WorldWideScience

Sample records for mice demonstrate enhanced

  1. RF System for the MICE Demonstration of Ionisation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ronald, K.; et al.

    2017-04-01

    Muon accelerators offer an attractive option for a range of future particle physics experiments. They can enable high energy (TeV+) high energy lepton colliders whilst mitigating the difficulty of synchrotron losses, and can provide intense beams of neutrinos for fundamental physics experiments investigating the physics of flavor. The method of production of muon beams results in high beam emittance which must be reduced for efficient acceleration. Conventional emittance control schemes take too long, given the very short (2.2 microsecond) rest lifetime of the muon. Ionisation cooling offers a much faster approach to reducing particle emittance, and the international MICE collaboration aims to demonstrate this technique for the first time. This paper will present the MICE RF system and its role in the context of the overall experiment.

  2. Functionally enhanced brown adipose tissue in Ames dwarf mice.

    Science.gov (United States)

    Darcy, Justin; Bartke, Andrzej

    2017-01-02

    Reduced insulin-like growth factor 1/insulin signaling (IIS) has been linked to extended longevity in species ranging from yeast to mammals. In mammals, this is exemplified in Ames dwarf (Prop1 df/df ) mice, which have a 40%-60% increase in longevity (males and females, respectively) due to their recessive Prop1 loss-of-function mutation that results in lack of growth hormone (GH), thyroid-stimulating hormone and prolactin. Our laboratory has previously shown that Ames dwarf mice have functionally unique white adipose tissue (WAT) that improves, rather than impairs, insulin sensitivity. Because GH and thyroid hormone are integral to adipose tissue development and function, we hypothesized that brown adipose tissue (BAT) in Ames dwarf mice may also be functionally unique and/or enhanced. Here, we elaborate on our recent findings, which demonstrate that BAT is functionally enhanced in Ames dwarf mice, and suggest that BAT removal in these mice results in utilization of WAT depots as an energy source. We also discuss how our findings compare to those in other long-lived dwarf mice with altered IIS, which unlike Ames dwarf mice, are essentially euthyroid. Lastly, we provide some insights into the implications of these findings and discuss some of the necessary future work in this area.

  3. Intermittent cold exposure enhances fat accumulation in mice.

    Directory of Open Access Journals (Sweden)

    Hyung Sun Yoo

    Full Text Available Due to its high energy consuming characteristics, brown adipose tissue (BAT has been suggested as a key player in energy metabolism. Cold exposure is a physiological activator of BAT. Intermittent cold exposure (ICE, unlike persistent exposure, is clinically feasible. The main objective of this study was to investigate whether ICE reduces adiposity in C57BL/6 mice. Surprisingly, we found that ICE actually increased adiposity despite enhancing Ucp1 expression in BAT and inducing beige adipocytes in subcutaneous white adipose tissue. ICE did not alter basal systemic insulin sensitivity, but it increased liver triglyceride content and secretion rate as well as blood triglyceride levels. Gene profiling further demonstrated that ICE, despite suppressing lipogenic gene expression in white adipose tissue and liver during cold exposure, enhanced lipogenesis between the exposure periods. Together, our results indicate that despite enhancing BAT recruitment, ICE in mice increases fat accumulation by stimulating de novo lipogenesis.

  4. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  5. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  6. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  7. Autometallography: tissue metals demonstrated by a silver enhancement kit

    DEFF Research Database (Denmark)

    Danscher, G; Nørgaard, J O; Baatrup, E

    1987-01-01

    , primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial......In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit...... silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium...

  8. Ames hypopituitary dwarf mice demonstrate imbalanced myelopoiesis between bone marrow and spleen.

    Science.gov (United States)

    Capitano, Maegan L; Chitteti, Brahmananda R; Cooper, Scott; Srour, Edward F; Bartke, Andrzej; Broxmeyer, Hal E

    2015-06-01

    Ames hypopituitary dwarf mice are deficient in growth hormone, thyroid-stimulating hormone, and prolactin. The phenotype of these mice demonstrates irregularities in the immune system with skewing of the normal cytokine milieu towards a more anti-inflammatory environment. However, the hematopoietic stem and progenitor cell composition of the bone marrow (BM) and spleen in Ames dwarf mice has not been well characterized. We found that there was a significant decrease in overall cell count when comparing the BM and spleen of 4-5 month old dwarf mice to their littermate controls. Upon adjusting counts to differences in body weight between the dwarf and control mice, the number of granulocyte-macrophage progenitors, confirmed by immunophenotyping and colony-formation assay was increased in the BM. In contrast, the numbers of all myeloid progenitor populations in the spleen were greatly reduced, as confirmed by colony-formation assays. This suggests that there is a shift of myelopoiesis from the spleen to the BM of Ames dwarf mice; however, this shift does not appear to involve erythropoiesis. The reasons for this unusual shift in spleen to marrow hematopoiesis in Ames dwarf mice are yet to be determined but may relate to the decreased hormone levels in these mice. Copyright © 2015. Published by Elsevier Inc.

  9. HSL Attenuates the Follicular Oxidative Stress and Enhances the Hair Growth in ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Takeo Minematsu, PhD

    2013-10-01

    Full Text Available Summary: We demonstrated enhanced hair regeneration following topical administration of N-(3-oxododecanoyl-L-homoserine lactone (HSL in ob/ob mice. The ob/ob mice showed delayed hair regeneration (more than 6 wk after depilation, which rapidly induced transition to anagen in the hair cycle in wild-type mice. Vehicle and HSL solutions were applied to the depilated dorsal skin of ob/ob mice. The depilated skin of the HSL-treated mice was fully covered with hair, whereas no macroscopic alteration was observed in vehicle-treated group by the fourth week after depilation. Oxidative stress was drastically decreased and the expression of the antioxidative enzymes PON1 and PON3 was increased in the HSL-treated skin with highly proliferative anagen follicles. These results suggest that HSL is a candidate therapeutic agent for alopecia in metabolic syndrome.

  10. Voluntary running enhances glymphatic influx in awake behaving, young mice.

    Science.gov (United States)

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Brown Adipose Tissue Function Is Enhanced in Long-Lived, Male Ames Dwarf Mice

    Science.gov (United States)

    McFadden, Samuel; Fang, Yimin; Huber, Joshua A.; Zhang, Chi; Sun, Liou Y.; Bartke, Andrzej

    2016-01-01

    Ames dwarf mice (Prop1df/df) are long-lived due to a loss of function mutation, resulting in deficiency of GH, TSH, and prolactin. Along with a marked extension of longevity, Ames dwarf mice have improved energy metabolism as measured by an increase in their oxygen consumption and heat production, as well as a decrease in their respiratory quotient. Along with alterations in energy metabolism, Ames dwarf mice have a lower core body temperature. Moreover, Ames dwarf mice have functionally altered epididymal white adipose tissue (WAT) that improves, rather than impairs, their insulin sensitivity due to a shift from pro- to anti-inflammatory cytokine secretion. Given the unique phenotype of Ames dwarf epididymal WAT, their improved energy metabolism, and lower core body temperature, we hypothesized that Ames dwarf brown adipose tissue (BAT) may function differently from that of their normal littermates. Here we use histology and RT-PCR to demonstrate that Ames dwarf mice have enhanced BAT function. We also use interscapular BAT removal to demonstrate that BAT is necessary for Ames dwarf energy metabolism and thermogenesis, whereas it is less important for their normal littermates. Furthermore, we show that Ames dwarf mice are able to compensate for loss of interscapular BAT by using their WAT depots as an energy source. These findings demonstrate enhanced BAT function in animals with GH and thyroid hormone deficiencies, chronic reduction of body temperature, and remarkably extended longevity. PMID:27740871

  12. Demonstration of pulmonary embolism with gadolinium-enhanced spiral CT

    Energy Technology Data Exchange (ETDEWEB)

    Coche, E.E.; Hammer, F.D.; Goffette, P.P. [Dept. of Radiology, St. Luc University Hospital, Brussels (Belgium)

    2001-11-01

    The authors report a case of successful detection of pulmonary embolism using gadolinium-enhanced spiral CT (Gadodiamide, 0.4 mmol/kg, 2 ml/s, delay 18 s) in a 77-year-old woman, with previous allergy to iodinated contrast medium, and renal failure, who presented with pulmonary arterial hypertension. Doppler ultrasound of the lower limbs was first performed and revealed a deep venous thrombosis of the right lower limb. To establish if venous thrombosis was the cause of pulmonary hypertension and to confirm that pulmonary endarterectomy was not indicated in this situation, several imaging modalities were performed. Lung scintigraphy and MRI were non-diagnostic. Gadolinium-enhanced spiral CT demonstrated a large thrombus located proximally and in a segmental artery of the right lower lobe. This case illustrates the potential usefulness of gadolinium as alternative contrast agent with spiral CT to diagnose pulmonary embolism and elucidate the cause of pulmonary arterial hypertension in a patient with some contraindications for iodinated contrast medium injection. (orig.)

  13. Demonstration of pulmonary embolism with gadolinium-enhanced spiral CT

    International Nuclear Information System (INIS)

    Coche, E.E.; Hammer, F.D.; Goffette, P.P.

    2001-01-01

    The authors report a case of successful detection of pulmonary embolism using gadolinium-enhanced spiral CT (Gadodiamide, 0.4 mmol/kg, 2 ml/s, delay 18 s) in a 77-year-old woman, with previous allergy to iodinated contrast medium, and renal failure, who presented with pulmonary arterial hypertension. Doppler ultrasound of the lower limbs was first performed and revealed a deep venous thrombosis of the right lower limb. To establish if venous thrombosis was the cause of pulmonary hypertension and to confirm that pulmonary endarterectomy was not indicated in this situation, several imaging modalities were performed. Lung scintigraphy and MRI were non-diagnostic. Gadolinium-enhanced spiral CT demonstrated a large thrombus located proximally and in a segmental artery of the right lower lobe. This case illustrates the potential usefulness of gadolinium as alternative contrast agent with spiral CT to diagnose pulmonary embolism and elucidate the cause of pulmonary arterial hypertension in a patient with some contraindications for iodinated contrast medium injection. (orig.)

  14. Enhanced Autophagy in Polycystic Kidneys of AQP11 Null Mice

    Directory of Open Access Journals (Sweden)

    Yasuko Tanaka

    2016-11-01

    Full Text Available Aquaporin-11 (AQP11 is an intracellular water channel expressed at the endoplasmic reticulum (ER of the proximal tubule. Its gene disruption in mice leads to intracellular vacuole formation at one week and the subsequent development of polycystic kidneys by three weeks. As the damaged proximal tubular cells with intracellular vacuoles form cysts later, we postulated that autophagy may play a role in the cyst formation and examined autophagy activity before and after cyst development in AQP11(−/− kidneys. PCR analysis showed the increased expression of the transcript encoding LC3 (Map1lc3b as well as other autophagy-related genes in AQP11(−/− mice. Using green fluorescent protein (GFP-LC3 transgenic mice and AQP11(−/− mice, we found that the number of GFP-LC3–positive puncta was increased in the proximal tubule of AQP11(−/− mice before the cyst formation. Interestingly, they were also observed in the cyst-lining epithelial cell. Further PCR analyses revealed the enhanced expression of apoptosis-related and ER stress–related caspase genes before and after the cyst formation, which may cause the enhanced autophagy. These results suggest the involvement of autophagy in the development and maintenance of kidney cysts in AQP11(−/− mice.

  15. Exercise Enhances Whole-Body Cholesterol Turnover in Mice

    NARCIS (Netherlands)

    Meissner, Maxi; Havinga, Rick; Boverhof, Renze; Kema, Ido; Groen, Albert K.; Kuipers, Folkert

    MEISSNER, M., R. HAVINGA, R. BOVERHOF, I. KEMA, A. K. GROEN, and F. KUIPERS. Exercise Enhances Whole-Body Cholesterol Turnover in Mice. Med. Sci. Sports Exerc., Vol. 42, No. 8, pp. 1460-1468, 2010. Purpose: Regular exercise reduces cardiovascular risk in humans by reducing cholesterol levels, but

  16. Uric acid demonstrates neuroprotective effect on Parkinson's disease mice through Nrf2-ARE signaling pathway.

    Science.gov (United States)

    Huang, Ting-Ting; Hao, Dong-Lin; Wu, Bo-Na; Mao, Lun-Lin; Zhang, Jin

    2017-12-02

    Uric acid has neuroprotective effect on Parkinson's disease (PD) by inhibiting oxidative damage and neuronal cell death. Our previous study has shown that uric acid protected dopaminergic cell line damage through inhibiting accumulation of NF-E2-related factor 2 (Nrf2). This study aimed to investigate its in vivo neuroprotective effect. PD was induced by MPTP intraperitoneally injection for 7 d in male C57BL/6 mice. Mice were treated with either uric acid (intraperitoneally injection 250 mg/kg) or saline for a total of 13 d. We showed that uric acid improved behavioral performances and cognition of PD mice, increased TH-positive dopaminergic neurons and decreased GFAP-positive astrocytes in substantia nigra (SN). Uric acid increased mRNA and protein expressions of Nrf2 and three Nrf2-responsive genes, including γ-glutamate-cysteine ligase catalytic subunit (γ-GCLC), heme oxygenase-1 (HO-1) and NQO1. Uric acid significantly increased superoxide dismutase (SOD), CAT, glutathione (GSH) levels and decreased malondialdehyde (MDA) level in SN regions of MPTP-treated mice. Uric acid inhibited the hippocampal expression of IL-1β and decreased serum and hippocampus levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α). In conclusion, uric acid demonstrates neuroprotective properties for dopaminergic neurons in PD mice through modulation of neuroinflammation and oxidative stress. Copyright © 2017. Published by Elsevier Inc.

  17. Diffraction enhanced imaging of normal and arthritic mice feet

    International Nuclear Information System (INIS)

    Crittell, Suzanne; Cheung, K.C.; Hall, Chris; Ibison, Mark; Nolan, Paul; Page, Robert; Scraggs, David; Wilkinson, Steve

    2007-01-01

    The aim of this experiment was to produce X-ray images of mice feet using the diffraction-enhanced imaging (DEI) system at the UK Synchrotron Radiation Source (SRS) at Daresbury. There were two broad types of mice feet samples studied: normal and arthritic. The two types of samples were imaged using several views and compared in order to determine whether it would be possible to detect the early morphological changes linked with this form of arthritis. We found that the DEI images produced were indeed of sufficient quality to show the presence of some osteoarthritic changes

  18. Fraction From Lycium barbarum Polysaccharides Reduces Immunotoxicity and Enhances Antitumor Activity of Doxorubicin in Mice.

    Science.gov (United States)

    Deng, Xiangliang; Luo, Shuang; Luo, Xia; Hu, Minghua; Ma, Fangli; Wang, Yuanyuan; Zhou, Lian; Huang, Rongrong

    2018-01-01

    The aim of the present study was to investigate whether fraction from Lycium barbarum polysaccharide (LBP) could reduce immunotoxicity and enhance antitumor activity of doxorubicin (Dox) in mice. A water-soluble LBP fraction, designated LBP3, was isolated from edible Chinese herbal Lycium barbarum and used in this study. To investigate the effect of LBP3 on Dox-induced immunotoxicity, tumor-free mice were used and treated with either normal saline, Dox, or Dox plus LBP3. To investigate the effect of LBP3 on antitumor activity of Dox, H22 tumor-bearing mice were used and treated with either normal saline, Dox, LBP3, or Dox plus LBP3. The results showed that LBP3 did not protect against the body weight loss caused by Dox, but it promoted the recovery of body weight starting at day 5 after Dox treatment in tumor-free mice. LBP3 also improved peripheral blood lymphocyte counts, promoted cell cycle recovery in bone marrow cells, and restored the cytotoxicity of natural killer cells. Furthermore, in H22 tumor-bearing mice, LBP3 enhanced antitumor activity of Dox and improved peripheral blood lymphocyte counts and the cytotoxicity of splenocytes. In brief, our results demonstrated that LBP3 could reduce the immunotoxicity and enhance antitumor activity of Dox.

  19. IFN-{gamma} enhances neurogenesis in wild-type mice and in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Baron, Rona; Nemirovsky, Anna; Harpaz, Idan

    2008-01-01

    the spatial learning and memory performance of the animals. In older mice, the effect of IFN-gamma is more pronounced in both wild-type mice and mice with Alzheimer's-like disease and is associated with neuroprotection. In addition, IFN-gamma reverses the increase in oligodendrogenesis observed in a mouse...... mechanisms can generate immunity to such deficits in neuronal repair. We demonstrate that in contrast to primarily innate immunity cytokines, such as interleukin-6 and tumor necrosis factor-alpha, the adaptive immunity cytokine IFN-gamma enhances neurogenesis in the dentate gyrus of adult mice and improves...

  20. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  1. Wave-Rotor-Enhanced Gas Turbine Engine Demonstrator

    National Research Council Canada - National Science Library

    Welch, Gerard

    1999-01-01

    The U.S. Army Research Laboratory, NASA Glenn Research Center, and Rolls-Royce Allison are working collaboratively to demonstrate the benefits and viability of a wave-rotor-topped gas turbine engine...

  2. Disruption of Circadian rhythms enhances radiation tolerance in mice

    International Nuclear Information System (INIS)

    Patil, Shrikant L.; Krishna, A.P.; Somashekarappa, H.M.; Patil, Rajashekar K.

    2014-01-01

    Whether an alteration in responses to the radiations depends on the phase of Circadian rhythm, this has been explored previously. The results however have been inconclusive and only survival rate of animals has been considered to represent the effect. Circadian phase has been shown to be critical in many therapeutic procedures. The present study was conducted on control group of mice (12L: 12D), extended day length and night length by imposing 24 hrs of light followed by 24 hrs of darkness, a third group received (8L: 8D) light: day cycles. These regimes were operational for seven days, at the end of seventh day mice from three different groups were exposed to 3 Gy of total body gamma radiation. Survival study, extent of lipid peroxidation and antioxidant status was estimated. Radioresistance was found to be enhanced in mice maintained at 8L: 8D cycle. There was no significant changes observed in mice of time shift group (24L: 24D). The corresponding shift in the acrophase of radioresistance following a sudden time shift supports the effect of disrupted circadian rhythms. (author)

  3. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  4. Allopurinol, indomethacin and riboflavin enhance radiation lethality in mice

    International Nuclear Information System (INIS)

    Floersheim, G.L.

    1994-01-01

    Two widely used drugs, allopurinol and indomethacin, and the vitamin riboflavin increased the response of mice to ionizing radiation. In mice a dose of 10.5 Gy of γ rays from a 60 Co source resulted in a dose-dependent shortening of survival times after pretreatment with the three agents, applied at doses which were well tolerated alone. When the dose dependency of these drugs on the influence on survival was tested, two response patterns emerged. Indomethacin (25 mg/kg) shifted the survival curve to the left and reduced the LD 50 from ∼6.5 Gy to ∼4.5 Gy. Allopurinol (100 mg/kg) diminished the survival rate to approximately 50% irrespective of the radiation dose (ranging from 0.75 to 6.0 Gy). A similar though less striking trend was seen with riboflavin (120 mg/kg), which reduced the survival rate to approximately 65% in the dose range from 3 to 6 Gy. Mortality in mice treated with allopurinol or riboflavin and irradiated with nonlethal exposures (from radiation alone) occurred within the first few days after irradiation, suggesting a different type of injury than is usually associated with radiation death. Although doses of the three drugs used clinically are clearly lower than those providing enhanced radioresponse in our experiments, subtle and nonovert injury caused by combined exposure to the drugs and radiation cannot be completely excluded. 31 refs., 4 figs., 5 tabs

  5. Methyl gallate limits infection in mice challenged with Brucella abortus while enhancing the inflammatory response.

    Science.gov (United States)

    Reyes, A W B; Kim, D G; Simborio, H L T; Hop, H T; Arayan, L T; Min, W; Lee, J J; Chang, H H; Kim, S

    2016-03-01

    To investigate the effects of methyl gallate (MG) on murine macrophages, cytokine production and treatment of Brucella abortus infection using a mouse model. MG-treated cells displayed increased F-actin polymerization and modest increase in ERK, JNK and p38α phosphorylation levels. The mice were intraperitoneally infected with Br. abortus and were orally treated with PBS or MG for 14 days. The weight and bacterial number from each spleen were monitored, and the serum was evaluated for cytokine production. The spleen proliferation and bacterial burden were lower in the MG-treated group than in the MG-untreated control. The noninfected MG-treated mice displayed increased production of TNF, IFN-γ, and the chemokine MCP-1, whereas the Br. abortus-infected MG-treated mice revealed enhanced induction of IL-12p70, TNF and IL-10 compared to the MG-untreated control. MG induced F-actin polymerization and modest upregulation of MAPKs. Furthermore, oral treatment with MG induced an immune response and decreased bacterial proliferation in Br. abortus-infected mice, suggesting that MG may be an alternative treatment for brucellosis. The present study demonstrates the therapeutic effects of MG against Brucella infection through induction of cytokine production and protection from bacterial proliferation in the spleens of mice. © 2015 The Society for Applied Microbiology.

  6. Differential tissue expression of enhanced green fluorescent protein in 'green mice'.

    Science.gov (United States)

    Ma, De-Fu; Tezuka, Hideo; Kondo, Tetsuo; Sudo, Katsuko; Niu, Dong-Feng; Nakazawa, Tadao; Kawasaki, Tomonori; Yamane, Tetsu; Nakamura, Nobuki; Katoh, Ryohei

    2010-06-01

    In order to clarify tissue expression of enhanced green fluorescent protein (EGFP) in 'green mice' from a transgenic line having an EGFP cDNA under the control of a chicken beta-actin promoter and cytomegalovirus enhancer, we studied the expression of EGFP in various organs and tissues from these 'green mice' by immunohistochemistry with anti- EGFP antibody in conjunction with direct observation for EGFP fluorescence using confocal laser scanning microscopy. On immunohistochemical examination and on direct observation by confocal laser scanning microscopy, the level of EGFP expression varied among organs and tissues. EGFP expression was diffusely and strongly observed in the skin, pituitary, thyroid gland, parathyroid gland, heart, gall bladder, pancreas, adrenals and urinary bladder. There was only sporadic and weak expression of EGFP in the epithelium of the trachea, bronchus of the lung, stratified squamous epithelium and gastric glands of the stomach, hepatic bile ducts of the liver, glomeruli and renal tubules of the kidney and endo-metrial glands of the uterus. Furthermore, EGFP was only demonstrated within the goblet and paneth cells in the colon and small intestine, the tall columnar cells in the ductus epididymis, and the leydig cells in the testis. In conclusion, our results show that EGFP is differentially expressed in organs and tissues of 'green mice', which indicates that 'green mice' may prove useful for research involving transplantation and tissue clonality.

  7. Mid-aged and aged wild-type and progestin receptor knockout (PRKO) mice demonstrate rapid progesterone and 3alpha,5alpha-THP-facilitated lordosis.

    Science.gov (United States)

    Frye, C A; Sumida, K; Lydon, J P; O'Malley, B W; Pfaff, D W

    2006-05-01

    Progesterone (P) and its 5alpha-reduced metabolite, 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha,5alpha-THP), facilitate sexual behavior of rodents via agonist-like actions at intracellular progestin receptors (PRs) and membrane GABA(A)/benzodiazepine receptor complexes (GBRs), respectively. Given that ovarian secretion of progestins declines with aging, whether or not senescent mice are responsive to progestins was of interest. Homozygous PR knockout (PRKO) or wild-type mice that were between 10-12 (mid-aged) or 20-24 (aged) months of age were administered P or 3alpha,5alpha-THP, and the effect on lordosis were examined. Effects of a progestin-priming regimen that enhances PR-mediated (experiment 1) or more rapid, PR-independent effects of progestins (experiments 2 and 3) on sexual behavior were examined. Levels of P, 3alpha,5alpha-THP, and muscimol binding were examined in tissues from aged mice (experiment 4). Wild-type, but not PRKO, mice were responsive when primed with 17beta-estradiol (E(2); 0.5 microg) and administered P (500 microg, subcutaneously). Mid-aged wild-type mice demonstrated greater increases in lordosis 6 h later compared to their pre-P, baseline test than did aged wild-type mice (experiment 1). Lordosis of younger and older wild-type, but not PRKO, mice was significantly increased within 5 min of intravenous (IV) administration of P (100 ng), compared with E(2)-priming alone (experiment 2). However, wild-type and PRKO mice demonstrated significant increases in lordosis 5 min after IV administration of 3alpha,5alpha-THP, an effect which was more pronounced in mid-aged than in aged animals (100 ng-experiment 3). In tissues from aged wild-type and PRKO mice, levels of P, 3alpha,5alpha-THP, and muscimol binding were increased by P administration (experiment 4). PR binding was lower in the cortex of PRKO than that of wild-type mice. Mid-aged and aged PRKO and wild-type mice demonstrated rapid P or 3alpha,5alpha-THP-facilitated lordosis that may be

  8. Methyl jasmonate enhances memory performance through inhibition of oxidative stress and acetylcholinesterase activity in mice.

    Science.gov (United States)

    Eduviere, Anthony T; Umukoro, S; Aderibigbe, Adegbuyi O; Ajayi, Abayomi M; Adewole, Folashade A

    2015-07-01

    Current research effort focuses on the development of safer natural compounds with multipronged mechanisms of action that could be used to ameliorate memory deficits in patients with Alzheimer's disease, as cure for the disease still remains elusive. In this study, we evaluated the effect of methyl jasmonate (MJ), a naturally occurring bioactive compound on memory, acetylcholinesterase activity and biomarkers of oxidative stress in mice. Male Swiss mice were treated with intraperitoneal injection of MJ (10-40 mg/kg) alone or in combination with scopolamine (3mg/kg) once daily for 7 days. Thirty minutes after the last treatment, memory functions were assessed using Y-maze and object recognition tests. Thereafter, acetylcholinesterase activity and levels of biomarkers of oxidative stress were assessed in mice brains using standard biochemical procedures. MJ significantly enhanced memory performance and reversed scopolamine-induced cognitive impairment in mice. MJ demonstrated significant inhibition of acetylcholinesterase activity suggesting increased cholinergic neurotransmission. It further decreased malondialdehyde concentrations in mouse brain indicating antioxidant activity. Moreover, MJ significantly increased glutathione levels and activity of antioxidant enzymes (catalase and superoxide dismutase) in mice brains. The increased oxidative stress; evidenced by elevated levels of malondialdehyde and decreased antioxidant defense systems in scopolamine-treated mice was attenuated by MJ. The results of this study suggest that MJ may be useful in conditions associated with memory dysfunctions or age-related cognitive decline. The positive effect of MJ on memory may be related to inhibition of oxidative stress and enhancement of cholinergic neurotransmission through inhibition of acetylcholinesterase activity. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    Science.gov (United States)

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  10. Ginsenoside Rh2 enhances the antitumor immunological response of a melanoma mice model.

    Science.gov (United States)

    Wang, Meng; Yan, Shi-Ju; Zhang, Hong-Tao; Li, Nan; Liu, Tao; Zhang, Ying-Long; Li, Xiao-Xiang; Ma, Qiong; Qiu, Xiu-Chun; Fan, Qing-Yu; Ma, Bao-An

    2017-02-01

    The treatment of malignant tumors following surgery is important in preventing relapse. Among all the post-surgery treatments, immunomodulators have demonstrated satisfactory effects on preventing recurrence according to recent studies. Ginsenoside is a compound isolated from panax ginseng, which is a famous traditional Chinese medicine. Ginsenoside aids in killing tumor cells through numerous processes, including the antitumor processes of ginsenoside Rh2 and Rg1, and also affects the inflammatory processes of the immune system. However, the role that ginsenoside serves in antitumor immunological activity remains to be elucidated. Therefore, the present study aimed to analyze the effect of ginsenoside Rh2 on the antitumor immunological response. With a melanoma mice model, ginsenoside Rh2 was demonstrated to inhibit tumor growth and improved the survival time of the mice. Ginsenoside Rh2 enhanced T-lymphocyte infiltration in the tumor and triggered cytotoxicity in spleen lymphocytes. In addition, the immunological response triggered by ginsenoside Rh2 could be transferred to other mice. In conclusion, the present study provides evidence that ginsenoside Rh2 treatment enhanced the antitumor immunological response, which may be a potential therapy for melanoma.

  11. Weight cycling enhances adipose tissue inflammatory responses in male mice.

    Directory of Open Access Journals (Sweden)

    Sandra Barbosa-da-Silva

    Full Text Available BACKGROUND: Obesity is associated with low-grade chronic inflammation attributed to dysregulated production, release of cytokines and adipokines and to dysregulated glucose-insulin homeostasis and dyslipidemia. Nutritional interventions such as dieting are often accompanied by repeated bouts of weight loss and regain, a phenomenon known as weight cycling (WC. METHODS: In this work we studied the effects of WC on the feed efficiency, blood lipids, carbohydrate metabolism, adiposity and inflammatory markers in C57BL/6 male mice that WC two or three consecutive times by alternation of a high-fat (HF diet with standard chow (SC. RESULTS: The body mass (BM grew up in each cycle of HF feeding, and decreased after each cycle of SC feeding. The alterations observed in the animals feeding HF diet in the oral glucose tolerance test, in blood lipids, and in serum and adipose tissue expression of adipokines were not recuperated after WC. Moreover, the longer the HF feeding was (two, four and six months, more severe the adiposity was. After three consecutive WC, less marked was the BM reduction during SC feeding, while more severe was the BM increase during HF feeding. CONCLUSION: In conclusion, the results of the present study showed that both the HF diet and WC are relevant to BM evolution and fat pad remodeling in mice, with repercussion in blood lipids, homeostasis of glucose-insulin and adipokine levels. The simple reduction of the BM during a WC is not able to recover the high levels of adipokines in the serum and adipose tissue as well as the pro-inflammatory cytokines enhanced during a cycle of HF diet. These findings are significant because a milieu with altered adipokines in association with WC potentially aggravates the chronic inflammation attributed to dysregulated production and release of adipokines in mice.

  12. Immunotherapy with Dendritic Cells Modified with Tumor-Associated Antigen Gene Demonstrates Enhanced Antitumor Effect Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2017-04-01

    Full Text Available BACKGROUND: Immunotherapy using dendritic cell (DC vaccine has the potential to overcome the bottleneck of cancer therapy. METHODS: We engineered Lewis lung cancer cells (LLCs and bone marrow–derived DCs to express tumor-associated antigen (TAA ovalbumin (OVA via lentiviral vector plasmid encoding OVA gene. We then tested the antitumor effect of modified DCs both in vitro and in vivo. RESULTS: The results demonstrated that in vitro modified DCs could dramatically enhance T-cell proliferation (P < .01 and killing of LLCs than control groups (P < .05. Moreover, modified DCs could reduce tumor size and prolong the survival of LLC tumor-bearing mice than control groups (P < .01 and P < .01, respectively. Mechanistically, modified DCs demonstrated enhanced homing to T-cell–rich compartments and triggered more naive T cells to become cytotoxic T lymphocytes, which exhibited significant infiltration into the tumors. Interestingly, modified DCs also markedly reduced tumor cells harboring stem cell markers in mice (P < .05, suggesting the potential role on cancer stem-like cells. CONCLUSION: These findings suggested that DCs bioengineered with TAA could enhance antitumor effect and therefore represent a novel anticancer strategy that is worth further exploration.

  13. Enhanced voluntary wheel running in GPRC6A receptor knockout mice

    DEFF Research Database (Denmark)

    Clemmensen, Christoffer; Pehmøller, Christian; Klein, Anders B

    2013-01-01

    to voluntary wheel running and forced treadmill exercise. Moreover, we assessed energy expenditure in the basal state, and evaluated the effects of wheel running on food intake, body composition, and a range of exercise-induced central and peripheral biomarkers. We found that adaptation to voluntary wheel...... running is affected by GPRC6A, as ablation of the receptor significantly enhances wheel running in KO relative to WT mice. Both genotypes responded to voluntary exercise by increasing food intake and improving body composition to a similar degree. In conclusion, these data demonstrate that the GPRC6A...

  14. Enhanced glucose tolerance in pancreatic-derived factor (PANDER knockout C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shari L. Moak

    2014-11-01

    Full Text Available Pancreatic-derived factor (PANDER; also known as FAM3B is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D. Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57 model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.

  15. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    Science.gov (United States)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  16. Voluntary running enhances glymphatic influx in awake behaving, young mice

    DEFF Research Database (Denmark)

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We...... of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas...

  17. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, T.; Adachi, M.; Sugai, Y. [Dept. of Radiology, Yamagata University School of Medicine (Japan); Yamaguchi, K.; Yamaguchi, K. [Dept. of Ophthalmology, Yamagata University School of Medicine (Japan); Kato, T. [3. Dept. of Internal Medicine, Yamagata University School of Medicine (Japan)

    2001-04-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  18. Abducens nerve enhancement demonstrated by multiplanar reconstruction of contrast-enhanced three-dimensional MRI

    International Nuclear Information System (INIS)

    Hosoya, T.; Adachi, M.; Sugai, Y.; Yamaguchi, K.; Yamaguchi, K.; Kato, T.

    2001-01-01

    We describe contrast enhancement of the cisternal portion of the abducens nerve and discuss its clinical significance. We examined 67 patients with ophthalmoplegia using contrast-enhanced 3-dimensional (3D) MRI with multiplanar reconstruction along the nerves and found 16 patients (ten men, six women), aged 10-73 years (mean 34.4 years), with contrast enhancement of the abducens nerve. Of the 36 patients who had an abducens palsy, 14 (39 %) showed contrast enhancement. In the 16 patients, 23 abducens nerves enhanced; 13 were symptomatic and 10 asymptomatic at the time. The causes were disseminated tumour (1), an inflammatory process (3), trauma (2), ischaemia (2) and autoimmune diseases (8), such as the Miller Fisher syndrome, acute ophthalmoparesis, polyneuropathy and multiple sclerosis. Abducens and/or oculomotor nerve enhancement was the only abnormality on MRI in the patients with traumatic or ischaemic neuropathy or autoimmune diseases. There were 14 patients who recovered fully within 1-6 months after treatment, and resolution of the enhancement correlated well with recovery. (orig.)

  19. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    Science.gov (United States)

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  20. Mice with GFAP-targeted loss of neurofibromin demonstrate increased axonal MET expression with aging.

    Science.gov (United States)

    Su, Weiping; Xing, Rubing; Guha, Abhijit; Gutmann, David H; Sherman, Larry S

    2007-05-01

    Neurofibromatosis 1 (NF1) is a common genetic disease that predisposes patients to peripheral nerve tumors and central nervous system (CNS) abnormalities including low-grade astrocytomas and cognitive disabilities. Using mice with glial fibrillary acidic protein (GFAP)-targeted Nf1 loss (Nf1(GFAP)CKO mice), we found that Nf1(-/-) astrocytes proliferate faster and are more invasive than wild-type astrocytes. In light of our previous finding that aberrant expression of the MET receptor tyrosine kinase contributes to the invasiveness of human NF1-associated malignant peripheral nerve sheath tumors, we sought to determine whether MET expression is aberrant in the brains of Nf1 mutant mice. We found that Nf1(-/-) astrocytes express slightly more MET than wild-type cells in vitro, but do not express elevated MET in situ. However, fiber tracts containing myelinated axons in the hippocampus, midbrain, cerebral cortex, and cerebellum express higher than normal levels of MET in older (> or =6 months) Nf1(GFAP)CKO mice. Both Nf1(GFAP)CKO and wild-type astrocytes induced MET expression in neurites of wild-type hippocampal neurons in vitro, suggesting that astrocyte-derived signals may induce MET in Nf1 mutant mice. Because the Nf1 gene product functions as a RAS GTPase, we examined MET expression in the brains of mice with GFAP-targeted constitutively active forms of RAS. MET was elevated in axonal fiber tracts in mice with active K-RAS but not H-RAS. Collectively, these data suggest that loss of Nf1 in either astrocytes or GFAP(+) neural progenitor cells results in increased axonal MET expression, which may contribute to the CNS abnormalities in children and adults with NF1. (c) 2007 Wiley-Liss, Inc.

  1. Mice lacking melanin-concentrating hormone receptor 1 demonstrate increased heart rate associated with altered autonomic activity.

    Science.gov (United States)

    Astrand, Annika; Bohlooly-Y, Mohammad; Larsdotter, Sara; Mahlapuu, Margit; Andersén, Harriet; Tornell, Jan; Ohlsson, Claes; Snaith, Mike; Morgan, David G A

    2004-10-01

    Melanin-concentrating hormone (MCH) plays an important role in energy balance. The current studies were carried out on a new line of mice lacking the rodent MCH receptor (MCHR1(-/-) mice). These mice confirmed the previously reported lean phenotype characterized by increased energy expenditure and modestly increased caloric intake. Because MCH is expressed in the lateral hypothalamic area, which also has an important role in the regulation of the autonomic nervous system, heart rate and blood pressure were measured by a telemetric method to investigate whether the increased energy expenditure in these mice might be due to altered autonomic nervous system activity. Male MCHR1(-/-) mice demonstrated a significantly increased heart rate [24-h period: wild type 495 +/- 4 vs. MCHR1(-/-) 561 +/- 8 beats/min (P dark phase: wild type 506 +/- 8 vs. MCHR1(-/-) 582 +/- 9 beats/min (P light phase: wild type 484 +/- 13 vs. MCHR1(-/-) 539 +/- 9 beats/min (P vs. MCHR1(-/-) 113 +/- 0.4 mmHg (P > 0.05)]. Locomotor activity and core body temperature were higher in the MCHR1(-/-) mice during the dark phase only and thus temporally dissociated from heart rate differences. On fasting, wild-type animals rapidly downregulated body temperature and heart rate. MCHR1(-/-) mice displayed a distinct delay in the onset of this downregulation. To investigate the mechanism underlying these differences, autonomic blockade experiments were carried out. Administration of the adrenergic antagonist metoprolol completely reversed the tachycardia seen in MCHR1(-/-) mice, suggesting an increased sympathetic tone.

  2. Effects of sulekang capsule in enhancement of resistance to radiation and regulating immunological function in mice

    International Nuclear Information System (INIS)

    Zhao Naikun; Zhou Ouliang; Du Weixia

    1990-01-01

    The effects of Sulekang capsule in enhancing the resistance to radiation and regulating the immunological function in mice were described. The results show that Sulekang capsule may lengthen the survival time (p 60 Co gamma rays. The experimental results of ANAE reaction show that the activety of T cells of normal or exposed mice may be enhanced by Sulekang capsule, which can control the decrease of both ANAE-positive cells and T cells in exposed mice. So it may enhance the immunological function on exposed animals

  3. Neuronal Glucose Transporter Isoform 3 Deficient Mice Demonstrate Features of Autism Spectrum Disorders

    OpenAIRE

    Zhao, Yuanzi; Fung, Camille; Shin, Don; Shin, Bo-Chul; Thamotharan, Shanthie; Sankar, Raman; Ehninger, Dan; Silva, Alcino; Devaskar, Sherin U.

    2009-01-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristic...

  4. BDA-410 Treatment Reduces Body Weight and Fat Content by Enhancing Lipolysis in Sedentary Senescent Mice.

    Science.gov (United States)

    Pereyra, Andrea S; Wang, Zhong-Min; Messi, Maria Laura; Zhang, Tan; Wu, Hanzhi; Register, Thomas C; Forbes, Elizabeth; Devarie-Baez, Nelmi O; Files, Daniel Clark; Abba, Martin C; Furdui, Cristina; Delbono, Osvaldo

    2017-08-01

    Loss of muscle mass and force with age leads to fall risk, mobility impairment, and reduced quality of life. This article shows that BDA-410, a calpain inhibitor, induced loss of body weight and fat but not lean mass or skeletal muscle proteins in a cohort of sedentary 23-month-old mice. Food and water intake and locomotor activity were not modified, whereas BDA-410 treatment decreased intramyocellular lipid and perigonadal fat, increased serum nonesterified fatty acids, and upregulated the genes mediating lipolysis and oxidation, lean phenotype, muscle contraction, muscle transcription regulation, and oxidative stress response. This finding is consistent with our recent report that lipid accumulation in skeletal myofibers is significantly correlated with slower fiber-contraction kinetics and diminished power in obese older adult mice. A proteomic analysis and immunoblot showed downregulation of the phosphatase PPP1R12B, which increases phosphorylated myosin half-life and modulates the calcium sensitivity of the contractile apparatus. This study demonstrates that BDA-410 exerts a beneficial effect on skeletal muscle contractility through new, alternative mechanisms, including enhanced lipolysis, upregulation of "lean phenotype-related genes," downregulation of the PP1R12B phosphatase, and enhanced excitation-contraction coupling. This single compound holds promise for treating age-dependent decline in muscle composition and strength. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Central administration of angiotensin IV rapidly enhances novel object recognition among mice.

    Science.gov (United States)

    Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P

    2013-07-01

    Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-03-01

    Full Text Available Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans.

  7. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  8. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    Science.gov (United States)

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Targeted Adenoviral Vector Demonstrates Enhanced Efficacy for In Vivo Gene Therapy of Uterine Leiomyoma.

    Science.gov (United States)

    Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman

    2016-04-01

    Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.

  10. Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells.

    Science.gov (United States)

    Kievit, Paul; Howard, Jane K; Badman, Michael K; Balthasar, Nina; Coppari, Roberto; Mori, Hiroyuki; Lee, Charlotte E; Elmquist, Joel K; Yoshimura, Akihiko; Flier, Jeffrey S

    2006-08-01

    Suppressor of cytokine signaling-3 (Socs-3) negatively regulates the action of various cytokines, as well as the metabolic hormones leptin and insulin. Mice with haploinsufficiency of Socs-3, or those with neuronal deletion of Socs-3, are lean and more leptin and insulin sensitive. To examine the role of Socs-3 within specific neurons critical to energy balance, we created mice with selective deletion of Socs-3 within pro-opiomelanocortin (POMC)-expressing cells. These mice had enhanced leptin sensitivity, measured by weight loss and food intake after leptin infusion. On chow diet, glucose homeostasis was improved despite normal weight gain. On a high-fat diet, the rate of weight gain was reduced, due to increased energy expenditure rather than decreased food intake; glucose homeostasis and insulin sensitivity were substantially improved. These studies demonstrate that Socs-3 within POMC neurons regulates leptin sensitivity and glucose homeostasis, and plays a key role in linking high-fat diet to disordered metabolism.

  11. Suppression of cytochrome p450 reductase enhances long-term hematopoietic stem cell repopulation efficiency in mice.

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    Full Text Available BACKGROUND: Bone marrow microenvironment (niche plays essential roles in the fate of hematopoietic stem cells (HSCs. Intracellular and extracellular redox metabolic microenvironment is one of the critical factors for the maintenance of the niche. Cytochrome P450 reductase (CPR is an obligate electron donor to all microsomal cytochrome P450 enzymes (P450 or CYP, and contributes to the redox metabolic process. However, its role in maintaining HSCs is unknown. OBJECTIVE: To examine the effects of low CPR expression on HSCs function using a mouse model of globally suppressed Cpr gene expression (Cpr Low, CL mice. METHODS: Hematopoietic cell subpopulations in bone marrow (BM and peripheral blood (PB from WT and CL mice were examined for their repopulation and differentiation ability upon BM competitive transplantation and enriched HSC (LKS(+ transplantation. Effects of low CPR expression on hematopoiesis were examined by transplanting normal BM cells into CL recipients. Reactive oxygen species (ROS, cell cycle, and apoptosis in CL mice were analyzed by flow cytometry for DCF-DA fluorescence intensity, Ki67 protein, and Annexin-V, respectively. RESULTS: The levels of ROS in BM cells, HPCs and HSCs were comparable between CL and WT mice. In comparison to WT mice, the number of LT-HSCs or ST-HSCs was lower in CL mice while CMPs, GMPs and MEPs in CL mice were higher than that in WT control. Competitive transplantation assay revealed enhanced repopulation capacity of HSCs with low CPR expression, but no difference in differentiation potential upon in vitro experiments. Furthermore, lymphoid differentiation of donor cells decreased while their myeloid differentiation increased under CL microenvironment although the overall level of donor hematopoietic repopulation was not significantly altered. CONCLUSIONS: Our studies demonstrate that suppressing CPR expression enhances the repopulation efficiency of HSCs and a low CPR expression microenvironment favors

  12. Selective inhibition of phosphodiesterase 5 enhances glutamatergic synaptic plasticity and memory in mice.

    Science.gov (United States)

    Uthayathas, Subramaniam; Parameshwaran, Kodeeswaran; Karuppagounder, Senthilkumar S; Ahuja, Manuj; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu

    2013-11-01

    Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.

  13. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    Science.gov (United States)

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  14. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    Science.gov (United States)

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  15. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wen-Ta [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Li, Hui-Chun [Department of Biochemistry, Tzu Chi University, Hualien, Taiwan (China); Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Lo, Shih-Yen, E-mail: losylo@mail.tcu.edu.tw [Graduate Institute of Medical Biotechnology, Tzu Chi University, Hualien, Taiwan (China); Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan (China)

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  16. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    International Nuclear Information System (INIS)

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-01-01

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway

  17. The Tapioca Bomb: A Demonstration to Enhance Learning about Combustion and Chemical Safety

    Science.gov (United States)

    Keeratichamroen, Wasana; Dechsri, Precharn; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    In any demonstration to students, producing light and sound usually ensures interest and can enhance understanding and retention of the concepts involved. A guided inquiry (Predict, Observe, Explain: POE) approach was used to involve the students actively in their learning about the explosive combustion of fine flour particles in air in the…

  18. Memory-Enhancing Activity of Palmatine in Mice Using Elevated Plus Maze and Morris Water Maze

    Directory of Open Access Journals (Sweden)

    Dinesh Dhingra

    2012-01-01

    Full Text Available The present study was designed to evaluate the effect of palmatine on memory of Swiss young male albino mice. Palmatine (0.1, 0.5, 1 mg/kg, i.p. and physostigmine (0.1 mg/kg, i.p. per se were administered for 10 successive days to separate groups of mice. Effect of drugs on learning and memory of mice was evaluated using elevated plus maze and Morris water maze. Brain acetylcholinesterase activity was also estimated. Effect of palmatine on scopolamine- and diazepam-induced amnesia was also investigated. Palmatine (0.5 and 1 mg/kg and physostigmine significantly improved learning and memory of mice, as indicated by decrease in transfer latency using elevated plus maze, and decrease in escape latency during training and increase in time spent in target quadrant during retrieval using Morris water maze. The drugs did not show any significant effect on locomotor activity of the mice. Memory-enhancing activity of palmatine (1 mg/kg was comparable to physostigmine. Palmatine (1 mg/kg significantly reversed scopolamine- and diazepam-induced amnesia in mice. Palmatine and physostigmine also significantly reduced brain acetylcholinesterase activity of mice. Thus, palmatine showed memory-enhancing activity in mice probably by inhibiting brain acetylcholinesterase activity, through involvement of GABA-benzodiazepine pathway, and due to its antioxidant activity.

  19. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice

    International Nuclear Information System (INIS)

    Uddin, Ahmed N.; Burns, Fredric J.; Rossman, Toby G.; Chen, Haobin; Kluz, Thomas; Costa, Max

    2007-01-01

    The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1 mice was investigated. The dietary vitamin E and selenomethionine were tested for prevention of chromium-enhanced skin carcinogenesis. The mice were exposed to UVR (1.0 kJ/m 2 3x weekly) for 26 weeks either alone, or combined with 2.5 or 5.0 ppm potassium chromate, or with 20, 100 or 500 ppm nickel chloride in drinking water. Vitamin E or selenomethionine was added to the lab chow for 29 weeks beginning 3 weeks before the start of UVR exposure. Both chromium and nickel significantly increased the UVR-induced skin cancer yield in mice. In male Skh1 mice, UVR alone induced 1.9 ± 0.4 cancers/mouse, and 2.5 or 5.0 ppm potassium chromate added to drinking water increased the yields to 5.9 ± 0.8 and 8.6 ± 0.9 cancers/mouse, respectively. In female Skh1 mice, UVR alone induced 1.7 ± 0.4 cancers/mouse, and the addition of 20, 100 or 500 ppm nickel chloride increased the yields to 2.8 ± 0.9, 5.6 ± 0.7 and 4.2 ± 1.0 cancers/mouse, respectively. Neither vitamin E nor selenomethionine reduced the cancer yield enhancement by chromium. These results confirm that chromium and nickel, while not good skin carcinogens per se, are enhancers of UVR-induced skin cancers in Skh1 mice. Data also suggest that the enhancement of UVR-induced skin cancers by chromate may not be oxidatively mediated since the antioxidant vitamin E as well as selenomethionine, found to prevent arsenite-enhanced skin carcinogenesis, failed to suppress enhancement by chromate

  20. High Glucose Concentration Promotes Vancomycin-Enhanced Biofilm Formation of Vancomycin-Non-Susceptible Staphylococcus aureus in Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Chi-Yu Hsu

    Full Text Available We previously demonstrated that vancomycin treatment increased acquisition of eDNA and enhanced biofilm formation of drug-resistant Staphylococcus aureus through a cidA-mediated autolysis mechanism. Recently we found that such enhancement became more significant under a higher glucose concentration in vitro. We propose that besides improper antibiotic treatment, increased glucose concentration environment in diabetic animals may further enhance biofilm formation of drug-resistant S. aureus. To address this question, the diabetic mouse model infected by vancomycin-resistant S. aureus (VRSA was used under vancomycin treatment. The capacity to form biofilms was evaluated through a catheter-associated biofilm assay. A 10- and 1000-fold increase in biofilm-bound bacterial colony forming units was observed in samples from diabetic mice without and with vancomycin treatment, respectively, compared to healthy mice. By contrast, in the absence of glucose vancomycin reduced propensity to form biofilms in vitro through the increased production of proteases and DNases from VRSA. Our study highlights the potentially important role of increased glucose concentration in enhancing biofilm formation in vancomycin-treated diabetic mice infected by drug-resistant S. aureus.

  1. Tissue inhibitor of metalloproteinase-3 knockout mice exhibit enhanced energy expenditure through thermogenesis.

    Directory of Open Access Journals (Sweden)

    Yohsuke Hanaoka

    Full Text Available Tissue inhibitors of metalloproteinases (TIMPs regulate matrix metalloproteinase activity and maintain extracellular matrix homeostasis. Although TIMP-3 has multiple functions (e.g., apoptosis, inhibition of VEGF binding to VEGF receptor, and inhibition of TNFα converting enzyme, its roles in thermogenesis and metabolism, which influence energy expenditure and can lead to the development of metabolic disorders when dysregulated, are poorly understood. This study aimed to determine whether TIMP-3 is implicated in metabolism by analyzing TIMP-3 knockout (KO mice. TIMP-3 KO mice had higher body temperature, oxygen consumption, and carbon dioxide production than wild-type (WT mice, although there were no differences in food intake and locomotor activity. These results suggest that metabolism is enhanced in TIMP-3 KO mice. Real-time PCR analysis showed that the expression of PPAR-δ, UCP-2, NRF-1 and NRF-2 in soleus muscle, and PGC-1α and UCP-2 in gastrocnemius muscle, was higher in TIMP-3 KO mice than in WT mice, suggesting that TIMP-3 deficiency may increase mitochondrial activity. When exposed to cold for 8 hours to induce thermogenesis, TIMP-3 KO mice had a higher body temperature than WT mice. In the treadmill test, oxygen consumption and carbon dioxide production were higher in TIMP-3 KO mice both before and after starting exercise, and the difference was more pronounced after starting exercise. Our findings suggest that TIMP-3 KO mice exhibit enhanced metabolism, as reflected by a higher body temperature than WT mice, possibly due to increased mitochondrial activity. Given that TIMP-3 deficiency increases energy expenditure, TIMP-3 may present a novel therapeutic target for preventing metabolic disorders.

