines of induced pluripotent stem cell-derived mice (NKT-iPSC-derived mice) were generated by reprogramming of mature NKT cells, where one harbors both rearranged Vα14Jα18 and Vβ7 genes and the other carries rearranged Vα14Jα18 on both alleles but germline Vβ loci. The analysis of NKT-iPSC-derived mice showed a significant increase in NKT cell numbers with relatively normal frequencies of functional subsets, but significantly enhanced in some cases, and acquired functional NKT cell maturation in peripheral lymphoid organs. NKT-iPSC-derived mice also showed normal development of other immune cells except for the absence of γδT cells and disturbed development of conventional CD4 αβT cells. These results suggest that the NKT-iPSC-derived mice are a better model for NKT cell development and function study rather than transgenic mouse models reported previously and also that the presence of a pre-rearranged Vα14Jα18 in the natural chromosomal context favors the developmental fate of NKT cells. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society for Immunology.

  15. Agonistic anti-TIGIT treatment inhibits T cell responses in LDLr deficient mice without affecting atherosclerotic lesion development.

    Directory of Open Access Journals (Sweden)

    Amanda C Foks

    Full Text Available OBJECTIVE: Co-stimulatory and co-inhibitory molecules are mainly expressed on T cells and antigen presenting cells and strongly orchestrate adaptive immune responses. Whereas co-stimulatory molecules enhance immune responses, signaling via co-inhibitory molecules dampens the immune system, thereby showing great therapeutic potential to prevent cardiovascular diseases. Signaling via co-inhibitory T cell immunoglobulin and ITIM domain (TIGIT directly inhibits T cell activation and proliferation, and therefore represents a novel therapeutic candidate to specifically dampen pro-atherogenic T cell reactivity. In the present study, we used an agonistic anti-TIGIT antibody to determine the effect of excessive TIGIT-signaling on atherosclerosis. METHODS AND RESULTS: TIGIT was upregulated on CD4(+ T cells isolated from mice fed a Western-type diet in comparison with mice fed a chow diet. Agonistic anti-TIGIT suppressed T cell activation and proliferation both in vitro and in vivo. However, agonistic anti-TIGIT treatment of LDLr(-/- mice fed a Western-type diet for 4 or 8 weeks did not affect atherosclerotic lesion development in comparison with PBS and Armenian Hamster IgG treatment. Furthermore, elevated percentages of dendritic cells were observed in the blood and spleen of agonistic anti-TIGIT-treated mice. Additionally, these cells showed an increased activation status but decreased IL-10 production. CONCLUSIONS: Despite the inhibition of splenic T cell responses, agonistic anti-TIGIT treatment does not affect initial atherosclerosis development, possibly due to increased activity of dendritic cells.

  16. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  17. Postnatal development and neoplastic disease pattern in NMRI-mice after combined treatment with ethylnitrosourea and X-irradiation on different days of the fetal period

    International Nuclear Information System (INIS)

    Wiggenhauser, A.

    1987-01-01

    Mice were X-irradiated on either day 14, 15, or 16 of gestation with 1,0 Gy. This did not result in an increased tumor frequency in offspring until 12 months. Mice treated parallelly with ENU (45 mg/kg) on the same gestation days developed a significantly increased tumor frequency of the lungs and the liver in all treated groups, and of the ovaries after treatment on day 15 of gestation. This experiment was the first to show that ENU-treatment resulted in hemangiosarcomas of the subcutis at a low incidence. After combined treatment in the sequence X+ENU and an interval of 4 hours, increased tumor frequency was observed only in the offspring treated on gestation day 16. The diagnoses liver tumors and hemangiosarcomas were significantly augmented after X+ENU-treatment on day 15 and 16 and day 14 and 16, respectively. In the reverse sequence (ENU+X) the total tumor outcome was not significantly altered in comparison with the effects of ENU alone. However, detailed analysis also showed a synergistic action on liver tumor frequency on days 15 and 16. (orig./ECB) [de

  18. Effects of chronic carbon monoxide exposure on fetal growth and development in mice

    Directory of Open Access Journals (Sweden)

    Venditti Carolina C

    2011-12-01

    Full Text Available Abstract Background Carbon monoxide (CO is produced endogenously, and can also be acquired from many exogenous sources: ie. cigarette smoking, automobile exhaust. Although toxic at high levels, low level production or exposure lends to normal physiologic functions: smooth muscle cell relaxation, control of vascular tone, platelet aggregation, anti- inflammatory and anti-apoptotic events. In pregnancy, it is unclear at what level maternal CO exposure becomes toxic to the fetus. In this study, we hypothesized that CO would be embryotoxic, and we sought to determine at what level of chronic CO exposure in pregnancy embryo/fetotoxic effects are observed. Methods Pregnant CD1 mice were exposed to continuous levels of CO (0 to 400 ppm from conception to gestation day 17. The effect on fetal/placental growth and development, and fetal/maternal CO concentrations were determined. Results Maternal and fetal CO blood concentrations ranged from 1.12- 15.6 percent carboxyhemoglobin (%COHb and 1.0- 28.6%COHb, respectively. No significant difference was observed in placental histological morphology or in placental mass with any CO exposure. At 400 ppm CO vs. control, decreased litter size and fetal mass (p Conclusions Exposure to levels at or below 300 ppm CO throughout pregnancy has little demonstrable effect on fetal growth and development in the mouse.

  19. Delayed-type hypersensitivity to Babesia microti-infected erythrocytes in mice

    International Nuclear Information System (INIS)

    Ruebush, M.J.; Troutman, E.H.; Kennedy, D.A.

    1986-01-01

    Strong delayed-type hypersensitivity (DTH) to Babesia microti was elicited when intraerythrocytic parasites (IEP) were inoculated subcutaneously into the flank of normal mice 6 to 14 days before challenge in the ipsilateral footpad with 10(8) IEP. Intraperitoneal or intravenous administration of antigen did not sensitize mice for DTH. When challenge was given 21 days after immunization, the response was approximately half of the maximum and then rose again slowly over the next 3 weeks to levels that were not significantly different from those maximal values. The response was classified as a true DTH reaction on the basis of kinetics, histology, and the transfer of responsiveness with immune T lymphocytes of the Ly 1+ phenotype, but not with serum. The reaction was specific for IEP since control groups given two injections of red blood cells from uninfected syngeneic mice (NRBC) or one injection of NRBC or sheep red blood cells (SRBC) and one of IEP never developed significant footpad swelling. Freed parasites obtained by osmotic rupture, density gradient sedimentation, and lethally irradiated IEP were also effective for elicitation of DTH. Anti-IEP DTH was expressed in a dose-dependent fashion with 10(6), 10(7), or 10(8) parasites sufficing for immunizing inoculum as long as 10(8) parasites were used as the challenge dose. Mice immunized and challenged with 10(8) lethally irradiated IEP (60 krad, 60Co), were protected against subsequent intraperitoneal challenge with 10(8) viable IEP. If mice were infected intraperitoneally with 10(8) IEP at any time between 21 days before immunization to 2 hr after challenge, their ability to respond to immunization and challenge was profoundly depressed. Development of a strong anti-parasite DTH response can occur in parallel with resistance to infection, but is not a rapid sequela of bloodborne infection

  20. Impact of chocolate liquor on vascular lesions in apoE-knockout mice.

    Science.gov (United States)

    Yazdekhasti, Narges; Brandsch, Corinna; Hirche, Frank; Kühn, Julia; Schloesser, Anke; Esatbeyoglu, Tuba; Huebbe, Patricia; Wolffram, Siegfried; Rimbach, Gerald; Stangl, Gabriele I

    2017-10-15

    Cocoa polyphenols are thought to reduce the risk of cardiovascular diseases. Thus, cocoa-containing foods may have significant health benefits. Here, we studied the impact of chocolate liquor on vascular lesion development and plaque composition in a mouse model of atherosclerosis. Apolipoprotein E (apoE)-knockout mice were assigned to two groups and fed a Western diet that contained 250 g/kg of either chocolate liquor or a polyphenol-free isoenergetic control paste for 16 weeks. In addition to fat, protein, and fibers, the chocolate liquor contained 2 g/kg of polyphenols. Compared with the control group, mice fed the chocolate liquor had larger plaque areas in the descending aorta and aortic root, which were attributed to a higher mass of vascular smooth muscle cells (VSMCs) and collagen. Vascular lipid deposits and calcification areas did not differ between the two groups. The aortic tissue level of interleukin-6 (IL-6) mRNA was 5-fold higher in the mice fed chocolate liquor than in the control mice. Chocolate-fed mice exhibited an increased hepatic saturated to polyunsaturated fatty acid ratio than the controls. Although the chocolate liquor contained 14 µg/kg of vitamin D 2 , the chocolate liquor-fed mice did not have measurable 25-hydroxyvitamin D 2 in the serum. These mice even showed a 25% reduction in the level of 25-hydroxyvitamin D 3 compared with the control mice. Overall, present data may contribute to our understanding how chocolate constituents can impact vascular lesion development. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice

    NARCIS (Netherlands)

    Rensing, Katrijn L.; de Jager, Saskia C. A.; Stroes, Erik S.; Vos, Mariska; Twickler, Marcel Th B.; Dallinga-Thie, Geesje M.; de Vries, Carlie J. M.; Kuiper, Johan; Bot, Ilze; von der Thüsen, Jan H.

    2014-01-01

    To characterize the phenotype of Akt2/low-density-lipoprotein receptor double knockout (dKO) (Akt2/LDLr dKO) mice with respect to insulin resistance and features of atherosclerotic plaque progression. Metabolic profile and atherosclerotic plaque progression were compared between LDLr KO mice and

  2. Effects of low dose radiation on tumor-bearing mice

    International Nuclear Information System (INIS)

    Feng Li; Hou Dianjun; Huang Shanying; Deng Daping; Wang Linchao; Cheng Yufeng

    2007-01-01

    Objective: To explore the effects of low-dose radiation on tumor-bearing mice and radiotherapy induced by low-dose radiation. Methods: Male Wistar mice were implanted with Walker-256 sarcoma cells in the right armpit. On day 4, the mice were given 75 mGy whole-body X-ray radiation. From the fifth day, tumor volume was measured, allowing for the creation of a graph depicting tumor growth. Lymphocytes activity in mice after whole-body X-ray radiation with LDR was determinned by FCM. Cytokines level were also determined by ELISA. Results: Compared with the radiotherapy group, tumor growth was significantly slower in the mice pre-exposed to low-dose radiation (P<0.05), after 15 days, the average tumor weight in the mice pre- exposed to low-dose radiation was also significantly lower (P<0.05). Lymphocytes activity and the expression of the CK in mice after whole-body y-ray radiation with LDR increased significantly. Conclusions: Low-dose radiation can markedly improve the immune function of the lymphocyte, inhibit the tumor growth, increase the resistant of the high-dose radiotherapy and enhance the effect of radiotherapy. (authors)

  3. Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

    Directory of Open Access Journals (Sweden)

    Malak Kotb

    2012-12-01

    Full Text Available Countering aerosolized filovirus infection is a major priority of biodefense research.  Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported.  A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies.  In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT or mouse-adapted (MA Ebola virus (EBOV.  Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6, and DBA/2 (D2 mice were unaffected, but 100% of severe combined immunodeficiency (SCID and 90% of signal transducers and activators of transcription (Stat1 knock-out (KO mice became moribund between 7–9 days post-exposure (dpe.  Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered.  In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2 recombinant inbred (RI and advanced RI (ARI mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains.  Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains.  Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in

  4. Development of a transplantable glioma tumour model from genetically engineered mice: MRI/MRS/MRSI characterisation.

    Science.gov (United States)

    Ciezka, Magdalena; Acosta, Milena; Herranz, Cristina; Canals, Josep M; Pumarola, Martí; Candiota, Ana Paula; Arús, Carles

    2016-08-01

    The initial aim of this study was to generate a transplantable glial tumour model of low-intermediate grade by disaggregation of a spontaneous tumour mass from genetically engineered models (GEM). This should result in an increased tumour incidence in comparison to GEM animals. An anaplastic oligoastrocytoma (OA) tumour of World Health Organization (WHO) grade III was obtained from a female GEM mouse with the S100β-v-erbB/inK4a-Arf (+/-) genotype maintained in the C57BL/6 background. The tumour tissue was disaggregated; tumour cells from it were grown in aggregates and stereotactically injected into C57BL/6 mice. Tumour development was followed using Magnetic Resonance Imaging (MRI), while changes in the metabolomics pattern of the masses were evaluated by Magnetic Resonance Spectroscopy/Spectroscopic Imaging (MRS/MRSI). Final tumour grade was evaluated by histopathological analysis. The total number of tumours generated from GEM cells from disaggregated tumour (CDT) was 67 with up to 100 % penetrance, as compared to 16 % in the local GEM model, with an average survival time of 66 ± 55 days, up to 4.3-fold significantly higher than the standard GL261 glioblastoma (GBM) tumour model. Tumours produced by transplantation of cells freshly obtained from disaggregated GEM tumour were diagnosed as WHO grade III anaplastic oligodendroglioma (ODG) and OA, while tumours produced from a previously frozen sample were diagnosed as WHO grade IV GBM. We successfully grew CDT and generated tumours from a grade III GEM glial tumour. Freezing and cell culture protocols produced progression to grade IV GBM, which makes the developed transplantable model qualify as potential secondary GBM model in mice.