  2. Bimolecular Fluorescence Complementation of Alpha-synuclein Demonstrates its Oligomerization with Dopaminergic Phenotype in Mice

    Directory of Open Access Journals (Sweden)

    Waijiao Cai

    2018-03-01

    Full Text Available Alpha-synuclein (αSyn is encoded by the first causal gene identified in Parkinson's disease (PD and is the main component of Lewy bodies, a pathological hallmark of PD. aSyn-based animal models have contributed to our understanding of PD pathophysiology and to the development of therapeutics. Overexpression of human wildtype αSyn by viral vectors in rodents recapitulates the loss of dopaminergic neurons from the substantia nigra, another defining pathological feature of the disease. The development of a rat model exhibiting bimolecular fluorescence complementation (BiFC of αSyn by recombinant adeno-associated virus facilitates detection of the toxic αSyn oligomers species. We report here neurochemical, neuropathological and behavioral characterization of BiFC of αSyn in mice. Overexpression and oligomerization of αSyn through BiFC is detected by conjugated fluorescence. Reduced striatal dopamine and loss of nigral dopaminergic neurons are accompanied neuroinflammation and abnormal motor activities. Our mouse model may provide a valuable tool to study the role of αSyn in PD and to explore therapeutic approaches. Keywords: Parkinson's disease, Alpha-synuclein, Mouse model, Oligomers, Neuroinflammation

  3. Western diet enhances hepatic inflammation in mice exposed to cecal ligation and puncture

    Directory of Open Access Journals (Sweden)

    Houghton Jeff

    2010-10-01

    Full Text Available Abstract Background Obese patients display an exaggerated morbidity during sepsis. Since consumption of a western-style diet (WD is a major factor for obesity in the United States, the purpose of the present study was to examine the influence of chronic WD consumption on hepatic inflammation in mice made septic via cecal ligation and puncture (CLP. Feeding mice diets high in fat has been shown to enhance evidence of TLR signaling and this pathway also mediates the hepatic response to invading bacteria. Therefore, we hypothesized that the combined effects of sepsis and feeding WD on TRL-4 signaling would exacerbate hepatic inflammation. Male C57BL/6 mice were fed purified control diet (CD or WD that was enriched in butter fat (34.4% of calories for 3 weeks prior to CLP. Intravital microscopy was used to evaluate leukocyte adhesion in the hepatic microcirculation. To demonstrate the direct effect of saturated fatty acid on hepatocytes, C3A human hepatocytes were cultured in medium containing 100 μM palmitic acid (PA. Quantitative real-time PCR was used to assess mRNA expression of tumor necrosis factor-alpha (TNF-α, monocyte chemotactic protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, toll-like receptor-4 (TLR-4 and interleukin-8 (IL-8. Results Feeding WD increased firm adhesion of leukocytes in the sinusoids and terminal hepatic venules by 8-fold six hours after CLP; the increase in platelet adhesion was similar to the response observed with leukocytes. Adhesion was accompanied by enhanced expression of TNF-α, MCP-1 and ICAM-1. Messenger RNA expression of TLR-4 was also exacerbated in the WD+CLP group. Exposure of C3A cells to PA up-regulated IL-8 and TLR-4 expression. In addition, PA stimulated the static adhesion of U937 monocytes to C3A cells, a phenomenon blocked by inclusion of an anti-TLR-4/MD2 antibody in the culture medium. Conclusions These findings indicate a link between obesity-enhanced susceptibility to sepsis and

  4. The use of gold nanoparticles to enhance radiotherapy in mice

    International Nuclear Information System (INIS)

    Hainfeld, James F; Slatkin, Daniel N; Smilowitz, Henry M

    2004-01-01

    Mice bearing subcutaneous EMT-6 mammary carcinomas received a single intravenous injection of 1.9 nm diameter gold particles (up to 2.7 g Au/kg body weight), which elevated concentrations of gold to 7 mg Au/g in tumours. Tumour-to-normal-tissue gold concentration ratios remained ∼8:1 during several minutes of 250 kVp x-ray therapy. One-year survival was 86% versus 20% with x-rays alone and 0% with gold alone. The increase in tumours safely ablated was dependent on the amount of gold injected. The gold nanoparticles were apparently non-toxic to mice and were largely cleared from the body through the kidneys. This novel use of small gold nanoparticles permitted achievement of the high metal content in tumours necessary for significant high-Z radioenhancement. (note)

  5. Axolotl cells and tissues enhances cutaneous wound healing in mice

    OpenAIRE

    DEMIRCAN, Turan; KESKIN, Ilknur; GUNAL, Yalcin; ILHAN, Ayse Elif; KOLBASI, Bircan; OZTURK, Gurkan

    2017-01-01

    Adult mammalian skin wound repair is defective due to loss of the regulation in balancing the complete epithelial regeneration and excessive connective tissue production, and this repair process commonly results in scar tissue formation. However, unlike mammals, adult salamanders repair the wounds by regeneration compared to scarring. To elucidate the healing capability of a salamander, Axolotl, in a different species, here we addressed this question by treating the wounds in mice with Axolot...

  6. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  7. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    Science.gov (United States)

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. A sanitation technology demonstration centre to enhance decision making in South Africa

    CSIR Research Space (South Africa)

    Duncker, Louiza C

    2013-07-01

    Full Text Available International Conference, Nakuru, Kenya, 2013 DELIVERING WATER, SANITATION AND HYGIENE SERVICES IN AN UNCERTAIN ENVIRONMENT A sanitation technology demonstration centre to enhance decision making in South Africa L.C. Duncker, South Africa... for Water Services in South Africa (SFWS) defines basic sanitation services as the provision of a basic sanitation facility, the sustainable operation of this facility and the communication of good sanitation, hygiene and related practices. However...

  9. Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice.

    Science.gov (United States)

    Kwon, Ronald Y; Meays, Diana R; Tang, W Joyce; Frangos, John A

    2010-08-01

    Interstitial fluid flow (IFF) has been widely hypothesized to mediate skeletal adaptation to mechanical loading. Although a large body of in vitro evidence has demonstrated that fluid flow stimulates osteogenic and antiresorptive responses in bone cells, there is much less in vivo evidence that IFF mediates loading-induced skeletal adaptation. This is due in large part to the challenges associated with decoupling IFF from matrix strain. In this study we describe a novel microfluidic system for generating dynamic intramedullary pressure (ImP) and IFF within the femurs of alert mice. By quantifying fluorescence recovery after photobleaching (FRAP) within individual lacunae, we show that microfluidic generation of dynamic ImP significantly increases IFF within the lacunocanalicular system. In addition, we demonstrate that dynamic pressure loading of the intramedullary compartment for 3 minutes per day significantly eliminates losses in trabecular and cortical bone mineral density in hindlimb suspended mice, enhances trabecular and cortical structural integrity, and increases endosteal bone formation rate. Unlike previously developed modalities for enhancing IFF in vivo, this is the first model that allows direct and dynamic modulation of ImP and skeletal IFF within mice. Given the large number of genetic tools for manipulating the mouse genome, this model is expected to serve as a powerful investigative tool in elucidating the role of IFF in skeletal adaptation to mechanical loading and molecular mechanisms mediating this process.

  10. A turtle cognition research demonstration enhances visitor engagement and keeper-animal relationships.

    Science.gov (United States)

    Alba, Andrew C; Leighty, Katherine A; Pittman Courte, Victoria L; Grand, Alison P; Bettinger, Tamara L

    2017-07-01

    Environmental enrichment techniques present animals with cognitive challenges while providing them opportunities to make choices and exert control over their environment. In this way, cognitive research and training is enriching to animals and can be used as a form of enrichment in zoos and aquariums. Cognitive research demonstrations also provide an opportunity to enhance visitor experience, as well as foster interactions between animals and keepers. We investigated how cognitive research sessions involving eastern box turtles (Terrapene carolina carolina) at Disney's Animal Kingdom ® impacted both the rate of visitors coming to the exhibit and the amount of time they spent engaged. Further, we used a questionnaire to assess the impact of keeper participation in these sessions on their relationships with and perceptions of the turtles. While visitation rate to the exhibit was not impacted, cognitive research sessions held visitor attention for longer than keeper interpretation or at times during which no keepers or researchers were present. We also found that keepers that had worked with the turtles for longer and keepers that regularly participated in cognitive research sessions reported stronger bonds with the turtles. Our research suggests that use of cognitive research and training demonstrations for guest viewing in zoos and aquariums may enhance visitor learning opportunities by increasing the amount of time they spend at the exhibit. Our study also provides evidence that participation in such demonstrations by zoo and aquarium professionals can be related to improved keeper-animal bonds, potentially resulting in better husbandry and enhanced animal welfare. © 2017 Wiley Periodicals, Inc.

  11. CYP 2E1 mutant mice are resistant to DDC-induced enhancement of MPTP toxicity.

    Science.gov (United States)

    Viaggi, C; Vaglini, F; Pardini, C; Sgadò, P; Caramelli, A; Corsini, G U

    2007-01-01

    In order to reach a deeper insight into the mechanism of diethyldithiocarbamate (DDC)-induced enhancement of MPTP toxicity in mice, we showed that CYP450 (2E1) inhibitors, such as diallyl sulfide (DAS) or phenylethylisothiocyanate (PIC), also potentiate the selective DA neuron degeneration in C57/bl mice. Furthermore we showed that CYP 2E1 is present in the brain and in the basal ganglia of mice (Vaglini et al., 2004). However, because DAS and PIC are not selective CYP 2E1 inhibitors and in order to provide direct evidence for CYP 2E1 involvement in the enhancement of MPTP toxicity, CYP 2E1 knockout mice (GONZ) and wild type animals (SVI) of the same genetic background were treated with MPTP or the combined DDC + MPTP treatment. In CYP 2E1 knockout mice, DDC pretreatment completely fails to enhance MPTP toxicity, although enhancement of MPTP toxicity was regularly present in the SVI control animals. The immunohistochemical study confirms our results and suggests that CYP 2E1 may have a detoxifying role.

  12. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Directory of Open Access Journals (Sweden)

    Mark P DeAndrade

    Full Text Available Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS, a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  13. Enhanced hippocampal long-term potentiation and fear memory in Btbd9 mutant mice.

    Science.gov (United States)

    DeAndrade, Mark P; Zhang, Li; Doroodchi, Atbin; Yokoi, Fumiaki; Cheetham, Chad C; Chen, Huan-Xin; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2012-01-01

    Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.

  14. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E. [Argonne National Lab., IL (United States)]|[Loyola Univ. Medical Center, Maywood, IL (United States); Chang-Liu, Chin-Mei [Argonne National Lab., IL (United States); Chung, Jen; Libertin, C.R. [Loyola Univ. Medical Center, Maywood, IL (United States)

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  15. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  16. Enhanced Excitatory Connectivity and Disturbed Sound Processing in the Auditory Brainstem of Fragile X Mice.

    Science.gov (United States)

    Garcia-Pino, Elisabet; Gessele, Nikodemus; Koch, Ursula

    2017-08-02

    Hypersensitivity to sounds is one of the prevalent symptoms in individuals with Fragile X syndrome (FXS). It manifests behaviorally early during development and is often used as a landmark for treatment efficacy. However, the physiological mechanisms and circuit-level alterations underlying this aberrant behavior remain poorly understood. Using the mouse model of FXS ( Fmr1 KO ), we demonstrate that functional maturation of auditory brainstem synapses is impaired in FXS. Fmr1 KO mice showed a greatly enhanced excitatory synaptic input strength in neurons of the lateral superior olive (LSO), a prominent auditory brainstem nucleus, which integrates ipsilateral excitation and contralateral inhibition to compute interaural level differences. Conversely, the glycinergic, inhibitory input properties remained unaffected. The enhanced excitation was the result of an increased number of cochlear nucleus fibers converging onto one LSO neuron, without changing individual synapse properties. Concomitantly, immunolabeling of excitatory ending markers revealed an increase in the immunolabeled area, supporting abnormally elevated excitatory input numbers. Intrinsic firing properties were only slightly enhanced. In line with the disturbed development of LSO circuitry, auditory processing was also affected in adult Fmr1 KO mice as shown with single-unit recordings of LSO neurons. These processing deficits manifested as an increase in firing rate, a broadening of the frequency response area, and a shift in the interaural level difference function of LSO neurons. Our results suggest that this aberrant synaptic development of auditory brainstem circuits might be a major underlying cause of the auditory processing deficits in FXS. SIGNIFICANCE STATEMENT Fragile X Syndrome (FXS) is the most common inheritable form of intellectual impairment, including autism. A core symptom of FXS is extreme sensitivity to loud sounds. This is one reason why individuals with FXS tend to avoid social

  17. Effect of quercetin on chronic enhancement of spatial learning and memory of mice

    Institute of Scientific and Technical Information of China (English)

    LIU; Jiancai; YU; Huqing

    2006-01-01

    In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging, experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH-) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior, spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin, and relate with increasing the GSH level and decreasing the OH- content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.

  18. LONG-TERM DEMONSTRATION OF SORBENT ENHANCEMENT ADDITIVE TECHNOLOGY FOR MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Jason D. Laumb; Dennis L. Laudal; Grant E. Dunham; John P. Kay; Christopher L. Martin; Jeffrey S. Thompson; Nicholas B. Lentz; Alexander Azenkeng; Kevin C. Galbreath; Lucinda L. Hamre

    2011-05-27

    Long-term demonstration tests of advanced sorbent enhancement additive (SEA) technologies have been completed at five coal-fired power plants. The targeted removal rate was 90% from baseline conditions at all five stations. The plants included Hawthorn Unit 5, Mill Creek Unit 4, San Miguel Unit 1, Centralia Unit 2, and Hoot Lake Unit 2. The materials tested included powdered activated carbon, treated carbon, scrubber additives, and SEAs. In only one case (San Miguel) was >90% removal not attainable. The reemission of mercury from the scrubber at this facility prevented >90% capture.

  19. Memory-enhancing effect of Rhodiola rosea L extract on aged mice ...

    African Journals Online (AJOL)

    Purpose: The memory-enhancing effects of Rhodiola rosea L. extract (RRLE) on normal aged mice were assessed. Methods: In the open-field test, the effect of RRLE (150 and 300 mg/kg) on mouse locomotive activities was evaluated by investigating the extract's influence on CAT and AchE activities in the brain tissue of ...

  20. Demonstration of Einstein-Podolsky-Rosen steering with enhanced subchannel discrimination

    Science.gov (United States)

    Sun, Kai; Ye, Xiang-Jun; Xiao, Ya; Xu, Xiao-Ye; Wu, Yu-Chun; Xu, Jin-Shi; Chen, Jing-Ling; Li, Chuan-Feng; Guo, Guang-Can

    2018-03-01

    Einstein-Podolsky-Rosen (EPR) steering describes a quantum nonlocal phenomenon in which one party can nonlocally affect the other's state through local measurements. It reveals an additional concept of quantum non-locality, which stands between quantum entanglement and Bell nonlocality. Recently, a quantum information task named as subchannel discrimination (SD) provides a necessary and sufficient characterization of EPR steering. The success probability of SD using steerable states is higher than using any unsteerable states, even when they are entangled. However, the detailed construction of such subchannels and the experimental realization of the corresponding task are still technologically challenging. In this work, we designed a feasible collection of subchannels for a quantum channel and experimentally demonstrated the corresponding SD task where the probabilities of correct discrimination are clearly enhanced by exploiting steerable states. Our results provide a concrete example to operationally demonstrate EPR steering and shine a new light on the potential application of EPR steering.

  1. Malaysian adolescent students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience

    Science.gov (United States)

    Kuldas, Seffetullah; Hashim, Shahabuddin; Ismail, Hairul Nizam

    2015-01-01

    The adolescence period of life comes along with changes and challenges in terms of physical and cognitive development. In this hectic period, many adolescents may suffer more from various risk factors such as low socioeconomic status, substance abuse, sexual abuse and teenage pregnancy. Findings indicate that such disadvantaged backgrounds of Malaysian adolescent students lead to failure or underachievement in their academic performance. This narrative review scrutinises how some of these students are able to demonstrate academic resilience, which is satisfactory performance in cognitive or academic tasks in spite of their disadvantaged backgrounds. The review stresses the need for developing a caregiving relationship model for at-risk adolescent students in Malaysia. Such a model would allow educators to meet the students' needs for enhancing thinking skills, counteracting risk factors and demonstrating academic resilience. PMID:25663734

  2. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  3. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Kim Sung-Ho

    2009-03-01

    Full Text Available Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W. reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  4. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  5. Bordetella bronchiseptica antigen enhances the production of Mycoplasma hyopneumoniae antigen-specific immunoglobulin G in mice.

    Science.gov (United States)

    Yim, Seol-Hwa; Hahn, Tae-Wook; Joo, Hong-Gu

    2017-09-30

    We previously demonstrated that Bordetella ( B .) bronchiseptica antigen (Ag) showed high immunostimulatory effects on mouse bone marrow cells (BMs) while Mycoplasma ( M .) hyopneumoniae Ag showed low effects. The focus of this study was to determine if B. bronchiseptica Ag can enhance the M. hyopneumoniae Ag-specific immune response and whether the host's immune system can recognize both Ags. MTT assay results revealed that each or both Ags did not significantly change BM metabolic activity. Flow cytometry analysis using carboxyfluorescein succinimidyl ester showed that B. bronchiseptica Ag can promote the division of BMs. In cytokine and nitric oxide (NO) assays, B. bronchiseptica Ag boosted production of tumor necrosis factor-alpha in M. hyopneumoniae Ag-treated BMs, and combined treatment with both Ags elevated the level of NO in BMs compared to that from treatment of M. hyopneumoniae Ag alone. Immunoglobulin (Ig)G enzyme-linked immunosorbent assay using the sera of Ag-injected mice clearly indicated that B. bronchiseptica Ag can increase the production of M. hyopneumoniae Ag-specific IgG. This study provided information valuable in the development of M. hyopneumoniae vaccines and showed that B. bronchiseptica Ag can be used both as a vaccine adjuvant and as a vaccine Ag.

  6. Exercise enhance the ectopic bone formation of calcium phosphate biomaterials in muscles of mice.

    Science.gov (United States)

    Cheng, Lijia; Yan, Shuo; Zhu, Jiang; Cai, Peiling; Wang, Ting; Shi, Zheng

    2017-08-01

    To investigate whether exercise can enhance ectopic bone formation of calcium phosphate (Ca-P) biomaterials in muscles of mice. Firstly, ten transient receptor potential vanilloid subfamily member 1 (TRPV1) knockout mice (group KO) and ten C57BL/6 mice (group WT) were randomly chosen, 10μg Ca-P biomaterials were implanted into the thigh muscle pouch of each mouse which was far away from femur; after that, all animals were kept in open field for free exploration 5min, and the movement time and distance were automatically analyzed. Ten weeks later, the Ca-P samples were harvested for histological staining and immunochemistry. Secondly, the Ca-P biomaterials were implanted into the thigh muscle pouch of C57BL/6 mice the same as previous operation, and then randomly divided into two groups: running group and non-running group (n=10); in running group, all mice run 1h as a speed of 6m/h in a treadmill for 10weeks. Ten weeks later, the blood was collected to detect the interleukin-4 (IL-4) and IL-12 levels by enzyme linked immunosorbent assay (ELISA), and the samples were harvested for histological staining. In groups KO and WT, both the movement time and distance were significant higher in group KO than that in group WT (Pstronger athletic ability of mice, causing better osteoinductivity of Ca-P biomaterials both in TRPV1 -/- mice and running mice; according to this, we want to offer a proposal to patients who suffer from bone defects and artificial bone transplantation: do moderate exercise, don't convalesce all the time. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Demonstration of evolution of hemispherical spondysclerosis by contrast enhanced Gd-DTPA magnetic resonance imaging

    International Nuclear Information System (INIS)

    Jevtic, V.; Majcen, N.

    2004-01-01

    Background. The purpose of the study was to estimate the value of Gd-DTPA magnetic resonance imaging (MRI) in demonstrating the evolution of hemispherical spondylosclerosis (HSS). Patients and methods. In eighteen patients with chronic low back pain and typical radiographic findings of HSS seen on plain films, Gd-DTPA MRI of the lumbar spine was performed. MRI morphological and signal intensity appearances of HSS were analysed and compared with radiographic changes. Results. On the basis of MRI features, three distinct groups of cases were identifiable. Within the first group the region of dome-shaped osteosclerosis demonstrated low signal intensity on T1-weighted precontrast spin-echo images, high signal intensity on T2-weighted images and diffuse contrast enhancement on T1-weighted postcontrast images, findings compatible with bone marrow oedema and hyperaemia. The second group showed high signal intensity vertebral body corners surrounded by low signal intensity area, which indicated the combination of fat accumulation and the sclerotic bone. In the third intermediate group anterior disco-vertebral junctions revealed a mixture of MRI appearances characteristic of the first and the second group. Conclusions. Gd-DTPA MRI is capable of demonstrating a spectrum of features which reflect the evolution of HSS. These typical appearances showed by MRI could be of eventual clinical relevance in following the progression of HSS. (author)

  8. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  9. Oral intake of Lactobacillus rhamnosus M21 enhances the survival rate of mice lethally infected with influenza virus.

    Science.gov (United States)

    Song, Jeong Ah; Kim, Hee Joo; Hong, Seong Keun; Lee, Dong Hoon; Lee, Sang Won; Song, Chang Seon; Kim, Ki Taek; Choi, In Soo; Lee, Joong Bok; Park, Seung Yong

    2016-02-01

    Influenza viruses cause acute respiratory disease. Because of the high genetic variability of viruses, effective vaccines and antiviral agents are limited. Considering the fact that the site of influenza virus entry is the mucosa of the upper respiratory tract, probiotics that can enhance mucosal immunity as well as systemic immunity could be an important source of treatment against influenza infection. Mice were fed with Lactobacillus rhamnosus M21 or skim milk and were challenged with influenza virus. The resulting survival rate, lung inflammation, and changes in the cytokine and secretory immunoglobulin A (sIgA) levels were examined. Because of infection (influenza virus), all the mice in the control group and 60% of the mice in the L. rhamnosus M21 group died; however, the remaining 40% of the mice fed with L. rhamnosus M21 survived the infection. Pneumonia was severe in the control group but moderate in the group treated with L. rhamnosus M21. Although there were no significant changes in the proinflammatory cytokines in the lung lysates of mice collected from both groups, levels of interferon-γ and interleukin-2, which are representative cytokines of type I helper T cells, were significantly increased in the L. rhamnosus M21-treated group. An increase in sIgA as well as the diminution of inflammatory cells in bronchoalveolar lavage fluid was also observed in the L. rhamnosus M21-treated group. These results demonstrate that orally administered L. rhamnosus M21 activates humoral as well as cellular immune responses, conferring increased resistance to the host against influenza virus infection. Copyright © 2014. Published by Elsevier B.V.

  10. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    International Nuclear Information System (INIS)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D 2 and D 3 He-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5x10 10 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  11. Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

    Science.gov (United States)

    Philippe, F.; Casner, A.; Caillaud, T.; Landoas, O.; Monteil, M. C.; Liberatore, S.; Park, H. S.; Amendt, P.; Robey, H.; Sorce, C.; Li, C. K.; Seguin, F.; Rosenberg, M.; Petrasso, R.; Glebov, V.; Stoeckl, C.

    2010-01-01

    Rugby-shaped hohlraums have been suggested as a way to enhance x-ray drive in the indirect drive approach to inertial confinement fusion. This Letter presents an experimental comparison of rugby-shaped and cylinder hohlraums used for D2 and DHe3-filled capsules implosions on the Omega laser facility, demonstrating an increase of x-ray flux by 18% in rugby-shaped hohlraums. The highest yields to date for deuterium gas implosions in indirect drive on Omega (1.5×1010 neutrons) were obtained, allowing for the first time the measurement of a DD burn history. Proton spectra measurements provide additional validation of the higher drive in rugby-shaped hohlraums.

  12. Experimental Demonstration of Anomalous Field Enhancement in All-Dielectric Transition Magnetic Metamaterials.

    Science.gov (United States)

    Sun, Jingbo; Liu, Xiaoming; Zhou, Ji; Kudyshev, Zhaxylyk; Litchinitser, Natalia M

    2015-11-04

    Anomalous field enhancement accompanied by resonant absorption phenomenon was originally discussed in the context of plasma physics and in applications related to radio-communications between the ground and spacecraft returning to Earth. Indeed, there is a critical period of time when all communications are lost due to the reflection/absorption of electromagnetic waves by the sheath of plasma created by a high speed vehicle re-entering the atmosphere. While detailed experimental studies of these phenomena in space are challenging, the emergence of electromagnetic metamaterials enables researchers exceptional flexibility to study them in the laboratory environment. Here, we experimentally demonstrated the strong localized field enhancement of magnetic field for an electromagnetic wave propagating in Mie-resonance-based inhomogeneous metamaterials with magnetic permeability gradually changing from positive to negative values. Although these experiments were performed in the microwave frequency range, the proposed all-dielectric approach to transition metamaterials can be extended to terahertz, infrared, and visible frequencies. We anticipate that these results, besides most basic science aspects, hold the potential for numerous applications, including low-intensity nonlinear transformation optics, topological photonics, and the broader area of surface and interface science.

  13. Social marketing principles enhance enrollment in the cash and counseling demonstration and evaluation.

    Science.gov (United States)

    Simon-Rusinowitz, Lori; Mahoney, Kevin J; Marks, Lori N; Simone, Kristin; Zacharias, B Lee

    2009-01-01

    Using focus group data, this article discusses the use of social marketing principles to enhance enrollment in the Cash and Counseling Demonstration and Evaluation (CCDE). Focus groups were conducted in person and by conference call in two CCDE states, Arkansas and Florida. In Florida, Department of Elder Affairs and Developmental Services Program (DS) staff participated in seven focus groups. In Arkansas, four focus groups were conducted with professionals likely to come into contact with Medicaid consumers who are eligible for Arkansas' cash option program. Focus group transcripts were coded according to the project research questions. Several important lessons emerged including the importance of(a) conducting process evaluation activities, such as the social marketing focus groups, early during program implementation; (b) using multiple approaches and contacts to inform potential consumers and their families about a new, complex program; (c) carefully selecting and training personnel to conduct outreach and enrollment activities; and (d) developing specific messages to include in marketing the cash option. Using social marketing principles to examine CCDE enrollment has provided important information to enhance this program.

  14. Enhanced susceptibility to stress and seizures in GAD65 deficient mice.

    Science.gov (United States)

    Qi, Jin; Kim, Minjung; Sanchez, Russell; Ziaee, Saba M; Kohtz, Jhumku D; Koh, Sookyong

    2018-01-01

    Reduced gamma-aminobutyric acid (GABA) inhibition has been implicated in both anxiety and epilepsy. GAD65-/- (NOD/LtJ) mice have significantly decreased basal GABA levels in the brain and a lowered threshold for seizure generation. One fifth of GAD65 -/- mice experienced stress-induced seizures upon exposure to an open field at 4 weeks of age. In each successive week until 8 weeks of age, the latency to seizures decreased with prior seizure experience. 100% of GAD65-/- mice exhibited stress-induced seizures by the end of 8 weeks. GAD65-/- mice also exhibited marked impairment in open field exploratory behavior and deficits in spatial learning acquisition on a Barnes maze. Anxiety-like behavior in an open field was observed prior to seizure onset and was predictive of subsequent seizures. Immunohistochemical characterization of interneuron subtypes in GAD65-/- mice showed a selective decrease in GABA and neuropeptide Y (NPY) levels and no change in calbindin (CLB) or calretinin (CLR) immunoreactivity in the hippocampus. Stem cells from the medial ganglionic eminence (MGE) were injected into the hippocampal hilus to restore GABAergic interneurons. One week after transplantation, MGE-transplanted mice demonstrated significant seizure resistance compared to sham surgical controls. The percent area of GFP+ MGE graft in the hippocampus correlated significantly with the increase in seizure latency. Our data indicate that impaired GABAergic neurotransmission can cause anxiety-like behavior and stress-induced seizures that can be rescued by MGE stem cell transplantation.

  15. Enhancement of radioprotective effectiveness of adenosine monophosphate by magnesium aspartate in mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Netikova, J.; Kozubik, A.; Chertkov, K.S.; Ministry of Health, Moscow

    1988-01-01

    The enhancing effect of magnesium aspartate on the radioprotective effectiveness of adenosine monophosphate (AMP) administered to whole-body gamma-irradiated mice was studied. Male (CBA x C57BL/10)F 1 hybrid mice of a mean body weight of 32 g were used. 5 mg AMP per mouse was injected i.p. 15 min before and 15 min after irradiation; magnesium aspartate (13.3 mg per mouse) was administered s.c. 35 min before irradiation. The benefical effect of the drug combination used was manifested when investigating hematological indices at the recovery phase of sublethally irradiated animals, as well as when observing the survival of lethally irradiated mice. The synergistic radioprotective effects of AMP and magnesium aspartate are explained by the stimulatory action of both these compounds on the cell adenylate cyclase system. (author)

  16. Toll-like receptor 7-mediated enhancement of contextual fear memory in mice.

    Science.gov (United States)

    Kubo, Yasunori; Yanagawa, Yoshiki; Matsumoto, Machiko; Hiraide, Sachiko; Kobayashi, Masanobu; Togashi, Hiroko

    2012-10-01

    Toll-like receptor (TLR) 7 recognizes viral single-stranded RNA and triggers production of the type I interferons (IFNs) IFN-α and IFN-β. Imiquimod, a synthetic TLR7 ligand, induces production of type I IFNs and is used clinically as an antiviral and antitumor drug. In the present study, we examined the effect of imiquimod on conditioned and innate fear behaviors in mice. Imiquimod was administered 2, 4, or 15 h before contextual fear conditioning. Imiquimod treatment 4 or 15 h before fear conditioning significantly enhanced context-dependent freezing behavior. This imiquimod-induced enhancement of fear-related behaviors was observed 120 h after fear conditioning. In contrast, imiquimod failed to enhance context-dependent freezing behavior in TLR7 knockout mice. Imiquimod had no significant effect on pain threshold or on innate fear-related behavior, as measured by the elevated plus-maze. The levels of type I IFN mRNA in the brain were significantly increased at 2 h after imiquimod treatment. Imiquimod also increased interleukin (IL)-1β mRNA expression in the brain at 4 h following administration, while mRNA expression of F4/80, a macrophage marker, was unaffected by imiquimod treatment. Our findings suggest that TLR7-mediated signaling enhances contextual fear memory in mice, possibly by inducing the expression of type I IFNs and IL-1β in the brain. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  18. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Cui Guang-bin

    2012-02-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC, is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. Findings In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC, and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. Conclusions Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.

  19. Leukocytosis and enhanced susceptibility to endotoxemia but not atherosclerosis in adrenalectomized APOE knockout mice.

    Directory of Open Access Journals (Sweden)

    Menno Hoekstra

    Full Text Available Hyperlipidemic apolipoprotein E (APOE knockout mice show an enhanced level of adrenal-derived anti-inflammatory glucocorticoids. Here we determined in APOE knockout mice the impact of total removal of adrenal function through adrenalectomy (ADX on two inflammation-associated pathologies, endotoxemia and atherosclerosis. ADX mice exhibited 91% decreased corticosterone levels (P<0.001, leukocytosis (WBC count: 10.0 ± 0.4 x 10E9/L vs 6.5 ± 0.5 x 10E9/L; P<0.001 and an increased spleen weight (P<0.01. FACS analysis on blood leukocytes revealed increased B-lymphocyte numbers (55 ± 2% vs 46 ± 1%; P<0.01. T-cell populations in blood appeared to be more immature (CD62L+: 26 ± 2% vs 19 ± 1% for CD4+ T-cells, P<0.001 and 58 ± 7% vs 47 ± 4% for CD8+ T-cells, P<0.05, which coincided with immature CD4/CD8 double positive thymocyte enrichment. Exposure to lipopolysaccharide failed to increase corticosterone levels in ADX mice and was associated with a 3-fold higher (P<0.05 TNF-alpha response. In contrast, the development of initial fatty streak lesions and progression to advanced collagen-containing atherosclerotic lesions was unaffected. Plasma cholesterol levels were decreased by 35% (P<0.001 in ADX mice. This could be attributed to a decrease in pro-atherogenic very-low-density lipoproteins (VLDL as a result of a diminished hepatic VLDL secretion rate (-24%; P<0.05. In conclusion, our studies show that adrenalectomy induces leukocytosis and enhances the susceptibility for endotoxemia in APOE knockout mice. The adrenalectomy-associated rise in white blood cells, however, does not alter atherosclerotic lesion development probably due to the parallel decrease in plasma levels of pro-atherogenic lipoproteins.

  20. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors.

    Science.gov (United States)

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  1. Stress-induced enhancement of ethanol intake in C57BL/6J mice with a history of chronic ethanol exposure: Involvement of kappa opioid receptors

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2016-02-01

    Full Text Available Our laboratory has previously demonstrated that daily forced swim stress (FSS prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 hr/day x 4 days/week to ethanol vapor (CIE group or air (CTL group. Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 hour access to 15% ethanol. Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min, the KOR agonist U50,488 (5 mg/kg, or a vehicle injection (non-stressed condition prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0,1.25, 2.5, 5.0 mg/kg one hour prior to each daily drinking test (in lieu of FSS. All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was

  2. Enhanced motivation to alcohol in transgenic mice expressing human α-synuclein.

    Science.gov (United States)

    Rotermund, Carola; Reolon, Gustavo K; Leixner, Sarah; Boden, Cindy; Bilbao, Ainhoa; Kahle, Philipp J

    2017-11-01

    α-Synuclein (αSYN) is the neuropathological hallmark protein of Parkinson's disease (PD) and related neurodegenerative disorders. Moreover, the gene encoding αSYN (SNCA) is a major genetic contributor to PD. Interestingly, independent genome-wide association studies also identified SNCA as the most important candidate gene for alcoholism. Furthermore, single-nucleotide-polymorphisms have been associated with alcohol-craving behavior and alcohol-craving patients showed augmented αSYN expression in blood. To investigate the effect of αSYN on the addictive properties of chronic alcohol use, we examined consumption, motivation, and seeking responses induced by environmental stimuli and relapse behavior in transgenic mice expressing the human mutant [A30P]αSYN throughout the brain. The primary reinforcing effects of alcohol under operant self-administration conditions were increased, while consumption and the alcohol deprivation effect were not altered in the transgenic mice. The same mice were subjected to immunohistochemical measurements of immediate-early gene inductions in brain regions involved in addiction-related behaviors. Acute ethanol injection enhanced immunostaining for the phosphorylated form of cAMP response element binding protein in both amygdala and nucleus accumbens of αSYN transgenic mice, while in wild-type mice no effect was visible. However, at the same time, levels of cFos remain unchanged in both genotypes. These results provide experimental confirmation of SNCA as a candidate gene for alcoholism in addition to its known link to PD. © 2017 International Society for Neurochemistry.

  3. [Enhancing effect of Ulex europaeus agglutinin I modified liposomes on oral insulin absorption in mice].

    Science.gov (United States)

    Zhang, Na; Ping, Qi-neng; Xu, Wen-fang

    2004-12-01

    To investigate the enhancing effect on insulin absorption through GI. tract in mice by using the Ulex europaeus agglutinin I (UEA1) modified liposomes as the carrier. UEA1 modified phosphatidylethanolamine (PE) was prepared by conjugating method of 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide (EDC), then the modified compound (PE-UEA1) was incorporated into the conventional liposomes of insulin to obtain UEA1 modified liposomes. The agglutination test was performed to examine the UEA1 biological activities after synthesis and modification. When liposomes were applied to healthy mice or diabetic mice at insulin dose of 350 u x kg(-1) orally, the hypoglycemic effect was investigated according to the blood glucose level determination. The blood glucose levels of the healthy mice reduced by UEA1 modified liposomes were (84 +/- 15)% at 4 h, (78 +/- 11)% at 8 h and (90 +/- 12)% at 12 h after oral administration. The conventional liposomes and saline showed no effect. The blood glucose levels of the diabetic mice reduced by UEA1 modified liposomes were (73 +/- 7)% at 4 h, (74 +/- 9)% at 8 h, (86 +/- 9)% at 12 h after oral administration. The UEA1 modified liposomes promote the oral absorption of insulin due to the specific-site combination on M cell membrane.

  4. Enhancement of curcumin oral absorption and pharmacokinetics of curcuminoids and curcumin metabolites in mice

    Science.gov (United States)

    Zhongfa, Liu; Chiu, Ming; Wang, Jiang; Chen, Wei; Yen, Winston; Fan-Havard, Patty; Yee, Lisa D.; Chan, Kenneth K.

    2012-01-01

    Purpose Curcumin has shown a variety of biological activity for various human diseases including cancer in preclinical setting. Its poor oral bioavailability poses significant pharmacological barriers to its clinical application. Here, we established a practical nano-emulsion curcumin (NEC) containing up to 20% curcumin (w/w) and conducted the pharmacokinetics of curcuminoids and curcumin metabolites in mice. Methods This high loading NEC was formulated based on the high solubility of curcumin in polyethylene glycols (PEGs) and the synergistic enhancement of curcumin absorption by PEGs and Cremophor EL. The pharmacokinetics of curcuminoids and curcumin metabolites was characterized in mice using a LC–MS/MS method, and the pharmacokinetic parameters were determined using WinNonlin computer software. Results A tenfold increase in the AUC0→24h and more than 40-fold increase in the Cmax in mice were observed after an oral dose of NEC compared with suspension curcumin in 1% methylcellulose. The plasma pharmacokinetics of its two natural congeners, demethoxycurcumin and bisdemethoxycurcumin, and three metabolites, tetrahydrocurcumin (THC), curcumin-O-glucuronide, and curcumin-O-sulfate, was characterized for the first time in mice after an oral dose of NEC. Conclusion This oral absorption enhanced NEC may provide a practical formulation to conduct the correlative study of the PK of curcuminoids and their pharmacodynamics, e.g., hypomethylation activity in vivo. PMID:21968952

  5. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    International Nuclear Information System (INIS)

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-01-01

    Research highlights: → Development of mouse overexpressing native human HSF1 in all tissues including CNS. → HSF1 overexpression enhances heat shock response at whole-animal and cellular level. → HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. → HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1 +/0 ) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1 +/0 mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1 +/0 cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1 +/0 cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  6. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice

    Directory of Open Access Journals (Sweden)

    Olakunle James Onaolapo

    2013-01-01

    Full Text Available This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  7. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice.

    Science.gov (United States)

    Onaolapo, Olakunle James; Onaolapo, Adejoke Yetunde

    2013-01-01

    This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  8. Mice heterozygous for the Mdr2 gene demonstrate decreased PEMT activity and diminished steatohepatitis on the MCD diet.

    Science.gov (United States)

    Igolnikov, Alexander C; Green, Richard M

    2006-03-01

    The administration of a methionine and choline deficient (MCD) diet to mice serves as an animal model of NASH. The multidrug resistant 2 (Mdr2) P-glycoprotein encodes for the canalicular phospholipid transporter, and Mdr2 (+/-) mice secrete 40% less phosphatidylcholine than wild-type mice. We have hypothesized that phosphatidylethanolamine-N-methyl transferase (PEMT) up-regulation is a consequence of MCD diet administration, and is important for the pathogenesis of steatohepatitis in this model. However, the effect of decreased phosphatidylcholine secretion and modulation of PEMT on the development of diet-induced steatohepatitis in Mdr2 (+/-) mice has not been explored. Thus, the purpose of the study is to examine the effects of the MCD diet on Mdr2 (+/-) mice. Mdr2 (+/-) and Mdr2 (+/+) mice were treated with an MCD or control diet for up to 30 days, and the severity of steatohepatitis, PEMT activity and hepatic S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) levels were measured. Serum ALT levels, hepatic inflammation, and PEMT activity were significantly lower, and hepatic SAM:SAH ratios were significantly higher in Mdr2 (+/-) mice at 7 and 30 days on the MCD diet. Mdr2 (+/-) mice have diminished susceptibility to MCD diet-induced NASH, which is associated with a relative decrease in PEMT activity and increased SAM:SAH ratios.

  9. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    OpenAIRE

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-01-01

    Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of ...

  10. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice.

    Science.gov (United States)

    Ma, Sihui; Huang, Qingyi; Yada, Koichi; Liu, Chunhong; Suzuki, Katsuhiko

    2018-05-25

    Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD) is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  11. An 8-Week Ketogenic Low Carbohydrate, High Fat Diet Enhanced Exhaustive Exercise Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Sihui Ma

    2018-05-01

    Full Text Available Current fueling tactics for endurance exercise encourage athletes to ingest a high carbohydrate diet. However, athletes are not generally encouraged to use fat, the largest energy reserve in the human body. A low carbohydrate, high fat ketogenic diet (KD is a nutritional approach ensuring that the body utilizes lipids. Although KD has been associated with weight-loss, enhanced fat utilization in muscle and other beneficial effects, there is currently no clear proof whether it could lead to performance advantage. To evaluate the effects of KD on endurance exercise capacity, we studied the performance of mice subjected to a running model after consuming KD for eight weeks. Weight dropped dramatically in KD-feeding mice, even though they ate more calories. KD-feeding mice showed enhanced running time without aggravated muscle injury. Blood biochemistry and correlation analysis indicated the potential mechanism is likely to be a keto-adaptation enhanced capacity to transport and metabolize fat. KD also showed a potential preventive effect on organ injury caused by acute exercise, although KD failed to exert protection from muscle injury. Ultimately, KD may contribute to prolonged exercise capacity.

  12. Glucose cycling is markedly enhanced in pancreatic islets of obese hyperglycemic mice

    International Nuclear Information System (INIS)

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Berggren, P.O.; Loew, H.L.; Landau, B.R.; Efendic, S.

    1990-01-01

    Pancreatic islets from fed 7-month old lean and obese hyperglycemic mice (ob/ob) were incubated with 3H2O and 5.5 mM or 16.7 mM glucose. Incorporation of 3H into the medium glucose was taken as the measure of glucose-6-P hydrolysis to glucose. Glucose utilization was measured from the yield of 3H2O from [5-3H]glucose. Only 3-4% of the glucose phosphorylated was dephosphorylated by the lean mouse islets irrespective of the glucose concentration. In contrast, the ob/ob mouse islets at 5.5 mM glucose dephosphorylated 18% of the glucose phosphorylated and 30% at 16.7 mM. Thus, the islets of hyperglycemic mice demonstrate increased glucose cycling as compared to the islets of normoglycemic lean mice

  13. Respiratory syncytial virus infections enhance cigarette smoke induced COPD in mice.

    Directory of Open Access Journals (Sweden)

    Robert F Foronjy

    Full Text Available Respiratory syncytial viral (RSV infections are a frequent cause of chronic obstructive pulmonary disease (COPD exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A and protein tyrosine phosphates (PTP1B expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression.

  14. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-02-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  15. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10.

    Science.gov (United States)

    Mao, Zhigang; Wu, Jeffrey H; Dong, Tingting; Wu, Mei X

    2016-02-02

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study.

  16. 17β-estradiol enhances memory duration in the main olfactory bulb in CD-1 mice.

    Science.gov (United States)

    Dillon, T Samuel; Fox, Laura C; Han, Crystal; Linster, Christiane

    2013-12-01

    Rodents rely heavily on odor detection, discrimination, and memory to locate food, find mates, care for pups, and avoid predators. Estrogens have been shown to increase memory retention in rodents performing spatial memory and object placement tasks. Here we evaluate the extent to which 17β-estradiol modulates memory formation and duration in the olfactory system. Adult CD-1 mice were gonadectomized and given either systemic 17β-estradiol replacement, local 17β-estradiol in the main olfactory bulb, or no replacement. Before performing the behavioral task the mice were given saline or PHTPP (an estrogen receptor β [ER-β] antagonist) via bilateral infusion into the main olfactory bulb. As the beta-type estrogen receptor (ER-β) is more abundant than the alpha-type estrogen receptor in the murine main olfactory bulb, the current study focuses on 17β-estradiol and its interactions with ERβ. Habituation, a simple, nonassociative learning task in which an animal is exposed to the same odor over successive presentations, was used to evaluate the animals' ability to detect odors and form an olfactory memory. To evaluate memory duration, we added a final trial of intertrial interval time (30 or 60 min) in which we presented the habituated odor. Neither surgical nor drug manipulation affected the ability of mice to detect or habituate to an odor. After habituation, gonadectomized 17β-estradiol-treated mice retained memory of an odor for 30 min, whereas non-estradiol-treated, 17β-estradiol+ERβ antagonist (PHTPP), and untreated male mice did not remember an odor 30 min after habituation. The results show that both systemic and local bulbar infusions of 17β-estradiol enhance odor memory duration in mice.

  17. Enhanced depletion of glutathione and increased liver oxidative damage in aflatoxin-fed mice infected with Plasmodium berghei

    DEFF Research Database (Denmark)

    Ankrah, N A; Sittie, A; Addo, P G

    1995-01-01

    levels accompanied by a significant increase in serum cholinesterase and liver malonic dialdehyde levels in the mice fed aflatoxin compared with those in the control group. The results suggested that malaria parasites can enhance depletion of host glutathione and oxidative damage of the liver in mice fed...

  18. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Sun Min; Gao Yan; Guo Chenyu; Cao Fengliang; Song Zhimei; Xi Yanwei; Yu Aihua; Li Aiguo; Zhai Guangxi, E-mail: professorzhai@yeah.ne [Shandong University, Department of Pharmaceutics, College of Pharmacy (China)

    2010-10-15

    Curcumin, a widely used coloring agent and spice in food, has a potential in blocking brain tumor formation and curing Alzheimer's disease. Due to the specific properties of blood-brain barrier (BBB), only traces of curcumin were transported across BBB. The aim of the present study was to design and characterize curcumin loaded polybutylcyanoacrylate nanoparticles (PBCN) coated with polysorbate 80, and to evaluate the effect of PBCN as a delivery system on carrying curcumin across BBB. Curcumin loaded nanoparticles were prepared by an anionic polymerization method, and they presented in a core-shell spherical shape under transmission electron microscopy, with an average diameter of 152.0 nm. The average drug loading was 21.1%. Physicochemical status of curcumin in the nanoparticles was confirmed with differential scanning colorimetry and Fourier transform infrared spectroscopy. The in vitro release behavior of drug from the nanoparticles was fitted to a double phase kinetics model. The studies of pharmacokinetic and bio-distribution to brain were conducted in mice after intravenous administration of the nanoparticle formulation at the dose of 5 mg/kg and curcumin solution at the dose of 10 mg/kg via the tail vein. The results showed that in plasma, the area under concentration-time curve (AUC{sub 0-{infinity}}) for curcumin loaded nanoparticles was greater than that for the control solution, moreover, the mean residence time of curcumin loaded nanoparticles was 14-fold that of the control solution. In brain, AUC{sub 0-{infinity}} for curcumin loaded nanoparticles was 2.53-fold that for the control solution. In conclusion, the present study demonstrated that PBCN could enhance the transport of curcumin to brain and have a potential as a delivery system to cross the BBB.

  19. Enhancement of transport of curcumin to brain in mice by poly( n-butylcyanoacrylate) nanoparticle

    Science.gov (United States)

    Sun, Min; Gao, Yan; Guo, Chenyu; Cao, Fengliang; Song, Zhimei; Xi, Yanwei; Yu, Aihua; Li, Aiguo; Zhai, Guangxi

    2010-10-01

    Curcumin, a widely used coloring agent and spice in food, has a potential in blocking brain tumor formation and curing Alzheimer's disease. Due to the specific properties of blood-brain barrier (BBB), only traces of curcumin were transported across BBB. The aim of the present study was to design and characterize curcumin loaded polybutylcyanoacrylate nanoparticles (PBCN) coated with polysorbate 80, and to evaluate the effect of PBCN as a delivery system on carrying curcumin across BBB. Curcumin loaded nanoparticles were prepared by an anionic polymerization method, and they presented in a core-shell spherical shape under transmission electron microscopy, with an average diameter of 152.0 nm. The average drug loading was 21.1%. Physicochemical status of curcumin in the nanoparticles was confirmed with differential scanning colorimetry and Fourier transform infrared spectroscopy. The in vitro release behavior of drug from the nanoparticles was fitted to a double phase kinetics model. The studies of pharmacokinetic and bio-distribution to brain were conducted in mice after intravenous administration of the nanoparticle formulation at the dose of 5 mg/kg and curcumin solution at the dose of 10 mg/kg via the tail vein. The results showed that in plasma, the area under concentration-time curve (AUC0-∞) for curcumin loaded nanoparticles was greater than that for the control solution, moreover, the mean residence time of curcumin loaded nanoparticles was 14-fold that of the control solution. In brain, AUC0-∞ for curcumin loaded nanoparticles was 2.53-fold that for the control solution. In conclusion, the present study demonstrated that PBCN could enhance the transport of curcumin to brain and have a potential as a delivery system to cross the BBB.

  20. Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle

    International Nuclear Information System (INIS)

    Sun Min; Gao Yan; Guo Chenyu; Cao Fengliang; Song Zhimei; Xi Yanwei; Yu Aihua; Li Aiguo; Zhai Guangxi

    2010-01-01

    Curcumin, a widely used coloring agent and spice in food, has a potential in blocking brain tumor formation and curing Alzheimer's disease. Due to the specific properties of blood-brain barrier (BBB), only traces of curcumin were transported across BBB. The aim of the present study was to design and characterize curcumin loaded polybutylcyanoacrylate nanoparticles (PBCN) coated with polysorbate 80, and to evaluate the effect of PBCN as a delivery system on carrying curcumin across BBB. Curcumin loaded nanoparticles were prepared by an anionic polymerization method, and they presented in a core-shell spherical shape under transmission electron microscopy, with an average diameter of 152.0 nm. The average drug loading was 21.1%. Physicochemical status of curcumin in the nanoparticles was confirmed with differential scanning colorimetry and Fourier transform infrared spectroscopy. The in vitro release behavior of drug from the nanoparticles was fitted to a double phase kinetics model. The studies of pharmacokinetic and bio-distribution to brain were conducted in mice after intravenous administration of the nanoparticle formulation at the dose of 5 mg/kg and curcumin solution at the dose of 10 mg/kg via the tail vein. The results showed that in plasma, the area under concentration-time curve (AUC 0-∞ ) for curcumin loaded nanoparticles was greater than that for the control solution, moreover, the mean residence time of curcumin loaded nanoparticles was 14-fold that of the control solution. In brain, AUC 0-∞ for curcumin loaded nanoparticles was 2.53-fold that for the control solution. In conclusion, the present study demonstrated that PBCN could enhance the transport of curcumin to brain and have a potential as a delivery system to cross the BBB.

  1. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors.

    Science.gov (United States)

    Gianlorenço, A C L; Canto-de-Souza, A; Mattioli, R

    2013-12-17

    Studies have demonstrated the relationship between the histaminergic system and the cerebellum, and we intend to investigate the role of the cerebellar histaminergic system on memory consolidation. This study investigated the effect of intra-cerebellar microinjection of histamine on memory retention of inhibitory avoidance in mice, and the role of H1 and H2 receptors in it. The cerebellar vermis of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of histaminergic drugs: in the experiment 1, saline (SAL) or histamine (HA 0.54, 1.36, 2.72 or 4.07 nmol); experiment 2, SAL or 1.36 nmol HA 5 min after a pretreatment with 0.16 nmol chlorpheniramine (CPA) or SAL; and experiment 3, SAL or 1.36 nmol HA 5 min after a pretreatment with 2.85 nmol ranitidine (RA) or SAL. Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. In experiment 1, animals microinjected with 1.36 nmol HA showed a higher latency to cross to the dark compartment compared to controls and to 2.72 and 4.07 nmol HA groups. In experiment 2, the combined infusions revealed difference between control (SAL+SAL) and SAL+HA and CPA+HA; while in the experiment 3 the analysis indicated differences in retention latency between mice injected with SAL+SAL and SAL+HA. The groups that received the H2 antagonist RA did not show difference compared to control. These results indicate that 1.36 nmol HA enhances memory consolidation of inhibitory avoidance learning in mice and that the pretreatment with H2 antagonist RA was able to prevent this effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Female scent signals enhance the resistance of male mice to influenza.

    Directory of Open Access Journals (Sweden)

    Ekaterina A Litvinova

    Full Text Available BACKGROUND: The scent from receptive female mice functions as a signal, which stimulates male mice to search for potential mating partners. This searching behavior is coupled with infection risk due to sniffing both scent marks as well as nasal and anogenital areas of females, which harbor bacteria and viruses. Consideration of host evolution under unavoidable parasitic pressures, including helminthes, bacteria, viruses, etc., predicts adaptations that help protect hosts against the parasites associated with mating. METHODS AND FINDINGS: We propose that the perception of female signals by BALB/c male mice leads to adaptive redistribution of the immune defense directed to protection against respiratory infection risks. Our results demonstrate migration of macrophages and neutrophils to the upper airways upon exposure to female odor stimuli, which results in an increased resistance of the males to experimental influenza virus infection. This moderate leukocyte intervention had no negative effect on the aerobic performance in male mice. CONCLUSIONS: Our data provide the first demonstration of the adaptive immunological response to female odor stimuli through induction of nonspecific immune responses in the upper respiratory tract.

  3. Exposure to Experimental Preeclampsia in Mice Enhances the Vascular Response to Future Injury

    Science.gov (United States)

    Pruthi, Dafina; Khankin, Eliyahu V.; Blanton, Robert M.; Aronovitz, Mark; Burke, Suzanne D.; McCurley, Amy; Karumanchi, S. Ananth; Jaffe, Iris Z.

    2015-01-01

    Cardiovascular disease (CVD) remains the leading killer of women in developed nations. One gender-specific risk factor is preeclampsia (PE), a syndrome of hypertension and proteinuria that complicates 5% of pregnancies. Although PE resolves after delivery, exposed women are at increased long term risk of premature CVD and mortality. Preexisting CVD risk factors are associated with increased risk of developing PE but whether PE merely uncovers risk or contributes directly to future CVD remains a critical unanswered question. A mouse PE model was used to test the hypothesis that PE causes an enhanced vascular response to future vessel injury. A PE-like state was induced in pregnant CD1 mice by overexpressing soluble fms-like tyrosine kinase-1 (sFlt-1), a circulating anti-angiogenic protein that induces hypertension and glomerular disease resembling human PE. Two months post-partum, sFlt-1 levels and blood pressure normalized and cardiac size and function by echocardiography and renal histology were indistinguishable in PE-exposed compared to control mice. Mice were then challenged with unilateral carotid injury. PE-exposed mice had significantly enhanced vascular remodeling with increased vascular smooth muscle cell proliferation (180% increase, P<0.01) and vessel fibrosis (216% increase, P<0.001) compared to control pregnancy. In the contralateral uninjured vessel, there was no difference in remodeling after exposure to PE. These data support a new model in which vessels exposed to PE retain a persistently enhanced vascular response to injury despite resolution of PE after delivery. This new paradigm may contribute to the substantially increased risk of CVD in woman exposed to PE. PMID:25712723

  4. Mutations in polymerase genes enhanced the virulence of 2009 pandemic H1N1 influenza virus in mice.

    Directory of Open Access Journals (Sweden)

    Wenfei Zhu

    Full Text Available Influenza A virus can infect a wide variety of animal species with illness ranging from mild to severe, and is a continual cause for concern. Genetic mutations that occur either naturally or during viral adaptation in a poorly susceptible host are key mechanisms underlying the evolution and virulence of influenza A virus. Here, the variants containing PA-A36T or PB2-H357N observed in the mouse-adapted descendants of 2009 pandemic H1N1 virus (pH1N1, A/Sichuan/1/2009 (SC, were characterized. Both mutations enhanced polymerase activity in mammalian cells. These effects were confirmed using recombinant SC virus containing polymerase genes with wild type (WT or mutant PA or PB2. The PA-A36T mutant showed enhanced growth property compared to the WT in both human A549 cells and porcine PK15 cells in vitro, without significant effect on viral propagation in murine LA-4 cells and pathogenicity in mice; however, it did enhance the lung virus titer. PB2-H357N variant demonstrated growth ability comparable to the WT in A549 cells, but replicated well in PK15, LA-4 cells and in mice with an enhanced pathogenic phenotype. Despite such mutations are rare in nature, they could be observed in avian H5 and H7 subtype viruses which were currently recognized to pose potential threat to human. Our findings indicated that pH1N1 may adapt well in mammals when acquiring these mutations. Therefore, future molecular epidemiological surveillance should include scrutiny of both markers because of their potential impact on pathogenesis.

  5. PMC-12, a traditional herbal medicine, enhances learning memory and hippocampal neurogenesis in mice.

    Science.gov (United States)

    Park, Hee Ra; Kim, Ju Yeon; Lee, Yujeong; Chun, Hye Jeong; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae; Kim, Cheol Min; Lee, Jaewon

    2016-03-23

    The beneficial effects of traditional Korean medicine are recognized during the treatment of neurodegenerative conditions, such as, Alzheimer's disease and neurocognitive dysfunction, and recently, hippocampal neurogenesis has been reported to be associated with memory function. In this study, the authors investigated the beneficial effects of polygonum multiflorum Thunberg complex composition-12 (PMC-12), which is a mixture of four medicinal herbs, that is, Polygonum multiflorum, Polygala tenuifolia, Rehmannia glutinosa, and Acorus gramineus, on hippocampal neurogenesis, learning, and memory in mice. PMC-12 was orally administered to male C57BL/6 mice (5 weeks old) at 100 or 500 mg/kg daily for 2 weeks. PMC-12 administration significantly was found to increase the proliferation of neural progenitor cells and the survival of newly-generated cells in the dentate gyrus. In the Morris water maze test, the latency times of PMC-12 treated mice (100 or 500 mg/kg) were shorter than those of vehicle-control mice. In addition, PMC-12 increased the levels of BDNF, p-CREB, and synaptophysin, which are known to be associated with neural plasticity and hippocampal neurogenesis. These findings suggest PMC-12 enhances hippocampal neurogenesis and neurocognitive function and imply that PMC-12 ameliorates memory impairment and cognitive deficits. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Enhanced bioavailability and cysticidal effect of three mebendazole-oil preparations in mice infected with secondary cysts of Echinococcus granulosus.

    Science.gov (United States)

    Liu, Cong-shan; Zhang, Hao-bing; Jiang, Bin; Yao, Jun-min; Tao, Yi; Xue, Jian; Wen, Ai-dan

    2012-09-01

    The aim of the present study is to explore the possibility to increase the efficacy of mebendazole (MBZ) against secondary cysts of Echinococcus granulosus harbored in mice by augmenting the solubility and bioavailability of the drug. Firstly, the saturated solubility of MBZ in nine kinds of oil was determined by high performance liquid chromatography (HPLC), and MBZ was found exhibiting the highest, secondary, and lowest solubility in oleic acid (OA), glycerol trioleate (GT), and soybean oil (SB), respectively. Secondly, MBZ-OA suspension, MBZ-GT suspension, MBZ-SB suspension, and MBZ suspended in 1 % tragacanth (MBZ-1 % tragacanth) were selected for further studies on pharmacokinetics and experimental therapy in mice. Four groups of mice were treated orally with one of aforementioned four MBZ preparations at a single dose of 25 mg/kg, and concentrations of MBZ in plasma obtained from each mouse at various intervals within 24 h postadministration were determined by HPLC. The major pharmacokinetic parameters calculated by MBZ plasma concentration-time curve demonstrated that the peak concentration of the drug (C (max) ) values obtained from three MBZ-oil preparation groups was 1.6-2.8 times higher than that of MBZ-1 % tragacanth group. The same was true that the area under the drug concentration-time curve (AUC(0-∞)) values of 19.8 (2.5)-28.2 (2.5) μg/ml × h revealed in the three MBZ-oil preparation groups was significantly higher than that of 11.6 (2.0) μg/ml × h in MBZ-1 % tragacanth group, and the bioavailability of the three MBZ-oil preparation groups was 71-143 % higher than that of MBZ-1 % tragacanth group. In mice infected with secondary cysts of E. granulosus for 8 months treated orally with MBZ-1 % tragacanth at a daily dose of 25 mg/kg for 14 consecutive days, the mean cyst weight was lower than that of untreated control, but the difference was not statistically significant with cyst weight reduction of 48 %. When the infected mice received three

  7. Mice expressing a “hyper-sensitive” form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption

    Science.gov (United States)

    Gonek, Maciej; Zee, Michael L.; Farnsworth, Jill C.; Amin, Randa A.; Andrews, Mary-Jeanette; Davis, Brian J.; Mackie, Ken; Morgan, Daniel J.

    2017-01-01

    We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a “hyper-sensitive” form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model. PMID:28426670

  8. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1 show modestly enhanced alcohol preference and consumption.

    Directory of Open Access Journals (Sweden)

    David J Marcus

    Full Text Available We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6% but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg, morphine (10 mg/kg, and cocaine (10 mg/kg, demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.

  9. Haemopoiesis-enhancing effects of repeatedly administered carboxymethylglucan in mice exposed to fractionated irradiation

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Pipalova, I.; Hola, J.

    1995-01-01

    Carboxymethylglucan (CMG), a water-soluble glucan derivative, enhanced the number of granulocytes in the peripheral blood as well as other indices of haemopoietic recovery (total cellularity and the number of granulocyte-macrophage progenitor cells in femoral marrow, spleen weight) investigated after fractionated gamma-irradiation of mice (five doses of 2 Gy each, or three, four and five doses of 3 Gy each given at 24 hours' intervals). An increased liver weight and a more pronounced anaemia found in the CMG-treated mice suggested that also inflammatory side effects were evoked by repeated CMG administration. On the other hand, the development of tolerance, i.e., a decreased effectiveness of CMG treatment on repeated administration did not seem to play a major role under the experimental conditions studied because the protective effects of CMG increased with the increasing number of CMG injections. (author) 2 figs., 16 refs

  10. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice

    DEFF Research Database (Denmark)

    Kristensen, Jonas Møller; Larsen, Steen; Helge, Jørn Wulff

    2013-01-01

    signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead a(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism...... and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued...... the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems...

  11. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini.

    Science.gov (United States)

    Ryu, Je-Young; Siswanto, Antoni; Harimoto, Kenichi; Tagawa, Yoh-ichi

    2013-06-01

    The pancreatic islet is an assembly of specific endocrine cells. There are many conflicting reports regarding whether the acinus develops from single or multiple progenitor cells. This study investigated the development and maintenance clonality of the pancreatic acinus and duct using a chimeric analysis with EGFP and DsRed2 transgenic mice. Chimeric mice (G-R mice) were obtained by the aggregation method, using 8-cell stage embryos from EGFP and DsRed2 transgenic mice. The islets from the G-R mice were chimeric and mosaic, consisting of either EGFP- or DsRed2-positive populations, as in previous reports. On the other hand, most acini developed from either EGFP or DsRed2 origin, but some were chimeric. Interestingly, these chimeric acini were clearly separated into two-color regions and were not mosaic. Some large intralobular pancreatic ducts consisting of more than 10 cells were found to be chimeric, but no small ducts made up of less than 9 cells were chimeric. Our histological observations suggest that the pancreatic acinus polyclonally and directionally is maintained by multiple progenitor cells. Pancreatic large ducts also seem to develop polyclonally and might result from the assembly of small ducts that develop from a single origin. These findings provide useful information for further understanding pancreatic maintenance.

  12. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  13. Disruption of estrogen receptor signaling enhances intestinal neoplasia in ApcMin/+ mice

    Science.gov (United States)

    Cleveland, Alicia G.; Oikarinen, Seija I.; Bynoté, Kimberly K.; Marttinen, Maija; Rafter, Joseph J.; Gustafsson, Jan-Åke; Roy, Shyamal K.; Pitot, Henry C.; Korach, Kenneth S.; Lubahn, Dennis B.; Mutanen, Marja; Gould, Karen A.

    2009-01-01

    Estrogen receptors (ERs) [ERα (Esr1) and ERβ (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERα and ERβ is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERα knockout and ApcMin mouse strains, we demonstrate that ERα deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in ApcMin/+ mice. Within the normal intestinal epithelium of ApcMin/+ mice, ERα deficiency is associated with an accumulation of nuclear β-catenin, an indicator of activation of the Wnt–β-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERα deficiency is associated with activation of Wnt–β-catenin signaling, ERα deficiency in the intestinal epithelium of ApcMin/+ mice also correlated with increased expression of Wnt–β-catenin target genes. Through crosses between an ERβ knockout and ApcMin mouse strains, we observed some evidence that ERβ deficiency is associated with an increased incidence of colon tumors in ApcMin/+ mice. This effect of ERβ deficiency does not involve modulation of Wnt–β-catenin signaling. Our studies suggest that ERα and ERβ signaling modulate colorectal carcinogenesis, and ERα does so, at least in part, by regulating the activity of the Wnt–β-catenin pathway. PMID:19520794

  14. Demonstration of AIRS Total Ozone Products to Operations to Enhance User Readiness

    Science.gov (United States)

    Berndt, Emily; Zavodsky, Bradley; Jedlovec, Gary

    2014-01-01

    Cyclogenesis is a key forecast challenge at operational forecasting centers such as WPC and OPC, so these centers have a particular interest in unique products that can identify key storm features. In some cases, explosively developing extratropical cyclones can produce hurricane force, non-convective winds along the East Coast and north Atlantic as well as the Pacific Ocean, with the potential to cause significant damage to life and property. Therefore, anticipating cyclogenesis for these types of storms is crucial for furthering the NOAA goal of a "Weather Ready Nation". Over the last few years, multispectral imagery (i.e. RGB) products have gained popularity among forecasters. The GOES-R satellite champion at WPC/OPC has regularly evaluated the Air Mass RGB products from GOES Sounder, MODIS, and SEVIRI to aid in forecasting cyclogenesis as part of ongoing collaborations with SPoRT within the framework of the GOES-R Proving Ground. WPC/OPC has used these products to identify regions of stratospheric air associated with tropopause folds that can lead to cyclogenesis and hurricane force winds. RGB products combine multiple channels or channel differences into multi-color imagery in which different colors represent a particular cloud or air mass type. Initial interaction and feedback from forecasters evaluating the legacy Air Mass RGBs revealed some uncertainty regarding what physical processes the qualitative RGB products represent and color interpretation. To enhance forecaster confidence and interpretation of the Air Mass RGB, NASA SPoRT has transitioned a total column ozone product from AIRS retrievals to the WPC/OPC. The use of legacy AIRS demonstrates future JPSS capabilities possible with CrIS or OMPS. Since stratospheric air can be identified by anomalous potential vorticity and warm, dry, ozone-rich air, hyperspectral infrared sounder ozone products can be used in conjunction with the Air Mass RGB for identifying the role of stratospheric air in explosive

  15. Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project

    Science.gov (United States)

    1999-02-01

    Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...

  16. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    International Nuclear Information System (INIS)

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a ‘2-hit’ paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: ► Characterizes a mouse model of arsenic enhanced NAFLD. ► Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. ► This effect is associated with increased inflammation.

  17. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    Science.gov (United States)

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  18. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice

    Science.gov (United States)

    Momtazi-borojeni, Amir Abbas; Sadeghi-Aliabadi, Hojjat; Rabbani, Mohammed; Ghannadi, Alireza; Abdollahi, Elham

    2017-01-01

    The objective of the present study was to evaluate the cognitive enhancing of pineapple juice and ethanolic extract in scopolamine-induced cognitive deficit mice. The ethanolic extract of pineapple (Ananas comosus (L.) Merr.) was prepared by maceration method and its juice was obtained by a homogenizer. Object recognition task was used to evaluate the mice memory. Exploration time in the first and second trial was recorded. The differences in exploration time between a familiar and a novel object in the second trial were taken as a memory index. Animals were randomly assigned into 15 groups of 6 each including: control group (normal saline + vehicle), positive control group (scopolamine + rivastigmine), seven experimental groups (received scopolamine alone or scopolamine + ethanolic extract of pineapple in different doses), six other experimental groups were treated by ethanolic extract or juice of pineapple in different doses. Scopolamine (100 μL, 1 mg/kg, i.p.) and pineapple juice or extract (50, 75 and 100 mg/kg, i.p.) were administered 40 and 30 min before starting the second trial in the experimental groups. Object discrimination was impaired after scopolamine administration. Results showed that juice and ethanolic extract of pineapple significantly restored object recognition ability in mice treated with scopolamine. These finding suggested that pineapple had a protective role against scopolamine-induced amnesia, indicating its ability in management of cognitive disorders. PMID:28626484

  19. Endostar, a recombined humanized endostatin, enhances the radioresponse for human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts in mice

    International Nuclear Information System (INIS)

    Wen Qinglian; Meng Maobin; Tu Lingli; Jia Li; Zhou Lin; Xu Yong; Lu You; Yang Bo

    2009-01-01

    The purpose of this paper is to determine the efficacy of combining radiation therapy with endostar, a recombined humanized endostatin, in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts. Tumor xenografts were established in the hind limb of male athymic nude mice (BALB/c-nu) by subcutaneous transplantation. The tumor-bearing mice were assigned into four treatment groups: sham therapy (control), endostar (20 mg/kg, once daily for 10 days), radiation therapy (6 Gray per day to 30 Gray, once a day for 1 week), and endostar plus radiation therapy (combination). The experiment was repeated and mice were killed at days 3, 6, and 10 after initiation therapy, and the tumor tissues and blood samples were collected to analyze the kinetics of antitumor, antiangiogenesis, and antivascularization responses of different therapies. In human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts, endostar significantly enhanced the effects of tumor growth inhibition, endothelial cell and tumor cell apoptosis induction, and improved tumor cell hypoxia of radiation therapy. Histological analyses demonstrated that endostar plus radiation also induced a significant reduction in microvascular density, microvascular area, and vascular endothelial growth factor and matrix metalloproteinase-2 expression compared with radiation and endostar alone respectively. We concluded that endostar significantly sensitized the function of radiation in antitumor and antiangiogenesis in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts by increasing the apoptosis of the endothelial cell and tumor cell, improving the hypoxia of the tumor cell, and changing the proangiogenic factors. These data provided a rational basis for clinical practice of this multimodality therapy. (author)

  20. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  1. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    International Nuclear Information System (INIS)

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A.; Znojil, V.; Vacha, J.

    1998-01-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of 60 Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au)

  2. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice

    Science.gov (United States)

    This study demonstrates that early-life persistent vitamin D deficiency alters the cardiopulmonary response to smog in mice and may increase risk of adverse effects. Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environme...

  3. l-Serine Enhances Light-Induced Circadian Phase Resetting in Mice and Humans.

    Science.gov (United States)

    Yasuo, Shinobu; Iwamoto, Ayaka; Lee, Sang-Il; Ochiai, Shotaro; Hitachi, Rina; Shibata, Satomi; Uotsu, Nobuo; Tarumizu, Chie; Matsuoka, Sayuri; Furuse, Mitsuhiro; Higuchi, Shigekazu

    2017-12-01

    Background: The circadian clock is modulated by the timing of ingestion or food composition, but the effects of specific nutrients are poorly understood. Objective: We aimed to identify the amino acids that modulate the circadian clock and reset the light-induced circadian phase in mice and humans. Methods: Male CBA/N mice were orally administered 1 of 20 l-amino acids, and the circadian and light-induced phase shifts of wheel-running activity were analyzed. Antagonists of several neurotransmitter pathways were injected before l-serine administration, and light-induced phase shifts were analyzed. In addition, the effect of l-serine on the light-induced phase advance was investigated in healthy male students (mean ± SD age 22.2 ± 1.8 y) by using dim-light melatonin onset (DLMO) determined by saliva samples as an index of the circadian phase. Results: l-Serine administration enhanced light-induced phase shifts in mice (1.86-fold; P light-dark cycle by 6 h, l-serine administration slightly accelerated re-entrainment to the shifted cycle. In humans, l-serine ingestion before bedtime induced significantly larger phase advances of DLMO after bright-light exposure during the morning (means ± SEMs-l-serine: 25.9 ± 6.6 min; placebo: 12.1 ± 7.0 min; P light-induced phase resetting in mice and humans, and it may be useful for treating circadian disturbances. © 2017 American Society for Nutrition.

  4. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice

    Directory of Open Access Journals (Sweden)

    Rose Hilal

    2018-01-01

    Full Text Available Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+ (500,000 cells, injected intravenously 18–24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF-β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions. This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  5. Diabetic Ephrin-B2-Stimulated Peripheral Blood Mononuclear Cells Enhance Poststroke Recovery in Mice.

    Science.gov (United States)

    Hilal, Rose; Poittevin, Marine; Pasteur-Rousseau, Adrien; Cogo, Adrien; Mangin, Gabrielle; Chevauché, Marie; Ziat, Yasmine; Vilar, José; Launay, Jean-Marie; Gautier, Jean-François; Broquères-You, Dong; Levy, Bernard I; Merkulova-Rainon, Tatyana; Kubis, Nathalie

    2018-01-01

    Clinical trials of cell therapy in stroke favor autologous cell transplantation. To date, feasibility studies have used bone marrow-derived mononuclear cells, but harvesting bone marrow cells is invasive thus complicating bedside treatment. We investigated the therapeutic potential of peripheral blood-derived mononuclear cells (PB-MNC) harvested from diabetic patients and stimulated by ephrin-B2 (PB-MNC+) (500,000 cells), injected intravenously 18-24 hours after induced cerebral ischemia in mice. Infarct volume, neurological deficit, neurogenesis, angiogenesis, and inflammation were investigated as were the potential mechanisms of PB-MNC+ cells in poststroke neurorepair. At D3, infarct volume was reduced by 60% and 49% compared to unstimulated PB-MNC and PBS-treated mice, respectively. Compared to PBS, injection of PB-MNC+ increased cell proliferation in the peri-infarct area and the subventricular zone, decreased microglia/macrophage cell density, and upregulated TGF- β expression. At D14, microvessel density was decreased and functional recovery was enhanced compared to PBS-treated mice, whereas plasma levels of BDNF, a major regulator of neuroplasticity, were increased in mice treated with PB-MNC+ compared to the other two groups. Cell transcriptional analysis showed that ephrin-B2 induced phenotype switching of PB-MNC by upregulating genes controlling cell proliferation, inflammation, and angiogenesis, as confirmed by adhesion and Matrigel assays. Conclusions . This feasibility study suggests that PB-MNC+ transplantation poststroke could be a promising approach but warrants further investigation. If confirmed, this rapid, noninvasive bedside cell therapy strategy could be applied to stroke patients at the acute phase.

  6. Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice.

    Science.gov (United States)

    Al Abed, Alice Shaam; Sellami, Azza; Brayda-Bruno, Laurent; Lamothe, Valérie; Noguès, Xavier; Potier, Mylène; Bennetau-Pelissero, Catherine; Marighetto, Aline

    2016-07-01

    Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as "where I parked" requires abilities to organize/update memories to prevent proactive interference from similar memories of previous "parking events". Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1μM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Improving Multi-Epitope Long Peptide Vaccine Potency by Using a Strategy that Enhances CD4+ T Help in BALB/c Mice.

    Directory of Open Access Journals (Sweden)

    Haniyeh Ghaffari-Nazari

    Full Text Available Peptide-based vaccines are attractive approaches for cancer immunotherapy; but the success of these vaccines in clinical trials have been limited. Our goal is to improve immune responses and anti-tumor effects against a synthetic, multi-epitope, long peptide from rat Her2/neu (rHer2/neu using the help of CD4+ T cells and appropriate adjuvant in a mouse tumor model. Female BALB/c mice were vaccinated with P5+435 multi-epitope long peptide that presents epitopes for cytotoxic T lymphocytes (CTL in combination with a universal Pan DR epitope (PADRE or CpG-oligodeoxynucleotides (CpG-ODNs as a Toll-like receptor agonist adjuvant. The results show that vaccination with the multi-epitope long peptide in combination with the PADRE peptide and CpG-ODN induced expansion of subpopulations of CD4+ and CD8+ cells producing IFN-γ, the average tumor size in the vaccinated mice was less than that of the other groups, and tumor growth was inhibited in 40% of the mice in the vaccinated group. The mean survival time was 82.6 ± 1.25 days in mice vaccinated with P5+435 + CpG+ PADRE. Our results demonstrate that inclusion of PADRE and CpG with the peptide vaccine enhanced significant tumor specific-immune responses in vaccinated mice.

  8. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    Science.gov (United States)

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  9. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Takemura, Takayo; Yoshida, Yuichi [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kiso, Shinichi, E-mail: kiso@gh.med.osaka-u.ac.jp [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan); Imai, Yasuharu [Department of Gastroenterology, Ikeda Municipal Hospital, Ikeda, Osaka (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University, Graduate School of Medicine and Department of Cell Growth and Tumor Regulation, Proteo-Medicine Research Center (ProMRes), Ehime University, Shitsukawa, Toon, Ehime (Japan); Iwamoto, Ryo; Mekada, Eisuke [Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka (Japan); Takehara, Tetsuo [Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, Osaka (Japan)

    2013-07-26

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis.

  10. Conditional loss of heparin-binding EGF-like growth factor results in enhanced liver fibrosis after bile duct ligation in mice

    International Nuclear Information System (INIS)

    Takemura, Takayo; Yoshida, Yuichi; Kiso, Shinichi; Kizu, Takashi; Furuta, Kunimaro; Ezaki, Hisao; Hamano, Mina; Egawa, Mayumi; Chatani, Norihiro; Kamada, Yoshihiro; Imai, Yasuharu; Higashiyama, Shigeki; Iwamoto, Ryo; Mekada, Eisuke; Takehara, Tetsuo

    2013-01-01

    Highlights: •HB-EGF expression was increased during the development of liver fibrosis. •Conditional HB-EGF knockout mouse showed enhanced experimental liver fibrosis. •HB-EGF antagonized TGF-β-induced activation of hepatic stellate cells. •We report a possible protective role of HB-EGF in cholestatic liver fibrosis. -- Abstract: Our aims were to evaluate the involvement of heparin-binding EGF-like growth factor (HB-EGF) in liver fibrogenesis of humans and mice and to elucidate the effect of HB-EGF deficiency on cholestatic liver fibrosis using conditional HB-EGF knockout (KO) mice. We first demonstrated that gene expression of HB-EGF had a positive significant correlation with that of collagen in human fibrotic livers, and was increased in bile duct ligation (BDL)-induced fibrotic livers in mouse. We then generated conditional HB-EGF knockout (KO) mice using the interferon inducible Mx-1 promoter driven Cre recombinase transgene and wild type (WT) and KO mice were subjected to BDL. After BDL, KO mice exhibited enhanced liver fibrosis with increased expression of collagen, compared with WT mice. Finally, we used mouse hepatic stellate cells (HSCs) to examine the role of HB-EGF in the activation of these cells and showed that HB-EGF antagonized TGF-β-induced gene expression of collagen in mouse primary HSCs. Interestingly, HB-EGF did not prevent the TGF-β-induced nuclear accumulation of Smad3, but did lead to stabilization of the Smad transcriptional co-repressor TG-interacting factor. In conclusion, our data suggest a possible protective role of HB-EGF in cholestatic liver fibrosis

  11. The role of recombinant IL-12 in enhancing immune responses induced by hepatitis B vaccine in mice

    International Nuclear Information System (INIS)

    Lu Qun; Zhou Lixia; Zhao Yanrong; Miao Xiaoguang; Jin Jie; Ke Jinshan; Qin Xuliang; He Zheng

    2007-01-01

    Objective: To study the role played by recombinant IL-12 in enhancing the intensity and quality of the immune response to hepatitis B vaccine in mice, and investigate the possibility of adding recombinant IL-12 as adjuvants to hepatitis B therapeutic vaccine. Methods: Recombinant IL-12 was injected together with hepatitis B vaccine into mice and special anti-HBsAb in the mice and the cellular immune responses were examined. Results: Recombinant IL-12 can obviously enhance T lymphocyte multiplication activity, accelerate excretion of cytokines IFN-γ and IL-2, and increase the IgG2a antibody in mice. Conclusion: Recombinant IL-12 can remarkably strengthen the cellular immune responses induced by the hepatitis B vaccine, and modulate the immune responses toward Thl. (authors)

  12. Demonstration of a single-crystal reflector-filter for enhancing slow neutron beams

    DEFF Research Database (Denmark)

    Muhrer, G.; Schonfeldt, T.; Iverson, E. B.

    2016-01-01

    The cold polycrystalline beryllium reflector-filter concept has been used to enhance the cold neutron emission of cryogenic hydrogen moderators, while suppressing the intermediate wavelength and fast neutron emission at the same time. While suppressing the fast neutron emission is often desired, ......-filter benefits arise from its interaction with fast (background) neutrons, not with intermediate wavelength neutrons of potential interest in many types of neutron scattering. (C) 2016 Elsevier B.V. All rights reserved....

  13. Neurosarcoidosis--demonstration of meningeal disease by gadolinium enhanced magnetic resonance imaging.

    Science.gov (United States)

    Khaw, K T; Manji, H; Britton, J; Schon, F

    1991-01-01

    Arriving at a firm diagnosis of neurosarcoidosis continues to pose serious problems, particularly when evidence of granulomatous disease outside the nervous system is lacking. The commonest mode of presentation of neurosarcoidosis is with cranial nerve palsies. Two cases of presumed neurosarcoidosis with cranial nerve palsies showed clear evidence of focal meningeal disease on gadolinium-DTPA enhanced MRI brain scans. Although not specific for sarcoidosis, this technique may be very useful in aiding the diagnosis in suspected cases. Images PMID:1880510

  14. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  15. Use of subvoxel registration and subtraction to improve demonstration of contrast enhancement in MRI of the brain

    International Nuclear Information System (INIS)

    Curati, W.L.; Williams, E.J.; Oatridge, A.; Hajnal, J.V.; Saeed, N.; Bydder, G.M.

    1996-01-01

    To assess the potential of registration of images before and after contrast medium for improving the demonstration of contrast enhancement, we compared conventional 2 D T 1-weighted spin-echo images with precisely registered 3 D volume images and subtraction images derived from them in 2 normal subjects and 30 patients with a variety of brain disease. The volume images were registered to subvoxel accuracy using a rigid body translation and rotation, sinc interpolation and a least-squares fit; subtraction images were obtained from these. Normal contrast enhancement was demonstrated better with positionally registered volume and subtraction images than with conventional images in the meninges, ependyma, diploic veins, scalp, skin, orbit and sinuses. Abnormal enhancement was seen better in meningeal disease, multiple sclerosis and tumours as well as on follow-up studies. Subvoxel registration of images before and after contrast medium may be of considerable value in the recognition of contrast enhancement where there are small changes, or where the changes affect tissues with high or low baseline signal values. The technique also appears likely to be of value in demonstrating contrast enhancement in tissues at inferfaces and at other areas of complex anatomy, and in follow-up studies. (orig.). With 4 figs., 4 tabs

  16. Prominent porto-systemic collateral pathways in patients with portal hypertension: demonstration by gadolinium-enhanced magnetic resonance angiography

    International Nuclear Information System (INIS)

    Caldana, Rogerio Pedreschi; Bezerra, Alexandre Araujo Sergio; Cecin, Alexnadre Oliveira; Souza, Luis Ronan Marques Ferreira de; Goldman, Susan Menasce; D'Ippolito, Giuseppe; Szejnfeld, Jacob

    2003-01-01

    To demonstrate the usefulness of gadolinium-enhanced magnetic resonance angiography in the evaluation of prominent porto-systemic collateral pathways. We reviewed the images from 40 patients with portal hypertension studied with gadolinium-enhanced magnetic resonance angiography and selected illustrative cases of prominent porto-systemic collateral pathways. The scans were performed using high field equipment (1.5 Tesla) and a 3 D volume technique. Image were obtained after intravenous injection of paramagnetic contrast media using a power injector. Magnetic resonance angiography demonstrated with precision the porto-systemic collateral pathways, particularly when investigating extensive territories or large vessels. The cases presented show the potential of this method in the investigation of patients with portal hypertension. Gadolinium-enhanced magnetic resonance angiography is a useful method for the evaluation of patients with portal hypertension and prominent collateral pathways. (author)

  17. Enhanced Autoimmunity Associated with Induction of Tumor Immunity in Thyroiditis-Susceptible Mice

    Science.gov (United States)

    Kari, Suresh; Flynn, Jeffrey C.; Zulfiqar, Muhammad; Snower, Daniel P.; Elliott, Bruce E.

    2013-01-01

    , when a subclinical, mild thyroiditis was induced with soluble mTg and low doses of interleukin-1, to simulate pre-existing autoimmunity in patients subjected to cancer immunotherapy, mononuclear infiltration into the thyroid was enhanced. Conclusions: Our current findings indicate that genetic predisposition to autoimmune disease could enhance autoimmunity during induction of tumor immunity in thyroiditis-susceptible mice. Thus, HLA genotyping of cancer patients should be part of any risk assessment. PMID:23777580

  18. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    Science.gov (United States)

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  19. Posterior Urethra Rupture: Contrast-Enhanced Computed Tomography Scan and Urethrocystography Demonstrations

    Directory of Open Access Journals (Sweden)

    Wojciech Marks

    2012-01-01

    Full Text Available In the follow-up study of patients with pelvic fractures, rupture of the posterior urethra is registered in 3–25% of cases (Koraitim et al., 1996. The diagnostic gold standard for the assessment of hemodynamically stable trauma patients is contrast-enhanced CT scan, especially helical CT. Nevertheless, simultaneous suprapubic cystography and ascending urethrograms (the so-called up-and-downogram are the investigation of choice in assessing the site, severity, and length of urethral injuries. (Carlin and Resnick, 1995 This paper discusses the evaluation and diagnosis of urethral injury in multiple-trauma patient.

  20. Fluoxetine protection in decompression sickness in mice is enhanced by blocking TREK-1 potassium channel with the spadin antidepressant.

    Directory of Open Access Journals (Sweden)

    Nicolas eVallée

    2016-02-01

    Full Text Available In mice, disseminated coagulation, inflammation and ischemia induce neurological damages that can lead to the death. These symptoms result from circulating bubbles generated by a pathogenic decompression. An acute fluoxetine treatment or the presence of the TREK-1 potassium channel increased the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50mg/kg in wild-type (WT and TREK-1 deficient mice (Knockout homozygous KO and heterozygous HET. Then, we combined the same fluoxetine treatment with a five-day treatment by spadin, in order to specifically block TREK-1 activity (KO-like mice. KO and KO-like mice could be regarded as antidepressed models.167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux and 4% of mice treated with both spadin and fluoxetine (KO-likeflux died from decompression sickness (DCS symptoms. These values are much lower than those of WT control (62% or KO-like mice (41%. After the decompression protocol, mice showed a significant consumption of their circulating platelets and leukocytes.Spadin antidepressed mice were more likely to declare DCS. Nevertheless, which had both blocked TREK-1 channel and were treated with fluoxetine were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but a concomitant fluoxetine treatment not only decreases DCS severity but increases the survival rate.

  1. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji; Klaassen, Curtis D.

    2010-01-01

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstα1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.

  2. Measurement of micronuclei and internal dose in mice demonstrates that 3-monochloropropane-1,2-diol (3-MCPD) has no genotoxic potency in vivo.

    Science.gov (United States)

    Aasa, Jenny; Törnqvist, Margareta; Abramsson-Zetterberg, Lilianne

    2017-11-01

    In this study 3-monochloropropane-1,2-diol (3-MCPD), a compound that appears as contaminant in refined cooking oils, has been studied with regard to genotoxicity in vivo (mice) with simultaneous measurement of internal dose using state-of-the-art methodologies. Genotoxicity (chromosomal aberrations) was measured by flow cytometry with dual lasers as the frequency of micronuclei in erythrocytes in peripheral blood from BalbC mice intraperitoneally exposed to 3-MCPD (0, 50, 75, 100, 125 mg/kg). The internal doses of 3-MCPD in the mice were calculated from N-(2,3-dihydroxypropyl)-valine adducts to hemoglobin (Hb), quantified at very low levels by high-resolution mass spectrometry. Convincing evidence for absence of genotoxic potency in correlation to measured internal doses in the mice was demonstrated, despite relatively high administered doses of 3-MCPD. The results are discussed in relation to another food contaminant that is formed as ester in parallel to 3-MCPD esters in oil processing, i.e. glycidol, which has been studied previously by us in a similar experimental setup. Glycidol has been shown to be genotoxic, and in addition to have ca. 1000 times higher rate of adduct formation compared to that observed for 3-MCPD. The conclusion is that at simultaneous exposure to 3-MCPD and glycidol the concern about genotoxicity would be glycidol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Enhancing eNOS activity with simultaneous inhibition of IKKβ restores vascular function in Ins2(Akita+/-) type-1 diabetic mice.

    Science.gov (United States)

    Krishnan, Manickam; Janardhanan, Preethi; Roman, Linda; Reddick, Robert L; Natarajan, Mohan; van Haperen, Rien; Habib, Samy L; de Crom, Rini; Mohan, Sumathy

    2015-10-01

    The balance of nitric oxide (NO) versus superoxide generation has a major role in the initiation and progression of endothelial dysfunction. Under conditions of high glucose, endothelial nitric oxide synthase (eNOS) functions as a chief source of superoxide rather than NO. In order to improve NO bioavailability within the vessel wall in type-1 diabetes, we investigated treatment strategies that improve eNOS phosphorylation and NO-dependent vasorelaxation. We evaluated methods to increase the eNOS activity by (1) feeding Ins2(Akita) spontaneously diabetic (type-1) mice with l-arginine in the presence of sepiapterin, a precursor of tetrahydrobiopterin; (2) preventing eNOS/NO deregulation by the inclusion of inhibitor kappa B kinase beta (IKKβ) inhibitor, salsalate, in the diet regimen in combination with l-arginine and sepiapterin; and (3) independently increasing eNOS expression to improve eNOS activity and associated NO production through generating Ins2(Akita) diabetic mice that overexpress human eNOS predominantly in vascular endothelial cells. Our results clearly demonstrated that diet supplementation with l-arginine, sepiapterin along with salsalate improved phosphorylation of eNOS and enhanced vasorelaxation of thoracic/abdominal aorta in type-1 diabetic mice. More interestingly, despite the overexpression of eNOS, the in-house generated transgenic eNOS-GFP (TgeNOS-GFP)-Ins2(Akita) cross mice showed an unanticipated effect of reduced eNOS phosphorylation and enhanced superoxide production. Our results demonstrate that enhancement of endogenous eNOS activity by nutritional modulation is more beneficial than increasing the endogenous expression of eNOS by gene therapy modalities.

  4. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles.

    Science.gov (United States)

    Townley, Helen E; Kim, Jeewon; Dobson, Peter J

    2012-08-21

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.

  5. Mechanisms maintaining enhancement of allografts. I. Demonstration of a specific suppressor cell

    International Nuclear Information System (INIS)

    Hall, B.M.

    1985-01-01

    DA rats treated with hyperimmune anti-PVG serum and grafted with (DA X PVG)F1 heart grafts in which graft survival was prolonged for greater than 75 d were used to examine the cellular mechanisms that maintain the state of specific unresponsiveness found in these animals. The capacity of lymphocytes from these animals to effect or inhibit graft rejection on adoptive transfer to irradiated heart-grafted hosts was tested. Spleen cell populations and the T cell subpopulation separated from spleen cells in vitro failed to restore rejection of PVG heart grafts in irradiated DA recipients but restored third party Lew graft rejection. Whole spleen cells had the capacity to suppress the ability of normal DA LNC to cause graft rejection, but T cells from spleen only delayed the restoration of rejection. LNC and recirculating T cells from rats with enhanced grafts adoptively restored PVG rejection, however. These studies show that the state of specific unresponsiveness that follows the induction of passive enhancement is dependent in part upon active suppression, which is induced or mediated by T lymphocytes. The recirculating pool of lymphocytes in these animals is not depleted of specific alloreactive cells with the capacity to initiate and effect rejection. Thus, these animals responsiveness is not like that found in transplantation tolerance induced in neonatal rats, but is, in part, due to a suppressor response that can inhibit normal alloreactive cells capacity to initiate and effect rejection

  6. Demonstration of multiple neurofibromas in gadolinium-DTPA enhanced MRI - a case report

    International Nuclear Information System (INIS)

    Kaminsky, S.; Schulz, B.

    1988-01-01

    Although magnetic resonance imaging has a high sensitivity for cerebral and spinal tumors, demonstration of small lesions can be difficult. In a patient with multiple extra- and intraspinal tumors due to neurofibromatosis generalisata, the use of the MRI contrast agent gadolinium-DTPA resulted in a better differentiation especially of small lesions. High tumor contrast facilitated a safe localisation of the widespread disease using a fast imaging sequence (FLASH). (orig.) [de

  7. n-3 polyunsaturated fatty acids supplementation enhances hippocampal functionality in aged mice

    Directory of Open Access Journals (Sweden)

    Debora eCutuli

    2014-08-01

    Full Text Available As major components of neuronal membranes, omega-3 polyunsaturated acids (n-3 PUFA exhibit a wide range of regulatory functions, modulating from synaptic plasticity to neuroinflammation, from oxidative stress to neuroprotection. Recent human and animal studies indicated the n-3 PUFA neuroprotective properties in aging, with a clear negative correlation between n-3 PUFA levels and hippocampal deficits. The present multidimensional study was aimed at associating cognition, hippocampal neurogenesis, volume, neurodegeneration and metabolic correlates to verify n-3 PUFA neuroprotective effects in aging. To this aim 19 month-old mice were given n-3 PUFA mixture, or olive oil or no dietary supplement for 8 weeks during which hippocampal-dependent mnesic functions were tested. At the end of behavioral testing morphological and metabolic correlates were analyzed. n-3 PUFA supplemented aged mice exhibited better object recognition memory, spatial and localizatory memory, and aversive response retention, without modifications in anxiety levels in comparison to controls. These improved hippocampal cognitive functions occurred in the context of an enhanced cellular plasticity and a reduced neurodegeneration. In fact, n-3 PUFA supplementation increased hippocampal neurogenesis and dendritic arborization of newborn neurons, volume, neuronal density and microglial cell number, while it decreased apoptosis, astrocytosis and lipofuscin accumulation in the hippocampus. The increased levels of some metabolic correlates (blood Acetyl-L-Carnitine and brain n-3 PUFA concentrations found in n-3 PUFA supplemented mice also pointed towards an effective neuroprotection.On the basis of the present results n-3 PUFA supplementation appears to be a useful tool in health promotion and cognitive decline prevention during aging.

  8. Repeated Exposition to Mercury (II Chloride Enhances Susceptibility to S. schenckii sensu stricto Infection in Mice

    Directory of Open Access Journals (Sweden)

    Alexander Batista-Duharte

    2018-05-01

    Full Text Available Sporotrichosis is a subcutaneous mycosis that has re-emerged in several tropical and subtropical regions over the last decades. Growing findings suggest that the interplay of host, pathogen, and environment has a determinant effect on the diversity, local distribution, and virulence of Sporothrix schenckii sensu lato, the etiologic agent. Among the environmental factors, we have studied the potential role of repeated exposures to mercury (Hg, a known immunotoxic xenobiotic that is widely used in gold mining regions where sporotrichosis outbreaks are frequently reported. In this study, male Swiss mice received subcutaneous injections of either 300 or 1200 µg/kg of mercury (II chloride (HgCl2 for 14 days, three times a week. A control group was injected with the vehicle Phosphate Buffered Saline (PBS. Treatment with HgCl2 impaired several immunologic parameters that are involved in host response to Sporothrix infection, such as the production of TNFα, IL-1, and nitric oxide by macrophages, and Th1/Th2/Th17 populations and their respective cytokines. The consequences of these effects on the host resistance to S. schenckii infection were subsequently evaluated. Hg-exposed mice exhibited a higher fungal load in the fungal inoculation site associated to systemic dissemination to spleen and liver on 14 days post-infection and a higher production of specific IgG1 and mild reduction of IgG2a. These findings suggest that repeated exposition to Hg enhances susceptibility to S. schenckii infection in mice and can be a factor associated to sporotrichosis outbreaks in endemic and highly Hg-polluted areas.

  9. Nitration of β-Lactoglobulin but Not of Ovomucoid Enhances Anaphylactic Responses in Food Allergic Mice.

    Directory of Open Access Journals (Sweden)

    Susanne C Diesner

    Full Text Available We revealed in previous studies that nitration of food proteins reduces the risk of de novo sensitization in a murine food allergy model. In contrast, in situations with preformed specific IgE antibodies, in vitro experiments suggested an increased capacity of effector cell activation by nitrated food proteins.The aim of this study was to investigate the influence of protein nitration on the effector phase of food allergy.BALB/c mice were immunized intraperitoneally (i.p. with the milk allergen β-lactoglobulin (BLG or the egg allergen ovomucoid (OVM, followed by intragastric (i.g. gavages to induce a strong local inflammatory response and allergen-specific antibodies. Subsequently, naïve and allergic mice were intravenously (i.v. challenged with untreated, sham-nitrated or nitrated BLG or OVM. Anaphylaxis was monitored by measuring core body temperature and determination of mouse mast cell protease-1 (mMCP-1 levels in blood.A significant drop of body temperature accompanied with significantly elevated concentrations of the anaphylaxis marker mMCP-1 were only observed in BLG allergic animals challenged with nitrated BLG and not in OVM allergic mice challenged with nitrated OVM. SDS-PAGE and circular dichroism analysis of the differentially modified allergens revealed an effect of nitration on the secondary protein structure exclusively for BLG together with enhanced protein aggregation.Our data suggest that nitration affects differently the food allergens BLG and OVM. In the case of BLG, structural changes favored dimerization possibly explaining the increased anaphylactic reactivity in BLG allergic animals.

  10. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    Energy Technology Data Exchange (ETDEWEB)

    Woolbright, Benjamin L. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Antoine, Daniel J.; Jenkins, Rosalind E. [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Park, B. Kevin [MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool (United Kingdom); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2013-12-15

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  11. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    International Nuclear Information System (INIS)

    Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.; Bajt, Mary Lynn; Park, B. Kevin; Jaeschke, Hartmut

    2013-01-01

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  12. Platycodon grandiflorus Root Extract Improves Learning and Memory by Enhancing Synaptogenesis in Mice Hippocampus

    Directory of Open Access Journals (Sweden)

    Jin-il Kim

    2017-07-01

    Full Text Available Platycodon grandiflorus (Jacq. A.DC. (PG has long been used as an ingredient of foods and is known to have beneficial effects on cognitive functions as well. The present study examined the effect of each PG extract (PGE from root, aerial part, and seeds on cognitive functions in mice. Changes in spatial learning and memory using a Y-maze test, and markers of adult hippocampal neurogenesis and synaptogenesis were examined. Moreover, changes in neuritogenesis and activation of the ERK1/2 pathway were investigated. Results indicated that mice administered PGE (root showed increased spontaneous alternation in the Y-maze test and synaptogenesis in the hippocampus. In addition, PGE (root and platycodin D, the major bioactive compound from the PG root, significantly stimulated neuritic outgrowth by phosphorylation of the ERK1/2 signaling pathway in vitro. These results indicate that the PGE (root, containing platycodin D, enhances cognitive function through synaptogenesis via activation of the ERK1/2 signaling pathway.

  13. RBP-Jκ-dependent Notch signaling enhances retinal pigment epithelial cell proliferation in transgenic mice.

    Science.gov (United States)

    Schouwey, K; Aydin, I T; Radtke, F; Beermann, F

    2011-01-20

    The Notch signaling pathway is an ubiquitous cell-cell interaction mechanism, which is essential in controlling processes like cell proliferation, cell fate decision, differentiation or stem cell maintenance. Recent data have shown that Notch signaling is RBP-Jκ-dependent in melanocytes, being required for survival of these pigment cells that are responsible for coloration of the skin and hairs in mammals. In addition, Notch is believed to function as an oncogene in melanoma, whereas it is a tumor suppressor in mouse epidermis. In this study, we addressed the implication of the Notch signaling in the development of another population of pigment cells forming the retinal pigment epithelium (RPE) in mammalian eyes. The constitutive activity of Notch in Tyrp1::NotchIC/° transgenic mice enhanced RPE cell proliferation, and the resulting RPE-derived pigmented tumor severely affected the overall eye structure. This RPE cell proliferation is dependent on the presence of the transcription factor RBP-Jκ, as it is rescued in mice lacking RBP-Jκ in the RPE. In conclusion, Notch signaling in the RPE uses the canonical pathway, which is dependent on the transcription factor RBP-Jκ. In addition, it is of importance for RPE development, and constitutive Notch activity leads to hyperproliferation and benign tumors of these pigment cells.

  14. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mariangela eMartini

    2014-06-01

    Full Text Available During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC, with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8 to pregnant-lactating females, at an environmentally relevant dose (20µg/kg (body weight/day, would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.

  15. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    Science.gov (United States)

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  16. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    Science.gov (United States)

    Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe

    2015-05-01

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  17. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    International Nuclear Information System (INIS)

    Lippman, Thomas; Brockie, Richard; Contreras, John; Garzon, Samir; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Coker, Jon; Galbraith, Rick; Hanson, Weldon; Duquette, Paul; Petrizzi, Joe

    2015-01-01

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components

  18. Spinstand demonstration of areal density enhancement using two-dimensional magnetic recording (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Lippman, Thomas, E-mail: Thomas.Lippman@hgst.com; Brockie, Richard; Contreras, John; Garzon, Samir; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard [HGST, a Western Digital Company, San Jose, California 95119 (United States); Coker, Jon; Galbraith, Rick; Hanson, Weldon [HGST, a Western Digital Company, Rochester, Minnesota 55901 (United States); Duquette, Paul; Petrizzi, Joe [Avago Technologies, San Jose, California 95131 (United States)

    2015-05-07

    Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.

  19. Enhancement of nootropic effect of duloxetine and bupropion by caffeine in mice.

    Science.gov (United States)

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu

    2015-01-01

    The existing evidence suggests an association between depression and memory impairment. The objective of present study was to assess the effect of low dose caffeine with duloxetine and bupropion on memory. Mice were divided randomly into seven groups. Intra-peritoneal treatment of normal saline (10 ml/kg), caffeine (10 mg/kg), duloxetine (10 mg/kg), bupropion alone (10 mg/kg), caffeine + duloxetine (5 mg/kg, each), caffeine + bupropion (5 mg/kg, each), and bupropion + duloxetine (5 mg/kg, each) were given to groups I-VII, respectively. Elevated plus maze was used to evaluate transfer latency (TL) and Morris water maze was used to estimate the time spent in target quadrant. Caffeine with duloxetine treated group was better than other combination treated groups in terms of a significant decrease in TL and increase in the time spent in target quadrant recorded. Combining lower dose of caffeine with duloxetine may enhance cognitive benefits than respective monotherapies.

  20. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    Science.gov (United States)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50atm of deuterium (DD) are predicted to give in excess of 1010 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50atm of DHe3 are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production.

  1. Rugby-like hohlraum experimental designs for demonstrating x-ray drive enhancement

    International Nuclear Information System (INIS)

    Amendt, Peter; Cerjan, C.; Hinkel, D. E.; Milovich, J. L.; Park, H.-S.; Robey, H. F.

    2008-01-01

    A suite of experimental designs for the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)] using rugby and cylindrical hohlraums is proposed to confirm the energetics benefits of rugby-shaped hohlraums over cylinders under optimal implosion symmetry conditions. Postprocessed Dante x-ray drive measurements predict a 12-17 eV (23%-36%) peak hohlraum temperature (x-ray flux) enhancement for a 1 ns flattop laser drive history. Simulated core self-emission x-ray histories also show earlier implosion times by 200-400 ps, depending on the hohlraum case-to-capsule ratio and laser-entrance-hole size. Capsules filled with 10 or 50 atm of deuterium (DD) are predicted to give in excess of 10 10 neutrons in two-dimensional hohlraum simulations in the absence of mix, enabling DD burn history measurements for the first time in indirect-drive on Omega. Capsule designs with 50 atm of D 3 He are also proposed to make use of proton slowing for independently verifying the drive benefits of rugby hohlraums. Scale-5/4 hohlraum designs are also introduced to provide further margin to potential laser-plasma-induced backscatter and hot-electron production

  2. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    International Nuclear Information System (INIS)

    Phelan, J.; Reavis, B.; Swanson, J.

    1997-08-01

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83 degrees C and 112 degrees C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd 3 -degrees C for PLF heating and 0.73 kWH/yd 3 degrees C for RF heating

  3. Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H.; Wu, R.Y.; Shao, B.J.; Fu, Y.D.; Yao, G.D.; Lu, D.J. [Zhejiang Medical Univ. (China)

    1995-05-01

    Eighty-nine Swiss Webster mice were randomly divided into four groups: a control group, a pulsed magnetic field (PMF) group, a cytosine arabinoside (ara-C, a teratogen) group, and a combined PMF + ara-C group. Mice in the PMF and PMF + ara-C groups were irradiated with a PMF (a sawtooth waveform with 52 {mu}s rise time, 12{mu}s decay time, and 15.6 kHz frequency) at a peak magnetic flux density of 40 {mu}T for 4 hours daily on days 6-17 of gestation. The mice in the ara-C and the PMF + ara-C groups were injected intraperitoneally on day 9 of gestation with 10 mg/kg of ara-C. The incidence of resorption and dead fetuses was not affected by PMF but was increased by ara-C injection. The malformation incidence of cleft palate (CP) and/or cleft lip (CL) was significantly higher in all three of the treated groups than in the control group (P < 0.05). If, however, statistical analyses had been done on litters rather than on individual fetuses, they would show that the incidence of CP and/or CL in the PMF group is not significantly greater than that in the control group. A significantly higher incidence of CP and/or CL was found in the PMF + ara-C group (49%) than the ara-C alone group (26.1%). These data suggest that PMF might enhance the development of ara-C-induced CP and/or CL. The incidence of minor variations in skeletal development, including reduction of skeletal calcification and loss of skeleton, was not statistically significant in the PMF group. However, it was higher in the two ara-C-treated groups, and there was no significant difference between the ara-C alone group and the ara-C + PMF group. From these results it is concluded that the very weak embryotoxic effects of PMF exposure may be revealed and enhanced in combination with a teratogenic agent.