  5. Histone Acetylation in Microglia Contributes to Exercise-Induced Hypoalgesia in Neuropathic Pain Model Mice.

    Science.gov (United States)

    Kami, Katsuya; Taguchi, Satoru; Tajima, Fumihiro; Senba, Emiko

    2016-05-01

    Physical exercise can attenuate neuropathic pain (NPP), but the exact mechanism underlying exercise-induced hypoalgesia (EIH) remains unclear. Recent studies have shown that histone hyperacetylation via pharmacological inhibition of histone deacetylases in the spinal cord attenuates NPP, and that histone acetylation may lead to the production of analgesic factors including interleukin 10. We intended to clarify whether histone acetylation in microglia in the spinal dorsal horn contributes to EIH in NPP model mice. C57BL/6J mice underwent partial sciatic nerve ligation (PSL) and PSL- and sham-runner mice ran on a treadmill at a speed of 7 m/min for 60 min/d, 5 days per week, from 2 days after the surgery. PSL-sedentary mice developed mechanical allodynia and heat hyperalgesia, but such behaviors were significantly attenuated in PSL-runner mice. In immunofluorescence analysis, PSL surgery markedly increased the number of histone deacetylase 1-positive/CD11b-positive microglia in the ipsilateral superficial dorsal horn, and they were significantly decreased by treadmill-running. Moreover, the number of microglia with nuclear expression of acetylated H3K9 in the ipsilateral superficial dorsal horn was maintained at low levels in PSL-sedentary mice, but running exercise significantly increased them. Therefore, we conclude that the epigenetic modification that causes hyperacetylation of H3K9 in activated microglia may play a role in producing EIH. This article presents the importance of epigenetic modification in microglia in producing EIH. The current research is not only helpful for developing novel nonpharmacological therapy for NPP, but will also enhance our understanding of the mechanisms and availability of exercise in our daily life. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  6. Manipulation of the gut microbiota in C57BL/6 mice changes glucose tolerancewithout affecting weight development and gut mucosal immunity

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gunilla Veslemöy; Hansen, Camilla Hartmann Friis; Hufeldt, Majbritt Ravn

    2012-01-01

    Inflammatory diseases such as type 2 diabetes (T2D) in humans and mice are under the influence of the composition of the gut microbiota (GM). It was previously demonstrated that treating Lepob mice with antibiotics improved glucose tolerance. However, wild type C57BL/6J mice may also exhibit plasma...... glucose tolerance without significantly affecting the weight or the number of gut mucosal regulatory T cells, tolerogenic dendritic cells or T helper cells type 1. 16S rRNA gene based denaturing gradient gel electrophoresis profiles clearly clustered according to treatment and showed that antibiotic...

  7. In vivo imaging of the developing neuromuscular junction in neonatal mice.

    Science.gov (United States)

    Turney, Stephen G; Walsh, Mark K; Lichtman, Jeff W

    2012-11-01

    Although fluorescently labeled structures can be analyzed more easily at high resolution in fixed-tissue preparations than in living animals, some biological questions can only be answered by time-lapse imaging. Changes in nervous system wiring during development cannot be determined reliably by taking tissue from different animals at staggered time points. Rather, the same cells and connections must be viewed repeatedly. To study developmental synapse elimination, we image muscles in transgenic mice that express fluorescent proteins in motor neurons and follow the same neuromuscular junctions (NMJs) over multiple days. This protocol describes the use of confocal microscopy for in vivo imaging of developing NMJs in transgenic neonatal mice expressing cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP). The sternomastoid, a flat, accessible neck muscle with large junctions, is imaged. A principal advantage of confocal microscopy is the ability to acquire multiple fluorescence channels simultaneously. If the channels are acquired sequentially, there is inevitably misalignment because of movement. Moreover, the total imaging time scales linearly with the number of channels. With simultaneous acquisition, only a single scan may be required. With perfect alignment between channels, irrespective of movement that might occur during a scan, color differences can be used to study interactions between axons over time. A limitation of this technique is that axons must be brightly labeled and at the muscle surface. NMJs that are more than one muscle fiber deep may be difficult to scan because of index of refraction changes that cause image blurring.

  8. Longitudinal assessment of endothelial function in the microvasculature of mice in-vivo.

    Science.gov (United States)

    Belch, Jill J F; Akbar, Naveed; Alapati, Venkateswara; Petrie, John; Arthur, Simon; Khan, Faisel

    2013-01-01

    Endothelial dysfunction is associated with early development of cardiovascular disease, making longitudinal measurements desirable. We devised a protocol using laser Doppler imaging (LDI) and iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to assess the skin microcirculation longitudinally in mice every 4 weeks for 24 weeks in two groups of C57BL/6 mice, chow versus high-cholesterol diet(known to induce endothelial dysfunction). LDI measurements were compared with vascular function (isometric tension) measured using wire myography in the tail artery in response to ACh and SNP. Microvascular responses to ACh were significantly reduced in cholesterol-fed versus chow-fed mice from week 4 onwards (Phydrochloride (L-NAME) showed a significant reduction in ACh response compared with vehicle-treated animals (P<0.05) at baseline and at 12 weeks. In cholesterol-fed mice, ACh responses were 226 ± 21 and 180 ± 21 AU (P=0.03) before and after L-NAME, respectively. A reduction in ex-vivo ACh response was detected in the tail artery in cholesterol-fed mice, and a significant correlation found between peak microvascular ACh response and maximum ACh response in the tail artery (r=0.699, P=0.017). No changes were found in SNP responses in the microvasculature or tail artery. Using this protocol, we have shown longitudinal decreases in microvascular endothelial function to cholesterol feeding. L-NAME studies confirm that the reduced vasodilatation to ACh in cholesterol-fed mice was mediated partly through reduced NO bioavailability. Wire myography of tail arteries confirmed that in-vivo measurements of microvascular function reflect ex-vivo vascular function in other beds. Longitudinal assessments of skin microvascular function in mice could provide a useful translatable model for assessing early endothelial dysfunction. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Hepatoprotective effect of kaempferol against alcoholic liver injury in mice.

    Science.gov (United States)

    Wang, Meng; Sun, Jianguo; Jiang, Zhihui; Xie, Wenyan; Zhang, Xiaoying

    2015-01-01

    Kaempferol is a biologically active component present in various plants. The hepatoprotective effect of kaempferol in drug-induced liver injury has been proven, while its effect against alcoholic liver injury (ALI) remains unclear. Hence, the present study aimed to evaluate the effect of kaempferol against ALI in mice. The experimental ALI mice model was developed and the mice were treated with different doses of kaempferol for 4 weeks. The liver functions were observed by monitoring the following parameters: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) levels in serum; histopathological studies of liver tissue; oxidative stress by hydrogen peroxide (H2O2), superoxide dismutase (SOD) and glutathione (GSH); the lipid peroxidation status by malondialdehyde (MDA) and lipid accumulation by triglyceride (TG) level in serum; and the expression levels and activities of a key microsomal enzyme cytochrome 2E1 (CYP2E1), by both in vitro and in vivo methods. The ALI mice (untreated) showed clear symptoms of liver injury, such as significantly increased levels of oxidative stress, lipid peroxidation and excessive CYP2E1 expression and activity. The mice treated with different kaempferol dosages exhibited a significant decrease in the oxidative stress as well as lipid peroxidation, and increased anti-oxidative defense activity. The kaempferol treatment has significantly reduced the expression level and activity of hepatic CYP2E1, thus indicating that kaempferol could down regulate CYP2E1. These findings show the hepatoprotective properties of kaempferol against alcohol-induced liver injury by attenuating the activity and expression of CYP2E1 and by enhancing the protective role of anti-oxidative defense system.

  10. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute

  11. Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis

    Science.gov (United States)

    Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku

    2009-01-01

    Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor

  12. Modulating the gut microbiota improves glucose tolerance, lipoprotein profile and atherosclerotic plaque development in ApoE-deficient mice

    DEFF Research Database (Denmark)

    Rune, Ida; Rolin, Bidda; Larsen, Christian Schiøth

    2016-01-01

    cause of cardiovascular disease (CVD), and to increase CVD risk factors. Popular interest in the role of the intestine in a variety of disease states has now resulted in a significant proportion of individuals without coeliac disease switching to gluten-free diets. The effect of gluten-free diets...... on atherosclerosis and cardiovascular risk factors is largely unknown. We therefore investigated the effect of a gluten-free high-fat cholesterol-rich diet, as compared to the same diet in which the gluten peptide gliadin had been added back, on atherosclerosis and several cardiovascular risk factors...... in apolipoprotein E-deficient (Apoe-/-) mice. The gluten-free diet transiently altered GM composition in these mice, as compared to the gliadin-supplemented diet, but did not alter body weights, glucose tolerance, insulin levels, plasma lipids, or atherosclerosis. In parallel, other Apoe-/- mice fed the same diets...

  13. Threshold dose to developing central nerve system of rats and mice from prenatal exposure to tritiated water

    International Nuclear Information System (INIS)

    Zhou Xiangyan; Wang Bing; Gao Weimin; Lu Huimin

    1999-01-01

    Objective: To study the threshold dose to the developing central nerve system of rats and mice from prenatal exposure to tritiated water. methods: Pregnant adult C 57 BL/6J strain mice and Wistar strain rats were irradiated with beta-rays from HTO by a single intraperitoneal injection on the 12.5 th and 13 th days of gestation. The activities of HTO were 24.09, 48.18 and 144.54 ( x 10 4 Bq/g bw), respectively. Fifty-six parameters including postnatal growth, neutro-behavior, pathology of brain, neuropeptide contents, changes of hippocampal neurons, Ca 2+ conductance of hippocampal neurons etc were used to test the teratogenic threshold dose the lowest dose was different from that of the control). Results: Of the observed 56 parameters of rats and mice 80.4% indicated that the threshold doses for prenatal HTO exposure ranged from 0.030 Gy to 0.092 Gy, and the other 19.6% showed the threshold doses from 0.093 to 0.300 Gy. Conclusions: There exists threshold dose from the low level tritiated water irradiation of the developing central nerve system

  14. Anti-Diabetic Effects of CTB-APSL Fusion Protein in Type 2 Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Yunlong Liu

    2014-03-01

    Full Text Available To determine whether cholera toxin B subunit and active peptide from shark liver (CTB-APSL fusion protein plays a role in treatment of type 2 diabetic mice, the CTB-APSL gene was cloned and expressed in silkworm (Bombyx mori baculovirus expression vector system (BEVS, then the fusion protein was orally administrated at a dose of 100 mg/kg for five weeks in diabetic mice. The results demonstrated that the oral administration of CTB-APSL fusion protein can effectively reduce the levels of both fasting blood glucose (FBG and glycosylated hemoglobin (GHb, promote insulin secretion and improve insulin resistance, significantly improve lipid metabolism, reduce triglycerides (TG, total cholesterol (TC and low density lipoprotein (LDL levels and increase high density lipoprotein (HDL levels, as well as effectively improve the inflammatory response of type 2 diabetic mice through the reduction of the levels of inflammatory cytokines tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. Histopathology shows that the fusion protein can significantly repair damaged pancreatic tissue in type 2 diabetic mice, significantly improve hepatic steatosis and hepatic cell cloudy swelling, reduce the content of lipid droplets in type 2 diabetic mice, effectively inhibit renal interstitial inflammatory cells invasion and improve renal tubular epithelial cell nucleus pyknosis, thus providing an experimental basis for the development of a new type of oral therapy for type 2 diabetes.

  15. Effects of Berberine Against Radiation-Induced Intestinal Injury in Mice

    International Nuclear Information System (INIS)

    Li Guanghui; Zhang Yaping; Tang Jinliang; Chen Zhengtang; Hu Yide; Wei Hong; Li Dezhi; Hao Ping; Wang Donglin

    2010-01-01

    Purpose: Radiation-induced intestinal injury is a significant clinical problem in patients undergoing abdominal radiotherapy (RT). Berberine has been used as an antimicrobial, anti-inflammatory, and antimotility agent. The present study investigated the protective effect of berberine against radiation-induced intestinal injury. Methods and Materials: The mice were administrated berberine or distilled water. A total of 144 mice underwent 0, 3, 6, 12, or 16 Gy single session whole-abdominal RT and 16 mice underwent 3 Gy/fraction/d for four fractions of fractionated abdominal RT. Tumor necrosis factor-α, interleukin-10, diamine oxidase, intestinal fatty acid-binding protein, malonaldehyde, and apoptosis were assayed in the mice after RT. The body weight and food intake of the mice receiving fractionated RT were recorded. Another 72 mice who had undergone 12, 16, or 20 Gy abdominal RT were monitored for mortality every 12 h. Results: The body weight and food intake of the mice administered with distilled water decreased significantly compared with before RT. After the same dose of abdominal RT, tumor necrosis factor-α, diamine oxidase, intestinal fatty acid-binding protein in plasma and malonalhehyde and apoptosis of the intestine were significantly greater in the control group than in the mice administered berberine (p < .05-.01). In contrast, interleukin-10 in the mice with berberine treatment was significantly greater than in the control group (p < .01). A similar result was found in the fractionated RT experiment and at different points after 16 Gy abdominal RT (p < .05-.01). Berberine treatment significantly delayed the point of death after 20 Gy, but not 16 Gy, abdominal RT (p < .01). Conclusion: Treatment with berberine can delay mortality and attenuated intestinal injury in mice undergoing whole abdominal RT. These findings could provide a useful therapeutic strategy for radiation-induced intestinal injury.

  16. Chronic Pseudomonas aeruginosa lung infection is more severe in Th2 responding BALB/c mice compared to Th1 responding C3H/HeN mice

    DEFF Research Database (Denmark)

    Moser, C; Johansen, H K; Song, Z

    1997-01-01

    model of this infection was established in two strains of mice: C3H/HeN and BALB/c, generally known as Th1 and Th2 responders, respectively, which were challenged with alginate-embedded P. aeruginosa. Mortality was significantly lower in C3H/HeN compared to BALB/c mice (p ... was cleared more efficiently in C3H/HeN mice and significantly more C3H/HeN mice showed normal lung histopathology (p BALB/c mice (p ... from the two strains of mice, the interferon-(IFN-) gamma levels were higher, whereas IL-4 levels were lower in C3H/HeN mice than in BALB/c mice. The implications of these findings for CF patients with chronic P. aeruginosa lung infection are discussed....

  17. Improved assessment of outcomes following transient global cerebral ischemia in mice

    DEFF Research Database (Denmark)

    Spray, Stine; Edvinsson, Lars

    2016-01-01

    by limited neurological assessment protocols and present insufficient reporting of the cumulative survival rate. Therefore, we aim at developing a reproducible and easily implementable model of transient GCI in mice with minimal impact on normal mouse behavior. GCI was induced in male C57BL/6 mice......Mouse models of global cerebral ischemia (GCI) allow experimental examination of cerebral pathophysiology in genetically modified mice and fast screening of new treatment strategies. Various surgical protocols of GCI-induction in mice have been published; however, many of these studies are hindered...... and again daily for up to 7 days after GCI or sham operation and was found to be significantly decreased 1-7 days after GCI compared to sham. Furthermore, we found delayed neuronal cell death in the frontal cortex and hippocampus 5 and 7 days after GCI but not at day 3 or after sham operation. The survival...