  4. Immuno-enhancement in tumor-bearing mice induced by whole body X-irradiation with 75 mGy

    International Nuclear Information System (INIS)

    Zhang Ying; Li Xiuyi; Gong Shouliang; Liu Shuzheng

    2000-01-01

    Objective: In present study the authors observed the effect of whole body irradiation (WBI) with 75 mGy X-rays on the immune function of tumor-bearing mice. Methods: Lewis lung carcinoma cells were implanted into the right thigh muscle of C57BL/6J mice. Ten days after tumor implantation, the tumor-bearing mice were administrated with 75 mGy X-rays WBI, then the mice were sacrificed 18 h after irradiation to detect the immune parameters including the spontaneous proliferation of thymocytes, the proliferative response of splenocytes to ConA and LPS, the cytotoxic activities of specific cytotoxic lymphocytes (CTL) and natural killer cells (NK), as well as lymphokine activated killer cells (LAK) in spleen. The methods the authors used were 3 H-TdR incorporation or release assay. Results: the immune parameters of exposed tumor-bearing mice were much higher than those of sham-irradiated tumor-bearing mice (P<0.01). Conclusion: These results suggested that low dose radiation (LDR) could enhance the immune function of tumor-bearing mice, which might be of practical significance in the prevention and therapy of cancer

  5. Demonstration of Enhanced Radiation Drive in Hohlraums Made from a Mixture of High-Z Wall Materials

    International Nuclear Information System (INIS)

    Schein, Jochen; Jones, Ogden; Rosen, Mordecai; Dewald, Eduard; Glenzer, Siegfried; Gunther, Janelle; Hammel, Bruce; Landen, Otto; Suter, Laurence; Wallace, Russell

    2007-01-01

    We present results from experiments, numerical simulations and analytic modeling, demonstrating enhanced hohlraum performance. Care in the fabrication and handling of hohlraums with walls consisting of high-Z mixtures (cocktails) has led to our demonstration, for the first time, of a significant increase in radiation temperature compared to a pure Au hohlraum that is in agreement with predictions and is ascribable to reduced wall losses. The data suggest that a National Ignition Facility ignition hohlraum made of a U:Au:Dy cocktail should have ∼17% reduction in wall losses compared to a similar gold hohlraum

  6. Enhancing communication skills for pediatric visits through on-line training using video demonstrations

    Directory of Open Access Journals (Sweden)

    Wissow Larry

    2008-02-01

    Full Text Available Abstract Background Training in communication skills for health professionals is important, but there are substantial barriers to individual in-person training for practicing clinicians. We evaluated the feasibility and desirability of on-line training and sought suggestions for future courses. Methods Based on successful in-person curricula for communication skills and our previous on-line curricula, we created an on-line course consisting of 28 modules (4.75 hours CME credit about communication skills during pediatric visits that included a mental health concern; each module included a brief case, a multiple choice question, an explanation, and a 1–2 minute video demonstrating key skills. Specific communication skills included: greeting, setting an agenda, discussing diagnosis and treatment, and managing negative interactions. The course was announced by emails in spring, 2007; the course was available on-line for 60 days; we aimed to enroll 50 clinicians. Outcomes were analyzed for those who evaluated the course within 75 days of its initial availability. Results Overall, 61 clinicians registered, of whom most were nurses (N = 24, physicians (N = 22, or psychologists or social workers (N = 12. Of the 36 (59% clinicians who evaluated the course, over 85% agreed that all course objectives had been met; over 90% reported greater confidence in greetings and agenda-setting; and over 80% reported greater confidence in discussing diagnosis and treatment and managing negative interactions. Nearly all, 97% would recommend the course to other clinicians and trainees. Suggestions for improvement included a library of additional video vignettes and written materials to accompany the on-line training. Conclusion On-line training in communication skills for pediatric mental health visits is feasible, desirable and associated with increased confidence in key skills. Positive feedback from clinicians suggests that a comparison of on-line versus in

  7. TLR2−/− Mice Display Decreased Severity of Giardiasis via Enhanced Proinflammatory Cytokines Production Dependent on AKT Signal Pathway

    Directory of Open Access Journals (Sweden)

    Xin Li

    2017-09-01

    Full Text Available Giardia infection is one of the most common causes of waterborne diarrheal disease in a wide array of mammalian hosts, including humans globally. Although numerous studies have indicated that adaptive immune responses are important for Giardia defense, however, whether the host innate immune system such as TLRs recognizes Giardia remains poorly understood. TLR2 plays a crucial role in pathogen recognition, innate immunity activation, and the eventual pathogen elimination. In this study, we investigated the role of TLR2 as a non-protective inflammatory response on controlling the severity of giardiasis. RT-PCR analysis suggested that TLR2 expression was increased in vitro. We demonstrated that Giardia lamblia-induced cytokines expression by the activation of p38 and ERK pathways via TLR2. Interestingly, the expression of IL-12 p40, TNF-α, and IL-6, but not IFN-γ, was enhanced in TLR2-blocked and TLR2−/− mouse macrophages exposed to G. lamblia trophozoites compared with wild-type (WT mouse macrophages. Further analysis demonstrated that G. lamblia trophozoites reduced cytokines secretion by activating AKT pathway in WT mouse macrophages. Immunohistochemical staining in G. lamblia cysts infected TLR2−/− and WT mice showed that TLR2 was highly expressed in duodenum in infected WT mice. Also, infected TLR2−/− and AKT-blocked mice showed an increased production of IL-12 p40 and IFN-γ compared with infected WT mice at the early stage during infection. Interestingly, infected TLR2−/− and AKT-blocked mice displayed a decreased parasite burden, an increased weight gain rate, and short parasite persistence. Histological morphometry showed shortened villus length, hyperplastic crypt and decreased ratio of villus height/crypt depth in infected WT mice compared with in infected TLR2−/− and AKT-blocked mice. Together, our results suggested that TLR2 deficiency leads to alleviation of giardiasis and reduction of parasite burden through

  8. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  9. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice.

    Science.gov (United States)

    Ismail, Nurul Iman W; Jayabalan, Nanthini; Mansor, Sharif Mahsufi; Müller, Christian P; Muzaimi, Mustapha

    2017-07-01

    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential. © 2016 Society for the Study of Addiction.

  10. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1ΔE9 mice

    DEFF Research Database (Denmark)

    Söderman, Andreas; Mikkelsen, Jens D; West, Mark J

    2011-01-01

    the effect of the partial α(7) nAChR agonist SSR180711 on hippocampal slice preparations from normal wild type (Wt) and APP(swe)/PS1ΔE9 transgenic (Tg) mice. In the hippocampal slices from the 6 months old Wt mice, the application of both nicotine (5μM) and SSR180711 (300nM) resulted in a significant...... enhancement of LTP expressed in area CA1. However, in the Tg mice the application of SSR180711 did not result in an increase in LTP beyond control levels. The amount of binding of the α(7) nAChR ligand 125-I-α-bungarotoxin was not different between in Tg and Wt mice. These findings indicate that the α(7) n......AChR is functionally blocked in the hippocampal neurons, downstream of the α(7) nAChR, and that this is likely due to an interaction between the receptor and Aβ, which leads to changes in LTP....

  11. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice

    OpenAIRE

    Murthy, Vishakantha; Reyes, Santiago; Geng, Liyi; Gao, Yang; Brimijoin, Stephen

    2016-01-01

    Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains...

  12. Cocaine enhances the conditioned rewarding effects of MDMA in adolescent mice.

    Science.gov (United States)

    Aguilar, M A; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J

    2015-04-01

    Although the consumption of cocaine is frequent in young users of MDMA (3,4-methylenedioxymethamphetamine), the influence of exposure to cocaine on the rewarding effects of MDMA in adolescents has not been studied. The purpose of the present work was to evaluate the effect of co-administration of cocaine (1 and 10 mg/kg) and a sub-threshold dose of MDMA (1.25 mg/kg) on the acquisition of conditioned place preference (CPP) (experiment 1). In addition, the effect of pre-treatment with cocaine on MDMA-induced CPP was evaluated (experiment 2). Levels of monoamines in striatum, hippocampus and cortex were measured in both experiments. Our hypotheses were that cocaine co-administration or pre-treatment would increase the rewarding effects of MDMA, and that these effects would be related with changes in brain monoamine levels. Our results showed that cocaine potentiated the rewarding effects of MDMA, since a sub-threshold dose of MDMA, which did not induce CPP by itself, induced a significant CPP in adolescent mice when administered along with cocaine during conditioning (experiment 1). Moreover, pre-treatment with cocaine several days before conditioning also increased the rewarding effects of MDMA (experiment 2). No significant changes in the levels of biogenic amines, which correlated with these behavioural effects, were observed. Our results confirm the involvement of the dopaminergic system in MDMA-induced CPP in adolescent mice and suggest that combined consumption with or pre-exposure to cocaine increases the conditioned rewarding effects of MDMA, which may enhance the capacity of MDMA to induce dependence. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Foetal loss and enhanced fertility observed in mice treated with Zidovudine or Nevirapine.

    Science.gov (United States)

    Onwuamah, Chika K; Ezechi, Oliver C; Herbertson, Ebiere C; Audu, Rosemary A; Ujah, Innocent A O; Odeigah, Peter G C

    2014-01-01

    Health concerns for HIV-infected persons on antiretroviral therapy (ART) have moved from morbidity to the challenges of long-term ART. We investigated the effect of Zidovudine or Nevirapine on reproductive capacity across two mouse generations. A prospective mouse study with drugs administered through one spermatogenic cycle. Mouse groups (16 males and 10 females) were given Zidovudine or Nevirapine for 56 days. Males were mated to untreated virgin females to determine dominant lethal effects. Twenty females (10 treated and 10 untreated) mated with the treated males per dose and gave birth to the F1 generation. Parental mice were withdrawn from drugs for one spermatogenic cycle and mated to the same dams to ascertain if effects are reversible. The F1 generation were exposed for another 56 days and mated to produce the F2 generation. Foetal loss was indicated in the dominant lethal assay as early as four weeks into drug administration to the males. At the first mating of the parental generation to produce the F1 generation, births from 10 dams/dose when the 'father-only' was exposed to Zidovudine (10, 100 and 250 mg/kg) was 3, 2 and 1 while it was 7, 1 and 4 respectively when 'both-parents' were exposed. Similarly births from the parental generation first mating when the 'father-only' was exposed to Nevirapine (5, 50 and 150 mg/kg) was 2, 2 and 0 while it was 6, 5 and 9 respectively when 'both-parents' were exposed. However, fertility was not significantly different neither by dose nor by the parental exposure. The F1 mice mated to produce the F2 generation recorded only one birth. The dominant lethal analysis showed foetal loss occurred when the "fathers-only" were treated while fertility was enhanced when "both-parents" were on therapy at the time of mating.

  14. Foetal loss and enhanced fertility observed in mice treated with Zidovudine or Nevirapine.

    Directory of Open Access Journals (Sweden)

    Chika K Onwuamah

    Full Text Available Health concerns for HIV-infected persons on antiretroviral therapy (ART have moved from morbidity to the challenges of long-term ART. We investigated the effect of Zidovudine or Nevirapine on reproductive capacity across two mouse generations.A prospective mouse study with drugs administered through one spermatogenic cycle. Mouse groups (16 males and 10 females were given Zidovudine or Nevirapine for 56 days. Males were mated to untreated virgin females to determine dominant lethal effects. Twenty females (10 treated and 10 untreated mated with the treated males per dose and gave birth to the F1 generation. Parental mice were withdrawn from drugs for one spermatogenic cycle and mated to the same dams to ascertain if effects are reversible. The F1 generation were exposed for another 56 days and mated to produce the F2 generation.Foetal loss was indicated in the dominant lethal assay as early as four weeks into drug administration to the males. At the first mating of the parental generation to produce the F1 generation, births from 10 dams/dose when the 'father-only' was exposed to Zidovudine (10, 100 and 250 mg/kg was 3, 2 and 1 while it was 7, 1 and 4 respectively when 'both-parents' were exposed. Similarly births from the parental generation first mating when the 'father-only' was exposed to Nevirapine (5, 50 and 150 mg/kg was 2, 2 and 0 while it was 6, 5 and 9 respectively when 'both-parents' were exposed. However, fertility was not significantly different neither by dose nor by the parental exposure. The F1 mice mated to produce the F2 generation recorded only one birth.The dominant lethal analysis showed foetal loss occurred when the "fathers-only" were treated while fertility was enhanced when "both-parents" were on therapy at the time of mating.

  15. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice.

    Directory of Open Access Journals (Sweden)

    Lei Chen

    Full Text Available Growing evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs enhance wound repair via paracrine. Because the extent of environmental oxygenation affects the innate characteristics of BM-MSCs, including their stemness and migration capacity, the current study set out to elucidate and compare the impact of normoxic and hypoxic cell-culture conditions on the expression and secretion of BM-MSC-derived paracrine molecules (e.g., cytokines, growth factors and chemokines that hypothetically contribute to cutaneous wound healing in vivo. Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA analyses of normoxic and hypoxic BM-MSCs and their conditioned medium fractions showed that the stem cells expressed and secreted significantly higher amounts of basic fibroblast growth factor (bFGF,vascular endothelial growth factor A (VEGF-A interleukin 6 (IL-6 and interleukin 8 (IL-8 under hypoxic conditions. Moreover, hypoxic BM-MSC-derived conditioned medium (hypoCM vs. normoxic BM-MSC-derived conditioned medium (norCM or vehicle control medium significantly enhanced the proliferation of keratinocytes, fibroblasts and endothelial cells, the migration of keratinocytes, fibroblasts, endothelial cells and monocytes, and the formation of tubular structures by endothelial cells cultured on Matrigel matrix. Consistent with these in vitro results, skin wound contraction was significantly accelerated in Balb/c nude mice treated with topical hypoCM relative to norCM or the vehicle control. Notably increased in vivo cell proliferation, neovascularization as well as recruitment of inflammatory macrophages and evidently decreased collagen I, and collagen III were also found in the hypoCM-treated group. These findings suggest that BM-MSCs promote murine skin wound healing via hypoxia-enhanced paracrine.

  16. Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice

    International Nuclear Information System (INIS)

    Hiyoshi, Kyoko; Ichinose, Takamichi; Sadakane, Kaori; Takano, Hirohisa; Nishikawa, Masataka; Mori, Ikuko; Yanagisawa, Rie; Yoshida, Seiichi; Kumagai, Yoshito; Tomura, Shigeo; Shibamoto, Takayuki

    2005-01-01

    Asian sand dust (ASD) containing sulfate (SO 4 2- ) reportedly causes adverse respiratory health effects but there is no experimental study showing the effect of ASD toward allergic respiratory diseases. The effects of ASD and ASD plus SO 4 2- toward allergic lung inflammation induced by ovalbumin (OVA) were investigated in this study. ICR mice were administered intratracheally with saline; ASD alone (sample from Shapotou desert); and ASD plus SO 4 2- (ASD-SO 4 ); OVA+ASD; OVA+ASD-SO 4 . ASD or ASD-SO 4 alone caused mild nutrophilic inflammation in the bronchi and alveoli. ASD and ASD-SO 4 increased pro-inflammatory mediators, such as Keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-1 alpha, in bronchoalveolar lavage fluids (BALF). ASD and ASD-SO 4 enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. However, a further increase of eosinophils by addition of SO 4 2- was not observed. The two sand dusts synergistically increased interleukin-5 (IL-5) and monocyte chemotactic protein-1 (MCP-1), which were associated with OVA, in BALF. However, the increased levels of IL-5 were lower in the OVA+ASD-SO 4 group than in the OVA+ASD group. ASD caused the adjuvant effects to specific-IgG1 production by OVA, but not to specific-IgE. These results suggest that the enhancement of eosinophil recruitment in the lung is mediated by synergistically increased IL-5 and MCP-1. IgG1 antibodies may play an important role in the enhancement of allergic reaction caused by OVA and sand dust. However, extra sulfate may not contribute to an increase of eosinophils

  17. Arterio-venous anastomoses in mice affect perfusion measurements with dynamic contrast enhanced CT

    International Nuclear Information System (INIS)

    Gabra, Peter; Lee, Ting-Yim; Shen, Gang; Xuan, Jim

    2010-01-01

    Accurate measurement of perfusion with dynamic contrast enhanced CT requires an arterial input curve (AIC) uncontaminated by venous sources. Arterio-venous anastomoses (AVAs) are sources of contamination if contrast is injected intravenously. We seek to identify AVAs in mice and associated errors in perfusion measurements. Six transgenic mice with spontaneous prostate tumor were scanned with a micro-CT scanner (GE Healthcare (GE)) using a high resolution anatomical and a lower resolution perfusion protocol. For the anatomical protocol, a CT scan was performed during injection of an iodinated contrast agent (Hypaque) into a tail vein. Images covering the thoracic, abdominal and pelvic regions at an isotropic resolution of 175 µm were reconstructed and rendered in 3D to show the arterial and venous tree (Advantage Window, GE). For the perfusion protocol, each mouse was continuously scanned for 40 s and the contrast agent (Hypaque) was injected via a tail vein 5 s into scanning. Tumor images were reconstructed every second. Tumor blood flow (BF) and volume (BV) maps were calculated with CT perfusion software (GE) using AIC measured either from abdominal aorta (AA) or tail (caudal) artery (TA). In all mice, there was an AVA from the bifurcation of the inferior vena cava to the tail artery shunting venous blood and portion of the contrast agent injected into the tail vein into the TA. Contrast arrival time at the TA preceded that at the AA by 3.3 ± 0.5 s (P < 0.05). Mean tumor BV and BF values calculated with AA versus TA were 10.0 ± 1.8 versus 4.8 ± 2.1 ml (100 g) −1 (P < 0.05) and 108.8 ± 26.5 versus 33.0 ± 8.5 ml min −1 100 g −1 (P < 0.05), respectively. AVA in the murine pelvic region can result in inaccurate and more variable measurements of pelvic organ/tissue perfusion when the tail artery is used as the AIC

  18. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE-/- mice.

    Science.gov (United States)

    Ma, Ang; Wang, Jing; Yang, Liu; An, Yuanyuan; Zhu, Haibo

    2017-08-01

    HDL plays crucial roles at multiple stages of the pathogenesis of atherosclerosis. AMP-activated protein kinase (AMPK) is a therapeutic candidate for the treatment of cardiovascular disease. However, the effect of AMPK activation on HDL functionality has not been established in vivo. We assessed the effects of pharmacological AMPK activation using A-769662, AICAR, metformin, and IMM-H007 on the atheroprotective functions of HDL in apoE-deficient (apoE -/- ) mice fed with a high-fat diet. After administration, there were no changes in serum lipid levels among the groups. However, mice treated with AMPK activators showed significantly enhanced reverse cholesterol transport in vivo and in vitro. AMPK activation also increased the expression of ABCA1 and ABCG1 in macrophages and scavenger receptor class B type I and LCAT in the liver. HDL from AMPK activation mice exhibited lower HDL inflammatory index and myeloperoxidase activity and higher paraoxonase 1 activity than HDL from untreated mice, implying superior antioxidant and anti-inflammatory capacities. Pharmacological AMPK activation also induced polarization of macrophages to the M2 state and reduced plasma lipid peroxidation, inflammatory cytokine production, and atherosclerotic plaque formation in apoE -/- mice. These observations suggest that pharmacological AMPK activation enhances the anti-atherogenic properties of HDL in vivo. This likely represents a key mechanism by which AMPK activation attenuates atherosclerosis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Enhancement of antigen-induced eosinophilic inflammation in the airways of mast-cell deficient mice by diesel exhaust particles

    International Nuclear Information System (INIS)

    Ichinose, Takamichi; Takano, Hirohisa; Miyabara, Yuichi; Sadakaneo, Kaori; Sagai, Masaru; Shibamoto, Takayuki

    2002-01-01

    The present study was conducted to clarify the involvement of mast cells in the exacerbating effect of diesel exhaust particles (DEP) toward allergic airway inflammation and airway hyperresponsiveness (AHR). Airway inflammation by the infiltration of cosinophils with goblet cell proliferation and AHR, as well as by the production of antigen-specific IgG1 and IgE, in plasma were examined using mast cell-deficient mice (W/W v ) and normal mice (W/W + ). Both groups of mice received ovalbumin (OVA) or OVA+DEP intratracheally. The eosinophilic airway inflammation and goblet cell proliferation promoted by OVA were significantly greater in W/W + than in W/W v . A similar result was observed in AHR, but was not significant among both groups of mice. DEP enhanced OVA induced-allergic airway inflammation, goblet cell proliferation, and development of AHR in W/W v , but not in W/W + . DEP decreased production of antigen-specific IgG1 and IgE in both groups of mice. Mast cells were observed in the submucosal layer of the main bronchus in W/W v . The number of mast cells was significantly decreased by OVA treatment. The results indicate that mast cells are not necessary to enhance airway damage and development of AHR in W/W v by DEP. However, mast cells may be required for the OVA-induced cosinophilic inflammation, airway damage with goblet cell proliferation, and AHR in W/W +

  20. Assessment of myocardial infarction in mice by Late Gadolinium Enhancement MR imaging using an inversion recovery pulse sequence at 9.4T

    Directory of Open Access Journals (Sweden)

    Herlihy Amy H

    2008-01-01

    Full Text Available Abstract Purpose To demonstrate the feasibility of using an inversion recovery pulse sequence and to define the optimal inversion time (TI to assess myocardial infarction in mice by late gadolinium enhancement (LGE MRI at 9.4T, and to obtain the maximal contrast between the infarcted and the viable myocardium. Methods MRI was performed at 9.4T in mice, two days after induction of myocardial infarction (n = 4. For cardiovascular MR imaging, a segmented magnetization-prepared fast low angle shot (MP-FLASH sequence was used with varied TIs ranging from 40 to 420 ms following administration of gadolinium-DTPA at 0.6 mmol/kg. Contrast-to-noise (CNR and signal-to-noise ratio (SNR were measured and compared for each myocardial region of interest (ROI. Results The optimal TI, which corresponded to a minimum SNR in the normal myocardium, was 268 ms ± 27.3. The SNR in the viable myocardium was significantly different from that found in the infarcted myocardium (17.2 ± 2.4 vs 82.1 ± 10.8; p = 0.006 leading to a maximal relative SI (Signal Intensity between those two areas (344.9 ± 60.4. Conclusion Despite the rapid heart rate in mice, our study demonstrates that LGE MRI can be performed at 9.4T using a protocol similar to the one used for clinical MR diagnosis of myocardial infarction.

  1. Marginal erosive discovertebral ''Romanus'' lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging

    International Nuclear Information System (INIS)

    Jevtic, V.; Kos-Golja, M.; Rozman, B.; McCall, I.

    2000-01-01

    Objective. To assess the value of Gd-DTPA magnetic resonance (MR) imaging in the demonstration of marginal destructive discovertebral Romanus lesions in ankylosing spondylitis.Design and patients. A prospective study of Gd-DTPA MR imaging was performed in 39 patients with a clinical diagnosis of ankylosing spondylitis and typical Romanus lesions seen on radiographs of the thoracolumbar spine. MR morphological appearances and signal intensity changes at the discovertebral junctions were analysed and compared with the radiographic findings.Results. Ninety-nine discovertebral junctions with Romanus lesions showed low signal intensity on T1-weighted and high signal on T2-weighted and T1-weighted postcontrast images at the vertebral corners consistent with oedematous hyperaemic inflammatory tissue. There were nine discovertebral junctions with similar MR findings but normal radiographs. Fifty-three discovertebral junctions showed syndesmophyte formation with increased signal intensity on both T1- and T2-weighted images with no contrast enhancement. Sixty-five discovertebral junctions showed a mixture of radiographic features and varied high and low signal changes at the vertebral rim on MR imaging with rims of enhancement in the vertebral body following contrast administration.Conclusion. Gd-DTPA MR imaging demonstrates a variable signal pattern and degree of contrast enhancement which may reflect the evolutionary stages of discovertebral enthesitis in ankylosing spondylitis. MR imaging may identify early erosive changes in radiographically normal vertebra. The role of MR imaging needs further investigation. (orig.)

  2. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ayumi, E-mail: akanno@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Asahara, Shun-ichiro, E-mail: asahara@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Masuda, Katsuhisa, E-mail: katsuhisa.m.0707@gmail.com [Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan); Matsuda, Tomokazu, E-mail: tomokazu@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kimura-Koyanagi, Maki, E-mail: koyanagi@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Seino, Susumu, E-mail: seino@med.kobe-u.ac.jp [Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0047 (Japan); Ogawa, Wataru, E-mail: ogawa@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Kido, Yoshiaki, E-mail: kido@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017 (Japan); Division of Medical Chemistry, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142 (Japan)

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  3. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    International Nuclear Information System (INIS)

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-01-01

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets

  4. Demonstration of the blood-ocular barrier integrity by contrast-enhanced MR imaging: A preliminary study

    International Nuclear Information System (INIS)

    Frank, J.A.; Dwyer, A.J.; Girton, M.; Sank, V.; Knop, R.H.; Gansow, O.A.; Brechbiel, M.W.; Doppman, J.L.

    1986-01-01

    In five Rhesus monkeys we assessed the potential for monitoring the blood-ocular barrier (BOB) with Gd-DTPA-enhanced MR imaging. Unilateral opening of the BOB was achieved by infusion of mannitol into the internal carotid artery. This was followed immediately by Gd-DTPA, 0.2 mmol/kg, given intravenously. T-l weighted MR images (Picken unit, 0.5 T, SE 500/40, 5-mm thickness, 15cm FOV) obtained before and within one-half hour after injection of Gd-DTPA demonstrated marked enhancement (2-to 17-fold) of the anterior and posterior chambers of the challenged eye, representing leakage of Gd-DTPA into those chambers. Animals remained free of ocular side effects

  5. B lymphocyte "original sin" in the bone marrow enhances islet autoreactivity in type 1 diabetes-prone nonobese diabetic mice.

    Science.gov (United States)

    Henry-Bonami, Rachel A; Williams, Jonathan M; Rachakonda, Amita B; Karamali, Mariam; Kendall, Peggy L; Thomas, James W

    2013-06-15

    Effective central tolerance is required to control the large extent of autoreactivity normally present in the developing B cell repertoire. Insulin-reactive B cells are required for type 1 diabetes in the NOD mouse, because engineered mice lacking this population are protected from disease. The Cg-Tg(Igh-6/Igh-V125)2Jwt/JwtJ (VH125Tg) model is used to define this population, which is found with increased frequency in the periphery of NOD mice versus nonautoimmune C57BL/6 VH125Tg mice; however, the ontogeny of this disparity is unknown. To better understand the origins of these pernicious B cells, anti-insulin B cells were tracked during development in the polyclonal repertoire of VH125Tg mice. An increased proportion of insulin-binding B cells is apparent in NOD mice at the earliest point of Ag commitment in the bone marrow. Two predominant L chains were identified in B cells that bind heterologous insulin. Interestingly, Vκ4-57-1 polymorphisms that confer a CDR3 Pro-Pro motif enhance self-reactivity in VH125Tg/NOD mice. Despite binding circulating autoantigen in vivo, anti-insulin B cells transition from the parenchyma to the sinusoids in the bone marrow of NOD mice and enter the periphery unimpeded. Anti-insulin B cells expand at the site of autoimmune attack in the pancreas and correlate with increased numbers of IFN-γ-producing cells in the repertoire. These data identify the failure to cull autoreactive B cells in the bone marrow as the primary source of anti-insulin B cells in NOD mice and suggest that dysregulation of central tolerance permits their escape into the periphery to promote disease.

  6. Accomplishing equilibrium in ALSEP: demonstrations of modified process chemistry on 3-D printed enhanced annular centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.A.; Wardle, K.E.; Gelis, A.V. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL, 60439 (United States); Lumetta, G. [Paccific Northwest National Laboratory, Richland, WA (United States)

    2016-07-01

    The ALSEP (Actinide Lanthanide Separation Process) was developed to treat a PUREX raffinate stream by liquid-liquid extraction with the intent of separating trivalent minor actinides (Am/Cm; An) from trivalent fission-product lanthanides (Ln) and selected transition metals. The major components of the modified ALSEP process have been demonstrated on a modified 2-cm annular centrifugal contactor with an enhanced mixing zone using stable fission products and radiotracers. The results show that by decreasing the pH of the minor actinide stripping solution, using HEDTA instead of DTPA, and increasing contact time, the process is very effective in separating americium from the lanthanides and the fission products.

  7. Low-intensity pulsed ultrasound enhances angiogenesis and ameliorates contractile dysfunction of pressure-overloaded heart in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ogata

    Full Text Available Chronic left ventricular (LV pressure overload causes relative ischemia with resultant LV dysfunction. We have recently demonstrated that low-intensity pulsed ultrasound (LIPUS improves myocardial ischemia in a pig model of chronic myocardial ischemia through enhanced myocardial angiogenesis. In the present study, we thus examined whether LIPUS also ameliorates contractile dysfunction in LV pressure-overloaded hearts.Chronic LV pressure overload was induced with transverse aortic constriction (TAC in mice. LIPUS was applied to the whole heart three times in the first week after TAC and was repeated once a week for 7 weeks thereafter (n = 22. Animals in the control groups received the sham treatment without LIPUS (n = 23. At 8 weeks after TAC, LV fractional shortening was depressed in the TAC-Control group, which was significantly ameliorated in the TAC-LIPUS group (30.4±0.5 vs. 36.2±3.8%, P<0.05. Capillary density was higher and perivascular fibrosis was less in the LV in the TAC-LIPUS group than in the TAC-Control group. Myocardial relative ischemia evaluated with hypoxyprobe was noted in the TAC-Control group, which was significantly attenuated in the TAC-LIPUS group. In the TAC-LIPUS group, as compared with the control group, mRNA expressions of BNP and collagen III were significantly lower (both P<0.05 and protein expressions of VEGF and eNOS were significantly up-regulated associated with Akt activation (all P<0.05. No adverse effect related to the LIPUS therapy was noted.These results indicate that the LIPUS therapy ameliorates contractile dysfunction in chronically pressure-overloaded hearts through enhanced myocardial angiogenesis and attenuated perivascular fibrosis. Thus, the LIPUS therapy may be a promising, non-invasive treatment for cardiac dysfunction due to chronic pressure overload.

  8. Msh2 acts in medium-spiny striatal neurons as an enhancer of CAG instability and mutant huntingtin phenotypes in Huntington's disease knock-in mice.

    Directory of Open Access Journals (Sweden)

    Marina Kovalenko

    Full Text Available The CAG trinucleotide repeat mutation in the Huntington's disease gene (HTT exhibits age-dependent tissue-specific expansion that correlates with disease onset in patients, implicating somatic expansion as a disease modifier and potential therapeutic target. Somatic HTT CAG expansion is critically dependent on proteins in the mismatch repair (MMR pathway. To gain further insight into mechanisms of somatic expansion and the relationship of somatic expansion to the disease process in selectively vulnerable MSNs we have crossed HTT CAG knock-in mice (HdhQ111 with mice carrying a conditional (floxed Msh2 allele and D9-Cre transgenic mice, in which Cre recombinase is expressed specifically in MSNs within the striatum. Deletion of Msh2 in MSNs eliminated Msh2 protein in those neurons. We demonstrate that MSN-specific deletion of Msh2 was sufficient to eliminate the vast majority of striatal HTT CAG expansions in HdhQ111 mice. Furthermore, MSN-specific deletion of Msh2 modified two mutant huntingtin phenotypes: the early nuclear localization of diffusely immunostaining mutant huntingtin was slowed; and the later development of intranuclear huntingtin inclusions was dramatically inhibited. Therefore, Msh2 acts within MSNs as a genetic enhancer both of somatic HTT CAG expansions and of HTT CAG-dependent phenotypes in mice. These data suggest that the selective vulnerability of MSNs may be at least in part contributed by the propensity for somatic expansion in these neurons, and imply that intervening in the expansion process is likely to have therapeutic benefit.

  9. Learning-dependent and -independent enhancement of mitral/tufted cell glomerular odor responses following olfactory fear conditioning in awake mice.

    Science.gov (United States)

    Ross, Jordan M; Fletcher, Max L

    2018-04-18

    Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing non-specifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and non-conditioned odors, potentially priming the system towards generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning- independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important

  10. Male mice ultrasonic vocalizations enhance female sexual approach and hypothalamic kisspeptin neuron activity.

    Science.gov (United States)

    Asaba, Akari; Osakada, Takuya; Touhara, Kazushige; Kato, Masahiro; Mogi, Kazutaka; Kikusui, Takefumi

    2017-08-01

    Vocal communication in animals is important for ensuring reproductive success. Male mice emit song-like "ultrasonic vocalizations (USVs)" when they encounter female mice, and females show approach to the USVs. However, it is unclear whether USVs of male mice trigger female behavioral and endocrine responses in reproduction. In this study, we first investigated the relationship between the number of deliveries in breeding pairs for 4months and USVs syllables emitted from those paired males during 3min of sexual encounter with unfamiliar female mice. There was a positive correlation between these two indices, which suggests that breeding pairs in which males could emit USVs more frequently had more offspring. Further, we examined the effect of USVs of male mice on female sexual behavior. Female mice showed more approach behavior towards vocalizing males than devocalized males. Finally, to determine whether USVs of male mice could activate the neural system governing reproductive function in female mice, the activation of kisspeptin neurons, key neurons to drive gonadotropin-releasing hormone neurons in the hypothalamus, was examined using dual-label immunocytochemistry with cAMP response element-binding protein phosphorylation (pCREB). In the arcuate nucleus (Arc), the number of kisspeptin neurons expressing pCREB significantly increased after exposure to USVs of male as compared with noise exposure group. In conclusion, our results suggest that USVs of male mice promote fertility in female mice by activating both their approaching behavior and central kisspeptin neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. ESTCP Cost and Performance Report: Field Demonstration of Rhizosphere-Enhanced Treatment of Organics-Contaminated Soils on Native American Lands with Application to Northern FUD Sites

    National Research Council Canada - National Science Library

    Reynolds, C. M

    2004-01-01

    ... can be used in other situations dealing with surface soil contamination. This project included field demonstrations of rhizosphere-enhanced bioremediation of petroleum, oils, and lubricants (POLs...

  12. Enhanced quantal release of excitatory transmitter in anterior cingulate cortex of adult mice with chronic pain

    Directory of Open Access Journals (Sweden)

    Zhao Ming-Gao

    2009-01-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is a forebrain structure that plays important roles in emotion, learning, memory and persistent pain. Our previous studies have demonstrated that the enhancement of excitatory synaptic transmission was induced by peripheral inflammation and nerve injury in ACC synapses. However, little information is available on their presynaptic mechanisms, since the source of the enhanced synaptic transmission could include the enhanced probability of neurotransmitter release at existing release sites and/or increases in the number of available vesicles. The present study aims to perform quantal analysis of excitatory synapses in the ACC with chronic pain to examine the source of these increases. The quantal analysis revealed that both probability of transmitter release and number of available vesicles were increased in a mouse model of peripheral inflammation, whereas only probability of transmitter release but not number of available vesicles was enhanced in a mouse model of neuropathic pain. In addition, we compared the miniature excitatory postsynaptic potentials (mEPSCs in ACC synapses with those in other pain-related brain areas such as the amygdala and spinal cord. Interestingly, the rate and amplitude of mEPSCs in ACC synapses were significantly lower than those in the amygdala and spinal cord. Our studies provide strong evidences that chronic inflammatory pain increases both probability of transmitter release and number of available vesicles, whereas neuropathic pain increases only probability of transmitter release in the ACC synapses.

  13. Alcoholic fatty liver is enhanced in CYP2A5 knockout mice: The role of the PPARα-FGF21 axis

    International Nuclear Information System (INIS)

    Chen, Xue; Ward, Stephen C.; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke

    2017-01-01

    Background & aims: Cytochrome P450 2A5 (CYP2A5) is induced by ethanol, and the ethanol induction of CYP2A5 is regulated by nuclear factor-erythroid 2-related factor 2 (NRF2). Cyp2a5 knockout (Cyp2a5 −/− ) mice develop more severe alcoholic fatty liver than Cyp2a5 +/+ mice. Fibroblast growth factor 21 (FGF21), a PPARα-regulated liver hormone, is involved in hepatic lipid metabolism. Alcoholic and non-alcoholic fatty liver are enhanced in Pparα knockout (Pparα −/− ) mice. This study investigates the relationship between the PPARα-FGF21 axis and the enhanced alcoholic fatty liver in Cyp2a5 −/− mice. Methods: Mice were fed the Lieber-Decarli ethanol diet to induce alcoholic fatty liver. Results: More severe alcoholic fatty liver disease was developed in Cyp2a5 −/− mice than in Cyp2a5 +/+ mice. Basal FGF21 levels were higher in Cyp2a5 −/− mice than in Cyp2a5 +/+ mice, but ethanol did not further increase the elevated FGF21 levels in Cyp2a5 −/− mice while FGF21 was induced by ethanol in Cyp2a5 +/+ mice. Basal levels of serum FGF21 were lower in Pparα −/− mice than in Pparα +/+ mice; ethanol induced FGF21 in Pparα +/+ mice but not in Pparα −/− mice, whereas ethanol induced hypertriglyceridemia in Pparα −/− mice but not in Pparα +/+ mice. Administration of recombinant FGF21 normalized serum FGF21 and triglyceride in Pparα −/− mice. Alcoholic fatty liver was enhanced in liver-specific Fgf21 knockout mice. Pparα and Cyp2a5 double knockout (Pparα −/− /Cyp2a5 −/− ) mice developed more severe alcoholic fatty liver than Pparα +/+ /Cyp2a5 −/− mice. Conclusions: These results suggest that CYP2A5 protects against the development of alcoholic fatty liver disease, and the PPARα-FGF21 axis contributes to the protective effects of CYP2A5 on alcoholic fatty liver disease.

  14. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  15. Parasitic infection improves survival from septic peritonitis by enhancing mast cell responses to bacteria in mice.

    Directory of Open Access Journals (Sweden)

    Rachel E Sutherland

    Full Text Available Mammals are serially infected with a variety of microorganisms, including bacteria and parasites. Each infection reprograms the immune system's responses to re-exposure and potentially alters responses to first-time infection by different microorganisms. To examine whether infection with a metazoan parasite modulates host responses to subsequent bacterial infection, mice were infected with the hookworm-like intestinal nematode Nippostrongylus brasiliensis, followed in 2-4 weeks by peritoneal injection of the pathogenic bacterium Klebsiella pneumoniae. Survival from Klebsiella peritonitis two weeks after parasite infection was better in Nippostrongylus-infected animals than in unparasitized mice, with Nippostrongylus-infected mice having fewer peritoneal bacteria, more neutrophils, and higher levels of protective interleukin 6. The improved survival of Nippostrongylus-infected mice depends on IL-4 because the survival benefit is lost in mice lacking IL-4. Because mast cells protect mice from Klebsiella peritonitis, we examined responses in mast cell-deficient Kit(W-sh/Kit(W-sh mice, in which parasitosis failed to improve survival from Klebsiella peritonitis. However, adoptive transfer of cultured mast cells to Kit(W-sh/Kit(W-sh mice restored survival benefits of parasitosis. These results show that recent infection with Nippostrongylus brasiliensis protects mice from Klebsiella peritonitis by modulating mast cell contributions to host defense, and suggest more generally that parasitosis can yield survival advantages to a bacterially infected host.

  16. [Imiquimod combined with dendritic cell vaccine decreases Treg proportion and enhances anti-tumor responses in mice bearing melanoma].

    Science.gov (United States)

    Ren, Shurong; Wang, Qiubo; Zhang, Yanli; Lu, Cuixiu; Li, Ping; Li, Yumei

    2017-02-01

    Objective To investigate the therapeutic effect of Toll-like receptor 7 (TLR7) agonist imiquimod combined with dendritic cell (DC)-based tumor vaccine on melanoma in mice and the potential mechanism. Methods Melanoma-bearing mouse models were established by subcutanous injection of B16-OVA cells into C57BL/6 mice. DCs were isolated from mouse bone marrow and propagated in culture medium with recombinant mouse granulocyte-macrophage colony-stimulating factor (rmGM-CSF) and recombinant mouse interleukin-4 (rmIL-4). DC vaccine (OVA-DC) was prepared by overnight incubation of DCs added with chicken ovalbumin. C57BL/6 mice were separated into four groups which were treated with PBS, topical imiquimod application, OVA-DC intradermal injection and imiquimod plus OVA-DC, respectively. The tumor size was calculated by digital vernier caliper. Peripheral blood CD4 + FOXP3 + Tregs of the tumor-bearing mice was detected by flow cytometry. The cytotoxicity of splenic lymphocyte against B16-OVA was assessed in vitro by CCK-8 assay. Results Compared with the other three groups, B16-OVA-bearing mice treated with imiquimod plus DC vaccine had the smallest tumor volume. The percentage of CD4 + FOXP3 + Tregs decreased significantly in the combined treated mice. The combined treatment enhanced significantly cytotoxicity of splenic lymphocytes against B16-OVA cells. Conclusion Imiquimod combined with antigen-pulsed-DC vaccine could reduce CD4 + FOXP3 + Treg proportion and promote anti-tumor effect in mice with melanoma.

  17. Behavioral desensitization to nicotine is enhanced differentially by ethanol in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Collins, A C

    1989-01-01

    In order to assess the anticonvulsant potency of ethanol, male and female long-sleep (LS) and short-sleep (SS) mice were pretreated with ethanol 7.5 min prior to challenge with an ED80 dose of nicotine (LS: 4.25 mg/kg; SS: 6.25 mg/kg). LS mice were more sensitive to the anticonvulsant effects of ethanol than were SS mice. In order to assess the effect of ethanol on the nicotine-induced behavioral desensitization to nicotine observed previously in these mice, animals were pretreated with saline, nonanticonvulsant doses of ethanol (0.25 g/kg, 0.75 g/kg or 1.5 g/kg), a subseizure-producing dose of nicotine (2.0 mg/kg) or a combination of these two drugs 15 or 30 min prior to nicotine challenge. Ethanol enhanced the nicotine-induced behavioral desensitization in both mouse lines; however, this effect was seen at lower ethanol doses and was more pronounced in LS mice. Ethanol pretreatment did not affect brain nicotine concentrations; therefore, the ethanol effect probably involves changes in brain sensitivity to nicotine.

  18. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    Science.gov (United States)

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  19. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice

    DEFF Research Database (Denmark)

    Hartmann, B; Thulesen, J; Kissow, Hannelouise

    2000-01-01

    ; 15 mg VP; 40 microg GLP-2, 40 microg GLP-2+15 mg VP; 40 microg GLP-2 (3-33). Mice were treated for 10 days with: saline; 5 microg GLP-2; 5 microg GLP-2+1.5 mg VP; 25 microg GLP-2; 25 microg GLP-2 (3-33). In both cases, body weight, intestinal weight, length, and morphometric data were measured. After...... (4.68 +/- 0.11%, relative to body weight), compared with the two control groups, [3.01 +/- 0.06% (VP) and 2.94 +/- 0.07% (NaCl)] and GLP-2 alone (3.52 +/- 0.10%). In mice, the growth effect of 5 microg GLP-2+VP was comparable with that of 25 microg GLP-2. GLP-2 (3-33) had no effect in rats......, but it had a weak effect on intestinal growth in mice. The extensive GLP-2 degradation in rats can be reduced by VP, and DPP-IV inhibition markedly enhances the intestinotrophic effect of GLP-2 in both rats and mice. We propose that DPP-IV inhibition may be considered to enhance the efficacy of GLP-2...

  20. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine.

    Science.gov (United States)

    Danscher, G; Andreasen, A

    1997-12-01

    We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.

  1. Fast magnetic resonance fingerprinting for dynamic contrast-enhanced studies in mice.

    Science.gov (United States)

    Gu, Yuning; Wang, Charlie Y; Anderson, Christian E; Liu, Yuchi; Hu, He; Johansen, Mette L; Ma, Dan; Jiang, Yun; Ramos-Estebanez, Ciro; Brady-Kalnay, Susann; Griswold, Mark A; Flask, Chris A; Yu, Xin

    2018-05-09

    The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T 1 and T 2 mapping in DCE-MRI studies in mice. The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T 1 and T 2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. The T 1 and T 2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T 1 and T 2 mapping with 2-minute temporal resolution in DCE-MRI studies. Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners. © 2018 International Society for Magnetic Resonance in Medicine.

  2. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    Science.gov (United States)

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  3. Topical tacrolimus in combination with simulated solar radiation does not enhance photocarcinogenesis in hairless mice

    DEFF Research Database (Denmark)

    Lerche, C.M.; Philipsen, P.A.; Poulsen, T.

    2008-01-01

    tacrolimus ointment on squamous cell carcinoma formation in hairless female C3.Cg/TifBomTac immunocompetent mice exposed to solar simulated radiation (SSR). In a first experiment, mice (n = 200) had tacrolimus applied on their dorsal skin three times weekly followed by SSR (2, 4 or 6 standard erythema doses...

  4. Enhancement of humoral immunity in mice by coupling pUCpGs10 and aluminium to the HCV recombinant immunogen

    Directory of Open Access Journals (Sweden)

    Zhan Na

    2011-11-01

    Full Text Available Abstract Aim To investigate the enhancement of humoral immunity when CpG ODN (cytidine phosphate guanosine oligodeoxynucleotides and aluminium adjuvants are complexed with the HCV (Hepatitis C virus recombinant immunogen in mice. Methods After immunizing Balb/c mice with the recombination HCV antigen adjuvanted with pUCpGs10 and/or aluminium(antigen+CpG+alum, antigen+CpG, antigen+alum, antigen+PBS, enzyme-linked immunosorbent assay (ELISA was used to measure the specific serum antibody titers of IgG, to determine the neutralization response to various peptide genotypes, and to determine the concentration of IL-6 and IL-10 in supernatants of in vitro cultured splenic lymphocytes. Enzyme-linked immunospot assay (ELISPOT was used to quantify the non-specific and specific splenic antibody-secreting cells (ASCs, and flow cytometry (FCM determined the ratio of different splenic lymphocytes. The serum of rabbits immunized with the recombinant pBVGST/HVR1 antigen immunoprecipitated the HCV isolated from 12 patients' serum. Results The sera antibody titers were 1:51200, 1:9051, 1:18102, 1:6400 respectively after the final immunization and demonstrated good neutralization responses to the six gene peptide containing 1a, 1b, 2a, 3a, 4a and 6a. The aluminum adjuvant increased the population of both specific ASCs (P +CD27+ (P +CD38+ splenic lymphocytes with the aluminum and pUCpGs10 adjuvant present compared to the control group(P Conclusions 1. The aluminum adjuvant induces a potent Th2-biased immune response by increasing both the populations of specific and total ASCs and the ratio of CD19+CD27+ cells. 2. The pUCpGs10 complexed with the aluminum adjuvant boosts the population of plasma cells and increase the efficiency of the immune response. 3. The two adjuvants have synergistic effects on humoral immunity. 4. The recombinant HVR1 protein has the possibility of generating broadly reactive anti-HVR1 antibody.

  5. Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip

    CERN Document Server

    Snoeys, W; Burns, M; Campbell, M; Cantatore, E; Carrer, N; Casagrande, L; Cavagnoli, A; Dachs, C; Di Liberto, S; Formenti, F; Giraldo, A; Heijne, Erik H M; Jarron, Pierre; Letheren, M F; Marchioro, A; Martinengo, P; Meddi, F; Mikulec, B; Morando, M; Morel, M; Noah, E; Paccagnella, A; Ropotar, I; Saladino, S; Sansen, Willy; Santopietro, F; Scarlassara, F; Segato, G F; Signe, P M; Soramel, F; Vannucci, Luigi; Vleugels, K

    2000-01-01

    A new pixel readout prototype has been developed at CERN for high- energy physics applications. This full mixed mode circuit has been implemented in a commercial 0.5 mu m CMOS technology. Its radiation tolerance has been enhanced by designing all NMOS transistors in enclosed geometry and introducing guardrings wherever necessary. The technique is explained and its effectiveness demonstrated on various irradiation measurements on individual transistors and on the prototype. Circuit performance started to degrade only after a total dose of 600 krad-1.7 Mrad depending on the type of radiation. 10 keV X-rays, /sup 60/Co gamma-rays, 6.5 MeV protons, and minimum ionizing particles were used. Implications of this layout approach on the circuit design and perspectives for even deeper submicron technologies are discussed. (20 refs).

  6. Podocyte specific knock out of selenoproteins does not enhance nephropathy in streptozotocin diabetic C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Carlson Bradley A

    2008-07-01

    Full Text Available Abstract Background Selenoproteins contain selenocysteine (Sec, commonly considered the 21st genetically encoded amino acid. Many selenoproteins, such as the glutathione peroxidases and thioredoxin reductases, protect cells against oxidative stress by functioning as antioxidants and/or through their roles in the maintenance of intracellular redox balance. Since oxidative stress has been implicated in the pathogenesis of diabetic nephropathy, we hypothesized that selenoproteins protect against this complication of diabetes. Methods C57BL/6 mice that have a podocyte-specific inability to incorporate Sec into proteins (denoted in this paper as PodoTrsp-/- and control mice were made diabetic by intraperitoneal injection of streptozotocin, or were injected with vehicle. Blood glucose, body weight, microalbuminuria, glomerular mesangial matrix expansion, and immunohistochemical markers of oxidative stress were assessed. Results After 3 and 6 months of diabetes, control and PodoTrsp-/- mice had similar levels of blood glucose. There were no differences in urinary albumin/creatinine ratios. Periodic acid-Schiff staining to examine mesangial matrix expansion also demonstrated no difference between control and PodoTrsp-/- mice after 6 months of diabetes, and there were no differences in immunohistochemical stainings for nitrotyrosine or NAD(PH dehydrogenase, quinone 1. Conclusion Loss of podocyte selenoproteins in streptozotocin diabetic C57BL/6 mice does not lead to increased oxidative stress as assessed by nitrotyrosine and NAD(PH dehydrogenase, quinone 1 immunostaining, nor does it lead to worsening nephropathy.

  7. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice

    Directory of Open Access Journals (Sweden)

    Zhen-Yi Hong

    2015-08-01

    Full Text Available SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson’s disease and Alzheimer’s disease (AD. In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1 double-transgenic mice without affecting amyloid-β (Aβ burden. In addition, decreases in cAMP-response element-binding protein (CREB phosphorylation, brain-derived neurotrophic factor (BDNF and tropomyosin-related kinase B (TrkB phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future.

  8. Poly(ester amine Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice

    Directory of Open Access Journals (Sweden)

    Mingxing Wang

    2016-01-01

    Full Text Available A series of poly(esteramines (PEAs constructed from low molecular weight polyethyleneimine (LPEI and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs, 2′-O-methyl phosphorothioate RNA (2′-OMePS and phosphorodiamidate morpholino oligomer (PMO in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2′-OMePS and PMO was observed in the C2C12E50 cell line with all PEA polymers compared with PEI 25k or LF-2k. The degree of efficiency was found in the order of PEA 01, PEA 04 > PEA 05 > others. The in vivo study in mdx mice demonstrated enhanced exon-skipping of 2′-OMePS with the order of PEA 06 > PEA 04, PEA 07 > PEA 03 > PEA 01 > others, and much higher than PEI 25k formulated 2′-OMePS. Exon-skipping efficiency of PMO in formulation with the PEAs were significantly enhanced in the order of PEA 02 > PEA 10 > PEA 01, PEA 03 > PEA 05, PEA 07, PEA 08 > others, with PEA 02 reaching fourfold of Endo-porter formulated PMO. PEAs improve PMO delivery more effectively than 2′-OMePS delivery in vivo, and the systemic delivery evaluation further highlight the efficiency of PEA for PMO delivery in all skeletal muscle. The results suggest that the flexibility of PEA polymers could be explored for delivery of different AO chemistries, especially for antisense therapy.

  9. SCM-198 Ameliorates Cognitive Deficits, Promotes Neuronal Survival and Enhances CREB/BDNF/TrkB Signaling without Affecting Aβ Burden in AβPP/PS1 Mice.

    Science.gov (United States)

    Hong, Zhen-Yi; Yu, Shuang-Shuang; Wang, Zhi-Jun; Zhu, Yi-Zhun

    2015-08-07

    SCM-198 is an alkaloid found only in Herba leonuri and it has been reported to possess considerable neuroprotective effects in animal models of ischemic stroke, Parkinson's disease and Alzheimer's disease (AD). In this study, we demonstrated for the first time that 3-month oral SCM-198 treatment could significantly improve both recognition and spatial memory, inhibit microgliosis and promote neuronal survival in amyloid-β protein precursor and presenilin-1(AβPP/PS1) double-transgenic mice without affecting amyloid-β (Aβ) burden. In addition, decreases in cAMP-response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) phosphorylation were attenuated by SCM-198 both in vivo and in primary cortical neurons, which could be blocked by protein kinase A (PKA) inhibitors, suggesting the involvement of upstream PKA in enhancing the BDNF/TrkB/CREB signaling by SCM-198. Our results indicate that SCM-198, a drug that could promote neuronal survival and enhance BDNF/TrkB/CREB signaling, has beneficial effects on behavioral and biochemical alterations without affecting Aβ burden in AβPP/PS1 mice and might become a potential drug candidate for AD treatment in the future.

  10. Chronic exercise prevents repeated restraint stress-provoked enhancement of immobility in forced swimming test in ovariectomized mice.

    Science.gov (United States)

    Han, Tae-Kyung; Lee, Jang-Kyu; Leem, Yea-Hyun

    2015-06-01

    We assessed whether chronic treadmill exercise attenuated the depressive phenotype induced by restraint stress in ovariectomized mice (OVX). Immobility of OVX in the forced swimming test was comparable to that of sham mice (CON) regardless of the postoperative time. Immobility was also no difference between restrained mice (exposure to periodic restraint for 21 days; RST) and control mice (CON) on post-exposure 2nd and 9th day, but not 15th day. In contrast, the immobility of ovariectomized mice with repeated stress (OVX + RST) was profoundly enhanced compared to ovariectomized mice-alone (OVX), and this effect was reversed by chronic exercise (19 m/min, 60 min/day, 5 days/week for 8 weeks; OVX + RST + Ex) or fluoxetine administration (20 mg/kg, OVX + RST + Flu). In parallel with behavioral data, the immunoreactivity of Ki-67 and doublecortin (DCX) in OVX was significantly decreased by repeated stress. However, the reduced numbers of Ki-67- and DCX-positive cells in OVX + RST were restored in response to chronic exercise (OVX + RST + Ex) and fluoxetine (OVX + RST + Flu). In addition, the expression pattern of cAMP response element-binding protein (CREB) and calcium-calmodulin-dependent kinase IV (CaMKIV) was similar to that of the hippocampal proliferation and neurogenesis markers (Ki-67 and DCX, respectively). These results suggest that menopausal depression may be induced by an interaction between repeated stress and low hormone levels, rather than a deficit in ovarian secretion alone, which can be improved by chronic exercise.

  11. A Larger Social Network Enhances Novel Object Location Memory and Reduces Hippocampal Microgliosis in Aged Mice

    Science.gov (United States)

    Smith, Bryon M.; Yao, Xinyue; Chen, Kelly S.; Kirby, Elizabeth D.

    2018-01-01

    The mammalian hippocampus shows marked decline in function with aging across many species, including humans and laboratory rodent models. This decline frequently manifests in memory impairments that occur even in the absence of dementia pathology. In humans, a number of factors correlate with preserved hippocampal memory in aging, such as exercise, cognitive stimulation and number of social ties. While interventional studies and animal models clearly indicate that exercise and cognitive stimulation lead to hippocampal preservation, there is relatively little research on whether a decline in social ties leads to cognitive decline or vice versa. Even in animal studies of environmental enrichment in aging, the focus typically falls on physical enrichment such as a rotating cast of toys, rather than the role of social interactions. The present studies investigated the hypothesis that a greater number of social ties in aging mice would lead to improved hippocampal function. Aged, female C57/Bl6 mice were housed for 3 months in pairs or large groups (7 mice per cage). Group-housed mice showed greater novel object location memory and stronger preference for a spatial navigation strategy in the Barnes maze, though no difference in escape latency, compared to pair-housed mice. Group-housed mice did not differ from pair-housed mice in basal corticosterone levels or adult hippocampal neurogenesis. Group-housed mice did, however, show reduced numbers of Iba1/CD68+ microglia in the hippocampus. These findings suggest that group housing led to better memory function and reduced markers of neuroinflammation in aged mice. More broadly, they support a causative link between social ties and hippocampal function, suggesting that merely having a larger social network can positively influence the aging brain. Future research should address the molecular mechanisms by which a greater number of social ties alters hippocampal function. PMID:29904345

  12. Nanodiamond enhances immune responses in mice against recombinant HA/H7N9 protein.

    Science.gov (United States)

    Pham, Ngoc Bich; Ho, Thuong Thi; Nguyen, Giang Thu; Le, Thuy Thi; Le, Ngoc Thu; Chang, Huan-Cheng; Pham, Minh Dinh; Conrad, Udo; Chu, Ha Hoang

    2017-10-05

    The continuing spread of the newly emerged H7N9 virus among poultry in China, as well as the possibility of human-to-human transmission, has attracted numerous efforts to develop an effective vaccine against H7N9. The use of nanoparticles in vaccinology is inspired by the fact that most pathogens have a dimension within the nano-size range and therefore can be processed efficiently by the immune system, which leads to a potent immune response. Herein, we report a facile approach to increase antigen size to achieve not only fast but also effective responses against the recombinant HA/H7N9 protein via a simple conjugation of the protein onto the surface of nanodiamond particles. In this study, trimeric Haemagglutinin (H7) that is transiently expressed in N. benthamiana was purified using affinity chromatography, and its trimeric state was revealed successfully by the cross-linking reaction. The trimeric H7 solution was subsequently mixed with a nanodiamond suspension in different ratios. The successful conjugation of the trimeric H7 onto the surface of nanodiamond particles was demonstrated by the changes in size and Zeta-potential of the particles before and after protein coating, Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and Western-blot analysis. Next, biofunction of the protein-nanodiamond conjugates was screened using a haemagglutination assay. A mixture containing 5 µg of trimeric H7 and 60 µg of nanodiamond corresponds to a ratio of 1:12 (w/w) of agglutinated chicken red blood cells at HA titer of 1024, which is 512-fold higher than the HA titer of free trimeric H7. After the 2nd and 3rd immunization in mice, ELISA and Western blot analyses demonstrated that the physical mixture of trimeric H7 protein and nanodiamond (1:12, w/w) elicited statistically significant stronger H7-specific-IgG response demonstrated by higher amounts of H7N9-specific IgG (over 15.4-fold with P < 0.05 after the second immunization). These results

  13. Loss of hypoxia-inducible factor 2 alpha in the lung alveolar epithelium of mice leads to enhanced eosinophilic inflammation in cobalt-induced lung injury.

    Science.gov (United States)

    Proper, Steven P; Saini, Yogesh; Greenwood, Krista K; Bramble, Lori A; Downing, Nathaniel J; Harkema, Jack R; Lapres, John J

    2014-02-01

    Hard metal lung disease (HMLD) is an occupational lung disease specific to inhalation of cobalt-containing particles whose mechanism is largely unknown. Cobalt is a known hypoxia mimic and stabilizer of the alpha subunits of hypoxia-inducible factors (HIFs). Previous work revealed that though HIF1α contrib utes to cobalt toxicity in vitro, loss of HIF1α in the alveolar epithelial cells does not provide in vivo protection from cobalt-induced lung inflammation. HIF1α and HIF2α show unique tissue expression profiles, and HIF2α is known to be the predominant HIF mRNA isoform in the adult lung. Thus, if HIF2α activation by cobalt contributes to pathophysiology of HMLD, we hypothesized that loss of HIF2α in lung epithelium would provide protection from cobalt-induced inflammation. Mice with HIF2α-deficiency in Club and alveolar type II epithelial cells (ATIIs) (HIF2α(Δ/Δ)) were exposed to cobalt (60 µg/day) or saline using a subacute occupational exposure model. Bronchoalveolar lavage cellularity, cytokines, qRT-PCR, and histopathology were analyzed. Results show that loss of HIF2α leads to enhanced eosinophilic inflammation and increased goblet cell metaplasia. Additionally, control mice demonstrated a mild recovery from cobalt-induced lung injury compared with HIF2α(Δ/Δ) mice, suggesting a role for epithelial HIF2α in repair mechanisms. The expression of important cytokines, such as interleukin (IL)-5 and IL-10, displayed significant differences following cobalt exposure when HIF2α(Δ/Δ) and control mice were compared. In summary, our data suggest that although loss of HIF2α does not afford protection from cobalt-induced lung inflammation, epithelial HIF2α signaling does play an important role in modulating the inflammatory and repair response in the lung.

  14. Enhanced hepatic apoA-I secretion and peripheral efflux of cholesterol and phospholipid in CD36 null mice.

    Directory of Open Access Journals (Sweden)

    Pin Yue

    2010-03-01

    Full Text Available CD36 facilitates oxidized low density lipoprotein uptake and is implicated in development of atherosclerotic lesions. CD36 also binds unmodified high and very low density lipoproteins (HDL, VLDL but its role in the metabolism of these particles is unclear. Several polymorphisms in the CD36 gene were recently shown to associate with serum HDL cholesterol. To gain insight into potential mechanisms for these associations we examined HDL metabolism in CD36 null (CD36(-/- mice. Feeding CD36(-/- mice a high cholesterol diet significantly increased serum HDL, cholesterol and phospholipids, as compared to wild type mice. HDL apolipoproteins apoA-I and apoA-IV were increased and shifted to higher density HDL fractions suggesting altered particle maturation. Clearance of dual-labeled HDL was unchanged in CD36(-/- mice and cholesterol uptake from HDL or LDL by isolated CD36(-/- hepatocytes was unaltered. However, CD36(-/- hepatocytes had higher cholesterol and phospholipid efflux rates. In addition, expression and secretion of apoA-I and apoA-IV were increased reflecting enhanced PXR. Similar to hepatocytes, cholesterol and phospholipid efflux were enhanced in CD36(-/- macrophages without changes in protein levels of ABCA1, ABCG1 or SR-B1. However, biotinylation assays showed increased surface ABCA1 localization in CD36(-/- cells. In conclusion, CD36 influences reverse cholesterol transport and hepatic ApoA-I production. Both pathways are enhanced in CD36 deficiency, increasing HDL concentrations, which suggests the potential benefit of CD36 inhibition.

  15. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  16. Enhanced Mucosal Defense and Reduced Tumor Burden in Mice with the Compromised Negative Regulator IRAK-M

    Directory of Open Access Journals (Sweden)

    Daniel E. Rothschild

    2017-02-01

    Full Text Available Aberrant inflammation is a hallmark of inflammatory bowel disease (IBD and colorectal cancer. IRAK-M is a critical negative regulator of TLR signaling and overzealous inflammation. Here we utilize data from human studies and Irak-m−/− mice to elucidate the role of IRAK-M in the modulation of gastrointestinal immune system homeostasis. In human patients, IRAK-M expression is up-regulated during IBD and colorectal cancer. Further functional studies in mice revealed that Irak-m−/− animals are protected against colitis and colitis associated tumorigenesis. Mechanistically, our data revealed that the gastrointestinal immune system of Irak-m−/− mice is highly efficient at eliminating microbial translocation following epithelial barrier damage. This attenuation of pathogenesis is associated with expanded areas of gastrointestinal associated lymphoid tissue (GALT, increased neutrophil migration, and enhanced T-cell recruitment. Further evaluation of Irak-m−/− mice revealed a splice variant that robustly activates NF-κB signaling. Together, these data identify IRAK-M as a potential target for future therapeutic intervention.

  17. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  18. Graft-versus-host disease is enhanced by selective CD73 blockade in mice.

    Directory of Open Access Journals (Sweden)

    Long Wang

    Full Text Available CD73 functions as an ecto-5'-nucleotidase to produce extracellular adenosine that has anti-inflammatory and immunosuppressive activity. We here demonstrate that CD73 helps control graft-versus-host disease (GVHD in mouse models. Survival of wild-type (WT recipients of either allogeneic donor naïve CD73 knock-out (KO or WT T cells was similar suggesting that donor naïve T cell CD73 did not contribute to GVHD. By contrast, donor CD73 KO CD4(+CD25(+ regulatory T cells (Treg had significantly impaired ability to mitigate GVHD mortality compared to WT Treg, suggesting that CD73 on Treg is critical for GVHD protection. However, compared to donor CD73, recipient CD73 is more effective in limiting GVHD. Pharmacological blockade of A2A receptor exacerbated GVHD in WT recipients, but not in CD73 KO recipients, suggesting that A2 receptor signaling is primarily implicated in CD73-mediated GVHD protection. Moreover, pharmacological blockade of CD73 enzymatic activity induced stronger alloreactive T cell activity, worsened GVHD and enhanced the graft-versus-leukemia (GVL effect. These findings suggest that both donor and recipient CD73 protects against GVHD but also limits GVL effects. Thus, either enhancing or blocking CD73 activity has great potential clinical application in allogeneic bone marrow transplants.

  19. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice

    Science.gov (United States)

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-01-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders. PMID:23838831

  20. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice.

    Science.gov (United States)

    Rogóż, Zofia; Kabziński, Marcin

    2011-01-01

    The aim of the present study was to examine the effect of antidepressants (ADs) belonging to different pharmacological groups and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. The antidepressants: citalopram, fluvoxamine, sertraline, reboxetine, milnacipran (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Co-treatment with reboxetine or milnacipran (10 mg/kg) and risperidone in a lower dose of 0.05 mg/kg or with sertraline, reboxetine (5 and 10 mg/kg), citalopram, fluvoxamine, milnacipran (10 mg/kg) and risperidone in a higher dose of 0.1 mg/kg produced antidepressant-like effect in the forced swimming test. WAY100635 (a 5-HT(1A) receptor antagonist) inhibited the effects induced by co-administration of ADs and risperidone. Active behavior in the forced swimming test was not a consequence of an increased general activity, since the combined treatment with ADs and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that a low dose of risperidone enhances the activity of ADs in an animal model of depression, and that, among other mechanisms, 5-HT(1A) receptors may play a role in these effects.

  1. Silencing hyperoxia-induced C/EBPα in neonatal mice improves lung architecture via enhanced proliferation of alveolar epithelial cells

    Science.gov (United States)

    Yang, Guang; Hinson, Maurice D.; Bordner, Jessica E.; Lin, Qing S.; Fernando, Amal P.; La, Ping; Wright, Clyde J.

    2011-01-01

    Postnatal lung development requires proliferation and differentiation of specific cell types at precise times to promote proper alveolar formation. Hyperoxic exposure can disrupt alveolarization by inhibiting cell growth; however, it is not fully understood how this is mediated. The transcription factor CCAAT/enhancer binding protein-α (C/EBPα) is highly expressed in the lung and plays a role in cell proliferation and differentiation in many tissues. After 72 h of hyperoxia, C/EBPα expression was significantly enhanced in the lungs of newborn mice. The increased C/EBPα protein was predominantly located in alveolar type II cells. Silencing of C/EBPα with a transpulmonary injection of C/EBPα small interfering RNA (siRNA) prior to hyperoxic exposure reduced expression of markers of type I cell and differentiation typically observed after hyperoxia but did not rescue the altered lung morphology at 72 h. Nevertheless, when C/EBPα hyperoxia-exposed siRNA-injected mice were allowed to recover for 2 wk in room air, lung epithelial cell proliferation was increased and lung morphology was restored compared with hyperoxia-exposed control siRNA-injected mice. These data suggest that C/EBPα is an important regulator of postnatal alveolar epithelial cell proliferation and differentiation during injury and repair. PMID:21571903

  2. Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice.

    Science.gov (United States)

    Pensel, Patricia E; Ullio Gamboa, Gabriela; Fabbri, Julia; Ceballos, Laura; Sanchez Bruni, Sergio; Alvarez, Luis I; Allemandi, Daniel; Benoit, Jean Pierre; Palma, Santiago D; Elissondo, María C

    2015-12-01

    Therapeutic failures attributed to medical management of cystic echinococcosis (CE) with albendazole (ABZ) have been primarily linked to the poor drug absorption rate resulting in low drug level in plasma and hydatid cysts. Lipid nanocapsules (LNCs) represent nanocarriers designed to encapsulate lipophilic drugs, such as ABZ. The goals of the current work were: (i) to characterize the plasma and cyst drug exposure after the administration of ABZ as ABZ-LNCs or ABZ suspension (ABZ-SUSP) in mice infected with Echinococcus granulosus, and ii) to compare the clinical efficacies of both ABZ formulations. Enhanced ABZ sulphoxide (ABZ-SO) concentration profiles were obtained in plasma and cysts from ABZ-LNC treated animals. ABZSO exposure (AUC0-LOQ) was significantly higher in plasma and cyst after the ABZ-LNC treatments, both orally and subcutaneously, compared to that observed after oral administration of ABZ-SUSP. Additionally, ABZSO concentrations measured in cysts from ABZ-LNC treated mice were 1.7-fold higher than those detected in plasma. This enhanced drug availability correlated with an increased efficacy against secondary CE in mice observed for the ABZ-LNCs, while ABZ-SUSP did not reach differences with the untreated control group. This new pharmacotechnically-based strategy could be a potential alternative to improve the treatment of human CE. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Environmental Burkholderia cenocepacia Strain Enhances Fitness by Serial Passages during Long-Term Chronic Airways Infection in Mice

    Directory of Open Access Journals (Sweden)

    Alessandra Bragonzi

    2017-11-01

    Full Text Available Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.

  4. Igfbp2 Deletion in Ovariectomized Mice Enhances Energy Expenditure but Accelerates Bone Loss.

    Science.gov (United States)

    DeMambro, Victoria E; Le, Phuong T; Guntur, Anyonya R; Maridas, David E; Canalis, Ernesto; Nagano, Kenichi; Baron, Roland; Clemmons, David R; Rosen, Clifford J

    2015-11-01

    Previously, we reported sexually dimorphic bone mass and body composition phenotypes in Igfbp2(-/-) mice (-/-), where male mice exhibited decreased bone and increased fat mass, whereas female mice displayed increased bone but no changes in fat mass. To investigate the interaction between IGF-binding protein (IGFBP)-2 and estrogen, we subjected Igfbp2 -/- and +/+ female mice to ovariectomy (OVX) or sham surgery at 8 weeks of age. At 20 weeks of age, mice underwent metabolic cage analysis and insulin tolerance tests before killing. At harvest, femurs were collected for microcomputed tomography, serum for protein levels, brown adipose tissue (BAT) and inguinal white adipose tissue (IWAT) adipose depots for histology, gene expression, and mitochondrial respiration analysis of whole tissue. In +/+ mice, serum IGFBP-2 dropped 30% with OVX. In the absence of IGFBP-2, OVX had no effect on preformed BAT; however, there was significant "browning" of the IWAT depot coinciding with less weight gain, increased insulin sensitivity, lower intraabdominal fat, and increased bone loss due to higher resorption and lower formation. Likewise, after OVX, energy expenditure, physical activity and BAT mitochondrial respiration were decreased less in the OVX-/- compared with OVX+/+. Mitochondrial respiration of IWAT was reduced in OVX+/+ yet remained unchanged in OVX-/- mice. These changes were associated with significant increases in Fgf21 and Foxc2 expression, 2 proteins known for their insulin sensitizing and browning of WAT effects. We conclude that estrogen deficiency has a profound effect on body and bone composition in the absence of IGFBP-2 and may be related to changes in fibroblast growth factor 21.

  5. CCAAT/enhancer binding protein β deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    International Nuclear Information System (INIS)

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-01

    Highlights: ► LXR agonist activation increases liver TG accumulation by increasing lipogenesis. ► C/EBPβ −/− mouse prevents LXR activation-mediated induction of hepatic lipogenesis. ► C/EBPβ deletion increases mitochondrial transport chain function. ► Beneficial effects of LXR activation on liver cholesterol metabolism did not change. ► C/EBPβ inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBPβ) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBPβ expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBPβ deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBPβ −/− mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBPβ −/− mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBPβ in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBPβ might therefore be an important therapeutic strategy to prevent LXR activation-mediated adverse effects on liver TG metabolism without disrupting its beneficial effects on cholesterol metabolism.

  6. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  7. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice.

    Science.gov (United States)

    Yamada, Tomomi; Obata, Atsushi; Kashiwagi, Yuto; Rokugawa, Takemi; Matsushima, Shuuichi; Hamada, Tadateru; Watabe, Hiroshi; Abe, Kohji

    2016-07-01

    The purpose of this study is to investigate the correlation between the liver kinetics of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) and liver histopathology in a mouse model of NASH by using dynamic contrast-enhanced MRI. Twenty male C57/BL6 mice aged 8weeks were fed a methionine-choline-deficient (MCD) diet for 2, 4 and 6weeks (MCD groups: MCD 2w, 4w, or 6w). Gd-EOB-DTPA-enhanced MR imaging of the liver was performed at 2, 4 and 6weeks after the MCD feeding. The signal intensity of the liver was obtained from dynamic MR images and relative enhancement (RE), and the time to maximum RE (Tmax) and half-life of elimination RE (T1/2) were calculated. After MRI scan, histopathological scores of hepatic steatosis and inflammation and blood biochemistry data, such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, were obtained. Plasma AST and ALT levels were significantly increased in mice fed MCD. Histopathological scores indicated that steatohepatitis progressed with the MCD feeding period from 2 to 6weeks, but significant fibrosis was observed only in mice fed MCD for 6weeks. Gd-EOB-DTPA-enhanced MRI showed that Tmax was significantly prolonged in the livers of the 6-week group compared to the control group (control, 4.0±0.7min; MCD 6w, 12.1±1.6min), although there was no alteration in the 2- and 4-week groups. T1/2 was significantly prolonged in mice fed MCD for 4 and 6weeks compared to the control group (control, 19.9±2.0min; MCD 4w, 46.7±8.7min; MCD 6w, 65.4±8.8min). The parameters of Gd-EOB-DTPA kinetics (Tmax and T1/2) in the liver were positively correlated with the liver histopathological score (steatosis vs Tmax, rho=0.69, P=0.0007; inflammation vs Tmax, rho=0.66, P=0.00155; steatosis vs T1/2, rho=0.77, Pmouse model of NASH, suggesting the possibility of detecting the steatohepatitis stage without fibrosis by Gd-EOB-DTPA-enhanced MR imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  9. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan

    Directory of Open Access Journals (Sweden)

    Nicole M. Templeman

    2017-07-01

    Full Text Available The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1 signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2+/− mice to Ins2+/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2+/− mice. Halving Ins2 lowered circulating insulin by 25%–34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan.

  10. Mammary tumorigenesis in APCmin/+ mice is enhanced by X-irradiation with a characteristic age dependence

    International Nuclear Information System (INIS)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada; Mieko, Okamoto

    2006-01-01

    The ApcM min/+ (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  11. Reduced Circulating Insulin Enhances Insulin Sensitivity in Old Mice and Extends Lifespan.

    Science.gov (United States)

    Templeman, Nicole M; Flibotte, Stephane; Chik, Jenny H L; Sinha, Sunita; Lim, Gareth E; Foster, Leonard J; Nislow, Corey; Johnson, James D

    2017-07-11

    The causal relationships between insulin levels, insulin resistance, and longevity are not fully elucidated. Genetic downregulation of insulin/insulin-like growth factor 1 (Igf1) signaling components can extend invertebrate and mammalian lifespan, but insulin resistance, a natural form of decreased insulin signaling, is associated with greater risk of age-related disease in mammals. We compared Ins2 +/- mice to Ins2 +/+ littermate controls, on a genetically stable Ins1 null background. Proteomic and transcriptomic analyses of livers from 25-week-old mice suggested potential for healthier aging and altered insulin sensitivity in Ins2 +/- mice. Halving Ins2 lowered circulating insulin by 25%-34% in aged female mice, without altering Igf1 or circulating Igf1. Remarkably, decreased insulin led to lower fasting glucose and improved insulin sensitivity in aged mice. Moreover, lowered insulin caused significant lifespan extension, observed across two diverse diets. Our study indicates that elevated insulin contributes to age-dependent insulin resistance and that limiting basal insulin levels can extend lifespan. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Recombinant growth differentiation factor 11 influences short-term memory and enhances Sox2 expression in middle-aged mice.

    Science.gov (United States)

    Zhang, Min; Jadavji, Nafisa M; Yoo, Hyung-Suk; Smith, Patrice D

    2018-04-02

    Previous evidence suggests that a significant decline in cognitive ability begins during middle-age and continues to deteriorate with increase in age. Recent work has demonstrated the potential rejuvenation impact of growth differentiation factor-11 (GDF-11) in aged mice. We carried out experiments to evaluate the impact of a single dose of recombinant (rGDF-11) on short-term visual and spatial memory in middle-aged male mice. On the novel object recognition task, we observed middle-aged mice treated rGDF-11 showed improved performance on the novel object recognition task. However, middle-aged mice did not show increased expression of phosphorylated-Smad2/3, a downstream effector of GDF-11. We noted however that the expression of the transcription factor, Sox2 was increased within the dentate gyrus. Our data suggest that a single injection of rGDF-11 contributes to improvements in cognitive function of middle-aged animals, which may be critical in the preservation of short-term memory capacity in old age. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adrenergic pathway activation enhances brown adipose tissue metabolism: A [18 F]FDG PET/CT study in mice

    International Nuclear Information System (INIS)

    Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2014-01-01

    Objective: Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [ 18 F]fluoro-2-deoxyglucose ([ 18 F]FDG) positron emission tomography (PET)/computed tomography (CT) in mice. Methods: A β 3 -adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine), were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [ 18 F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results: Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [ 18 F]FDG PET images. CL 316243 increased the total [ 18 F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [ 18 F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [ 18 F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [ 18 F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [ 18 F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT Hounsfield unit (HU

  14. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice.

    Science.gov (United States)

    Soleimanpour, Saman; Farsiani, Hadi; Mosavat, Arman; Ghazvini, Kiarash; Eydgahi, Mohammad Reza Akbari; Sankian, Mojtaba; Sadeghian, Hamid; Meshkat, Zahra; Rezaee, Seyed Abdolrahim

    2015-12-01

    Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.

  15. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice.

    Science.gov (United States)

    Boccia, M M; Blake, M G; Krawczyk, M C; Baratti, C M

    2011-07-07

    Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Exercise does not enhance aged bone's impaired response to artificial loading in C57Bl/6 mice.

    Science.gov (United States)

    Meakin, Lee B; Udeh, Chinedu; Galea, Gabriel L; Lanyon, Lance E; Price, Joanna S

    2015-12-01

    Bones adapt their structure to their loading environment and so ensure that they become, and are maintained, sufficiently strong to withstand the loads to which they are habituated. The effectiveness of this process declines with age and bones become fragile fracturing with less force. This effect in humans also occurs in mice which experience age-related bone loss and reduced adaptation to loading. Exercise engenders many systemic and local muscular physiological responses as well as engendering local bone strain. To investigate whether these physiological responses influence bones' adaptive responses to mechanical strain we examined whether a period of treadmill exercise influenced the adaptive response to an associated period of artificial loading in young adult (17-week) and old (19-month) mice. After treadmill acclimatization, mice were exercised for 30 min three times per week for two weeks. Three hours after each exercise period, right tibiae were subjected to 40 cycles of non-invasive axial loading engendering peak strain of 2250 με. In both young and aged mice exercise increased cross-sectional muscle area and serum sclerostin concentration. In young mice it also increased serum IGF1. Exercise did not affect bone's adaptation to loading in any measured parameter in young or aged bone. These data demonstrate that a level of exercise sufficient to cause systemic changes in serum, and adaptive changes in local musculature, has no effect on bone's response to loading 3h later. This study provides no support for the beneficial effects of exercise on bone in the elderly being mediated by systemic or local muscle-derived effects rather than local adaptation to altered mechanical strain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Ocaratuzumab, an Fc-engineered antibody demonstrates enhanced antibody-dependent cell-mediated cytotoxicity in chronic lymphocytic leukemia.

    Science.gov (United States)

    Cheney, Carolyn M; Stephens, Deborah M; Mo, Xiaokui; Rafiq, Sarwish; Butchar, Jonathan; Flynn, Joseph M; Jones, Jeffrey A; Maddocks, Kami; O'Reilly, Adrienne; Ramachandran, Abhijit; Tridandapani, Susheela; Muthusamy, Natarajan; Byrd, John C

    2014-01-01

    Chronic lymphocytic leukemia (CLL) is common in both developed and developing nations where the need for inexpensive and convenient administration of therapy is apparent. Ocaratuzumab is a novel Fc-engineered humanized IgG1 anti-CD20 monoclonal antibody (mAb) designed for effective antibody-dependent cell-mediated cytotoxicity (ADCC) at very low concentrations that may facilitate sub-cutaneous (vs. intravenous) dosing. Here, we report ocaratuzumab's potency against CLL cells. In vitro assessment of ocaratuzumab's direct cytotoxicity (DC), complement-dependent cytotoxicity (CDC), antibody-dependent cellular phagocytosis (ADCP), and ADCC was performed on CLL cells. Ocaratuzumab induced DC, CDC, and ADCP similarly to rituximab or ofatumumab (anti-CD20 mAbs). However, ocaratuzumab showed an advantage in NK cell-mediated ADCC over these antibodies. In allogeneic ADCC, [E:T (effector:target) ratios = 25:1, 12:1, 6:1], ocaratuzumab (10 µg/mL) improved ADCC by ~3-fold compared with rituximab or ofatumumab (P<0.001 all tested E:T ratios). Notably, the superiority of ocaratuzumab-induced ADCC was observed at low concentrations (0.1-10 ug/ml; P<0.03; allogeneic assays). In extended allogeneic ADCC E:T titration, ocaratuzumab (0.1 µg/mL) demonstrated 19.4% more cytotoxicity than rituximab (E:T = 0.38:1; P = 0.0066) and 21.5% more cytotoxicity than ofatumumab (E:T = 1.5:1; P = 0.0015). In autologous ADCC, ocaratuzumab (10 µg/mL) demonstrated ~1.5-fold increase in cytotoxicity compared with rituximab or ofatumumab at all E:T ratios tested (E:Ts = 25:1,12:1,6:1; all P<0.001). Obinutuzumab, a glyco-engineered anti-CD20 mAb, showed no improvement in ADCC activity compared with ocaratuzumab. The enhanced ADCC of ocaratuzumab suggests that it may be effective at low concentrations. If supported by clinical investigation, this feature could potentially allow for subcutaneous dosing at low doses that could expand the potential of administering chemoimmunotherapy in developing

  18. Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression

    NARCIS (Netherlands)

    van der Vegt, BJ; de Boer, SF; Buwalda, B; de Ruiter, AJH; de Jong, JG; Koolhaas, JM

    2001-01-01

    Individual differences in aggressive behaviour have been linked to variability in central serotonergic activity, both in humans and animals. A previous experiment in mice, selectively bred for high or low levels of aggression, showed an up-regulation of postsynaptic serotonin-1A (5-HT1A) receptors,

  19. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis

    NARCIS (Netherlands)

    Zwijnenburg, Petra J. G.; van der Poll, Tom; Florquin, Sandrine; Akira, Shizuo; Takeda, Kiyoshi; Roord, John J.; van Furth, A. Marceline

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  20. Tunicamycin Enhances Neuroinvasion and Pathogenicity in Mice with Venezuelan Equine Encephalitis Virus

    National Research Council Canada - National Science Library

    Steele, Keith

    2003-01-01

    ...) decreased mean survival time (MST) of 7.3 days versus 9.9 days in controls. Using plaque assay, V3000 reached nearly 107 pfu/gram in the brains of TM-treated mice at 48 hours post inoculation (PI...

  1. Akv murine leukemia virus enhances bone tumorigenesis in hMT-c-fos-LTR transgenic mice

    DEFF Research Database (Denmark)

    Schmidt, Jörg; Krump-Konvalinkova, Vera; Luz, Arne

    1995-01-01

    hMt-c-fos-LTR transgenic mice (U. Rüther, D. Komitowski, F. R. Schubert, and E. F. Wagner. Oncogene 4, 861–865, 1989) developed bone sarcomas in 20% (3/15) of females at 448 ± 25 days and in 8% (1/12) of males at 523 days. After infection of newborns with Akv, an infectious retrovirus derived from...

  2. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis.

    NARCIS (Netherlands)

    Zwijnenburg, P.J.G.; Poll, van der T.; Florquin, S; Akira, S; Takeda, K; Roord, J.J.; Furth, van A.M.

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  3. Lansoprazole enhances the antidiabetic effect of sitagliptin in mice with diet-induced obesity and healthy human subjects.

    Science.gov (United States)

    Hao, ShaoJun; Sun, JianHua; Tian, XiKui; Sun, Xu; Zhang, ZhenXing; Gao, Yuan

    2014-08-01

    Proton pump inhibitors as adjunctive therapy would improve diabetes control and could enhance the hypoglycaemic activity of DPP-4 inhibitors. The aim of the study was to investigate the short-term effects of lansoprazole (LPZ), sitagliptin (SITA) and their combination therapy on glucose regulation and gut peptide secretion. Glucose and gut peptide were determined and compared after short-term administration of LPZ or SITA, or in combination to mice with diet-induced obesity (DIO) and to healthy human subjects (n = 16) in a 75 g oral glucose tolerance test (OGTT) by a crossover design. In DIO mice, LPZ significantly improve glucose metabolism, increase plasma C-peptide and insulin compared with vehicle treatment. Furthermore, the combination of LPZ and SITA improved glucose tolerance additively, with higher plasma insulin and C-peptide levels compared with SITA-treated mice. Similarly, in human in the OGTT, the combination showed significant improvement in glucose-lowering and insulin increase vs SITA-treated group. However, no significant differences in area under curve (AUC) of insulin, glucose and C-peptide between the LPZ-treated group and baseline, except that mean AUCgastrin was significantly increased by LPZ. LPZ and SITA combination therapy appears to have complementary mechanisms of action and additive antidiabetic effect. © 2014 Royal Pharmaceutical Society.

  4. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    International Nuclear Information System (INIS)

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li; Li Junfa

    2006-01-01

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning

  5. Enhancement of the infectivity of SARS-CoV in BALB/c mice by IMP dehydrogenase inhibitors, including ribavirin.

    Science.gov (United States)

    Barnard, Dale L; Day, Craig W; Bailey, Kevin; Heiner, Matthew; Montgomery, Robert; Lauridsen, Larry; Winslow, Scott; Hoopes, Justin; Li, Joseph K-K; Lee, Jongdae; Carson, Dennis A; Cottam, Howard B; Sidwell, Robert W

    2006-08-01

    Because of the conflicting data concerning the SARS-CoV inhibitory efficacy of ribavirin, an inosine monophosphate (IMP) dehydrogenase inhibitor, studies were done to evaluate the efficacy of ribavirin and other IMP dehydrogenase inhibitors (5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide (EICAR), mizoribine, and mycophenolic acid) in preventing viral replication in the lungs of BALB/c mice, a replication model for severe acute respiratory syndrome (SARS) infections (Subbarao, K., McAuliffe, J., Vogel, L., Fahle, G., Fischer, S., Tatti, K., Packard, M., Shieh, W.J., Zaki, S., Murphy, B., 2004. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in the respiratory tract of mice. J. Virol. 78, 3572-3577). Ribavirin given at 75 mg/kg 4 h prior to virus exposure and then given twice daily for 3 days beginning at day 0 was found to increase virus lung titers and extend the length of time that virus could be detected in the lungs of mice. Other IMP dehydrogenase inhibitors administered near maximum tolerated doses using the same dosing regimen as for ribavirin were found to slightly enhance virus replication in the lungs. In addition, ribavirin treatment seemed also to promote the production of pro-inflammatory cytokines 4 days after cessation of treatment, although after 3 days of treatment ribavirin inhibited pro-inflammatory cytokine production in infected mice, significantly reducing the levels of the cytokines IL-1alpha, interleukin-5 (IL-5), monocyte chemotactic protein-1 (MCP-1), and granulocyte-macrophage colony stimulating factor (GM-CSF). These findings suggest that ribavirin may actually contribute to the pathogenesis of SARS-CoV by prolonging and/or enhancing viral replication in the lungs. By not inhibiting viral replication in the lungs of infected mice, ribavirin treatment may have provided a continual source of stimulation for the inflammatory response

  6. UV-enhanced reactivation of minute-virus-of-mice: stimulation of a late step in the viral life cycle

    International Nuclear Information System (INIS)

    Rommelaere, J.; Vos, J.-M.; Cornelis, J.J.

    1981-01-01

    UV-enhanced reactivation of minute-virus-of-mice (MVM), an autonomous parvovirus, was studied in parasynchronous mouse A9 cells. The survival of UV-irradiated MVM is increased in cells which have been UV-irradiated prior to infection. UV-enhanced reactivation can be explained neither by facilitated plaque detection on UV-treated indicator cells, nor by altered kinetics of virus production by UV-irradiated cells. No effect of the multiplicity of infection on virus survival was detected in unirradiated or irradiated cells. The magnitude of UV-enhanced reactivation is a direct exponential function of the UV dose administered to the virus while virus survival is inversely proportional to the UV dosage. The expression of UV-enhanced reactivation can be activated in cells arrested in G 0 , it requires de novo protein synthesis and it is maximal when cells are irradiated 30 h before the onset of viral DNA replication. Early phases of the viral cycle, such as adsorption to cellular receptors, migration to the nucleus and uncoating were not affected by cell irradiation and are unlikely targets of the UV-enhanced reactivation function(s). These results, together with the single-strandedness of the viral genome, strongly suggest that the step stimulated in UV-irradiated cells functions concomitant with, or subsequent to, viral DNA replication. (author)

  7. Characteristics of histocompatibility barriers in congenis strains of mice. III. Passive enhancement of skin allografts in x-irradiated hosts

    International Nuclear Information System (INIS)

    Cantrell, J.L.; Kaliss, N.; Hildemann, W.H.

    1975-01-01

    Passive immunological enhancement of skin allografts was investigated in three donor-host combinations of congenic mice disparate at non-H-2 loci. Serum against the graft donor was derived from mice that had received donor strain lymphoid cells as neonates, and thereby were rendered specifically tolerant of a skin allograft. We refer to this serum as ''allograft-tolerant'' serum. Each strain combination was chosen to provide only two non-H-2 histoincompatibilities present in the donor and absent in the host. The differences are categorized as immunogenetically strong, moderate, or weak, on the basis of skin allograft survival times. With passively administered allograft-tolerant serum, significantly prolonged graft survivals were noted for the weakest combination only. Combined treatment with sublethal x-irradiation and allograft-tolerant serum significantly prolonged graft survival in both the moderate and weak combinations, with the largest effect present in the weakest disparity. A hyperimmune alloantiserum (produced in adults) directed against the graft donor prolonged allograft survival in the strongest disparity when given in combination with irradiation. In this combination, graft survival time was increased in hosts exposed to x-ray alone, but joint treatment with x-ray and the alloantiserum gave the largest increment. In contrast, combined treatment with the serum and an antithymocyte alloantiserum did not affect graft survival times. Treatment with both radiation and antithymocyte serum did not prolong graft survival beyond that in mice given only x-radiation. Immunological enhancement with central inhibition is assumed as the mechanism underlying prolonged graft survival, and it is suggested that a population of thymus-derived killer cells, sensitive to x-irradiation, is required for normal graft rejection. (U.S.)

  8. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    Science.gov (United States)

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  9. Dynamic contrast-enhanced micro-CT on mice with mammary carcinoma for the assessment of antiangiogenic therapy response

    Energy Technology Data Exchange (ETDEWEB)

    Eisa, Fabian [University of Erlangen-Nuremberg, Institute of Medical Physics, Erlangen (Germany); University of Erlangen-Nuremberg, Graduate School in Advanced Optical Technologies (SAOT), Erlangen (Germany); Brauweiler, Robert; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A. [University of Erlangen-Nuremberg, Institute of Medical Physics, Erlangen (Germany); Lotz, Laura; Hoffmann, Inge; Dittrich, Ralf; Beckmann, Matthias W. [University of Erlangen-Nuremberg, OB/GYN, University Hospital Erlangen, Erlangen (Germany); Wachter, David [University Hospital Erlangen, Institute of Pathology, Erlangen (Germany); Jost, Gregor; Pietsch, Hubertus [Bayer Pharma AG, Berlin (Germany)

    2012-04-15

    To evaluate the potential of in vivo dynamic contrast-enhanced micro-computed tomography (DCE micro-CT) for the assessment of antiangiogenic drug therapy response of mice with mammary carcinoma. 20 female mice with implanted MCF7 tumours were split into control group and therapy group treated with a known effective antiangiogenic drug. All mice underwent DCE micro-CT for the 3D analysis of functional parameters (relative blood volume [rBV], vascular permeability [K], area under the time-enhancement curve [AUC]) and morphology. All parameters were determined for total, peripheral and central tumour volumes of interest (VOIs). Immunohistochemistry was performed to characterise tumour vascularisation. 3D dose distributions were determined. The mean AUCs were significantly lower in therapy with P values of 0.012, 0.007 and 0.023 for total, peripheral and central tumour VOIs. K and rBV showed significant differences for the peripheral (P{sub per}{sup K} = 0.032, P{sub per}{sup rBV} = 0.029), but not for the total and central tumour VOIs (P{sub total}{sup K} = 0.108, P{sub central}{sup K} = 0.246, P{sub total}{sup rBV} = 0.093, P{sub central}{sup rBV} = 0.136). Mean tumour volume was significantly smaller in therapy (P{sub in} {sub vivo} = 0.001, P{sub ex} {sub vivo} = 0.005). Histology revealed greater vascularisation in the controls and central tumour necrosis. Doses ranged from 150 to 300 mGy. This study indicates the great potential of DCE micro-CT for early in vivo assessment of antiangiogenic drug therapy response. (orig.)

  10. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  11. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  12. Investigation of sequential growth factor delivery during cuprizone challenge in mice aimed to enhance oligodendrogliogenesis and myelin repair.

    Directory of Open Access Journals (Sweden)

    Jennifer K Sabo

    Full Text Available Repair in multiple sclerosis involves remyelination, a process in which axons are provided with a new myelin sheath by new oligodendrocytes. Bone morphogenic proteins (BMPs are a family of growth factors that have been shown to influence the response of oligodendrocyte progenitor cells (OPCs in vivo during demyelination and remyelination in the adult brain. We have previously shown that BMP4 infusion increases numbers of OPCs during cuprizone-induced demyelination, while infusion of Noggin, an endogenous antagonist of BMP4 increases numbers of mature oligodendrocytes and remyelinated axons following recovery. Additional studies have shown that insulin-like growth factor-1 (IGF-1 promotes the survival of OPCs during cuprizone-induced demyelination. Based on these data, we investigated whether myelin repair could be further enhanced by sequential infusion of these agents firstly, BMP4 to increase OPC numbers, followed by either Noggin or IGF-1 to increase the differentiation and survival of the newly generated OPCs. We identified that sequential delivery of BMP4 and IGF-1 during cuprizone challenge increased the number of mature oligodendrocytes and decreased astrocyte numbers following recovery compared with vehicle infused mice, but did not alter remyelination. However, sequential delivery of BMP4 and Noggin during cuprizone challenge did not alter numbers of oligodendrocytes or astrocytes in the corpus callosum compared with vehicle infused mice. Furthermore, electron microscopy analysis revealed no change in average myelin thickness in the corpus callosum between vehicle infused and BMP4-Noggin infused mice. Our results suggest that while single delivery of Noggin or IGF-1 increased the production of mature oligodendrocytes in vivo in the context of demyelination, only Noggin infusion promoted remyelination. Thus, sequential delivery of BMP4 and Noggin or IGF-1 does not further enhance myelin repair above what occurs with delivery of Noggin

  13. COGNITIVE-ENHANCING PROPERTIES OF MORINDA LUCIDA (RUBIACEAE) AND PELTOPHORUM PTEROCARPUM (FABACEAE) IN SCOPOLAMINE-INDUCED AMNESIC MICE.

    Science.gov (United States)

    O, Elufioye Taiwo; Halimah A, Hameed

    2017-01-01

    Cognitive disorders associated with aging have been successfully managed by African traditional medical practitioners using various plants. This study evaluated the cognitive enhancing potentials of Morinda lucida (L) Rubiaceae and Peltophorum pterocarpum (DC) ex. K Heyne in scopolamine induced amnesic animals. The anti-amnesic activity of the ethyl acetate extracts of Morinda lucida and Peltophorum pterocarpum at doses of 4 mg/kg, 6 mg/kg and 8 mg/kg were assessed in scopolamine induced amnesic mice using Morris water maze test model. Effect of the extracts on the histology of the hippocampus was also evaluated. The ethyl acetate extract of Morinda lucida and Peltophorum pterocarpum ameliorated scopolamine induced memory deficit in the animals under study. There was no effect of the extract on the histology of the hippocampus. However, there was an increase in the density of cells in the hippocampus of treated group as compared to the untreated. Morinda lucida and Peltophorum pterocarpum showed considerable enhancement of cognition in scopolamine induced amnesic mice.

  14. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice.

    Directory of Open Access Journals (Sweden)

    Marianne Quiding-Järbrink

    Full Text Available BACKGROUND: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. METHODOLOGY/PRINCIPAL FINDINGS: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. CONCLUSIONS/SIGNIFICANCE: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis.

  15. Human umbilical-cord-blood mononucleated cells enhance the survival of lethally irradiated mice. Dosage and the window of time

    International Nuclear Information System (INIS)

    Kovalenko, Olga A.; Ende, Norman; Azzam, Edouard I.

    2013-01-01

    The purpose of this study was to evaluate the window of time and dose of human umbilical-cord-blood (HUCB) mononucleated cells necessary for successful treatment of radiation injury in mice. Female A/J mice (27-30 weeks old) were exposed to an absorbed dose of 9-10 Gy of 137 Cs γ-rays delivered acutely to the whole body. They were treated either with 1 × 10 8 or 2 × 10 8 HUCB mononucleated cells at 24-52 h after the irradiation. The antibiotic Levaquin was applied 4 h postirradiation. The increased dose of cord-blood cells resulted in enhanced survival. The enhancement of survival in animals that received 2 × 10 8 HUCB mononucleated cells relative to irradiated but untreated animals was highly significant (P < 0.01). Compared with earlier studies, the increased dose of HUCB mononucleated cells, coupled with early use of an antibiotic, extended the window of time for effective treatment of severe radiation injury from 4 to 24-52 h after exposure. (author)

  16. Repetitive immunization enhances the susceptibility of mice to peripherally administered prions.

    Directory of Open Access Journals (Sweden)

    Juliane Bremer

    Full Text Available The susceptibility of humans and animals to prion infections is determined by the virulence of the infectious agent, by genetic modifiers, and by hitherto unknown host and environmental risk factors. While little is known about the latter two, the activation state of the immune system was surmised to influence prion susceptibility. Here we administered prions to mice that were repeatedly immunized by two initial injections of CpG oligodeoxynucleotides followed by repeated injections of bovine serum albumin/alum. Immunization greatly reduced the required dosage of peripherally administered prion inoculum necessary to induce scrapie in 50% of mice. No difference in susceptibility was observed following intracerebral prion challenge. Due to its profound impact onto scrapie susceptibility, the host immune status may determine disease penetrance after low-dose prion exposure, including those that may give rise to iatrogenic and variant Creutzfeldt-Jakob disease.

  17. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects.

    Directory of Open Access Journals (Sweden)

    Aviva Breuer

    Full Text Available Cannabidiol (CBD is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101 (1, is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors.

  18. Sugammadex-Enhanced Neuronal Apoptosis following Neonatal Sevoflurane Exposure in Mice

    Directory of Open Access Journals (Sweden)

    Maiko Satomoto

    2016-01-01

    Full Text Available In rodents, neonatal sevoflurane exposure induces neonatal apoptosis in the brain and results in learning deficits. Sugammadex is a new selective neuromuscular blockade (NMB binding agent that anesthesiologists can use to achieve immediate reversal of an NMB with few side effects. Given its molecular weight of 2178, sugammadex is thought to be unable to pass through the blood brain barrier (BBB. Volatile anesthetics can influence BBB opening and integrity. Therefore, we investigated whether the intraperitoneal administration of sugammadex could exacerbate neuronal damage following neonatal 2% sevoflurane exposure via changes in BBB integrity. Cleaved caspase-3 immunoblotting was used to detect apoptosis, and the ultrastructure of the BBB was examined by transmission electron microscopy. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice. Sugammadex alone without sevoflurane did not induce apoptosis. The coadministration of sugammadex with sevoflurane to neonatal mice caused a significant increase (150% in neuroapoptosis in the brain compared with 2% sevoflurane. In neonatal anesthesia, sugammadex could influence neurotoxicity together with sevoflurane. Exposure to 2% sevoflurane for 6 h resulted in BBB ultrastructural abnormalities in the hippocampus of neonatal mice.

  19. Intermittent feeding as a factor enhancing hemopoietic stem cell proliferation and spleen colony formation in irradiated mice

    International Nuclear Information System (INIS)

    Kozubik, A.; Pospisil, M.

    1985-01-01

    The influence of metabolic stimulation induced by a 3 weeks' adaption of the animals to intermittent food intake on hemopoietic stem cells was investigated in mice. The methods used included transplantation of bone marrow to lethally irradiated recipients, assay of CFUs number, seeding efficiency, and incorporation of 125 iodode oxyuridine into the DNA of spleen cells. A stimulatory effect of the metabolically influenced hemopoietic environment on the proliferative activity in stem cell compartments and on the recovery of hemopoietic organs was demonstrated. These stimulatory effects were most marked when the bone marrow of metabolically influenced donors was transplanted to similarly influenced recipients. (orig.)

  20. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Directory of Open Access Journals (Sweden)

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  1. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.

    Science.gov (United States)

    Cisterna, Barbara; Giagnacovo, Marzia; Costanzo, Manuela; Fattoretti, Patrizia; Zancanaro, Carlo; Pellicciari, Carlo; Malatesta, Manuela

    2016-05-01

    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age. © 2016 Anatomical Society.

  2. Light-dependant intraretinal ion regulation by melanopsin in young awake and free moving mice evaluated with manganese-enhanced MRI

    OpenAIRE

    Berkowitz, Bruce A.; Roberts, Robin; Bissig, David

    2010-01-01

    Purpose To test the hypothesis that in young, functionally blind mice, light-dependent intraretinal ion regulation occurs via melanopsin. Methods Postnatal day (P) 7 wild type (WT, C57Bl/6) and melanopsin knockout (KO, opn4−/−, B6129) mice were light or dark adapted. Awake and freely moving animals were injected intraperitoneally (ip) with MnCl2. Four hours later, the mice in both groups were anesthetized and studied with manganese-enhanced MRI (MEMRI) to measure the extent of intraretinal up...

  3. Enhanced efficacy of radiation-induced gene therapy in mice bearing lung adenocarcinoma xenografts using hypoxia responsive elements

    International Nuclear Information System (INIS)

    Wang Wei-dong; Chen Zheng-tang; Li De-zhi; Duan Yu-zhong; Cao Zheng-huai; Li Rong

    2005-01-01

    The aim of the present study was to investigate whether the hypoxia responsive element (HRE) could be used to enhance suicide gene (HSV-tk) expression and tumoricidal activity in radiation-controlled gene therapy of human lung adenocarcinoma xenografts. A chimeric promoter, HRE-Egr, was generated by directly linking a 0.3-kb fragment of HRE to a 0.6-kb human Egr-1 promoter. Retroviral vectors containing luciferase or the HSV-tk gene driven by Egr-1 or HRE-Egr were constructed. A human adenocarcinoma cell line (A549) was stably transfected with the above vectors using the lipofectamine method. The sensitivity of transfected cells to prodrug ganciclovir (GCV) and cell survival rates were analyzed after exposure to a dose of 2 Gy radiation and hypoxia (1%). In vivo, tumor xenografts in BALB/c mice were transfected with the constructed retroviruses and irradiated to a total dose of 6 Gy, followed by GCV treatment (20 mg/kg for 14 days). When the HSV-tk gene controlled by the HRE-Egr promoter was introduced into A549 cells by a retroviral vector, the exposure to 1% O 2 and 2 Gy radiation induced significant enhancement of GCV cytotoxicity to the cells. Moreover, in nude mice bearing solid tumor xenografts, only the tumors infected with the hybrid promoter-containing virus gradually disappeared after GCV administration and radiation. These results indicate that HRE can enhance transgene expression and tumoricidal activity in HSV-tk gene therapy controlled by ionizing radiation in hypoxic human lung adenocarcinoma. (author)

  4. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    Science.gov (United States)

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  5. The Combination of Antidepressant Duloxetine with Piracetam in Mice does not Produce Enhancement of Nootropic Activity

    OpenAIRE

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu; Sarkar, Amrita; Patel, Sonam; Savai, Jay

    2014-01-01

    There is a strong association between depression and memory impairment. The present study aims to assess the nootropic activity of duloxetine and piracetam combination. Male Swiss Albino mice were divided randomly into 4 groups. Treatment of normal saline (10 ml/kg), duloxetine (10 mg/kg), piracetam (100 mg/kg), and duloxetine (5 mg/kg) plus piracetam (50 mg/kg) were given through intra-peritoneal route to group I-IV, respectively. Transfer latency in elevated plus maze (EPM) and time spent i...

  6. Enhancement of radiomodulatory effect through liposome encapsulated radio-modifier on cancer bearing mice

    International Nuclear Information System (INIS)

    Alam, A.; Chakraborty, S.; Rapthap, C.; Sharan, R.N.

    1999-01-01

    Efficacy of a radioprotective drug, 2-mercaptopropionylglycine (MPG), in its free form and after its encapsulation into liposomes have been studied in normal and cancer bearing mice. Cancer was induced in micy by oral administration of aqueous extract of betel nut (AEBN) for 3 months. Radioprotection afforded by free MPG and liposome encapsulated MPG (LEM) in normal and cancerous tissue were evaluated by monitoring levels of glutathione (GSH) and γ-glutamyltranspeptidase (GGT) enzyme and state of structural organization of chromatin. The results of our studies reveal that in cancerous tissues LEM afforded better radioprotection than the free form of MPG. (orig.)