  18. Development of Quantitative Framework for Event Significance Evaluation

    International Nuclear Information System (INIS)

    Lee, Durk Hun; Kim, Min Chull; Kim, Inn Seock

    2010-01-01

    There is an increasing trend in quantitative evaluation of the safety significance of operational events using Probabilistic Safety Assessment (PSA) technique. An integrated framework for evaluation of event significance has been developed by Korea Institute of Nuclear Safety (KINS), which consists of an assessment hierarchy and a number of matrices. The safety significance of various events, e.g., internal or external initiating events that occurred during at-power or shutdown conditions, can be quantitatively analyzed using this framework, and then, the events rated according to their significance. This paper briefly describes the basic concept of the integrated quantitative framework for evaluation of event significance, focusing on the assessment hierarchy

  19. Effects of chronic vs. intermittent calorie restriction on mammary tumor incidence and serum adiponectin and leptin levels in MMTV-TGF-α mice at different ages

    Science.gov (United States)

    DOGAN, SONER; ROGOZINA, OLGA P.; LOKSHIN, ANNA E.; GRANDE, JOSEPH P.; CLEARY, MARGOT P.

    2010-01-01

    Calorie restriction prevents mammary tumor (MT) development in rodents. Usually, chronic calorie restriction (CCR) has been implemented. In contrast, intermittent calorie restriction (ICR) has been less frequently used. Recent studies indicate that when a direct comparison of the same degree of CCR vs. ICR was made using MMTV-TGF-α mice which develop MTs in the second year of life, ICR provided greater protection than CCR in delaying MT detection and reducing tumor incidence. Adiponectin and leptin are two adipocytokines secreted from adipose tissue which have opposite effects on many physiological functions, including proliferation of human breast cancer cells. A recent study indicated that a low adiponectin/leptin ratio was associated with breast cancer. We evaluated the relationship of adiponectin and leptin to MT development in MMTV-TGF-α calorie-restricted mice at several ages. Mice were enrolled at 10 weeks of age and subjected to 25% caloric reduction implemented either chronically or intermittently. Mice were euthanized at designated time points up to 74 weeks of age. Serum samples were collected to measure adiponectin and leptin concentrations. Both CCR and ICR mice had significantly reduced MT incidence. For the groups studied, serum leptin increased over time, while there was a trend for an increase in serum adiponectin levels in ad libitum and ICR mice, with no change in CCR mice between 10 and 74 weeks of age. The adiponectin/leptin ratio was significantly reduced as mice aged, but this ratio in ICR mice was significantly higher than that for ad libitum and CCR mice. No correlation was noted between serum adiponectin and leptin. These findings demonstrate that intermittent calorie restriction delays the early development of MTs. This delay was associated with reduced serum leptin levels following the restriction phases of the protocol. Additionally, serum leptin levels correlated with body weight and body fat in the groups studied. PMID:22966277

  20. Joint dysfunction and functional decline in middle age myostatin null mice.

    Science.gov (United States)

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice

    Directory of Open Access Journals (Sweden)

    Nicholas J. Anderson

    2014-06-01

    Full Text Available One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity and central nervous system function (learning ability, memory were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype.

  2. A comparison of the development of tolerance to ethanol and cross-tolerance to nicotine after chronic ethanol treatment in long- and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1993-09-01

    Previous studies have shown that inbred mouse strains differ in the development of tolerance to both nicotine and ethanol, indicating that genetic factors regulate tolerance development. Those mouse strains that are most sensitive to an acute challenge dose of either drug develop the most tolerance to that drug. The ethanol-sensitive long-sleep (LS) mice are more sensitive to several behavioral and physiological effects of nicotine than are the ethanol-resistant short-sleep (SS) mice. The experiments reported here assessed whether the LS and SS mice develop tolerance to ethanol after chronic treatment with ethanol-containing liquid diets and whether cross-tolerance to nicotine also developed. Tolerance and cross-tolerance were measured by assessing the effects of acute challenge doses of drug on Y-maze crossing and rearing activities, heart rate and body temperature. The LS mice developed tolerance to ethanol's effects on three of the four measures and were cross-tolerant to nicotine on all of the measures. In contrast, the SS mice developed tolerance to ethanol for only two of the measures, but failed to develop cross-tolerance to any action of nicotine. These findings support the hypothesis that ethanol and nicotine share sites of action and that common genes regulate responses to these two drugs. Evidence suggests that tolerance to nicotine may be related to an up-regulation of brain nicotinic receptors, at least in some inbred mouse strains, but chronic ethanol treatment did not reproducibly change either [3H]nicotine or alpha-[125I]bungarotoxin binding. Therefore, other mechanisms must underlie the tolerance and cross-tolerance that was seen.

  3. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  4. Th2 Regulation of Viral Myocarditis in Mice: Different Roles for TLR3 versus TRIF in Progression to Chronic Disease

    Directory of Open Access Journals (Sweden)

    Eric D. Abston

    2012-01-01

    Full Text Available Viral infections are able to induce autoimmune inflammation in the heart. Here, we investigated the role of virus-activated Toll-like receptor (TLR3 and its adaptor TRIF on the development of autoimmune coxsackievirus B3 (CVB3 myocarditis in mice. Although TLR3- or TRIF-deficient mice developed similarly worse acute CVB3 myocarditis and viral replication compared to control mice, disease was significantly worse in TRIF compared to TLR3-deficient mice. Interestingly, TLR3-deficient mice developed an interleukin (IL-4-dominant T helper (Th2 response during acute CVB3 myocarditis with elevated markers of alternative activation, while TRIF-deficient mice elevated the Th2-associated cytokine IL-33. Treatment of TLR3-deficient mice with recombinant IL-33 improved heart function indicating that elevated IL-33 in the context of a classic Th2-driven response protects against autoimmune heart disease. We show for the first time that TLR3 versus TRIF deficiency results in different Th2 responses that uniquely influence the progression to chronic myocarditis.

  5. Gonadal cell kinetics in male mice treated with sulphur-35 during prenatal development

    International Nuclear Information System (INIS)

    Satyanarayana Reddy, K.; Reddy, P.P.; Reddi, O.S.

    1980-01-01

    Investigations on the possible hazards of the use of internally administered radioisotopes in human medicine either as therapeutic or diagnostic agents before or during child bearing age are of late gaining importance. The present investigation has been taken up to screen the effects of sulphur-35 on spermatogonia. CBA pregnant mice were injected (ip) with a dose of 20 μ Ci of sulphur-35 on 3.5, 10.5 or 15.5 days of gestation. At the similar intervals pregnant mice injected with physiological saline were kept for control data. All the animals were allowed to litter and F 1 male progeny were killed at maturity at the age of 10 weeks and the testes collected. Sections of both the testes were prepared and stained by PAS-haematoxylin technique and the survival of spermatogonia types A, Int and B and preleptotene spermatocytes was evaluated. There was a significant reduction in all the cell types in the sulphur-35 treated animals. Thus the results indicate the cell-killing effect of radionuclide. (auth.)

  6. Gonadal cell kinetics in male mice treated with sulphur-35 during prenatal development

    Energy Technology Data Exchange (ETDEWEB)

    Satyanarayana Reddy, K; Reddy, P P; Reddi, O S [Osmania Univ., Hyderabad (India). Inst. of Genetics

    1980-11-01

    Investigations on the possible hazards of the use of internally administered radioisotopes in human medicine either as therapeutic or diagnostic agents before or during child bearing age are of late gaining importance. The present investigation has been taken up to screen the effects of sulphur-35 on spermatogonia. CBA pregnant mice were injected (ip) with a dose of 20 ..mu.. Ci of sulphur-35 on 3.5, 10.5 or 15.5 days of gestation. At the similar intervals pregnant mice injected with physiological saline were kept for control data. All the animals were allowed to litter and F/sub 1/ male progeny were killed at maturity at the age of 10 weeks and the testes collected. Sections of both the testes were prepared and stained by PAS-haematoxylin technique and the survival of spermatogonia types A, Int and B and preleptotene spermatocytes was evaluated. There was a significant reduction in all the cell types in the sulphur-35 treated animals. Thus the results indicate the cell-killing effect of radionuclide.

  7. Influence of Trypanosoma cruzi strain on the pathogenesis of chronic myocardiopathy in mice

    Directory of Open Access Journals (Sweden)

    Sonia G. Andrade

    1990-03-01

    Full Text Available The murine model of chronic Chaga's myocardiopathy was developed in 201 inbred and outbred mice. The experimental groups consisted of 1st: 73 inbred AKR and A/J mice inoculated with one of the following. Trypanosoma cruzi strains: Peruvian (Type I, 12 SF (Type II or Colombian (Type III; 2nd: 128 outbred Swiss mice, chronically infected either with Type II or Type III strains isolated from human patients from different geographical areas. All T. cruzi strains were previoulsly characterized by their morphobiological behaviour in mice and by isoenzymatic patterns. For the 1st group the inoculum was 5 x 10**4 for the Peruvian strain and 1 x 10**5 for the 12 SF and Colombian strains. In the 2nd group-Swiss mice the inoculum size varied from 2 x 10**4 to 2 x 10**5. The inbred animals were killed at a 3 time-point scale (90, 180 and 240 days post-infection. The Swiss mice were killed from 180 to 660 days after infection. The evaluation of parasitemia and serology (xeodiagnosis and indirect immunofluorescent test was performed. The incidence of macroscopic alterations of the heart and cardiac index were evaluated. Histopathological lesions of the myocardium were graded. The influence of T. cruzi strain on the intensity of cardiac lesions was evaluated by the Chi-square test; the incidence of inflammatory lesions and its relationship to the parasite strain was evaluated by the Fisher test. The influence of the duration of infection was evaluated by using the Gamma Coefficient of Kruskal and Goodman and its measure of significance. Slight to severe microscopic alterations occurred in 85% of the chronically infected nice. There were a clear predominance on the incidence and intensity of inflammatory and fibrotic alterations for the mice infected with Type III strains. Statistical analysis has shown significant differences among the infected groups, in the inflammatory and fibrotic lesions. Macroscopic alterations (right cavities dilatation and apex

  8. Peculiarities in mice embriogenesis under serotonin effect in pre- and post-irradiation period in prenervous period of development

    International Nuclear Information System (INIS)

    Konstantinova, M.M.; Panaeva, S.V.; Podmareva, O.N.; Turpaev, T.M.

    1995-01-01

    Effect of serotonin and X-ray irradiation on mice embriogenesis in prenervous period of development is studied. The above factors were applied separately and in combination (in various doses, with change of sequence). It is shown that development of embriotoxic effect of serotonin is determined by embryos age. Six-day embryos are most sensitive. Eight-day embryos are characterized by absence of toxic effect of serotonin doses applied. The eighth day embryos are most radiosensitive, whereas the six-day ones are less radiosensitive. Serotonin administered to mice females before and after irradiation on the eight day of pregnancy produced radioprotective and therapeutic effect, and on the sixth-seventh days intensified negative radiation consequences. 15 refs.; 2 tabs

  9. Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice.

    Directory of Open Access Journals (Sweden)

    Kelly S Hayes

    2017-06-01

    Full Text Available Incidences of infection-related cancers are on the rise in developing countries where the prevalence of intestinal nematode worm infections are also high. Trichuris muris (T. muris is a murine gut-dwelling nematode that is the direct model for human T. trichiura, one of the major soil-transmitted helminth infections of humans. In order to assess whether chronic infection with T. muris does indeed influence the development of cancer hallmarks, both wild type mice and colon cancer model (APC min/+ mice were infected with this parasite. Parasite infection in wild type mice led to the development of neoplastic change similar to that seen in mice that had been treated with the carcinogen azoxymethane. Additionally, both chronic and acute infection in the APCmin/+ mice led to an enhanced tumour development that was distinct to the site of infection suggesting systemic control. By blocking the parasite induced T regulatory response in these mice, the increase in the number of tumours following infection was abrogated. Thus T. muris infection alone causes an increase in gut pathologies that are known to be markers of cancer but also increases the incidence of tumour formation in a colon cancer model. The influence of parasitic worm infection on the development of cancer may therefore be significant.

  10. Phytosterol Feeding Causes Toxicity in ABCG5/G8 Knockout Mice

    Science.gov (United States)

    McDaniel, Allison L.; Alger, Heather M.; Sawyer, Janet K.; Kelley, Kathryn L.; Kock, Nancy D.; Brown, J. Mark; Temel, Ryan E.; Rudel, Lawrence L.

    2014-01-01

    Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol diet was extremely toxic to the ABCG5/G8 knockout mice but had no adverse effects on wild-type mice. ABCG5/G8 knockout mice died prematurely and developed a phenotype that included high levels of plant sterols in many tissues, liver abnormalities, and severe cardiac lesions. This study is the first to report such toxic effects of phytosterol accumulation in ABCG5/G8 knockout mice. We believe these new data support the conclusion that plant sterols are excluded from the body because they are toxic when present at high levels. PMID:23380580

  11. Growth restriction, leptin, and the programming of adult behavior in mice.

    Science.gov (United States)

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, phormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Merkel Cell Polyomavirus Small T Antigen Initiates Merkel Cell Carcinoma-like Tumor Development in Mice.

    Science.gov (United States)

    Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A

    2017-06-15

    Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.

  13. Mechanisms of protective immunity against Schistosoma mansoni infection in mice vaccinated with irradiated cercaria- I. analysis of antibody and T-lymphocyte responses in mouse strains developing differing levels of immunity

    International Nuclear Information System (INIS)

    James, S.L.; Labine, M.; Sher, A.

    1981-01-01

    The kinetics of cellular and humoral responses directed against schistosomula were examined in mice of three inbred strains which demonstrate differences in the degree of resistance induced by immunization with irradiated cercariae. T-Cell reactivity was observed during the first 4 weeks after vaccination but declined to control levels thereafter. Anti-schistosomulum antibody was first detected 2 weeks after vaccination, peaked by 6 weeks, and persisted as late as 15 weeks. In sera obtained at 6 weeks, antibody activity was detected in affinity chromatography-purified fractions containing IgM, IgA, IgG 1 , IgG 2 /sub a/, and IgG 3 immunoglobulins. In general, the cellular and humoral responses observed in C57Bl/6J mice, which consistently developed a high level of immunity after vaccination, were not significantly different from those observed in C3H/HeJ or CBA/J mice, which achieved only low to moderate levels of immunity. Thus, although antibody production appears to correlate more closely than T lymphocyte responsiveness with the typical long-term resistance pattern observed in this model, the absence of striking differences in parasite-specific antibody levels between mice of these different strains suggests that additional mechanisms may be involved in the development of immunity after vaccination

  14. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    Science.gov (United States)

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  15. Prasugrel suppresses development of lithium-induced nephrogenic diabetes insipidus in mice.

    Science.gov (United States)

    Zhang, Yue; Peti-Peterdi, János; Brandes, Anna U; Riquier-Brison, Anne; Carlson, Noel G; Müller, Christa E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2017-06-01

    Previously, we localized ADP-activated P2Y 12 receptor (R) in rodent kidney and showed that its blockade by clopidogrel bisulfate (CLPD) attenuates lithium (Li)-induced nephrogenic diabetes insipidus (NDI). Here, we evaluated the effect of prasugrel (PRSG) administration on Li-induced NDI in mice. Both CLPD and PRSG belong to the thienopyridine class of ADP receptor antagonists. Groups of age-matched adult male B6D2 mice (N = 5/group) were fed either regular rodent chow (CNT), or with added LiCl (40 mmol/kg chow) or PRSG in drinking water (10 mg/kg bw/day) or a combination of LiCl and PRSG for 14 days and then euthanized. Water intake and urine output were determined and blood and kidney tissues were collected and analyzed. PRSG administration completely suppressed Li-induced polydipsia and polyuria and significantly prevented Li-induced decreases in AQP2 protein abundance in renal cortex and medulla. However, PRSG either alone or in combination with Li did not have a significant effect on the protein abundances of NKCC2 or NCC in the cortex and/or medulla. Immunofluorescence microscopy revealed that PRSG administration prevented Li-induced alterations in cellular disposition of AQP2 protein in medullary collecting ducts. Serum Li, Na, and osmolality were not affected by the administration of PRSG. Similar to CLPD, PRSG administration had no effect on Li-induced increase in urinary Na excretion. However, unlike CLPD, PRSG did not augment Li-induced increase in urinary arginine vasopressin (AVP) excretion. Taken together, these data suggest that the pharmacological inhibition of P2Y 12 -R by the thienopyridine group of drugs may potentially offer therapeutic benefits in Li-induced NDI.

  16. Relationship between aquaporin-5 expression and saliva flow in streptozotocin-induced diabetic mice?

    Science.gov (United States)

    Soyfoo, M S; Bolaky, N; Depoortere, I; Delporte, C

    2012-07-01

    To investigate the expression and distribution of AQP5 in submandibular acinar cells from sham- and streptozotocin (STZ)-treated mice in relation to the salivary flow. Mice were sham or STZ injected. Distribution of AQP5 subcellular expression in submandibular glands was determined by immunohistochemistry. AQP5 labelling indices (LI), reflecting AQP5 subcellular distribution, were determined in acinar cells. Western blotting was performed to determine the expression of AQP5 in submandibular glands. Blood glycaemia and osmolality and saliva flow rates were also determined. AQP5 immunoreactivity was primarily located at the apical and apical-basolateral membranes of submandibular gland acinar cells from sham- and STZ-treated mice. No significant differences in AQP5 protein levels were observed between sham- and STZ-treated mice. Compared to sham-treated mice, STZ-treated mice had significant increased glycaemia, while no significant differences in blood osmolality were observed. Saliva flow rate was significantly decreased in STZ-treated mice as compared to sham-treated mice. In STZ-treated mice, significant reduction in salivary flow rate was observed without any concomitant modification in AQP5 expression and localization. © 2011 John Wiley & Sons A/S.

  17. Reduced alcohol consumption in mice lacking preprodynorphin.

    Science.gov (United States)

    Blednov, Yuri A; Walker, Danielle; Martinez, Marni; Harris, R Adron

    2006-10-01

    Many studies suggest a role for endogenous opioid peptides and their receptors in regulation of ethanol intake. It is commonly accepted that the kappa-opioid receptors and their endogenous ligands, dynorphins, produce a dysphoric state and therefore may be responsible for avoidance of alcohol. We used mutant mice lacking preprodynorphin in a variety of behavioral tests of alcohol actions. Null mutant female, but not male, mice showed significantly lower preference for alcohol and consumed lower amounts of alcohol in a two-bottle choice test as compared with wild-type littermates. In the same test, knockout mice of both sexes showed a strong reduction of preference for saccharin compared to control mice. In contrast, under conditions of limited (4 h) access (light phase of the light/dark cycle), null mutant mice did not show any differences in consumption of saccharin, but they showed significantly reduced intake of sucrose. To determine the possible cause for reduction of ethanol preference and intake, we studied other ethanol-related behaviors in mice lacking the preprodynorphin gene. There were no differences between null mutant and wild-type mice in ethanol-induced loss of righting reflex, acute ethanol withdrawal, ethanol-induced conditioned place preference, or conditioned taste aversion to ethanol. These results indicate that deletion of preprodynorphin leads to substantial reduction of alcohol intake in female mice, and suggest that this is caused by decreased orosensory reward of alcohol (sweet taste and/or palatability).

  18. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  19. A comparative study of the progression of radiation pulmonary injury in C57BL/6J and C3H/HeN mice

    International Nuclear Information System (INIS)

    Liu Ying; Li Yang; Peng Ruiyun; Wang Shuming; Gao Yabing; Ma Junjie; Song Liangwen

    2007-01-01

    Objective: To compare the course of radiation pulmonary injury in C57BL/6J and C3H/HeN mice. Methods: C57BL/6J and C3H/HeN mice irradiated with 20 Gy 60 Co gamma rays were used as animal models. Sirius red staining and hydroxyproline measurement were used to detect the distribution of type I and III collagens and the content of pulmonary hydroxyproline. Immunohistochemistry was used to observe the changes of the expressions of fibronectin (FN) and laminin (LN) and alpha-smooth muscle actin (α-SMA) in the lung. Results: The changes in the lungs in C57BL/6J mice were as follows: the pathological changes undergone interstitial pneumonia, proliferation and fibrosis; significant increase of collagen deposition; FN increased rapidly to a significantly higher level at 1 and 3 months after irradiation than that in the control (P<0.01), and then decreased gradually to a normal level at 6 month after irradiation; LN elevated gradually after irradiation; the expressions of α-SMA were more intense than that in C3H/HeN mice. The changes in the lungs in C3H/HeN mice were as follows: the pathological changes mainly developed institial pneumonitis; no significant changes of FN expression was observed after irradiation compared to that in the control; LN increased significantly at 1 and 3 months after irradiation, and then decreased gradually. Conclusions: The models of radiation pulmonary fibrosis-sensitive and-resistant were established by irradiation with gamma rays, C57BL/6J mice developed late radiation pulmonary fibrosis, and were characterized by the significant accumulation of collagen. C3H/HeN mice did not develop radiation pulmonary fibrosis. (authors)

  20. Moderate Light-Induced Degeneration of Rod Photoreceptors with Delayed Transducin Translocation in shaker1 Mice

    Science.gov (United States)

    Zallocchi, Marisa; Wang, Wei-Min; Delimont, Duane; Cosgrove, Dominic

    2011-01-01

    Purpose. Usher syndrome is characterized by congenital deafness associated with retinitis pigmentosa (RP). Mutations in the myosin VIIa gene (MYO7A) cause a common and severe subtype of Usher syndrome (USH1B). Shaker1 mice have mutant MYO7A. They are deaf and have vestibular dysfunction but do not develop photoreceptor degeneration. The goal of this study was to investigate abnormalities of photoreceptors in shaker1 mice. Methods. Immunocytochemistry and hydroethidine-based detection of intracellular superoxide production were used. Photoreceptor cell densities under various conditions of light/dark exposures were evaluated. Results. In shaker1 mice, the rod transducin translocation is delayed because of a shift of its light activation threshold to a higher level. Even moderate light exposure can induce oxidative damage and significant rod degeneration in shaker1 mice. Shaker1 mice reared under a moderate light/dark cycle develop severe retinal degeneration in less than 6 months. Conclusions. These findings show that, contrary to earlier studies, shaker1 mice possess a robust retinal phenotype that may link to defective rod protein translocation. Importantly, USH1B animal models are likely vulnerable to light-induced photoreceptor damage, even under moderate light. PMID:21447681

  1. Effects of maternally administered sulphur-35 on the pre- and postnatal mortality and development in mice

    International Nuclear Information System (INIS)

    Satyanarayana Reddy, K.; Reddy, P.P.; Reddi, O.S.

    1978-01-01

    An investigation was taken up to screen the effects of 35 S on the prenatal development of mouse. Pregnant mice of CBA strain were injected intraperitoneally with a doze of 20 μCi of 35 S on 10.5 days of gestation and allowed to go to term. No mortality was observed in treated animals. However, a slight reduction in the number of fertile matings was noted in 35 S group. But the reduction was statistically insignificant. A significant decrease in litter size was noted in 35 S -treated group. While the litter size was 7.5/female in the control, it was 5.9/female in 35 S group. The reduced litter size might be due to 35 S-induced prenatal mortality. A further reduction in litter size was noted at weaning. This reduction was due to a significant increase in the neo- and postnatal mortality of F 1 progeny in the treated group. There was no effect of 35 S on the sex ratio and body weights of F 1 progeny. (auth.)

  2. Mitochondrial-nuclear genome interactions in non-alcoholic fatty liver disease in mice.

    Science.gov (United States)

    Betancourt, Angela M; King, Adrienne L; Fetterman, Jessica L; Millender-Swain, Telisha; Finley, Rachel D; Oliva, Claudia R; Crowe, David R; Ballinger, Scott W; Bailey, Shannon M

    2014-07-15

    NAFLD (non-alcoholic fatty liver disease) involves significant changes in liver metabolism characterized by oxidative stress, lipid accumulation and fibrogenesis. Mitochondrial dysfunction and bioenergetic defects also contribute to NAFLD. In the present study, we examined whether differences in mtDNA influence NAFLD. To determine the role of mitochondrial and nuclear genomes in NAFLD, MNX (mitochondrial-nuclear exchange) mice were fed an atherogenic diet. MNX mice have mtDNA from C57BL/6J mice on a C3H/HeN nuclear background and vice versa. Results from MNX mice were compared with wild-type C57BL/6J and C3H/HeN mice fed a control or atherogenic diet. Mice with the C57BL/6J nuclear genome developed more macrosteatosis, inflammation and fibrosis compared with mice containing the C3H/HeN nuclear genome when fed the atherogenic diet. These changes were associated with parallel alterations in inflammation and fibrosis gene expression in wild-type mice, with intermediate responses in MNX mice. Mice with the C57BL/6J nuclear genome had increased State 4 respiration, whereas MNX mice had decreased State 3 respiration and RCR (respiratory control ratio) when fed the atherogenic diet. Complex IV activity and most mitochondrial biogenesis genes were increased in mice with the C57BL/6J nuclear or mitochondrial genome, or both fed the atherogenic diet. These results reveal new interactions between mitochondrial and nuclear genomes and support the concept that mtDNA influences mitochondrial function and metabolic pathways implicated in NAFLD.

  3. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Therapeutic effects of gingerol on hematopoietic and antioxidative damage of 60Co γ-rays irradiated mice

    International Nuclear Information System (INIS)

    Geng Yanyan; Xie Zhenfei; Zhou Yu; Zeng Xianyin

    2012-01-01

    18 female Kunming mice were chosen and randomly divided into three groups, and the therapeutic effects of gingerol on hemopoietic and antioxidative system in liver of 60 Co γ-rays irradiated mice were developed in this study. Control group was given distilled water intragastrically once a day for five days. Mice in the irradiated group and irradiated + gingerol group were both irradiated at 3 Gy of 60 Co γ-rays and were given distilled water and gingerol intragastrically within 30 min after irradiation respectively, once a day for five days. The mice were sacrificed and sampled in 48 hours after intragastric administration. Compared with control group, the relative spleen index and WBC numbers significantly decreased (P 60 Co γ-rays irradiated mice. (authors)

  5. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High Fat Diet

    Science.gov (United States)

    McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin

    2014-01-01

    SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560

  6. Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    International Nuclear Information System (INIS)

    Chilampalli, Chandeshwari; Guillermo, Ruth; Zhang, Xiaoying; Kaushik, Radhey S; Young, Alan; Zeman, David; Hildreth, Michael B; Fahmy, Hesham; Dwivedi, Chandradhar

    2011-01-01

    Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm 2 , 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr 705 ), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various

  7. Silymarin prevents acetaminophen-induced hepatotoxicity in mice.

    Directory of Open Access Journals (Sweden)

    Zuzana Papackova

    Full Text Available Acetaminophen or paracetamol (APAP overdose is a common cause of liver injury. Silymarin (SLM is a hepatoprotective agent widely used for treating liver injury of different origin. In order to evaluate the possible beneficial effects of SLM, Balb/c mice were pretreated with SLM (100 mg/kg b.wt. per os once daily for three days. Two hours after the last SLM dose, the mice were administered APAP (300 mg/kg b.wt. i.p. and killed 6 (T6, 12 (T12 and 24 (T24 hours later. SLM-treated mice exhibited a significant reduction in APAP-induced liver injury, assessed according to AST and ALT release and histological examination. SLM treatment significantly reduced superoxide production, as indicated by lower GSSG content, lower HO-1 induction, alleviated nitrosative stress, decreased p-JNK activation and direct measurement of mitochondrial superoxide production in vitro. SLM did not affect the APAP-induced decrease in CYP2E1 activity and expression during the first 12 hrs. Neutrophil infiltration and enhanced expression of inflammatory markers were first detected at T12 in both groups. Inflammation progressed in the APAP group at T24 but became attenuated in SLM-treated animals. Histological examination suggests that necrosis the dominant cell death pathway in APAP intoxication, which is partially preventable by SLM pretreatment. We demonstrate that SLM significantly protects against APAP-induced liver damage through the scavenger activity of SLM and the reduction of superoxide and peroxynitrite content. Neutrophil-induced damage is probably secondary to necrosis development.