  7. Enhancement of radiomodulatory effect through liposome encapsulated radio-modifier on cancer bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Alam, A.; Chakraborty, S.; Rapthap, C. [North-Eastern Hill Univ., Shillong (India). Immunology Lab.; Srivastava, P.N. [Jawaharlal Nehru Univ., New Delhi (India); Sharan, R.N. [North-Eastern Hill Univ., Shillong (India). Dept. of Biochemistry

    1999-07-01

    Efficacy of a radioprotective drug, 2-mercaptopropionylglycine (MPG), in its free form and after its encapsulation into liposomes have been studied in normal and cancer bearing mice. Cancer was induced in micy by oral administration of aqueous extract of betel nut (AEBN) for 3 months. Radioprotection afforded by free MPG and liposome encapsulated MPG (LEM) in normal and cancerous tissue were evaluated by monitoring levels of glutathione (GSH) and {gamma}-glutamyltranspeptidase (GGT) enzyme and state of structural organization of chromatin. The results of our studies reveal that in cancerous tissues LEM afforded better radioprotection than the free form of MPG. (orig.)

  8. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi; Tanaka, Teruyuki

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  9. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    Directory of Open Access Journals (Sweden)

    Kosuke Okuda

    Full Text Available Mutations in the Cyclin-dependent kinase-like 5 (CDKL5 gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be

  10. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory

    Science.gov (United States)

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the

  11. Radiation enhances silica translocation to the pulmonary interstitium and increases fibrosis in mice

    International Nuclear Information System (INIS)

    Adamson, I.Y.R.

    1992-01-01

    The effects of whole body irradiation (WBR) on particle clearance and the development of pulmonary fibrosis have been investigated. Using carbon, clearance is accomplished by polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM), and only a few particles reach the interstitum. However, in preirradiated mice, the usual eflux of inflammatory cells is much delayed so that more free carbon remains in the alveoli, and by 1 week, many particles cross the epithelium to be phagocytized by interstitial macrophages. Carbon is found in the peribronchiolar interstitium 6 months later with no evidence of fibrosis. In the present study, mice received 1 mg silica intratracheally 2 days after 6.5 Gy WBR when the white blood cell count was low. A much-reduced Am and PMN response was found in the following 2 weeks compared to the reaction to silica alone, and many silica particles reached interstitial macrophages. In this case, macrophage activation by silica was associated with fibroblast proliferation, and by 16 weeks, much more pulmonary fibrosis was produced than after silica or irradiation only. This was measured biochemically and correlated with a large increase in retained silica in the irradiation-silica group. The results indicate that radiation inhibits the inflammatory response to particle instillation, resulting in greater translocation of free particles to the pulmonary interstitium. In the case of silica, the greater, prolonged interaction with interstitial macrophages leads to a much exaggerated fibrotic reaction. 17 refs., 11 figs

  12. Enhanced spermatogonial stem cell killing and reduced translocation yield from X-irradiated 101/H mice

    Energy Technology Data Exchange (ETDEWEB)

    Cattanach, B M; Kirk, M J

    1987-01-01

    The spermatogonial stem cells of 101/H mice have been found to be more sensitive to killing by acute X-ray doses than those of the 'standard' C3H/HeH x 101/H F/sub 1/ hybrid. Duration of the sterile period was longer throughout the 0.5-8.0-Gy dose range tested and 'recovered' testis weights, taken after recovery of fertility, were more severely reduced. The shapes of the sterile period dose-response curves were similar, but with the 101/H mice the plateau occurred at 3-5 Gy, rather than at 6 Gy. An equivalent observation was made with the testis weight data. The translocation dose-response curve was bell-shaped, as previously found with the hybrid, but yields were lower at all but the lowest doses. Notably, peak yields occurred at 3-5 Gy, rather than at 6 Gy. The altered stem cell killing and genetic responses may be explained either by a higher proportion of radiosensitive cells in the heterogeneous stem cell population or by a higher ratio of cell killing to recoverable chromosome damage which might imply a reduced repair capacity. (Auth.). 43 refs.; 5 figs.; 5 tabs.

  13. Enhanced antioxidant capacity following selenium supplemented antimalarial therapy in Plasmodium berghei infected mice

    Science.gov (United States)

    Adebayo, Abiodun Humphrey; Olasehinde, Grace Iyabo; Egbeola, Oluwaseun Ayodimeji; Yakubu, Omolara Faith; Adeyemi, Alaba Oladipupo; Adekeye, Bosede Temitope

    2018-04-01

    The effect of the co-administration of artemether, lumefantrine and selenium was studied in mice infected with Plasmodium bergheiparasite. The mice were divided into seven groups of six animals per group. All groups except A were parasitized. Group A (unparasitized/untreated) and B (parasitized/untreated) served as the positive and negative control respectively, these were administered with olive oil. Animals in groups C and D were treated with 8 and 48 mg/kg/bw of artemether and lumefantrine respectively while group E was treated with a combination of artemether and lumefantrine (8: 48 mg/kg/bw). Animals in group F were treated with 0.945 mg/kg/bw of selenium only and group G was treated with a combination of artemether, lumefantrine and selenium (8:48:0.945 mg/kg/bw). All the treatment was done for a three day period. These animals were subsequently anaesthetized and the organs were excised. Homogenates were prepared for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total protein, reduced Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) assays. The results showed a significant (pcells in group G when compared with group B. It may be concluded that the combination of artemether, lumefantrine and selenium showed a more potent effect against the parasite than the group treated with artemether and lumefantrine, thus, helps to combat post-infection oxidative stress in susceptible cells.

  14. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    Science.gov (United States)

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  15. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission.

    Science.gov (United States)

    Han, Sung; Tai, Chao; Westenbroek, Ruth E; Yu, Frank H; Cheah, Christine S; Potter, Gregory B; Rubenstein, John L; Scheuer, Todd; de la Iglesia, Horacio O; Catterall, William A

    2012-09-20

    Haploinsufficiency of the SCN1A gene encoding voltage-gated sodium channel Na(V)1.1 causes Dravet's syndrome, a childhood neuropsychiatric disorder including recurrent intractable seizures, cognitive deficit and autism-spectrum behaviours. The neural mechanisms responsible for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome are poorly understood. Here we report that mice with Scn1a haploinsufficiency exhibit hyperactivity, stereotyped behaviours, social interaction deficits and impaired context-dependent spatial memory. Olfactory sensitivity is retained, but novel food odours and social odours are aversive to Scn1a(+/-) mice. GABAergic neurotransmission is specifically impaired by this mutation, and selective deletion of Na(V)1.1 channels in forebrain interneurons is sufficient to cause these behavioural and cognitive impairments. Remarkably, treatment with low-dose clonazepam, a positive allosteric modulator of GABA(A) receptors, completely rescued the abnormal social behaviours and deficits in fear memory in the mouse model of Dravet's syndrome, demonstrating that they are caused by impaired GABAergic neurotransmission and not by neuronal damage from recurrent seizures. These results demonstrate a critical role for Na(V)1.1 channels in neuropsychiatric functions and provide a potential therapeutic strategy for cognitive deficit and autism-spectrum behaviours in Dravet's syndrome.

  16. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  17. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  18. Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yanli Zhao

    Full Text Available Heme oxygenase-1 (HO-1 has been implicated in cardiac dysfunction, oxidative stress, inflammation, apoptosis and autophagy associated with heart failure, and atherosclerosis, in addition to its recognized role in metabolic syndrome and diabetes. Numerous studies have presented contradictory findings about the role of HO-1 in diabetic cardiomyopathy (DCM. In this study, we explored the role of HO-1 in myocardial dysfunction, myofibril structure, oxidative stress, inflammation, apoptosis and autophagy using a streptozotocin (STZ-induced diabetes model in mice systemically overexpressing HO-1 (Tg-HO-1 or mutant HO-1 (Tg-mutHO-1. The diabetic mouse model was induced by multiple peritoneal injections of STZ. Two months after injection, left ventricular (LV function was measured by echocardiography. In addition, molecular biomarkers related to oxidative stress, inflammation, apoptosis and autophagy were evaluated using classical molecular biological/biochemical techniques. Mice with DCM exhibited severe LV dysfunction, myofibril structure disarray, aberrant cardiac oxidative stress, inflammation, apoptosis, autophagy and increased levels of HO-1. In addition, we determined that systemic overexpression of HO-1 ameliorated left ventricular dysfunction, myofibril structure disarray, oxidative stress, inflammation, apoptosis and autophagy in DCM mice. Furthermore, serine/threonine-specific protein kinase (Akt and AMP-activated protein kinase (AMPK phosphorylation is normally inhibited in DCM, but overexpression of the HO-1 gene restored the phosphorylation of these kinases to normal levels. In contrast, the functions of HO-1 in DCM were significantly reversed by overexpression of mutant HO-1. This study underlines the unique roles of HO-1, including the inhibition of oxidative stress, inflammation and apoptosis and the enhancement of autophagy, in the pathogenesis of DCM.

  19. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice.

    Science.gov (United States)

    Fan, Jing; Stemkowski, Patrick L; Gandini, Maria A; Black, Stefanie A; Zhang, Zizhen; Souza, Ivana A; Chen, Lina; Zamponi, Gerald W

    2016-01-01

    Genetic ablation of cellular prion protein (PrP(C)) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrP(C) profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrP(C). The amplitude of voltage sag, a characteristic of activating HCN channel current (I h), was decreased in null mice. Moreover, I h peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrP(C). These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  20. The L444P Gba1 mutation enhances alpha-synuclein induced loss of nigral dopaminergic neurons in mice

    Science.gov (United States)

    Migdalska-Richards, Anna; Wegrzynowicz, Michal; Rusconi, Raffaella; Deangeli, Giulio; Di Monte, Donato A; Spillantini, Maria G; Schapira, Anthony H V

    2017-01-01

    Abstract Mutations in glucocerebrosidase 1 (GBA1) represent the most prevalent risk factor for Parkinson’s disease. The molecular mechanisms underlying the link between GBA1 mutations and Parkinson’s disease are incompletely understood. We analysed two aged (24-month-old) Gba1 mouse models, one carrying a knock-out mutation and the other a L444P knock-in mutation. A significant reduction of glucocerebrosidase activity was associated with increased total alpha-synuclein accumulation in both these models. Gba1 mutations alone did not alter the number of nigral dopaminergic neurons nor striatal dopamine levels. We then investigated the effect of overexpression of human alpha-synuclein in the substantia nigra of aged (18 to 21-month-old) L444P Gba1 mice. Following intraparenchymal injections of human alpha-synuclein carrying viral vectors, pathological accumulation of phosphorylated alpha-synuclein occurred within the transduced neurons. Stereological counts of nigral dopaminergic neurons revealed a significantly greater cell loss in Gba1-mutant than wild-type mice. These results indicate that Gba1 deficiency enhances neuronal vulnerability to neurodegenerative processes triggered by increased alpha-synuclein expression. PMID:28969384

  1. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica.

    Directory of Open Access Journals (Sweden)

    Sha Zhou

    2016-10-01

    Full Text Available More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1 signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined.Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2 cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver.Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology.

  2. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  3. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J.

    1997-01-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 μg/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  4. Implantation of Neuronal Stem Cells Enhances Object Recognition without Increasing Neurogenesis after Lateral Fluid Percussion Injury in Mice

    Directory of Open Access Journals (Sweden)

    Laura B. Ngwenya

    2018-01-01

    Full Text Available Cognitive deficits after traumatic brain injury (TBI are debilitating and contribute to the morbidity and loss of productivity of over 10 million people worldwide. Cell transplantation has been linked to enhanced cognitive function after experimental traumatic brain injury, yet the mechanism of recovery is poorly understood. Since the hippocampus is a critical structure for learning and memory, supports adult neurogenesis, and is particularly vulnerable after TBI, we hypothesized that stem cell transplantation after TBI enhances cognitive recovery by modulation of endogenous hippocampal neurogenesis. We performed lateral fluid percussion injury (LFPI in adult mice and transplanted embryonic stem cell-derived neural progenitor cells (NPC. Our data confirm an injury-induced cognitive deficit in novel object recognition, a hippocampal-dependent learning task, which is reversed one week after NPC transplantation. While LFPI alone promotes hippocampal neurogenesis, as revealed by doublecortin immunolabeling of immature neurons, subsequent NPC transplantation prevents increased neurogenesis and is not associated with morphological maturation of endogenous injury-induced immature neurons. Thus, NPC transplantation enhances cognitive recovery early after LFPI without a concomitant increase in neuron numbers or maturation.

  5. [Immunomodulators of microbial origin enhance cytotoxicity of human mononuclear leukocytes and reduce metastatic progression of Lewis lung carcinoma in mice].

    Science.gov (United States)

    Akhmatova, N K; Semenova, I B; Donenko, F V; Kiselevskiĭ, M V; Kurbatova, E A; Egorova, N B

    2006-01-01

    Effect of immunomodulators for microbial origin on innate immunity and antitumor system was continued to study. Immunomodificator Immunovac VP-4, purified staphylococcal toxoid and glucosaminyl muramyl dipeptide (GMDP) equally enhanced cytotoxicity of mononuclear leukocytes of peripheral blood of healthy donors. Index of cytotoxicity was 2.78, 2.77 and 2.70 respectively. Reduced metastatic progression of Lewis lung carcinoma in mice was observed after Immunovac VP-4 and GMDP administration. Effectiveness was seen when preparations administered according to schedules including their administration before implantation of the tumor. If preparations were administered number of metastases reduced in 4.4-5.6 times and size of metastases reduced in 7-10 times. Interplay between antitumor activity of studied immunomodulators and cytotoxic activity of NK-cells, which are base effectors of antitumor immune response, are discussed.

  6. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis.

    Science.gov (United States)

    Zirngibl, Ralph A; Senis, Yotis; Greer, Peter A

    2002-04-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.

  7. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    Science.gov (United States)

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice

    Directory of Open Access Journals (Sweden)

    Zhao Meng

    2012-07-01

    Full Text Available Abstract Background Oxaliplatin, a platinum-based chemotherapeutic agent, causes an unusual acute peripheral neuropathy. Oxaliplatin-induced acute peripheral neuropathy appears in almost all patients rapidly after infusion, and is triggered or exacerbated by cold, while its mechanisms are poorly understood. In this study, the involvement of thermosensitive transient receptor potential channels (TRPA1, TRPM8 and TRPV1 in oxaliplatin-induced acute hypersensitivity was investigated in mice. Results A single intraperitoneal administration of oxaliplatin (1–10 mg/kg induced cold but not mechanical hypersensitivity within 2 h in a dose-dependent manner. Infusion of the oxaliplatin metabolite, oxalate (1.7 mg/kg, also induced acute cold hypersensitivity, while another platinum-based chemotherapeutic agent, cisplatin (5 mg/kg, or the non-platinum-containing chemotherapeutic agent, paclitaxel (6 mg/kg failed to induce mechanical or cold hypersensitivity. The oxaliplatin-induced acute cold hypersensitivity was abolished by the TRPA1 antagonist HC-030031 (100 mg/kg and by TRPA1 deficiency. The nocifensive behaviors evoked by intraplantar injections of allyl-isothiocyanate (AITC; TRPA1 agonist were significantly enhanced in mice treated for 2 h with oxaliplatin (1–10 mg/kg in a dose-dependent manner, while capsaicin (TRPV1 agonist-evoked nocifensive behaviors were not affected. Menthol (TRPM8/TRPA1 agonist-evoked nocifensive-like behaviors were also enhanced by oxaliplatin pretreatment, which were inhibited by TRPA1 deficiency. Similarly, oxalate enhanced, but neither cisplatin nor paclitaxel affected AITC-evoked nocifensive behaviors. Pretreatment of cultured mouse dorsal root ganglia (DRG neurons with oxaliplatin (30–300 μM for 1, 2, or 4 h significantly increased the number of AITC-sensitive neurons in a concentration-dependent manner whereas there was no change in the number of menthol- or capsaicin-sensitive neurons

  9. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M Azarniya

    2012-05-01

    Full Text Available

    Background and objectives

    Oxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.

    Methods

    In our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days.

    Results

    The results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.

    Conclusion

    The results show that oxymetholone decreases the ovarian growth and the rate of ovulation.

  11. 70-Day Supraphysiologic Dose of the Power-Enhancing Drug Oxymetholone: the Effects on Oogenesis in NMRI Mice

    Directory of Open Access Journals (Sweden)

    M. Azarniya

    2007-04-01

    Full Text Available Background and objectivesOxymetholone is an orally-administered active anabolic-androgenic steroid. This drug was synthesized in 1959. It is a 17α-methylated, 5α-saturated compound. It is used for the treatment of a variety of diseases including anemia, growth delay in children, myocardial damage in heart failure and treatment of HIV associated wasting. This is one of the drugs used in high doses by the doping athletes because of its anabolic effects and its influence on muscular mass. In this study, the effect of oxymetholone in supraphysiologic doses was evaluated on oogenesis in NMRI mice.MethodsIn our experiments, 12 mg/kg/day oxymetholone was injected intraperitoneally to 4- and 6-week old mice for 70 days. ResultsThe results demonstrated a significant difference between treatment and control groups after both 35 and 70 days of treatment. This drug led to significant decrease in the number of corpus lutea, decrease in the number of atretic follicles, decrease in the weight and diameter of ovaries, decrease in the diameter of granulosa layer, increase in number of primordial follicles, decrease in number of primary follicles, decrease in number of growing follicles, decrease in the number of graafian follicles, and decrease in the progesterone level. Additionally, disordered formation of granulosa layers and growing of oocytes in antra, anomaly of the ovular medulla and formation of two oocytes in one folliculus were observed in some mice.ConclusionThe results show that oxymetholone decreases the ovarian growth and the rate of ovulation. Keywords: Oxymetholone; Anabolic Steroid; Oogenesis; Androgens

  12. Enhanced humoral and HLA-A2-restricted dengue virus-specific T-cell responses in humanized BLT NSG mice

    Science.gov (United States)

    Jaiswal, Smita; Pazoles, Pamela; Woda, Marcia; Shultz, Leonard D; Greiner, Dale L; Brehm, Michael A; Mathew, Anuja

    2012-01-01

    Dengue is a mosquito-borne viral disease of humans, and animal models that recapitulate human immune responses or dengue pathogenesis are needed to understand the pathogenesis of the disease. We recently described an animal model for dengue virus (DENV) infection using humanized NOD-scid IL2rγnull mice (NSG) engrafted with cord blood haematopoietic stem cells. We sought to further improve this model by co-transplantation of human fetal thymus and liver tissues into NSG (BLT-NSG) mice. Enhanced DENV-specific antibody titres were found in the sera of BLT-NSG mice compared with human cord blood haematopoietic stem cell-engrafted NSG mice. Furthermore, B cells generated during the acute phase and in memory from splenocytes of immunized BLT-NSG mice secreted DENV-specific IgM antibodies with neutralizing activity. Human T cells in engrafted BLT-NSG mice secreted interferon-γ in response to overlapping DENV peptide pools and HLA-A2 restricted peptides. The BLT-NSG mice will allow assessment of human immune responses to DENV vaccines and the effects of previous immunity on subsequent DENV infections. PMID:22384859

  13. Enhancement of radial maze performances in CD1 mice after prenatal exposure to oxiracetam: possible role of sustained investigative responses developed during ontogeny.

    Science.gov (United States)

    Ammassari-Teule, M; D'Amato, F R; Sansone, M; Oliverio, A

    1988-01-01

    A longitudinal study aimed at analyzing the behavioral effects of prenatal exposure to the nootropic compound oxiracetam was carried out in CD1 mice. Two groups of females were injected either with oxiracetam or saline from the beginning of pregnancy until parturition. Examination of pups from birth until the first month of age revealed no-influence of the treatment on litter size, body weights, sensory motor reflexes and motility. When placed in the open field at one month of age, mice born by mothers exposed to oxiracetam displayed more self grooming and spent less time in freezing than control mice. Prenatally treated mice were then found more interactive with their environment since the introduction of a novel object in the open field was followed by increased ambulation and higher sniffing object and rearing object scores. At three months of age, mice from both groups were tested in a radial six-arm maze task. Choice accuracy was significantly higher in prenatally treated mice which also tended to optimize their exploratory sequences by frequently running the maze in a clock-wise fashion. These results suggest that the better learning performances observed in the experimental group could be viewed as a consequence of an enhanced cognitive development based upon the higher rate of interactions with the environment shown by prenatally treated mice during ontogeny.

  14. Memory-enhancing effect of Rhodiola rosea L extract on aged mice

    African Journals Online (AJOL)

    Purpose: The memory-enhancing effects of Rhodiola rosea L. extract (RRLE) ... was obtained from about 1.8 g dried sample, i.e., ... height) with a video camera fixed at the top, and .... Rg1 and Rb1 for their effects on improving scopolamine-.

  15. Tumor vessels and contrast enhancement of hepatocellular carcinoma demonstrated by percutaneous transhepatic portography. Report of a case

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, I.; Minami, S.; Tsutsui, K.; Imura, T.; Asano, M.; Kitamura, O.; Matsumoto, M.; Ozawa, K.; Torizuka, K.

    A patient with an Edmondson type I-II hepatocellular carcinoma had, at celiac angiography, a poor arterial supply but a rich portal supply as observed at percutaneous transhepatic portography, an observation not previously reported in this disease. The importance of demonstrating the vascular supply of the tumor previous to planned intravascular treatment is obvious.

  16. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  17. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model.

    Science.gov (United States)

    Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M

    2009-06-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.

  18. Dietary supplementation with Lactobacilli improves emergency granulopoiesis in protein-malnourished mice and enhances respiratory innate immune response.

    Directory of Open Access Journals (Sweden)

    Matias Herrera

    Full Text Available This work studied the effect of protein malnutrition on the hemato-immune response to the respiratory challenge with Streptococcus pneumoniae and evaluated whether the dietary recovery with a probiotic strain has a beneficial effect in that response. Three important conclusions can be inferred from the results presented in this work: a protein-malnutrition significantly impairs the emergency myelopoiesis induced by the generation of the innate immune response against pneumococcal infection; b repletion of malnourished mice with treatments including nasally or orally administered Lactobacillus rhamnosus CRL1505 are able to significantly accelerate the recovery of granulopoiesis and improve innate immunity and; c the immunological mechanisms involved in the protective effect of immunobiotics vary according to the route of administration. The study demonstrated that dietary recovery of malnourished mice with oral or nasal administration of L. rhamnosus CRL1505 improves emergency granulopoiesis and that CXCR4/CXCR12 signaling would be involved in this effect. Then, the results summarized here are a starting point for future research and open up broad prospects for future applications of probiotics in the recovery of immunocompromised malnourished hosts.

  19. Mice with diet-induced obesity demonstrate a relative prothrombotic factor profile and a thicker aorta with reduced ex-vivo function.

    Science.gov (United States)

    Uner, Aykut G; Unsal, Cengiz; Unsal, Humeyra; Erdogan, Mumin A; Koc, Ece; Ekici, Mehmet; Avci, Hamdi; Balkaya, Muharrem; Belge, Ferda; Tarin, Lokman

    2018-04-01

    : Classical risk factors such as cholesterol and lipoproteins are currently not sufficient to explain all physiopathological processes of obesity-related vascular dysfunction as well as atherosclerosis and arteriosclerosis. Therefore, the discovery of potential markers involved in vascular dysfunction in the obese state is still needed. Disturbances in hemostatic factors may be involved in the developmental processes associated with obesity-related cardiovascular disorders. We hypothesized that alterations of several hemostatic factors in the obese state could correlate with the function and morphology of the aorta and it could play an important role in the development of vascular dysfunction. To test this, we fed mice with a high-fat diet for 18 weeks and investigated the relationships between selected hemostatic factors (in either plasma or in the liver), metabolic hormones and morphology, and ex-vivo function of the aorta. Here, we show that 18-week exposure to a high-fat diet results in a higher plasma fibrinogen and prolonged prothrombin time in diet-induced obese mice compared to the controls. In addition, liver levels or activities of FII, FX, activated protein C, AT-III, and protein S are significantly different in diet-induced obese mice as compared to the controls. Curiously, FII, FVIII, FX, activated protein C, PTT, and protein S are correlated with both the aorta histology (aortic thickness and diameter) and ex-vivo aortic function. Notably, ex-vivo studies revealed that diet-induced obese mice show a marked attenuation in the functions of the aorta. Taken together, aforementioned hemostatic factors may be considered as critical markers for obesity-related vascular dysfunction and they could play important roles in diagnosing of the dysfunction.

  20. Enhancing DC Glow Discharge Tube Museuum Displays using a Theremin Controlled Helmholtz Coil to Demonstrate Magnetic Confinement

    Science.gov (United States)

    Siu, Theodore; Wissel, Stephanie; Guttadora, Larry; Liao, Susan; Zwicker, Andrew

    2010-11-01

    Since their discovery in the mid 1800's, DC glow discharge apparatuses have commonly been used for spectral analysis, the demonstration of the Frank-Hertz experiment, and to study plasma breakdown voltages following from the Paschen Curve. A DC glow discharge tube museum display was outfitted with a Helmholtz Coil electromagnet in order to demonstrate magnetic confinement for a science museum display. A device commonly known as a ``theremin'' was designed and built in order to externally control the Helmholtz Coil current and the plasma current. Originally a musical instrument, a theremin has two variable capacitors connected to two radio frequency oscillators which determine pitch and volume. Using a theremin to control current and ``play'' the plasma adds appeal and durability by providing a new innovative means of interacting with a museum exhibit. Educationally, students can use the display to not only learn about plasma properties but also electronic properties of the human body.

  1. Agmatine enhances antidepressant potency of MK-801 and conventional antidepressants in mice.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Manosso, Luana Meller; Lopes, Mark W; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2015-03-01

    Agmatine, an endogenous guanidine amine, has been shown to produce antidepressant-like effects in animal studies. This study investigated the effects of the combined administration of agmatine with either conventional monoaminergic antidepressants or the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 in the tail suspension test (TST) in mice. The aim was to evaluate the extent of the antidepressant synergism by examining the ability of a fixed dose of agmatine to shift the antidepressant potency of fluoxetine, imipramine, bupropion and MK-801. A sub-effective dose of agmatine (0.0001 mg/kg, p.o.) significantly increased the potency by which fluoxetine, imipramine, bupropion and MK-801 decreased immobility time in the TST by 2-fold (fluoxetine), 10-fold (imipramine and bupropion) and 100-fold (MK-801). Combined with previous evidence indicating a role of monoaminergic systems in the effect of agmatine, the current data suggest that agmatine may modulate monoaminergic neurotransmission and augment the activity of conventional antidepressants. Moreover, this study found that agmatine substantially augmented the antidepressant-like effect of MK-801, reinforcing the notion that this compound modulates NMDA receptor activation. These preclinical data may stimulate future clinical studies testing the effects of augmentation therapy with agmatine for the management of depressive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The Combination of Antidepressant Duloxetine with Piracetam in Mice does not Produce Enhancement of Nootropic Activity.

    Science.gov (United States)

    Kale, Pravin Popatrao; Addepalli, Veeranjaneyulu; Sarkar, Amrita; Patel, Sonam; Savai, Jay

    2014-09-01

    There is a strong association between depression and memory impairment. The present study aims to assess the nootropic activity of duloxetine and piracetam combination. Male Swiss Albino mice were divided randomly into 4 groups. Treatment of normal saline (10 ml/kg), duloxetine (10 mg/kg), piracetam (100 mg/kg), and duloxetine (5 mg/kg) plus piracetam (50 mg/kg) were given through intra-peritoneal route to group I-IV, respectively. Transfer latency in elevated plus maze (EPM) and time spent in target quadrant in Morris water maze (MWM) were recorded. Estimation of brain monoamines in hippocampus, cerebral cortex, and whole brain were done using HPLC with fluorescence detector. Piracetam treated group showed significant decrease in transfer latency in EPM and increase in time spent in target quadrant recorded in MWM. Combination treated group failed to produce statistically significant nootropic effect in both EPM and MWM. Combination treated group failed to increase brain monoamine levels when compared against duloxetine and piracetam treated groups, separately. But there was exception of significant increase in norepinephrine levels in hippocampi when compared against duloxetine treated group. Results indicate no cognitive benefits with piracetam plus duloxetine combination. These findings can be further probed with the aim of understanding the interaction between duloxetine and piracetam as a future endeavor.

  3. Fenofibrate Enhances the In Vitro Differentiation of Foxp3+ Regulatory T Cells in Mice

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-01-01

    Full Text Available Foxp3+ regulatory T cells (Tregs play a critical role in maintaining immune self-tolerance. Reduced number and activity of Tregs are usually found in autoimmune and inflammatory diseases, and enhancing the differentiation of Tregs may be a promising therapeutic strategy. Some reports suggested an anti-inflammatory and anti-autoimmune potential for fenofibrate, a hypolipidemic drug used worldwide, whose lipid effects are mediated by the activation of peroxisome proliferator-activated receptor (PPAR. In the present paper, we found that fenofibrate dose-dependently increased transforming growth factor- and interleukin-2-induced Treg differentiation in vitro, by 1.96-fold from 0 to 20 M (12.59±1.34% to 24.69±3.03%, <0.05. Other PPAR activators, WY14643 (100 M, gemfibrozil (50 M, and bezafibrate (30 M, could not enhance Treg differentiation. In addition, PPAR could not upregulate the promoter activity of the Treg-specific transcription factor Foxp3. Fenofibrate might exert its function by enhancing Smad3 phosphorylation, a critical signal in Treg differentiation, via Akt suppression. Our work reveals a new PPAR independent anti-inflammatory mechanism of fenofibrate in up-regulating mouse Treg differentiation.

  4. The enhancement of haemopoietic stem cell recovery in irradiated mice by prior treatment with cyclophosphamide

    International Nuclear Information System (INIS)

    Blackett, N.M.; Aguado, M.

    1979-01-01

    Studies are reported of the enhancement of stem cell recovery following whole body irradiation as a result of prior administration of cyclophosphamide. It is shown that the much larger enhancement of regeneration observed for the hosts own surviving stem cells, compared to the regeneration of injected bone marrow stem cells, is due to the different numbers of stem cells initiating the regeneration in conjunction with the time course of stem cell regeneration. The results show that the environmental changes produced by cyclophosphamide greatly enhance haemopoietic recovery even though at the dose used this agent is relatively toxic to stem cells. Furthermore it has been shown that the level of stem cell regeneration is nearly independent of the γ-ray dose in the range 3-8 gray (300-800 rad). If human bone marrow should respond similarly it follows that regeneration produced by cytotoxic drugs administered prior to radiation embodies a considerable safety factor as far as recovery of the haemopoietic system is concerned. (author)

  5. Conditionally immortalized human pancreatic stellate cell lines demonstrate enhanced proliferation and migration in response to IGF-I

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl, Ann H., E-mail: ann.rosendahl@med.lu.se [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Lund University and Skåne University Hospital, Department of Clinical Sciences Lund, Division of Oncology and Pathology, Lund (Sweden); Gundewar, Chinmay; Said Hilmersson, Katarzyna [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden); Ni, Lan; Saleem, Moin A. [University of Bristol, School of Clinical Sciences, Children' s Renal Unit and Academic Renal Unit, Bristol (United Kingdom); Andersson, Roland [Lund University, Department of Clinical Sciences Lund, Division of Surgery, Lund (Sweden)

    2015-01-15

    Pancreatic stellate cells (PSCs) play a key role in the dense desmoplastic stroma associated with pancreatic ductal adenocarcinoma. Studies on human PSCs have been minimal due to difficulty in maintaining primary PSC in culture. We have generated the first conditionally immortalized human non-tumor (NPSC) and tumor-derived (TPSC) pancreatic stellate cells via transformation with the temperature-sensitive SV40 large T antigen and human telomerase (hTERT). These cells proliferate at 33°C. After transfer to 37°C, the SV40LT is switched off and the cells regain their primary PSC phenotype and growth characteristics. NPSC contained cytoplasmic vitamin A-storing lipid droplets, while both NPSC and TPSC expressed the characteristic markers αSMA, vimentin, desmin and GFAP. Proteome array analysis revealed that of the 55 evaluated proteins, 27 (49%) were upregulated ≥3-fold in TPSC compared to NPSC, including uPA, pentraxin-3, endoglin and endothelin-1. Two insulin-like growth factor binding proteins (IGFBPs) were inversely expressed. Although discordant IGFBP-2 and IGFBP-3 levels, IGF-I was found to stimulate proliferation of both NPSC and TPSC. Both basal and IGF-I stimulated motility was significantly enhanced in TPSC compared to NPSC. In conclusion, these cells provide a unique resource that will facilitate further study of the active stroma compartment associated with pancreatic cancer. - Highlights: • Generation of human conditionally immortalized human pancreatic stellate cell lines. • Temperature-sensitive SV40LT allows switch to primary PSC phenotype characteristics. • Proteome profiling revealed distinct expression patterns between TPSC and NPSC. • Enhanced IGF-I-stimulated proliferation and motility by TPSC compared to NPSC.

  6. Enhanced resistance to herpes simplex virus type 1 infection in transgenic mice expressing a soluble form of herpesvirus entry mediator

    International Nuclear Information System (INIS)

    Ono, Etsuro; Yoshino, Saori; Amagai, Keiko; Taharaguchi, Satoshi; Kimura, Chiemi; Morimoto, Junko; Inobe, Manabu; Uenishi, Tomoko; Uede, Toshimitsu

    2004-01-01

    Herpesvirus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor family used as a cellular receptor by virion glycoprotein D (gD) of herpes simplex virus (HSV). Both human and mouse forms of HVEM can mediate entry of HSV-1 but have no entry activity for pseudorabies virus (PRV). To assess the antiviral potential of HVEM in vivo, three transgenic mouse lines expressing a soluble form of HVEM (HVEMIg) consisting of an extracellular domain of murine HVEM and the Fc portion of human IgG1 were generated. All of the transgenic mouse lines showed marked resistance to HSV-1 infection when the mice were challenged intraperitoneally with HSV-1, but not to PRV infection. The present results demonstrate that HVEMIg is able to exert a significant antiviral effect against HSV-1 infection in vivo

  7. Description and Demonstration of Cognitive Behavioral Therapy to Enhance Antiretroviral Therapy Adherence and Treat Depression in HIV-Infected Adults.

    Science.gov (United States)

    Newcomb, Michael E; Bedoya, C Andres; Blashill, Aaron J; Lerner, Jonathan A; O'Cleirigh, Conall; Pinkston, Megan M; Safren, Steven A

    2015-11-01

    There are an estimated 1.1 million individuals living with HIV/AIDS in the United States. In addition to the various medical comorbidities of HIV infection, depression is one of the most frequently co-occurring psychiatric conditions among HIV-infected individuals. Furthermore, depression has been found to be associated with nonadherence to antiretroviral therapy (ART), as well as HIV disease progression. Cognitive behavioral therapy (CBT) has repeatedly been found to effectively treat depression in adult populations, and CBT for adherence and depression (CBT-AD) is an effective treatment for improving depressive symptoms and medication adherence in the context of various chronic health conditions, including diabetes and HIV-infection. This paper provides a description of the CBT-AD approach to treat depression and ART adherence in HIV-infected adults, which we have developed and tested in our clinic, and for which detailed therapist and client guides exist. To augment the description of treatment, the present article provides video component demonstrations of several core modules that highlight important aspects of this treatment, including Life-Steps for medication adherence, orientation to CBT-AD and psychoeducation, and suggestions for adaptation of core CBT modules for HIV-infected adults. Discussion of video demonstrations highlights differences in patient presentations and course of treatment between HIV-infected adults receiving CBT-AD and HIV-uninfected adults receiving traditional CBT for depression. This description and the accompanying demonstrations are intended as a practical guide to assist therapists wishing to conduct such a treatment in the outpatient setting.

  8. Reacceleration experiment to demonstrate the concept of efficiency enhancement in a relativistic klystron two-beam accelerator

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Houck, T.L.

    1993-05-01

    High conversion efficiency of electro beam energy to rf energy can be achieved in two-beam accelerators using reacceleration of the bunched drive beam. To study issues with these designs we are planning a demonstration in which a modulated beam's energy is boosted as it passes through induction accelerator cells. For this experiment we will use the front end of the Choppertron to modulate a 5 MeV electron beam at 11.4 GHz. We have now tested the 5-MeV Choppertron and are reporting on the results. For the reacceleration experiment we plan to use three stages of rf power extraction interspersed with two stages of reacceleration

  9. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice.

    Science.gov (United States)

    Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong

    2012-07-27

    Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Use of a platform in an automated open-field to enhance assessment of anxiety-like behaviors in mice.

    Science.gov (United States)

    Pogorelov, Vladimir M; Lanthorn, Thomas H; Savelieva, Katerina V

    2007-05-15

    The present report describes a setup for simultaneously measuring anxiety-like behaviors and locomotor activity in mice. Animals are placed in a brightly lit, standard automated open-field (OF) in which a rectangular ceramic platform 8 cm high covers one quadrant of the floor. Mice preferred to stay under the platform, avoiding the area with bright illumination. Activities under and outside the platform were measured for 5 min. Chlordiazepoxide and buspirone dose-dependently increased time spent outside the platform (L-Time) and the light distance to total OF distance ratio (L:T-TD) in both genders without changing total OF distance. By contrast, amphetamine decreased L-Time and L:T-TD in males, thus displaying an anxiogenic effect. Imipramine was without selective effect on L-Time or L:T-TD, but decreased total OF distance at the highest dose indicative of a sedative effect. Drug effects were also evaluated in the OF without platform using conventional anxiety measures. Introduction of the platform into the OF apparatus strongly enhanced the sensitivity to anxiolytics. Comparison of strains differing in activity or anxiety levels showed that L-Time and L:T-TD can be used as measures of anxiety-like behavior independent of locomotor activity. Changes in motor activity are reflected in the total distance traveled under and outside the platform. Therefore, the platform test is fully automated, sensitive to both anxiolytic and anxiogenic effects of drugs and genetic phenotypes with little evidence of gender-specific responses, and can be easily utilized by most laboratories measuring behavior.

  11. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice

    Science.gov (United States)

    Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided. PMID:26633878

  12. Ethanol extract of Portulaca Oleracea L. reduced the carbon tetrachloride induced liver injury in mice involving enhancement of NF-κB activity

    Science.gov (United States)

    Shi, Hongguang; Liu, Xuefeng; Tang, Gusheng; Liu, Haiyan; Zhang, Yinghui; Zhang, Bo; Zhao, Xuezhi; Wang, Wanyin

    2014-01-01

    Acute hepatic injury causes high morbidity and mortality world-wide. Management of severe acute hepatic failure continues to be one of the most challenging problems in clinical medicine. In present study, carbon tetrachloride (CCl4) was used to induce acute liver damage in mice and the protective effects of ethanol extract of Portulaca Oleracea L. (PO) were examined. The aminotransferase activities were biochemical estimated and the liver damage was tested by morphological histological analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. The role of PO on the activity of NF-κB was determined by luciferase reporter gene assay and immunohistochemistry. The level of p-p65 was tested by western blot. Our results showed that PO administration on mice would decrease the serum aminotransferase level and reduced the liver histological damage. We also found that nuclear translocation of p65 was enhanced in liver tissues of mice treated with PO compared with control animals. In addition, in cultured hepatic cells, PO increased the NF-κB luciferase reporter gene activity and upregulated the level of phosphorylation of p65, but had no effects on mice liver SOD activity and MDA level. Collectively, PO attenuated CCl4 induced mice liver damage by enhancement of NF-κB activity. PMID:25628785

  13. Enhanced GABA action on the substantia gelatinosa neurons of the medullary dorsal horn in the offspring of streptozotocin-injected mice.

    Science.gov (United States)

    Nguyen, Hoang Thi Thanh; Bhattarai, Janardhan Prasad; Park, Soo Joung; Lee, Jeong Chae; Cho, Dong Hyu; Han, Seong Kyu

    2015-07-01

    larger than those of control mice. These results demonstrate that SG neurons in offspring from diabetic mice are more sensitive to GABA compared to control mice, suggesting that GABA sensitivity may alter orofacial pain processing in offspring from diabetic female mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Fusion of the Mycobacterium tuberculosis antigen 85A to an oligomerization domain enhances its immunogenicity in both mice and non-human primates.

    Directory of Open Access Journals (Sweden)

    Alexandra J Spencer

    Full Text Available To prevent important infectious diseases such as tuberculosis, malaria and HIV, vaccines inducing greater T cell responses are required. In this study, we investigated whether fusion of the M. tuberculosis antigen 85A to recently described adjuvant IMX313, a hybrid avian C4bp oligomerization domain, could increase T cell responses in pre-clinical vaccine model species. In mice, the fused antigen 85A showed consistent increases in CD4(+ and CD8(+ T cell responses after DNA and MVA vaccination. In rhesus macaques, higher IFN-γ responses were observed in animals vaccinated with MVA-Ag85A IMX313 after both primary and secondary immunizations. In both animal models, fusion to IMX313 induced a quantitative enhancement in the response without altering its quality: multifunctional cytokines were uniformly increased and differentiation into effector and memory T cell subsets was augmented rather than skewed. An extensive in vivo characterization suggests that IMX313 improves the initiation of immune responses as an increase in antigen 85A specific cells was observed as early as day 3 after vaccination. This report demonstrates that antigen multimerization using IMX313 is a simple and effective cross-species method to improve vaccine immunogenicity with potentially broad applicability.

  15. Zika Virus Infection in Dexamethasone-immunosuppressed Mice Demonstrating Disseminated Infection with Multi-organ Involvement Including Orchitis Effectively Treated by Recombinant Type I Interferons.

    Science.gov (United States)

    Chan, Jasper Fuk-Woo; Zhang, Anna Jinxia; Chan, Chris Chung-Sing; Yip, Cyril Chik-Yan; Mak, Winger Wing-Nga; Zhu, Houshun; Poon, Vincent Kwok-Man; Tee, Kah-Meng; Zhu, Zheng; Cai, Jian-Piao; Tsang, Jessica Oi-Ling; Chik, Kenn Ka-Heng; Yin, Feifei; Chan, Kwok-Hung; Kok, Kin-Hang; Jin, Dong-Yan; Au-Yeung, Rex Kwok-Him; Yuen, Kwok-Yung

    2016-12-01

    Disseminated or fatal Zika virus (ZIKV) infections were reported in immunosuppressed patients. Existing interferon-signaling/receptor-deficient mouse models may not be suitable for evaluating treatment effects of recombinant interferons. We developed a novel mouse model for ZIKV infection by immunosuppressing BALB/c mice with dexamethasone. Dexamethasone-immunosuppressed male mice (6-8weeks) developed disseminated infection as evidenced by the detection of ZIKV-NS1 protein expression and high viral loads in multiple organs. They had ≥10% weight loss and high clinical scores soon after dexamethasone withdrawal (10dpi), which warranted euthanasia at 12dpi. Viral loads in blood and most tissues at 5dpi were significantly higher than those at 12dpi (Pvirus dissemination, inflammation of various tissues, especially orchitis, may be potential complications of ZIKV infection with significant implications on disease transmission and male fertility. Interferon treatment should be considered in patients at high risks for ZIKV-associated complications when the potential benefits outweigh the side effects of treatment. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Effect of cadmium chloride on hepatic lipid peroxidation in mice

    DEFF Research Database (Denmark)

    Andersen, H R; Andersen, O

    1988-01-01

    Intraperitoneal administration of cadmium chloride to 8-12 weeks old CBA-mice enhanced hepatic lipid peroxidation. A positive correlation between cadmium chloride dose and level of peroxidation was observed in both male and female mice. A sex-related difference in mortality was not observed...... but at a dose of 25 mumol CdCl2/kg the level of hepatic lipid peroxidation was higher in male mice than in female mice. The hepatic lipid peroxidation was not increased above the control level in 3 weeks old mice, while 6 weeks old mice responded with increased peroxidation as did 8-12 weeks old mice....... The mortality after an acute toxic dose of cadmium chloride was the same in the three age groups. Pretreatment of mice with several low intraperitoneal doses of cadmium chloride alleviated cadmium induced mortality and lipid peroxidation. The results demonstrate both age dependency and a protective effect...

  17. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  18. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  19. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    Science.gov (United States)

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  20. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  1. Recombinant Secreted Antigens from Mycoplasma hyopneumoniae Delivered as a Cocktail Vaccine Enhance the Immune Response of Mice

    Science.gov (United States)

    Galli, Vanessa; Simionatto, Simone; Marchioro, Silvana Beutinger; Klabunde, Gustavo Henrique Ferrero; Conceição, Fabricio Rochedo

    2013-01-01

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (EP), which is a respiratory disease responsible for huge economic losses in the pig industry worldwide. The commercially available vaccines provide only partial protection and are expensive. Thus, the development of alternatives for the prophylaxis of EP is critical for improving pig health. The use of multiple antigens in the same immunization may represent a promising alternative. In the present study, seven secreted proteins of M. hyopneumoniae were cloned, expressed in Escherichia coli, and evaluated for antigenicity using serum from naturally and experimentally infected pigs. In addition, the immunogenicity of the seven recombinant proteins delivered individually or in protein cocktail vaccines was evaluated in mice. In Western blot assays and enzyme-linked immunosorbent assays, most of the recombinant proteins evaluated were recognized by convalescent-phase serum from the animals, indicating that they are expressed during the infectious process. The recombinant proteins were also immunogenic, and most induced a mixed IgG1/IgG2a humoral immune response. The use of these proteins in a cocktail vaccine formulation enhanced the immune response compared to their use as antigens delivered individually, providing evidence of the efficacy of the multiple-antigen administration strategy for the induction of an immune response against M. hyopneumoniae. PMID:23803903

  2. X-231A demonstration of in-situ remediation of DNAPL compounds in low permeability media by soil fracturing with thermally enhanced mass recovery or reactive barrier destruction

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Slack, W.W.; Houk, T.C.

    1998-03-01

    The overall goal of the program of activities is to demonstrate robust and cost-effective technologies for in situ remediation of DNAPL compounds in low permeability media (LPM), including adaptations and enhancements of conventional technologies to achieve improved performance for DNAPLs in LPM. The technologies sought should be potential for application at simple, small sites (e.g., gasoline underground storage tanks) as well as at complex, larger sites (e.g., DOE land treatment units). The technologies involved in the X-231A demonstration at Portsmouth Gaseous Diffusion Plant (PORTS) utilized subsurface manipulation of the LPM through soil fracturing with thermally enhanced mass recovery or horizontal barrier in place destruction. To enable field evaluation of these approaches, a set of four test cells was established at the X-231A land treatment unit at the DOE PORTS plant in August 1996 and a series of demonstration field activities occurred through December 1997. The principal objectives of the PORTS X-231A demonstration were to: determine and compare the operational features of hydraulic fractures as an enabling technology for steam and hot air enhanced soil vapor extraction and mass recovery, in situ interception and reductive destruction by zero valent iron, and in situ interception and oxidative destruction by potassium permanganate; determine the interaction of the delivered agents with the LPM matrix adjacent to the fracture and within the fractured zone and assess the beneficial modifications to the transport and/or reaction properties of the LPM deposit; and determine the remediation efficiency achieved by each of the technology strategies

  3. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage.

    Directory of Open Access Journals (Sweden)

    Julia María Martínez Gómez

    2016-03-01

    Full Text Available Epidemiological studies have reported that most of the severe dengue cases occur upon a secondary heterologous infection. Furthermore, babies born to dengue immune mothers are at greater risk of developing severe disease upon primary infection with a heterologous or homologous dengue virus (DENV serotype when maternal antibodies reach sub-neutralizing concentrations. These observations have been explained by the antibody mediated disease enhancement (ADE phenomenon whereby heterologous antibodies or sub-neutralizing homologous antibodies bind to but fail to neutralize DENV particles, allowing Fc-receptor mediated entry of the virus-antibody complexes into host cells. This eventually results in enhanced viral replication and heightened inflammatory responses. In an attempt to replicate this ADE phenomenon in a mouse model, we previously reported that upon DENV2 infection 5-week old type I and II interferon (IFN receptors-deficient mice (AG129 born to DENV1-immune mothers displayed enhancement of disease severity characterized by increased virus titers and extensive vascular leakage which eventually led to the animals' death. However, as dengue occurs in immune competent individuals, we sought to reproduce this mouse model in a less immunocompromised background. Here, we report an ADE model that is mediated by maternal antibodies in type I IFN receptor-deficient A129 mice. We show that 5-week old A129 mice born to DENV1-immune mothers succumbed to a DENV2 infection within 4 days that was sub-lethal in mice born to naïve mothers. Clinical manifestations included extensive hepatocyte vacuolation, moderate vascular leakage, lymphopenia, and thrombocytopenia. Anti-TNFα therapy totally protected the mice and correlated with healthy hepatocytes. In contrast, blocking IL-6 did not impact the virus titers or disease outcome. This A129 mouse model of ADE may help dissecting the mechanisms involved in dengue pathogenesis and evaluate the efficacy of

  4. Stimulation of the sigma-1 receptor by DHEA enhances synaptic efficacy and neurogenesis in the hippocampal dentate gyrus of olfactory bulbectomized mice.

    Directory of Open Access Journals (Sweden)

    Shigeki Moriguchi

    Full Text Available Dehydroepiandrosterone (DHEA is the most abundant neurosteroid synthesized de novo in the central nervous system. We previously reported that stimulation of the sigma-1 receptor by DHEA improves cognitive function by activating calcium/calmodulin-dependent protein kinase II (CaMKII, protein kinase C and extracellular signal-regulated kinase in the hippocampus in olfactory bulbectomized (OBX mice. Here, we asked whether DHEA enhances neurogenesis in the subgranular zone of the hippocampal dentate gyrus (DG and improves depressive-like behaviors observed in OBX mice. Chronic treatment with DHEA at 30 or 60 mg/kg p.o. for 14 days significantly improved hippocampal LTP impaired in OBX mice concomitant with increased CaMKII autophosphorylation and GluR1 (Ser-831 phosphorylation in the DG. Chronic DHEA treatment also ameliorated depressive-like behaviors in OBX mice, as assessed by tail suspension and forced swim tests, while a single DHEA treatment had no affect. DHEA treatment also significantly increased the number of BrdU-positive neurons in the subgranular zone of the DG of OBX mice, an increase inhibited by treatment with NE-100, a sigma-1 receptor antagonist. DHEA treatment also significantly increased phosphorylation of Akt (Ser-473, Akt (Ser-308 and ERK in the DG. Furthermore, GSK-3β (Ser-9 phosphorylation increased in the DG of OBX mice possibly accounting for increased neurogenesis through Akt activation. Finally, we confirmed that DHEA treatment of OBX mice increases the number of BrdU-positive neurons co-expressing β-catenin, a downstream GSK-3βtarget. Overall, we conclude that sigma-1 receptor stimulation by DHEA ameliorates OBX-induced depressive-like behaviors by increasing neurogenesis in the DG through activation of the Akt/GSK-3β/β-catenin pathway.

  5. Role of macrophage CCAAT/enhancer binding protein delta in the pathogenesis of rheumatoid arthritis in collagen-induced arthritic mice.

    Directory of Open Access Journals (Sweden)

    Ling-Hua Chang

    Full Text Available BACKGROUND: The up-regulation of CCAAT/enhancer binding protein delta (CEBPD has frequently been observed in macrophages in age-associated disorders, including rheumatoid arthritis (RA. However, the role of macrophage CEBPD in the pathogenesis of RA is unclear. METHODOLOGY AND PRINCIPAL FINDINGS: We found that the collagen-induced arthritis (CIA score and the number of affected paws in Cebpd(-/- mice were significantly decreased compared with the wild-type (WT mice. The histological analysis revealed an attenuated CIA in Cebpd(-/- mice, as shown by reduced pannus formation and greater integrity of joint architecture in affected paws of Cebpd(-/- mice compared with WT mice. In addition, immunohistochemistry analysis revealed decreased pannus proliferation and angiogenesis in Cebpd(-/- mice compared with WT mice. CEBPD activated in macrophages played a functional role in promoting the tube formation of endothelial cells and the migration and proliferation of synoviocytes. In vivo DNA binding assays and reporter assays showed that CEBPD up-regulated CCL20, CXCL1, IL23A and TNFAIP6 transcripts through direct binding to their promoter regions. CCL20, IL23A, CXCL1 and TNFAIP6 contributed to the migration and proliferation of synoviocytes, and the latter two proteins were involved in tube formation of endothelial cells. Finally, two anti-inflammatory chemicals, inotilone and rosmanol, reduced the expression of CEBPD and its downstream targets and mitigated the above phenomena. CONCLUSIONS AND SIGNIFICANCE: Collectively, our findings suggest that CEBPD and its downstream effectors could be biomarkers for the diagnosis of RA and potentially serve as therapeutic targets for RA therapy.