  8. Histone demethylases UTX and JMJD3 are required for NKT cell development in mice.

    Science.gov (United States)

    Northrup, Daniel; Yagi, Ryoji; Cui, Kairong; Proctor, William R; Wang, Chaochen; Placek, Katarzyna; Pohl, Lance R; Wang, Rongfu; Ge, Kai; Zhu, Jinfang; Zhao, Keji

    2017-01-01

    Natural killer (NK)T cells and conventional T cells share phenotypic characteristic however they differ in transcription factor requirements and functional properties. The role of histone modifying enzymes in conventional T cell development has been extensively studied, little is known about the function of enzymes regulating histone methylation in NKT cells. We show that conditional deletion of histone demethylases UTX and JMJD3 by CD4-Cre leads to near complete loss of liver NKT cells, while conventional T cells are less affected. Loss of NKT cells is cell intrinsic and not due to an insufficient selection environment. The absence of NKT cells in UTX/JMJD3-deficient mice protects mice from concanavalin A-induced liver injury, a model of NKT-mediated hepatitis. GO-analysis of RNA-seq data indicates that cell cycle genes are downregulated in UTX/JMJD3-deleted NKT progenitors, and suggest that failed expansion may account for some of the cellular deficiency. The phenotype appears to be demethylase-dependent, because UTY, a homolog of UTX that lacks catalytic function, is not sufficient to restore their development and removal of H3K27me3 by deletion of EZH2 partially rescues the defect. NKT cell development and gene expression is sensitive to proper regulation of H3K27 methylation. The H3K27me3 demethylase enzymes, in particular UTX, promote NKT cell development, and are required for effective NKT function.

  9. Comparison of the acute ultraviolet photoresponse in congenic albino hairless C57BL/6J mice relative to outbred SKH1 hairless mice

    Science.gov (United States)

    Konger, Raymond L.; Derr-Yellin, Ethel; Hojati, Delaram; Lutz, Cathleen; Sundberg, John P.

    2016-01-01

    Hairless albino Crl:SKH1-Hrhr mice are commonly utilized for studies in which hair or pigmentation would introduce an impediment to observational studies. Being an outbred strain, the SKH1 model suffers from key limitations that are not seen with congenic mouse strains. Inbred and congenic C57BL/6J mice are commonly utilized for modified genetic mouse models. We compare the acute UV-induced photoresponse between outbred SKH1 mice and an immune competent, hairless, albino C57BL/6J congenic mouse line [B6.Cg-Tyrc-2J Hrhr/J]. Histologically, B6.Cg-Tyrc-2J Hrhr/J skin is indistinguishable from that of SKH1 mice. The skin of both SKH1 and B6.Cg-Tyrc-2J Hrhr/J mice exhibited a reduction in hypodermal adipose tissue, the presence of utricles and dermal cystic structures, the presence of dermal granulomas, and epidermal thickening. In response to a single 1500 J/m2 UVB dose, the edema and apoptotic response was equivalent in both mouse strains. However, B6.Cg-Tyrc-2J Hrhr/J mice exhibited a more robust delayed sunburn reaction, with an increase in epidermal erosion, scab formation, and myeloperoxidase activity relative to SKH1 mice. Compared with SKH1 mice, B6.Cg-Tyrc-2J Hrhr/J also exhibited an aberrant proliferative response to this single UV exposure. Epidermal Ki67 immunopositivity was significantly suppressed in B6.Cg-Tyrc-2J Hrhr/J mice at 24 hours post-UV. A smaller non-significant reduction in Ki67 labeling was observed in SKH1 mice. Finally, at 72 hours post-UV, SKH1 mice, but not B6.Cg-Tyrc-2J Hrhr/J mice, exhibited a significant increase in Ki67 immunolabeling relative to non-irradiated controls. Thus, B6.Cg-Tyrc-2J Hrhr/J mice are suitable for photobiology experiments. PMID:27095432

  10. Neonatal irradiation sensitizes mice to delayed pulmonary challenge.

    Science.gov (United States)

    Johnston, Carl J; Manning, Casey M; Rangel-Moreno, Javier; Randall, Troy D; Hernady, Eric; Finkelstein, Jacob N; Williams, Jacqueline P

    2013-04-01

    Significant differences exist between the physiology of the immature, neonatal lung compared to that of the adult lung that may affect acute and late responses to irradiation. Identifying these differences is critical to developing successful mitigation strategies for this special population. Our current hypothesis proposes that irradiation during the neonatal period will alter developmental processes, resulting in long-term consequences, including altered susceptibility to challenge with respiratory pathogens. C57BL/6J mice, 4 days of age, received 5 Gy whole-body irradiation. At subsequent time points (12, 26 and 46 weeks postirradiation), mice were intranasally infected with 120 HAU of influenza A virus. Fourteen days later, mice were sacrificed and tissues were collected for examination. Morbidity was monitored following changes in body weight and survival. The magnitude of the pulmonary response was determined by bronchoalveolar lavage, histological examination and gene expression of epithelial and inflammatory markers. Viral clearance was assessed 7 days post-influenza infection. Following influenza infection, irradiated animals that were infected at 26 and 46 weeks postirradiation lost significantly more weight and demonstrated reduced survival compared with those infected at 12 weeks postirradiation, with the greatest deleterious effect seen at the late time point. The results of these experiments suggest that radiation injury during early life may affect the lung's response to a subsequent pathogenic aerial challenge, possibly through a chronic and progressive defect in the immune system. This finding may have implications for the development of countermeasures in the context of systemic radiation exposure.

  11. How radiation influences atherosclerotic plaque development. A biophysical approach in ApoE{sup -/-} mice

    Energy Technology Data Exchange (ETDEWEB)

    Kloosterman, Astrid; Dillen, Teun van; Dekkers, Fieke [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Safety and Security, Bilthoven (Netherlands); Bijwaard, Harmen [National Institute for Public Health and the Environment (RIVM), Centre for Environmental Safety and Security, Bilthoven (Netherlands); Inholland University of Applied Sciences, Medical Technology Research Group, Haarlem (Netherlands); Heeneman, Sylvia [Maastricht University Medical Center, Experimental Vascular Pathology group, Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); Hoving, Saske; Stewart, Fiona A. [Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Division of Biological Stress Response (H3), Amsterdam (Netherlands)

    2017-11-15

    Atherosclerosis is the development of lipid-laden plaques in arteries and is nowadays considered as an inflammatory disease. It has been shown that high doses of ionizing radiation, as used in radiotherapy, can increase the risk of development or progression of atherosclerosis. To elucidate the effects of radiation on atherosclerosis, we propose a mathematical model to describe radiation-promoted plaque development. This model distinguishes itself from other models by combining plaque initiation and plaque growth, and by incorporating information from biological experiments. It is based on two consecutive processes: a probabilistic dose-dependent plaque initiation process, followed by deterministic plaque growth. As a proof of principle, experimental plaque size data from carotid arteries from irradiated ApoE{sup -/-} mice was used to illustrate how this model can provide insight into the underlying biological processes. This analysis supports the promoting role for radiation in plaque initiation, but the model can easily be extended to include dose-related effects on plaque growth if available experimental data would point in that direction. Moreover, the model could assist in designing future biological experiments on this research topic. Additional biological data such as plaque size data from chronically-irradiated mice or experimental data sets with a larger variety in biological parameters can help to further unravel the influence of radiation on plaque development. To the authors' knowledge, this is the first biophysical model that combines probabilistic and mechanistic modeling which uses experimental data to investigate the influence of radiation on plaque development. (orig.)

  12. Piroxicam treatment augments bone abnormalities in interleukin-10 knockout mice.

    Science.gov (United States)

    Holgersen, Kristine; Dobie, Ross; Farquharson, Colin; vanʼt Hof, Rob; Ahmed, Syed Faisal; Hansen, Axel Kornerup; Holm, Thomas L

    2015-02-01

    Osteoporosis and fractures are common complications of inflammatory bowel disease. The pathogenesis is multifactorial and has been partly attributed to intestinal inflammation. The aim of this study was to evaluate bone status and assess the association between bone loss and gut inflammation in an experimental colitis model. Colitis was induced in interleukin-10 knockout mice (PAC IL-10 k.o.) by peroral administration of piroxicam for 12 days. The degree of colitis was assessed by clinical, macroscopic, and microscopic evaluation. Trabecular and cortical bone microarchitecture of tibia were determined using micro-computed tomography. Moreover, the serum levels of bone formation and bone resorption biomarkers were measured, and inflammatory protein profiling was performed on colons. PAC IL-10 k.o. mice developed severe colitis, characterized by hyperplasia and focal transmural inflammation, which was consistent with Crohn's disease-like pathology. The gut inflammation was accompanied by a 14% and 12% reduction in trabecular thickness relative to piroxicam-treated wild type and untreated wild type mice, respectively (P < 0.001). The trabecular bone structure was also changed in PAC IL-10 k.o. mice, whereas no differences in cortical bone geometry were observed. The trabecular thickness was inversely correlated with serum levels of CTX (r = -0.93, P = 0.006). Moreover, numerous inflammatory mediators, including RANKL and osteoprotegerin, were significantly increased in the colon of PAC IL-10 k.o. mice. PAC IL-10 k.o. mice develop bone loss and changed trabecular structure, as a result of increased bone resorption. Thus, the PAC IL-10 k.o. model could be a useful experimental model in preclinical research of inflammatory bowel disease-associated bone loss.

  13. Influence of indigenous microbiota on experimental toxoplasmosis in conventional and germ-free mice.

    Science.gov (United States)

    Nascimento, Bruna B; Cartelle, Christiane T; Noviello, Maria de L; Pinheiro, Breno V; de Almeida Vitor, Ricardo W; Souza, Danielle da G; de Vasconcelos Generoso, Simone; Cardoso, Valbert N; Martins, Flaviano Dos S; Nicoli, Jacques R; Arantes, Rosa M E

    2017-08-01

    Toxoplasmosis represents one of the most common zoonoses worldwide. Its agent, Toxoplasma gondii, causes a severe innate pro-inflammatory response. The indigenous intestinal microbiota promotes host animal homoeostasis and may protect the host against pathogens. Germ-free (GF) animals provide an important tool for the study of interactions between host and microbiota. In this study, we assessed the role of indigenous microorganisms in disease development utilizing a murine toxoplasmosis model, which includes conventional (CV) and GF NIH Swiss mice. CV and GF mice orally inoculated with T. gondii had similar survival curves. However, disease developed differently in the two animal groups. In CV mice, intestinal permeability increased and levels of intestinal pro-inflammatory cytokines were altered. In GF animals, there were discrete epithelial degenerative changes and mucosal oedema, but the liver and lungs displayed significant lesions. We conclude that, despite similar survival curves, CV animals succumb to an exaggerated inflammatory response, whereas GF mice fail to produce an adequate systemic response. © 2017 The Authors. International Journal of Experimental Pathology © 2017 International Journal of Experimental Pathology.

  14. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Gijs H M van Puijvelde

    Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.

  15. Muscle-directed gene therapy for phenylketonuria (PKU): Development of transgenic mice with muscle-specific phenylalanine hydroxylase expression

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.O.; Messing, A.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1994-09-01

    Phenylketonuria (PKU) is an attractive target for gene therapy because of shortcomings in current therapy including lifelong commitment to a difficult and expensive diet, persistent mild cognitive deficits in some children despite adequate dietary therapy, and maternal PKU syndrome. Phenylalanine hydroxylase (PAH) is normally expressed only in liver, but we propose to treat PKU by introducing the gene for PAH into muscle. In order to evaluate both the safety and efficacy of this approach, we have a developed a trangenic mouse which expresses PAH in both cardiac and skeletal muscle. The transgene includes promoter and enhancer sequences from the mouse muscle creatine kinase (MCK) gene fused to the mouse liver PAH cDNA. Mice which have inherited the transgene are healthy, active, and do not exhibit any signs of muscle weakness or wasting. Ectopic PAH expression in muscle is not detrimental to the health, neurologic function, or reproduction of the mice. Pah{sup enu2} hyperphenylalaninemic mice, a model of human PAH deficiency, bred to carry the transgene have substantial PAH expression in cardiac and skeletal muscle but none in liver. Muscle PAH expression alone does not complement the hyperphenylalaninemic phenotype of Pah{sup enu2} mice. However, administration of reduced tetrahydrobiopterin to transgenic Pah{sup enu2} mice is associated with a 25% mean decrease in serum phenylalanine levels. We predict that ectopic expression of PAH in muscle along with adequate muscle supplies of reduced biopterin cofactor will decrease hyperphenylalaninemia in PKU.

  16. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  17. No cytotoxic effects from application of pentoxifylline to spermatozoa on subsequent pre-implantation embryo development in mice

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khalili

    2017-06-01

    Full Text Available The aim was to assess the effect of spermatozoa exposed to PTX on the rates of fertilization and embryo development and apoptotic cells within blastocysts in an animal model. Mice Oocytes were inseminated with spermatozoa exposed to 3.6 mmol PTX for 30 min, or with neat spermatozoa. Then fertilization and embryo development rate, blastocyst formation and quality, as well as total cell number of blastocyst, and DNA fragmentation index (DFI in blastocysts were surveyed in both groups. Fertilization and embryo development rate were similar between the groups. The rates of blastocyst formation did not differ significantly between control and PTX groups (52.4% vs. 51.8%. The average of total cell count in blastocysts and DFI in control and PTX groups were also insignificant (31.08 ± 1.5 vs. 34.14 ± 1.5 and 9.76 ± 5.0 vs. 11.77 ± 5.4. Application of PTX for enhancing sperm motility does not cause a cytotoxic effect on subsequent embryo development and embryo genome integrity.