  6. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Science.gov (United States)

    Kwon, Ronald Y; Meays, Diana R; Meilan, Alexander S; Jones, Jeremiah; Miramontes, Rosa; Kardos, Natalie; Yeh, Jiunn-Chern; Frangos, John A

    2012-01-01

    Interstitial fluid flow (IFF) is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP) to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of pressure loading

  7. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation.

    Directory of Open Access Journals (Sweden)

    Ronald Y Kwon

    Full Text Available Interstitial fluid flow (IFF is a potent regulatory signal in bone. During mechanical loading, IFF is generated through two distinct mechanisms that result in spatially distinct flow profiles: poroelastic interactions within the lacunar-canalicular system, and intramedullary pressurization. While the former generates IFF primarily within the lacunar-canalicular network, the latter generates significant flow at the endosteal surface as well as within the tissue. This gives rise to the intriguing possibility that loading-induced IFF may differentially activate osteocytes or surface-residing cells depending on the generating mechanism, and that sensation of IFF generated via intramedullary pressurization may be mediated by a non-osteocytic bone cell population. To begin to explore this possibility, we used the Dmp1-HBEGF inducible osteocyte ablation mouse model and a microfluidic system for modulating intramedullary pressure (ImP to assess whether structural adaptation to ImP-driven IFF is altered by partial osteocyte depletion. Canalicular convective velocities during pressurization were estimated through the use of fluorescence recovery after photobleaching and computational modeling. Following osteocyte ablation, transgenic mice exhibited severe losses in bone structure and altered responses to hindlimb suspension in a compartment-specific manner. In pressure-loaded limbs, transgenic mice displayed similar or significantly enhanced structural adaptation to Imp-driven IFF, particularly in the trabecular compartment, despite up to ∼50% of trabecular lacunae being uninhabited following ablation. Interestingly, regression analysis revealed relative gains in bone structure in pressure-loaded limbs were correlated with reductions in bone structure in unpressurized control limbs, suggesting that adaptation to ImP-driven IFF was potentiated by increases in osteoclastic activity and/or reductions in osteoblastic activity incurred independently of

  8. Paternal spatial training enhances offspring's cognitive performance and synaptic plasticity in wild-type but not improve memory deficit in Alzheimer's mice.

    Science.gov (United States)

    Zhang, Shujuan; Li, Xiaoguang; Wang, Zhouyi; Liu, Yanchao; Gao, Yuan; Tan, Lu; Liu, Enjie; Zhou, Qiuzhi; Xu, Cheng; Wang, Xin; Liu, Gongping; Chen, Haote; Wang, Jian-Zhi

    2017-05-08

    Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny's spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers' and the offspring's hippocampus, and as well as in the fathers' sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring's cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.

  9. Relative Contribution of Dengue IgG Antibodies Acquired during Gestation or Breastfeeding in Mediating Dengue Disease Enhancement and Protection in Type I Interferon Receptor-Deficient Mice.

    Science.gov (United States)

    Lee, Pei Xuan; Ong, Li Ching; Libau, Eshele Anak; Alonso, Sylvie

    2016-06-01

    Dengue virus (DENV) causes a spectrum of diseases ranging from self-limiting dengue fever to severe conditions such as haemorrhagic fever and dengue shock syndrome. Antibody-dependent enhancement (ADE) is thought to explain the occurrence of severe dengue whereby pre-existing binding but non-neutralising antibodies enhance DENV infection. The ADE phenomenon is supported by epidemiological findings that infants that born to dengue immune mothers are at greater risk to develop severe dengue upon primary infection. The role of maternally acquired dengue-specific antibodies in disease enhancement was recently recapitulated in a mouse model where mice born to DENV1-immune mothers experienced enhanced disease severity upon DENV2 infection. Here, this study investigates the relative contribution of maternal dengue-specific antibodies acquired during gestation and breastfeeding in dengue disease. Using a surrogate breastfeeding mother experimental approach, we showed that majority of the maternal dengue-specific antibodies were acquired during breastfeeding and conferred an extended enhancement window. On the other hand, in the context of homologous infection, breastfeeding conferred protection. Furthermore, measurement of dengue-specific antibody titres over time in mice born to dengue immune mothers revealed a biphasic pattern of antibody decay as reported in humans. Our work provides evidence of the potential contribution of breast milk-acquired dengue-specific IgG antibodies in enhancement and protection against dengue. Should such contribution be established in humans as well, it may have important implications for the development of guidelines to dengue-immune breastfeeding mothers.

  10. CNF1 Enhances Brain Energy Content and Counteracts Spontaneous Epileptiform Phenomena in Aged DBA/2J Mice.

    Directory of Open Access Journals (Sweden)

    Sara Travaglione

    Full Text Available Epilepsy, one of the most common conditions affecting the brain, is characterized by neuroplasticity and brain cell energy defects. In this work, we demonstrate the ability of the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1 to counteract epileptiform phenomena in inbred DBA/2J mice, an animal model displaying genetic background with an high susceptibility to induced- and spontaneous seizures. Via modulation of the Rho GTPases, CNF1 regulates actin dynamics with a consequent increase in spine density and length in pyramidal neurons of rat visual cortex, and influences the mitochondrial homeostasis with remarkable changes in the mitochondrial network architecture. In addition, CNF1 improves cognitive performances and increases ATP brain content in mouse models of Rett syndrome and Alzheimer's disease. The results herein reported show that a single dose of CNF1 induces a remarkable amelioration of the seizure phenotype, with a significant augmentation in neuroplasticity markers and in cortex mitochondrial ATP content. This latter effect is accompanied by a decrease in the expression of mitochondrial fission proteins, suggesting a role of mitochondrial dynamics in the CNF1-induced beneficial effects on this epileptiform phenotype. Our results strongly support the crucial role of brain energy homeostasis in the pathogenesis of certain neurological diseases, and suggest that CNF1 could represent a putative new therapeutic tool for epilepsy.

  11. Curcumin stably interacts with DNA hairpin through minor groove binding and demonstrates enhanced cytotoxicity in combination with FdU nucleotides.

    Science.gov (United States)

    Ghosh, Supratim; Mallick, Sumana; Das, Upasana; Verma, Ajay; Pal, Uttam; Chatterjee, Sabyasachi; Nandy, Abhishek; Saha, Krishna D; Maiti, Nakul Chandra; Baishya, Bikash; Suresh Kumar, G; Gmeiner, William H

    2018-03-01

    We report, based on biophysical studies and molecular mechanical calculations that curcumin binds DNA hairpin in the minor groove adjacent to the loop region forming a stable complex. UV-Vis and fluorescence spectroscopy indicated interaction of curcumin with DNA hairpin. In this novel binding motif, two ɣ H of curcumin heptadiene chain are closely positioned to the A 16 -H8 and A 17 -H8, while G 12 -H8 is located in the close proximity of curcumin α H. Molecular dynamics (MD) simulations suggest, the complex is stabilized by noncovalent forces including; π-π stacking, H-bonding and hydrophobic interactions. Nuclear magnetic resonance (NMR) spectroscopy in combination with molecular dynamics simulations indicated curcumin is bound in the minor groove, while circular dichroism (CD) spectra suggested minute enhancement in base stacking and a little change in DNA helicity, without significant conformational change of DNA hairpin structure. The DNA:curcumin complex formed with FdU nucleotides rather than Thymidine, demonstrated enhanced cytotoxicity towards oral cancer cells relative to the only FdU substituted hairpin. Fluorescence co-localization demonstrated stability of the complex in biologically relevant conditions, including its cellular uptake. Acridine orange/EtBr staining further confirmed the enhanced cytotoxic effects of the complex, suggesting apoptosis as mode of cell death. Thus, curcumin can be noncovalently complexed to small DNA hairpin for cellular delivery and the complex showed increased cytotoxicity in combination with FdU nucleotides, demonstrating its potential for advanced cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dipeptidyl peptidase IV inhibition enhances the intestinotrophic effect of glucagon-like peptide-2 in rats and mice

    DEFF Research Database (Denmark)

    Hartmann, B; Thulesen, J; Kissow, Hannelouise

    2000-01-01

    Glucagon-like peptide-2 (GLP-2) induces intestinal growth in mice; but in normal rats, it seems less potent, possibly because of degradation of GLP-2 by the enzyme dipeptidyl peptidase IV (DPP-IV). The purpose of this study was to investigate the survival and effect of GLP-2 in rats and mice afte...

  13. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    Science.gov (United States)

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  14. Dietary supplementation with essence of chicken enhances daily oscillations in plasma glucocorticoid levels and behavioral adaptation to the phase-shifted environmental light–dark cycle in mice

    Directory of Open Access Journals (Sweden)

    Adila Dilixiati

    2017-08-01

    Full Text Available Maintenance of circadian rhythms is essential to many aspects of human health, including metabolism and neurological and psychiatric well-being. Chronic disruption of circadian clock function is implicated in increasing the risk of metabolic syndrome, cardiovascular events and development of cancers. However, there are little approaches to reinforce the function of circadian clock for prevention of these diseases. Essence of Chicken (EC is a nutritional supplement that is traditionally made by extracting water soluble substances derived from cooking the whole chicken. In this study, we found that dietary supplementation with EC enhanced circadian oscillation of glucocorticoid secretion in mice, and this was accompanied by enhancement of circadian oscillation in the adrenal expression of steroidogenic acute regulatory (StAR protein that mediates the rate-limiting step of glucocorticoid synthesis. Furthermore, EC facilitated re-entrainment of behavioral rhythm in mice when phase of the light–dark cycle was suddenly advanced. These results suggest that intake of EC has enhancement effect on circadian clock function in mice, which may contribute to sustain health and also offer new preventive strategies against circadian-related diseases.

  15. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  16. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Enhanced self-administration of alcohol in muscarinic acetylcholine M4 receptor knockout mice

    DEFF Research Database (Denmark)

    de la Cour, Cecilie; Sørensen, Gunnar; Wörtwein, Gitta

    2015-01-01

    % and 10% alcohol in 60min sessions, 6 days/week, after having undergone a standard sucrose fading training procedure on a fixed ratio schedule. The mice were further subjected to an extinction period followed by a 1 day reinstatement trial. M4-/- mice consumed more alcohol at 5% and 8% compared to their M......4+/+ littermates. The highest alcohol concentration used (10%) did not immediately result in divergent drinking patterns, but after 4 weeks of 10% alcohol self-administration, baseline levels as well as a pattern of M4-/- mice consuming more alcohol than their M4+/+ controls were re...

  18. Myeloablative temozolomide enhances CD8⁺ T-cell responses to vaccine and is required for efficacy against brain tumors in mice.

    Directory of Open Access Journals (Sweden)

    Luis A Sanchez-Perez

    Full Text Available Temozolomide (TMZ is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses. Here, we report the first demonstration of TMZ as an immune host-conditioning regimen in an experimental model of brain tumor and examine its impact on antitumor efficacy of a well-characterized peptide vaccine. Our results show that high-dose, myeloablative (MA TMZ resulted in markedly reduced CD4(+, CD8(+ T-cell and CD4(+Foxp3(+ TReg counts. Adoptive transfer of naïve CD8(+ T cells and vaccination in this setting led to an approximately 70-fold expansion of antigen-specific CD8(+ T cells over controls. Ex vivo analysis of effector functions revealed significantly enhanced levels of pro-inflammatory cytokine secretion from mice receiving MA TMZ when compared to those treated with a lower lymphodepletive, non-myeloablative (NMA dose. Importantly, MA TMZ, but not NMA TMZ was uniquely associated with an elevation of endogenous IL-2 serum levels, which we also show was required for optimal T-cell expansion. Accordingly, in a murine model of established intracerebral tumor, vaccination-induced immunity in the setting of MA TMZ-but not lymphodepletive, NMA TMZ-led to significantly prolonged survival. Overall, these results may be used to leverage the side-effects of a clinically-approved chemotherapy and should be considered in future study design of immune-based treatments for brain tumors.

  19. Demonstration of Hepatitis C Virus RNA with In Situ Hybridization Employing a Locked Nucleic Acid Probe in Humanized Liver of Infected Chimeric Mice and in Needle-Biopsied Human Liver

    Directory of Open Access Journals (Sweden)

    Kazuya Shiogama

    2013-01-01

    Full Text Available Background. In situ hybridization (ISH with high sensitivity has been requested to demonstrate hepatitis C virus (HCV RNA in formalin-fixed, paraffin-embedded (FFPE sections of the liver. Methods. ISH employing a locked-nucleic-acid- (LNA-modified oligonucleotide probe and biotin-free catalyzed signal amplification system (CSAII was applied to HCV-RNA detection in the liver tissue. Nested reverse-transcription polymerase chain reaction (RT-PCR was performed for HCV genotyping using total RNA extracted from FFPE sections. The target tissues included FFPE tissue sections of humanized livers in HCV-infected chimeric mice (HCV genotypes 1a, 1b, and 2a and noninfected and of needle-biopsied livers from HCV-infected patients. Results. HCV-RNA was demonstrated with the ISH technique in HCV-infected liver tissues from both chimeric mice and 9 (82% of 11 patients with HCV infection. The HCV signals were sensitive to RNase. Nested RT-PCR confirmed the genotype in 8 (73% of 11 livers (type 1b: 6 lesions and type 2a: 2 lesions. HCV-RNA was not identified in chronic hepatitis B lesions, fatty liver, autoimmune hepatitis, and hepatocellular carcinoma. Conclusion. ISH using the LNA-modified oligonucleotide probe and CSAII was applicable to detecting HCV-RNA in routinely prepared FFPE liver specimens.

  20. Enhancement by O6-benzyl-N2-acetylguanosine of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea therapeutic index on nude mice bearing resistant human melanoma.

    Science.gov (United States)

    Debiton, E.; Cussac-Buchdhal, C.; Mounetou, E.; Rapp, M.; Dupuy, J. M.; Maurizis, J. C.; Veyre, A.; Madelmont, J. C.

    1997-01-01

    The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic properties of BNAG make it a candidate for simultaneous administration with CENUs by the i.v. route in human clinical use. In vivo we have shown previously that BNAG significantly increases the efficiency of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (cystemustine) against M4Beu melanoma cells (Mer+) through its cytostatic activity by the i.p. route, but also increases its toxicity. To investigate the toxicity of BNAG and cystemustine when administered simultaneously in mice, we compared the maximum tolerated dose and LD50 doses of cystemustine alone or in combination with 40 mg kg(-1) BNAG by the i.p. route. The toxicity of cystemustine was enhanced by a factor of almost 1.44 when combined with BNAG. To compare the therapeutic index of cystemustine alone and the cystemustine/BNAG combination, pharmacological tests were carried out in nude mice bearing Mer+ M4Beu human melanoma cells. Isotoxic doses were calculated using the 1.44 ratio. The treatments were administered three times by the i.v. route on days 1, 5 and 9 after s.c. inoculation of tumour cells. Although the toxicities of the treatments were equal, BNAG strongly enhanced tumour growth inhibition. These results demonstrate the increase of the therapeutic index of cystemustine by BNAG and justify the use of BNAG to enhance nitrosourea efficiency in vivo by i.v. co-injection. PMID:9365163

  1. DIESEL PARTICLE INSTILLATION ENHANCES INFLAMMATORY AND NEUROTROPHIN RESPONSES IN THE LUNGS OF ALLERGIC BALB/C MICE

    Science.gov (United States)

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airways resistance and inflammation. Antibody blockade of NGF attenuates airways resistance associated with the allergen-specific airways responses in mice. ...

  2. [Immunization with Bifidobacterium bifidum-vectored OprI vaccine of Pseudomonas aeruginosa enhances inhibitory effect on P. aeruginosa in mice].

    Science.gov (United States)

    Liu, Xiao; Li, Wengui

    2017-08-01

    Objective To study the pulmonary bacterial loads, splenocyte proliferation, distributions of T cell subsets and cell apoptosis in mice immunized with Bifidobacterium bifidum-vectored OprI (Bb-OprI) vaccine of Pseudomonas aeruginosa and challenged with P. aeruginosa PA01 strain. Methods BALB/c mice were immunized with 5×10 9 CFUs of vaccine by intragastric administration, 3 times a week for 3 weeks, and challenged intranasally with 5×10 6 CFUs of PA01 strain at the fourth week after the first immunization. At the second week after the challenge, all mice were sacrificed to separate their lungs and spleens, and the pulmonary bacterial loads were counted. The proliferation of the splenocytes was determined by MTT assay. The splenic CD4 + , CD8 + T cell subsets and the apoptotic rate of splenocytes were detected by flow cytometry. Results The number of pulmonary bacterial colonies in the mice immunized with the vaccine and challenged with PA01 strain decreased, while the proliferation of splenocytes and the proportion of CD4 + T cells markedly increased, and the apoptosis of splenocytes was notably reduced. Conclusion The intragastric vaccination of recombinant Bb-OprI vaccine can increase the proportion of CD4 + T cells and enhance the inhibitory effect on P. aeruginosa.

  3. Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

    Directory of Open Access Journals (Sweden)

    Giuseppe eTalani

    2011-10-01

    Full Text Available Ethanol (EtOH–induced impairment of long-term potentiation (LTP in the rat hippocampus is prevented by the 5α-reductase inhibitor finasteride, suggesting that this effect of EtOH is dependent on the increased local release of neurosteroids such as 3α,5α-THP that promote GABA–mediated transmission. Given that social isolation (SI in rodents is associated with altered plasma and brain levels of such neurosteroids as well as with an enhanced neurosteroidogenic action of EtOH, we examined whether the inhibitory effect of EtOH on LTP at CA3-CA1 hippocampal excitatory synapses is altered in C57BL/6J mice subjected to SI for 6 weeks in comparison with group-housed (GH animals. Extracellular recording of fEPSPs as well as patch-clamp analysis were performed in hippocampal slices prepared from both SI and GH mice. Consistent with previous observations, recording of fEPSPs revealed that the extent of LTP induced in the CA1 region of SI mice was significantly reduced compared with that in GH animals. EtOH (40 mM inhibited LTP in slices from SI mice but not in those from GH mice, and this effect of EtOH was abolished by co-application of 1 µM finasteride. Current-clamp analysis of CA1 pyramidal neurons revealed a decrease in action potential frequency and an increase in the intensity of injected current required to evoke the first action potential in SI mice compared with GH mice, indicative of a decrease in neuronal excitability associated with SI. Together, our data suggest that SI results in reduced levels of neuronal excitability and synaptic plasticity in the hippocampus. Furthermore, the increased sensitivity to the neurosteroidogenic effect of EtOH associated with SI likely accounts for the greater inhibitory effect of EtOH on LTP in SI mice. The increase in EtOH sensitivity induced by SI may be important for the changes in the effects of EtOH on anxiety and on learning and memory associated with the prolonged stress attributable to social

  4. Emodin Induces Apoptotic Death in Murine Myelomonocytic Leukemia WEHI-3 Cells In Vitro and Enhances Phagocytosis in Leukemia Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Yuan-Chang Chang

    2011-01-01

    Full Text Available Emodin is one of major compounds in rhubarb (Rheum palmatum L., a plant used as herbal medicine in Chinese population. Although many reports have shown that emodin exhibits anticancer activity in many tumor cell types, there is no available information addressing emodin-affected apoptotic responses in the murine leukemia cell line (WEHI-3 and modulation of the immune response in leukemia mice. We investigated that emodin induced cytotoxic effects in vitro and affected WEHI-3 cells in vivo. This study showed that emodin decreased viability and induced DNA fragmentation in WEHI-3 cells. Cells after exposure to emodin for 24 h have shown chromatin condensation and DNA damage. Emodin stimulated the productions of ROS and Ca2+ and reduced the level of ΔΨm by flow cytometry. Our results from Western blotting suggest that emodin triggered apoptosis of WEHI-3 cells through the endoplasmic reticulum (ER stress, caspase cascade-dependent and -independent mitochondrial pathways. In in vivo study, emodin enhanced the levels of B cells and monocytes, and it also reduced the weights of liver and spleen compared with leukemia mice. Emodin promoted phagocytic activity by monocytes and macrophages in comparison to the leukemia mice group. In conclusions, emodin induced apoptotic death in murine leukemia WEHI-3 cells and enhanced phagocytosis in the leukemia animal model.

  5. Overexpression of Notch ligand Delta-like-1 by dendritic cells enhances their immunoregulatory capacity and exerts antiallergic effects on Th2-mediated allergic asthma in mice.

    Science.gov (United States)

    Lee, Chen-Chen; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2018-02-01

    Dendritic cells (DCs) are professional antigen-presenting cells, and Notch ligand Delta-like-1 (DLL1) on DCs was implicated in type 1T helper (Th1) differentiation. In this study, we produced genetically engineered bone marrow-derived DCs that expressed DLL1 (DLL1-DCs) by adenoviral transduction. DLL1-DCs exerted a fully mature phenotype, and had positive effects on expression levels of interleukin (IL)-12 and costimulatory molecules. Coculture of allogeneic T cells with ovalbumin (OVA)-pulsed DLL1-DCs enhanced T cell proliferative responses and promoted Th1 cell differentiation. Furthermore, adoptive transfer of OVA-stimulated DLL1-DCs into asthmatic mice alleviated the cardinal features of allergic asthma, including immunoglobulin E (IgE) production, airway hyperresponsiveness (AHR), airway inflammation, and production of Th2-type cytokines. Notably, enhanced levels of the Th1-biased IgG 2a response and interferon (IFN)-γ production were observed in these mice. Taken together, these data indicate that DLL1-DCs promoted Th1 cell development to alter the Th1/Th2 ratio and ameliorate Th2-mediated allergic asthma in mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Grant A Howe

    Full Text Available Blockade of epidermal growth factor receptor (EGFR activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC. As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs, there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975 were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271 both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be

  7. Cannabinoid 1 receptor knockout mice display cold allodynia, but enhanced recovery from spared-nerve injury-induced mechanical hypersensitivity.

    Science.gov (United States)

    Sideris, Alexandra; Piskoun, Boris; Russo, Lori; Norcini, Monica; Blanck, Thomas; Recio-Pinto, Esperanza

    2016-01-01

    The function of the Cannabinoid 1 receptor (CB1R) in the development of neuropathic pain is not clear. Mounting evidence suggest that CB1R expression and activation may contribute to pain. Cannabinoid 1 receptor knockout mice (CB1R-/-) generated on a C57Bl/6 background exhibit hypoalgesia in the hotplate assay and formalin test. These findings suggest that Cannabinoid 1 receptor expression mediates the responses to at least some types of painful stimuli. By using this mouse line, we sought to determine if the lack of Cannabinoid 1 receptor unveils a general hypoalgesic phenotype, including protection against the development of neuropathic pain. The acetone test was used to measure cold sensitivity, the electronic von Frey was used to measure mechanical thresholds before and after spared-nerve injury, and analysis of footprint patterns was conducted to determine if motor function is differentially affected after nerve-injury in mice with varying levels of Cannabinoid 1 receptor. At baseline, CB1R-/- mice were hypersensitive in the acetone test, and this phenotype was maintained after spared-nerve injury. Using calcium imaging of lumbar dorsal root ganglion (DRG) cultures, a higher percentage of neurons isolated from CB1R-/- mice were menthol sensitive relative to DRG isolated from wild-type (CB1R+/+) mice. Baseline mechanical thresholds did not differ among genotypes, and mechanical hypersensitivity developed similarly in the first two weeks following spared-nerve injury (SNI). At two weeks post-SNI, CB1R-/- mice recovered significantly from mechanical hypersensitivity, while the CB1R+/+ mice did not. Heterozygous knockouts (CB1R+/-) transiently developed cold allodynia only after injury, but recovered mechanical thresholds to a similar extent as the CB1R-/- mice. Sciatic functional indices, which reflect overall nerve health, and alternation coefficients, which indicate uniformity of strides, were not significantly different among genotypes. Cold allodynia and

  8. The enhancing effect of fractionated whole-body x-irradiation on replication of endogenous leukemia viruses in BALB/c mice

    International Nuclear Information System (INIS)

    Takamori, Yasuhiko; Okumoto, Masaaki; Iwai, Mineko; Iwai, Yoshiaki

    1976-01-01

    The incidence of leukemia, changes in the tissue weight of spleen and thymus, and the expression of endogenous viruses were examined with BALB/c mice following 4 weekly fractionated whole-body x-irradiation of 170 R each, starting at 4 weeks of age. The leukemia incidence was quite low for the unirradiated controls, while 60% of the irradiated male mice developed thymic lymphoma. The virus-positive cells appeared earlier in the spleen than in the thymus and bone marrow, and increased with aging. The time of appearance of virus-positive cells in these tissues was remarkably promoted by the fractionated x-irradiation, and its frequency was also enhanced. (auth.)

  9. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoE(null Mice.

    Directory of Open Access Journals (Sweden)

    Irina M Velsko

    Full Text Available The American Heart Association supports an association between periodontal disease (PD and atherosclerotic vascular disease (ASVD but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23 were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001 and IgM (P=0.001 antibody response (12 and 24 weeks, and resulted in significant (P=0.0001 alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12, oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL, in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic

  10. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by β-blocker treatment.

    Science.gov (United States)

    Fajol, Abul; Chen, Hong; Umbach, Anja T; Quarles, L Darryl; Lang, Florian; Föller, Michael

    2016-02-01

    Glycogen synthase kinase (GSK)-3 is a ubiquitously expressed kinase inhibited by insulin-dependent Akt/PKB/SGK. Mice expressing Akt/PKB/SGK-resistant GSK3α/GSK3β (gsk3(KI)) exhibit enhanced sympathetic nervous activity and phosphaturia with decreased bone density. Hormones participating in phosphate homeostasis include fibroblast growth factor (FGF)-23, a bone-derived hormone that inhibits 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; calcitriol) formation and phosphate reabsorption in the kidney and counteracts vascular calcification and aging. FGF23 secretion is stimulated by the sympathetic nervous system. We studied the role of GSK3-controlled sympathetic activity in FGF23 production and phosphate metabolism. Serum FGF23, 1,25(OH)2D3, and urinary vanillylmandelic acid (VMA) were measured by ELISA, and serum and urinary phosphate and calcium were measured by photometry in gsk3(KI) and gsk3(WT) mice, before and after 1 wk of oral treatment with the β-blocker propranolol. Urinary VMA excretion, serum FGF23, and renal phosphate and calcium excretion were significantly higher, and serum 1,25(OH)2D3 and phosphate concentrations were lower in gsk3(KI) mice than in gsk3(WT) mice. Propranolol treatment decreased serum FGF23 and loss of renal calcium and phosphate and increased serum phosphate concentration in gsk3(KI) mice. We conclude that Akt/PKB/SGK-sensitive GSK3 inhibition participates in the regulation of FGF23 release, 1,25(OH)2D3 formation, and thus mineral metabolism, by controlling the activity of the sympathetic nervous system. © FASEB.

  11. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice

    Science.gov (United States)

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M.J.M.; Pietrobon, Daniela

    2014-01-01

    Familial hemiplegic migraine type 1 (FHM1), a monogenic subtype of migraine with aura, is caused by gain-of-function mutations in CaV2.1 (P/Q-type) calcium channels. In FHM1 knockin mice, excitatory neurotransmission at cortical pyramidal cell synapses is enhanced, but inhibitory neurotransmission at connected pairs of fast-spiking (FS) interneurons and pyramidal cells is unaltered, despite being initiated by CaV2.1 channels. The mechanism underlying the unaltered GABA release at cortical FS interneuron synapses remains unknown. Here, we show that the FHM1 R192Q mutation does not affect inhibitory transmission at autapses of cortical FS and other types of multipolar interneurons in microculture from R192Q knockin mice, and investigate the underlying mechanism. Lowering the extracellular [Ca2+] did not reveal gain-of-function of evoked transmission neither in control nor after prolongation of the action potential (AP) with tetraethylammonium, indicating unaltered AP-evoked presynaptic calcium influx at inhibitory autapses in FHM1 KI mice. Neither saturation of the presynaptic calcium sensor nor short duration of the AP can explain the unaltered inhibitory transmission in the mutant mice. Recordings of the P/Q-type calcium current in multipolar interneurons in microculture revealed that the current density and the gating properties of the CaV2.1 channels expressed in these interneurons are barely affected by the FHM1 mutation, in contrast with the enhanced current density and left-shifted activation gating of mutant CaV2.1 channels in cortical pyramidal cells. Our findings suggest that expression of specific CaV2.1 channels differentially sensitive to modulation by FHM1 mutations in inhibitory and excitatory cortical neurons underlies the gain-of-function of excitatory but unaltered inhibitory synaptic transmission and the likely consequent dysregulation of the cortical excitatory–inhibitory balance in FHM1. PMID:24907493

  12. Relative Contribution of Dengue IgG Antibodies Acquired during Gestation or Breastfeeding in Mediating Dengue Disease Enhancement and Protection in Type I Interferon Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Pei Xuan Lee

    2016-06-01

    Full Text Available Dengue virus (DENV causes a spectrum of diseases ranging from self-limiting dengue fever to severe conditions such as haemorrhagic fever and dengue shock syndrome. Antibody-dependent enhancement (ADE is thought to explain the occurrence of severe dengue whereby pre-existing binding but non-neutralising antibodies enhance DENV infection. The ADE phenomenon is supported by epidemiological findings that infants that born to dengue immune mothers are at greater risk to develop severe dengue upon primary infection. The role of maternally acquired dengue-specific antibodies in disease enhancement was recently recapitulated in a mouse model where mice born to DENV1-immune mothers experienced enhanced disease severity upon DENV2 infection. Here, this study investigates the relative contribution of maternal dengue-specific antibodies acquired during gestation and breastfeeding in dengue disease. Using a surrogate breastfeeding mother experimental approach, we showed that majority of the maternal dengue-specific antibodies were acquired during breastfeeding and conferred an extended enhancement window. On the other hand, in the context of homologous infection, breastfeeding conferred protection. Furthermore, measurement of dengue-specific antibody titres over time in mice born to dengue immune mothers revealed a biphasic pattern of antibody decay as reported in humans. Our work provides evidence of the potential contribution of breast milk-acquired dengue-specific IgG antibodies in enhancement and protection against dengue. Should such contribution be established in humans as well, it may have important implications for the development of guidelines to dengue-immune breastfeeding mothers.

  13. Relative Contribution of Dengue IgG Antibodies Acquired during Gestation or Breastfeeding in Mediating Dengue Disease Enhancement and Protection in Type I Interferon Receptor-Deficient Mice

    Science.gov (United States)

    Lee, Pei Xuan; Ong, Li Ching; Libau, Eshele Anak; Alonso, Sylvie

    2016-01-01

    Dengue virus (DENV) causes a spectrum of diseases ranging from self-limiting dengue fever to severe conditions such as haemorrhagic fever and dengue shock syndrome. Antibody-dependent enhancement (ADE) is thought to explain the occurrence of severe dengue whereby pre-existing binding but non-neutralising antibodies enhance DENV infection. The ADE phenomenon is supported by epidemiological findings that infants that born to dengue immune mothers are at greater risk to develop severe dengue upon primary infection. The role of maternally acquired dengue-specific antibodies in disease enhancement was recently recapitulated in a mouse model where mice born to DENV1-immune mothers experienced enhanced disease severity upon DENV2 infection. Here, this study investigates the relative contribution of maternal dengue-specific antibodies acquired during gestation and breastfeeding in dengue disease. Using a surrogate breastfeeding mother experimental approach, we showed that majority of the maternal dengue-specific antibodies were acquired during breastfeeding and conferred an extended enhancement window. On the other hand, in the context of homologous infection, breastfeeding conferred protection. Furthermore, measurement of dengue-specific antibody titres over time in mice born to dengue immune mothers revealed a biphasic pattern of antibody decay as reported in humans. Our work provides evidence of the potential contribution of breast milk-acquired dengue-specific IgG antibodies in enhancement and protection against dengue. Should such contribution be established in humans as well, it may have important implications for the development of guidelines to dengue-immune breastfeeding mothers. PMID:27341339

  14. Mammary tumorigenesis in APC{sup min/+} mice is enhanced by X-irradiation with a characteristic age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuhiko, Imaoka; Mayumi, Nishimura; Shizuko, Kakinuma; Yoshiya, Shimada [National Institute of Radiological Sciences, Experimental Radiobiology for Children' s Health Research Group, Research, Center for Radiation Protection (Japan); Mieko, Okamoto [Tokyo Metropolitan Institute of Medical Science (Japan)

    2006-07-01

    The ApcM{sup min/+} (Min) mouse is a genetically predisposed model of both intestinal and mammary tumorigenesis. We investigated age-related changes in the susceptibility of mice (before, during and after puberty) to radiation-induced mammary tumorigenesis using this model. Female Min and wild-type mice having the C57BL/6J background were irradiated with 2 Gy of X-rays at 2, 5, 7 and 10 weeks and sacrificed at 18 weeks of age. Min mice irradiated at 7 to 10 weeks of age (after puberty) developed mammary tumors with squamous metaplasia, whereas their wild-type litter-mates did not. Interestingly, irradiation of Min mice at 2 to 5 weeks (before and during puberty, respectively) did not induce mammary tumors but rather cystic nodules with metaplasia. The mammary tumors exhibited increased nuclear beta-catenin protein and loss of the wild-type Apc allele. Our results show that susceptibility to radiation-induced mammary tumorigenesis increases after puberty in Min mice, suggesting that the tumorigenic effect of ionizing radiation targets the lobular-alveolar progenitor cells, which increase in number with age and are controlled by beta-catenin signaling. (author)

  15. Biological assessment of the enhancement of tritium excretion by administration of diuretics and excessive water in mice

    International Nuclear Information System (INIS)

    Kunugita, Naoki; Dohi, Seitaro; Yamamoto, Hisao; Norimura, Toshiyuki; Tsuchiya, Takehiko

    1990-01-01

    This study was undertaken to determine whether or not the administration of diuretics and excess water after tritium exposure would have any positive reducing effect not only on the retention of tritium but also on the radiation damage of hematopoietic tissue in mice. When mice were treated with diuretics and excess water for a few days after injection of tritiated water (HTO), radioactivity within the body fluid and tissues was reduced, and the number of colony-forming units (CFU-s), clonability of splenic T cells and proliferative activity assayed by Concanavalin-A blastogenesis were increased in comparison with those in the controls. When the mice were injected with a large dose of HTO (811 MBq/mouse) to assay survival, no mice treated with diuretic and excess water died 80 days after injection, while 80% of the controls died during the first month. The final committed dose in the mice treated early with diuretics was calculated to be 60% of that in the controls. These results suggest that treatment with diuretics and excess water is useful for practical purposes when a human is accidentally exposed to tritium. (author)

  16. Biological assessment of the enhancement of tritium excretion by administration of diuretics and excessive water in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kunugita, Naoki; Dohi, Seitaro; Yamamoto, Hisao; Norimura, Toshiyuki; Tsuchiya, Takehiko (University of Occupational and Environmental Health, Kitakyushu (Japan))

    1990-12-01

    This study was undertaken to determine whether or not the administration of diuretics and excess water after tritium exposure would have any positive reducing effect not only on the retention of tritium but also on the radiation damage of hematopoietic tissue in mice. When mice were treated with diuretics and excess water for a few days after injection of tritiated water (HTO), radioactivity within the body fluid and tissues was reduced, and the number of colony-forming units (CFU-s), clonability of splenic T cells and proliferative activity assayed by Concanavalin-A blastogenesis were increased in comparison with those in the controls. When the mice were injected with a large dose of HTO (811 MBq/mouse) to assay survival, no mice treated with diuretic and excess water died 80 days after injection, while 80% of the controls died during the first month. The final committed dose in the mice treated early with diuretics was calculated to be 60% of that in the controls. These results suggest that treatment with diuretics and excess water is useful for practical purposes when a human is accidentally exposed to tritium. (author).

  17. Penetrance of eye defects in mice heterozygous for mutation of Gli3 is enhanced by heterozygous mutation of Pax6

    Directory of Open Access Journals (Sweden)

    Price David J

    2006-10-01

    Full Text Available Abstract Background Knowledge of the consequences of heterozygous mutations of developmentally important genes is important for understanding human genetic disorders. The Gli3 gene encodes a zinc finger transcription factor and homozygous loss-of-function mutations of Gli3 are lethal. Humans heterozygous for mutations in this gene suffer Greig cephalopolysyndactyly or Pallister-Hall syndromes, in which limb defects are prominent, and mice heterozygous for similar mutations have extra digits. Here we examined whether eye development, which is abnormal in mice lacking functional Gli3, is defective in Gli3+/- mice. Results We showed that Gli3 is expressed in the developing eye but that Gli3+/- mice have only very subtle eye defects. We then generated mice compound heterozygous for mutations in both Gli3 and Pax6, which encodes another developmentally important transcription factor known to be crucial for eye development. Pax6+/-; Gli3+/- eyes were compared to the eyes of wild-type, Pax6+/- or Gli3+/- siblings. They exhibited a range of abnormalities of the retina, iris, lens and cornea that was more extensive than in single Gli3+/- or Pax6+/- mutants or than would be predicted by addition of their phenotypes. Conclusion These findings indicate that heterozygous mutations of Gli3 can impact on eye development. The importance of a normal Gli3 gene dosage becomes greater in the absence of a normal Pax6 gene dosage, suggesting that the two genes co-operate during eye morphogenesis.

  18. Dietary feeding of flavokawain A, a Kava chalcone, exhibits a satisfactory safety profile and its association with enhancement of phase II enzymes in mice

    Directory of Open Access Journals (Sweden)

    Xuesen Li

    2014-01-01

    Full Text Available Flavokawain A (FKA, a major chalcone in the Kava plant, has recently demonstrated promising anti-cancer activities. A systematic evaluation of FKA's safety profile has not been reported before. In this study, male FVB/N mice were fed with an AIN-76A diet or AIN-76A diet supplemented with 0.6% (6 g/kg food FKA or 0.6% commercial kava root extract (KRE for three weeks. Dietary feeding of FKA did not affect food consumption and body weight. Histopathological examination of liver, kidney, colon, lung, heart, spleen, and thymus revealed no signs of FKA-induced toxicity. Biochemical serum analysis and histological examination confirmed normal organ function in FKA-treated mice. The cytotoxicity profile showed FKA had minimal side effects on bone marrow and small intestinal epithelial cells compared with Adriamycin. In addition, oral feeding of FKA increased activities of both glutathione S-transferase and quinone reductase in the liver, lung, prostate and bladder tissues of mice. In comparison, dietary feeding of 0.6% KRE increased liver/body weight ratio and decreased spleen, thymus, and testis/body weight ratios, as well as induced nodular proliferation in liver tissues. Therefore, dietary feeding FKA showed no adverse effects on major organ function and homeostasis in mice, suggesting the potential of FKA for chemoprevention study of human cancers.

  19. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice.

    Science.gov (United States)

    Zhang, Zifeng; Wang, Xin; Zheng, Guihong; Shan, Qun; Lu, Jun; Fan, Shaohua; Sun, Chunhui; Wu, Dongmei; Zhang, Cheng; Su, Weitong; Sui, Junwen; Zheng, Yuanlin

    2016-12-25

    Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  20. Troxerutin Attenuates Enhancement of Hepatic Gluconeogenesis by Inhibiting NOD Activation-Mediated Inflammation in High-Fat Diet-Treated Mice

    Directory of Open Access Journals (Sweden)

    Zifeng Zhang

    2016-12-01

    Full Text Available Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA was used to inhibit endoplasmic reticulum stress (ER stress. Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2, by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.

  1. The immune-enhancing activity of Cervus nippon mantchuricus extract (NGE) in RAW264.7 macrophage cells and immunosuppressed mice.

    Science.gov (United States)

    Hong, Se Hyang; Ku, Jin Mo; In Kim, Hyo; Ahn, Chang-Won; Park, Soo-Hyun; Seo, Hye Sook; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-09-01

    Chemotherapeutics are often used to inhibit the proliferation of cancer cells. However, they can also harm healthy cells and cause side effects such as immunosuppression. Especially traditional oriental medicines long used in Asia, may be beneficial candidates for the alleviation of immune diseases. Cervus nippon mantchuricus extract (NGE) is currently sold in the market as coffee and health drinks. However, NGE was not widely investigated and efficacy remain unclear and essentially nothing is known about their potential immune-regulatory properties. As a result, NGE induced the differentiation of RAW264.7 macrophage cells. NGE-stimulated RAW264.7 macrophage cells elevated cytokines levels and NO production. NGE-stimulated RAW264.7 macrophage cells activated MAPKs and NF-κB signaling pathways. NGE encouraged the immuno-enhancing effects in immunosuppressed short-term treated with NGE mice model. NGE or Red ginseng encouraged the immuno-enhancing effects in immunosuppressed long-term treated with NGE mice model. Our data clearly show that NGE contains immune-enhancing activity and can be used to treat immunodeficiency. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice

    OpenAIRE

    Onaolapo, Olakunle James; Onaolapo, Adejoke Yetunde

    2012-01-01

    This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after...

  3. Enhanced engraftment of human cells in RAG2/gammac double-knockout mice after treatment with CL2MDP liposomes

    NARCIS (Netherlands)

    Rozemuller, Henk; Knaän-Shanzer, Shosh; Hagenbeek, Anton; van Bloois, Louis; Storm, Gert; Martens, Anton C. M.

    2004-01-01

    OBJECTIVE: The ability of human cells to repopulate the bone marrow of nonobese diabetic immunodeficient mice (NOD/SCID) is commonly used as a standard assay to quantify the primitive human hematopoietic stem cell population. We studied the applicability of the immunodeficient RAG2(-/-)gammac(-/-)

  4. Observational Learning in Mice Can Be Prevented by Medial Prefrontal Cortex Stimulation and Enhanced by Nucleus Accumbens Stimulation

    Science.gov (United States)

    Jurado-Parras, M. Teresa; Gruart, Agnes; Delgado-Garcia, Jose M.

    2012-01-01

    The neural structures involved in ongoing appetitive and/or observational learning behaviors remain largely unknown. Operant conditioning and observational learning were evoked and recorded in a modified Skinner box provided with an on-line video recording system. Mice improved their acquisition of a simple operant conditioning task by…

  5. Enhanced growth and improved vascular function in offspring from successive pregnancies in endothelial nitric oxide synthase knockout mice

    NARCIS (Netherlands)

    Longo, M; Jain, [No Value; Langenveld, J; Vedernikov, YP; Garfield, RE; Hankins, GDV; Anderson, GD; Saade, GR

    2004-01-01

    Objective: Transgenic mice that lack endothelial nitric oxide synthase have offspring with growth deficiency and abnormal vascular reactivity in later life. Our objective was to evaluate the role of parity in the modulation of the fetal programming of growth and vascular responses in these

  6. Enhanced inflammation and attenuated tumor suppressor pathways are associated with oncogene-induced lung tumors in aged mice

    Science.gov (United States)

    Aging is often accompanied by a dramatic increase in cancer susceptibility. To gain insights into how aging affects tumor susceptibility, we generated a conditional mouse model in which oncogenic KrasG12D was activated specifically in lungs of young (3-5 months) and old (19-24 months) mice. Activati...

  7. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    Energy Technology Data Exchange (ETDEWEB)

    Fullerton, Aaron M., E-mail: fuller22@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, 1129 Farm Lane, Room 215, East Lansing, MI 48824 (United States); Roth, Robert A., E-mail: rothr@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 221, East Lansing, MI 48824 (United States); Ganey, Patricia E., E-mail: ganey@msu.edu [Department of Pharmacology and Toxicology, Center for Integrative Toxicology, Michigan State University, Food Safety and Toxicology Building, 1129 Farm Lane, Room 214, East Lansing, MI 48824 (United States)

    2013-01-15

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  8. 2,3,7,8-TCDD enhances the sensitivity of mice to concanavalin A immune-mediated liver injury

    International Nuclear Information System (INIS)

    Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.

    2013-01-01

    Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injury resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► Fas

  9. Education and empowerment of the nursing assistant: validating their important role in skin care and pressure ulcer prevention, and demonstrating productivity enhancement and cost savings.

    Science.gov (United States)

    Howe, Lynn

    2008-06-01

    This article details an educational program designed to utilize nonlicensed personnel (certified nursing assistants [CNAs] and nursing assistants [NAs]) in the prevention of pressure ulcers and improved skin care in a 250-bed acute care facility in a suburban setting. The article is divided into 2 parts: A and B. Part A addresses the educational program, which was part of a major initiative for improving patient outcomes that included a review and standardization of skin care products and protocols. Part B addresses productivity enhancement and cost savings experienced because of changing bathing and incontinence care products and procedures. The educational program included instruction on time-saving methods for increasing productivity in bathing and incontinence care, and effectively promoted the importance of proper skin care and pressure ulcer prevention techniques. Methods incorporated into the educational training targeted different reading and comprehension levels, ranging from the use of PowerPoint slides, hands-on return demonstration, and group discussion related to pressure ulcer staging and wound treatment. These educational methods provided the participants with significant reinforcement of each day's learning objectives. Productivity enhancement and cost savings are addressed in part B, as well as the results of a time-motion study. Because of the program, CNAs/NAs were empowered in their integral caregiver roles. This program was part of a larger, major process improvement initiative, but the rate of acquired pressure ulcers declined from 2.17% in 2002 to 1.71% in 2003. This educational program was considered a contributor to the improved patient outcomes.

  10. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    Energy Technology Data Exchange (ETDEWEB)

    Fan Jinshui; Robert, Carine [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States); Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce [Johns Hopkins University School of Medicine, Department of Oncology, Baltimore, MD 21231-1000 (United States); Rassool, Feyruz Virgilia, E-mail: frassool@som.umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, 655 West Baltimore Street, BRB 7-023A, Baltimore, MD 21201 (United States)

    2011-08-01

    Highlights: {yields} iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. {yields} iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. {yields} iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. {yields} iPSC however show a partial apoptotic response to DNA damage, compared to hESC. {yields} DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived

  11. Human induced pluripotent cells resemble embryonic stem cells demonstrating enhanced levels of DNA repair and efficacy of nonhomologous end-joining

    International Nuclear Information System (INIS)

    Fan Jinshui; Robert, Carine; Jang, Yoon-Young; Liu Hua; Sharkis, Saul; Baylin, Stephen Bruce; Rassool, Feyruz Virgilia

    2011-01-01

    Highlights: → iPSC and hESC demonstrate a similar cell cycle profile, with increased S phase cells and decreased G0/G1. → iPSC and hESC increased ROS and decreased DSBs, compared with differentiated parental cells. → iPSC and hESC demonstrate elevated DSB repair activity, including nonhomologous end-joining, compared with differentiated parental cells. → iPSC however show a partial apoptotic response to DNA damage, compared to hESC. → DNA damage responses may constitute important markers for the efficacy of iPSC reprogramming. - Abstract: To maintain the integrity of the organism, embryonic stem cells (ESC) need to maintain their genomic integrity in response to DNA damage. DNA double strand breaks (DSBs) are one of the most lethal forms of DNA damage and can have disastrous consequences if not repaired correctly, leading to cell death, genomic instability and cancer. How human ESC (hESC) maintain genomic integrity in response to agents that cause DSBs is relatively unclear. Adult somatic cells can be induced to 'dedifferentiate' into induced pluripotent stem cells (iPSC) and reprogram into cells of all three germ layers. Whether iPSC have reprogrammed the DNA damage response is a critical question in regenerative medicine. Here, we show that hESC demonstrate high levels of endogenous reactive oxygen species (ROS) which can contribute to DNA damage and may arise from high levels of metabolic activity. To potentially counter genomic instability caused by DNA damage, we find that hESC employ two strategies: First, these cells have enhanced levels of DNA repair proteins, including those involved in repair of DSBs, and they demonstrate elevated nonhomologous end-joining (NHEJ) activity and repair efficacy, one of the main pathways for repairing DSBs. Second, they are hypersensitive to DNA damaging agents, as evidenced by a high level of apoptosis upon irradiation. Importantly, iPSC, unlike the parent cells they are derived from, mimic hESC in their ROS levels

  12. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Kelly A Hamilton

    Full Text Available Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in

  13. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD

    International Nuclear Information System (INIS)

    Mustafa, A.; Holladay, S.D.; Goff, M.; Witonsky, S.G.; Kerr, R.; Reilly, C.M.; Sponenberg, D.P.; Gogal, R.M.

    2008-01-01

    Developmental exposure of mice to the environmental contaminant and AhR agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), causes persistent postnatal suppression of T cell-mediated immune responses. The extent to which prenatal TCDD may induce or exacerbate postnatal autoimmune disease remains unknown. In the present study, time-pregnant high affinity AhR C57BL/6 mice received a single oral administration of 0, 2.5, or 5 μg/kg TCDD on gestation day (gd) 12. Offspring of these mice (n = 5/gender/treatment) were evaluated at 24 weeks-of-age and showed considerable immune dysregulation that was often gender-specific. Decreased thymic weight and percentages of CD4 + CD8 + thymocytes, and increased CD4 + CD8 - thymocytes, were present in the female but not male offspring. Males but not females showed decreased CD4 - CD8 + T cells, and increased Vβ3 + and Vβ17a + T cells, in the spleen. Males but not females also showed increased percentages of bone marrow CD24 - B220 + B cell progenitors. Antibody titers to dsDNA, ssDNA and cardiolipin displayed increasing trends in both male and female mice, reaching significance for anti-dsDNA in both genders and for ssDNA in males at 5 μg/kg TCDD. Immunofluorescent staining of IgG and C3 deposition in kidney glomeruli increased in both genders of prenatal TCDD-exposed mice, suggestive of early stages of autoimmune glomerulonephritis. Collectively, these results show that exposure to TCDD during immune system development causes persistent humoral immune dysregulation as well as altered cell-mediated responses, and induces an adult profile of changes suggestive of increased risk for autoimmune disease

  14. Western diet enhances intestinal tumorigenesis in Min/+ mice, associating with mucosal metabolic and inflammatory stress and loss of Apc heterozygosity.

    Science.gov (United States)

    Niku, Mikael; Pajari, Anne-Maria; Sarantaus, Laura; Päivärinta, Essi; Storvik, Markus; Heiman-Lindh, Anu; Suokas, Santeri; Nyström, Minna; Mutanen, Marja

    2017-01-01

    Western-type diet (WD) is a risk factor for colorectal cancer, but the underlying mechanisms are poorly understood. We investigated the interaction of WD and heterozygous mutation in the Apc gene on adenoma formation and metabolic and immunological changes in the histologically normal intestinal mucosa of Apc Min/+ (Min/+) mice. The diet used was high in saturated fat and low in calcium, vitamin D, fiber and folate. The number of adenomas was twofold higher in the WD mice compared to controls, but adenoma size, proliferation or apoptosis did not differ. The ratio of the Min to wild-type allele was higher in the WD mice, indicating accelerated loss of Apc heterozygosity (LOH). Densities of intraepithelial CD3ε + T lymphocytes and of mucosal FoxP3 + regulatory T cells were higher in the WD mice, implying inflammatory changes. Western blot analyses from the mucosa of the WD mice showed suppressed activation of the ERK and AKT pathways and a tendency for reduced activation of the mTOR pathway as measured in phosphoS6/S6 levels. The expression of pyruvate dehydrogenase kinase 4 was up-regulated in both mRNA and protein levels. Gene expression analyses showed changes in oxidation/reduction, fatty acid and monosaccharide metabolic pathways, tissue organization, cell fate and regulation of apoptosis. Together, our results suggest that the high-risk Western diet primes the intestine to tumorigenesis through synergistic effects in energy metabolism, inflammation and oxidative stress, which culminate in the acceleration of LOH of the Apc gene. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Oral administration of Lactobacillus plantarum strain AYA enhances IgA secretion and provides survival protection against influenza virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Yosuke Kikuchi

    Full Text Available The mucosal immune system provides the first line of defense against inhaled and ingested pathogenic microbacteria and viruses. This defense system, to a large extent, is mediated by the actions of secretory IgA. In this study, we screened 140 strains of lactic acid bacteria for induction of IgA production by murine Peyer's patch cells. We selected one strain and named it Lactobacillus plantarum AYA. We found that L. plantarum AYA-induced production of IL-6 in Peyer's patch dendritic cells, with this production promoting IgA(+ B cells to differentiate into IgA-secreting plasma cells. We also observed that oral administration of L. plantarum AYA in mice caused an increase in IgA production in the small intestine and lung. This production of IgA correlated strongly with protective ability, with the treated mice surviving longer than the control mice after lethal influenza virus infection. Our data therefore reveals a novel immunoregulatory role of the L. plantarum AYA strain which enhances mucosal IgA production and provides protection against respiratory influenza virus infection.

  16. [Effects of canine IL-2 and IL-7 genes on enhancing immunogenicity of canine parvovirus VP2 gene vaccine in mice].

    Science.gov (United States)

    Chen, Huihui; Zhong, Fei; Li, Xiujin; Wang, Lu; Sun, Yan; Neng, Changai; Zhang, Kao; Li, Wenyan; Wen, Jiexia

    2012-11-04

    To investigate the effects of canine interleukin-2 (cIL-2) and cIL-7 genes on enhancing the immunogenicity of canine parvovirus (CPV) VP2 DNA vaccine. The bicistronic vectors of cIL-2 and cIL-7 genes were constructed using the eukaryotic expression vector containing internal ribosome entry site (IRES). The cIL-2/ cIL-7 dicistronic vector plus previously constructed vectors, including CPV VP2 DNA vaccine vector, cIL-2 vector and cIL-7 vector, were used to co-immunize mice with different combinations, consisting of VP2 alone, VP2 + cIL-2, VP2 + cIL-7 and VP2 + cIL-2/cIL-7. The VP2-specific antibody levels in immunized mice were measured by ELISA at different time post-immunization. The proliferation indices and interferon-gamma expression were measured by lymphocyte proliferation assay and ELISA, respectively. The cIL-2/cIL-7 bicistronic vector was correct and could mediate cIL-2 and cIL-7 gene expression in eukaryotic cells. Immunization results revealed that the antibody titers and the neutralizing antibody levels of the mice co-immunized with VP2 + cIL-7/cIL-2 vectors were significantly higher than that with either VP2 + cIL-2 vectors or VP2 + cIL-7 vectors (P vaccine.

  17. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Directory of Open Access Journals (Sweden)

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  18. Enhancement of Muscle T Regulatory Cells and Improvement of Muscular Dystrophic Process in mdx Mice by Blockade of Extracellular ATP/P2X Axis.

    Science.gov (United States)

    Gazzerro, Elisabetta; Baldassari, Simona; Assereto, Stefania; Fruscione, Floriana; Pistorio, Angela; Panicucci, Chiara; Volpi, Stefano; Perruzza, Lisa; Fiorillo, Chiara; Minetti, Carlo; Traggiai, Elisabetta; Grassi, Fabio; Bruno, Claudio

    2015-12-01

    Infiltration of immune cells and chronic inflammation substantially affect skeletal and cardiac muscle degeneration in Duchenne muscular dystrophy. In the immune system, extracellular adenosine triphosphate (ATP) released by dying cells is sensed as a danger associated molecular pattern through P2 purinergic receptors. Specifically, the P2X7 subtype has a prominent role in regulating immune system physiology and contributes to inflammasome activation also in muscle cells. Here, we show that in vivo blockade of the extracellular ATP/P2X purinergic signaling pathway by periodate-oxidized ATP delayed the progression of the dystrophic phenotype and dampened the local inflammatory response in mdx mice, a spontaneous mouse model of dystrophin deficiency. Reduced infiltration of leukocytes and macrophages and decreased expression of IL-6 were revealed in the muscles of periodate-oxidized ATP-treated mdx mice. Concomitantly, an increase in Foxp3(+) immunosuppressive regulatory T cells was observed and correlated with enhanced myofiber regeneration. Moreover, we detected reduced concentrations of profibrotic cytokines, including transforming growth factor-β and connective tissue growth factor, in muscles of periodate-oxidized ATP-treated mdx mice. The improvement of inflammatory features was associated with increased strength and reduced necrosis, thus suggesting that pharmacologic purinergic antagonism altering the adaptive immune component in the muscle infiltrates might represent a promising therapeutic approach in Duchenne muscular dystrophy. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. The NS1 glycoprotein can generate dramatic antibody-enhanced dengue viral replication in normal out-bred mice resulting in lethal multi-organ disease.

    Directory of Open Access Journals (Sweden)

    Andrew K I Falconar

    Full Text Available Antibody-enhanced replication (AER of dengue type-2 virus (DENV-2 strains and production of antibody-enhanced disease (AED was tested in out-bred mice. Polyclonal antibodies (PAbs generated against the nonstructural-1 (NS1 glycoprotein candidate vaccine of the New Guinea-C (NG-C or NSx strains reacted strongly and weakly with these antigens, respectively. These PAbs contained the IgG2a subclass, which cross-reacted with the virion-associated envelope (E glycoprotein of the DENV-2 NSx strain, suggesting that they could generate its AER via all mouse Fcγ-receptor classes. Indeed, when these mice were challenged with a low dose (<0.5 LD₅₀ of the DENV-2 NSx strain, but not the NG-C strain, they all generated dramatic and lethal DENV-2 AER/AED. These AER/AED mice developed life-threatening acute respiratory distress syndrome (ARDS, displayed by diffuse alveolar damage (DAD resulting from i dramatic interstitial alveolar septa-thickening with mononuclear cells, ii some hyperplasia of alveolar type-II pneumocytes, iii copious intra-alveolar protein secretion, iv some hyaline membrane-covered alveolar walls, and v DENV-2 antigen-positive alveolar macrophages. These mice also developed meningo-encephalitis, with greater than 90,000-fold DENV-2 AER titers in microglial cells located throughout their brain parenchyma, some of which formed nodules around dead neurons. Their spleens contained infiltrated megakaryocytes with DENV-2 antigen-positive red-pulp macrophages, while their livers displayed extensive necrosis, apoptosis and macro- and micro-steatosis, with DENV-2 antigen-positive Kuppfer cells and hepatocytes. Their infections were confirmed by DENV-2 isolations from their lungs, spleens and livers. These findings accord with those reported in fatal human "severe dengue" cases. This DENV-2 AER/AED was blocked by high concentrations of only the NG-C NS1 glycoprotein. These results imply a potential hazard of DENV NS1 glycoprotein-based vaccines

  20. Yokukansan, a traditional Japanese herbal medicine, enhances the anxiolytic effect of fluvoxamine and reduces cortical 5-HT2A receptor expression in mice.

    Science.gov (United States)

    Ohno, Rintaro; Miyagishi, Hiroko; Tsuji, Minoru; Saito, Atsumi; Miyagawa, Kazuya; Kurokawa, Kazuhiro; Takeda, Hiroshi

    2018-04-24

    Yokukansan is a traditional Japanese herbal medicine that has been approved in Japan as a remedy for neurosis, insomnia, and irritability in children. It has also been reported to improve behavioral and psychological symptoms in patients with various forms of dementia. To evaluate the usefulness of co-treatment with an antidepressant and an herbal medicine in the psychiatric field, the current study examined the effect of yokukansan on the anxiolytic-like effect of fluvoxamine in mice. The anxiolytic-like effect in mice was estimated by the contextual fear conditioning paradigm. Contextual fear conditioning consisted of two sessions, i.e., day 1 for the conditioning session and day 2 for the test session. The expression levels of 5-HT 1A and 5-HT 2A receptor in the mouse brain regions were quantified by western blot analysis. A single administration of fluvoxamine (5-20 mg/kg, i.p.) before the test session dose-dependently and significantly suppressed freezing behavior in mice. In the combination study, a sub-effective dose of fluvoxamine (5 mg/kg, i.p.) significantly suppressed freezing behavior in mice that had been repeatedly pretreated with yokukansan (0.3 and 1 g/kg, p.o.) once a day for 6 days after the conditioning session. Western blot analysis revealed that the expression level of 5-HT 2A receptor was specifically decreased in the prefrontal cortex of mice that had been administered yokukansan and fluvoxamine. Furthermore, microinjection of the 5-HT 2A receptor antagonist ketanserin (5 nmol/mouse) into the prefrontal cortex significantly suppressed freezing behavior. The present findings indicate that repeated treatment with yokukansan synergistically enhances the anxiolytic-like effect of fluvoxamine in the contextual fear conditioning paradigm in mice in conjunction with a decrease in 5-HT 2A receptor-mediated signaling in the prefrontal cortex. Therefore, combination therapy with fluvoxamine and yokukansan may be beneficial for the treatment of

  1. A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice.

    Directory of Open Access Journals (Sweden)

    Viswanathan Ramasamy

    2018-01-01

    Full Text Available Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs. Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies.We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII, which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, <10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs. These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice.Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent

  2. A New Adjuvant Combined with Inactivated Influenza Enhances Specific CD8 T Cell Response in Mice and Decreases Symptoms in Swine Upon Challenge.

    Science.gov (United States)

    Bouguyon, Edwige; Goncalves, Elodie; Shevtsov, Alexander; Maisonnasse, Pauline; Remyga, Stepan; Goryushev, Oleg; Deville, Sebastien; Bertho, Nicolas; Ben Arous, Juliette

    2015-11-01

    Vaccination is the most effective way to control swine influenza virus (SIV) in the field. Classical vaccines are based on inactivated antigens formulated with an oil emulsion or a polymeric adjuvant. Standard adjuvants enhance the humoral response and orient the immune response toward a Th2 response. An important issue is that current vaccines do not protect against new strains. One approach to improve cross-protection is to enhance Th1 and cytotoxic responses. The development of adjuvants orienting the immune response of inactivated vaccines toward Th1/Cytotoxic responses would be highly beneficial. This study shows that the water in oil in water emulsion adjuvant Montanide™ ISA 201 VG allows the induction of anti-influenza CD8 T cell in mice and induces homologous protection against an H1N1 challenge in swine. Such adjuvants that induce both humoral and cell-mediated immunity could improve the protection conferred by SIV vaccines in the field.

  3. Demonstration of InAlN/AlGaN high electron mobility transistors with an enhanced breakdown voltage by pulsed metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xue, JunShuai, E-mail: junshuaixue@hotmail.com; Zhang, JinCheng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China)

    2016-01-04

    In this work, InAlN/AlGaN heterostructures employing wider bandgap AlGaN instead of conventional GaN channel were grown on sapphire substrate by pulsed metal organic chemical vapor deposition, where the nominal Al composition in InAlN barrier and AlGaN channel were chosen to be 83% and 5%, respectively, to achieve close lattice-matched condition. An electron mobility of 511 cm{sup 2}/V s along with a sheet carrier density of 1.88 × 10{sup 13 }cm{sup −2} were revealed in the prepared heterostructures, both of which were lower compared with lattice-matched InAlN/GaN due to increased intrinsic alloy disorder scattering resulting from AlGaN channel and compressively piezoelectric polarization in barrier, respectively. While the high electron mobility transistor (HEMT) processed on these structures not only exhibited a sufficiently high drain output current density of 854 mA/mm but also demonstrated a significantly enhanced breakdown voltage of 87 V, which is twice higher than that of reported InAlN/GaN HEMT with the same device dimension, potential characteristics for high-voltage operation of GaN-based electronic devices.

  4. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.

    Science.gov (United States)

    Kwon, Wookbong; Kim, Hyeng-Soo; Jeong, Jain; Sung, Yonghun; Choi, Minjee; Park, Song; Lee, Jinhee; Jang, Soyoung; Kim, Sung Hyun; Lee, Sanggyu; Kim, Myoung Ok; Ryoo, Zae Young

    2018-01-01

    Ten-eleven translocation methylcytosine dioxygenase 1 ( Tet1 ) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1 , c-fos , Arc , and Bdnf , followed by the activation of intracellular calcium signals ( i.e. , CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits ( Gabra2 and Gabra4 ) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. © FASEB.

  5. Repeat exposure to ciguatoxin leads to enhanced and sustained thermoregulatory, pain threshold and motor activity responses in mice: relationship to blood ciguatoxin concentrations.

    Science.gov (United States)

    Bottein Dechraoui, Marie-Yasmine; Rezvani, Amir H; Gordon, Christopher J; Levin, Edward D; Ramsdell, John S

    2008-04-03

    Ciguatera is a common illness in tropical and subtropical regions that manifests in complex and long-lived symptoms which are more severe in subsequent exposures. This study measures central and peripheral neurologic signs, in parallel with blood toxin levels, in mice exposed once or twice (at 3 days interval) to a sublethal dose of ciguatoxin P-CTX-1 (0.26ng/g via i.p.). Mice were implanted with radiotransmitters to monitor motor activity and core temperature. A single exposure to ciguatoxin elicited an immediate and transient decrease in motor activity and temperature, and subsequent long-lasting thermoregulatory dysfunction resulting in stabilized body temperature around 36.0 degrees C with no observable circadian rhythm. The hypothermic response and the reduced activity were enhanced with a second exposure with 30% of the mice dying within 7h. Measurement of the peripheral nervous system by the tail flick assay revealed increased latency with a single ciguatoxin exposure, and a greater effect following the second exposure. Toxin was measurable in blood up to 3 days following the first exposure; at the 1h time point the concentrations were significantly elevated after a second exposure. These findings indicate an early response to ciguatoxin manifest in a central response to lower body temperature and reduce motor activity and a more persistent effect on the peripheral system leading to spinal heat antinociception and delayed fever-like response. The greater neurological response to a second ciguatoxin exposure was associated with elevated concentrations of ciguatoxin in the blood solely over the first hour of exposure. In conclusion, a single exposure to toxin exerts a significant neurological response which may be enhanced with subsequent exposure.

  6. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Hong-Mei Yang

    2017-02-01

    Full Text Available Bleomycin (BLM, a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22 tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.

  7. Brain histamine depletion enhances the behavioural sequences complexity of mice tested in the open-field: Partial reversal effect of the dopamine D2/D3 antagonist sulpiride.

    Science.gov (United States)

    Santangelo, Andrea; Provensi, Gustavo; Costa, Alessia; Blandina, Patrizio; Ricca, Valdo; Crescimanno, Giuseppe; Casarrubea, Maurizio; Passani, M Beatrice

    2017-02-01

    Markers of histaminergic dysregulation were found in several neuropsychiatric disorders characterized by repetitive behaviours, thoughts and stereotypies. We analysed the effect of acute histamine depletion by means of i. c.v. injections of alpha-fluoromethylhistidine, a blocker of histidine decarboxylase, on the temporal organization of motor sequences of CD1 mice behaviour in the open-field test. An ethogram encompassing 9 behavioural components was employed. Durations and frequencies were only slightly affected by treatments. However, as revealed by multivariate t-pattern analysis, histamine depletion was associated with a striking increase in the number of behavioural patterns. We found 42 patterns of different composition occurring, on average, 520.90 ± 50.23 times per mouse in the histamine depleted (HD) group, whereas controls showed 12 different patterns occurring on average 223.30 ± 20.64 times. Exploratory and grooming behaviours clustered separately, and the increased pattern complexity involved exclusively exploratory patterns. To test the hypothesis of a histamine-dopamine interplay on behavioural pattern phenotype, non-sedative doses of the D2/D3 antagonist sulpiride (12.5-25-50 mg/kg) were additionally administered to different groups of HD mice. Sulpiride counterbalanced the enhancement of exploratory patterns of different composition, but it did not affect the mean number of patterns at none of the doses used. Our results provide new insights on the role of histamine on repetitive behavioural sequences of freely moving mice. Histamine deficiency is correlated with a general enhancement of pattern complexity. This study supports a putative involvement of histamine in the pathophysiology of tics and related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Enhanced urinary bladder and liver carcinogenesis in male CD1 mice exposed to transplacental inorganic arsenic and postnatal diethylstilbestrol or tamoxifen

    International Nuclear Information System (INIS)

    Waalkes, Michael P.; Liu Jie; Ward, Jerrold M.; Diwan, Bhalchandra A.

    2006-01-01

    Pregnant CD1 mice received 85 ppm arsenite in the drinking water from gestation day 8 to 18, groups (n = 35) of male offspring were subsequently injected on postpartum days 1 through 5 with diethylstilbestrol (DES; 2 μg/pup/day) or tamoxifen (TAM; 10 μg/pup/day), and tumor formation was assessed over 90 weeks. Arsenic alone increased hepatocellular carcinoma (14%), adenoma (23%) and total tumors (31%) compared to control (0, 2 and 2%, respectively). Arsenic alone also increased lung adenocarcinoma, adrenal cortical adenoma and renal cystic tubular hyperplasia compared to control. Compared to arsenic alone, arsenic plus DES increased liver tumor incidence in mice at risk 2.2-fold and increased liver tumor multiplicity (tumors/liver) 1.8-fold. The treatments alone did not impact urinary bladder carcinogenesis, but arsenic plus TAM significantly increased formation of urinary bladder transitional cell tumors (papilloma and carcinoma; 13%) compared to control (0%). Urinary bladder proliferative lesions (combined tumors and hyperplasia) were also increased by arsenic plus TAM (40%) or arsenic plus DES (43%) compared to control (0%) or the treatments alone. Urinary bladder proliferative lesions occurred in the absence of any evidence of uroepithelial cytotoxic lesions. Urinary bladder lesions and hepatocellular carcinoma induced by arsenic plus TAM and/or DES overexpressed estrogen receptor-α, indicating that aberrant estrogen signaling may have been a factor in the enhanced carcinogenic response. Thus, in male CD1 mice, gestational arsenic exposure alone induced liver adenoma and carcinoma, lung adenocarcinoma, adrenal adenoma and renal cystic hyperplasia. Furthermore, DES enhanced transplacental arsenic-induced hepatocarcinogenesis. In utero arsenic also initiated urinary bladder tumor formation when followed by postnatal TAM and uroepithelial proliferative lesions when followed by TAM or DES

  9. Vector-free and transgene-free human iPS cells differentiate into functional neurons and enhance functional recovery after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Osama Mohamad

    Full Text Available Stroke is a leading cause of human death and disability in the adult population in the United States and around the world. While stroke treatment is limited, stem cell transplantation has emerged as a promising regenerative therapy to replace or repair damaged tissues and enhance functional recovery after stroke. Recently, the creation of induced pluripotent stem (iPS cells through reprogramming of somatic cells has revolutionized cell therapy by providing an unlimited source of autologous cells for transplantation. In addition, the creation of vector-free and transgene-free human iPS (hiPS cells provides a new generation of stem cells with a reduced risk of tumor formation that was associated with the random integration of viral vectors seen with previous techniques. However, the potential use of these cells in the treatment of ischemic stroke has not been explored. In the present investigation, we examined the neuronal differentiation of vector-free and transgene-free hiPS cells and the transplantation of hiPS cell-derived neural progenitor cells (hiPS-NPCs in an ischemic stroke model in mice. Vector-free hiPS cells were maintained in feeder-free and serum-free conditions and differentiated into functional neurons in vitro using a newly developed differentiation protocol. Twenty eight days after transplantation in stroke mice, hiPS-NPCs showed mature neuronal markers in vivo. No tumor formation was seen up to 12 months after transplantation. Transplantation of hiPS-NPCs restored neurovascular coupling, increased trophic support and promoted behavioral recovery after stroke. These data suggest that using vector-free and transgene-free hiPS cells in stem cell therapy are safe and efficacious in enhancing recovery after focal ischemic stroke in mice.

  10. Meningococcal factor H-binding protein vaccines with decreased binding to human complement factor H have enhanced immunogenicity in human factor H transgenic mice.

    Science.gov (United States)

    Rossi, Raffaella; Granoff, Dan M; Beernink, Peter T

    2013-11-04

    Factor H-binding protein (fHbp) is a component of a meningococcal vaccine recently licensed in Europe for prevention of serogroup B disease, and a second vaccine in clinical development. The protein specifically binds human factor H (fH), which down-regulates complement activation and enhances resistance to bactericidal activity. There are conflicting data from studies in human fH transgenic mice on whether binding of human fH to fHbp vaccines decreases immunogenicity, and whether mutant fHbp vaccines with decreased fH binding have enhanced immunogenicity. fHbp can be classified into two sub-families based on sequence divergence and immunologic cross-reactivity. Previous studies of mutant fHbp vaccines with low fH binding were from sub-family B, which account for approximately 60% of serogroup B case isolates. In the present study, we evaluated the immunogenicity of two mutant sub-family A fHbp vaccines containing single substitutions, T221A or D211A, which resulted in 15- or 30-fold lower affinity for human fH, respectively, than the corresponding control wild-type fHbp vaccine. In transgenic mice with high serum concentrations of human fH, both mutant vaccines elicited significantly higher IgG titers and higher serum bactericidal antibody responses than the control fHbp vaccine that bound human fH. Thus, mutations introduced into a sub-family A fHbp antigen to decrease fH binding can increase protective antibody responses in human fH transgenic mice. Collectively the data suggest that mutant fHbp antigens with decreased fH binding will result in superior vaccines in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Continuous in vivo infusion of interferon-gamma (IFN-gamma) enhances engraftment of syngeneic wild-type cells in Fanca-/- and Fancg-/- mice.

    Science.gov (United States)

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J; Critser, John; Arwert, Fre; Haneline, Laura S; Clapp, D Wade

    2006-12-15

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.

  12. Continuous in vivo infusion of interferon-gamma (IFN-γ) enhances engraftment of syngeneic wild-type cells in Fanca–/– and Fancg–/– mice

    Science.gov (United States)

    Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J.; Critser, John; Arwert, Fre; Haneline, Laura S.; Clapp, D. Wade

    2006-01-01

    Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc–/– cells to interferon-gamma (IFN-γ), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc–/– mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca–/– and Fancg–/– mice are hypersensitive to IFN-γ and that in vivo infusion of IFN-γ at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-γ conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients. PMID:16946306

  13. Enhanced K+-channel-mediated endothelium-dependent local and conducted dilation of small mesenteric arteries from ApoE−/− mice

    Science.gov (United States)

    Beleznai, Timea; Takano, Hiromichi; Hamill, Claire; Yarova, Polina; Douglas, Gillian; Channon, Keith; Dora, Kim

    2011-01-01

    Aims Agonists that evoke smooth muscle cell hyperpolarization have the potential to stimulate both local and conducted dilation. We investigated whether the endothelium-dependent vasodilators acetylcholine (ACh) and SLIGRL stimulated conducted dilation and whether this was altered by deficiency in apolipoprotein E (ApoE−/−). Methods and results Isolated mesenteric arteries were cannulated, pressurized, and precontracted with phenylephrine. Agonists were either added to the bath to study local dilation or were restricted to one end of arteries to study conducted dilation. An enhanced sensitivity to both ACh and SLIGRL was observed in mesenteric arteries from ApoE−/− mice compared with wild-type controls. Inhibition of nitric oxide (NO) synthase blocked ACh responses, but had no effect on maximum dilation to SLIGRL. SLIGRL increased endothelial cell Ca2+, hyperpolarized smooth muscle cells, and fully dilated arteries. The NO-independent dilation to SLIGRL was blocked with high [KCl] or Ca2+-activated K+-channel blockers. The hyperpolarization and dilation to SLIGRL passed through the artery to at least 2.5 mm upstream. The conducted dilation was not affected by a deficit in ApoE and could also be stimulated by ACh, suggesting NO itself could stimulate conducted dilation. Conclusion In small mesenteric arteries of ApoE−/− mice, NO-independent dilation is enhanced. Since both NO-dependent and -independent pathways can stimulate local and conducted dilation, the potential for reducing vascular resistance is improved in these vessels. PMID:21690174

  14. The human gastric pathogen Helicobacter pylori has a potential acetone carboxylase that enhances its ability to colonize mice

    Directory of Open Access Journals (Sweden)

    Weinberg Michael V

    2008-01-01

    Full Text Available Abstract Background Helicobacter pylori colonizes the human stomach and is the etiological agent of peptic ulcer disease. All three H. pylori strains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded by acxABC from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putative acxABC operon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA. Results To determine if the H. pylori acxABC operon has a role in host colonization the acxB homolog in the mouse-adapted H. pylori SS1 strain was inactivated with a chloramphenicol-resistance (cat cassette. In mouse colonization studies the numbers of H. pylori recovered from mice inoculated with the acxB:cat mutant were generally one to two orders of magnitude lower than those recovered from mice inoculated with the parental strain. A statistical analysis of the data using a Wilcoxin Rank test indicated the differences in the numbers of H. pylori isolated from mice inoculated with the two strains were significant at the 99% confidence level. Levels of acetone associated with gastric tissue removed from uninfected mice were measured and found to range from 10–110 μmols per gram wet weight tissue. Conclusion The colonization defect of the acxB:cat mutant suggests a role for the acxABC operon in survival of the bacterium in the stomach. Products of the H. pylori acxABC operon may function primarily in acetone utilization or may catalyze a related reaction that is important for survival or growth in the host. H. pylori encounters significant levels of acetone in the stomach which it could use as a potential electron donor for microaerobic respiration.

  15. Enhanced IL-1beta production in response to the activation of hippocampal glial cells impairs neurogenesis in aged mice.

    Science.gov (United States)

    Kuzumaki, Naoko; Ikegami, Daigo; Imai, Satoshi; Narita, Michiko; Tamura, Rie; Yajima, Marie; Suzuki, Atsuo; Miyashita, Kazuhiko; Niikura, Keiichi; Takeshima, Hideyuki; Ando, Takayuki; Ushijima, Toshikazu; Suzuki, Tsutomu; Narita, Minoru

    2010-09-01

    A variety of mechanisms that contribute to the accumulation of age-related damage and the resulting brain dysfunction have been identified. Recently, decreased neurogenesis in the hippocampus has been recognized as one of the mechanisms of age-related brain dysfunction. However, the molecular mechanism of decreased neurogenesis with aging is still unclear. In the present study, we investigated whether aging decreases neurogenesis accompanied by the activation of microglia and astrocytes, which increases the expression of IL-1beta in the hippocampus, and whether in vitro treatment with IL-1beta in neural stem cells directly impairs neurogenesis. Ionized calcium-binding adaptor molecule 1 (Iba1)-positive microglia and glial fibrillary acidic protein (GFAP)-positive astrocytes were increased in the dentate gyrus of the hippocampus of 28-month-old mice. Furthermore, the mRNA level of IL-1beta was significantly increased without related histone modifications. Moreover, a significant increase in lysine 9 on histone H3 (H3K9) trimethylation at the promoter of NeuroD (a neural progenitor cell marker) was observed in the hippocampus of aged mice. In vitro treatment with IL-1beta in neural stem cells prepared from whole brain of E14.5 mice significantly increased H3K9 trimethylation at the NeuroD promoter. These findings suggest that aging may decrease hippocampal neurogenesis via epigenetic modifications accompanied by the activation of microglia and astrocytes with the increased expression of IL-1beta in the hippocampus.

  16. A BCR/ABL-hIL-2 DNA Vaccine Enhances the Immune Responses in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Yanan Qin

    2013-01-01

    Full Text Available The use of a DNA vaccine encoding the BCR/ABL fusion gene is thought to be a promising approach for patients with chronic myeloid leukemia (CML to eradicate minimal residual disease after treatment with chemotherapy or targeted therapy. In this study, our strategy employs genetic technology to create a DNA vaccine encoding the BCR/ABL fusion and human interleukin-2 (hIL-2 genes. The successfully constructed plasmids BCR/ABL-pIRES-hIL-2, BCR/ABL-pIRES, and pIRES-hIL-2 were delivered intramuscularly to BALB/c mice at 14-day intervals for three cycles. The transcription and expression of the BCR/ABL and hIL-2 genes were found in the injected muscle tissues. The interferon-γ (IFN-γ serum levels were increased, and the splenic CD4+/CD8+ T cell ratio was significantly decreased in the BCR/ABL-pIRES-hIL-2-injected mice. Furthermore, specific antibodies against K562 cells could be detected by indirect immunofluorescence. These results indicate that a DNA vaccine containing BCR/ABL and hIL-2 together may elicit increased in vivo humoral and cellular immune responses in BALB/c mice.

  17. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    Science.gov (United States)

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Introduction of the human AVPR1A gene substantially alters brain receptor expression patterns and enhances aspects of social behavior in transgenic mice

    Directory of Open Access Journals (Sweden)

    Rhonda Charles

    2014-08-01

    Full Text Available Central arginine vasopressin receptor 1A (AVPR1A modulates a wide range of behaviors, including stress management and territorial aggression, as well as social bonding and recognition. Inter- and intra-species variations in the expression pattern of AVPR1A in the brain and downstream differential behavioral phenotypes have been attributed to differences in the non-coding regions of the AVPR1A gene, including polymorphic elements within upstream regulatory areas. Gene association studies have suggested a link between AVPR1A polymorphisms and autism, and AVPR1A has emerged as a potential pharmacological target for treatment of social cognitive impairments and mood and anxiety disorders. To further investigate the genetic mechanism giving rise to species differences in AVPR1A expression patterns and associated social behaviors, and to create a preclinical mouse model useful for screening drugs targeting AVPR1A, we engineered and extensively characterized bacterial artificial chromosome (BAC transgenic mice harboring the entire human AVPR1A locus with the surrounding regulatory elements. Compared with wild-type animals, the humanized mice displayed a more widely distributed ligand-AVPR1A binding pattern, which overlapped with that of primates. Furthermore, humanized AVPR1A mice displayed increased reciprocal social interactions compared with wild-type animals, but no differences in social approach and preference for social novelty were observed. Aspects of learning and memory, specifically novel object recognition and spatial relocation recognition, were unaffected. The biological alterations in humanized AVPR1A mice resulted in the rescue of the prepulse inhibition impairments that were observed in knockout mice, indicating conserved functionality. Although further behavioral paradigms and additional cohorts need to be examined in humanized AVPR1A mice, the results demonstrate that species-specific variations in the genomic content of regulatory

  19. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    Science.gov (United States)

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P Defibrotide plus rhG-CSF resulted in a significant increase (P Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed progenitor cells. These data might have relevant implications for autologous and allogeneic anticancer therapy in humans.

  20. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    International Nuclear Information System (INIS)

    Ganesan, Shanthi; Nteeba, Jackson; Keating, Aileen F.

    2014-01-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity

  1. Enhanced susceptibility of ovaries from obese mice to 7,12-dimethylbenz[a]anthracene-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Nteeba, Jackson, E-mail: nteeba@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2014-12-01

    7,12-Dimethylbenz[a]anthracene (DMBA) depletes ovarian follicles and induces DNA damage in extra-ovarian tissues, thus, we investigated ovarian DMBA-induced DNA damage. Additionally, since obesity is associated with increased offspring birth defect incidence, we hypothesized that a DMBA-induced DNA damage response (DDR) is compromised in ovaries from obese females. Wild type (lean) non agouti (a/a) and KK.Cg-Ay/J heterozygote (obese) mice were dosed with sesame oil or DMBA (1 mg/kg; intraperitoneal injection) at 18 weeks of age, for 14 days. Total ovarian RNA and protein were isolated and abundance of Ataxia telangiectasia mutated (Atm), X-ray repair complementing defective repair in Chinese hamster cells 6 (Xrcc6), breast cancer type 1 (Brca1), Rad 51 homolog (Rad51), poly [ADP-ribose] polymerase 1 (Parp1) and protein kinase, DNA-activated, catalytic polypeptide (Prkdc) were quantified by RT-PCR or Western blot. Phosphorylated histone H2AX (γH2AX) level was determined by Western blotting. Obesity decreased (P < 0.05) basal protein abundance of PRKDC and BRCA1 proteins but increased (P < 0.05) γH2AX and PARP1 proteins. Ovarian ATM, XRCC6, PRKDC, RAD51 and PARP1 proteins were increased (P < 0.05) by DMBA exposure in lean mice. A blunted DMBA-induced increase (P < 0.05) in XRCC6, PRKDC, RAD51 and BRCA1 was observed in ovaries from obese mice, relative to lean counterparts. Taken together, DMBA exposure induced γH2AX as well as the ovarian DDR, supporting that DMBA causes ovarian DNA damage. Additionally, ovarian DDR was partially attenuated in obese females raising concern that obesity may be an additive factor during chemical-induced ovotoxicity. - Highlights: • DMBA induces markers of ovarian DNA damage. • Obesity induces low level ovarian DNA damage. • DMBA-induced DNA repair response is altered by obesity.

  2. Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice

    Directory of Open Access Journals (Sweden)

    Rui-Feng Yang

    2014-10-01

    Full Text Available Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells (HUC-MSCs, which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC-MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efficiently. HUC-MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan-treated mice (saline and HEK293 cells injections were performed in a separate set of mice and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression (2-8 fold in HUC-MSCs injected testes compared to the contralateral uninjected testes (five mice. Protein levels for germ cell-specific genes, miwi, vasa and synaptonemal complex protein (Scp3 were also higher in MSC-treated testes compared to injected controls 3 weeks after treatment. However, no different expression was detected in saline water and HEK293 cells injection control group. We have demonstrated HUC-MSCs could affect mouse germ cell-specific genes expression. The results also provide a possibility that the transplanted HUC-MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC-MSCs, and explores a new approach to the treatment of azoospermia.

  3. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  4. Tested Demonstrations.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  5. Enhanced Stress Response in 5-HT1AR Overexpressing Mice: Altered HPA Function and Hippocampal Long-Term Potentiation.

    Science.gov (United States)

    Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Díaz, Álvaro; Garro-Martínez, Emilio; Linge, Raquel; Castro, Elena; Haberzettl, Robert; Fink, Heidrun; Bert, Bettina; Brosda, Jan; Romero, Beatriz; Crespo-Facorro, Benedicto; Pazos, Ángel

    2017-11-15

    Postsynaptic 5-HT 1A receptors (5-HT 1A R) play an important role in anxiety and stress, although their contribution is still controversial. Previous studies report that mice overexpressing postsynaptic 5-HT 1A Rs show no changes in basal anxiety, though the influence of stress conditions has not been addressed yet. In this study, we used this animal model to evaluate the role of 5-HT 1A Rs in anxiety response after pre-exposure to an acute stressor. Under basal conditions, 5-HT 1A R overexpressing animals presented high corticosterone levels and a lower mineralocorticoid/glucocorticoid receptor ratio. After pre-exposure to a single stressor, they showed a high anxiety-like response, associated with a blunted increase in corticosterone levels and higher c-Fos activation in the prefrontal cortex. Moreover, these mice also presented a lack of downregulation of hippocampal long-term potentiation after stress exposure. Therefore, higher postsynaptic 5-HT 1A R activation might predispose to a high anxious phenotype and an impaired stress coping behavior.

  6. Resveratrol Enhances Neuroplastic Changes, Including Hippocampal Neurogenesis, and Memory in Balb/C Mice at Six Months of Age.

    Science.gov (United States)

    Torres-Pérez, Mario; Tellez-Ballesteros, Ruth Ivonne; Ortiz-López, Leonardo; Ichwan, Muhammad; Vega-Rivera, Nelly Maritza; Castro-García, Mario; Gómez-Sánchez, Ariadna; Kempermann, Gerd; Ramirez-Rodriguez, Gerardo Bernabe

    2015-01-01

    Resveratrol (RVTL) is a flavonoid found in red wine and has been publicized heavily as an anti-aging compound. Indeed, basic research confirms that although there is much hype in the promotion of RVTL, flavonoids such as RVTL have a wide range of biological effects. We here investigated the effects of RVTL treatment on hippocampal plasticity and memory performance in female Balb/C mice, a strain with low baseline levels of adult neurogenesis. Two weeks of treatment with RVTL (40 mg/kg) induced the production of new neurons in vivo by increasing cell survival and possibly precursor cell proliferation. In addition, RVTL decreased the number of apoptotic cells. The number of doublecortin (DCX)-expressing intermediate cells was increased. RVTL stimulated neuronal differentiation in vitro without effects on proliferation. In the dentate gyrus, RVTL promoted the formation and maturation of spines on granule cell dendrites. RVTL also improved performance in the step down passive avoidance test. The RVTL-treated mice showed increase in the levels of two key signaling proteins, phospho-Akt and phospho-PKC, suggesting the involvement of these signaling pathways. Our results support the vision that flavonoids such as resveratrol deserve further examination as plasticity-inducing compounds in the context of successful cognitive aging.

  7. Resveratrol Enhances Neuroplastic Changes, Including Hippocampal Neurogenesis, and Memory in Balb/C Mice at Six Months of Age.

    Directory of Open Access Journals (Sweden)

    Mario Torres-Pérez

    Full Text Available Resveratrol (RVTL is a flavonoid found in red wine and has been publicized heavily as an anti-aging compound. Indeed, basic research confirms that although there is much hype in the promotion of RVTL, flavonoids such as RVTL have a wide range of biological effects. We here investigated the effects of RVTL treatment on hippocampal plasticity and memory performance in female Balb/C mice, a strain with low baseline levels of adult neurogenesis. Two weeks of treatment with RVTL (40 mg/kg induced the production of new neurons in vivo by increasing cell survival and possibly precursor cell proliferation. In addition, RVTL decreased the number of apoptotic cells. The number of doublecortin (DCX-expressing intermediate cells was increased. RVTL stimulated neuronal differentiation in vitro without effects on proliferation. In the dentate gyrus, RVTL promoted the formation and maturation of spines on granule cell dendrites. RVTL also improved performance in the step down passive avoidance test. The RVTL-treated mice showed increase in the levels of two key signaling proteins, phospho-Akt and phospho-PKC, suggesting the involvement of these signaling pathways. Our results support the vision that flavonoids such as resveratrol deserve further examination as plasticity-inducing compounds in the context of successful cognitive aging.

  8. Enhancement of Intranasal Vaccination in Mice with Deglycosylated Chain A Ricin by LTR72, a Novel Mucosal Adjuvant

    National Research Council Canada - National Science Library

    Kende, Meir; Del Giudice, Giuseppe; Rivera, Noelia; Hewetson, John

    2006-01-01

    .... However, in the presence of 4, 2, or 1 microg of the mucosal adjuvant LTR72, a mutant of the heat-labile enterotoxin of Escherichia coli, the low antibody response and protection were substantially enhanced...

  9. Enhancement of Intranasal Vaccination in Mice with Deglycosylated Chain A Ricin by LTR72, a Novel Mucosal Adjuvant

    National Research Council Canada - National Science Library

    Kende, Meir; Del Giudice, Giuseppe; Rivera, Noelia; Hewetson, John

    2006-01-01

    .... However, in the presence of 4, 2, or 1 micro-gram of the mucosal adjuvant LTR72, a mutant of the heat-labile enterotoxin of Escherichia coli, the low antibody response and protection were substantially enhanced...

  10. Enhanced efficacy of gemcitabine in combination with anti-CD20 monoclonal antibody against CD20+ non-Hodgkin's lymphoma cell lines in vitro and in scid mice

    Directory of Open Access Journals (Sweden)

    Jin Fang

    2005-08-01

    Full Text Available Abstract Background Despite exciting new targeted therapeutics against non-Hodgkin's lymphoma (NHL, chemotherapy remains a cornerstone of therapy. While purine nucleoside analogs have significant activity in low grade NHL, the pyrimidine nucleoside analog gemcitabine has been less extensively studied, but has important activity. Use of the anti-CD20 monoclonal antibody rituximab in combination with chemotherapy for B-NHL is becoming prevalent in clinical practice, but has not been extensively studied in pre-clinical models. Methods We have tested the activity of gemcitabine ± rituximab in vitro and in scid/human NHL xenograft models. We used two t(14;18+, CD20+ follicular B cell NHL cell lines, DoHH2 a transformed NHL line and WSU-FSCCL isolated from pleural fluid of a patient with indolent NHL. Results Gemcitabine is cytotoxic to DoHH2 and WSU-FSCCL cells in vitro, and the IC50 is 2–3 fold lower in the presence of rituximab. Apoptosis is also enhanced in the presence of rituximab. Clearance of NHL cells from ascites in scid mice is prolonged by the combination, as compared with either agent alone. Most importantly, survival of scid mice bearing human NHL cells is significantly prolonged by the combination of gemcitabine + rituximab. Conclusion Based on our pre-clinical data showing prolonged survival of mice bearing human lymphoma cell line xenografts after treatment with gemcitabine + anti-CD20 antibody, this combination, expected to have non-overlapping toxicity profiles, should be explored in clinical trials.

  11. Anaplerotic Triheptanoin Diet Enhances Mitochondrial Substrate Use to Remodel the Metabolome and Improve Lifespan, Motor Function, and Sociability in MeCP2-Null Mice

    Science.gov (United States)

    Li, Qun; Degano, Alicia L.; Penati, Judith; Zhuo, Justin; Roe, Charles R.; Ronnett, Gabriele V.

    2014-01-01

    Rett syndrome (RTT) is an autism spectrum disorder (ASD) caused by mutations in the X-linked MECP2 gene that encodes methyl-CpG binding protein 2 (MeCP2). Symptoms range in severity and include psychomotor disabilities, seizures, ataxia, and intellectual disability. Symptom onset is between 6-18 months of age, a critical period of brain development that is highly energy-dependent. Notably, patients with RTT have evidence of mitochondrial dysfunction, as well as abnormal levels of the adipokines leptin and adiponectin, suggesting overall metabolic imbalance. We hypothesized that one contributor to RTT symptoms is energy deficiency due to defective nutrient substrate utilization by the TCA cycle. This energy deficit would lead to a metabolic imbalance, but would be treatable by providing anaplerotic substrates to the TCA cycle to enhance energy production. We show that dietary therapy with triheptanoin significantly increased longevity and improved motor function and social interaction in male mice hemizygous for Mecp2 knockout. Anaplerotic therapy in Mecp2 knockout mice also improved indicators of impaired substrate utilization, decreased adiposity, increased glucose tolerance and insulin sensitivity, decreased serum leptin and insulin, and improved mitochondrial morphology in skeletal muscle. Untargeted metabolomics of liver and skeletal muscle revealed increases in levels of TCA cycle intermediates with triheptanoin diet, as well as normalizations of glucose and fatty acid biochemical pathways consistent with the improved metabolic phenotype in Mecp2 knockout mice on triheptanoin. These results suggest that an approach using dietary supplementation with anaplerotic substrate is effective in improving symptoms and metabolic health in RTT. PMID:25299635

  12. Tumor-Associated Macrophages Recruit CCR6+ Regulatory T Cells and Promote the Development of Colorectal Cancer via Enhancing CCL20 Production in Mice

    Science.gov (United States)

    Li, Qun; Zhang, Weiwei; Ke, Fang; Leng, Qibin; Wang, Hong; Chen, Jinfei; Wang, Honglin

    2011-01-01

    Background Tumor-associated macrophages (TAMs) remodel the colorectal cancer (CRC) microenvironment. Yet, findings on the role of TAMs in CRC seem to be contradictory compared with other cancers. FoxP3+ regulatory T (Treg)-cells dominantly infiltrate CRC. However, the underlying molecular mechanism in which TAMs may contribute to the trafficking of Treg-cells to the tumor mass remains unknown. Methodology/Principal Findings CRC was either induced by N-methyl-N-nitrosourea (MNU) and H. pylori or established by subcutaneous injection of mouse colorectal tumor cell line (CMT93) in mice. CMT93 cells were co-cultured with primary macrophages in a transwell apparatus. Recruitment of FoxP3 green fluorescence protein positive (FoxP3GFP+) Treg-cells was assessed using the IVIS Imaging System or immunofluorescence staining. A role for macrophages in trafficking of Treg-cells and in the development of CRC was investigated in CD11b diphtheria toxin receptor (CD11b-DTR) transgenic C57BL/6J mice in which macrophages can be selectively depleted. Treg-cells remarkably infiltrated solid tumor, and predominantly expressed the homing chemokine receptor (CCR) 6 in the induced CRC model. Both CMT93 cancer cells and macrophages produced a large amount of CCL20, the sole ligand of CCR6 in vitro and in vivo. Injection of recombinant mouse CCL20 into tumor sites promoted its development with a marked recruitment of Treg-cells in the graft CRC model. Conditional macrophage ablation decreased CCL20 levels, blocked Treg-cell recruitment and inhibited tumor growth in CD11b-DTR mice grafted with CMT93. Conclusions/Significance TAMs recruit CCR6+ Treg-cells to tumor mass and promote its development via enhancing the production of CCL20 in a CRC mouse model. PMID:21559338

  13. The Potent Humanin Analogue (HNG) Protects Germ Cells and Leucocytes While Enhancing Chemotherapy-Induced Suppression of Cancer Metastases in Male Mice.

    Science.gov (United States)

    Lue, YanHe; Swerdloff, Ronald; Wan, Junxiang; Xiao, Jialin; French, Samuel; Atienza, Vince; Canela, Victor; Bruhn, Kevin W; Stone, Brian; Jia, Yue; Cohen, Pinchas; Wang, Christina

    2015-12-01

    Humanin is a peptide that is cytoprotective against stresses in many cell types. We investigated whether a potent humanin analogue S14G-humanin (HNG) would protect against chemotherapy-induced damage to normal cells without interfering with the chemotherapy-induced suppression of cancer cells. Young adult male mice were inoculated iv with murine melanoma cells. After 1 week, cancer-bearing mice were randomized to receive either: no treatment, daily ip injection of HNG, a single ip injection of cyclophosphamide (CP), or CP+HNG and killed at the end of 3 weeks. HNG rescued the CP-induced suppression of leucocytes and protected germ cell from CP-induced apoptosis. Lung metastases were suppressed by HNG or CP alone, and further suppressed by CP+HNG treatment. Plasma IGF-1 levels were suppressed by HNG with or without CP treatment. To investigate whether HNG maintains its protective effects on spermatogonial stem cells, sperm output, and peripheral leucocytes after repeated doses of CP, normal adult male mice received: no treatment, daily sc injection of HNG, 6 ip injections of CP at 5-day intervals, and the same regimens of CP+HNG and killed at the end of 4 weeks of treatment. Cauda epididymal sperm counts were elevated by HNG and suppressed by CP. HNG rescued the CP-induced suppression of spermatogonial stem cells, sperm count and peripheral leucocytes. We conclude that HNG 1) protects CP-induced loss of male germ cells and leucocytes, 2) enhances CP-induced suppression of cancer metastases, and 3) acts as a caloric-restriction mimetic by suppressing IGF-1 levels. Our findings suggest that humanin analogues may be promising adjuvants to chemotherapy.

  14. AAV serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in APP+PS1 mice.

    Science.gov (United States)

    Kiyota, T; Ingraham, K L; Swan, R J; Jacobsen, M T; Andrews, S J; Ikezu, T

    2012-07-01

    Brain inflammation is a double-edged sword. It is required for brain repair in acute damage, whereas chronic inflammation and autoimmune disorders are neuropathogenic. Certain proinflammatory cytokines and chemokines are closely related to cognitive dysfunction and neurodegeneration. Representative anti-inflammatory cytokines, such as interleukin (IL)-10, can suppress neuroinflammation and have significant therapeutic potentials in ameliorating neurodegenerative disorders such as Alzheimer's disease (AD). Here, we show that adeno-associated virus (AAV) serotype 2/1 hybrid-mediated neuronal expression of the mouse IL-10 gene ameliorates cognitive dysfunction in amyloid precursor protein+ presenilin-1 bigenic mice. AAV2/1 infection of hippocampal neurons resulted in sustained expression of IL-10 without its leakage into the blood, reduced astro/microgliosis, enhanced plasma amyloid-β peptide (Aβ) levels and enhanced neurogenesis. Moreover, increased levels of IL-10 improved spatial learning, as determined by the radial arm water maze. Finally, IL-10-stimulated microglia enhanced proliferation but not differentiation of primary neural stem cells in the co-culture system, whereas IL-10 itself had no effect. Our data suggest that IL-10 gene delivery has a therapeutic potential for a non-Aβ-targeted treatment of AD.

  15. Rapid acquisition adaptive amino acid substitutions involved in the virulence enhancement of an H1N2 avian influenza virus in mice.

    Science.gov (United States)

    Yu, Zhijun; Sun, Weiyang; Zhang, Xinghai; Cheng, Kaihui; Zhao, Chuqi; Xia, Xianzhu; Gao, Yuwei

    2017-08-01

    Although H1N2 avian influenza virus (AIV) only infect birds, documented cases of swine infection with H1N2 influenza viruses suggest this subtype AIV may pose a potential threat to mammals. Here, we generated mouse-adapted variants of a H1N2 AIV to identify adaptive changes that increased virulence in mammals. MLD 50 of the variants were reduced >1000-fold compared to the parental virus. Variants displayed enhanced replication in vitro and in vivo, and replicate in extrapulmonary organs. These data show that enhanced replication capacity and expanded tissue tropism may increase the virulence of H1N2 AIV in mice. Sequence analysis revealed multiple amino acid substitutions in the PB2 (L134H, I647L, and D701N), HA (G228S), and M1 (D231N) proteins. These results indicate that H1N2 AIV can rapidly acquire adaptive amino acid substitutions in mammalian hosts, and these amino acid substitutions collaboratively enhance the ability of H1N2 AIV to replicate and cause severe disease in mammals. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Enhanced effect of BCG vaccine against pulmonary Mycobacterium tuberculosis infection in mice with lung Th17 response to mycobacterial heparin-binding hemagglutinin adhesin antigen.

    Science.gov (United States)

    Fukui, Masayuki; Shinjo, Kikuko; Umemura, Masayuki; Shigeno, Satoko; Harakuni, Tetsuya; Arakawa, Takeshi; Matsuzaki, Goro

    2015-12-01

    Although the BCG vaccine can prevent tuberculosis (TB) in infants, its ability to prevent adult pulmonary TB is reportedly limited. Therefore, development of a novel effective vaccine against pulmonary TB has become an international research priority. We have previously reported that intranasal vaccination of mice with a mycobacterial heparin-binding hemagglutinin adhesin (HBHA) plus mucosal adjuvant cholera toxin (CT) enhances production of IFN-γ and anti-HBHA antibody and suppresses extrapulmonary bacterial dissemination after intranasal infection with BCG. In the present study, the effects of intranasal HBHA + CT vaccine on murine pulmonary Mycobacterium tuberculosis (Mtb) infection were examined. Intranasal HBHA + CT vaccination alone failed to reduce the bacterial burden in the infected lung. However, a combination vaccine consisting of s.c. BCG priming and an intranasal HBHA + CT booster significantly enhanced protective immunity against pulmonary Mtb infection on day 14 compared with BCG vaccine alone. Further, it was found that intranasal HBHA + CT vaccine enhanced not only IFN-γ but also IL-17A production by HBHA-specific T cells in the lung after pulmonary Mtb infection. Therefore, this combination vaccine may be a good candidate for a new vaccine strategy against pulmonary TB. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  17. Olfactory memory is enhanced in mice exposed to extremely low-frequency electromagnetic fields via Wnt/β-catenin dependent modulation of subventricular zone neurogenesis.

    Science.gov (United States)

    Mastrodonato, Alessia; Barbati, Saviana Antonella; Leone, Lucia; Colussi, Claudia; Gironi, Katia; Rinaudo, Marco; Piacentini, Roberto; Denny, Christine A; Grassi, Claudio

    2018-01-10

    Exposure to extremely low-frequency electromagnetic fields (ELFEF) influences the expression of key target genes controlling adult neurogenesis and modulates hippocampus-dependent memory. Here, we assayed whether ELFEF stimulation affects olfactory memory by modulating neurogenesis in the subventricular zone (SVZ) of the lateral ventricle, and investigated the underlying molecular mechanisms. We found that 30 days after the completion of an ELFEF stimulation protocol (1 mT; 50 Hz; 3.5 h/day for 12 days), mice showed enhanced olfactory memory and increased SVZ neurogenesis. These effects were associated with upregulated expression of mRNAs encoding for key regulators of adult neurogenesis and were mainly dependent on the activation of the Wnt pathway. Indeed, ELFEF stimulation increased Wnt3 mRNA expression and nuclear localization of its downstream target β-catenin. Conversely, inhibition of Wnt3 by Dkk-1 prevented ELFEF-induced upregulation of neurogenic genes and abolished ELFEF's effects on olfactory memory. Collectively, our findings suggest that ELFEF stimulation increases olfactory memory via enhanced Wnt/β-catenin signaling in the SVZ and point to ELFEF as a promising tool for enhancing SVZ neurogenesis and olfactory function.

  18. EMT factor Zeb1 depletion in dendritic cells enhances Helminth clearance in mice by increasing Th2 cell differentiation

    Directory of Open Access Journals (Sweden)

    Shuchi Smita

    2017-10-01

    27 also showed decreasing trend in zeb1 depleted DCs. Thereafter we speculated that these Zeb1 perturbed DCs might be involved in default Th2 program. So, we looked into T-cell polarization by co-culture & MLR experiments which showed an increase in GATA3+ T cells, a signature transcription factor for Th2 subtype along with higher levels of IL4, IL5 and IL13 Th2 cytokines. To evaluate the in-vivo function of Zeb1 knockdown (KD cells we developed Helminth Polygyrus (H.Poly disease model in mice, there we assessed for the worm load in intestine and egg count in the feces which showed a marked decrease in worm count and egg count in Zeb1 KD adoptive transfer mice as compared to control mice. The T cell response was examined through the draining lymph node (mesenteric lymph node where we found significant increase in GATA3+ T cells along with IL5 and IL13; this suggested that Zeb1 KD DCs polarize the T cells towards Th2 response which results in clearance of H. polygyrus in mice.

  19. Overexpression of Adenylyl Cyclase Encoded by the Mycobacterium tuberculosis Rv2212 Gene Confers Improved Fitness, Accelerated Recovery from Dormancy and Enhanced Virulence in Mice

    Directory of Open Access Journals (Sweden)

    Margarita O. Shleeva

    2017-08-01

    Full Text Available Earlier we demonstrated that the adenylyl cyclase (AC encoded by the MSMEG_4279 gene plays a key role in the resuscitation and growth of dormant Mycobacterium smegmatis and that overexpression of this gene leads to an increase in intracellular cAMP concentration and prevents the transition of M. smegmatis from active grow