  18. The hepatoprotective activity of blue green algae in Schistosoma mansoni infected mice.

    Science.gov (United States)

    Mohamed, Azza H; Osman, Gamalat Y; Salem, Tarek A; Elmalawany, Alshimaa M

    2014-10-01

    This study aims to evaluate the immunomodulatory effects of a natural product, blue green algae (BGA) (100 mg/kg BW), alone or combined with praziquantel PZQ (250 mg/kg BW) on granulomatous inflammation, liver histopathology, some biochemical and immunological parameters in mice infected with Schistosoma mansoni. Results showed that the diameter and number of egg granuloma were significantly reduced after treatment of S. mansoni-infected mice with BGA, PZQ and their combination. The histopathological alterations observed in the liver of S. mansoni-infected mice were remarkably inhibited after BGA treatments. BGA decreased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) as well as the level of total protein (TP) while the level of albumin was increased. Treatment of infected mice with BGA, PZQ as well as their combination led to significant elevation in the activities of hepatic antioxidant enzymes glutathione peroxidase (GPX) and glutathione-S-transferase (GST) as compared with control group. Combination of BGA and PZQ resulted in significant reduction in the level of intercellular adhesion molecules-1 (ICAM-1), vascular adhesion molecules-1 (VCAM-1) and tumor necrosis factor-alpha (TNF-α) when compared to those of the S. mansoni-infected group. Overall, BGA significantly inhibited the liver damage accompanied with schistosomiasis, exhibited a potent antioxidant and immunoprotective activities. This study suggests that BGA can be considered as promising for development a complementary and/or alternative medicine against schistosomiasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The effect of embryonal thymic calf extracts on neonatally thymectomized mice and on mice lethally irradiated with gamma rays

    International Nuclear Information System (INIS)

    Czaplicki, J.; Blonska, B.; Stec, L.

    1981-01-01

    The effect of embryonal thymic calf extracts (ETCE) on mice thymectomized at birth was investigated. ETCE was found to induce an increase in leukopenia and decrease in the level of serum gamma globulins; it also reduced survival time in mice. The effect of ETCE on lethally irradiated mice was also examined. Only long-term administration of ETCE prior to gamma irradiation at 750 rad prolonged the survival time of mice (40% permanent survival) as compared with irradiated controls; the leukocytes from mice retained mitotic capability. Neither long-term treatment with ETCE prior to irradiation at 1000 rad, nor short-term administration prior to 750 rad affected survival time. ETCE administered after irradiation of mice with 750 rad caused a rapid decrease in blood leukocytes and a significantly lowered survival time. (Auth.)

  20. Consequences of low or moderate prenatal ethanol exposures during gastrulation or neurulation for open field activity and emotionality in mice.

    Science.gov (United States)

    Schambra, Uta B; Nunley, Kevin; Harrison, Theresa A; Lewis, C Nicole

    In a previous study we used a mouse model for ethanol exposure during gastrulation or neurulation to investigate the effects of modest and occasional human drinking during the 3rd or 4th week of pregnancy (Schambra et al., 2015). Pregnant C57Bl/6J mice were treated by gavage during gastrulation on gestational day (GD) 7 or neurulation on GD8 with 2 doses 4h apart of either 2.4 or 2.9g ethanol/kg body weight, resulting in peak blood ethanol concentrations (BECs) of 104 and 177mg/dl, respectively. We found that mice exposed to the low dose on either day were significantly delayed in their neonatal sensorimotor development. In the present study, we tested the same cohort of mice in an open field as juveniles on postnatal day (PD) 23-25 and as young adults on PD65-67 for prenatal ethanol effects on exploration and emotionality with measures of activity, rearing, grooming and defecation. We evaluated the effects of dose, sex, day of treatment and day of birth by multiple regression analyses. We found that, compared to the respective gavage controls, juvenile mice that had been prenatally exposed to the low BEC on either GD7 or GD8 were significantly hypoactive on the first 2 test days, reared significantly more on the last 2 test days, and groomed and defecated significantly more on all 3 test days. Only mice that had been treated on GD7 remained hypoactive as adults. Juvenile mice prenatally exposed to the moderate BEC on GD7 groomed significantly more, while those exposed on GD8 reared and defecated significantly more. Sex differences were highly significant in adult control mice, with control males less active and more emotional than females. Similar, but smaller, sex differences were also evident in adults exposed to ethanol prenatally. Persistence into later life of a deleterious effect of premature birth (i.e., birth on GD19 rather than GD20) on weight and behavior was not consistently supported by these data. Importantly, mice shown previously to be delayed in

  1. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  2. Marginal level dystrophin expression improves clinical outcome in a strain of dystrophin/utrophin double knockout mice.

    Directory of Open Access Journals (Sweden)

    Dejia Li

    2010-12-01

    Full Text Available Inactivation of all utrophin isoforms in dystrophin-deficient mdx mice results in a strain of utrophin knockout mdx (uko/mdx mice. Uko/mdx mice display severe clinical symptoms and die prematurely as in Duchenne muscular dystrophy (DMD patients. Here we tested the hypothesis that marginal level dystrophin expression may improve the clinical outcome of uko/mdx mice. It is well established that mdx3cv (3cv mice express a near-full length dystrophin protein at ∼5% of the normal level. We crossed utrophin-null mutation to the 3cv background. The resulting uko/3cv mice expressed the same level of dystrophin as 3cv mice but utrophin expression was completely eliminated. Surprisingly, uko/3cv mice showed a much milder phenotype. Compared to uko/mdx mice, uko/3cv mice had significantly higher body weight and stronger specific muscle force. Most importantly, uko/3cv outlived uko/mdx mice by several folds. Our results suggest that a threshold level dystrophin expression may provide vital clinical support in a severely affected DMD mouse model. This finding may hold clinical implications in developing novel DMD therapies.

  3. Transplacental arsenic carcinogenesis in mice

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu, Jie; Diwan, Bhalchandra A.

    2007-01-01

    Our work has focused on the carcinogenic effects of in utero arsenic exposure in mice. Our data show that a short period of maternal exposure to inorganic arsenic in the drinking water is an effective, multi-tissue carcinogen in the adult offspring. These studies have been reproduced in three temporally separate studies using two different mouse strains. In these studies pregnant mice were treated with drinking water containing sodium arsenite at up to 85 ppm arsenic from days 8 to 18 of gestation, and the offspring were observed for up to 2 years. The doses used in all these studies were well tolerated by both the dam and offspring. In C3H mice, two separate studies show male offspring exposed to arsenic in utero developed liver carcinoma and adrenal cortical adenoma in a dose-related fashion during adulthood. Prenatally exposed female C3H offspring show dose-related increases in ovarian tumors and lung carcinoma and in proliferative lesions (tumors plus preneoplastic hyperplasia) of the uterus and oviduct. In addition, prenatal arsenic plus postnatal exposure to the tumor promoter, 12-O-tetradecanoyl phorbol-13-acetate (TPA) in C3H mice produces excess lung tumors in both sexes and liver tumors in females. Male CD1 mice treated with arsenic in utero develop tumors of the liver and adrenal and renal hyperplasia while females develop tumors of urogenital system, ovary, uterus and adrenal and hyperplasia of the oviduct. Additional postnatal treatment with diethylstilbestrol or tamoxifen after prenatal arsenic in CD1 mice induces urinary bladder transitional cell proliferative lesions, including carcinoma and papilloma, and enhances the carcinogenic response in the liver of both sexes. Overall this model has provided convincing evidence that arsenic is a transplacental carcinogen in mice with the ability to target tissues of potential human relevance, such as the urinary bladder, lung and liver. Transplacental carcinogenesis clearly occurs with other agents in humans

  4. Ampicillin-Improved Glucose Tolerance in Diet-Induced Obese C57BL/6NTac Mice Is Age Dependent

    DEFF Research Database (Denmark)

    Rune, I.; Hansen, C. H. F.; Ellekilde, M.

    2013-01-01

    at different ages or not at all. We found that both diet and Ampicillin significantly changed the gut microbiota composition in the animals. Furthermore, there was a significant improvement in glucose tolerance in Ampicillin-treated, five-week-old mice compared to nontreated mice in the control group. At study...... in high-fat diet mice, and a lower tolerogenic dendritic cell percentage was found both in relation to high-fat diet and late Ampicillin treatment. The results support our hypothesis that a "window" exists early in life in which an alteration of the gut microbiota affects glucose tolerance as well...... as development of gut immunity and that this window may disappear after weaning....

  5. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.

    Science.gov (United States)

    Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid

    2016-08-02

    Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney

  6. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    Science.gov (United States)

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1-/- mice.

    Science.gov (United States)

    Dufaud, Chad; Rivera, Johanna; Rohatgi, Soma; Pirofski, Liise-Anne

    2018-01-01

    IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1 -/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1 -/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1 -/-, and Rag1 -/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1 -/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1 -/- mice treated with naive wild-type IgM-sufficient or sIgM -/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.

  8. Protease-Sensitive Liposomes in Chemotherapy & Chemoradiotherapy: From Material Development to In Vivo Application in Tumor-Bearing Mice

    DEFF Research Database (Denmark)

    Brogaard, Rikke Yding; Melander, Fredrik

    to enhance therapeutic efficacies. In this thesis, the development, characterization, and evaluation of an advanced liposomal DDS and its potential in chemoradiotherapy is presented from material development to in vivo application in tumor*bearing mice. In the first part of the thesis, we report the design...... concept of the liposomal DDS, which leads to rapid cellular uptake. Various lipid compositions are tested in uptake and cytotoxicity experiments in vitro, followed by in vivo experiments where the ability of the liposomal DDS to accumulate in tumors together with its anti*cancer activity is explored...... in tumor*bearing mice. The in vivo data demonstrates superior anti*cancer activity relative to the free drug and to conventional, long circulating liposomes. This indicates that the MMP*sensitive liposomal DDS holds potential in therapeutic applications. In the second part of the thesis, the potential...

  9. GH dysfunction in Engrailed-2 knockout mice, a model for autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Giovanni eProvenzano

    2014-09-01

    Full Text Available Insulin-like growth factor 1 (IGF-1 signaling promotes brain development and plasticity. Altered IGF-1 expression has been associated to autism spectrum disorders (ASD. IGF-1 levels were found increased in the blood and decreased in the cerebrospinal fluid of ASD children. Accordingly, IGF-1 treatment can rescue behavioral deficits in mouse models of ASD, and IGF-1 trials have been proposed for ASD children. IGF-1 is mainly synthesized in the liver, and its synthesis is dependent on growth hormone (GH produced in the pituitary gland. GH also modulates cognitive functions, and altered levels of GH have been detected in ASD patients.Here we analyzed the expression of GH, IGF-1, their receptors and regulatory hormones in the neuroendocrine system of adult male mice lacking the homeobox transcription factor Engrailed-2 (En2-/- mice. En2-/- mice display ASD-like behaviors (social interactions, defective spatial learning, increased seizure susceptibility accompanied by relevant neuropathological changes (loss of cerebellar and forebrain inhibitory neurons. Recent studies showed that En2 modulates IGF-1 activity during postnatal cerebellar development.We found that GH mRNA expression was markedly deregulated throughout the neuroendocrine axis in En2-/- mice, as compared to wild-type (WT controls. In mutant mice, GH mRNA levels were significantly increased in the pituitary gland, blood and liver, whereas decreased levels were detected in the hippocampus. These changes were paralleled by decreased levels of GH protein in the hippocampus but not other tissues of En2-/- mice. IGF-1 mRNA was significantly up-regulated in the liver and down-regulated in the En2-/- hippocampus, but no differences were detected in the levels of IGF-1 protein between the two genotypes. Our data strengthen the notion that altered GH levels in the hippocampus may be involved in learning disabilities associated to ASD.

  10. Reversing hypomyelination in BACE1-null mice with Akt-DD overexpression.

    Science.gov (United States)

    Hu, Xiangyou; Schlanger, Rita; He, Wanxia; Macklin, Wendy B; Yan, Riqiang

    2013-05-01

    β-Site amyloid precursor protein convertase enzyme 1 (BACE1), a type I transmembrane aspartyl protease required to cleave amyloid precursor protein for releasing a toxic amyloid peptide, also cleaves type I and type III neuregulin-1 (Nrg-1). BACE1 deficiency in mice causes hypomyelination during development and impairs remyelination if injured. In BACE1-null mice, the abolished cleavage of neuregulin-1 by BACE1 is speculated to cause reduced myelin sheath thickness in both the central nervous system and peripheral nervous system because reduced cleavage of Nrg-1 correlates with reduced Akt phosphorylation, a downstream signaling molecule of the Nrg-1/ErbB pathway. Here we tested specifically whether increasing Akt activity alone in oligodendrocytes would be sufficient to reverse the hypomyelination phenotype in BACE1-null mice. BACE1-null mice were bred with transgenic mice expressing constitutively active Akt (Akt-DD; mutations with D(308)T and D(473)S) in oligodendrocytes. Relative to littermate BACE1-null controls, BACE1(-/-)/Akt-DD mice exhibited enhanced expression of myelin basic protein and promoter of proteolipid protein. The elevated expression of myelin proteins correlated with a thicker myelin sheath in optic nerves; comparison of quantified g ratios with statistic significance was used to confirm this reversion. However, it appeared that myelin sheath thickness in the sciatic nerves was not increased in BACE1(-/-)/Akt-DD mice, as the g ratio was not significantly different from the control. Hence, increased Akt activity in BACE1-null myelinating cells only compensates for the loss of BACE1 activity in the central nervous system, which is consistent with the observation that overexpression of Akt-DD in Schwann cells did not induce hypermyelination. Our results suggest that signaling activity other than Akt may also contribute to proper myelination in peripheral nerves.

  11. Selectively bred crossed high-alcohol-preferring mice drink to intoxication and develop functional tolerance, but not locomotor sensitization during free-choice ethanol access.

    Science.gov (United States)

    Matson, Liana M; Kasten, Chelsea R; Boehm, Stephen L; Grahame, Nicholas J

    2014-01-01

    Crossed high-alcohol-preferring (cHAP) mice were selectively bred from a cross of the HAP1 × HAP2 replicate lines and demonstrate blood ethanol concentrations (BECs) during free-choice drinking reminiscent of those observed in alcohol-dependent humans. In this report, we investigated the relationship between free-choice drinking, intoxication, tolerance, and sensitization in cHAP mice. We hypothesized that initially mice would become ataxic after drinking alcohol, but that increased drinking over days would be accompanied by increasing tolerance to the ataxic effects of ethanol (EtOH). Male and female cHAP mice had free-choice access to 10% EtOH and water (E), while Water mice (W) had access to water alone. In experiment 1, the first drinking experience was monitored during the dark portion of the cycle. Once E mice reached an average intake rate of ≥1.5 g/kg/h, they, along with W mice, were tested for footslips on a balance beam, and BECs were assessed. In experiments 2, 3, and 4, after varying durations of free-choice 10% EtOH access (0, 3, 14, or 21 days), mice were challenged with 20% EtOH and tested for number of footslips on a balance beam or locomotor stimulant response. Blood was sampled for BEC determination. We found that cHAP mice rapidly acquire alcohol intakes that lead to ataxia. Over time, cHAP mice developed behavioral tolerance to the ataxic effects of alcohol, paralleled by escalating alcohol consumption. However, locomotor sensitization did not develop following 14 days of free-choice EtOH access. Overall, we observed increases in free-choice drinking with extended alcohol access paralleled by increases in functional tolerance, but not locomotor sensitization. These data support our hypothesis that escalating free-choice drinking over days in cHAP mice is driven by tolerance to alcohol's behavioral effects. These data are the first to demonstrate that escalating free-choice consumption is accompanied by increasing alcohol tolerance. In

  12. A possible link between food and mood: dietary impact on gut microbiota and behavior in BALB/c mice.

    Directory of Open Access Journals (Sweden)

    Bettina Pyndt Jørgensen

    Full Text Available Major depressive disorder is a debilitating disease in the Western World. A western diet high in saturated fat and refined sugar seems to play an important part in disease development. Therefore, this study is aimed at investigating whether saturated fat or sucrose predisposes mice to develop behavioral symptoms which can be interpreted as depression-like, and the possible influence of the gut microbiota (GM in this. Fourty-two mice were randomly assigned to one of three experimental diets, a high-fat, a high-sucrose or a control diet for thirteen weeks. Mice on high-fat diet gained more weight (p = 0.00009, displayed significantly less burrowing behavior than the control mice (p = 0.034, and showed decreased memory in the Morris water maze test compared to mice on high-sucrose diet (p = 0.031. Mice on high-sucrose diet burrowed less goal-oriented, showed greater latency to first bout of immobility in the forced swim test when compared to control mice (p = 0.039 and high-fat fed mice (p = 0.013, and displayed less anxiety than mice on high-fat diet in the triple test (p = 0.009. Behavioral changes were accompanied by a significant change in GM composition of mice fed a high-fat diet, while no difference between diet groups was observed for sucrose preferences, LPS, cholesterol, HbA1c, BDNF and the cytokines IL-1α, IL-1β, IL-6, IL-10, IL-12(p70, IL-17 and TNF-α. A series of correlations was found between GM, behavior, BDNF and inflammatory mediators. In conclusion, the study shows that dietary fat and sucrose affect behavior, sometimes in opposite directions, and suggests a possible association between GM and behavior.

  13. Collagen-induced arthritis in mice

    NARCIS (Netherlands)

    Bevaart, Lisette; Vervoordeldonk, Margriet J.; Tak, Paul P.

    2010-01-01

    Collagen-induced arthritis (CIA) in mice is an animal model for rheumatoid arthritis (RA) and can be induced in DBA/1 and C57BL/6 mice using different protocols. The CIA model can be used to unravel mechanisms involved in the development of arthritis and is frequently used to study the effect of new

  14. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  15. Comparative Hair Restorer Efficacy of Medicinal Herb on Nude (Foxn1nu Mice

    Directory of Open Access Journals (Sweden)

    Shahnaz Begum

    2014-01-01

    Full Text Available Eclipta alba (L. Hassk, Asiasarum sieboldii (Miq. F. Maek (Asiasari radix, and Panax ginseng C. A. Mey (red ginseng are traditionally acclaimed for therapeutic properties of various human ailments. Synergistic effect of each standardized plant extract was investigated for hair growth potential on nude mice, as these mutant mice genetically lack hair due to abnormal keratinization. Dried plant samples were ground and extracted by methanol. Topical application was performed on the back of nude mice daily up to completion of two hair growth generations. The hair density and length of Eclipta alba treated mice were increased significantly P>0.001 than control mice. Hair growth area was also distinctly visible in Eclipta alba treated mice. On the other hand, Asiasari radix and Panax ginseng treated mice developing hair loss were recognized from the abortive boundaries of hair coverage. Histomorphometric observation of nude mice skin samples revealed an increase in number of hair follicles (HFs. The presence of follicular keratinocytes was confirmed by BrdU labeling, S-phase cells in HFs. Therefore, Eclipta alba extract and/or phytochemicals strongly displayed incomparability of hair growth promotion activity than others. Thus, the standardized Eclipta alba extract can be used as an effective, alternative, and complementary treatment against hair loss.

  16. miR-378 attenuates muscle regeneration by delaying satellite cell activation and differentiation in mice.

    Science.gov (United States)

    Zeng, Ping; Han, Wanhong; Li, Changyin; Li, Hu; Zhu, Dahai; Zhang, Yong; Liu, Xiaohong

    2016-09-01

    Skeletal muscle mass and homeostasis during postnatal muscle development and regeneration largely depend on adult muscle stem cells (satellite cells). We recently showed that global overexpression of miR-378 significantly reduced skeletal muscle mass in mice. In the current study, we used miR-378 transgenic (Tg) mice to assess the in vivo functional effects of miR-378 on skeletal muscle growth and regeneration. Cross-sectional analysis of skeletal muscle tissues showed that the number and size of myofibers were significantly lower in miR-378 Tg mice than in wild-type mice. Attenuated cardiotoxin-induced muscle regeneration in miR-378 Tg mice was found to be associated with delayed satellite cell activation and differentiation. Mechanistically, miR-378 was found to directly target Igf1r in muscle cells both in vitro and in vivo These miR-378 Tg mice may provide a model for investigating the physiological and pathological roles of skeletal muscle in muscle-associated diseases in humans, particularly in sarcopenia. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  18. The role of macrophage migration inhibitory factor in obesity-associated type 2 diabetes in mice

    Directory of Open Access Journals (Sweden)

    Saksida Tamara

    2013-01-01

    Full Text Available Macrophage migration inhibitory factor (MIF is implicated in the pathogenesis of several inflammationrelated diseases, including obesity and type 2 diabetes (T2D. However, MIF deficiency itself promotes obesity and glucose intolerance in mice. Here we show that the introduction of a high-fat diet (HFD further aggravates the parameters of obesity-associated T2D: weight gain and glucose intolerance. Furthermore, in contrast to MIF-KO mice on standard chow, HFD-fed MIF-KO mice develop insulin resistance. Although the clinical signs of obesity-associated T2D are upgraded, inflammation in MIF-deficient mice on HFD is significantly lower. These results imply that MIF possesses a complex role in glucose metabolism and the development of obesity-related T2D. However, the downregulation of inflammation upon MIF inhibition could be a useful tool in short-term T2D therapy for preventing pancreatic islet deterioration. [Projekat Ministarstva nauke Republike Srbije, br. 173013

  19. Gamma-irradiated scrub typhus immunogens: development of cell-mediated immunity after vaccination of inbred mice

    International Nuclear Information System (INIS)

    Jerrells, T.R.; Palmer, B.A.; Osterman, J.V.

    1983-01-01

    Mice immunized with three injections of gamma-irradiated Karp strain of Rickettsia tsutsugamushi were evaluated for the presence of cell-mediated immunity by using delayed-type hypersensitivity, antigen-induced lymphocyte proliferation, and antigen-induced lymphokine production. These animals also were evaluated for levels of circulating antibody after immunization as well as for the presence of rickettsemia after intraperitoneal challenge with viable Karp rickettsiae. After immunization with irradiated Karp rickettsiae, a demonstrable cell-mediated immunity was present as evidenced by delayed-type hypersensitivity responsiveness, lymphocyte proliferation, and production of migration inhibition factor and interferon by immune spleen lymphocytes. Also, a reduction in circulating rickettsiae was seen in mice immunized with irradiated rickettsiae after challenge with 1,000 50% mouse lethal doses of viable, homologous rickettsiae. All responses except antibody titer and reduction of rickettsemia were similar to the responses noted in mice immunized with viable organisms. Antibody levels were lower in mice immunized with irradiated rickettsiae than in mice immunized with viable rickettsiae. Furthermore, mice that were immunized with viable rickettsiae demonstrated markedly lower levels of rickettsemia after intraperitoneal challenge compared with either mice immunized with irradiated rickettsiae or nonimmunized mice

  20. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    Science.gov (United States)

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  1. Genetic deficiency in neprilysin or its pharmacological inhibition initiate excessive stress-induced alcohol consumption in mice.

    Directory of Open Access Journals (Sweden)

    Björn Maul

    Full Text Available Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder. A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress.

  2. Genetic Deficiency in Neprilysin or Its Pharmacological Inhibition Initiate Excessive Stress-Induced Alcohol Consumption in Mice

    Science.gov (United States)

    Gembardt, Florian; Becker, Axel; Schultheiss, Heinz-Peter; Siems, Wolf-Eberhard; Walther, Thomas

    2012-01-01

    Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder). A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress. PMID:23185571

  3. Experimental Granulomatous Pulmonary Nocardiosis in BALB/C Mice

    Science.gov (United States)

    Mifuji Lira, Roque M.; Limón Flores, Alberto Yairh; Salinas Carmona, Mario César

    2016-01-01

    Pulmonary nocardiosis is a granulomatous disease with high mortality that affects both immunosuppressed and immunocompetent patients. The mechanisms leading to the establishment and progression of the infection are currently unknown. An animal model to study these mechanisms is sorely needed. We report the first in vivo model of granulomatous pulmonary nocardiosis that closely resembles human pathology. BALB/c mice infected intranasally with two different doses of GFP-expressing Nocardia brasiliensis ATCC700358 (NbGFP), develop weight loss and pulmonary granulomas. Mice infected with 109 CFUs progressed towards death within a week while mice infected with 108 CFUs died after five to six months. Histological examination of the lungs revealed that both the higher and lower doses of NbGFP induced granulomas with NbGFP clearly identifiable at the center of the lesions. Mice exposed to 108 CFUs and subsequently to 109 CFUs were not protected against disease severity but had less granulomas suggesting some degree of protection. Attempts to identify a cellular target for the infection were unsuccessful but we found that bacterial microcolonies in the suspension used to infect mice were responsible for the establishment of the disease. Small microcolonies of NbGFP, incompatible with nocardial doubling times starting from unicellular organisms, were identified in the lung as early as six hours after infection. Mice infected with highly purified unicellular preparations of NbGFP did not develop granulomas despite showing weight loss. Finally, intranasal delivery of nocardial microcolonies was enough for mice to develop granulomas with minimal weight loss. Taken together these results show that Nocardia brasiliensis microcolonies are both necessary and sufficient for the development of granulomatous pulmonary nocardiosis in mice. PMID:27303806

  4. Experimental Granulomatous Pulmonary Nocardiosis in BALB/C Mice.

    Directory of Open Access Journals (Sweden)

    Roque M Mifuji Lira

    Full Text Available Pulmonary nocardiosis is a granulomatous disease with high mortality that affects both immunosuppressed and immunocompetent patients. The mechanisms leading to the establishment and progression of the infection are currently unknown. An animal model to study these mechanisms is sorely needed. We report the first in vivo model of granulomatous pulmonary nocardiosis that closely resembles human pathology. BALB/c mice infected intranasally with two different doses of GFP-expressing Nocardia brasiliensis ATCC700358 (NbGFP, develop weight loss and pulmonary granulomas. Mice infected with 109 CFUs progressed towards death within a week while mice infected with 108 CFUs died after five to six months. Histological examination of the lungs revealed that both the higher and lower doses of NbGFP induced granulomas with NbGFP clearly identifiable at the center of the lesions. Mice exposed to 108 CFUs and subsequently to 109 CFUs were not protected against disease severity but had less granulomas suggesting some degree of protection. Attempts to identify a cellular target for the infection were unsuccessful but we found that bacterial microcolonies in the suspension used to infect mice were responsible for the establishment of the disease. Small microcolonies of NbGFP, incompatible with nocardial doubling times starting from unicellular organisms, were identified in the lung as early as six hours after infection. Mice infected with highly purified unicellular preparations of NbGFP did not develop granulomas despite showing weight loss. Finally, intranasal delivery of nocardial microcolonies was enough for mice to develop granulomas with minimal weight loss. Taken together these results show that Nocardia brasiliensis microcolonies are both necessary and sufficient for the development of granulomatous pulmonary nocardiosis in mice.

  5. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    Energy Technology Data Exchange (ETDEWEB)

    Borborema, Samanta E.T.; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular]. E-mails: samanta@usp.br; nnascime@ipen.br; Andrade Junior, Heitor F. de [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Lab. de Biologia Molecular; Instituto de Medicina Tropical de Sao Paulo, Sao Paulo, SP (Brazil); E-mail: hfandrad@usp.br; Osso Junior, Joao A. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Radiofarmacia]. E-mail: jaosso@ipen.br

    2007-07-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb{sup +5}) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes {sup 122}Sb and {sup 124}Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony

  6. Pharmacokinetic of antimony in mice with cutaneous Leishmaniasis

    International Nuclear Information System (INIS)

    Borborema, Samanta E.T.; Nascimento, Nanci do; Osso Junior, Joao A.

    2007-01-01

    Cutaneous Leishmaniasis (CL) remains a major world health problem, with about 1.5 million new cases each year. Caused by protozoa Leishmania, in South America, this infection can vary from a chronic skin ulcer, to an erosive mucosal disease and severe facial disfigurement. Pentavalent antimony (Sb +5 ) as sodium stibogluconate (Pentostam) or meglumine antimoniate (Glucantime) are main drugs for treating most forms of human leishmaniasis. For six decades, despite the recent developments, the effective therapy to cutaneous leishmaniasis has been based on long parenteral courses of such drugs, even though these are fairly costly, toxic and inconvenient to use, without adequate knowledge on their pharmacokinetics or mechanism of action. Pharmacokinetics studies could be based on bioactive traceable drugs, usually with radioactive isotopes, but antimony radioisotopes are unavailable commercially. Neutron irradiation is a powerful tool in the analysis of mineral content of samples, for antimony, there are at least two main isotopes that could be formed after neutron irradiation in nuclear reactor. The aim of the present study was to construct antimony salts with those radioisotopes to obtain tracers to compare the pharmacokinetic and the tissue distribution of neutron irradiated meglumine antimoniate in healthy and cutaneous leishmaniasis experimentally infected mice. Meglumine antimoniate, (Glucantime, Aventis, S.P, Brazil), was neutron irradiated inside the IEA-R1 nuclear reactor (IPEN/CNEN-SP), producing two radioisotopes 122 Sb and 124 Sb. Its biodistribution was verified in BALB/c mice experimentally infected with Leishmania (Leishmania) Amazonensis, which received a single intraperitoneal dose of the drug. At different times after injection, the tissues and blood were excised and activity measured in a NaI (Tl) scintillation counter. Compared with the healthy mice, experimentally infected mice had significantly lower maximum concentration of antimony and high

  7. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Chronotoxicity of glufosinate ammonium in mice.

    Science.gov (United States)

    Yoshiyama, Y; Kobayashi, T; Kondo, R; Tomonaga, F; Ohwada, T

    1995-02-01

    The effect of a circadian-stage dependent dosing schedule on the toxicity of glufosinate was studied in mice. Male ICR mice were housed in a standardized 12:12 light:dark cycle for 3 w. Each animal was given 1500 or 3000 mg glufosinate/kg po. A highly significant circadian rhythm occurred in the resulting mortality, with the highest mortality from doses given during the light phase and the lowest from doses administered during the dark phase. The circadian-stage dependent dosing schedule had a marked influence on the pattern of acute glufosinate toxicity in mice.

  9. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  10. Roles of the 15-kDa Selenoprotein (Sep15) in Redox Homeostasis and Cataract Development Revealed by the Analysis of Sep 15 Knockout Mice*

    Science.gov (United States)

    Kasaikina, Marina V.; Fomenko, Dmitri E.; Labunskyy, Vyacheslav M.; Lachke, Salil A.; Qiu, Wenya; Moncaster, Juliet A.; Zhang, Jie; Wojnarowicz, Mark W.; Natarajan, Sathish Kumar; Malinouski, Mikalai; Schweizer, Ulrich; Tsuji, Petra A.; Carlson, Bradley A.; Maas, Richard L.; Lou, Marjorie F.; Goldstein, Lee E.; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2011-01-01

    The 15-kDa selenoprotein (Sep15) is a thioredoxin-like, endoplasmic reticulum-resident protein involved in the quality control of glycoprotein folding through its interaction with UDP-glucose:glycoprotein glucosyltransferase. Expression of Sep15 is regulated by dietary selenium and the unfolded protein response, but its specific function is not known. In this study, we developed and characterized Sep15 KO mice by targeted removal of exon 2 of the Sep15 gene coding for the cysteine-rich UDP-glucose:glycoprotein glucosyltransferase-binding domain. These KO mice synthesized a mutant mRNA, but the shortened protein product could be detected neither in tissues nor in Sep15 KO embryonic fibroblasts. Sep15 KO mice were viable and fertile, showed normal brain morphology, and did not activate endoplasmic reticulum stress pathways. However, parameters of oxidative stress were elevated in the livers of these mice. We found that Sep15 mRNA was enriched during lens development. Further phenotypic characterization of Sep15 KO mice revealed a prominent nuclear cataract that developed at an early age. These cataracts did not appear to be associated with severe oxidative stress or glucose dysregulation. We suggest that the cataracts resulted from an improper folding status of lens proteins caused by Sep15 deficiency. PMID:21768092

  11. Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

    Directory of Open Access Journals (Sweden)

    Susan E Murray

    Full Text Available NF-κB inducing kinase (NIK, MAP3K14 is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+ regulatory T cells (Tregs, which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.

  12. Inherent and antigen-induced airway hyperreactivity in NC mice

    OpenAIRE

    Tetsuto Kobayashi; Toru Miura; Tomoko Haba; Miyuki Sato; Masao Takei; Isao Serizawa

    1999-01-01

    In order to clarify the airway physiology of NC mice, the following experiments were carried out. To investigate inherent airway reactivity, we compared tracheal reactivity to various chemical mediators in NC, BALB/c, C57BL/6 and A/J mice in vitro. NC mice showed significantly greater reactivity to acetylcholine than BALB/c and C57BL/6 mice and a reactivity comparable to that of A/J mice, which are known as high responders. Then, airway reactivity to acetylcholine was investigated in those st...

  13. Mice heterozygous for the Mdr2 gene demonstrate decreased PEMT activity and diminished steatohepatitis on the MCD diet.

    Science.gov (United States)

    Igolnikov, Alexander C; Green, Richard M

    2006-03-01

    The administration of a methionine and choline deficient (MCD) diet to mice serves as an animal model of NASH. The multidrug resistant 2 (Mdr2) P-glycoprotein encodes for the canalicular phospholipid transporter, and Mdr2 (+/-) mice secrete 40% less phosphatidylcholine than wild-type mice. We have hypothesized that phosphatidylethanolamine-N-methyl transferase (PEMT) up-regulation is a consequence of MCD diet administration, and is important for the pathogenesis of steatohepatitis in this model. However, the effect of decreased phosphatidylcholine secretion and modulation of PEMT on the development of diet-induced steatohepatitis in Mdr2 (+/-) mice has not been explored. Thus, the purpose of the study is to examine the effects of the MCD diet on Mdr2 (+/-) mice. Mdr2 (+/-) and Mdr2 (+/+) mice were treated with an MCD or control diet for up to 30 days, and the severity of steatohepatitis, PEMT activity and hepatic S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) levels were measured. Serum ALT levels, hepatic inflammation, and PEMT activity were significantly lower, and hepatic SAM:SAH ratios were significantly higher in Mdr2 (+/-) mice at 7 and 30 days on the MCD diet. Mdr2 (+/-) mice have diminished susceptibility to MCD diet-induced NASH, which is associated with a relative decrease in PEMT activity and increased SAM:SAH ratios.

  14. Histopathological Correlations between Mediastinal Fat-Associated Lymphoid Clusters and the Development of Lung Inflammation and Fibrosis following Bleomycin Administration in Mice.

    Science.gov (United States)

    Elewa, Yaser Hosny Ali; Ichii, Osamu; Takada, Kensuke; Nakamura, Teppei; Masum, Md Abdul; Kon, Yasuhiro

    2018-01-01

    Bleomycin (BLM) has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6) mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs) under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d) following a single 50 μL intranasal (i.n.) instillation of either BLM sulfate (5 mg/kg) (BLM group) or phosphate-buffered saline (control group). The lung fibrosis was examined by Masson's trichrome (MT) stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd) was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs), and high endothelial venules (HEVs). We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT) and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations within the

  15. Histopathological Correlations between Mediastinal Fat-Associated Lymphoid Clusters and the Development of Lung Inflammation and Fibrosis following Bleomycin Administration in Mice

    Directory of Open Access Journals (Sweden)

    Yaser Hosny Ali Elewa

    2018-02-01

    Full Text Available Bleomycin (BLM has been reported to induce lung inflammation and fibrosis in human and mice and showed genetic susceptibility. Interestingly, the C57BL/6 (B6 mice had prominent mediastinal fat-associated lymphoid cluster (MFALCs under healthy condition, and showed susceptibility to development of lung fibrosis following BLM administration. However, the pathogenesis of lung lesion progression, and their correlation with MFALC morphologies, remain to be clarified. To investigate the correlations between MFALC structures and lung injuries in B6 mice, histopathological examination of mediastinal fat tissues and lungs was examined at 7 and 21 days (d following a single 50 μL intranasal (i.n. instillation of either BLM sulfate (5 mg/kg (BLM group or phosphate-buffered saline (control group. The lung fibrosis was examined by Masson’s trichrome (MT stain of paraffin sections and mRNA expression levels of Col1a1, Col3a1, and Acta2 in different frozen lung samples. Furthermore, immunohistochemistry for CD3, B220, Iba1, Gr1, BrdU, LYVE-1, and peripheral node addressin (PNAd was performed to detect T- and B-cells, macrophages, granulocytes, proliferating cells, lymph vessels (LVs, and high endothelial venules (HEVs. We found that MFALCs were more abundant in the BLM group as compared to the control group. The lung of BLM group developed pneumonitis with severe cellular infiltrations at 7 days and significant collagen deposition (MT and higher expression of Col1a1, and Col3a1 at 21 days post-administration. Numerous immune cells, proliferating cells, HEVs, and LVs were observed in both MFALCs and lungs of the BLM group. Interestingly, PNAd + HEVs were observed in the lungs of the BLM group, but not the control group. Moreover, numerous Gr1 + polymorphonuclear and mononuclear-like ring cells were found in the MFALCs and lungs of the BLM group. Interestingly, flow cytometric analysis revealed a significant increase of B-cell populations

  16. Endogenous murine tau promotes neurofibrillary tangles in 3xTg-AD mice without affecting cognition.

    Science.gov (United States)

    Baglietto-Vargas, David; Kitazawa, Masashi; Le, Elaine J; Estrada-Hernandez, Tatiana; Rodriguez-Ortiz, Carlos J; Medeiros, Rodrigo; Green, Kim N; LaFerla, Frank M

    2014-02-01

    Recent studies on tauopathy animal models suggest that the concomitant expression of the endogenous murine tau delays the pathological accumulation of human tau, and interferes with the disease progression. To elucidate the role of endogenous murine tau in a model with both plaques and tangles, we developed a novel transgenic mouse model by crossing 3xTg-AD with mtauKO mice (referred to as 3xTg-AD/mtauKO mice). Therefore, this new model allows us to determine the pathological consequences of the murine tau. Here, we show that 3xTg-AD/mtauKO mice have lower tau loads in both soluble and insoluble fractions, and lower tau hyperphosphorylation level in the soluble fraction relative to 3xTg-AD mice. In the 3xTg-AD model endogenous mouse tau is hyperphosphorylated and significantly co-aggregates with human tau. Despite the deletion of the endogenous tau gene in 3xTg-AD/mtauKO mice, cognitive dysfunction was equivalent to 3xTg-AD mice, as there was no additional impairment on a spatial memory task, and thus despite increased tau phosphorylation, accumulation and NFTs in 3xTg-AD mice no further effects on cognition are seen. These findings provide better understanding about the role of endogenous tau to Alzheimer's disease (AD) pathology and for developing new AD models. © 2013.

  17. Exposure to bifenthrin causes immunotoxicity and oxidative stress in male mice.

    Science.gov (United States)

    Jin, Yuanxiang; Pan, Xiuhong; Fu, Zhengwei

    2014-09-01

    Bifenthrin (BF) is one of the most commonly used pesticides among the synthetic pyrethroids. The effects of BF exposure on the induction of immunotoxicity and oxidative stress were studied both in adolescent and adult male ICR mice. Both the weights of the spleen and thymus decreased significantly in the adolescent mice when they were treated with 20 mg/kg BF for 3 weeks. We found that the 3-week oral administration of BF during puberty increased the transcriptional levels of the genes TNF and IL2 in the spleen and IL2 as well as IL4 in the thymus. The effect of BF exposure on the induction of oxidative stress was also studied in serum and liver samples. The total antioxidant capacity and activity of superoxide dismutase were altered significantly in the serum of the 20 mg/kg BF-treated adolescent mice, and the activity of glutathione peroxidase (GPX) decreased significantly in the serum of adolescent and adult mice after 3 weeks of oral administration of 20 mg/kg BF. Compared to serum, hepatic GSH content increased significantly in both the adolescent and adult mice exposed to 20 mg/kg BF; hepatic CAT and GPX activities were altered significantly, even in adolescent mice, after treatment with 10 mg/kg BF. Taken together, the results of this study suggest that exposure to BF, especially during puberty, has the potential to induce immunotoxicity accompanied by oxidative stress in male mice. These findings will help in elucidating the mechanism of toxicity induced by BF in mice. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.

  18. Imaging colon cancer development in mice: IL-6 deficiency prevents adenoma in azoxymethane-treated Smad3 knockouts

    Science.gov (United States)

    Harpel, Kaitlin; Leung, Sarah; Faith Rice, Photini; Jones, Mykella; Barton, Jennifer K.; Bommireddy, Ramireddy

    2016-02-01

    The development of colorectal cancer in the azoxymethane-induced mouse model can be observed by using a miniaturized optical coherence tomography (OCT) imaging system. This system is uniquely capable of tracking disease development over time, allowing for the monitoring of morphological changes in the distal colon due to tumor development and the presence of lymphoid aggregates. By using genetically engineered mouse models deficient in Interleukin 6 (IL-6) and Smad family member 3 (Smad3), the role of inflammation on tumor development and the immune system can be elucidated. Smad3 knockout mice develop inflammatory response, wasting, and colitis associated cancer while deficiency of proinflammatory cytokine IL-6 confers resistance to tumorigenesis. We present pilot data showing that the Smad3 knockout group had the highest tumor burden, highest spleen weight, and lowest thymus weight. The IL-6 deficiency in Smad3 knockout mice prevented tumor development, splenomegaly, and thymic atrophy. This finding suggests that agents that inhibit IL-6 (e.g. anti-IL-6 antibody, non-steroidal anti-inflammatory drugs [NSAIDs], etc.) could be used as novel therapeutic agents to prevent disease progression and increase the efficacy of anti-cancer agents. OCT can also be useful for initiating early therapy and assessing the benefit of combination therapy targeting inflammation.

  19. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  20. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    International Nuclear Information System (INIS)

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-01-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment