WorldWideScience

Sample records for mice deleting rev3l

  1. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro.

    Science.gov (United States)

    Fritzen, Rémi; Delbos, Frédéric; De Smet, Annie; Palancade, Benoît; Canman, Christine E; Aoufouchi, Said; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2016-10-01

    Rev3, the catalytic subunit of yeast DNA polymerase ζ, is required for UV resistance and UV-induced mutagenesis, while its mammalian ortholog, REV3L, plays further vital roles in cell proliferation and embryonic development. To assess the contribution of REV3L catalytic activity to its in vivo function, we generated mutant mouse strains in which one or two Ala residues were substituted to the Asp of the invariant catalytic YGDTDS motif. The simultaneous mutation of both Asp (ATA) phenocopies the Rev3l knockout, which proves that the catalytic activity is mandatory for the vital functions of Rev3L, as reported recently. Surprisingly, although the mutation of the first Asp severely impairs the enzymatic activity of other B-family DNA polymerases, the corresponding mutation of Rev3 (ATD) is hypomorphic in yeast and mouse, as it does not affect viability and proliferation and moderately impacts UVC-induced cell death and mutagenesis. Interestingly, Rev3l hypomorphic mutant mice display a distinct, albeit modest, alteration of the immunoglobulin gene mutation spectrum at G-C base pairs, further documenting its role in this process. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  3. Multigene deletions in lung adenocarcinomas from irradiated and control mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Woloschak, G.E. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1996-06-01

    K-ras codon 12 point mutations mRb and p53 gene deletions were examined in tissues from 120 normal lungs and lung adenocarcinomas that were Formalin-treated and paraffin-embedded 25 years ago. The results showed that 12 of 60 (20%) lung adenocarcinomas had mRb deletions. All lung adenocarcinomas that were initially found bearing deleted mRb had p53 deletions (15 of 15; 100%). A significantly higher mutation frequency for K-ras codon 12 point mutations was also found in the lung adenocarcinomas from mice exposed to 24 once-weekly neutron irradiation (10 of 10; 100%) compared with those exposed to 24 or 60 once-weekly {gamma}-ray doses (5 of 10; 50%). The data suggested that p53 and K-ras gene alterations were two contributory factors responsible for the increased incidence of lung adenocarcinoma in B6CF{sub 1} male mice exposed to protracted neutron radiation.

  4. Deletion of PREPl causes growth impairment and hypotonia in mice.

    Directory of Open Access Journals (Sweden)

    Anna Mari Lone

    Full Text Available Genetic studies of rare diseases can identify genes of unknown function that strongly impact human physiology. Prolyl endopeptidase-like (PREPL is an uncharacterized member of the prolyl peptidase family that was discovered because of its deletion in humans with hypotonia-cystinuria syndrome (HCS. HCS is characterized by a number of physiological changes including diminished growth and neonatal hypotonia or low muscle tone. HCS patients have deletions in other genes as well, making it difficult to tease apart the specific role of PREPL. Here, we develop a PREPL null (PREPL(-/- mouse model to address the physiological role of this enzyme. Deletion of exon 11 from the Prepl gene, which encodes key catalytic amino acids, leads to a loss of PREPL protein as well as lower Prepl mRNA levels. PREPL(-/- mice have a pronounced growth phenotype, being significantly shorter and lighter than their wild type (PREPL(+/+ counterparts. A righting assay revealed that PREPL(-/- pups took significantly longer than PREPL(+/+ pups to right themselves when placed on their backs. This deficit indicates that PREPL(-/- mice suffer from neonatal hypotonia. According to these results, PREPL regulates growth and neonatal hypotonia in mice, which supports the idea that PREPL causes diminished growth and neonatal hypotonia in humans with HCS. These animals provide a valuable asset in deciphering the underlying biochemical, cellular and physiological pathways that link PREPL to HCS, and this may eventually lead to new insights in the treatment of this disease.

  5. Reduced natriuretic response to acute sodium loading in COMT Gene deleted mice

    Directory of Open Access Journals (Sweden)

    Uhlén Staffan

    2002-08-01

    Full Text Available Abstract Background The intrarenal natriuretic hormone dopamine (DA is metabolised by catechol-O-methyltransferase (COMT and monoamine oxidase (MAO. Inhibition of COMT, as opposed to MAO, results in a potent natriuretic response in the rat. The present study in anaesthetized homozygous and heterozygous COMT gene deleted mice attempted to further elucidate the importance of COMT in renal DA and sodium handling. After acute intravenous isotonic sodium loading, renal function was followed. Results COMT activity in heterozygous mice was about half of that in wild type mice and was zero in the homozygous mice. MAO activity did not differ between the genotypes. Urinary sodium excretion increased 10-fold after sodium loading in wild type mice. In heterozygous and homozygous mice, the natriuretic effects of sodium loading were only 29 % and 39 %, respectively, of that in wild type mice. Arterial pressure and glomerular filtration rate did not differ between genotypes. Baseline norepinephrine and DA excretions in urine were elevated in the homozygous, but not in heterozygous, COMT gene deleted mice. Urinary DA excretion increased after isotonic sodium loading in the wild type mice but not in the COMT gene deleted mice. Conclusions Mice with reduced or absent COMT activity have altered metabolism of catecholamines and are unable to increase renal DA activity and produce normal natriuresis in response to acute sodium loading. The results support the hypothesis that COMT has an important role in the DA-mediated regulation of renal sodium excretion.

  6. Rb and p53 gene deletions in lung adenocarcinomas from irradiated and control mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Woloschak, G.E. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1997-08-01

    This study was conducted on mouse lung adenocarcinoma tissues that were formalin-treated and paraffin-embedded 25 years ago to investigate the large gene deletions of mRb and p53 in B6CF{sub 1} male mice. A total of 80 lung tissue samples from irradiated mice and 40 lung samples from nonirradiated controls were randomly selected and examined in the mRb portion of this study. The results showed a significant (P < 0.05) higher percentage of mRb deletions in lung adenocarcinomas from mice exposed to 60 once-weekly {gamma}-ray doses than those from mice receiving 24 once-weekly {gamma}-ray doses at low doses and low dose rates; however, the percentage was not significantly different (P > 0.05) from that for spontaneous lung adenocarcinomas or lung adenocarcinomas from mice exposed to single-dose {gamma} irradiation at a similar total dose. mRb fragments 3 (71%) and 5 (67%), the parts of the gene that encoded the pocket binding region of Rb protein to adenovirus E1A and SV40 T-antigen, were the most frequently deleted fragments. p53 gene deletion analysis was carried out on normal lungs and lung adenocarcinomas that were initially found to bear mRb deletions. Exons 1,4,5,6, and 9 were chosen to be analyzed.

  7. VIP Gene Deletion in Mice Causes Cardiomyopathy Associated with Upregulation of Heart Failure Genes

    Energy Technology Data Exchange (ETDEWEB)

    Szema, Anthony M.; Hamidi, Sayyed A.; Smith, S. David; Benveniste, Helene; Katare, Rajesh Gopalrao

    2013-05-20

    Vasoactive Intestinal Peptide (VIP), a pulmonary vasodilator and inhibitor of vascular smooth muscle proliferation, is absent in pulmonary arteries of patients with idiopathic pulmonary arterial hypertension (PAH). We previously determined that targeted deletion of the VIP gene in mice leads to PAH with pulmonary vascular remodeling and right ventricular (RV) dilatation. Whether the left ventricle is also affected by VIP gene deletion is unknown. In the current study, we examined if VIP knockout mice (VIP-/-) develop both right (RV) and left ventricular (LV) cardiomyopathy, manifested by LV dilatation and systolic dysfunction, as well as overexpression of genes conducive to heart failure.

  8. AMPKα1 Deletion Shortens Erythrocyte Life Span in Mice

    Science.gov (United States)

    Wang, Shaobin; Dale, George L.; Song, Ping; Viollet, Benoit; Zou, Ming-hui

    2010-01-01

    AMP-activated protein kinase (AMPK) is an energy sensor essential for maintaining cellular energy homeostasis. Here, we report that AMPKα1 is the predominant isoform of AMPK in murine erythrocytes and mice globally deficient in AMPKα1 (AMPKα1−/−), but not in those lacking AMPKα2, and the mice had markedly enlarged spleens with dramatically increased proportions of Ter119-positive erythroid cells. Blood tests revealed significantly decreased erythrocyte and hemoglobin levels with increased reticulocyte counts and elevated plasma erythropoietin concentrations in AMPKα1−/− mice. The life span of erythrocytes from AMPKα1−/− mice was less than that in wild-type littermates, and the levels of reactive oxygen species and oxidized proteins were significantly increased in AMPKα1−/− erythrocytes. In keeping with the elevated oxidative stress, treatment of AMPKα1−/− mice with the antioxidant, tempol, resulted in decreased reticulocyte counts and improved erythrocyte survival. Furthermore, the expression of Foxo3 and reactive oxygen species scavenging enzymes was significantly decreased in erythroblasts from AMPKα1−/− mice. Collectively, these results establish an essential role for AMPKα1 in regulating oxidative stress and life span in erythrocytes. PMID:20392689

  9. Targeted deletions of cyclooxygenase-2 and atherogenesis in mice

    DEFF Research Database (Denmark)

    Hui, Yiqun; Ricciotti, Emanuela; Crichton, Irene

    2010-01-01

    low-density lipoprotein receptor knockouts. Deletion of Mac-COX-2 appeared to remove a restraint on COX-2 expression in lesional nonleukocyte (CD45- and CD11b-negative) vascular cells that express vascular cell adhesion molecule and variably alpha-smooth muscle actin and vimentin, portending a shift...... in PG profile and consequent atheroprotection. Basal expression of COX-2 was minimal in TCs, but use of CD4Cre to generate TC knockouts depressed its modest upregulation by anti-CD3epsilon. However, biosynthesis of PGs, TC composition in lymphatic organs, and atherogenesis in low-density lipoprotein...... receptor knockouts were unaltered in TC knockouts. CONCLUSIONS: Macrophage-COX-2, primarily a source of thromboxane A(2) and prostaglandin (PG)E(2), promotes atherogenesis and exerts a restraint on enzyme expression by lesional cells suggestive of vascular smooth muscle cells, a prominent source...

  10. Spermatogenesis arrest caused by conditional deletion of Hsp90α in adult mice

    Directory of Open Access Journals (Sweden)

    Chiaki Kajiwara

    2012-08-01

    It is controversial whether a functional androgen receptor (AR on germ cells, including spermatogonia, is essential for their development into sperm and, thus, initiation and maintenance of spermatogenesis. It was recently shown that many spermatocytes underwent apoptosis in the testes of Hsp90α KO mice. We had generated Hsp90α KO mice independently and confirmed this phenotype. However, the important question of whether Hsp90α is required to maintain spermatogenesis in adult mice in which testicular maturation is already completed could not be addressed using these conventional KO mice. To answer this question, we generated a tamoxifen-inducible deletion mutant of Hsp90α and found that conditional deletion of Hsp90α in adult mice caused even more severe apoptosis in germ cells beyond the pachytene stage, leading to complete arrest of spermatogenesis and testicular atrophy. Importantly, immunohistochemical analysis revealed that AR expression in WT testis was more evident in spermatogonia than in spermatocytes, whereas its expression was aberrant and ectopic in Hsp90α KO testis, raising the possibility that an AR abnormality in primordial germ cells is involved in spermatogenesis arrest in the Hsp90α KO mice. Our results suggest that the AR, specifically chaperoned by Hsp90α in spermatogonia, is critical for maintenance of established spermatogenesis and for survival of spermatocytes in adult testis, in addition to setting the first wave of spermatogenesis before puberty.

  11. Deletion of a coordinate regulator of type 2 cytokine expression in mice

    Energy Technology Data Exchange (ETDEWEB)

    Mohrs, Markus; Blankespoor, Catherine M.; Wang, Zhi-En; Loots, Gaby G.; Hadeiba, Husein; Shinkai, Kanade; Rubin, Edward M.; Locksley, Richard M.

    2001-07-30

    Mechanisms underlying the differentiation of stable T helper subsets will be important in understanding how discrete types of immunity develop in response to different pathogens. An evolutionarily conserved {approx}400 base pair non-coding sequence in the IL-4/IL-13 intergenic region, designated CNS-1, was deleted in mice. The capacity to develop Th2 cells was compromised in vitro and in vivo in the absence of CNS-1. Despite the profound effect in T cells, mast cells from CNS-1-deleted mice maintained their capacity to produce IL-4. A T cell-specific element critical for optimal expression of type 2 cytokines may represent evolution of a regulatory sequence exploited by adaptive immunity.

  12. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans.

    Directory of Open Access Journals (Sweden)

    Joyce van de Leemput

    2007-06-01

    Full Text Available We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18, encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15, a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.

  13. Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice

    Directory of Open Access Journals (Sweden)

    Katerina Kraft

    2015-02-01

    Full Text Available Structural variations (SVs contribute to the variability of our genome and are often associated with disease. Their study in model systems was hampered until now by labor-intensive genetic targeting procedures and multiple mouse crossing steps. Here we present the use of CRISPR/Cas for the fast (10 weeks and efficient generation of SVs in mice. We specifically produced deletions, inversions, and also duplications at six different genomic loci ranging from 1.1 kb to 1.6 Mb with efficiencies up to 42%. After PCR-based selection, clones were successfully used to create mice via aggregation. To test the practicability of the method, we reproduced a human 500 kb disease-associated deletion and were able to recapitulate the human phenotype in mice. Furthermore, we evaluated the regulatory potential of a large genomic interval by deleting a 1.5 Mb fragment. The method presented permits rapid in vivo modeling of genomic rearrangements.

  14. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    Science.gov (United States)

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  15. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    Directory of Open Access Journals (Sweden)

    Quan Yuan

    Full Text Available Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH, Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/- and Klotho(-/- (Kl(-/- mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/- mice ameliorated the phenotype in Fgf23(-/-/PTH(-/- mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/- mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/- (Kl(-/-/PTH(-/- or DKO mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-/PTH(-/- mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-/PTH(-/- mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-/PTH(-/- mice. Moreover, continuous PTH infusion of Kl(-/- mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-, but not of Fgf23(-/- mice, possibly by regulating Opn expression. These are significant new perceptions into

  16. Wasted (wst) mice have 3-bp deletion in the PCNA promoter

    Energy Technology Data Exchange (ETDEWEB)

    Paunesku, T.; Woloschak, G.E. [Argonne National Lab., IL (United States). Center for Mechanistic Biology and Biotechnology

    1997-08-01

    Mice homozygous for the autosomal recessive wasted mutation (wst/wst) have abnormalities in T-lymphocytes and in the anterior motor neuron cells of the spinal cord, leading to sensitivity to ionizing radiation, hind limb paralysis, and immunodeficiency. This defect results in a failure to gain weight by 20 days and death at 28 days of age. Previous results from the authors` group have shown that (1) wasted mice have little if any detectable PCNA protein or mRNA in thymus, but levels in liver, brain, and other tissues are similar to those in controls; and (2) the coding region for PCNA is the same in wasted mice and in control littermates. These observations gave rise to the present study, in which the PCNA promoter was sequenced for wst/wst mice, control littermates ({center_dot}wst/+) and BCF{sub 1} (or BALB/c x C57BL/6) F{sub 1} controls. Sequence analysis revealed only one difference between wst/wst and BALB/c x C57BL/6 F{sub 1} littermates: a 3-bp deletion in the 5 foot upstream region of the PCNA gene of wasted mice that was observed on only one allele or no alleles of normal littermates. The mutated sites in PCNA promoter from two litters plus two additional wst/wst and two known wst/+ animals were screened with 8G and 11G probes, and each confirmed this pattern. The short term DNA segment encompassing the deletion was shown in gel shift experiments to bind a nuclear protein(s) present in a broad variety of cells including thymus and spleen nuclear extract from wst/wst and control mice. The mutated oligomer that was homozygous only in wst/wst mice was not able to bind the same nuclear protein(s).

  17. Gene-targeted deletion of OPCML and Neurotrimin in mice does not yield congenital heart defects.

    Science.gov (United States)

    Ye, Maoqing; Parente, Fabienne; Li, Xiaodong; Perryman, M Benjamin; Zelante, Leopoldo; Wynshaw-Boris, Anthony; Chen, Ju; Grossfeld, Paul

    2014-04-01

    Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal11q. Many of the most common and severe congenital heart defects that occur in the general population occur in 11q-. Previous studies have demonstrated that gene-targeted deletion in mice of ETS-1, a cardiac transcription factor in distal 11q, causes ventricular septal defects with 100% penetrance. It is unclear whether deletion of other genes in distal 11q contributes to the full spectrum of congenital heart defects that occur in 11q-. Three patients with congenital heart defects have been identified that carry a translocation or paracentric inversion with a breakpoint in distal 11q disrupting one of two functionally related genes, OPCML and Neurotrimin. OPCML and Neurotrimin are two members of the IgLON subfamily of cell adhesion molecules. In this study, we report the generation and cardiac phenotype of single and double heterozygous gene-targeted OPCML and Neurotrimin knockout mice. No cardiac phenotype was detected, consistent with a single gene model as the cause of the congenital heart defects in 11q-. © 2014 Wiley Periodicals, Inc.

  18. Reduced alcohol intake and reward associated with impaired endocannabinoid signaling in mice with a deletion of the glutamate transporter GLAST

    DEFF Research Database (Denmark)

    Karlsson, Rose-Marie; Adermark, Louise; Molander, Anna

    2012-01-01

    mice with a deletion of GLAST to test this prediction. WT and GLAST KO mice were tested for alcohol consumption using two-bottle free-choice drinking. Alcohol reward was evaluated using conditioned place preference (CPP). Sensitivity to depressant alcohol effects was tested using the accelerating...

  19. Increased frequency of DNA deletions in pink-eyed unstable mice carrying a mutation in the Werner syndrome gene homologue.

    Science.gov (United States)

    Lebel, Michel

    2002-01-01

    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.

  20. Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2.

    Science.gov (United States)

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-02-01

    Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2(f/f) mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis. Copyright © 2016 the American Physiological Society.

  1. Soluble epoxide hydrolase gene deletion improves blood flow and reduces infarct size after cerebral ischemia in reproductively senescent female mice

    Directory of Open Access Journals (Sweden)

    Kristen L Zuloaga

    2015-01-01

    Full Text Available Soluble epoxide hydrolase (sEH, a key enzyme in the metabolism of vasodilatory epoxyeicosatrienoic acids (EETs, is sexually dimorphic, suppressed by estrogen, and contributes to underlying sex differences in cerebral blood flow and injury after cerebral ischemia. We tested the hypothesis that sEH inhibition or gene deletion in reproductively senescent (RS female mice would increase cerebral perfusion and decrease infarct size following stroke. RS (15-18 month old and young (3-4 month old female sEH knockout (sEHKO mice and wild type (WT mice were subjected to 45 min middle cerebral artery occlusion (MCAO with laser Doppler perfusion monitoring. WT mice were treated with vehicle or a sEH inhibitor t-AUCB at the time of reperfusion and every 24hrs thereafter for 3 days. Differences in regional cerebral blood flow were measured in vivo using optical microangiography. Infarct size was measured 3 days after reperfusion. Infarct size and cerebral perfusion 24h after MCAO were not altered by age. Both sEH gene deletion and sEH inhibition increased cortical perfusion 24h after MCAO. Neither sEH gene deletion nor sEH inhibition reduced infarct size in young mice. However, sEH gene deletion, but not sEH inhibition of the hydrolase domain of the enzyme, decreased infarct size in RS mice. Results of these studies show that sEH gene deletion and sEH inhibition enhance cortical perfusion following MCAO and sEH gene deletion reduces damage after ischemia in RS female mice; however this neuroprotection in absent is young mice.

  2. Modulation of sensorimotor gating in prepulse inhibition by conditional brain glycine transporter 1 deletion in mice

    Science.gov (United States)

    Singer, Philipp; Boison, Detlev; Möhler, Hanns; Feldon, Joram; Yee, Benjamin K.

    2010-01-01

    Inhibition of glycine transporter 1 (GlyT1) augments N-methyl-D-aspartate receptor (NMDAR)-mediated transmission and represents a potential antipsychotic drug target according to the NMDAR hypofunction hypothesis of schizophrenia. Preclinical evaluation of GlyT1 inhibiting drugs using the prepulse inhibition (PPI) test, however, has yielded mixed outcomes. Here, we tested for the first time the impact of two conditional knockouts of GlyT1 on PPI expression. Complete deletion of GlyT1 in the cerebral cortices confers resistance to PPI disruption induced by the NMDAR blocker MK-801 (0.2mg/kg, i.p.) without affecting PPI expression in unchallenged conditions. In contrast, restricting GlyT1 deletion to neurons in forebrain including the striatum significantly attenuated PPI, and the animals remained sensitive to the PPI-disruptive effect of MK-801 at the same dose. These results demonstrate in mice that depending on the regional and/or cell-type specificity, deletion of the GlyT1 gene could yield divergent effects on PPI. PMID:20647165

  3. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1.

    Directory of Open Access Journals (Sweden)

    You-Ying Chau

    2011-12-01

    Full Text Available There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1 suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2 highlight the differences between foetal and adult tissue regulation; 3 point to the importance of adult mesenchyme in tissue turnover.

  4. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1.

    Science.gov (United States)

    Chau, You-Ying; Brownstein, David; Mjoseng, Heidi; Lee, Wen-Chin; Buza-Vidas, Natalija; Nerlov, Claus; Jacobsen, Sten Eirik; Perry, Paul; Berry, Rachel; Thornburn, Anna; Sexton, David; Morton, Nik; Hohenstein, Peter; Freyer, Elisabeth; Samuel, Kay; van't Hof, Rob; Hastie, Nicholas

    2011-12-01

    There is much interest in the mechanisms that regulate adult tissue homeostasis and their relationship to processes governing foetal development. Mice deleted for the Wilms' tumour gene, Wt1, lack kidneys, gonads, and spleen and die at mid-gestation due to defective coronary vasculature. Wt1 is vital for maintaining the mesenchymal-epithelial balance in these tissues and is required for the epithelial-to-mesenchyme transition (EMT) that generates coronary vascular progenitors. Although Wt1 is only expressed in rare cell populations in adults including glomerular podocytes, 1% of bone marrow cells, and mesothelium, we hypothesised that this might be important for homeostasis of adult tissues; hence, we deleted the gene ubiquitously in young and adult mice. Within just a few days, the mice suffered glomerulosclerosis, atrophy of the exocrine pancreas and spleen, severe reduction in bone and fat, and failure of erythropoiesis. FACS and culture experiments showed that Wt1 has an intrinsic role in both haematopoietic and mesenchymal stem cell lineages and suggest that defects within these contribute to the phenotypes we observe. We propose that glomerulosclerosis arises in part through down regulation of nephrin, a known Wt1 target gene. Protein profiling in mutant serum showed that there was no systemic inflammatory or nutritional response in the mutant mice. However, there was a dramatic reduction in circulating IGF-1 levels, which is likely to contribute to the bone and fat phenotypes. The reduction of IGF-1 did not result from a decrease in circulating GH, and there is no apparent pathology of the pituitary and adrenal glands. These findings 1) suggest that Wt1 is a major regulator of the homeostasis of some adult tissues, through both local and systemic actions; 2) highlight the differences between foetal and adult tissue regulation; 3) point to the importance of adult mesenchyme in tissue turnover.

  5. Deletion of ADAM-9 in HGF/CDK4 mice impairs melanoma development and metastasis.

    Science.gov (United States)

    Giebeler, N; Schönefuß, A; Landsberg, J; Tüting, T; Mauch, C; Zigrino, P

    2017-08-31

    ADAM-9 is a metalloproteinase expressed in peritumoral areas by invading melanoma cells and by adjacent peritumoral stromal cells; however, its function in stromal and melanoma cells is not fully understood. To address this question in vivo in a spontaneous melanoma model, we deleted ADAM-9 in mice carrying the hepatocyte growth factor (Hgf) transgene and knock-in mutation Cdk4R24C/R24C, demonstrated to spontaneously develop melanoma. Spontaneous melanoma arose less frequently in ADAM-9-deleted mice than in controls. Similarly reduced tumor numbers (although with faster growth kinetics) were detected upon induction of melanoma with 7,12-dimethylbenz[a]anthracene (DMBA). However, more lesions were induced at early time points in the absence of ADAM-9. Increased initial and decreased late tumor numbers were paralleled by altered tumor cell proliferation, but not apoptosis or inflammation. Importantly, significantly reduced lung metastases were detected upon ADAM-9 deletion. Using in vitro assays to address this effect mechanistically, we detected reduced adhesion and transmigration of ADAM-9-silenced melanoma cells to/through the endothelium. This implies that ADAM-9 functionally and cell autonomously mediates extravasation of melanoma cells. In vitro and in vivo we demonstrated that the basement membrane (BM) component laminin β3-chain is a direct substrate of ADAM-9, thus contributing to destabilization and disruption of the BM barrier during invasion. In in vitro invasion assays using human melanoma cells and skin equivalents, depletion of ADAM-9 resulted in decreased invasion of the BM, which remained almost completely intact, as shown by continuous staining for laminin β3-chain. Importantly, supplying soluble ADAM-9 to the system reversed this effect. Taken together, our data show that melanoma derived ADAM-9 autonomously contributes to melanoma progression by modulating cell adhesion to the endothelium and altering BM integrity by proteolytically processing

  6. Targeted deletion of the 9p21 noncoding coronary artery disease risk interval in mice

    Energy Technology Data Exchange (ETDEWEB)

    Visel, Axel; Zhu, Yiwen; May, Dalit; Afzal, Veena; Gong, Elaine; Attanasio, Catia; Blow, Matthew J.; Cohen, Jonathan C.; Rubin, Edward M.; Pennacchio, Len A.

    2010-01-01

    Sequence polymorphisms in a 58kb interval on chromosome 9p21 confer a markedly increased risk for coronary artery disease (CAD), the leading cause of death worldwide 1,2. The variants have a substantial impact on the epidemiology of CAD and other life?threatening vascular conditions since nearly a quarter of Caucasians are homozygous for risk alleles. However, the risk interval is devoid of protein?coding genes and the mechanism linking the region to CAD risk has remained enigmatic. Here we show that deletion of the orthologous 70kb noncoding interval on mouse chromosome 4 affects cardiac expression of neighboring genes, as well as proliferation properties of vascular cells. Chr4delta70kb/delta70kb mice are viable, but show increased mortality both during development and as adults. Cardiac expression of two genes near the noncoding interval, Cdkn2a and Cdkn2b, is severely reduced in chr4delta70kb/delta70kb mice, indicating that distant-acting gene regulatory functions are located in the noncoding CAD risk interval. Allelespecific expression of Cdkn2b transcripts in heterozygous mice revealed that the deletion affects expression through a cis-acting mechanism. Primary cultures of chr4delta70kb/delta70kb aortic smooth muscle cells exhibited excessive proliferation and diminished senescence, a cellular phenotype consistent with accelerated CAD pathogenesis. Taken together, our results provide direct evidence that the CAD risk interval plays a pivotal role in regulation of cardiac Cdkn2a/b expression and suggest that this region affects CAD progression by altering the dynamics of vascular cell proliferation.

  7. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2015-06-01

    Full Text Available Partial monosomy 21 (PM21 is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21. The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf. Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21.

  8. Deletion of the App-Runx1 region in mice models human partial monosomy 21

    Science.gov (United States)

    Arbogast, Thomas; Raveau, Matthieu; Chevalier, Claire; Nalesso, Valérie; Dembele, Doulaye; Jacobs, Hugues; Wendling, Olivia; Roux, Michel; Duchon, Arnaud; Herault, Yann

    2015-01-01

    ABSTRACT Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects. As a complement to human genetic approaches, our team has developed new monosomic mouse models that carry deletions on Hsa21 syntenic regions in order to identify the dosage-sensitive genes that are responsible for the symptoms. We focus here on the Ms5Yah mouse model, in which a 7.7-Mb region has been deleted from the App to Runx1 genes. Ms5Yah mice display high postnatal lethality, with a few surviving individuals showing growth retardation, motor coordination deficits, and spatial learning and memory impairments. Further studies confirmed a gene dosage effect in the Ms5Yah hippocampus, and pinpointed disruptions of pathways related to cell adhesion (involving App, Cntnap5b, Lgals3bp, Mag, Mcam, Npnt, Pcdhb2, Pcdhb3, Pcdhb4, Pcdhb6, Pcdhb7, Pcdhb8, Pcdhb16 and Vwf). Our PM21 mouse model is the first to display morphological abnormalities and behavioural phenotypes similar to those found in affected humans, and it therefore demonstrates the major contribution that the App-Runx1 region has in the pathophysiology of PM21. PMID:26035870

  9. Mice with Deletion of Neuromedin B Receptor Exhibit Decreased Oral Glucose-Stimulated Insulin Release.

    Science.gov (United States)

    Paula, G S M; Souza, L L; Bressane, N O S; Maravalhas, R; Wilieman, M; Bento-Bernardes, T; Silva, K R; Mendonca, L S; Oliveira, K J; Pazos-Moura, C C

    2016-12-01

    Neuromedin B (NB) and gastrin-releasing peptide (GRP) are bombesin-like peptides, found in the gastrointestinal tube and pancreas, among other tissues. Consistent data proposed that GRP stimulates insulin secretion, acting directly in pancreatic cells or in the release of gastrointestinal hormones that are incretins. However, the role of NB remains unclear. We examined the glucose homeostasis in mice with deletion of NB receptor (NBR-KO). Female NBR-KO exhibited similar fasting basal glucose with lower insulinemia (48.4%) and lower homeostasis model assessment of insulin resistance index (50.5%) than wild type (WT). Additionally, they were more tolerant to oral glucose, demonstrated by a decrease in the area under the glucose curve (18%). In addition, 15 min after an oral glucose load, female and male NBR-KO showed lower insulin serum levels (45.6 and 26.8%, respectively) than WT, even though blood glucose rose to similar levels in both groups. Single injection of NB, one hour before the oral glucose administration, tended to induce higher serum insulin in WT (28.9%, p=0.3), however the same did not occur in NBR-KO. They showed no changes in fasting insulin content in pancreatic islets by immunohistochemistry, however, the fasting serum levels of glucagon-like peptide, a potent incretin, exhibited a strong trend to reduction (40%, p=0.07). Collectively, mice with deletion of NB receptor have lower insulinemia, especially in response to oral glucose, and females also exhibited a better glucose tolerance, suggesting the involvement of NB and its receptor in regulation of insulin secretion induced by incretins, and also, in insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice.

    Science.gov (United States)

    Harris, Suzan L; Kazmierczak, Marcin; Pangršič, Tina; Shah, Prahar; Chuchvara, Nadiya; Barrantes-Freer, Alonso; Moser, Tobias; Schwander, Martin

    2017-03-06

    Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. By contrast, loss of Pjvk in adult OHCs causes a slowly progressive hearing loss associated with OHC degeneration and delayed loss of inner hair cells (IHCs), indicating a primary role for pejvakin in regulating OHC function and survival. Consistent with this model, synaptic transmission at the IHC ribbon synapse is largely unaffected in sirtaki mice that carry a C-terminal deletion mutation in Pjvk. Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Constitutive gray hair in mice induced by melanocyte-specific deletion of c-Myc.

    Science.gov (United States)

    Pshenichnaya, Irina; Schouwey, Karine; Armaro, Marzia; Larue, Lionel; Knoepfler, Paul S; Eisenman, Robert N; Trumpp, Andreas; Delmas, Véronique; Beermann, Friedrich

    2012-05-01

    c-Myc is involved in the control of diverse cellular processes and implicated in the maintenance of different tissues including the neural crest. Here, we report that c-Myc is particularly important for pigment cell development and homeostasis. Targeting c-Myc specifically in the melanocyte lineage using the floxed allele of c-Myc and Tyr::Cre transgenic mice results in a congenital gray hair phenotype. The gray coat color is associated with a reduced number of functional melanocytes in the hair bulb and melanocyte stem cells in the hair bulge. Importantly, the gray phenotype does not progress with time, suggesting that maintenance of the melanocyte through the hair cycle does not involve c-Myc function. In embryos, at E13.5, c-Myc-deficient melanocyte precursors are affected in proliferation in concordance with a reduction in numbers, showing that c-Myc is required for the proper melanocyte development. Interestingly, melanocytes from c-Myc-deficient mice display elevated levels of the c-Myc paralog N-Myc. Double deletion of c-Myc and N-Myc results in nearly complete loss of the residual pigmentation, indicating that N-Myc is capable of compensating for c-Myc loss of function in melanocytes. © 2012 John Wiley & Sons A/S.

  12. Macrophage inhibitory cytokine-1 (MIC-1/GDF15 gene deletion promotes cancer growth in TRAMP prostate cancer prone mice.

    Directory of Open Access Journals (Sweden)

    Yasmin Husaini

    Full Text Available The divergent TGF-β superfamily member, macrophage inhibitory cytokine-1 (MIC-1/GDF15, is overexpressed by most cancers, including prostate cancer (PCa. Whilst its circulating levels are linked to cancer outcome, the role MIC-1/GDF15 plays in cancer development and progression is incompletely understood. To investigate its effect on PCa development and spread, we have used TRAMP prostate cancer prone mice bearing a germline deletion of MIC-1/GDF15 (TRAMPMIC-/-. On average TRAMPMIC-/- mice died about 5 weeks earlier and had larger prostatic tumors compared with TRAMP mice that were wild type for MIC-1/GDF15 (TRAMPMIC+/+. Additionally, at the time of death or ethical end point, even when adjusted for lifespan, there were no significant differences in the number of mice with metastases between the TRAMPMIC+/+ and TRAMPMIC-/- groups. However, consistent with our previous data, more than twice as many TRAMP mice overexpressing MIC-1/GDF15 (TRAMPfmsmic-1 had metastases than TRAMPMIC+/+ mice (p<0.0001. We conclude that germ line gene deletion of MIC-1/GDF15 leads to increased local tumor growth resulting in decreased survival consistent with an overall protective role for MIC-1/GDF15 in early primary tumor development. However, in advancing disease, as we have previously noted, MIC-1/GDF15 overexpression may promote local invasion and metastatic spread.

  13. Germline deletion of huntingtin causes male infertility and arrested spermiogenesis in mice.

    Science.gov (United States)

    Yan, Jinting; Zhang, Hui; Liu, Yang; Zhao, Feilong; Zhu, Shu; Xie, Chengmei; Tang, Tie-Shan; Guo, Caixia

    2016-02-01

    Human Huntingtin (HTT), a Huntington's disease gene, is highly expressed in the mammalian brain and testis. Simultaneous knockout of mouse Huntingtin (Htt) in brain and testis impairs male fertility, providing evidence for a link between Htt and spermatogenesis; however, the underlying mechanism remains unclear. To understand better the function of Htt in spermatogenesis, we restricted the genetic deletion specifically to the germ cells using the Cre/loxP site-specific recombination strategy and found that the resulting mice manifested smaller testes, azoospermia and complete male infertility. Meiotic chromosome spread experiments showed that the process of meiosis was normal in the absence of Htt. Notably, we found that Htt-deficient round spermatids did not progress beyond step 3 during the post-meiotic phase, when round spermatids differentiate into mature spermatozoa. Using an iTRAQ-based quantitative proteomic assay, we found that knockout of Htt significantly altered the testis protein profile. The differentially expressed proteins exhibited a remarkable enrichment for proteins involved in translation regulation and DNA packaging, suggesting that Htt might play a role in spermatogenesis by regulating translation and DNA packaging in the testis. © 2016. Published by The Company of Biologists Ltd.

  14. Tissue-specific deletion of the coxsackievirus and adenovirus receptor (CAR) protects mice from virus-induced pancreatitis and myocarditis

    Science.gov (United States)

    Kallewaard, Nicole L.; Zhang, Lili; Chen, Jin-Wen; Guttenberg, Marta; Sanchez, Melissa D.; Bergelson, Jeffrey M.

    2009-01-01

    SUMMARY In cultured cells, infection by Group B coxsackieviruses (CVB) is mediated by the coxsackievirus and adenovirus receptor (CAR), but the importance of this molecule in CVB disease has not been determined. We used tissue-specific CAR gene deletion to generate mice that lacked CAR within each of two major CVB target organs, the pancreas and heart. Deletion of CAR from the pancreas resulted in a 1000-fold reduction in virus titers within the pancreas during infection, and a significant reduction in virus-induced tissue damage and inflammation. Similarly, cardiomyocyte-specific CAR deletion resulted in a 100-fold reduction in virus titer within the heart, and a marked reduction in cytokine production and histopathology. Although primary cardiomyocytes from control animals were susceptible to virus infection, CAR-deficient cardiomyocytes resisted infection in vitro. These results demonstrate a critical function for CAR in the pathogenesis of CVB infection in vivo, and in virus tropism for the heart and pancreas. PMID:19616768

  15. Inadequate lung development and bronchial hyperplasia in mice with a targeted deletion in the Dutt1/Robo1 gene.

    Science.gov (United States)

    Xian, J; Clark, K J; Fordham, R; Pannell, R; Rabbitts, T H; Rabbitts, P H

    2001-12-18

    Chromosome 3 allele loss in preinvasive bronchial abnormalities and carcinogen-exposed, histologically normal bronchial epithelium indicates that it is an early, possibly the first, somatic genetic change in lung tumor development. Candidate tumor suppressor genes have been isolated from within distinct 3p regions implicated by heterozygous and homozygous allele loss. We have proposed that DUTT1, nested within homozygously deleted regions at 3p12-13, is the tumor suppressor gene that deletion-mapping and tumor suppression assays indicate is located in proximal 3p. The same gene, ROBO1 (accession number ), was independently isolated as the human homologue of the Drosophila gene, Roundabout. The gene, coding for a receptor with a domain structure of the neural-cell adhesion molecule family, is widely expressed and has been implicated in the guidance and migration of axons, myoblasts, and leukocytes in vertebrates. A deleted form of the gene, which mimics a naturally occurring, tumor-associated human homozygous deletion of exon 2 of DUTT1/ROBO1, was introduced into the mouse germ line. Mice homozygous for this targeted mutation, which eliminates the first Ig domain of Dutt1/Robo1, frequently die at birth of respiratory failure because of delayed lung maturation. Lungs from these mice have reduced air spaces and increased mesenchyme, features that are present some days before birth. Survivors acquire extensive bronchial epithelial abnormalities including hyperplasia, providing evidence of a functional relationship between a 3p gene and the development of bronchial abnormalities associated with early lung cancer.

  16. SnoRNA Snord116 (Pwcr1/MBII-85 deletion causes growth deficiency and hyperphagia in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Prader-Willi syndrome (PWS is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85 in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85 in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.

  17. Mice with genetic deletion of the heparin-binding growth factor midkine exhibit early preclinical features of Parkinson's disease.

    Science.gov (United States)

    Prediger, Rui D S; Rojas-Mayorquin, Argelia E; Aguiar, Aderbal S; Chevarin, Caroline; Mongeau, Raymond; Hamon, Michel; Lanfumey, Laurence; Del Bel, Elaine; Muramatsu, Hisako; Courty, José; Raisman-Vozari, Rita

    2011-08-01

    There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD) begin many years before the appearance of the characteristic motor symptoms and that impairments in olfactory, cognitive and motor functions are associated with time-dependent disruption of dopaminergic neurotransmission in different brain areas. Midkine is a 13-kDa retinoic acid-induced heparin-binding growth factor involved in many biological processes in the central nervous system such as cell migration, neurogenesis and tissue repair. The abnormal midkine expression may be associated with neurochemical dysfunction in the dopaminergic system and cognitive impairments in rodents. Here, we employed adult midkine knockout mice (Mdk(-/-)) to further investigate the relevance of midkine in dopaminergic neurotransmission and in olfactory, cognitive and motor functions. Mdk(/-) mice displayed pronounced impairments in their olfactory discrimination ability and short-term social recognition memory with no gross motor alterations. Moreover, the genetic deletion of midkine decreased the expression of the enzyme tyrosine hydroxylase in the substantia nigra reducing partially the levels of dopamine and its metabolites in the olfactory bulb and striatum of mice. These findings indicate that the genetic deletion of midkine causes a partial loss of dopaminergic neurons and depletion of dopamine, resulting in olfactory and memory deficits with no major motor impairments. Therefore, Mdk(-/-) mice may represent a promising animal model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.

  18. Single gene deletions of orexin, leptin, neuropeptide Y, and ghrelin do not appreciably alter food anticipatory activity in mice.

    Directory of Open Access Journals (Sweden)

    Keith M Gunapala

    Full Text Available Timing activity to match resource availability is a widely conserved ability in nature. Scheduled feeding of a limited amount of food induces increased activity prior to feeding time in animals as diverse as fish and rodents. Typically, food anticipatory activity (FAA involves temporally restricting unlimited food access (RF to several hours in the middle of the light cycle, which is a time of day when rodents are not normally active. We compared this model to calorie restriction (CR, giving the mice 60% of their normal daily calorie intake at the same time each day. Measurement of body temperature and home cage behaviors suggests that the RF and CR models are very similar but CR has the advantage of a clearly defined food intake and more stable mean body temperature. Using the CR model, we then attempted to verify the published result that orexin deletion diminishes food anticipatory activity (FAA but observed little to no diminution in the response to CR and, surprisingly, that orexin KO mice are refractory to body weight loss on a CR diet. Next we tested the orexigenic neuropeptide Y (NPY and ghrelin and the anorexigenic hormone, leptin, using mouse mutants. NPY deletion did not alter the behavior or physiological response to CR. Leptin deletion impaired FAA in terms of some activity measures, such as walking and rearing, but did not substantially diminish hanging behavior preceding feeding time, suggesting that leptin knockout mice do anticipate daily meal time but do not manifest the full spectrum of activities that typify FAA. Ghrelin knockout mice do not have impaired FAA on a CR diet. Collectively, these results suggest that the individual hormones and neuropepetides tested do not regulate FAA by acting individually but this does not rule out the possibility of their concerted action in mediating FAA.

  19. Deletion of Plasmodium berghei-Specific CD4+ T Cells Adoptively Transferred into Recipient Mice after Challenge with Homologous Parasite

    Science.gov (United States)

    Hirunpetcharat, Chakrit; Good, Michael F.

    1998-02-01

    The immune response to malaria parasites includes T cell responses that reduce parasites by effector T cell responses and by providing help for antibody responses. Some parasites are more sensitive to antibody and others are more sensitive to cell-mediated immunity. We demonstrate that cultured CD4+ T cells that produce interferon CD4+ and interleukin 2, but not interleukin 4, in response to stimulation with the rodent parasite Plasmodium berghei can reduce but not eliminate parasites in vivo after adoptive transfer. Although cells can persist in vivo for up to 9 months in uninfected mice, infection results in elimination of up to 99% of specific T cells in different tissues, as judged by tracking T cells labeled with the fluorescent dye 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester. T cells specific for ovalbumin are unaffected. In vivo activation and division of transferred T cells per se are not responsible for deletion because T cells positive for 5-(and -6)-carboxyfluorescein diacetate succinimidyl ester divide up to six times within 7 days in uninfected mice and are not deleted. Understanding the factors responsible for parasite-mediated specific deletion of T cells would enhance our knowledge of parasite immunity.

  20. Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload.

    Science.gov (United States)

    Wallace, Daniel F; Summerville, Lesa; Crampton, Emily M; Frazer, David M; Anderson, Gregory J; Subramaniam, V Nathan

    2009-12-01

    Hepcidin is a central regulator of iron homeostasis. HFE and transferrin receptor 2 (TFR2) are mutated in adult-onset forms of hereditary hemochromatosis and regulate the expression of hepcidin in response to iron. Whether they act through the same or parallel pathways is unclear. To investigate this, we generated a mouse model with deletion of both Hfe and Tfr2 genes by crossing Hfe and Tfr2 null mice on a genetically identical background. Tissue and serum from wildtype, single-, and double-null mice were analyzed. Serum transferrin saturation and hepatic iron concentrations were determined. The expression of iron-related messenger RNA (mRNA) transcripts was analyzed by real-time polymerase chain reaction (PCR). Levels of the iron-related proteins Tfr1, Tfr2, ferritin, and prohepcidin, and the phosphorylation status of the cell signaling proteins extracellular signal-regulated kinase 1/2 (Erk1/2) and Smad1/5/8, were analyzed by immunoblotting. Double-null mice had more severe iron loading than mice lacking either Hfe or Tfr2; Tfr2 null mice had a greater iron burden than Hfe-null mice. Hepcidin expression relative to iron stores was reduced in the Hfe-null mice, with significantly lower values in the Tfr2-null mice. In the absence of both Hfe and Tfr2, hepcidin expression was reduced even further. A significant decrease in phospho-Erk1/2 in the livers of null mice and a reduction in phospho-Smad1/5/8 suggest that both the mitogen-activated protein kinase (MAPK) and bone morphogenetic protein / mothers against decapentaplegic homolog (BMP/SMAD) signaling pathways may be involved in Hfe- and Tfr2-mediated regulation of hepcidin. These studies demonstrate that iron overload due to deletion of Tfr2 is more severe than that due to Hfe, and that loss of both molecules results in pronounced iron overload. Analysis of Hfe/Tfr2 double-null mice suggests that Hfe and Tfr2 regulate hepcidin through parallel pathways involving Erk1/2 and Smad1/5/8.

  1. Tissue-specific deletion of the coxsackievirus and adenovirus receptor protects mice from virus-induced pancreatitis and myocarditis.

    Science.gov (United States)

    Kallewaard, Nicole L; Zhang, Lili; Chen, Jin-Wen; Guttenberg, Marta; Sanchez, Melissa D; Bergelson, Jeffrey M

    2009-07-23

    In cultured cells, infection by group B coxsackievirus (CVB) is mediated by the coxsackievirus and adenovirus receptor (CAR), but the importance of this molecule in CVB-induced disease has not been determined. We generated mice with tissue-specific ablation of CAR within each of two major CVB target organs, the pancreas and heart. In the pancreas, deletion of CAR resulted in a significant reduction in both virus titers and virus-induced tissue damage. Similarly, cardiomyocyte-specific CAR deletion resulted in a marked reduction in virus titer, infection-associated cytokine production, and histopathology within the heart. Consistent with the in vivo phenotype, CAR-deficient cardiomyocytes resisted infection in vitro. These results demonstrate a critical function for CAR in the pathogenesis of CVB infection in vivo and in virus tropism for the heart and pancreas.

  2. Deletion of SMARCA4 impairs alveolar epithelial type II cells proliferation and aggravates pulmonary fibrosis in mice

    Directory of Open Access Journals (Sweden)

    Danyi Peng

    2017-12-01

    Full Text Available Alveolar epithelial cells (AECs injury and failed reconstitution of the AECs barrier are both integral to alveolar flooding and subsequent pulmonary fibrosis (PF. Nevertheless, the exact mechanisms regulating the regeneration of AECs post-injury still remain unclear. SMARCA4 is a part of the large ATP-dependent chromatin remodelling complex SWI/SNF, which is essential for kidney and heart fibrosis. We investigates SMARCA4 function in lung fibrosis by establishing PF mice model with bleomycin firstly and found that the expression of SMARCA4 was mainly enhanced in alveolar type II (ATII cells. Moreover, we established an alveolar epithelium-specific SMARCA4-deleted SP-C-rtTA/(tetO7-Cre/SMARCA4f/f mice (SOSM4Δ/Δ model, as well as a new SMARCA4-deleted alveolar type II (ATII-like mle-12 cell line. We found that the bleomycin-induced PF was more aggressive in SOSM4Δ/Δ mice. Also, the proliferation of ATII cells was decreased with the loss of SMARCA4 in vivo and in vitro. In addition, we observed increased proliferation of ATII cells accompanied by abnormally high expression of SMARCA4 in human PF lung sections. These data uncovered the indispensable role of SMARCA4 in the proliferation of ATII cells, which might affect the progression of PF.

  3. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shaikh M., E-mail: rmizanoor@hotmail.com [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Miyazaki, Makoto [Division of Renal Diseases and Hypertension, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Friedman, Jacob E. [Department of Pediatrics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States); Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO 80045 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  4. Deletion of Inducible Nitric-Oxide Synthase in Leptin-Deficient Mice Improves Brown Adipose Tissue Function

    Science.gov (United States)

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Collantes, María; Peñuelas, Iván; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Background Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice. Methods and Findings Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor γ coactivator-1 α (Pgc-1α), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents. Conclusion Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement. PMID:20532036

  5. Deletion of miR-150 Exacerbates Retinal Vascular Overgrowth in High-Fat-Diet Induced Diabetic Mice.

    Directory of Open Access Journals (Sweden)

    Liheng Shi

    Full Text Available Diabetic retinopathy (DR is the leading cause of blindness among American adults above 40 years old. The vascular complication in DR is a major cause of visual impairment, making finding therapeutic targets to block pathological angiogenesis a primary goal for developing DR treatments. MicroRNAs (miRs have been proposed as diagnostic biomarkers and potential therapeutic targets for various ocular diseases including DR. In diabetic animals, the expression levels of several miRs, including miR-150, are altered. The expression of miR-150 is significantly suppressed in pathological neovascularization in mice with hyperoxia-induced retinopathy. The purpose of this study was to investigate the functional role of miR-150 in the development of retinal microvasculature complications in high-fat-diet (HFD induced type 2 diabetic mice. Wild type (WT and miR-150 null mutant (miR-150-/- male mice were given a HFD (59% fat calories or normal chow diet. Chronic HFD caused a decrease of serum miR-150 in WT mice. Mice on HFD for 7 months (both WT and miR-150-/- had significant decreases in retinal light responses measured by electroretinograms (ERGs. The retinal neovascularization in miR-150-/--HFD mice was significantly higher compared to their age matched WT-HFD mice, which indicates that miR-150 null mutation exacerbates chronic HFD-induced neovascularization in the retina. Overexpression of miR-150 in cultured endothelial cells caused a significant reduction of vascular endothelial growth factor receptor 2 (VEGFR2 protein levels. Hence, deletion of miR-150 significantly increased the retinal pathological angiogenesis in HFD induced type 2 diabetic mice, which was in part through VEGFR2.

  6. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    DEFF Research Database (Denmark)

    Honoré, Bent; Buus, Søren; Claësson, Mogens H

    2008-01-01

    alpha type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin beta-3 chain, a 25 kDa actin fragment, proteasome subunit beta type 9, cofilin-1 and glia......ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two...

  7. EAAC1 Gene Deletion Increases Neuronal Death and Blood Brain Barrier Disruption after Transient Cerebral Ischemia in Female Mice

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2014-10-01

    Full Text Available EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1−/− female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood–brain barrier (BBB disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1−/− female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.

  8. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Directory of Open Access Journals (Sweden)

    Sabine S Lange

    2016-01-01

    Full Text Available DNA polymerase ζ (pol ζ is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  9. The Polymerase Activity of Mammalian DNA Pol ζ Is Specifically Required for Cell and Embryonic Viability.

    Science.gov (United States)

    Lange, Sabine S; Tomida, Junya; Boulware, Karen S; Bhetawal, Sarita; Wood, Richard D

    2016-01-01

    DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/- Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/- Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.

  10. Deletion of TAK1 in the myeloid lineage results in the spontaneous development of myelomonocytic leukemia in mice.

    Directory of Open Access Journals (Sweden)

    Betty Lamothe

    Full Text Available Previous studies of the conditional ablation of TGF-β activated kinase 1 (TAK1 in mice indicate that TAK1 has an obligatory role in the survival and/or development of hematopoietic stem cells, B cells, T cells, hepatocytes, intestinal epithelial cells, keratinocytes, and various tissues, primarily because of these cells' increased apoptotic sensitivity, and have implicated TAK1 as a critical regulator of the NF-κB and stress kinase pathways and thus a key intermediary in cellular survival. Contrary to this understanding of TAK1's role, we report a mouse model in which TAK1 deletion in the myeloid compartment that evoked a clonal myelomonocytic cell expansion, splenomegaly, multi-organ infiltration, genomic instability, and aggressive, fatal myelomonocytic leukemia. Unlike in previous reports, simultaneous deletion of TNF receptor 1 (TNFR1 failed to rescue this severe phenotype. We found that the features of the disease in our mouse model resemble those of human chronic myelomonocytic leukemia (CMML in its transformation to acute myeloid leukemia (AML. Consequently, we found TAK1 deletion in 13 of 30 AML patients (43%, thus providing direct genetic evidence of TAK1's role in leukemogenesis.

  11. Rib fractures and death from deletion of osteoblast βcatenin in adult mice is rescued by corticosteroids.

    Directory of Open Access Journals (Sweden)

    JinZhu Duan

    Full Text Available Ribs are primarily made of cortical bone and are necessary for chest expansion and ventilation. Rib fractures represent the most common type of non-traumatic fractures in the elderly yet few studies have focused on the biology of rib fragility. Here, we show that deletion of βcatenin in Col1a2 expressing osteoblasts of adult mice leads to aggressive osteoclastogenesis with increased serum levels of the osteoclastogenic cytokine RANKL, extensive rib resorption, multiple spontaneous rib fractures and chest wall deformities. Within days of osteoblast specific βcatenin deletion, animals die from respiratory failure with a vanishing rib cage that is unable to sustain ventilation. Increased bone resorption is also observed in the vertebrae and femur. Treatment with the bisphosphonate pamidronate delayed but did not prevent death or associated rib fractures. In contrast, administration of the glucocorticoid dexamethasone decreased serum RANKL and slowed osteoclastogenesis. Dexamethasone preserved rib structure, prevented respiratory compromise and strikingly increased survival. Our findings provide a novel model of accelerated osteoclastogenesis, where deletion of osteoblast βcatenin in adults leads to rapid development of destructive rib fractures. We demonstrate the role of βcatenin dependent mechanisms in rib fractures and suggest that glucocorticoids, by suppressing RANKL, may have a role in treating bone loss due to aggressive osteoclastogenesis.

  12. Deletion of the MBII-85 snoRNA gene cluster in mice results in postnatal growth retardation.

    Directory of Open Access Journals (Sweden)

    Boris V Skryabin

    2007-12-01

    Full Text Available Prader-Willi syndrome (PWS [MIM 176270] is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScr(m-/p+ are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScr(m+/p- consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.

  13. Adult-onset deletion of the Prader-Willi syndrome susceptibility gene Snord116 in mice results in reduced feeding and increased fat mass.

    Science.gov (United States)

    Purtell, Louise; Qi, Yue; Campbell, Lesley; Sainsbury, Amanda; Herzog, Herbert

    2017-04-01

    The imprinted small nucleolar RNA (snoRNA) Snord116 is implicated in the aetiology of Prader-Willi syndrome (PWS), a disease associated with hyperphagia and obesity. Germline deletion of Snord116 in mice has been found to lead to increased food intake but not to the development of obesity. To determine the role of Snord116 independent of potential compensatory developmental factors, we investigated the effects of conditional adult-onset deletion of Snord116 in mice. Deletion of Snord116 was induced at 8 weeks of age by oral administration of tamoxifen to male Snordlox/lox; ROSAcre/+ mice, with vehicle-treated mice used as controls. Body weight (BW) was monitored weekly and body composition was measured by dual-energy X-ray absorptiometry and tissue dissection. Non-fasted and fasting-induced food intake was determined, and glucose and insulin tolerance tests were performed. Twenty-four-hour energy expenditure and physical activity were assessed by indirect calorimetry. Adult-onset deletion of Snord116 led to reduced food intake and increased adiposity, albeit with no concomitant change in BW or lean mass compared to controls. Adult onset Snord116 deletion was also associated with worsened glucose tolerance and insulin sensitivity. This study identified a key role for Snord116 in feeding behaviour and growth. Further, it is likely that the effects of this gene are modulated by developmental stage, as mice with adult-onset deletion showed an opposite phenotype, with respect to food intake and body composition, to previously published data on mice with germline deletion.

  14. Genetic deletion of MT1 melatonin receptors alters spontaneous behavioral rhythms in male and female C57BL/6 mice.

    Science.gov (United States)

    Adamah-Biassi, E B; Hudson, R L; Dubocovich, M L

    2014-09-01

    Behaviors vary over the 24h light/dark cycle and these temporal patterns reflect in part modulation by circadian neural circuits and hormones, such as melatonin. The goal of this study was to investigate the involvement of MT1 melatonin receptors in behavioral regulation by comparing male and female C57 wild type (WT) mice with C57 mice with genetic deletion of the MT1 receptor (MT1KO). A comprehensive array of fifteen distinct spontaneous behaviors was recorded continuously in the homecage over multiple days using the HomeCageScan system. Behaviors assessed were activity-like (i.e. come down, hang, jump, walk), exploration-like (i.e. dig, groom, rear up, sniff, stretch), resting-like (i.e. awake, remain low, rest, twitch) and ingestion-like (i.e. drink, eat). Phenotypic array and temporal distribution analysis revealed distinct behavioral rhythms that differed between WT and MT1KO mice. The rhythms were consistent from day to day in males and varied with the estrous cycle in females. We also studied the role of MT1 receptors on depressive and anxiety-like behaviors. Genetic deletion of MT1 receptors increased immobility time in the forced swim test and decreased the number of marbles buried in the marble burying test in both male and female C57 mice. We conclude that MT1 melatonin receptors are involved in neural pathways modulating diurnal rhythms of spontaneous behavior in the homecage as well as pathways regulating depressive and anxiolytic-like behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Science.gov (United States)

    Bedore, Jake; Martyn, Amanda C; Li, Anson K C; Dolinar, Eric A; McDonald, Ian S; Coupland, Stuart G; Prado, Vania F; Prado, Marco A; Hill, Kathleen A

    2015-01-01

    Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT) in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina. A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5) deletion of VAChT (VAChTSix3-Cre-flox/flox) and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP) amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses. This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  16. Whole-Retina Reduced Electrophysiological Activity in Mice Bearing Retina-Specific Deletion of Vesicular Acetylcholine Transporter.

    Directory of Open Access Journals (Sweden)

    Jake Bedore

    Full Text Available Despite rigorous characterization of the role of acetylcholine in retinal development, long-term effects of its absence as a neurotransmitter are unknown. One of the unanswered questions is how acetylcholine contributes to the functional capacity of mature retinal circuits. The current study investigates the effects of disrupting cholinergic signalling in mice, through deletion of vesicular acetylcholine transporter (VAChT in the developing retina, pigmented epithelium, optic nerve and optic stalk, on electrophysiology and structure of the mature retina.A combination of electroretinography, optical coherence tomography imaging and histological evaluation assessed retinal integrity in mice bearing retina- targeted (embryonic day 12.5 deletion of VAChT (VAChTSix3-Cre-flox/flox and littermate controls at 5 and 12 months of age. VAChTSix3-Cre-flox/flox mice did not show any gross changes in nuclear layer cellularity or synaptic layer thickness. However, VAChTSix3-Cre-flox/flox mice showed reduced electrophysiological response of the retina to light stimulus under scotopic conditions at 5 and 12 months of age, including reduced a-wave, b-wave, and oscillatory potential (OP amplitudes and decreased OP peak power and total energy. Reduced a-wave amplitude was proportional to the reduction in b-wave amplitude and not associated with altered a-wave 10%-90% rise time or inner and outer segment thicknesses.This study used a novel genetic model in the first examination of function and structure of the mature mouse retina with disruption of cholinergic signalling. Reduced amplitude across the electroretinogram wave form does not suggest dysfunction in specific retinal cell types and could reflect underlying changes in the retinal and/or extraretinal microenvironment. Our findings suggest that release of acetylcholine by VAChT is essential for the normal electrophysiological response of the mature mouse retina.

  17. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion

    Science.gov (United States)

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-01-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141

  18. Deletion of Irs2 causes reduced kidney size in mice: role for inhibition of GSK3beta?

    LENUS (Irish Health Repository)

    Carew, Rosemarie M.

    2010-07-06

    Abstract Background Male Irs2-\\/- mice develop fatal type 2 diabetes at 13-14 weeks. Defects in neuronal proliferation, pituitary development and photoreceptor cell survival manifest in Irs2-\\/- mice. We identify retarded renal growth in male and female Irs2-\\/- mice, independent of diabetes. Results Kidney size and kidney:body weight ratio were reduced by approximately 20% in Irs2-\\/- mice at postnatal day 5 and was maintained in maturity. Reduced glomerular number but similar glomerular density was detected in Irs2-\\/- kidney compared to wild-type, suggesting intact global kidney structure. Analysis of insulin signalling revealed renal-specific upregulation of PKBβ\\/Akt2, hyperphosphorylation of GSK3β and concomitant accumulation of β-catenin in Irs2-\\/- kidney. Despite this, no significant upregulation of β-catenin targets was detected. Kidney-specific increases in Yes-associated protein (YAP), a key driver of organ size were also detected in the absence of Irs2. YAP phosphorylation on its inhibitory site Ser127 was also increased, with no change in the levels of YAP-regulated genes, suggesting that overall YAP activity was not increased in Irs2-\\/- kidney. Conclusions In summary, deletion of Irs2 causes reduced kidney size early in mouse development. Compensatory mechanisms such as increased β-catenin and YAP levels failed to overcome this developmental defect. These data point to Irs2 as an important novel mediator of kidney size.

  19. Deletion of IL-4Ralpha on CD4 T cells renders BALB/c mice resistant to Leishmania major infection.

    Directory of Open Access Journals (Sweden)

    Magdalena Radwanska

    2007-05-01

    Full Text Available Effector responses induced by polarized CD4+ T helper 2 (Th2 cells drive nonhealing responses in BALB/c mice infected with Leishmania major. Th2 cytokines IL-4 and IL-13 are known susceptibility factors for L. major infection in BALB/c mice and induce their biological functions through a common receptor, the IL-4 receptor alpha chain (IL-4Ralpha. IL-4Ralpha-deficient BALB/c mice, however, remain susceptible to L. major infection, indicating that IL-4/IL-13 may induce protective responses. Therefore, the roles of polarized Th2 CD4+ T cells and IL-4/IL-13 responsiveness of non-CD4+ T cells in inducing non-healer or healer responses have yet to be elucidated. CD4+ T cell-specific IL-4Ralpha (Lck(creIL-4Ralpha(-/lox deficient BALB/c mice were generated and characterized to elucidate the importance of IL-4Ralpha signaling during cutaneous leishmaniasis in the absence of IL-4-responsive CD4+ T cells. Efficient deletion was confirmed by loss of IL-4Ralpha expression on CD4+ T cells and impaired IL-4-induced CD4+ T cell proliferation and Th2 differentiation. CD8+, gammadelta+, and NK-T cells expressed residual IL-4Ralpha, and representative non-T cell populations maintained IL-4/IL-13 responsiveness. In contrast to IL-4Ralpha(-/lox BALB/c mice, which developed ulcerating lesions following infection with L. major, Lck(creIL-4Ralpha(-/lox mice were resistant and showed protection to rechallenge, similar to healer C57BL/6 mice. Resistance to L. major in Lck(creIL-4Ralpha(-/lox mice correlated with reduced numbers of IL-10-secreting cells and early IL-12p35 mRNA induction, leading to increased delayed type hypersensitivity responses, interferon-gamma production, and elevated ratios of inducible nitric oxide synthase mRNA/parasite, similar to C57BL/6 mice. These data demonstrate that abrogation of IL-4 signaling in CD4+ T cells is required to transform non-healer BALB/c mice to a healer phenotype. Furthermore, a beneficial role for IL-4Ralpha signaling in L

  20. System xC- is a mediator of microglial function and its deletion slows symptoms in amyotrophic lateral sclerosis mice.

    Science.gov (United States)

    Mesci, Pinar; Zaïdi, Sakina; Lobsiger, Christian S; Millecamps, Stéphanie; Escartin, Carole; Seilhean, Danielle; Sato, Hideyo; Mallat, Michel; Boillée, Séverine

    2015-01-01

    Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic

  1. Deletion of Foxp3+ regulatory T cells in genetically targeted mice supports development of intestinal inflammation

    Directory of Open Access Journals (Sweden)

    Boehm Franziska

    2012-07-01

    Full Text Available Abstract Background Mice lacking Foxp3+ regulatory T (Treg cells develop severe tissue inflammation in lung, skin, and liver with premature death, whereas the intestine remains uninflamed. This study aims to demonstrate the importance of Foxp3+ Treg for the activation of T cells and the development of intestinal inflammation. Methods Foxp3-GFP-DTR (human diphtheria toxin receptor C57BL/6 mice allow elimination of Foxp3+ Treg by treatment with Dx (diphtheria toxin. The influence of Foxp3+ Treg on intestinal inflammation was tested using the CD4+ T-cell transfer colitis model in Rag−/− C57BL/6 mice and the acute DSS-colitis model. Results Continuous depletion of Foxp3+ Treg in Foxp3-GFP-DTR mice led to dramatic weight loss and death of mice by day 28. After 10 days of depletion of Foxp3+ Treg, isolated CD4+ T-cells were activated and produced extensive amounts of IFN-γ, IL-13, and IL-17A. Transfer of total CD4+ T-cells isolated from Foxp3-GFP-DTR mice did not result in any changes of intestinal homeostasis in Rag−/− C57BL/6 mice. However, administration of DTx between days 14 and 18 after T-cell reconstitution, lead to elimination of Foxp3+ Treg and to immediate weight loss due to intestinal inflammation. This pro-inflammatory effect of Foxp3+ Treg depletion consecutively increased inflammatory cytokine production. Further, the depletion of Foxp3+ Treg from Foxp3-GFP-DTR mice increased the severity of acute dSS-colitis accompanied by 80% lethality of Treg-depleted mice. CD4+ effector T-cells from Foxp3+ Treg-depleted mice produced significantly more pro-inflammatory cytokines. Conclusion Intermittent depletion of Foxp3+ Treg aggravates intestinal inflammatory responses demonstrating the importance of Foxp3+ Treg for the balance at the mucosal surface of the intestine.

  2. Deletion of LRP5 in VLDLR knockout mice inhibits retinal neovascularization.

    Directory of Open Access Journals (Sweden)

    Chun-hong Xia

    Full Text Available The development and maintenance of retinal vasculature require a precise balance between pro-angiogenic and anti-angiogenic factors. However, mechanisms underlying normal homeostasis of retinal vasculature and pathological changes of disrupted retinal vessel development are not fully understood. Recent studies of the low-density lipoprotein receptor-related protein 5 (LRP5 and the very low-density lipoprotein receptor (VLDLR mutant mice indicate that LRP5 mediates a pro-angiogenic signal while VLDLR mediates an anti-angiogenic signal in retinal vasculature. Mice with a loss of LRP5 display underdeveloped intraretinal vasculature associated with endothelial cell (EC clustering and failed EC migration into deep retinal layers. In contrast, VLDLR knockout mice show overgrown intraretinal vasculature and subretinal neovascularization. To understand the mechanisms for the opposite retinal vascular abnormalities between LRP5 and VLDLR mutant mice and to test how a loss of LRP5 perturbs subretinal neovascularization caused by a loss of VLDLR, we have generated and characterized the retinal vasculature in LRP5/VLDLR double knockout (DKO mice. Our data show that DKO mice develop substantial EC clustering without subretinal neovascularization. The absence of subretinal neovascularization in DKO mice is associated with inhibited migration of ECs into the photoreceptor cell layer. In addition, the transcription level of Slc38a5, which encodes a Müller cell specific glutamine transporter, is significantly reduced in DKO mice, similar to previously reported changes in LRP5 single knockout mice. Thus, LRP5 signaling is a prerequisite for neovascularization in VLDLR knockout mice. LRP5 may be an effective target for inhibiting intraretinal neovascularization.

  3. Mice carrying a complete deletion of the talin2 coding sequence are viable and fertile

    Energy Technology Data Exchange (ETDEWEB)

    Debrand, Emmanuel; Conti, Francesco J.; Bate, Neil; Spence, Lorraine; Mazzeo, Daniela; Pritchard, Catrin A.; Monkley, Susan J. [Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN (United Kingdom); Critchley, David R., E-mail: drc@le.ac.uk [Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN (United Kingdom)

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Mice lacking talin2 are viable and fertile with only a mildly dystrophic phenotype. Black-Right-Pointing-Pointer Talin2 null fibroblasts show no major defects in proliferation, adhesion or migration. Black-Right-Pointing-Pointer Maintaining a colony of talin2 null mice is difficult indicating an underlying defect. -- Abstract: Mice homozygous for several Tln2 gene targeted alleles are viable and fertile. Here we show that although the expression of talin2 protein is drastically reduced in muscle from these mice, other tissues continue to express talin2 albeit at reduced levels. We therefore generated a Tln2 allele lacking the entire coding sequence (Tln2{sup cd}). Tln2{sup cd/cd} mice were viable and fertile, and the genotypes of Tln2{sup cd/+} intercrosses were at the expected Mendelian ratio. Tln2{sup cd/cd} mice showed no major difference in body mass or the weight of the major organs compared to wild-type, although they displayed a mildly dystrophic phenotype. Moreover, Tln2{sup cd/cd} mouse embryo fibroblasts showed no obvious defects in cell adhesion, migration or proliferation. However, the number of Tln2{sup cd/cd} pups surviving to adulthood was variable suggesting that such mice have an underlying defect.

  4. Proglucagon Promoter Cre-Mediated AMPK Deletion in Mice Increases Circulating GLP-1 Levels and Oral Glucose Tolerance.

    Directory of Open Access Journals (Sweden)

    Sophie R Sayers

    Full Text Available Enteroendocrine L-cells synthesise and release the gut hormone glucagon-like peptide-1 (GLP-1 in response to food transit. Deletion of the tumour suppressor kinase LKB1 from proglucagon-expressing cells leads to the generation of intestinal polyps but no change in circulating GLP-1 levels. Here, we explore the role of the downstream kinase AMP-activated protein kinase (AMPK in these cells.Loss of AMPK from proglucagon-expressing cells was achieved using a preproglucagon promoter-driven Cre (iGluCre to catalyse recombination of floxed alleles of AMPKα1 and α2. Oral and intraperitoneal glucose tolerance were measured using standard protocols. L-cell mass was measured by immunocytochemistry. Hormone and peptide levels were measured by electrochemical-based luminescence detection or radioimmunoassay.Recombination with iGluCre led to efficient deletion of AMPK from intestinal L- and pancreatic alpha-cells. In contrast to mice rendered null for LKB1 using the same strategy, mice deleted for AMPK displayed an increase (WT: 0.05 ± 0.01, KO: 0.09±0.02%, p<0.01 in L-cell mass and elevated plasma fasting (WT: 5.62 ± 0.800 pg/ml, KO: 14.5 ± 1.870, p<0.01 and fed (WT: 15.7 ± 1.48pg/ml, KO: 22.0 ± 6.62, p<0.01 GLP-1 levels. Oral, but not intraperitoneal, glucose tolerance was significantly improved by AMPK deletion, whilst insulin and glucagon levels were unchanged despite an increase in alpha to beta cell ratio (WT: 0.23 ± 0.02, KO: 0.33 ± 0.03, p<0.01.AMPK restricts L-cell growth and GLP-1 secretion to suppress glucose tolerance. Targeted inhibition of AMPK in L-cells may thus provide a new therapeutic strategy in some forms of type 2 diabetes.

  5. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice

    Directory of Open Access Journals (Sweden)

    Judith P Ter Horst

    2014-02-01

    Full Text Available Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptors (MR and glucocorticoid receptors (GR. The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MRCaMKCre mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  6. Deletion of the forebrain mineralocorticoid receptor impairs social discrimination and decision-making in male, but not in female mice.

    Science.gov (United States)

    Ter Horst, Judith P; van der Mark, Maaike; Kentrop, Jiska; Arp, Marit; van der Veen, Rixt; de Kloet, E Ronald; Oitzl, Melly S

    2014-01-01

    Social interaction with unknown individuals requires fast processing of information to decide whether it is friend or foe. This process of discrimination and decision-making is stressful and triggers secretion of corticosterone activating mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). The MR is involved in appraisal of novel experiences and risk assessment. Recently, we have demonstrated in a dual-solution memory task that MR plays a role in the early stage of information processing and decision-making. Here we examined social approach and social discrimination in male and female mice lacking MR from hippocampal-amygdala-prefrontal circuitry and controls. The social approach task allows the assessment of time spent with an unfamiliar mouse and the ability to discriminate between familiar and unfamiliar conspecifics. The male and female test mice were both more interested in the social than the non-social experience and deletion of their limbic MR increased the time spent with an unfamiliar mouse. Unlike controls, the male MR(CaMKCre) mice were not able to discriminate between an unfamiliar and the familiar mouse. However, the female MR mutant had retained the discriminative ability between unfamiliar and familiar mice. Administration of the MR antagonist RU28318 to male mice supported the role of the MR in the discrimination between an unfamiliar mouse and a non-social stimulus. No effect was found with a GR antagonist. Our findings suggest that MR is involved in sociability and social discrimination in a sex-specific manner through inhibitory control exerted putatively via limbic-hippocampal efferents. The ability to discriminate between familiar and unfamiliar conspecifics is of uttermost importance for territorial defense and depends on a role of MR in decision-making.

  7. Mice with a targeted deletion of the tetranectin gene exhibit a spinal deformity

    DEFF Research Database (Denmark)

    Iba, K; Durkin, M E; Johnsen, L

    2001-01-01

    and muscle. To test the functional role of tetranectin directly, we have generated mice with a targeted disruption of the gene. We report that the tetranectin-deficient mice exhibit kyphosis, a type of spinal deformity characterized by an increased curvature of the thoracic spine. The kyphotic angles were...... in the morphology of the vertebrae. Histological analysis of the spines of these mice revealed an apparently asymmetric development of the growth plate and of the intervertebral disks of the vertebrae. In the most advanced cases, the growth plates appeared disorganized and irregular, with the disk material...... protruding through the growth plate. Tetranectin-null mice had a normal peak bone mass density and were not more susceptible to ovariectomy-induced osteoporosis than were their littermates as determined by dual-emission X-ray absorptiometry scanning. These results demonstrate that tetranectin plays a role...

  8. Deletion of inducible nitric-oxide synthase in leptin-deficient mice improves brown adipose tissue function.

    Directory of Open Access Journals (Sweden)

    Sara Becerril

    Full Text Available BACKGROUND: Leptin and nitric oxide (NO on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS gene in the regulation of energy balance in ob/ob mice. METHODS AND FINDINGS: Double knockout (DBKO mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05, decreased amounts of total fat pads (p<0.05, lower food efficiency rates (p<0.05 and higher rectal temperature (p<0.05 than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16, a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc-1alpha, sirtuin-1 (Sirt-1 and sirtuin-3 (Sirt-3. Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3 were upregulated in brown adipose tissue (BAT of DBKO mice as compared to ob/ob rodents. CONCLUSION: Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement.

  9. Target deletion of the cytoskeleton-associated protein palladin does not impair neurite outgrowth in mice.

    Directory of Open Access Journals (Sweden)

    Run-Zhe Shu

    Full Text Available Palladin is an actin cytoskeleton-associated protein which is crucial for cell morphogenesis and motility. Previous studies have shown that palladin is localized to the axonal growth cone in neurons and may play an important role in axonal extension. Previously, we have generated palladin knockout mice which display cranial neural tube closure defect and embryonic lethality before embryonic day 15.5 (E15.5. To further study the role of palladin in the developing nervous system, we examined the innervation of palladin-deficient mouse embryos since the 200 kd, 140 kd, 90-92 kd and 50 kd palladin isoforms were undetectable in the mutant mouse embryo brain. Contrary to the results of previous studies, we found no inhibition of the axonal extension in palladin-deficient mouse embryos. The cortical neurons derived from palladin-deficient mice also showed no significant difference in neurite outgrowth as compared with those from wild-type mice. Moreover, no difference was found in neurite outgrowth of neural stem cell derived-neurons between palladin-deficient mice and wild-type mice. In conclusion, these results suggest that palladin is dispensable for normal neurite outgrowth in mice.

  10. Deletion of integrin-linked kinase from neural crest cells in mice results in aortic aneurysms and embryonic lethality

    Directory of Open Access Journals (Sweden)

    Thomas D. Arnold

    2013-09-01

    Neural crest cells (NCCs participate in the remodeling of the cardiac outflow tract and pharyngeal arch arteries during cardiovascular development. Integrin-linked kinase (ILK is a serine/threonine kinase and a major regulator of integrin signaling. It links integrins to the actin cytoskeleton and recruits other adaptor molecules into a large complex to regulate actin dynamics and integrin function. Using the Cre-lox system, we deleted Ilk from NCCs of mice to investigate its role in NCC morphogenesis. The resulting mutants developed a severe aneurysmal arterial trunk that resulted in embryonic lethality during late gestation. Ilk mutants showed normal cardiac NCC migration but reduced differentiation into smooth muscle within the aortic arch arteries and the outflow tract. Within the conotruncal cushions, Ilk-deficient NCCs exhibited disorganization of F-actin stress fibers and a significantly rounder morphology, with shorter cellular projections. Additionally, absence of ILK resulted in reduced in vivo phosphorylation of Smad3 in NCCs, which correlated with reduced αSMA levels. Our findings resemble those seen in Pinch1 and β1 integrin conditional mutant mice, and therefore support that, in neural crest-derived cells, ILK and Pinch1 act as cytoplasmic effectors of β1 integrin in a pathway that protects against aneurysms. In addition, our conditional Ilk mutant mice might prove useful as a model to study aortic aneurysms caused by reduced Smad3 signaling, as occurs in the newly described aneurysms-osteoarthritis syndrome, for example.

  11. Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance

    DEFF Research Database (Denmark)

    Vernochet, Cecile; Mourier, Arnaud; Bezy, Olivier

    2012-01-01

    oxygen consumption and uncoupling. As a result, F-TFKO mice exhibit higher energy expenditure and are protected from age- and diet-induced obesity, insulin resistance, and hepatosteatosis, despite a greater food intake. Thus, TFAM deletion in the adipose tissue increases mitochondrial oxidation that has......Obesity and type 2 diabetes are associated with mitochondrial dysfunction in adipose tissue, but the role for adipose tissue mitochondria in the development of these disorders is currently unknown. To understand the impact of adipose tissue mitochondria on whole-body metabolism, we have generated...... a mouse model with disruption of the mitochondrial transcription factor A (TFAM) specifically in fat. F-TFKO adipose tissue exhibit decreased mtDNA copy number, altered levels of proteins of the electron transport chain, and perturbed mitochondrial function with decreased complex I activity and greater...

  12. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaka, Masanori [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Gohda, Tomohito, E-mail: goda@juntendo.ac.jp [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Takagi, Miyuki; Omote, Keisuke; Sonoda, Yuji [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Oliva Trejo, Juan Alejandro [Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Asao, Rin; Hidaka, Teruo [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Asanuma, Katsuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Laboratory for Kidney Research (TMK Project), Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397 (Japan); Horikoshi, Satoshi [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Tomino, Yasuhiko [Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421 (Japan); Medical Corporation SHOWAKAI, 3-12-12 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023 (Japan)

    2015-11-20

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, although ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.

  13. The effect of deletion of the orphan G – protein coupled receptor (GPCR gene MrgE on pain-like behaviours in mice

    Directory of Open Access Journals (Sweden)

    Qin Wenning

    2008-01-01

    Full Text Available Abstract Background The orphan GPCR MrgE is one of an extended family of GPCRs that are expressed in dorsal root ganglia (DRG. Based on these expression patterns it has been suggested that GPCRs like MrgE may play a role in nociception however, to date, no direct supporting evidence has emerged. We generated mutant mice lacking MrgE and examined the effects of deletion of this gene in three pain behavioural models. The effect of MrgE gene deletion on expression of Mrgs and genes involved in sensory neurone function was also investigated. Results The absence of MrgE had no effect on the development of pain responses to a noxious chemical stimulus or an acute thermal stimulus. However, in contrast, the development but not the maintenance of neuropathic pain was affected by deletion of MrgE. The expression of Mrg genes was not significantly affected in the MrgE knockout (KO mice with the sole exception of MrgF. In addition, the expression of 77 of 84 genes involved in sensory neuron development and function was also unaffected by deletion of MrgE. Of the 7 genes affected by MrgE deletion, 4 have previously been implicated in nociception. Conclusion The data suggests that MrgE may play a role in selective pain behavioural responses in mice.

  14. The use of an E1-deleted, replication-defective adenovirus recombinant expressing the rabies virus glycoprotein for early vaccination of mice against rabies virus.

    OpenAIRE

    Wang, Y.; Xiang, Z.; Pasquini, S; Ertl, H C

    1997-01-01

    An E1-deleted, replication-defective adenovirus recombinant of the human strain 5 expressing the rabies virus glycoprotein, termed Adrab.gp, was tested in young mice. Mice immunized at birth with the Adrab.gp construct developed antibodies to rabies virus and cytokine-secreting lymphocytes and were protected against subsequent challenge. Maternal immunity to rabies virus strongly interferes with vaccination of the offspring with a traditional inactivated rabies virus vaccine. The immune respo...

  15. New intragenic deletions in the Phex gene clarify X-linked hypophosphatemia-related abnormalities in mice

    Science.gov (United States)

    Lorenz-Depiereux, Bettina; Guido, Victoria E.; Johnson, Kenneth R.; Zheng, Qing Yin; Gagnon, Leona H.; Bauschatz, Joiel D.; Davisson, Muriel T.; Washburn, Linda L.; Donahue, Leah Rae; Strom, Tim M.; Eicher, Eva M.

    2010-01-01

    X-linked hypophosphatemic rickets (XLH) in humans is caused by mutations in the PHEX gene. Previously, three mutations in the mouse Phex gene have been reported: PhexHyp, Gy, and PhexSka1. Here we report analysis of two new spontaneous mutations in the mouse Phex gene, PhexHyp-2J and PhexHyp-Duk. PhexHyp-2J and PhexHyp-Duk involve intragenic deletions of at least 7.3 kb containing exon 15, and 30 kb containing exons 13 and 14, respectively. Both mutations cause similar phenotypes in males, including shortened hind legs and tail, a shortened square trunk, hypophosphatemia, hypocalcemia, and rachitic bone disease. In addition, mice carrying the PhexHyp-Duk mutation exhibit background-dependent variable expression of deafness, circling behavior, and cranial dysmorphology, demonstrating the influence of modifying genes on Phex-related phenotypes. Cochlear cross-sections from PhexHyp-2J/Y and PhexHyp-Duk/Y males reveal a thickening of the temporal bone surrounding the cochlea with the presence of a precipitate in the scala tympani. Evidence of the degeneration of the organ of Corti and spiral ganglion also are present in the hearing-impaired PhexHyp-Duk/Y mice, but not in the normal-hearing PhexHyp-2J/Y mice. Analysis of the phenotypes noted in PhexHyp-Duk/Y an PhexHyp-2J/Y males, together with those noted in PhexSka1/Y and PhexHyp/Y males, now allow XLH-related phenotypes to be separated from non-XLH-related phenotypes, such as those noted in Gy/Y males. Also, identification of the genetic modifiers of hearing and craniofacial dysmorphology in PhexHyp-Duk/Y mice could provide insight into the phenotypic variation of XLH in humans. PMID:15029877

  16. Mitochondrial Ferritin Deletion Exacerbates β-Amyloid-Induced Neurotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Peina Wang

    2017-01-01

    Full Text Available Mitochondrial ferritin (FtMt is a mitochondrial iron storage protein which protects mitochondria from iron-induced oxidative damage. Our previous studies indicate that FtMt attenuates β-amyloid- and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. To explore the protective effects of FtMt on β-amyloid-induced memory impairment and neuronal apoptosis and the mechanisms involved, 10-month-old wild-type and Ftmt knockout mice were infused intracerebroventricularly (ICV with Aβ25–35 to establish an Alzheimer’s disease model. Knockout of Ftmt significantly exacerbated Aβ25–35-induced learning and memory impairment. The Bcl-2/Bax ratio in mouse hippocampi was decreased and the levels of cleaved caspase-3 and PARP were increased. The number of neuronal cells undergoing apoptosis in the hippocampus was also increased in Ftmt knockout mice. In addition, the levels of L-ferritin and FPN1 in the hippocampus were raised, and the expression of TfR1 was decreased. Increased MDA levels were also detected in Ftmt knockout mice treated with Aβ25–35. In conclusion, this study demonstrated that the neurological impairment induced by Aβ25–35 was exacerbated in Ftmt knockout mice and that this may relate to increased levels of oxidative stress.

  17. Sex-Dependent Effects of HO-1 Deletion from Adipocytes in Mice.

    Science.gov (United States)

    Hosick, Peter A; Weeks, Mary Frances; Hankins, Michael W; Moore, Kyle H; Stec, David E

    2017-03-11

    Induction of heme oxygenase-1 (HO-1) has been demonstrated to decrease body weight and improve insulin sensitivity in several models of obesity in rodents. To further study the role of HO-1 in adipose tissue, we created an adipose-specific HO-1 knockout mouse model. Male and female mice were fed either a control or a high-fat diet for 30 weeks. Body weights were measured weekly and body composition, fasting blood glucose and insulin levels were determined every six weeks. Adipocyte-specific knockout of HO-1 had no significant effect on body weight in mice fed a high-fat diet but increased body weight in female mice fed a normal-fat diet. Although body weights were not different in females fed a high fat diet, loss of HO-1 in adipocytes resulted in significant alterations in body composition. Adipose-specific HO-1 knockout resulted in increased fasting hyperglycemia and insulinemia in female but not male mice on both diets. Adipose-specific knockout of HO-1 resulted in a significant loss of HO activity and a decrease in the protein levels of adiponectin in adipose tissue. These results demonstrate that loss of HO-1 in adipocytes has greater effects on body fat and fasting hyperglycemia in a sex-dependent fashion and that expression of HO-1 in adipose tissue may have a greater protective role in females as compared to males.

  18. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  19. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  20. The deletion of Math5 disrupts retinal blood vessel and glial development in mice

    Science.gov (United States)

    Edwards, Malia M.; McLeod, D. Scott; Li, Renzhong; Grebe, Rhonda; Bhutto, Imran; Mu, Xiuqian; Lutty, Gerard A.

    2011-01-01

    Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5−/− mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5−/− mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5−/− mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5−/− mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5−/− retina. In addition, GFAP+ Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5−/− mice is associated with a lack of retinal vascular development. PMID:22200487

  1. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice.

    Science.gov (United States)

    Xie, T Y; Ngo, S T; Veldhuis, J D; Jeffery, P L; Chopin, L K; Tschöp, M; Waters, M J; Tolle, V; Epelbaum, J; Chen, C; Steyn, F J

    2015-12-01

    Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of

  2. Conditional Deletion of Fgfr3 in Chondrocytes leads to Osteoarthritis-like Defects in Temporomandibular Joint of Adult Mice.

    Science.gov (United States)

    Zhou, Siru; Xie, Yangli; Li, Wei; Huang, Junlan; Wang, Zuqiang; Tang, Junzhou; Xu, Wei; Sun, Xianding; Tan, Qiaoyan; Huang, Shuo; Luo, Fengtao; Xu, Meng; Wang, Jun; Wu, Tingting; Chen, Liang; Chen, Hangang; Su, Nan; Du, Xiaolan; Shen, Yue; Chen, Lin

    2016-04-04

    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a common degenerative disease in adult, which is characterized by progressive destruction of the articular cartilage. To investigate the role of FGFR3 in the homeostasis of TMJ cartilage during adult stage, we generated Fgfr3(f/f); Col2a1-CreER(T2) (Fgfr3 cKO) mice, in which Fgfr3 was deleted in chondrocytes at 2 months of age. OA-like defects were observed in Fgfr3 cKO TMJ cartilage. Immunohistochemical staining and quantitative real-time PCR analyses revealed a significant increase in expressions of COL10, MMP13 and AMAMTS5. In addition, there was a sharp increase in chondrocyte apoptosis at the Fgfr3 cKO articular surface, which was accompanied by a down-regulation of lubricin expression. Importantly, the expressions of RUNX2 and Indian hedgehog (IHH) were up-regulated in Fgfr3 cKO TMJ. Primary Fgfr3 cKO chondrocytes were treated with IHH signaling inhibitor, which significantly reduced expressions of Runx2, Col10, Mmp13 and Adamts5. Furthermore, the IHH signaling inhibitor partially alleviated OA-like defects in the TMJ of Fgfr3 cKO mice, including restoration of lubricin expression and improvement of the integrity of the articular surface. In conclusion, our study proposes that FGFR3/IHH signaling pathway plays a critical role in maintaining the homeostasis of TMJ articular cartilage during adult stage.

  3. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice.

    Directory of Open Access Journals (Sweden)

    Carlos A Santiviago

    2009-07-01

    Full Text Available Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS.

  4. Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.

    Science.gov (United States)

    Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter

    2016-03-01

    Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of

  5. Deletion of RAGE causes hyperactivity and increased sensitivity to auditory stimuli in mice.

    Directory of Open Access Journals (Sweden)

    Seiichi Sakatani

    Full Text Available The receptor for advanced glycation end-products (RAGE is a multi-ligand receptor that belongs to the immunoglobulin superfamily of cell surface receptors. In diabetes and Alzheimer's disease, pathological progression is accelerated by activation of RAGE. However, how RAGE influences gross behavioral activity patterns in basal condition has not been addressed to date. In search for a functional role of RAGE in normal mice, a series of standard behavioral tests were performed on adult RAGE knockout (KO mice. We observed a solid increase of home cage activity in RAGE KO. In addition, auditory startle response assessment resulted in a higher sensitivity to auditory signal and increased prepulse inhibition in KO mice. There were no significant differences between KO and wild types in behavioral tests for spatial memory and anxiety, as tested by Morris water maze, classical fear conditioning, and elevated plus maze. Our results raise a possibility that systemic therapeutic treatments to occlude RAGE activation may have adverse effects on general activity levels or sensitivity to auditory stimuli.

  6. Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice.

    Directory of Open Access Journals (Sweden)

    Shuqiu Zheng

    2010-02-01

    Full Text Available Expansion of a stretch of polyglutamine in huntingtin (htt, the protein product of the IT15 gene, causes Huntington's disease (HD. Previous investigations into the role of the polyglutamine stretch (polyQ in htt function have suggested that its length may modulate a normal htt function involved in regulating energy homeostasis. Here we show that expression of full-length htt lacking its polyglutamine stretch (DeltaQ-htt in a knockin mouse model for HD (Hdh(140Q/DeltaQ, reduces significantly neuropil mutant htt aggregates, ameliorates motor/behavioral deficits, and extends lifespan in comparison to the HD model mice (Hdh(140Q/+. The rescue of HD model phenotypes is accompanied by the normalization of lipofuscin levels in the brain and an increase in the steady-state levels of the mammalian autophagy marker microtubule-associate protein 1 light chain 3-II (LC3-II. We also find that DeltaQ-htt expression in vitro increases autophagosome synthesis and stimulates the Atg5-dependent clearance of truncated N-terminal htt aggregates. DeltaQ-htt's effect on autophagy most likely represents a gain-of-function, as overexpression of full-length wild-type htt in vitro does not increase autophagosome synthesis. Moreover, Hdh(DeltaQ/DeltaQ mice live significantly longer than wild-type mice, suggesting that autophagy upregulation may be beneficial both in diseases caused by toxic intracellular aggregate-prone proteins and also as a lifespan extender in normal mammals.

  7. Immunization with Toxoplasma gondii GRA17 Deletion Mutant Induces Partial Protection and Survival in Challenged Mice

    Directory of Open Access Journals (Sweden)

    Jin-Lei Wang

    2017-06-01

    Full Text Available Toxoplasmosis remains a world-threatening disease largely because of the lack of a fully effective vaccine. Here, we created a ΔGRA17 mutant by disrupting the virulence factor GRA17 using CRISPR-Cas9 method. Then, we tested whether ΔGRA17 tachyzoites can be used as a live-attenuated vaccine against acute, chronic, and congenital Toxoplasma gondii infection in mice. Immune response evoked by ΔGRA17 immunization suggested a sequential Th1 and Th2 T cell response, indicated by high levels of Th1 and a mixed Th1/Th2 cytokines at 28 and 70 days after immunization, respectively. ΔGRA17-mediated immunity fully protected mice against lethal infection with wild-type (wt RH strain, heterologous challenge with PYS, and TgC7 strains of the Chinese ToxoDB#9 genotype, and T. gondii Pru strain. Although parasite cysts were detected in 8 out of 10 immunized mice, cyst burden in the brain was significantly reduced (P < 0.05 in immunized mice (53 ± 15 cysts/brain compared to non-immunized mice (4,296 ± 687 cysts/brain. In respect to congenital infection, the litter size, survival rate, and body weight (BW of pups born to ΔGRA17-immunized dams were not different compared to pups born to naïve control dams (P = 0.24. However, a marked reduction in the litter size (P < 0.001, survival rate, and BW (P < 0.01 of pups born to non-immunized and infected dams was detected. Also, immunized dams infected with type II Pru strain had significantly (P < 0.001 less cyst burden in the brain compared with non-immunized and infected dams. These findings show that immunization with ΔGRA17 strain evokes cell-mediated and neutralizing antibody responses and confers some degree of protection against challenge with homologous and heterologous virulent T. gondii strains.

  8. Zygotic Porcn paternal allele deletion in mice to model human focal dermal hypoplasia.

    Directory of Open Access Journals (Sweden)

    Steffen Biechele

    Full Text Available In mouse and humans, the X-chromosomal Porcupine homolog (Porcn gene is required for the acylation and secretion of all 19 Wnt ligands, thus representing a bottleneck in the secretion of Wnt ligands. In humans, mutations in PORCN cause the X-linked dominant syndrome Focal Dermal Hypoplasia (FDH, OMIM#305600. This disorder is characterized by ecto-mesodermal dysplasias and shows a highly variable phenotype, potentially due to individual X chromosome inactivation patterns. To improve the understanding of human FDH, we have established a mouse model by generation of Porcn heterozygous animals carrying a zygotic deletion of the paternal allele. We show that heterozygous female fetuses display variable defects that do not significantly affect survival in the uterus, but lead to perinatal lethality in more than 95% of females. Rare survivors develop to adulthood and display variable skeletal and skin defects, representing an adult zygotic mouse model for human FDH. Although not frequently reported in humans, we also observed bronchopneumonia, rhinitis, and otitis media in these animals, suggesting a potential link between Porcn function and the normal development of ciliated cells in these tissues.

  9. Serglycin proteoglycan deletion induces defects in platelet aggregation and thrombus formation in mice

    Science.gov (United States)

    Woulfe, Donna S.; Lilliendahl, Joanne Klimas; August, Shelley; Rauova, Lubica; Kowalska, M. Anna; Åbrink, Magnus; Pejler, Gunnar; White, James G.

    2008-01-01

    Serglycin (SG), the hematopoietic cell secretory granule proteoglycan, is crucial for storage of specific secretory proteins in mast cells, neutrophils, and cytotoxic T lymphocytes. We addressed the role of SG in platelets using SG−/− mice. Wild-type (WT) but not SG−/− platelets contained chondroitin sulfate proteoglycans. Electron microscopy revealed normal α-granule structure in SG−/− platelets. However, SG−/− platelets and megakaryocytes contained unusual scroll-like membranous inclusions, and SG−/− megakaryocytes showed extensive emperipolesis of neutrophils. SG−/− platelets had reduced ability to aggregate in response to low concentrations of collagen or PAR4 thrombin receptor agonist AYPGKF, and reduced fibrinogen binding after AYPGKF, but aggregated normally to ADP. 3H-serotonin and ATP secretion were greatly reduced in SG−/− platelets. The α-granule proteins platelet factor 4, β-thromboglobulin, and platelet-derived growth factor were profoundly reduced in SG−/− platelets. Exposure of P-selectin and αIIb after thrombin treatment was similar in WT and SG−/− platelets. SG−/− mice exhibited reduced carotid artery thrombus formation after exposure to FeCl3. This study demonstrates that SG is crucial for platelet function and thrombus formation. We propose that SG−/− platelet function deficiencies are related to inadequate packaging and secretion of selected α-granule proteins and reduced secretion of dense granule contents critical for platelet activation. PMID:18094327

  10. Deletion of the Men1 Gene Prevents Streptozotocin-Induced Hyperglycemia in Mice

    Directory of Open Access Journals (Sweden)

    Yuqing Yang

    2010-01-01

    Full Text Available Diabetes ultimately results from an inadequate number of functional beta cells in the islets of Langerhans. Enhancing proliferation of functional endogenous beta cells to treat diabetes remains underexplored. Here, we report that excision of the Men1 gene, whose loss-of-function mutation leads to inherited multiple endocrine neoplasia type 1 (MEN1, rendered resistant to streptozotocin-induced hyperglycemia in a tamoxifen-inducible and temporally controlled Men1 excision mouse model as well as in a tissue-specific Men1 excision mouse model. Men1 excision prevented mice from streptozotocin-induced hyperglycemia mainly through increasing the number of functional beta cells. BrdU incorporation by beta cells, islet size, and circulating insulin levels were significantly increased in Men1-excised mice. Membrane localization of glucose transporter 2 was largely preserved in Men1-excised beta cells, but not in Men1-expressing beta cells. Our findings suggest that repression of menin, a protein encoded by the Men1 gene, might be a valuable means to maintain or increase the number of functional endogenous beta cells to prevent or ameliorate diabetes.

  11. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Daiei Takahashi

    2017-04-01

    Full Text Available The with-no-lysine kinase (WNK 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism.

  12. Early AMD-like defects in the RPE and retinal degeneration in aged mice with RPE-specific deletion of Atg5 or Atg7.

    Science.gov (United States)

    Zhang, Youwen; Cross, Samuel D; Stanton, James B; Marmorstein, Alan D; Le, Yun Zheng; Marmorstein, Lihua Y

    2017-01-01

    To examine the effects of autophagy deficiency induced by RPE-specific deletion of Atg5 or Atg7 in mice as a function of age. Conditional knockout mice with a floxed allele of Atg5 or Atg7 were crossed with inducible VMD2-rtTA/Cre transgenic mice. VMD2-directed RPE-specific Cre recombinase expression was induced with doxycycline feeding in the resulting mice. Cre-mediated deletion of floxed Atg5 or Atg7 resulted in RPE-specific inactivation of the Atg5 or Atg7 gene. Plastic and thin retinal sections were analyzed with light and electron microscopy for histological changes. Photoreceptor outer segment (POS) thickness in plastic sections was measured using the Adobe Photoshop CS4 extended ruler tool. Autophagic adaptor p62/SQSTM1 and markers for oxidatively damaged lipids, proteins, and DNA were examined with immunofluorescence staining of cryosections. Fluorescence signals were quantified using Image J software. Accumulation of p62/SQSTM1 reflecting autophagy deficiency was observed in the RPE of the Atg5(ΔRPE) and Atg7(ΔRPE) mice. 3-nitrotyrosine, advanced glycation end products (AGEs), and 8-hydroxy-2'-deoxyguanosine (8-OHdG), markers for oxidatively damaged proteins and DNA, were also found to accumulate in the RPE of these mice. We observed retinal degeneration in 35% of the Atg5(ΔRPE) mice and 45% of the Atg7(ΔRPE) mice at 8 to 24 months old. Degeneration severity and the number of mice with degeneration increased with age. The mean POS thickness of these mice was 25 µm at 8-12 months, 15 µm at 13-18 months, and 3 µm at 19-24 months, compared to 35 µm, 30 µm, and 24 µm in the wild-type mice, respectively. Early age-related macular degeneration (AMD)-like RPE defects were found in all the Atg5(ΔRPE) and Atg7(ΔRPE) mice 13 months old or older, including vacuoles, uneven RPE thickness, diminished basal infoldings, RPE hypertrophy/hypotrophy, pigmentary irregularities, and necrosis. The severity of the RPE defects increased with age and in the mice with

  13. Deletion of Inpp5a causes ataxia and cerebellar degeneration in mice.

    Science.gov (United States)

    Yang, Andy W; Sachs, Andrew J; Nystuen, Arne M

    2015-10-01

    The progressive and permanent loss of cerebellar Purkinje cells (PC) is a hallmark of many inherited ataxias. Mutations in several genes involved in the regulation of Ca(2+) release from intracellular stores by the second messenger IP3 have been associated with PC dysfunction or death. While much is known about the defects in production and response to IP3, less is known about the defects in breakdown of the IP3 second messenger. A mutation in Inpp4a of the pathway is associated with a severe, early-onset PC degeneration in the mouse model weeble. The step preceding the removal of the 4-phosphate is the removal of the 5-phosphate by Inpp5a. Gene expression analysis was performed on an Inpp5a (Gt(OST50073)Lex) mouse generated by gene trap insertion using quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blot. Phenotypic analyses were performed using rotarod, β-galactosidase staining, and phosphatase activity assay. Statistical significance was calculated. The deletion of Inpp5a causes an early-onset yet slowly progressive PC degeneration and ataxia. Homozygous mutants (90%) exhibit perinatal lethality; surviving homozygotes show locomotor instability at P16. A consistent pattern of PC loss in the cerebellum is initially detectable by weaning and widespread by P60. Phosphatase activity toward phosphoinositol substrates is reduced in the mutant relative to littermates. The ataxic phenotype and characteristics neurodegeneration of the Inpp5a (Gt(OST50073)Lex) mouse indicate a crucial role for Inpp5a in PC survival. The identification of the molecular basis of the selective PC survival will be important in defining a neuroprotective gene applicable to establishing a disease mechanism.

  14. Deletion of Osr2 Partially Rescues Tooth Development in Runx2 Mutant Mice.

    Science.gov (United States)

    Kwon, H J E; Park, E K; Jia, S; Liu, H; Lan, Y; Jiang, R

    2015-08-01

    Tooth organogenesis depends on genetically programmed sequential and reciprocal inductive interactions between the dental epithelium and neural crest-derived mesenchyme. Previous studies showed that the Msx1 and Runx2 transcription factors are required for activation of odontogenic signals, including Bmp4 and Fgf3, in the early tooth mesenchyme to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 acts downstream of Msx1 to activate Fgf3 expression. Recent studies identified Osr2 as a repressor of tooth development and showed that inactivation of Osr2 rescued molar tooth morphogenesis in the Msx1(-/-) mutant mice as well as in mice with neural crest-specific inactivation of Bmp4. Here we show that Runx2 expression is expanded in the tooth bud mesenchyme in Osr2(-/-) mutant mouse embryos and is partially restored in the tooth mesenchyme in Msx1(-/-)Osr2(-/-) mutants in comparison with Msx1(-/-) and wild-type embryos. Whereas mandibular molar development arrested at the bud stage and maxillary molar development arrested at the bud-to-cap transition in Runx2(-/-) mutant mice, both mandibular and maxillary molar tooth germs progressed to the early bell stage, with rescued expression of Msx1 and Bmp4 in the dental papilla as well as expression of Bmp4, p21, and Shh in the primary enamel knot in the Osr2(-/-)Runx2(-/-) compound mutants. In contrast to the Msx1(-/-)Osr2(-/-) compound mutants, which exhibit nearly normal first molar morphogenesis, the Osr2(-/-)Runx2(-/-) compound mutant embryos failed to activate the expression of Fgf3 and Fgf10 in the dental papilla and exhibited significant deficit in cell proliferation in both the dental epithelium and mesenchyme in comparison with the control embryos. These data indicate that Runx2 synergizes with Msx1 to drive tooth morphogenesis through the bud-to-cap transition and that Runx2 controls continued tooth growth and morphogenesis beyond the cap stage through activation of Fgf3 and Fgf10 expression

  15. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  16. Deletion of Galgt2 (B4Galnt2) Reduces Muscle Growth in Response to Acute Injury and Increases Muscle Inflammation and Pathology in Dystrophin-Deficient Mice

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A.; Janssen, Paulus M.L.; Martin, Paul T.

    2016-01-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2−/−mdx). Galgt2−/− mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. PMID:26435413

  17. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    Directory of Open Access Journals (Sweden)

    Claësson Mogens H

    2008-06-01

    Full Text Available Abstract Background Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7, established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensional gel electrophoresis (2D-PAGE. Results Protein spots excised from 2D-PAGE gels, were subjected to in-gel tryptic digestion and identified by liquid chromatography – tandem mass spectrometry. A total of 47 protein spots were identified. Immunological verification was performed for several of the differentially regulated proteins where suitable antibodies could be obtained. Functional annotation clustering revealed similarities as well as differences between the tumours. Twelve proteins that changed similarly in both tumours included up-regulation of rho GDP-dissociation inhibitor 2, proteasome subunit α type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin β-3 chain, a 25 kDa actin fragment, proteasome subunit β type 9, cofilin-1 and glia maturation factor γ. Conclusion Some of the commonly differentially expressed proteins are also differentially expressed in other tumours and may be putative diagnostic and/or prognostic markers for lymphomas.

  18. Lethality of mice bearing a knockout of the Ngly1-gene is partially rescued by the additional deletion of the Engase gene.

    Directory of Open Access Journals (Sweden)

    Haruhiko Fujihira

    2017-04-01

    Full Text Available The cytoplasmic peptide:N-glycanase (Ngly1 in mammals is a de-N-glycosylating enzyme that is highly conserved among eukaryotes. It was recently reported that subjects harboring mutations in the NGLY1 gene exhibited severe systemic symptoms (NGLY1-deficiency. While the enzyme obviously has a critical role in mammals, its precise function remains unclear. In this study, we analyzed Ngly1-deficient mice and found that they are embryonic lethal in C57BL/6 background. Surprisingly, the additional deletion of the gene encoding endo-β-N-acetylglucosaminidase (Engase, which is another de-N-glycosylating enzyme but leaves a single GlcNAc at glycosylated Asn residues, resulted in the partial rescue of the lethality of the Ngly1-deficient mice. Additionally, we also found that a change in the genetic background of C57BL/6 mice, produced by crossing the mice with an outbred mouse strain (ICR could partially rescue the embryonic lethality of Ngly1-deficient mice. Viable Ngly1-deficient mice in a C57BL/6 and ICR mixed background, however, showed a very severe phenotype reminiscent of the symptoms of NGLY1-deficiency subjects. Again, many of those defects were strongly suppressed by the additional deletion of Engase in the C57BL/6 and ICR mixed background. The defects observed in Ngly1/Engase-deficient mice (C57BL/6 background and Ngly1-deficient mice (C57BL/6 and ICR mixed background closely resembled some of the symptoms of patients with an NGLY1-deficiency. These observations strongly suggest that the Ngly1- or Ngly1/Engase-deficient mice could serve as a valuable animal model for studies related to the pathogenesis of the NGLY1-deficiency, and that cytoplasmic ENGase represents one of the potential therapeutic targets for this genetic disorder.

  19. Adipose Tissue-Specific Deletion of 12/15-Lipoxygenase Protects Mice from the Consequences of a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Banumathi K. Cole

    2012-01-01

    Full Text Available Type 2 diabetes is associated with obesity, insulin resistance, and inflammation in adipose tissue. 12/15-Lipoxygenase (12/15-LO generates proinflammatory lipid mediators, which induce inflammation in adipose tissue. Therefore we investigated the role of 12/15-LO activity in mouse white adipose tissue in promoting obesity-induced local and systemic inflammatory consequences. We generated a mouse model for fat-specific deletion of 12/15-LO, aP2-Cre; 12/15-LOloxP/loxP, which we call ad-12/15-LO mice, and placed wild-type controls and ad-12/15-LO mice on a high-fat diet for 16 weeks and examined obesity-induced inflammation and insulin resistance. High-fat diet-fed ad-12/15-LO exhibited improved fasting glucose levels and glucose metabolism, and epididymal adipose tissue from these mice exhibited reduced inflammation and macrophage infiltration compared to wild-type mice. Furthermore, fat-specific deletion of 12/15-LO led to decreased peripheral pancreatic islet inflammation with enlarged pancreatic islets when mice were fed the high-fat diet compared to wild-type mice. These results suggest an interesting crosstalk between 12/15-LO expression in adipose tissue and inflammation in pancreatic islets. Therefore, deletion of 12/15-LO in adipose tissue can offer local and systemic protection from obesity-induced consequences, and blocking 12/15-LO activity in adipose tissue may be a novel therapeutic target in the treatment of type 2 diabetes.

  20. Deletion of Iron Regulatory Protein 1 Causes Polycythemia and Pulmonary Hypertension in Mice through Translational De-repression of HIF2α

    Science.gov (United States)

    Ghosh, Manik C.; Zhang, De-Liang; Jeong, Suh Young; Kovtunovych, Gennadiy; Ollivierre-Wilson, Hayden; Noguchi, Audrey; Tu, Tiffany; Senecal, Thomas; Robinson, Gabrielle; Crooks, Daniel R.; Tong, Wing-Hang; Ramaswamy, Kavitha; Singh, Anamika; Graham, Brian B.; Tuder, Rubin M.; Yu, Zu-Xi; Eckhaus, Michael; Lee, Jaekwon; Springer, Danielle A.; Rouault, Tracey A.

    2013-01-01

    SUMMARY Iron regulatory proteins 1 and 2 (Irps) post-transcriptionally control the expression of transcripts that contain iron responsive element (IRE) sequences, including ferritin, ferroportin, transferrin receptor and hypoxia inducible factor 2α (HIF2α). We report here that mice with targeted deletion of Irp1 developed pulmonary hypertension and polycythemia that was exacerbated by a low iron diet. Hematocrits increased to 65% in iron-starved mice, and many polycythemic mice died of abdominal hemorrhages. Irp1 deletion enhanced HIF2α protein expression in kidneys of Irp1−/− mice, which led to increased erythropoietin (EPO) expression, polycythemia and concomitant tissue iron deficiency. Increased HIF2α expression in pulmonary endothelial cells induced high expression of endothelin-1, likely contributing to the pulmonary hypertension of Irp1−/− mice. Our results reveal why anemia is an early physiological consequence of iron deficiency, highlight the physiological significance of Irp1 in regulating erythropoiesis and iron distribution, and provide important insights into the molecular pathogenesis of pulmonary hypertension. PMID:23395173

  1. Targeted deletion of the GluR-1 AMPA receptor in mice dissociates general and outcome-specific influences of appetitive rewards on learning.

    Science.gov (United States)

    Johnson, Alexander W; Bannerman, David; Rawlins, Nick; Sprengel, Rolf; Good, Mark A

    2007-12-01

    The authors assessed the hypothesis that deletion of the GluR-1 subtype of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor in mice disrupts the associative activation of a sensory-specific representation of an appetitive reward. In Experiment 1, mice received training on a Pavlovian-instrumental transfer task. In the test stage, conditioned stimulus (CS) presentations enhanced instrumental actions in both groups. However, this effect was specific to the action that shared the same outcome as the CS in wild-type (WT), but not GluR-1-super(-/-), mice. In Experiment 2, the mice were trained on a heterogeneous instrumental chain in which rewards were obtained for emitting 1 response (R1, that was distal to reward delivery), followed by a 2nd response (R2, that was proximal to reward delivery). A change in general motivational state (from hungry to sated) reduced the number of R2 responses in both groups. In contrast, an outcome-specific satiety treatment produced a selective decline in R1 responding only in WT mice. The results support the hypothesis that GluR-1 deletion impairs the associative activation of a representation of the sensory-specific incentive motivational properties of an appetitive reward.

  2. Deletion of IL-33R (ST2 abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Marija Milovanovic

    Full Text Available The administration of interleukin 33 and deletion of IL-33 receptor, ST2 molecule, affects the induction of autoimmunity in different experimental models of human autoimmune diseases. The aim of this study was to analyze the effect of ST2 deletion on the induction of experimental autoimmune encephalomyelitis (EAE in resistant BALB/c mice. Mice were immunized with MOG(35-55 peptide or disease was induced by passive transfer of encephalitogenic singenic cells and EAE was clinically and histologically evaluated. Expression of intracellular inflammatory cytokines, markers of activation and chemokine receptors on lymphoid tissue and CNS infiltrating mononuclear cells was analyzed by flow cytometry. We report here that deletion of ST2(-/- molecule abrogates resistance of BALB/c mice to EAE induction based on clinical and histopathological findings. Brain and spinal cord infiltrates of ST2(-/- mice had significantly higher number of CD4(+ T lymphocytes containing inflammatory cytokines compared to BALB/c WT mice. Adoptive transfer of ST2(-/- primed lymphocytes induced clinical signs of the disease in ST2(-/- as well as in WT mice. MOG(35-55 restimulated ST2(-/- CD4(+ cells as well as ex vivo analyzed lymph node cells had higher expression of T-bet and IL-17, IFN-γ, TNF-α and GM-CSF in comparison with WT CD4(+ cells. ST2(-/- mice had higher percentages of CD4(+ cells expressing chemokine receptors important for migration to CNS in comparison with WT CD4(+ cells. Draining lymph nodes of ST2(-/- mice contained higher percentage of CD11c(+CD11b(+CD8(- cells containing inflammatory cytokines IL-6 and IL-12 with higher expression of activation markers. Transfer of ST2(-/- but not WT dendritic cells induced EAE in MOG(35-55 immunized WT mice. Our results indicate that ST2 deficiency attenuates inherent resistance of BALB/c mice to EAE induction by enhancing differentiation of proinflammatory antigen presenting cells and consecutive differentiation of

  3. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice.

    Directory of Open Access Journals (Sweden)

    Aikaterini Tsaousi

    Full Text Available Thelper1 (Th1 lymphocytes have been previously implicated in atherosclerotic plaque growth but their role in plaque vulnerability to rupture is less clear. We investigated whether T-bet knockout that prevents Th1 lymphocyte differentiation modulates classical (M1 macrophage activation or production of matrix degrading metalloproteinases (MMPs and their tissue inhibitors, TIMPs.We studied the effect of T-bet deletion in apolipoproteinE (ApoE knockout mice fed a high fat diet (HFD or normal chow diet (ND. Transcript levels of M1/M2 macrophage polarization markers, selected MMPs and TIMPs were measured by RT-qPCR in macrophages isolated from subcutaneous granulomas or in whole aortae. Immunohistochemistry of aortic sinus (AS and brachiocephalic artery (BCA plaques was conducted to quantify protein expression of the same factors. Deletion of T-bet decreased mRNA for the M1 marker NOS-2 in granuloma macrophages but levels of M2 markers (CD206, arginase-1 and Ym-1, MMPs-2, -9, -12, -13, -14 and -19 or TIMPs-1 to -3 were unchanged. No mRNA differences were observed in aortic extracts from mice fed a HFD for 12 weeks. Moreover, AS and BCA plaques were similarly sized between genotypes, and had similar areas stained for NOS-2, COX-2, MMP-12 and MMP-14 proteins. T-bet deletion increased MMP-13, MMP-14 and arginase-1 in AS plaques. After 35 weeks of ND, T-bet deletion reduced the size of AS and BCA plaques but there were no differences in the percentage areas stained for M1 or M2 markers, MMPs-12, -13, -14, or TIMP-3.Absence of Th1 lymphocytes is associated with reduced plaque size in ApoE knockout mice fed a normal but not high fat diet. In either case, M1 macrophage polarization and expression of several MMPs related to plaque instability are either maintained or increased.

  5. Deletion of JAM-C, a candidate gene for heart defects in Jacobsen syndrome, results in a normal cardiac phenotype in mice.

    Science.gov (United States)

    Ye, Maoqing; Hamzeh, Rabih; Geddis, Amy; Varki, Nissi; Perryman, M Benjamin; Grossfeld, Paul

    2009-07-01

    The 11q terminal deletion disorder (11q-) is a rare chromosomal disorder caused by a deletion in distal 11q. Fifty-six percent of patients have clinically significant congenital heart defects. A cardiac "critical region" has been identified in distal 11q that contains over 40 annotated genes. In this study, we identify the distal breakpoint of a patient with a paracentric inversion in distal 11q who had hypoplastic left heart and congenital thrombocytopenia. The distal breakpoint mapped to JAM-3, a gene previously identified as a candidate gene for causing HLHS in 11q-. To determine the role of JAM-3 in cardiac development, we performed a comprehensive cardiac phenotypic assessment in which the mouse homolog for JAM-3, JAM-C, has been deleted. These mice have normal cardiac structure and function, indicating that haplo-insufficiency of JAM-3 is unlikely to cause the congenital heart defects that occur in 11q- patients. Notably, we identified a previously undescribed phenotype, jitteriness, in most of the sick or dying adult JAM-C knockout mice. These data provide further insights into the identification of the putative disease-causing cardiac gene(s) in distal 11q, as well as the functions of JAM-C in normal organ development.

  6. Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice.

    Science.gov (United States)

    Bozue, Joel A; Chaudhury, Sidhartha; Amemiya, Kei; Chua, Jennifer; Cote, Christopher K; Toothman, Ronald G; Dankmeyer, Jennifer L; Klimko, Christopher P; Wilhelmsen, Catherine L; Raymond, Jolynn W; Zavaljevski, Nela; Reifman, Jaques; Wallqvist, Anders

    2016-01-01

    Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.

  7. Phenotypic characterization of a novel virulence-factor deletion strain of Burkholderia mallei that provides partial protection against inhalational glanders in mice

    Directory of Open Access Journals (Sweden)

    Joel A. Bozue

    2016-02-01

    Full Text Available Burkholderia mallei (Bm is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN, and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.

  8. Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy.

    Science.gov (United States)

    Wang, Qiming; Racine, Jeremy J; Ratiu, Jeremy J; Wang, Shu; Ettinger, Rachel; Wasserfall, Clive; Atkinson, Mark A; Serreze, David V

    2017-10-20

    In NOD mice and also likely humans, B lymphocytes play an important role as APC-expanding autoreactive T cell responses ultimately causing type 1 diabetes (T1D). Currently, humans at high future T1D risk can only be identified at late prodromal stages of disease indicated by markers such as insulin autoantibodies. When commenced in already insulin autoantibody(+) NOD mice, continuous BAFFR-Fc treatment alone or in combination with anti-CD20 (designated combo therapy) inhibited T1D development. Despite eliciting broader B lymphocyte depletion, continuous combo therapy afforded no greater T1D protection than did BAFFR-Fc alone. As previously observed, late disease stage-initiated anti-CD20 monotherapy did not inhibit T1D, and in this study was additionally found to be associated with development of drug-blocking Abs. Promisingly, NOD mice given transient late disease stage BAFFR-Fc monotherapy were rendered T1D resistant. However, combo treatment abrogated the protective effect of transient BAFFR-Fc monotherapy. NOD mice receiving transient BAFF blockade were characterized by an enrichment of regulatory B lymphocytes that inhibit T1D development through IL-10 production, but this population is sensitive to deletion by anti-CD20 treatment. B lymphocytes from transient BAFFR-Fc-treated mice suppressed T cell proliferation to a greater extent than did those from controls. Proportions of B lymphocytes expressing CD73, an ecto-enzyme operating in a pathway converting proinflammatory ATP to anti-inflammatory adenosine, were also temporarily increased by transient BAFFR-Fc treatment, but not anti-CD20 therapy. These collective studies indicate transient BAFFR-Fc-mediated B lymphocyte depletion elicits long-term T1D protection by enriching regulatory B lymphocytes that are deleted by anti-CD20 cotherapy. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.

    Science.gov (United States)

    Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota

    2008-10-22

    Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  10. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    Directory of Open Access Journals (Sweden)

    Takao Keizo

    2008-10-01

    Full Text Available Abstract Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1 gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  11. Fully deleted adenovirus persistently expressing GAA accomplishes long-term skeletal muscle glycogen correction in tolerant and nontolerant GSD-II mice.

    Science.gov (United States)

    Kiang, Anne; Hartman, Zachary C; Liao, Shaoxi; Xu, Fang; Serra, Delila; Palmer, Donna J; Ng, Philip; Amalfitano, Andrea

    2006-01-01

    Glycogen storage disease type II (GSD-II) patients manifest symptoms of muscular dystrophy secondary to abnormal glycogen storage in cardiac and skeletal muscles. For GSD-II, we hypothesized that a fully deleted adenovirus (FDAd) vector expressing hGAA via nonviral regulatory elements (PEPCK promoter/ApoE enhancer) would facilitate long-term efficacy and decrease propensity to generate anti-hGAA antibody responses against hepatically secreted hGAA. Intravenous delivery of FDAdhGAA into GAA-tolerant or nontolerant GAA-KO mice resulted in long-term hepatic secretion of hGAA. Specifically, nontolerant mice achieved complete reversal of cardiac glycogen storage and near-complete skeletal glycogen correction for at least 180 days and tolerant mice for minimally 300 days coupled with the preservation of muscle strength. Anti-hGAA antibody levels in both mouse strains were significantly less relative to those previously generated by CMV-driven hGAA expression in nontolerant GAA-KO mice. However, plasma GAA levels decreased in nontolerant GAA-KO mice despite long-term intrahepatic GAA expression from the persistent vector. This intriguing result is discussed in light of other examples of "tolerance" induction by gene-transfer-based approaches.

  12. 16p11.2 deletion syndrome mice perseverate with active coping response to acute stress - rescue by blocking 5-HT2A receptors.

    Science.gov (United States)

    Panzini, Chris M; Ehlinger, Daniel G; Alchahin, Adele M; Guo, Yueping; Commons, Kathryn G

    2017-12-01

    In humans a chromosomal hemideletion of the 16p11.2 region results in variable neurodevelopmental deficits including developmental delay, intellectual disability, and features of autism spectrum disorder (ASD). Serotonin is implicated in ASD but its role remains enigmatic. In this study we sought to determine if and how abnormalities in serotonin neurotransmission could contribute to the behavioral phenotype of the 16p11.2 deletion syndrome in a mouse model (Del mouse). As ASD is frequently associated with altered response to acute stress and stress may exacerbate repetitive behavior in ASD, we studied the Del mouse behavior in the context of an acute stress using the forced swim test, a paradigm well characterized with respect to serotonin. Del mice perseverated with active coping (swimming) in the forced swim test and failed to adopt passive coping strategies with time as did their wild-type littermates. Analysis of monoamine content by HPLC provided evidence for altered endogenous serotonin neurotransmission in Del mice while there was no effect of genotype on any other monoamine. Moreover, we found that Del mice were highly sensitive to the 5-HT2A antagonists M100907, which at a dose of 0.1 mg/kg normalized their level of active coping and restored the gradual shift to passive coping in the forced swim test. Supporting evidence for altered endogenous serotonin signaling was provided by observations of additional ligand effects including altered forebrain Fos expression. Taken together, these observations indicate notable changes in endogenous serotonin signaling in 16p11.2 deletion mice and support the therapeutic utility of 5-HT2A receptor antagonists. © 2017 International Society for Neurochemistry.

  13. The contribution of toll-like receptor signaling to the development of liver fibrosis and cancer in hepatocyte-specific TAK1-deleted mice.

    Science.gov (United States)

    Song, Isabelle Jingyi; Yang, Yoon Mee; Inokuchi-Shimizu, Sayaka; Roh, Yoon Seok; Yang, Ling; Seki, Ekihiro

    2018-01-01

    Hepatocyte death is associated with liver inflammation, fibrosis and hepatocellular carcinoma (HCC). Damaged cells trigger inflammation through activation of Toll-like receptors (TLRs). Although the role of TLR4 in HCC development has been reported, the role of TLR9 in the development of HCC remains elusive. To investigate the role of TLR4 and TLR9 signaling in liver inflammation-fibrosis-cancer axis, we took advantage of mice with hepatic deletion of transforming growth factor-β-activated kinase 1 (Tak1ΔHep) that develop spontaneous liver injury, inflammation, fibrosis, and HCC, recapitulating the pathology of human HCC. We generated double knockout mice lacking genes of our interest with hepatic Tak1. Tak1ΔHep mice and Tlr4-deficient Tak1ΔHep mice had similar serum ALT levels, but Tlr4-deficient Tak1ΔHep mice exhibited significantly reduced macrophage infiltration, myofibroblast activation and tumor formation. Ablation of TLR9 reduced spontaneous liver injury, inflammation, fibrosis, and cancer development in Tak1ΔHep mice. In addition, the common adaptor, myeloid differentiation factor 88 (MyD88)-deficient Tak1ΔHep mice also attenuated liver injury, macrophage recruitment, collagen deposition, and tumor growth compared with control Tak1ΔHep mice. Genetic ablation of TNF receptor type I (TNFR) in Tak1ΔHep mice remarkably reduced liver inflammation-fibrosis-cancer axis. Surprisingly, disruption of interleukin-1 receptor (IL-1R) had no effect on liver injury and tumor formation, although Il1r-deficient Tak1ΔHep showed attenuated macrophage infiltration and collagen deposition. In conclusion, TLR4- and TLR9-MyD88 are driving forces of progression to HCC accompanied by liver inflammation and fibrosis in Tak1ΔHep mice. Importantly, TLR4 and TLR9 downstream TNFR, but not IL-1R signaling is crucial for the development of HCC in Tak1ΔHep mice. © 2017 UICC.

  14. Conditional Deletion of Hippocampal CA2/CA3a Oxytocin Receptors Impairs the Persistence of Long-Term Social Recognition Memory in Mice.

    Science.gov (United States)

    Lin, Yu-Ting; Hsieh, Tsan-Yu; Tsai, Tsung-Chih; Chen, Chien-Chung; Huang, Chiung-Chun; Hsu, Kuei-Sen

    2018-01-31

    Oxytocin (OXT) receptors (OXTRs) are prominently expressed in hippocampal CA2 and CA3 pyramidal neurons, but little is known about its physiological function. As the functional necessity of hippocampal CA2 for social memory processing, we tested whether CA2 OXTRs may contribute to long-term social recognition memory (SRM) formation. Here, we found that conditional deletion of Oxtr from forebrain (Oxtr-/-) or CA2/CA3a-restricted excitatory neurons in adult male mice impaired the persistence of long-term SRM but had no effect on sociability and preference for social novelty. Conditional deletion of CA2/CA3a Oxtr showed no changes in anxiety-like behavior assessed using the open-field, elevated plus maze and novelty-suppressed feeding tests. Application of a highly selective OXTR agonist [Thr4,Gly7]-OXT to hippocampal slices resulted in an acute and lasting potentiation of excitatory synaptic responses in CA2 pyramidal neurons that relied on N-methyl-d-aspartate receptor activation and calcium/calmodulin-dependent protein kinase II activity. In addition, Oxtr-/- mice displayed a defect in the induction of long-term potentiation, but not long-term depression, at the synapses between the entorhinal cortex and CA2 pyramidal neurons. Furthermore, Oxtr deletion led to a reduced complexity of basal dendritic arbors of CA2 pyramidal neurons, but caused no alteration in the density of apical dendritic spines. Considering that the methodologies we have used to delete Oxtr do not rule out targeting the neighboring CA3a region, these findings suggest that OXTR signaling in the CA2/CA3a is crucial for the persistence of long-term SRM.SIGNIFICANCE STATEMENT Oxytocin receptors (OXTRs) are abundantly expressed in hippocampal CA2 and CA3 regions, but there are little known about their physiological function. Taking advantage of the conditional Oxtr knock-out mice, the present study highlights the importance of OXTR signaling in the induction of long-term potentiation at the synapses

  15. Selective deletion of CD8(+) cells upregulated by caspases-1 via IL-18 in mice immunized with major outer membrane protein of Shigella dysenteriae 1 following infection.

    Science.gov (United States)

    Bagchi, Ashim Kumar; Sinha, Ajoy Kumar; Adhikari, Rushita; Maiti, Pradip; Mukherjee, Joydeep; Panda, Arpita; Saha, Dhira Rani

    2010-05-01

    Mucosal lymphoid changes were observed in cryopreserved rectal tissues obtained from BALB/c mice infected with Shigella dysenteriae 1, immunized with 57-kDa major antigenic outer membrane protein, and infection after immunization. Our data suggested that caspase-3 is downregulated in CD4(+) cells of immunized BALB/c mice following infection with substantial increased expression of interleukin (IL)-2 and interferon (IFN)-gamma, while caspase-1 is upregulated in CD8(+) cells with decreased expression of IL-4 and IL-10. This indicated an involvement of Fas-mediated lytic pathway for selective deletion of CD8(+) cells out of CD3(+) T cells. IL-18 promotes inflammation and induces IFN-gamma and tumor necrosis factor (TNF)-alpha as the expression of IFN-gamma and TNF-alpha cytokines was evident in this study. It is assumed that the role of caspase-1 in inducing the CD4+ T cell activity increased with IL-18 rather than CD8+ suppressor cell activity. Bcl-2 is capable of inhibiting the Fas/Fas-L-mediated cell death for helper cells. Overall, the findings indicate that majority of the apoptotic cells were CD8(+) T cells in the groups of infection following immunization, and there might be a selective deletion of T lymphocytes mediated by caspase-1 via IL-18.

  16. Conditional Tek Promoter-Driven Deletion of Arginyltransferase in the Germ Line Causes Defects in Gametogenesis and Early Embryonic Lethality in Mice

    Science.gov (United States)

    Leu, Nicolae Adrian; Kurosaka, Satoshi; Kashina, Anna

    2009-01-01

    Posttranslational protein arginylation mediated by Ate1 is essential for cardiovascular development, actin cytoskeleton functioning, and cell migration. Ate1 plays a role in the regulation of cytoskeleton and is essential for cardiovascular development and angiogenesis—capillary remodeling driven by in-tissue migration of endothelial cells. To address the role of Ate1 in cytoskeleton-dependent processes and endothelial cell function during development, we produced a conditional mouse knockout with Ate1 deletion driven by Tek endothelial receptor tyrosine kinase promoter expressed in the endothelium and in the germ line. Contrary to expectations, Tek-Ate1 mice were viable and had no visible angiogenesis-related phenotypes; however, these mice showed reproductive defects, with high rates of embryonic lethality in the second generation, at stages much earlier than the complete Ate1 knockout strain. While some of the early lethality originated from the subpopulation of embryos with homozygous Tek-Cre transgene—a problem that has not previously been reported for this commercial mouse strain—a distinct subpopulation of embryos had lethality at early post-implantation stages that could be explained only by a previously unknown defect in gametogenesis originating from Tek-driven Ate1 deletion in premeiotic germs cells. These results demonstrate a novel role of Ate1 in germ cell development. PMID:19890395

  17. Deletion of the small RNA chaperone protein Hfq down regulates genes related to virulence and confers protection against wild-type Brucella challenge in mice

    Directory of Open Access Journals (Sweden)

    Shuangshuang eLei

    2016-01-01

    Full Text Available Brucellosis is one of the most common zoonotic epidemics worldwide. Brucella, the etiological pathogen of brucellosis, has unique virulence characteristics, including the ability to survive within the host cell. Hfq is a bacterial chaperone protein that is involved in the survival of the pathogen under stress conditions. Moreover, hfq affects the expression of a large number of target genes. In the present study, we characterized the expression and regulatory patterns of the target genes of Hfq during brucellosis. The results revealed that hfq expression is highly induced in macrophages at the early infection stage and at the late stage of mouse infection. Several genes related to virulence, including omp25, omp31, vjbR, htrA, gntR, and dnaK, were found to be regulated by hfq during infection in BALB/c mice. Gene expression and cytokine secretion analysis revealed that an hfq-deletion mutant induced different cytokine profiles compared with that induced by 16M. Infection with the hfq-deletion mutant induced protective immune responses against 16M challenge. Together, these results suggest that hfq is induced during infection and its deletion results in significant attenuation which affects the host immune response caused by Brucella infection. By regulating genes related to virulence, hfq promotes the virulence of Brucella. The unique characteristics of the hfq-deletion mutant, including its decreased virulence and the ability to induce protective immune response upon infection, suggest that it represents an attractive candidate for the design of a live attenuated vaccine against Brucella.

  18. Dopamine D4 receptor (D4R) deletion in mice does not affect operant responding for food or cocaine

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.

    2009-10-22

    In this study we examined the genetic contribution of the D4R in food and cocaine self-administration using D4R mice. Mice were examined for operant responding to food pellets or intravenous cocaine. Compared to wild-type mice (D4R{sup +/+}), both heterozygous (D4R{sup +/-}) and knockout (D4R{sup -/-}) mice showed no difference in responding for food or cocaine. Our findings suggest that the D4R is not directly involved in mediating operant response behaviors for food or cocaine.

  19. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor α1.

    Science.gov (United States)

    Peeters, Robin P; Hernandez, Arturo; Ng, Lily; Ma, Michelle; Sharlin, David S; Pandey, Mritunjay; Simonds, William F; St Germain, Donald L; Forrest, Douglas

    2013-01-01

    Thyroid hormone serves many functions throughout brain development, but the mechanisms that control the timing of its actions in specific brain regions are poorly understood. In the cerebellum, thyroid hormone controls formation of the transient external germinal layer, which contains proliferative granule cell precursors, subsequent granule cell migration, and cerebellar foliation. We report that the thyroid hormone-inactivating type 3 deiodinase (encoded by Dio3) is expressed in the mouse cerebellum at embryonic and neonatal stages, suggesting a need to protect cerebellar tissues from premature stimulation by thyroid hormone. Dio3(-/-) mice displayed reduced foliation, accelerated disappearance of the external germinal layer, and premature expansion of the molecular layer at juvenile ages. Furthermore, Dio3(-/-) mice exhibited locomotor behavioral abnormalities and impaired ability in descending a vertical pole. To ascertain that these phenotypes resulted from inappropriate exposure to thyroid hormone, thyroid hormone receptor α1 (TRα1) was removed from Dio3(-/-) mice, which substantially corrected the cerebellar and behavioral phenotypes. Deletion of TRα1 did not correct the previously reported small thyroid gland or deafness in Dio3(-/-) mice, indicating that Dio3 controls the activation of specific receptor isoforms in different tissues. These findings suggest that type 3 deiodinase constrains the timing of thyroid hormone action during cerebellar development.

  20. Deletion of CDKAL1 affects high-fat diet-induced fat accumulation and glucose-stimulated insulin secretion in mice, indicating relevance to diabetes.

    Directory of Open Access Journals (Sweden)

    Tadashi Okamura

    Full Text Available BACKGROUND/OBJECTIVE: The CDKAL1 gene is among the best-replicated susceptibility loci for type 2 diabetes, originally identified by genome-wide association studies in humans. To clarify a physiological importance of CDKAL1, we examined effects of a global Cdkal1-null mutation in mice and also evaluated the influence of a CDKAL1 risk allele on body mass index (BMI in Japanese subjects. METHODS: In Cdkal1-deficient (Cdkal1⁻/⁻ mice, we performed oral glucose tolerance test, insulin tolerance test, and perfusion experiments with and without high-fat feeding. Based on the findings in mice, we tested genetic association of CDKAL1 variants with BMI, as a measure of adiposity, and type 2 diabetes in Japanese. PRINCIPAL FINDINGS: On a standard diet, Cdkal1⁻/⁻ mice were modestly lighter in weight than wild-type littermates without major alterations in glucose metabolism. On a high fat diet, Cdkal1⁻/⁻ mice showed significant reduction in fat accumulation (17% reduction in %intraabdominal fat, P = 0.023 vs. wild-type littermates with less impaired insulin sensitivity at an early stage. High fat feeding did not potentiate insulin secretion in Cdkal1⁻/⁻ mice (1.0-fold, contrary to the results in wild-type littermates (1.6-fold, P<0.01. Inversely, at a later stage, Cdkal1⁻/⁻ mice showed more prominent impairment of insulin sensitivity and glucose tolerance. mRNA expression analysis indicated that Scd1 might function as a critical mediator of the altered metabolism in Cdkal1⁻/⁻ mice. In accordance with the findings in mice, a nominally significant (P<0.05 association between CDKAL1 rs4712523 and BMI was replicated in 2 Japanese general populations comprising 5,695 and 12,569 samples; the risk allele for type 2 diabetes was also associated with decreased BMI. CONCLUSIONS: Cdkal1 gene deletion is accompanied by modestly impaired insulin secretion and longitudinal fluctuations in insulin sensitivity during high-fat feeding in mice

  1. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity.

    Directory of Open Access Journals (Sweden)

    Alessandro Marsili

    Full Text Available The type 2 iodothyronine deiodinase (D2 converts the pro-hormone thyroxine into T3 within target tissues. D2 is essential for a full thermogenic response of brown adipose tissue (BAT, and mice with a disrupted Dio2 gene (D2KO have an impaired response to cold. BAT is also activated by overfeeding.After 6-weeks of HFD feeding D2KO mice gained 5.6% more body weight and had 28% more adipose tissue. Oxygen consumption (V0(2 was not different between genotypes, but D2KO mice had an increased respiratory exchange ratio (RER, suggesting preferential use of carbohydrates. Consistent with this, serum free fatty acids and β-hydroxybutyrate were lower in D2KO mice on a HFD, while hepatic triglycerides were increased and glycogen content decreased. Neither genotype showed glucose intolerance, but D2KO mice had significantly higher insulin levels during GTT independent of diet. Accordingly, during ITT testing D2KO mice had a significantly reduced glucose uptake, consistent with insulin resistance. Gene expression levels in liver, muscle, and brown and white adipose tissue showed no differences that could account for the increased weight gain in D2KO mice. However, D2KO mice have higher PEPCK mRNA in liver suggesting increased gluconeogenesis, which could also contribute to their apparent insulin resistance.We conclude that the loss of the Dio2 gene has significant metabolic consequences. D2KO mice gain more weight on a HFD, suggesting a role for D2 in protection from diet-induced obesity. Further, D2KO mice appear to have a greater reliance on carbohydrates as a fuel source, and limited ability to mobilize and to burn fat. This results in increased fat storage in adipose tissue, hepatic steatosis, and depletion of liver glycogen in spite of increased gluconeogenesis. D2KO mice are also less responsive to insulin, independent of diet-induced obesity.

  2. Phenotype correction of hemophilia A mice with adeno-associated virus vectors carrying the B domain-deleted canine factor VIII gene.

    Science.gov (United States)

    Ishiwata, Akira; Mimuro, Jun; Kashiwakura, Yuji; Niimura, Masanori; Takano, Katsuhiro; Ohmori, Tsukasa; Madoiwa, Seiji; Mizukami, Hiroaki; Okada, Takashi; Naka, Hiroyuki; Yoshioka, Akira; Ozawa, Keiya; Sakata, Yoichi

    2006-01-01

    Adeno-associated virus (AAV) vectors carrying the B domain-deleted canine FVIII (BDD cFVIII) gene utilizing the beta-actin minimum promoter (167b) pseudotyped with serotype 1 (AAV1-beta-actin-cFVIII) and serotype 8 (AAV8-beta-actin-cFVIII) were developed to express cFVIII in hemophilia A mice. FVIII clotting activities measured by the APTT method increased in hemophilia A mice with intramuscular injection of AAV1-beta-actin-cFVIII in a dose-dependent manner. Therapeutic FVIII levels (2.9+/-1.0%) in hemophilia A mice with the AAV1-beta-actin-cFVIII dose of 1 x 10(12) gc/body were achieved, suggesting partial correction of the phenotype with AAV1-beta-actin-cFVIII vectors. FVIII clotting activity levels in hemophilia A mice with intravenous injection of AAV8-beta-actin-cFVIII also were increased dose-dependently, achieving therapeutic FVIII levels (5-90%) in hemophilia A mice with the AAV8-beta-actin-cFVIII doses of 1-3 x 10(11) gc/body and supernormal FVIII levels (180-670%) in hemophilia A mice with the AAV8-beta-actin-cFVIII dose of 1 x 10(12) gc/body. Transduction of the liver with AAV8-beta-actin-cFVIII is superior to transduction of skeletal muscles with AAV1cFVIII regarding the FVIII production and antibody formation. These data suggested that both AAV1 and AAV8 vectors carrying the FVIII gene utilizing a minimum promoter have a potential for hemophilia A gene therapy.

  3. Genetic deletion of IL-25 (IL-17E) confers resistance to dextran sulfate sodium-induced colitis in mice

    Science.gov (United States)

    IL-25 is emerging as a key regulator of inflammation in the intestinal mucosa because of its ability to promote Th2 while suppressing Th1 and Th17 cytokine responses. We investigated the contribution of endogenous IL-25 to DSS-induced colitis in mice. Mice were exposed to DSS in drinking water ad li...

  4. Interleukin-6 deletion in mice driven by aP2-Cre-ERT2 prevents against high-fat diet-induced gain weight and adiposity in female mice.

    Science.gov (United States)

    Navia, B; Ferrer, B; Giralt, M; Comes, G; Carrasco, J; Molinero, A; Quintana, A; Leclerc, J; Viollet, B; Señarís, R M; Hidalgo, J

    2014-08-01

    Interleukin-6 (IL-6) is a major cytokine controlling body weight and metabolism, but because many types of cells can synthesize and respond to IL-6 considerable uncertainty still exists about the mechanisms underlying IL-6 effects. Therefore, the aim of this study was to analyse the effects of tissue-specific deletion of IL-6 using a fatty acid binding protein (aP2) promoter-Cre inducible system (aP2-Cre-ERT2). Tissue-specific IL-6 KO mice (aP2-IL-6 KO mice) were produced upon tamoxifen administration and were fed a high-fat diet (HFD, 58.4% kcal from fat) or a control diet (18%) for 14 weeks. aP2-IL-6 KO female mice on a HFD gained less weight and adiposity than littermate wild-type mice, but these effects were not observed in males. Hypothalamic factors such as NPY and AgRP showed a pattern of expression consistent with this sex-specific phenotype. PGC-1α expression was increased in several tissues in aP2-IL-6 KO female mice, which is compatible with increased energy expenditure. Serum leptin, insulin, glucose, cholesterol and triglycerides levels were increased by HFD, and in females IL-6 deficiency reversed this effect in the case of insulin and cholesterol. HFD induced impaired responses to insulin and glucose tolerance tests, but no significant differences between genotypes were observed. The present results demonstrate that deletion of IL-6 driven by aP2-Cre regulates body weight, body fat and metabolism in a sex-specific fashion. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Elevated aggressive behavior in male mice with thyroid-specific Prkar1a and global Epac1 gene deletion.

    Science.gov (United States)

    Russart, Kathryn L G; Huk, Danielle; Nelson, Randy J; Kirschner, Lawrence S

    2018-01-03

    Alterations in circulating thyroid hormone concentrations are associated with several psychological and behavioral disorders. In humans, behavioral disorders such as anxiety, depression, and attention-deficit hyperactivity disorder can be associated with thyroid disease. The Tpo-Cre;Prkar1aflox/flox;Epac1-/- (R1A-Epac1KO) mice, originally bred to investigate the role of exchange protein directly activated by cAMP (Epac1) in follicular thyroid cancer, displayed self-mutilating and aggressive behaviors during casual observation. To assess these atypical responses, behavioral testing was conducted with the R1A-Epac1KO mice, as well as their single knockout counterparts, the thyroid-specific Prkar1a-/- and global Epac1-/- mice. Mice of all three genotypes demonstrated increased aggressive behavior against an intruder mouse. In addition, Epac1-/- mice increased response to an auditory stimulus, and the Prkar1a-/- and R1A-Epac1KO mice increased swimming behavior in the Porsolt forced swim test. Both Prkar1a-/- mice and R1A-Epac1KO mice have increased circulating thyroxine and corticosterone concentrations. Although hyperthyroidism has not been previously associated with aggression, increased thyroid hormone signaling might contribute to the increased aggressive response to the intruder mouse, as well as the increased swimming response. Mice with a genetic background of Tpo-Cre;Prkar1aflox/flox;Epac1-/- are aggressive, and both the thyroid-specific knockout of Prkar1a and global knockout of Epac1 likely contribute to this aggressive behavior. This study supports the hypothesis that altered thyroid signaling and aggressive behavior are linked. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. T-cell-specific deletion of Mof blocks their differentiation and results in genomic instability in mice.

    Science.gov (United States)

    Gupta, Arun; Hunt, Clayton R; Pandita, Raj K; Pae, Juhee; Komal, K; Singh, Mayank; Shay, Jerry W; Kumar, Rakesh; Ariizumi, Kiyoshi; Horikoshi, Nobuo; Hittelman, Walter N; Guha, Chandan; Ludwig, Thomas; Pandita, Tej K

    2013-05-01

    Ataxia telangiectasia patients develop lymphoid malignancies of both B- and T-cell origin. Similarly, ataxia telangiectasia mutated (Atm)-deficient mice exhibit severe defects in T-cell maturation and eventually develop thymomas. The function of ATM is known to be influenced by the mammalian orthologue of the Drosophila MOF (males absent on the first) gene. Here, we report the effect of T-cell-specific ablation of the mouse Mof (Mof) gene on leucocyte trafficking and survival. Conditional Mof(Flox/Flox) (Mof (F/F)) mice expressing Cre recombinase under control of the T-cell-specific Lck proximal promoter (Mof(F/F)/Lck-Cre(+)) display a marked reduction in thymus size compared with Mof(F/F)/Lck-Cre(-) mice. In contrast, the spleen size of Mof(F/F)/Lck-Cre(+) mice was increased compared with control Mof(F/F)/Lck-Cre(-) mice. The thymus of Mof(F/F)/Lck-Cre(+) mice contained significantly reduced T cells, whereas thymic B cells were elevated. Within the T-cell population, CD4(+)CD8(+) double-positive T-cell levels were reduced, whereas the immature CD4(-)CD8(-) double-negative (DN) population was elevated. Defective T-cell differentiation is also evident as an increased DN3 (CD44(-)CD25(+)) population, the cell stage during which T-cell receptor rearrangement takes place. The differentiation defect in T cells and reduced thymus size were not rescued in a p53-deficient background. Splenic B-cell distributions were similar between Mof(F/F)/Lck-Cre(+) and Mof(F/F)/Lck-Cre(-) mice except for an elevation of the κ light-chain population, suggestive of an abnormal clonal expansion. T cells from Mof(F/F)/Lck-Cre(+) mice did not respond to phytohaemagglutinin (PHA) stimulation, whereas LPS-stimulated B cells from Mof(F/F)/Lck-Cre(+) mice demonstrated spontaneous genomic instability. Mice with T-cell-specific loss of MOF had shorter lifespans and decreased survival following irradiation than did Mof(F/F)/Lck-Cre(-) mice. These observations suggest that Mof plays a critical

  7. Dissociable role of tumor necrosis factor alpha gene deletion in methamphetamine self-administration and cue-induced relapsing behavior in mice.

    Science.gov (United States)

    Yan, Yijin; Nitta, Atsumi; Koseki, Takenao; Yamada, Kiyofumi; Nabeshima, Toshitaka

    2012-06-01

    During the development of addiction, addictive drugs induce transient and long-lasting changes in the brain including expression of endogenous molecules and alteration of morphological structure. Of the altered endogenous molecules, some facilitate but others slow the development of drug addiction. Previously, we have reported that tumor necrosis factor alpha (TNF-α) is a critical molecule among endogenous anti-addictive modulators using animal models of drug-conditioned place preference and drug discrimination. Does targeted deletion of the TNF-α gene in mice affect methamphetamine (METH) self-administration, motivation to self-administer METH, cue-induced reinstatement of METH-seeking behavior, and food reinforcement or seeking behavior? Both METH self-administration and reinstatement of drug-seeking behavior and food self-delivery and food-seeking behavior were measured in TNF-α (-/-) and wild-type mice. There were an upward shift of dose responses to METH self-administration under a fixed ratio schedule of reinforcement and higher breaking points under a progressive ratio schedule of reinforcement in TNF-α knockout (TNF-α (-/-)) mice as compared with wild-type mice. There was no significant difference in cue-induced reinstatement of METH-seeking behavior, food-maintained operant behavior, motivation to natural food, and cue-induced food-seeking behavior between TNF-α (-/-) and wild-type mice. TNF-α affects METH self-administration and motivation to self-administer METH but contributes to neither METH-associated cue-induced relapsing behavior nor food reward and food-seeking behavior. TNF-α may be explored for use as a diagnostic biomarker for the early stage of drug addiction.

  8. Genetic deletion of the MT1 or MT2 melatonin receptors abrogates methamphetamine-induced reward in C3H/HeN mice.

    Science.gov (United States)

    Clough, Shannon J; Hutchinson, Anthony J; Hudson, Randall L; Dubocovich, Margarita L

    2014-06-10

    The drug of abuse methamphetamine (METH) is known for its ability to enhance reward responses. The rewarding properties of psychostimulants have been shown to vary across time of day in mice. The goal of this study was to determine the role of the MT1 and MT2 melatonin receptors in METH-induced reward, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for METH-induced CPP at either ZT 6-8 (ZT: Zeitgeber time; ZT 0=lights on), when endogenous melatonin levels are low, or ZT 19-21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The locomotor response to METH (1.2mg/kg, ip) treatment was of similar magnitude at both times; however only C3H/HeN mice conditioned to METH at ZT 6-8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT1 (MT1KO) or MT2 (MT2KO) receptor tested at ZT 6-8 or ZT 19-21 did not develop a place preference for METH, though both showed a similar increase in locomotor activity following METH treatment when compared to wild-type mice. We conclude that in our mouse model METH-induced CPP is dependent on time of day and the presence of the MT1 or MT2 receptors, suggesting a role for melatonin in METH-induced reward. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice

    Science.gov (United States)

    Hargett, Stefan R.; Walker, Natalie N.; Hussain, Syed S.; Hoehn, Kyle L.

    2015-01-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1−/−) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1−/− mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1−/− mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1−/− mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1−/− mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1−/− mice and between male Tbc1d1−/− mice in different studies due to variations in body composition and nutrient handling. PMID:26015432

  10. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice.

    Science.gov (United States)

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D Woodrow; Ivy, Dunbar; Perryman, M B; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-02-15

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an approximately 7 Mb 'cardiac critical region' in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease.

  11. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice

    Science.gov (United States)

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D. Woodrow; Ivy, Dunbar; Perryman, M.B.; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-01-01

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an ∼7 Mb ‘cardiac critical region’ in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease. PMID:19942620

  12. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    Energy Technology Data Exchange (ETDEWEB)

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  13. Impaired Autophagy and Defective T Cell Homeostasis in Mice with T Cell-Specific Deletion of Receptor for Activated C Kinase 1

    Directory of Open Access Journals (Sweden)

    Guihua Qiu

    2017-05-01

    Full Text Available Autophagy plays a central role in maintaining T cell homeostasis. Our previous study has shown that hepatocyte-specific deficiency of receptor for activated C kinase 1 (RACK1 leads to lipid accumulation in the liver, accompanied by impaired autophagy, but its in vivo role in T cells remains unclear. Here, we report that mice with T cell-specific deletion of RACK1 exhibit normal intrathymic development of conventional T cells and regulatory T (Treg cells but reduced numbers of peripheral CD4+ and CD8+ T cells. Such defects are cell intrinsic with impaired mitochondrial clearance, increased sensitivity to cell death, and decreased proliferation that could be explained by impaired autophagy. Furthermore, RACK1 is essential for invariant natural T cell development. In vivo, T cell-specific loss of RACK1 dampens concanavalin A-induced acute liver injury. Our data suggest that RACK1 is a key regulator of T cell homeostasis.

  14. Deletion of SHP-2 in mesenchymal stem cells causes growth retardation, limb and chest deformity, and calvarial defects in mice

    Directory of Open Access Journals (Sweden)

    Philip E. Lapinski

    2013-11-01

    In mice, induced global disruption of the Ptpn11 gene, which encodes the SHP-2 tyrosine phosphatase, results in severe skeletal abnormalities. To understand the extent to which skeletal abnormalities can be attributed to perturbation of SHP-2 function in bone-forming osteoblasts and chondrocytes, we generated mice in which disruption of Ptpn11 is restricted to mesenchymal stem cells (MSCs and their progeny, which include both cell types. MSC-lineage-specific SHP-2 knockout (MSC SHP-2 KO mice exhibited postnatal growth retardation, limb and chest deformity, and calvarial defects. These skeletal abnormalities were associated with an absence of mature osteoblasts and massive chondrodysplasia with a vast increase in the number of terminally differentiated hypertrophic chondrocytes in affected bones. Activation of mitogen activated protein kinases (MAPKs and protein kinase B (PKB; also known as AKT was impaired in bone-forming cells of MSC SHP-2 KO mice, which provides an explanation for the skeletal defects that developed. These findings reveal a cell-autonomous role for SHP-2 in bone-forming cells in mice in the regulation of skeletal development. The results add to our understanding of the pathophysiology of skeletal abnormalities observed in humans with germline mutations in the PTPN11 gene (e.g. Noonan syndrome and LEOPARD syndrome.

  15. Tissue tropism and target cells of NSs-deleted rift valley fever virus in live immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Céline Gommet

    2011-12-01

    Full Text Available BACKGROUND: Rift Valley fever virus (RVFV causes disease in livestock and humans. It can be transmitted by mosquitoes, inhalation or physical contact with the body fluids of infected animals. Severe clinical cases are characterized by acute hepatitis with hemorrhage, meningoencephalitis and/or retinitis. The dynamics of RVFV infection and the cell types infected in vivo are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: RVFV strains expressing humanized Renilla luciferase (hRLuc or green fluorescent protein (GFP were generated and inoculated to susceptible Ifnar1-deficient mice. We investigated the tissue tropism in these mice and the nature of the target cells in vivo using whole-organ imaging and flow cytometry. After intraperitoneal inoculation, hRLuc signal was observed primarily in the thymus, spleen and liver. Macrophages infiltrating various tissues, in particular the adipose tissue surrounding the pancreas also expressed the virus. The liver rapidly turned into the major luminescent organ and the mice succumbed to severe hepatitis. The brain remained weakly luminescent throughout infection. FACS analysis in RVFV-GFP-infected mice showed that the macrophages, dendritic cells and granulocytes were main target cells for RVFV. The crucial role of cells of the monocyte/macrophage/dendritic lineage during RVFV infection was confirmed by the slower viral dissemination, decrease in RVFV titers in blood, and prolonged survival of macrophage- and dendritic cell-depleted mice following treatment with clodronate liposomes. Upon dermal and nasal inoculations, the viral dissemination was primarily observed in the lymph node draining the injected ear and in the lungs respectively, with a significant increase in survival time. CONCLUSIONS/SIGNIFICANCE: These findings reveal the high levels of phagocytic cells harboring RVFV during viral infection in Ifnar1-deficient mice. They demonstrate that bioluminescent and fluorescent viruses can shed new

  16. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Desch, Michael; Schreiber, Andrea; Schweda, Frank

    2010-01-01

    -PPARgamma(fl/fl) than in littermate control RC-PPARgamma(wt/wt) mice. Renin mRNA levels and plasma renin concentration in RC-PPARgamma(fl/fl) mice were almost 2-fold higher than in littermate controls. Arterial blood pressure and pressure control of renal vascular resistance, which play decisive roles in the regulation...... renin gene is regulated by PPARgamma through a distal enhancer direct repeat closely related to consensus PPAR response element (PPRE). In vitro studies demonstrated that PPARgamma knockdown stimulated PPRE-driven transcription. These data predicted that deficiency of PPARgamma would upregulate mouse...

  17. Retinal degeneration and failure of photoreceptor outer segment formation in mice with targeted deletion of the Joubert syndrome gene, Ahi1.

    Science.gov (United States)

    Westfall, Jennifer E; Hoyt, Carlton; Liu, Qin; Hsiao, Yi-Chun; Pierce, Eric A; Page-McCaw, Patrick S; Ferland, Russell J

    2010-06-30

    Vertebrate photoreceptors have a modified cilium composed of a basal body, axoneme and outer segment. The outer segment includes stacked membrane discs, containing opsin and the signal transduction apparatus mediating phototransduction. In photoreceptors, two distinct classes of vesicles are trafficked. Synaptic vesicles are transported down the axon to the synapse, whereas opsin-containing vesicles are transported to the outer segment. The continuous replacement of the outer segments imposes a significant biosynthetic and trafficking burden on the photoreceptors. Here, we show that Ahi1, a gene that when mutated results in the neurodevelopmental disorder, Joubert syndrome (JBTS), is required for photoreceptor sensory cilia formation and the development of photoreceptor outer segments. In mice with a targeted deletion of Ahi1, photoreceptors undergo early degeneration. Whereas synaptic proteins are correctly trafficked, photoreceptor outer segment proteins fail to be transported appropriately or are significantly reduced in their expression levels (i.e., transducin and Rom1) in Ahi1(-/-) mice. We show that vesicular targeting defects in Ahi1(-/-) mice are cilium specific, and our evidence suggests that the defects are caused by a decrease in expression of the small GTPase Rab8a, a protein required for accurate polarized vesicular trafficking. Thus, our results suggest that Ahi1 plays a role in stabilizing the outer segment proteins, transducin and Rom1, and that Ahi1 is an important component of Rab8a-mediated vesicular trafficking in photoreceptors. The retinal degeneration observed in Ahi1(-/-) mice recapitulates aspects of the retinal phenotype observed in patients with JBTS and suggests the importance of Ahi1 in photoreceptor function.

  18. Targeted deletion of Kif18a protects from colitis-associated colorectal (CAC) tumors in mice through impairing Akt phosphorylation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Houbao [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Xu, Wangyang [Department of Clinical Laboratories, Ninth People’s Hospital, SJTUSM, Shanghai 200011 (China); Zhang, Hongxin [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Liu, Jianbing [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Xu, Haimin [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Lu, Shunyuan; Dang, Suying [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Kuang, Ying [Shanghai Research Center for Model Organisms, Shanghai 201203 (China); Jin, Xiaolong [Department of Pathology, Rui-Jin Hospital, SJTUSM, Shanghai 200025 (China); Wang, Zhugang, E-mail: zhugangw@shsmu.edu.cn [State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital and Department of Medical Genetics, E-Institutes of Shanghai Universities, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025 (China); Shanghai Research Center for Model Organisms, Shanghai 201203 (China)

    2013-08-16

    Highlights: •Kif18A is up-regulated in CAC of mouse model. •Kif18a{sup −/−} mice are protected from CAC. •Tumor cells from Kif18a{sup −/−} mice undergo more apoptosis. •Kif18A deficiency induces poor Atk phosphorylation. -- Abstract: Kinesins are a superfamily of molecular motors involved in cell division or intracellular transport. They are becoming important targets for chemotherapeutic intervention of cancer due to their crucial role in mitosis. Here, we demonstrate that the kinesin-8 Kif18a is overexpressed in murine CAC and is a crucial promoter during early CAC carcinogenesis. Kif18a-deficient mice are evidently protected from AOM–DSS-induced colon carcinogenesis. Kif18A is responsible for proliferation of colonic tumor cells, while Kif18a ablation in mice promotes cell apoptosis. Mechanistically, Kif18a is responsible for induction of Akt phosphorylation, which is known to be associated with cell survival regulation. In conclusion, Kif18a is critical for colorectal carcinogenesis in the setting of inflammation by mechanisms of increased PI3K-AKT signaling. Inhibition of Kif18A activity may be useful in the prevention or chemotherapeutic intervention of CAC.

  19. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice.

    Science.gov (United States)

    Zhang, Zhe; Yang, Dong; Zhang, Mengdi; Zhu, Ning; Zhou, Yanfen; Storm, Daniel R; Wang, Zhenshan

    2017-01-01

    Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice ( Adcy3 -/- ) is indistinguishable from that of their wild-type littermates ( Adcy3 +/+ ), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3 -/- mice and wild-type controls ( Adcy 3 +/+ ), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3 -/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3 -/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood.

  20. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Directory of Open Access Journals (Sweden)

    Géraldine M Mang

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+ and floxed Dicer (Dicerlox/lox mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO. Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a measure body composition, b follow food intake and body weight dynamics, c evaluate basal metabolism and effects of food deprivation, and d assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1. A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we

  1. A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

    Science.gov (United States)

    Mang, Géraldine M; Pradervand, Sylvain; Du, Ngoc-Hien; Arpat, Alaaddin Bulak; Preitner, Frédéric; Wigger, Leonore; Gatfield, David; Franken, Paul

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression post-transcriptionally. MiRNAs are implicated in various biological processes associated with obesity, including adipocyte differentiation and lipid metabolism. We used a neuronal-specific inhibition of miRNA maturation in adult mice to study the consequences of miRNA loss on obesity development. Camk2a-CreERT2 (Cre+) and floxed Dicer (Dicerlox/lox) mice were crossed to generate tamoxifen-inducible conditional Dicer knockouts (cKO). Vehicle- and/or tamoxifen-injected Cre+;Dicerlox/lox and Cre+;Dicer+/+ served as controls. Four cohorts were used to a) measure body composition, b) follow food intake and body weight dynamics, c) evaluate basal metabolism and effects of food deprivation, and d) assess the brain transcriptome consequences of miRNA loss. cKO mice developed severe obesity and gained 18 g extra weight over the 5 weeks following tamoxifen injection, mainly due to increased fat mass. This phenotype was highly reproducible and observed in all 38 cKO mice recorded and in none of the controls, excluding possible effects of tamoxifen or the non-induced transgene. Development of obesity was concomitant with hyperphagia, increased food efficiency, and decreased activity. Surprisingly, after reaching maximum body weight, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Weight loss was accompanied by lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin) and in metabolism (e.g. Bmp4, Bmp7, Ptger1, Cox7a1). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here

  2. Analysis of mice with targeted deletion of AQP9 gene provides conclusive evidence for expression of AQP9 in neurons

    DEFF Research Database (Denmark)

    Mylonakou, Maria N; Petersen, Petur H; Rinvik, Eric

    2009-01-01

    and mouse liver, the organ with the highest level of AQP9. By blue native gel analysis it could be demonstrated that the brain contains tetrameric AQP9, corresponding to the functional form of AQP9. The band corresponding to the AQP9 tetramer was absent in AQP9 knockout brain and liver. Immunocytochemistry...... gene expression in brain, based on a quantitative and multipronged approach that includes the use of animals with targeted deletion of the AQP9 gene. We show by real-time PCR that AQP9 mRNA concentration in rat and mouse brain is approximately 3% and approximately 0.5%, respectively, of that in rat....... The present data provide conclusive evidence for the presence of tetrameric AQP9 in brain and for the expression of AQP9 in neurons....

  3. Inhibiting heat shock protein 90 (HSP90 limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice.

    Directory of Open Access Journals (Sweden)

    Zachary B Smithline

    Full Text Available Polycystic liver disease (PLD occurs in 75-90% of patients affected by autosomal dominant polycystic kidney disease (ADPKD, which affects 1∶400-1,000 adults and arises from inherited mutations in the PKD1 or PKD2 genes. PLD can lead to bile duct obstructions, infected or bleeding cysts, and hepatomegaly, which can diminish quality of life. At present, no effective, approved therapy exists for ADPKD or PLD. We recently showed that inhibition of the molecular chaperone heat shock protein 90 (HSP90 with a small molecule inhibitor, STA-2842, induced the degradation of multiple HSP90-dependent client proteins that contribute to ADPKD pathogenesis and slowed the progression of renal cystogenesis in mice with conditional deletion of Pkd1. Here, we analyzed the effects of STA-2842 on liver size and cystic burden in Pkd-/- mice with established PLD. Using magnetic resonance imaging over time, we demonstrate that ten weeks of STA-2842 treatment significantly reduced both liver mass and cystic index suggesting selective elimination of cystic tissue. Pre-treatment cystic epithelia contain abundant HSP90; the degree of reduction in cysts was accompanied by inhibition of proliferation-associated signaling proteins EGFR and others, and induced cleavage of caspase 8 and PARP1, and correlated with degree of HSP90 inhibition and with inactivation of ERK1/2. Our results suggest that HSP90 inhibition is worth further evaluation as a therapeutic approach for patients with PLD.

  4. Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during iron-deficient anemia.

    Science.gov (United States)

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-08-01

    Iron metabolism and erythropoiesis are inherently interlinked physiological processes. Regulation of iron metabolism is mediated by the iron-regulatory hormone hepcidin. Hepcidin limits the amount of iron released into the blood by binding to and causing the internalization of the iron exporter, ferroportin. A number of molecules and physiological stimuli, including erythropoiesis, are known to regulate hepcidin. An increase in erythropoietic demand decreases hepcidin, resulting in increased bioavailable iron in the blood. Transferrin receptor 2 (TFR2) is involved in the systemic regulation of iron metabolism. Patients and mice with mutations in TFR2 develop hemochromatosis due to inappropriate hepcidin levels relative to body iron. Recent studies from our laboratory and others have suggested an additional role for TFR2 in response to iron-restricted erythropoiesis. These studies used mouse models with perturbed systemic iron metabolism: anemic mice lacking matriptase-2 and Tfr2, or bone marrow transplants from iron-loaded Tfr2 null mice. We developed a novel transgenic mouse model which lacks Tfr2 in the hematopoietic compartment, enabling the delineation of the role of Tfr2 in erythroid development without interfering with its role in systemic iron metabolism. We show that in the absence of hematopoietic Tfr2 immature polychromatic erythroblasts accumulate with a concordant reduction in the percentage of mature erythroid cells in the spleen and bone marrow of anemic mice. These results demonstrate that erythroid Tfr2 is essential for an appropriate erythropoietic response in iron-deficient anemia. These findings may be of relevance in clinical situations in which an immediate and efficient erythropoietic response is required. Am. J. Hematol. 91:812-818, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Effects of Selective Deletion of Tyrosine Hydroxylase from Kisspeptin Cells on Puberty and Reproduction in Male and Female Mice

    Science.gov (United States)

    Stephens, Shannon B. Z.; Parra, Ruby A.; Chahal, Navi

    2017-01-01

    Abstract The neuropeptide kisspeptin, encoded by Kiss1, regulates reproduction by stimulating GnRH secretion. Kiss1-syntheizing neurons reside primarily in the hypothalamic anteroventral periventricular (AVPV/PeN) and arcuate (ARC) nuclei. AVPV/PeN Kiss1 neurons are sexually dimorphic, with females expressing more Kiss1 than males, and participate in estradiol (E2)-induced positive feedback control of GnRH secretion. In mice, most AVPV/PeN Kiss1 cells coexpress tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine synthesis (in this case, dopamine). Dopamine treatment can inhibit GnRH neurons, but the function of dopamine signaling arising specifically from AVPV/PeN Kiss1 cells is unknown. We generated a novel TH flox mouse and used Cre-Lox technology to selectively ablate TH specifically from Kiss1 cells. We then examined the effects of selective TH knock-out on puberty and reproduction in both sexes. In control mice, 90% of AVPV/PeN Kiss1 neurons coexpressed TH, whereas in mice lacking TH exclusively in Kiss1 cells (termed Kiss THKOs), TH was successfully absent from virtually all Kiss1 cells. Despite this absence of TH, both female and male Kiss THKOs displayed normal body weights, puberty onset, and basal gonadotropin levels in adulthood, although testosterone (T) was significantly elevated in adult male Kiss THKOs. The E2-induced LH surge was unaffected in Kiss THKO females, and neuronal activation status of kisspeptin and GnRH cells was also normal. Supporting this, fertility and fecundity were normal in Kiss THKOs of both sexes. Thus, despite high colocalization of TH and Kiss1 in the AVPV/PeN, dopamine produced in these cells is not required for puberty or reproduction, and its function remains unknown. PMID:28660243

  6. Consequences of epidermal growth factor receptor (ErbB1) loss for vascular smooth muscle cells from mice with targeted deletion of ErbB1.

    Science.gov (United States)

    Schreier, Barbara; Döhler, Maria; Rabe, Sindy; Schneider, Bettina; Schwerdt, Gerald; Ruhs, Stefanie; Sibilia, Maria; Gotthardt, Michael; Gekle, Michael; Grossmann, Claudia

    2011-07-01

    Pathophysiological effects of the epidermal growth factor receptor (EGFR or ErbB1) include vascular remodeling. EGFR transactivation is proposed to contribute significantly to heterologous signaling and remodeling in vascular smooth muscle cells (VSMC). We investigated the importance of EGFR in primary VSMC from aorta of mice with targeted deletion of the EGFR (EGFR(Δ/Δ VSMC)→VSMC(EGFR-/-) and EGFR(Δ/+ VSMC)→VSMC(EGFR+/-)) and the respective littermate controls (EGFR(+/+ VSMC)→VSMC(EGFR+/+)) with respect to survival, pentose phosphate pathway activity, matrix homeostasis, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and Ca(2+) homeostasis. In VSMC(EGFR-/-), epidermal growth factor-induced signaling was abolished; VSMC(EGFR+/-) showed an intermediate phenotype. EGFR deletion enhanced spontaneous cell death, reduced pentose phosphate pathway activity, disturbed cellular matrix homeostasis (collagen III and fibronectin), and abolished epidermal growth factor sensitivity. In VSMC(EGFR-/-) endothelin-1- or α(1)-adrenoceptor-induced ERK1/2 phosphorylation and the fraction of Ca(2+) responders were significantly reduced, whereas responsive cells showed a significantly stronger Ca(2+) signal. Oxidative stress (H(2)O(2)) induced ERK1/2 activation in VSMC(EGFR+/+) and VSMC(EGFR+/-) but not in VSMC(EGFR-/-). The Ca(2+) signal was enhanced in VSMC(EGFR-/-), similar to purinergic stimulation by ATP. In conclusion, EGFR was found to be important for basal VSMC homeostasis and ERK1/2 activation by the tested G-protein-coupled receptors or radical stress. Ca(2+) signaling was modulated by EGFR differentially with respect to the fraction of responders and magnitude of the signal. Thus, EGFR seems to be Janus-faced for VSMC biology.

  7. Deletion of Running-Induced Hippocampal Neurogenesis by Irradiation Prevents Development of an Anxious Phenotype in Mice

    Science.gov (United States)

    Hensley, Frank W.; Weber, Klaus-Josef; Hellweg, Rainer; Gass, Peter

    2010-01-01

    Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF) by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety. PMID:20862278

  8. Brain-Specific SNAP-25 Deletion Leads to Elevated Extracellular Glutamate Level and Schizophrenia-Like Behavior in Mice.

    Science.gov (United States)

    Yang, Hua; Zhang, Mengjie; Shi, Jiahao; Zhou, Yunhe; Wan, Zhipeng; Wang, Yicheng; Wan, Yinghan; Li, Jun; Wang, Zhugang; Fei, Jian

    2017-01-01

    Several studies have associated reduced expression of synaptosomal-associated protein of 25 kDa (SNAP-25) with schizophrenia, yet little is known about its role in the illness. In this paper, a forebrain glutamatergic neuron-specific SNAP-25 knockout mouse model was constructed and studied to explore the possible pathogenetic role of SNAP-25 in schizophrenia. We showed that SNAP-25 conditional knockout (cKO) mice exhibited typical schizophrenia-like phenotype. A significantly elevated extracellular glutamate level was detected in the cerebral cortex of the mouse model. Compared with Ctrls, SNAP-25 was dramatically reduced by about 60% both in cytoplasm and in membrane fractions of cerebral cortex of cKOs, while the other two core members of SNARE complex: Syntaxin-1 (increased ~80%) and Vamp2 (increased ~96%) were significantly increased in cell membrane part. Riluzole, a glutamate release inhibitor, significantly attenuated the locomotor hyperactivity deficits in cKO mice. Our findings provide in vivo functional evidence showing a critical role of SNAP-25 dysfunction on synaptic transmission, which contributes to the developmental of schizophrenia. It is suggested that a SNAP-25 cKO mouse, a valuable model for schizophrenia, could address questions regarding presynaptic alterations that contribute to the etiopathophysiology of SZ and help to consummate the pre- and postsynaptic glutamatergic pathogenesis of the illness.

  9. Deletion of running-induced hippocampal neurogenesis by irradiation prevents development of an anxious phenotype in mice.

    Directory of Open Access Journals (Sweden)

    Johannes Fuss

    Full Text Available Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.

  10. Smooth muscle LDL receptor-related protein-1 deletion induces aortic insufficiency and promotes vascular cardiomyopathy in mice.

    Directory of Open Access Journals (Sweden)

    Joshua E Basford

    Full Text Available Valvular disease is common in patients with Marfan syndrome and can lead to cardiomyopathy. However, some patients develop cardiomyopathy in the absence of hemodynamically significant valve dysfunction, suggesting alternative mechanisms of disease progression. Disruption of LDL receptor-related protein-1 (Lrp1 in smooth muscle cells has been shown to cause vascular pathologies similar to Marfan syndrome, with activation of smooth muscle cells, vascular dysfunction and aortic aneurysms. This study used echocardiography and blood pressure monitoring in mouse models to determine whether inactivation of Lrp1 in vascular smooth muscle leads to cardiomyopathy, and if so, whether the mechanism is a consequence of valvular disease. Hemodynamic changes during treatment with captopril were also assessed. Dilation of aortic roots was observed in young Lrp1-knockout mice and progressed as they aged, whereas no significant aortic dilation was detected in wild type littermates. Diastolic blood pressure was lower and pulse pressure higher in Lrp1-knockout mice, which was normalized by treatment with captopril. Aortic dilation was followed by development of aortic insufficiency and subsequent dilated cardiomyopathy due to valvular disease. Thus, smooth muscle cell Lrp1 deficiency results in aortic dilation and insufficiency that causes secondary cardiomyopathy that can be improved by captopril. These findings provide novel insights into mechanisms of cardiomyopathy associated with vascular activation and offer a new model of valvular cardiomyopathy.

  11. Immunogenic profiling in mice of a HIV/AIDS vaccine candidate (MVA-B expressing four HIV-1 antigens and potentiation by specific gene deletions.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available BACKGROUND: The immune parameters of HIV/AIDS vaccine candidates that might be relevant in protection against HIV-1 infection are still undefined. The highly attenuated poxvirus strain MVA is one of the most promising vectors to be use as HIV-1 vaccine. We have previously described a recombinant MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (referred as MVA-B, that induced HIV-1-specific immune responses in different animal models and gene signatures in human dendritic cells (DCs with immunoregulatory function. METHODOLOGY/PRINCIPAL FINDINGS: In an effort to characterize in more detail the immunogenic profile of MVA-B and to improve its immunogenicity we have generated a new vector lacking two genes (A41L and B16R, known to counteract host immune responses by blocking the action of CC-chemokines and of interleukin 1beta, respectively (referred as MVA-B DeltaA41L/DeltaB16R. A DNA prime/MVA boost immunization protocol was used to compare the adaptive and memory HIV-1 specific immune responses induced in mice by the parental MVA-B and by the double deletion mutant MVA-B DeltaA41L/DeltaB16R. Flow cytometry analysis revealed that both vectors triggered HIV-1-specific CD4(+ and CD8(+ T cells, with the CD8(+ T-cell compartment responsible for >91.9% of the total HIV-1 responses in both immunization groups. However, MVA-B DeltaA41L/DeltaB16R enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4(+ and CD8(+ T-cell immune responses. HIV-1-specific CD4(+ T-cell responses were polyfunctional and preferentially Env-specific in both immunization groups. Significantly, while MVA-B induced preferentially Env-specific CD8(+ T-cell responses, MVA-B DeltaA41L/DeltaB16R induced more GPN-specific CD8(+ T-cell responses, with an enhanced polyfunctional pattern. Both vectors were capable of producing similar levels of antibodies against Env. CONCLUSIONS/SIGNIFICANCE: These findings revealed that MVA-B and MVA-B DeltaA41L/DeltaB16R

  12. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice.

    Science.gov (United States)

    Freria, Camila M; Hall, Jodie C E; Wei, Ping; Guan, Zhen; McTigue, Dana M; Popovich, Phillip G

    2017-03-29

    Impaired signaling via CX3CR1, the fractalkine receptor, promotes recovery after traumatic spinal contusion injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Here, we tested the hypothesis that CX3CR1-dependent changes in microglia and macrophage functions also will enhance neuroplasticity, at and several segments below the injury epicenter. New data show that in the presence of inflammatory stimuli, CX3CR1-deficient (CX3CR1-/-) microglia and macrophages adopt a reparative phenotype and increase expression of genes that encode neurotrophic and gliogenic proteins. At the lesion epicenter (mid-thoracic spinal cord), the microenvironment created by CX3CR1-/- microglia/macrophages enhances NG2 cell responses, axon sparing, and sprouting of serotonergic axons. In lumbar spinal cord, inflammatory signaling is reduced in CX3CR1-/- microglia. This is associated with reduced dendritic pathology and improved axonal and synaptic plasticity on ventral horn motor neurons. Together, these data indicate that CX3CR1, a microglia-specific chemokine receptor, is a novel therapeutic target for enhancing neuroplasticity and recovery after SCI. Interventions that specifically target CX3CR1 could reduce the adverse effects of inflammation and augment activity-dependent plasticity and restoration of function. Indeed, limiting CX3CR1-dependent signaling could improve rehabilitation and spinal learning.SIGNIFICANCE STATEMENT Published data show that genetic deletion of CX3CR1, a microglia-specific chemokine receptor, promotes recovery after traumatic spinal cord injury in mice, a benefit achieved in part by reducing macrophage-mediated injury at the lesion epicenter. Data in the current manuscript indicate that CX3CR1 deletion changes microglia and macrophage function, creating a tissue microenvironment that enhances endogenous repair and indices of neuroplasticity, at and several segments below the injury epicenter. Interventions

  13. Scavenger Receptor Class B Type 1 Deletion Led to Coronary Atherosclerosis and Ischemic Heart Disease in Low-density Lipoprotein Receptor Knockout Mice on Modified Western-type Diet.

    Science.gov (United States)

    Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Huang, Wei; Liu, George

    2017-02-01

    Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions.

  14. Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor.

    Science.gov (United States)

    Sakaguchi, Masaji; Fujisaka, Shiho; Cai, Weikang; Winnay, Jonathon N; Konishi, Masahiro; O'Neill, Brian T; Li, Mengyao; García-Martín, Rubén; Takahashi, Hirokazu; Hu, Jiang; Kulkarni, Rohit N; Kahn, C Ronald

    2017-02-07

    Insulin and IGF1 signaling are important for adipose tissue development and function; however, their role in mature adipocytes is unclear. Mice with a tamoxifen-inducible knockout of insulin and/or IGF1 receptors (IR/IGF1R) demonstrate a rapid loss of white and brown fat due to increased lipolysis and adipocyte apoptosis. This results in insulin resistance, glucose intolerance, hepatosteatosis, islet hyperplasia with hyperinsulinemia, and cold intolerance. This phenotype, however, resolves over 10-30 days due to a proliferation of preadipocytes and rapid regeneration of both brown and white adipocytes as identified by mTmG lineage tracing. This cycle can be repeated with a second round of receptor inactivation. Leptin administration prior to tamoxifen treatment blocks development of the metabolic syndrome without affecting adipocyte loss or regeneration. Thus, IR is critical in adipocyte maintenance, and this loss of adipose tissue stimulates regeneration of brown/white fat and reversal of metabolic syndrome associated with fat loss. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Deletion of Gab2 in mice protects against hepatic steatosis and steatohepatitis: a novel therapeutic target for fatty liver disease.

    Science.gov (United States)

    Chen, Shuai; Kang, Yujia; Sun, Yan; Zhong, Yanhong; Li, Yanli; Deng, Lijuan; Tao, Jin; Li, Yang; Tian, Yingpu; Zhao, Yinan; Cheng, Jianghong; Liu, Wenjie; Feng, Gen-Sheng; Lu, Zhongxian

    2016-12-01

    Fatty liver disease is a serious health problem worldwide and is the most common cause for chronic liver disease and metabolic disorders. The major challenge in the prevention and intervention of this disease is the incomplete understanding of the underlying mechanism and thus lack of potent therapeutic targets due to multifaceted and interdependent disease factors. In this study, we investigated the role of a signaling adaptor protein, GRB2-associated-binding protein 2 (Gab2), in fatty liver using an animal disease model. Gab2 expression in hepatocytes responded to various disease factor stimulations, and Gab2 knockout mice exhibited resistance to fat-induced obesity, fat- or alcohol-stimulated hepatic steatosis, as well as methionine and choline deficiency-induced steatohepatitis. Concordantly, the forced expression or knockdown of Gab2 enhanced or diminished oleic acid (OA)- or ethanol-induced lipid production in hepatocytes in vitro, respectively. During lipid accumulation in hepatocytes, both fat and alcohol induced the recruitment of PI3K or Socs3 by Gab2 and the activation of their downstream signaling proteins AKT, ERK, and Stat3. Therefore, Gab2 may be a disease-associated protein that is induced by pathogenic factors to amplify and coordinate multifactor-induced signals to govern disease development in the liver. Our research provides a novel potential target for the prevention and intervention of fatty liver disease. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  16. Genetic deletion of calcium/calmodulin-dependent protein kinase kinase β (CaMKK β) or CaMK IV exacerbates stroke outcomes in ovariectomized (OVXed) female mice.

    Science.gov (United States)

    Liu, Lin; McCullough, Louise; Li, Jun

    2014-10-21

    Stroke is the primary cause of long-term disability in the United States. Interestingly, mounting evidence has suggested potential sex differences in the response to stroke treatment in patients as, at least in part, distinct cell death programs may be triggered in females and males following stroke. The NIH has recognized that females are strikingly under-represented in pre-clinical trials. Calcium/calmodulin-dependent protein kinase kinase (CaMKK) is a major kinase that is activated by elevated intracellular calcium. It has recently been suggested that CaMKK and CaMK IV, a downstream target molecule, are neuroprotective in stroke in males. In this study, we examined stroke outcomes in ovariectomized CaMKK β and CaMK IV deficient females. Cell death/survival signaling and inflammatory responses were assessed. Our results demonstrated that CaMKK β or CaMK IV KO exacerbated both ischemic injury and behavioral deficits in female mice. Genetic deletion of CaMKK β or CaMK IV increased hemorrhagic transformation after stroke, and this was associated with both increased MMP9 activity and loss of the blood brain barrier (BBB) protein collagen IV. Transcriptional inactivation was observed in mice lacking either CaMKK β or CaMK IV, as indicated by reduced levels of phosphorylated cAMP response element-binding protein (p-CREB) and B-cell lymphoma 2 (BCL-2) proteins. Finally, inhibiting this pathway exacerbated the inflammatory response to stroke as CaMKK β or CaMK IV KO mice had increased levels of the pro-inflammatory serum cytokines tumor necrosis factor alpha (TNFα) and interleukin 6 (IL-6) after stroke. This suggests that the CaMKK pathway is involved in the immune response to brain injury. Inhibition of CaMKK signaling exacerbated stroke outcome and increased BBB impairment, transcriptional inactivation and inflammatory responses in females after stroke. Therefore, CaMKK signaling may be a potential target for stroke treatment in both males and females.

  17. Phenotypic consequences of deletion of the {gamma}{sub 3}, {alpha}{sub 5}, or {beta}{sub 3} subunit of the type A {gamma}-aminobutyric acid receptor in mice

    Energy Technology Data Exchange (ETDEWEB)

    Culia, C.T.; Stubbs, L.J.; Montgomery, C.S.; Russell, L.B.; Rinchik, E.M. [Oak Ridge National Lab., TN (United States)

    1994-03-29

    Three genes (Gabrg3, Gabra5, and Gabrb3) encoding the {gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3} subunits of the type A {gamma}-aminobutyric acid receptor, respectively, are known to map near the pink-eyed dilution (p) locus in mouse chromosome 7. This region shares homology with a segment of human chromosome 15 that is implicated in Angelman syndrome, an inherited neurobehavioral disorder. By mapping Gabrg3-Gabra5-Gabrb3-telomere. Like Gabrb3, neither the Gabra5 nor Gabrg3 gene is functionally imprinted in adult mouse brain. Mice deleted for all three subunits die at birth with a cleft palate, although there are rare survivors ({approximately} 5%) that do not have a cleft palate but do exhibit a neurological abnormality characterized by tremor, jerky gait, and runtiness. The authors have previously suggested that deficiency of the {beta}{sub 3} subunit may be responsible for the clefting defect. Most notably, however, in this report they describe mice carrying two overlapping, complementing p deletions that fail to express the {gamma}{sub 3} transcript, as well as mice from another line that express neither the {gamma}{sub 3} nor {alpha}{sub 5} transcripts. Surprisingly, mice from both of these lines are phenotypically normal and do not exhibit any of the neurological symptoms characteristic of the rare survivors that are deleted for all three ({gamma}{sub 3}, {alpha}{sub 5}, and {beta}{sub 3}) subunits. These mice therefore provide a whole-organism type A {gamma}-aminobutyric-acid receptor background that is devoid of any receptor subtypes that normally contain the {gamma}{sub 3} and/or {alpha}{sub 5} subunits. The absence of an overt neurological phenotype in mice lacking the {gamma}{sub 3} and/or {alpha}{sub 5} subunits also suggests that mutations in these genes are unlikely to provide useful animal models for Angelman syndrome in humans.

  18. Deletion of the vaccinia virus gene A46R, encoding for an inhibitor of TLR signalling, is an effective approach to enhance the immunogenicity in mice of the HIV/AIDS vaccine candidate NYVAC-C.

    Directory of Open Access Journals (Sweden)

    Beatriz Perdiguero

    Full Text Available Viruses have developed strategies to counteract signalling through Toll-like receptors (TLRs that are involved in the detection of viruses and induction of proinflammatory cytokines and IFNs. Vaccinia virus (VACV encodes A46 protein which disrupts TLR signalling by interfering with TLR: adaptor interactions. Since the innate immune response to viruses is critical to induce protective immunity, we studied whether deletion of A46R gene in a NYVAC vector expressing HIV-1 Env, Gag, Pol and Nef antigens (NYVAC-C improves immune responses against HIV-1 antigens. This question was examined in human macrophages and in mice infected with a single A46R deletion mutant of the vaccine candidate NYVAC-C (NYVAC-C-ΔA46R. The viral gene A46R is not required for virus replication in primary chicken embryo fibroblast (CEF cells and its deletion in NYVAC-C markedly increases TNF, IL-6 and IL-8 secretion by human macrophages. Analysis of the immune responses elicited in BALB/c mice after DNA prime/NYVAC boost immunization shows that deletion of A46R improves the magnitude of the HIV-1-specific CD4 and CD8 T cell immune responses during adaptive and memory phases, maintains the functional profile observed with the parental NYVAC-C and enhances anti-gp120 humoral response during the memory phase. These findings establish the immunological role of VACV A46R on innate immune responses of macrophages in vitro and antigen-specific T and B cell immune responses in vivo and suggest that deletion of viral inhibitors of TLR signalling is a useful approach for the improvement of poxvirus-based vaccine candidates.

  19. Suppression of Sleep Spindle Rhythmogenesis in Mice with Deletion of CaV3.2 and CaV3.3 T-type Ca2+ Channels

    Science.gov (United States)

    Pellegrini, Chiara; Lecci, Sandro; Lüthi, Anita; Astori, Simone

    2016-01-01

    Study Objectives: Low-threshold voltage-gated T-type Ca2+ channels (T-channels or CaV3 channels) sustain oscillatory discharges of thalamocortical (TC) and nucleus Reticularis thalami (nRt) cells. The CaV3.3 subtype dominates nRt rhythmic bursting and mediates a substantial fraction of spindle power in the NREM sleep EEG. CaV3.2 channels are also found in nRt, but whether these contribute to nRt-dependent spindle generation is unexplored. We investigated thalamic rhythmogenesis in mice lacking this subtype in isolation (CaV3.2KO mice) or in concomitance with CaV3.3 deletion (CaV3.double-knockout (DKO) mice). Methods: We examined discharge characteristics of thalamic cells and intrathalamic evoked synaptic transmission in brain slices from wild-type, CaV3.2KO and CaV3.DKO mice through patch-clamp recordings. The sleep profile of freely behaving CaV3.2KO and CaV3.DKO mice was assessed by polysomnographic recordings. Results: CaV3.2 channel deficiency left nRt discharge properties largely unaltered, but additional deletion of CaV3.3 channels fully abolished low-threshold whole-cell Ca2+ currents and bursting, and suppressed burst-mediated inhibitory responses in TC cells. CaV3.DKO mice had more fragmented sleep, with shorter NREM sleep episodes and more frequent microarousals. The NREM sleep EEG power spectrum displayed a relative suppression of the σ frequency band (10–15 Hz), which was accompanied by an increase in the δ band (1–4 Hz). Conclusions: Consistent with previous findings, CaV3.3 channels dominate nRt rhythmogenesis, but the lack of CaV3.2 channels further aggravates neuronal, synaptic, and EEG deficits. Therefore, CaV3.2 channels can boost intrathalamic synaptic transmission, and might play a modulatory role adjusting the relative presence of NREM sleep EEG rhythms. Citation: Pellegrini C, Lecci S, Lüthi A, Astori S. Suppression of sleep spindle rhythmogenesis in mice with deletion of Cav3.2 and Cav3.3 T-type Ca2+ channels. SLEEP 2016;39(4):875

  20. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    Science.gov (United States)

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice

    DEFF Research Database (Denmark)

    Lehre, A C; Rowley, N M; Zhou, Y

    2011-01-01

    , homozygous BGT1-deficient mice have normal development and show seizure susceptibility indistinguishable from that in wild-type mice in a variety of seizure threshold models including: corneal kindling, the minimal clonic and minimal tonic extension seizure threshold tests, the 6Hz seizure threshold test...

  2. Deletion of hepatic FoxO1/3/4 genes in mice significantly impacts on glucose metabolism through downregulation of gluconeogenesis and upregulation of glycolysis.

    Directory of Open Access Journals (Sweden)

    Xiwen Xiong

    Full Text Available Forkhead transcription factors FoxO1/3/4 have pleiotrophic functions including anti-oxidative stress and metabolism. With regard to glucose metabolism, most studies have been focused on FoxO1. To further investigate their hepatic functions, we generated liver-specific FoxO1/3/4 knockout mice (LTKO and examined their collective impacts on glucose homeostasis under physiological and pathological conditions. As compared to wild-type mice, LTKO mice had lower blood glucose levels under both fasting and non-fasting conditions and they manifested better glucose and pyruvate tolerance on regular chow diet. After challenged by a high-fat diet, wild-type mice developed type 2 diabetes, but LTKO mice remained euglycemic and insulin-sensitive. To understand the underlying mechanisms, we examined the roles of SIRT6 (Sirtuin 6 and Gck (glucokinase in the FoxO-mediated glucose metabolism. Interestingly, ectopic expression of SIRT6 in the liver only reduced gluconeogenesis in wild-type but not LTKO mice whereas knockdown of Gck caused glucose intolerance in both wild-type and LTKO mice. The data suggest that both decreased gluconeogenesis and increased glycolysis may contribute to the overall glucose phenotype in the LTKO mice. Collectively, FoxO1/3/4 transcription factors play important roles in hepatic glucose homeostasis.

  3. R-Baclofen Reverses Cognitive Deficits and Improves Social Interactions in Two Lines of 16p11.2 Deletion Mice.

    Science.gov (United States)

    Stoppel, Laura J; Kazdoba, Tatiana M; Schaffler, Melanie D; Preza, Anthony R; Heynen, Arnold; Crawley, Jacqueline N; Bear, Mark F

    2018-02-01

    Human chromosome 16p11.2 microdeletion is among the most common gene copy number variations (CNVs) known to confer risk for intellectual disability (ID) and autism spectrum disorder (ASD) and affects an estimated 3 in 10 000 people. Caused by a single copy deletion of ~27 genes, 16p11.2 microdeletion syndrome is characterized by ID, impaired language, communication and socialization skills, and ASD. Studies in animal models where a single copy of the syntenic 16p11.2 region has been deleted have revealed morphological, behavioral, and electrophysiological abnormalities. Previous studies suggested the possibility of some overlap in the mechanisms of pathophysiology in 16p11.2 microdeletion syndrome and fragile X syndrome. Improvements in fragile X phenotypes have been observed following chronic treatment with R-baclofen, a selective agonist of GABA B receptors. We were therefore motivated to investigate the effects of chronic oral R-baclofen administration in two independently generated mouse models of 16p11.2 microdeletion syndrome. In studies performed across two independent laboratories, we found that chronic activation of GABA B receptors improved performance on a series of cognitive and social tasks known to be impaired in two different 16p11.2 deletion mouse models. Our findings suggest that R-baclofen may have clinical utility for some of the core symptoms of human 16p11.2 microdeletion syndrome.

  4. Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome.

    Science.gov (United States)

    Walls, G V; Stevenson, M; Lines, K E; Newey, P J; Reed, A A C; Bowl, M R; Jeyabalan, J; Harding, B; Bradley, K J; Manek, S; Chen, J; Wang, P; Williams, B O; Teh, B T; Thakker, R V

    2017-07-13

    The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73 +/- ) and conditional parathyroid-specific (Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73 +/+ and Cdc73 +/+ /PTH-Cre) littermates. Survival of Cdc73 +/- mice, when compared to Cdc73 +/+ mice was reduced (Cdc73 +/- =80%; Cdc73 +/+ =90% at 18 months of age, Pfourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73 +/- , Cdc73 +/L /PTH-Cre and Cdc73 L/L /PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73 +/- mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73 +/- mice did not develop bone or renal tumours but female Cdc73 +/- mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73 +/- mice had increased proliferation rates that were 2-fold higher than in Cdc73 +/+ mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.

  5. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice

    DEFF Research Database (Denmark)

    Alkharusi, Amira; Mirecki-Garrido, Mercedes; Ma, Zuheng

    2016-01-01

    be overcome by ligands, which bind to GH or PRL receptors. Conclusion: Knockdown of SOCS2 makes mice less sensitive to MLDSTZ. These results are consistent with the proposal that elimination of SOCS2 in pancreatic islets creates a state of β-cell hypersensitivity to GH/PRL that mimics events in pregnancy...... prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. Methodology: The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes...

  6. Skin-specific Deletion of Stearoyl-CoA Desaturase-1 Alters Skin Lipid Composition and Protects Mice from High Fat Diet-induced Obesity

    National Research Council Canada - National Science Library

    Harini Sampath; Matthew T. Flowers; Xueqing Liu; Chad M. Paton; Ruth Sullivan; Kiki Chu; Minghui Zhao; James M. Ntambi

    2009-01-01

    .... In addition, SKO mice have significantly increased energy expenditure and are protected from high fat diet-induced obesity, thereby recapitulating the hypermetabolic phenotype of global SCD1 deficiency...

  7. Heterozygous deletion of both sclerostin (Sost) and connexin43 (Gja1) genes in mice is not sufficient to impair cortical bone modeling.

    Science.gov (United States)

    Grimston, Susan K; Fontana, Francesca; Watkins, Marcus; Civitelli, Roberto

    2017-01-01

    Connexin43 (Cx43) is the main gap junction protein expressed in bone forming cells, where it modulates peak bone mass acquisition and cortical modeling. Genetic ablation of the Cx43 gene (Gja1) results in cortical expansion with accentuated periosteal bone formation associated with decreased expression of the Wnt inhibitor sclerostin. To determine whether sclerostin (Sost) down-regulation might contribute to periosteal expansion in Gja1 deficient bones, we took a gene interaction approach and crossed mice harboring germline null alleles for Gja1 or Sost to generate single Gja1+/-and Sost+/-and double Gja1+/-;Sost+/-heterozygous mice. In vivo μCT analysis of cortical bone at age 1 and 3 months confirmed increased thickness in Sost-/-mice, but revealed no cortical abnormalities in single Gja1+/-or Sost+/-mice. Double heterozygous Gja1+/-Sost+/-also showed no differences in mineral density, cortical thickness, width or geometry relative to wild type control mice. Likewise, 3-point bending measurement of bone strength revealed no significant differences between double Gja1+/-;Sost+/-or single heterozygous and wild type mice. Although these data do not exclude a contribution of reduced sclerostin in the cortical expansion seen in Gja1 deficient bones, they are not consistent with a strong genetic interaction between Sost and Gja1 dictating cortical modeling.

  8. Deletion of the Androgen Receptor in Adipose Tissue in Male Mice Elevates Retinol Binding Protein 4 and Reveals Independent Effects on Visceral Fat Mass and on Glucose Homeostasis

    Science.gov (United States)

    McInnes, Kerry J.; Smith, Lee B.; Hunger, Nicole I.; Saunders, Philippa T.K.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Testosterone deficiency is epidemic in obese ageing males with type 2 diabetes, but the direction of causality remains unclear. Testosterone-deficient males and global androgen receptor (AR) knockout mice are insulin resistant with increased fat, but it is unclear whether AR signaling in adipose tissue mediates body fat redistribution and alters glucose homoeostasis. To investigate this, mice with selective knockdown of AR in adipocytes (fARKO) were generated. Male fARKO mice on normal diet had reduced perigonadal fat but were hyperinsulinemic and by age 12 months, were insulin deficient in the absence of obesity. On high-fat diet, fARKO mice had impaired compensatory insulin secretion and hyperglycemia, with increased susceptibility to visceral obesity. Adipokine screening in fARKO mice revealed a selective increase in plasma and intra-adipose retinol binding protein 4 (RBP4) that preceded obesity. AR activation in murine 3T3 adipocytes downregulated RBP4 mRNA. We conclude that AR signaling in adipocytes not only protects against high-fat diet–induced visceral obesity but also regulates insulin action and glucose homeostasis, independently of adiposity. Androgen deficiency in adipocytes in mice resembles human type 2 diabetes, with early insulin resistance and evolving insulin deficiency. PMID:22415878

  9. Deletion of the type-1 interferon receptor in APPSWE/PS1ΔE9 mice preserves cognitive function and alters glial phenotype.

    Science.gov (United States)

    Minter, Myles R; Moore, Zachery; Zhang, Moses; Brody, Kate M; Jones, Nigel C; Shultz, Sandy R; Taylor, Juliet M; Crack, Peter J

    2016-07-11

    A neuro-inflammatory response is evident in Alzheimer's disease (AD), yet the precise mechanisms by which neuro-inflammation influences the progression of Alzheimer's disease (AD) remain poorly understood. Type-1 interferons (IFNs) are master regulators of innate immunity and have been implicated in multiple CNS disorders, however their role in AD progression has not yet been fully investigated. Hence, we generated APPSWE/PS1ΔE9 mice lacking the type-1 IFN alpha receptor-1 (IFNAR1, APPSWE/PS1ΔE9 x IFNAR1(-/-)) aged to 9 months to investigate the role of type-1 IFN signaling in a well-validated model of AD. APPSWE/PS1ΔE9 x IFNAR1(-/-) mice displayed a modest reduction in Aβ monomer levels, despite maintenance of plaque deposition. This finding correlated with partial rescue of spatial learning and memory impairments in the Morris water maze in comparison to APPSWE/PS1ΔE9 mice. Q-PCR identified a reduced type-1 IFN response and modulated pro-inflammatory cytokine secretion in APPSWE/PS1ΔE9 x IFNAR1(-/-) mice compared to APPSWE/PS1ΔE9 mice. Interestingly, immunohistochemistry displayed enhanced astrocyte reactivity but attenuated microgliosis surrounding amyloid plaque deposits in APPSWE/PS1ΔE9 x IFNAR1(-/-) mice in comparison to APPSWE/PS1ΔE9 mice. These APPSWE/PS1ΔE9 x IFNAR1(-/-) microglial populations demonstrated an anti-inflammatory phenotype that was confirmed in vitro by soluble Aβ1-42 treatment of IFNAR1(-/-) primary glial cultures. Our findings suggest that modulating neuro-inflammatory responses by suppressing type-1 IFN signaling may provide therapeutic benefit in AD.

  10. Muscle-specific deletion of exons 2 and 3 of the IL15RA gene in mice: effects on contractile properties of fast and slow muscles.

    Science.gov (United States)

    O'Connell, Grant; Guo, Ge; Stricker, Janelle; Quinn, LeBris S; Ma, Averil; Pistilli, Emidio E

    2015-02-15

    Interleukin-15 (IL-15) is a putative myokine hypothesized to induce an oxidative skeletal muscle phenotype. The specific IL-15 receptor alpha subunit (IL-15Rα) has also been implicated in specifying this contractile phenotype. The purposes of this study were to determine the muscle-specific effects of IL-15Rα functional deficiency on skeletal muscle isometric contractile properties, fatigue characteristics, spontaneous cage activity, and circulating IL-15 levels in male and female mice. Muscle creatine kinase (MCK)-driven IL-15Rα knockout mice (mIl15ra(fl/fl)/Cre(+)) were generated using the Cre-loxP system. We tested the hypothesis that IL-15Rα functional deficiency in skeletal muscle would increase resistance to contraction-induced fatigue, cage activity, and circulating IL-15 levels. There was a significant effect of genotype on the fatigue curves obtained in extensor digitorum longus (EDL) muscles from female mIl15ra(fl/fl)/Cre(+) mice, such that force output was greater during the repeated contraction protocol compared with mIl15ra(fl/fl)/Cre(-) control mice. Muscles from female mIl15ra(fl/fl)/Cre(+) mice also had a twofold greater amount of the mitochondrial genome-specific COXII gene compared with muscles from mIl15ra(fl/fl)/Cre(-) control mice, indicating a greater mitochondrial density in these skeletal muscles. There was a significant effect of genotype on the twitch:tetanus ratio in EDL and soleus muscles from mIl15ra(fl/fl)/Cre(+) mice, such that the ratio was lower in these muscles compared with mIl15ra(fl/fl)/Cre(-) control mice, indicating a pro-oxidative shift in muscle phenotype. However, spontaneous cage activity was not different and IL-15 protein levels were lower in male and female mIl15ra(fl/fl)/Cre(+) mice compared with control. Collectively, these data support a direct effect of muscle IL-15Rα deficiency in altering contractile properties and fatigue characteristics in skeletal muscles.

  11. Genetic Deletion of ACE2 Induces Vascular Dysfunction in C57BL/6 Mice: Role of Nitric Oxide Imbalance and Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Luiza A Rabelo

    Full Text Available Accumulating evidence indicates that angiotensin-converting enzyme 2 (ACE2 plays a critical role in cardiovascular homeostasis, and its altered expression is associated with major cardiac and vascular disorders. The aim of this study was to evaluate the regulation of vascular function and assess the vascular redox balance in ACE2-deficient (ACE2-/y animals. Experiments were performed in 20-22 week-old C57BL/6 and ACE2-/y male mice. Evaluation of endothelium-dependent and -independent relaxation revealed an impairment of in vitro and in vivo vascular function in ACE2-/y mice. Drastic reduction in eNOS expression at both protein and mRNA levels, and a decrease in •NO concentrations were observed in aortas of ACE2-/y mice in comparison to controls. Consistently, these mice presented a lower plasma and urine nitrite concentration, confirming reduced •NO availability in ACE2-deficient animals. Lipid peroxidation was significantly increased and superoxide dismutase activity was decreased in aorta homogenates of ACE2-/y mice, indicating impaired antioxidant capacity. Taken together, our data indicate, that ACE2 regulates vascular function by modulating nitric oxide release and oxidative stress. In conclusion, we elucidate mechanisms by which ACE2 is involved in the maintenance of vascular homeostasis. Furthermore, these findings provide insights into the role of the renin-angiotensin system in both vascular and systemic redox balance.

  12. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy.

    Directory of Open Access Journals (Sweden)

    Benjamin J Blyth

    Full Text Available Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV x μm(-1 during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could

  13. Genetic Analysis of T Cell Lymphomas in Carbon Ion-Irradiated Mice Reveals Frequent Interstitial Chromosome Deletions: Implications for Second Cancer Induction in Normal Tissues during Carbon Ion Radiotherapy.

    Science.gov (United States)

    Blyth, Benjamin J; Kakinuma, Shizuko; Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Ogawa, Kanae; Shirakami, Ayana; Shang, Yi; Tsuruoka, Chizuru; Nishimura, Mayumi; Shimada, Yoshiya

    2015-01-01

    Monitoring mice exposed to carbon ion radiotherapy provides an indirect method to evaluate the potential for second cancer induction in normal tissues outside the radiotherapy target volume, since such estimates are not yet possible from historical patient data. Here, male and female B6C3F1 mice were given single or fractionated whole-body exposure(s) to a monoenergetic carbon ion radiotherapy beam at the Heavy Ion Medical Accelerator in Chiba, Japan, matching the radiation quality delivered to the normal tissue ahead of the tumour volume (average linear energy transfer = 13 keV x μm(-1)) during patient radiotherapy protocols. The mice were monitored for the remainder of their lifespan, and a large number of T cell lymphomas that arose in these mice were analysed alongside those arising following an equivalent dose of 137Cs gamma ray-irradiation. Using genome-wide DNA copy number analysis to identify genomic loci involved in radiation-induced lymphomagenesis and subsequent detailed analysis of Notch1, Ikzf1, Pten, Trp53 and Bcl11b genes, we compared the genetic profile of the carbon ion- and gamma ray-induced tumours. The canonical set of genes previously associated with radiation-induced T cell lymphoma was identified in both radiation groups. While the pattern of disruption of the various pathways was somewhat different between the radiation types, most notably Pten mutation frequency and loss of heterozygosity flanking Bcl11b, the most striking finding was the observation of large interstitial deletions at various sites across the genome in carbon ion-induced tumours, which were only seen infrequently in the gamma ray-induced tumours analysed. If such large interstitial chromosomal deletions are a characteristic lesion of carbon ion irradiation, even when using the low linear energy transfer radiation to which normal tissues are exposed in radiotherapy patients, understanding the dose-response and tissue specificity of such DNA damage could prove key to

  14. Metal TransporterZip14(Slc39a14) Deletion in Mice Increases Manganese Deposition and Produces Neurotoxic Signatures and Diminished Motor Activity.

    Science.gov (United States)

    Aydemir, Tolunay Beker; Kim, Min-Hyun; Kim, Jinhee; Colon-Perez, Luis M; Banan, Guita; Mareci, Thomas H; Febo, Marcelo; Cousins, Robert J

    2017-06-21

    Mutations in human ZIP14 have been linked to symptoms of the early onset of Parkinsonism and Dystonia. This phenotype is likely related to excess manganese accumulation in the CNS. The metal transporter ZIP14 (SLC39A14) is viewed primarily as a zinc transporter that is inducible via proinflammatory stimuli. In vitro evidence shows that ZIP14 can also transport manganese. To examine a role for ZIP14 in manganese homeostasis, we used Zip14 knock-out (KO) male and female mice to conduct comparative metabolic, imaging, and functional studies. Manganese accumulation was fourfold to fivefold higher in brains of Zip14 KO mice compared with young adult wild-type mice. There was less accumulation of subcutaneously administered 54 Mn in the liver, gallbladder, and gastrointestinal tract of the KO mice, suggesting that manganese elimination is impaired with Zip14 ablation. Impaired elimination creates the opportunity for atypical manganese accumulation in tissues, including the brain. The intensity of MR images from brains of the Zip14 KO mice is indicative of major manganese accumulation. In agreement with excessive manganese accumulation was the impaired motor function observed in the Zip14 KO mice. These results also demonstrate that ZIP14 is not essential for manganese uptake by the brain. Nevertheless, the upregulation of signatures of brain injury observed in the Zip14 KO mice demonstrates that normal ZIP14 function is an essential factor required to prevent manganese-linked neurodegeneration. SIGNIFICANCE STATEMENT Manganese is an essential micronutrient. When acquired in excess, manganese accumulates in tissues of the CNS and is associated with neurodegenerative disease, particularly Parkinson-like syndrome and dystonia. Some members of the ZIP metal transporter family transport manganese. Using mutant mice deficient in the ZIP14 metal transporter, we have discovered that ZIP14 is essential for manganese elimination via the gastrointestinal tract, and a lack of ZIP14

  15. Deletion of serum amyloid A3 improves high fat high sucrose diet-induced adipose tissue inflammation and hyperlipidemia in female mice.

    Directory of Open Access Journals (Sweden)

    Laura J den Hartigh

    Full Text Available Serum amyloid A (SAA increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3(-/-. Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC. Both male and female Saa3(-/- mice gained less weight on the HFHSC diet compared to Saa3(+/+ littermate controls, with no differences in body composition or resting metabolism. Female Saa3(-/- mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3(-/- mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3(-/- mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2 secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3(-/- mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1

  16. The interferon-induced gene Ifi27l2a is active in lung macrophages and lymphocytes after influenza A infection but deletion of Ifi27l2a in mice does not increase susceptibility to infection.

    Science.gov (United States)

    Tantawy, Mohamed A; Hatesuer, Bastian; Wilk, Esther; Dengler, Leonie; Kasnitz, Nadine; Weiß, Siegfried; Schughart, Klaus

    2014-01-01

    Interferons represent one of the first and essential host defense mechanisms after infection, and the activation of the IFN-pathway results in the transcriptional activation of hundreds of interferon-stimulated genes. The alpha-inducible protein 27 like 2A (Ifi27l2a) gene (human synonym: ISG12) is strongly up-regulated in the lung after influenza A infection in mice and has been shown in gene expression studies to be highly correlated to other activated genes. Therefore, we investigated the role of Ifi27l2a for the host defense to influenza A infections in more detail. RT-PCR analyses in non-infected mice demonstrated that Ifi27l2a was expressed in several tissues, including the lung. Detailed analyses of reporter gene expression in lungs from Ifi27l2a-LacZ mice revealed that Ifi27l2a was expressed in macrophages and lymphocytes but not in alveolar cells or bronchiolar epithelium cells. The number of macrophages and lymphocyte strongly increased in the lung after infection, but no significant increase in expression levels of the LacZ reporter gene was found within individual immune cells. Also, no reporter gene expression was found in bronchiolar epithelial cells, alveolar cells or infiltrating neutrophils after infection. Thus, up-regulation of Ifi27l2a in infected lungs is mainly due to the infiltration of macrophages and lymphocytes. Most surprisingly, deletion of Ifi27l2a in mouse knock-out lines did not result in increased susceptibility to infections with H1N1 or H7N7 influenza A virus compared to wild type C57BL/6N mice, suggesting a less important role of the gene for the host response to influenza infections than for bacterial infections.

  17. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    Directory of Open Access Journals (Sweden)

    Andoni Lancha

    Full Text Available Osteopontin (OPN is a multifunctional extracellular matrix (ECM protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT and liver in wild type (WT mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  18. Cardiac Specific, Inducible ClC-3 Gene Deletion Eliminates Native Volume-Sensitive Chloride Channels and Produces Myocardial Hypertrophy in Adult Mice

    Science.gov (United States)

    Xiong, Dazhi; Heyman, Nathanael S.; Airey, Judith; Zhang, Mi; Singer, Cherie A.; Rawat, Shanti; Ye, Linda; Evans, Rebecca; Burkin, Dean J.; Tian, Honglin; McCloskey, Diana T; Valencik, Maria; Britton, Fiona C.; Duan, Dayue; Hume, Joseph R.

    2009-01-01

    Native volume-sensitive outwardly rectifying anion channels (VSOACs) play a significant role in cell volume homeostasis in mammalian cells. However, the molecular correlate of VSOACs has been elusive to identify. The short isoform of ClC-3 (sClC-3) is a member of the mammalian ClC gene family and has been proposed to be a molecular candidate for VSOACs in cardiac myocytes and vascular smooth muscle cells. To directly test this hypothesis, and assess the physiological role of ClC-3 in cardiac function, we generated a novel line of cardiac specific inducible ClC-3 knock-out mice. These transgenic mice were maintained on a doxycycline diet to preserve ClC-3 expression; removal of doxycycline activates Cre recombinase to inactivate the Clcn3 gene. Echocardiography revealed dramatically reduced ejection fraction and fractional shortening, and severe signs of myocardial hypertrophy and heart failure in the knock-out mice at both 1.5 and 3 weeks off doxycycline. In mice off doxyclycline, time-dependent inactivation of ClC-3 gene expression was confirmed in atrial and ventricular cells by qRT-PCR and Western blot analysis. Electrophysiological examination of native VSOACs in isolated atrial and ventricular myocytes 3 weeks off doxycycline revealed a complete elimination of the currents, whereas at 1.5 weeks, VSOAC current densities were significantly reduced, compared to age-matched control mice maintained on doxycycline. These results indicate that ClC-3 is a key component of native VSOACs in mammalian heart and plays a significant cardioprotective role against cardiac hypertrophy and failure. PMID:19615374

  19. Cardiac-specific, inducible ClC-3 gene deletion eliminates native volume-sensitive chloride channels and produces myocardial hypertrophy in adult mice.

    Science.gov (United States)

    Xiong, Dazhi; Heyman, Nathanael S; Airey, Judith; Zhang, Mi; Singer, Cherie A; Rawat, Shanti; Ye, Linda; Evans, Rebecca; Burkin, Dean J; Tian, Honglin; McCloskey, Diana T; Valencik, Maria; Britton, Fiona C; Duan, Dayue; Hume, Joseph R

    2010-01-01

    Native volume-sensitive outwardly rectifying anion channels (VSOACs) play a significant role in cell volume homeostasis in mammalian cells. However, the molecular correlate of VSOACs has been elusive to identify. The short isoform of ClC-3 (sClC-3) is a member of the mammalian ClC gene family and has been proposed to be a molecular candidate for VSOACs in cardiac myocytes and vascular smooth muscle cells. To directly test this hypothesis, and assess the physiological role of ClC-3 in cardiac function, we generated a novel line of cardiac-specific inducible ClC-3 knock-out mice. These transgenic mice were maintained on a doxycycline diet to preserve ClC-3 expression; removal of doxycycline activates Cre recombinase to inactivate the Clcn3 gene. Echocardiography revealed dramatically reduced ejection fraction and fractional shortening, and severe signs of myocardial hypertrophy and heart failure in the knock-out mice at both 1.5 and 3 weeks off doxycycline. In mice off doxycycline, time-dependent inactivation of ClC-3 gene expression was confirmed in atrial and ventricular cells by qRT-PCR and Western blot analysis. Electrophysiological examination of native VSOACs in isolated atrial and ventricular myocytes 3 weeks off doxycycline revealed a complete elimination of the currents, whereas at 1.5 weeks, VSOAC current densities were significantly reduced, compared to age-matched control mice maintained on doxycycline. These results indicate that ClC-3 is a key component of native VSOACs in mammalian heart and plays a significant cardioprotective role against cardiac hypertrophy and failure. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin.

    Science.gov (United States)

    Latour, Chloé; Besson-Fournier, Céline; Meynard, Delphine; Silvestri, Laura; Gourbeyre, Ophélie; Aguilar-Martinez, Patricia; Schmidt, Paul J; Fleming, Mark D; Roth, Marie-Paule; Coppin, Hélène

    2016-01-01

    Hereditary hemochromatosis, which is characterized by inappropriately low levels of hepcidin, increased dietary iron uptake, and systemic iron accumulation, has been associated with mutations in the HFE, transferrin receptor-2 (TfR2), and hemojuvelin (HJV) genes. However, it is still not clear whether these molecules intersect in vivo with bone morphogenetic protein 6 (BMP6)/mothers against decapentaplegic (SMAD) homolog signaling, the main pathway up-regulating hepcidin expression in response to elevated hepatic iron. To answer this question, we produced double knockout mice for Bmp6 and β2-microglobulin (a surrogate for the loss of Hfe) and for Bmp6 and Tfr2, and we compared their phenotype (hepcidin expression, Bmp/Smad signaling, hepatic and extrahepatic tissue iron accumulation) with that of single Bmp6-deficient mice and that of mice deficient for Hjv, alone or in combination with Hfe or Tfr2. Whereas the phenotype of Hjv-deficient females was not affected by loss of Hfe or Tfr2, that of Bmp6-deficient females was considerably worsened, with decreased Smad5 phosphorylation, compared with single Bmp6-deficient mice, further repression of hepcidin gene expression, undetectable serum hepcidin, and massive iron accumulation not only in the liver but also in the pancreas, the heart, and the kidneys. These results show that (1) BMP6 does not require HJV to transduce signal to hepcidin in response to intracellular iron, even if the loss of HJV partly reduces this signal, (2) another BMP ligand can replace BMP6 and significantly induce hepcidin expression in response to extracellular iron, and (3) BMP6 alone is as efficient at inducing hepcidin as the other BMPs in association with the HJV/HFE/TfR2 complex; they provide an explanation for the compensatory effect of BMP6 treatment on the molecular defect underlying Hfe hemochromatosis in mice. © 2015 by the American Association for the Study of Liver Diseases.

  1. Herpes simplex virus type-1(HSV-1 oncolytic and highly fusogenic mutants carrying the NV1020 genomic deletion effectively inhibit primary and metastatic tumors in mice

    Directory of Open Access Journals (Sweden)

    David Andrew T

    2008-06-01

    Full Text Available Abstract Background The NV1020 oncolytic herpes simplex virus type-1 has shown significant promise for the treatment of many different types of tumors in experimental animal models and human trials. Previously, we described the construction and use of the NV1020-like virus OncSyn to treat human breast tumors implanted in nude mice. The syncytial mutation gKsyn1 (Ala-to-Val at position 40 was introduced into the OncSyn viral genome cloned into a bacterial artificial chromosome using double-red mutagenesis in E. coli to produce the OncdSyn virus carrying syncytial mutations in both gB(syn3 and gK(syn1. Results The OncdSyn virus caused extensive virus-induced cell fusion in cell culture. The oncolytic potential of the OncSyn and OncdSyn viruses was tested in the highly metastatic syngeneic mouse model system, which utilizes 4T1 murine mammary cancer cells implanted within the interscapular region of Balb/c mice. Mice were given three consecutive intratumor injections of OncSyn, OncdSyn, or phosphate buffered saline four days apart. Both OncSyn and OncdSyn virus injections resulted in significant reduction of tumor sizes (p Conclusion These results show that the attenuated, but highly fusogenic OncSyn and OncdSyn viruses can effectively reduce primary and metastatic breast tumors in immuncompetent mice. The available bac-cloned OncSyn and OncdSyn viral genomes can be rapidly modified to express a number of different anti-tumor and immunomodulatory genes that can further enhance their anti-tumor potency.

  2. Selective Deletion of Leptin Signaling in Endothelial Cells Enhances Neointima Formation and Phenocopies the Vascular Effects of Diet-Induced Obesity in Mice.

    Science.gov (United States)

    Hubert, Astrid; Bochenek, Magdalena L; Schütz, Eva; Gogiraju, Rajinikanth; Münzel, Thomas; Schäfer, Katrin

    2017-09-01

    Obesity is associated with elevated circulating leptin levels and hypothalamic leptin resistance. Leptin receptors (LepRs) are expressed on endothelial cells, and leptin promotes neointima formation in a receptor-dependent manner. Our aim was to examine the importance of endothelial LepR (End.LepR) signaling during vascular remodeling and to determine whether the cardiovascular consequences of obesity are because of hyperleptinemia or endothelial leptin resistance. Mice with loxP-flanked LepR alleles were mated with mice expressing Cre recombinase controlled by the inducible endothelial receptor tyrosine kinase promoter. Obesity was induced with high-fat diet. Neointima formation was examined after chemical carotid artery injury. Morphometric quantification revealed significantly greater intimal hyperplasia, neointimal cellularity, and proliferation in End.LepR knockout mice, and similar findings were obtained in obese, hyperleptinemic End.LepR wild-type animals. Analysis of primary endothelial cells confirmed abrogated signal transducer and activator of transcription-3 phosphorylation in response to leptin in LepR knockout and obese LepR wild-type mice. Quantitative PCR, ELISA, and immunofluorescence analyses revealed increased expression and release of endothelin-1 in End.LepR-deficient and LepR-resistant cells, and ET receptor A/B antagonists abrogated their paracrine effects on murine aortic smooth muscle cell proliferation. Reduced expression of peroxisome proliferator-activated receptor-γ and increased nuclear activator protein-1 staining was observed in End.LepR-deficient and LepR-resistant cells, and peroxisome proliferator-activated receptor-γ antagonization increased endothelial endothelin-1 expression. Our findings suggest that intact endothelial leptin signaling limits neointima formation and that obesity represents a state of endothelial leptin resistance. These observations and the identification of endothelin-1 as soluble mediator of the

  3. Implication of Genetic Deletion of Wdr13 in Mice: Mild Anxiety, Better Performance in Spatial Memory Task, With Upregulation of Multiple Synaptic Proteins

    Directory of Open Access Journals (Sweden)

    Shiladitya Mitra

    2016-08-01

    Full Text Available WDR13 expresses from the X chromosome and has a highly conserved coding sequence. There have been multiple associations of WDR13 with memory. However, its detailed function in context of brain and behavior remains unknown. We characterized the behavioral phenotype of two months old male mice lacking the homologue of WDR13 gene (Wdr13-/0. Taking cue from analysis of its expression in the brain, we chose hippocampus for molecular studies to delineate its function. Wdr13-/0 mice spent less time in the central area of the open field test and with the novel object in novel object recognition test as compared to the wild-type. However, these mice didn’t show any significant changes in total time spent in arms or frequency of arm entries in elevated plus maze. In the absence of Wdr13, there was a significant upregulation of synaptic proteins, viz., SYN1, RAB3A, CAMK2A etc accompanied with increased spine density of hippocampal CA1 neurons and better spatial memory in mice as measured by increased time spent in target quadrant of Morris water maze during probe test. Parallel study from our lab has established c-JUN, ER α/ β and HDAC 1,3,7 as interacting partners of WDR13. WDR13 represses transcription from AP1 (c-JUN responsive and ERE (Estrogen Receptor Element promoters. We hypothesized that absence of Wdr13 would resulted in de-regulated expression of a number of genes including multiple synaptic genes leading to the observed phenotype. Knocking down Wdr13 in Neuro2a cell lines led to increased transcripts of Camk2a and Nrxn2 consistent with in-vivo results. Summarily, our data provides functional evidence for the role of Wdr13 in brain.

  4. Deletion of Ptp4a3 reduces clonogenicity and tumor-initiation ability of colitis-associated cancer cells in mice

    Directory of Open Access Journals (Sweden)

    Julie M. Cramer

    2014-07-01

    Full Text Available The PTP4A3 gene is highly expressed in human colon cancer and often associates with enhanced metastatic potential. Genetic disruption of the mouse Ptp4a3 gene reduces the frequency of colon tumor formation in mice treated in a colitis-associated cancer model. In the current study, we have examined the role of Ptp4a3 in the tumor-initiating cell population of mouse colon tumors using an in vitro culture system. Tumors generated in vivo following AOM/DSS treatment were isolated, dissociated, and expanded on a feeder layer resulting in a CD133+ cell population, which expressed high levels of Ptp4a3. Tumor cells deficient for Ptp4a3 exhibited reduced clonogenicity and growth potential relative to WT cells as determined by limiting dilution analysis. Importantly, expanded tumor cells from WT mice readily formed secondary tumors when transplanted into nude mice, while tumor cells without Ptp4a3 expression failed to form secondary tumors and thus were not tumorigenic. These results demonstrate that Ptp4a3 contributes to the malignant phenotype of tumor-initiating cells and supports its role as a potential therapeutic target to inhibit tumor self-renewal and metastasis.

  5. Role of neurokinin 1 receptors in dextran sulfate-induced colitis: studies with gene-deleted mice and the selective receptor antagonist netupitant.

    Science.gov (United States)

    Szitter, István; Pintér, Erika; Perkecz, Anikó; Kemény, Agnes; Kun, József; Kereskai, László; Pietra, Claudio; Quinn, John P; Zimmer, Andreas; Berger, Alexandra; Paige, Christopher J; Helyes, Zsuzsanna

    2014-05-01

    The function of the neurokinin 1 (NK1) receptor was investigated in the DSS-induced mouse colitis model using NK1 receptor-deficient mice and the selective antagonist netupitant. Colitis was induced by oral administration of 20 mg/ml DSS solution for 7 days in C57BL/6 and Tacr1 KO animals (n = 5-7). During the induction, one-half of the C57BL/6 and Tacr1 KO group received one daily dose of 6 mg/kg netupitant, administered intraperitoneally, the other half of the group received saline, respectively. Disease activity index (DAI), on the basis of stool consistency, blood and weight loss, was determined over 7 days. Histological evaluation, myeloperoxidase (MPO) measurement, cytokine concentrations and receptor expression analysis were performed on the colon samples. NK1 receptors are up-regulated in the colon in response to DSS treatment. DSS increased DAI, histopathological scores, BLC, sICAM-1, IFN-γ, IL-16 and JE in wildtype mice, which were significantly reduced in NK1 receptor-deficient ones. NK1 receptor antagonism with netupitant significantly diminished DAI, inflammatory histopathological alterations, BLC, IFN-γ, IL-13 and IL-16 in wildtype mice, but not in the NK1-deficient ones. MPO was similarly elevated and netupitant significantly decreased its activity in both groups. NK1 receptor antagonism could be beneficial for colitis via inhibiting different inflammatory mechanisms.

  6. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    Science.gov (United States)

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  7. Deletion of exon 20 of the Familial Dysautonomia gene Ikbkap in mice causes developmental delay, cardiovascular defects, and early embryonic lethality.

    Directory of Open Access Journals (Sweden)

    Paula Dietrich

    Full Text Available Familial Dysautonomia (FD is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.

  8. Deletion of the pluripotency-associated Tex19.1 gene causes activation of endogenous retroviruses and defective spermatogenesis in mice

    DEFF Research Database (Denmark)

    Ollinger, Rupert; Childs, Andrew J; Burgess, Hannah M

    2008-01-01

    . During male spermatogenesis, Tex19.1 expression is highest in mitotic spermatogonia and diminishes as these cells differentiate and progress through meiosis. In pluripotent stem cells, Tex19.1 expression is also downregulated upon differentiation. However, it is not clear whether Tex19.1 has an essential...... spermatogenesis. Immunostaining and histological analysis revealed defects in meiotic chromosome synapsis, the persistence of DNA double-strand breaks during meiosis, and a loss of post-meiotic germ cells in the testis. Furthermore, expression of a class of endogenous retroviruses is upregulated during meiosis...... in the Tex19.1(-/-) testes. Increased transposition of endogenous retroviruses in the germline of Tex19.1(-/-) mutant mice, and the concomitant increase in DNA damage, may be sufficient to disrupt the normal processes of recombination and chromosome synapsis during meiosis and cause defects...

  9. Effects of sex and deletion of neuropeptide Y2 receptors from GABAergic neurons on affective and alcohol drinking behaviors in mice

    Directory of Open Access Journals (Sweden)

    Nora M McCall

    2013-12-01

    Full Text Available A large literature has demonstrated that neuropeptide Y (NPY regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion. Further, numerous human and rodent studies have reported that females display higher levels of anxiety, depression, and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on GABAergic transmission in these behaviors using a novel transgenic mouse that lacks Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout. First, we confirmed our genetic manipulation by demonstrating that Y2R protein expression was decreased and that a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors, using immunofluorescence and slice electrophysiology. Then, we tested male and female VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear, anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety, higher levels of ethanol consumption, and faster fear conditioning than males, and that knockout mice exhibited enhanced depressive-like behavior in the forced swim test. Together, these results confirm previous studies that demonstrate higher expression of negative affective and alcohol drinking behaviors in females than males, and they highlight the importance of Y2R function in GABAergic systems in the expression of depressive-like behavior.

  10. Deletion of the complement C5a receptor alleviates the severity of acute pneumococcal otitis media following influenza A virus infection in mice.

    Directory of Open Access Journals (Sweden)

    Hua Hua Tong

    Full Text Available There is considerable evidence that influenza A virus (IAV promotes adherence, colonization, and superinfection by S. pneumoniae (Spn and contributes to the pathogenesis of otitis media (OM. The complement system is a critical innate immune defense against both pathogens. To assess the role of the complement system in the host defense and the pathogenesis of acute pneumococcal OM following IAV infection, we employed a well-established transtympanically-induced mouse model of acute pneumococcal OM. We found that antecedent IAV infection enhanced the severity of acute pneumococcal OM. Mice deficient in complement C1qa (C1qa-/- or factor B (Bf -/- exhibited delayed viral and bacterial clearance from the middle ear and developed significant mucosal damage in the eustachian tube and middle ear. This indicates that both the classical and alternative complement pathways are critical for the oto-immune defense against acute pneumococcal OM following influenza infection. We also found that Spn increased complement activation following IAV infection. This was characterized by sustained increased levels of anaphylatoxins C3a and C5a in serum and middle ear lavage samples. In contrast, mice deficient in the complement C5a receptor (C5aR demonstrated enhanced bacterial clearance and reduced severity of OM. Our data support the concept that C5a-C5aR interactions play a significant role in the pathogenesis of acute pneumococcal OM following IAV infection. It is possible that targeting the C5a-C5aR axis might prove useful in attenuating acute pneumococcal OM in patients with influenza infection.

  11. Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice.

    Science.gov (United States)

    Ye, Chaobaihui; Wang, Weiming; Cheng, Liang; Li, Guangming; Wen, Michael; Wang, Qi; Zhang, Qing; Li, Dan; Zhou, Paul; Su, Lishan

    2017-02-01

    Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were

  12. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM?

    Science.gov (United States)

    Bell, James R; Lloyd, David; Curl, Claire L; Delbridge, Lea M D; Shattock, Michael J

    2009-03-01

    In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.

  13. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  14. Attenuation of monkeypox virus by deletion of genomic regions

    Science.gov (United States)

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  15. Adding and Deleting Images

    Science.gov (United States)

    Images are added via the Drupal WebCMS Editor. Once an image is uploaded onto a page, it is available via the Library and your files. You can edit the metadata, delete the image permanently, and/or replace images on the Files tab.

  16. (AJST) GENERALISED DELETION DESIGNS

    African Journals Online (AJOL)

    Following Dean (1978), for a given contrast vector x c , the loss of information x ψ ,. 1. 0. ≤. ≤ x ψ. , due to confounding with blocks, is given by x x x. 1 x x cc. cN. KNc ψ. 1. ′. = −. ′. (3.3). Where N is the incidence matrix and K is the diagonal matrix of block sizes. We consider deletion designs of the form. ( ) 1. 1 m m n ls s.

  17. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3 in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    Directory of Open Access Journals (Sweden)

    David Pritchett

    Full Text Available Sleep and/or circadian rhythm disruption (SCRD is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3. These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/- mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained.

  18. Deletion of Metabotropic Glutamate Receptors 2 and 3 (mGlu2 & mGlu3) in Mice Disrupts Sleep and Wheel-Running Activity, and Increases the Sensitivity of the Circadian System to Light.

    Science.gov (United States)

    Pritchett, David; Jagannath, Aarti; Brown, Laurence A; Tam, Shu K E; Hasan, Sibah; Gatti, Silvia; Harrison, Paul J; Bannerman, David M; Foster, Russell G; Peirson, Stuart N

    2015-01-01

    Sleep and/or circadian rhythm disruption (SCRD) is seen in up to 80% of schizophrenia patients. The co-morbidity of schizophrenia and SCRD may in part stem from dysfunction in common brain mechanisms, which include the glutamate system, and in particular, the group II metabotropic glutamate receptors mGlu2 and mGlu3 (encoded by the genes Grm2 and Grm3). These receptors are relevant to the pathophysiology and potential treatment of schizophrenia, and have also been implicated in sleep and circadian function. In the present study, we characterised the sleep and circadian rhythms of Grm2/3 double knockout (Grm2/3-/-) mice, to provide further evidence for the involvement of group II metabotropic glutamate receptors in the regulation of sleep and circadian rhythms. We report several novel findings. Firstly, Grm2/3-/- mice demonstrated a decrease in immobility-determined sleep time and an increase in immobility-determined sleep fragmentation. Secondly, Grm2/3-/- mice showed heightened sensitivity to the circadian effects of light, manifested as increased period lengthening in constant light, and greater phase delays in response to nocturnal light pulses. Greater light-induced phase delays were also exhibited by wildtype C57Bl/6J mice following administration of the mGlu2/3 negative allosteric modulator RO4432717. These results confirm the involvement of group II metabotropic glutamate receptors in photic entrainment and sleep regulation pathways. Finally, the diurnal wheel-running rhythms of Grm2/3-/- mice were perturbed under a standard light/dark cycle, but their diurnal rest-activity rhythms were unaltered in cages lacking running wheels, as determined with passive infrared motion detectors. Hence, when assessing the diurnal rest-activity rhythms of mice, the choice of assay can have a major bearing on the results obtained.

  19. Severe Obesity and Insulin Resistance due to Deletion of the Maternal Gsα Allele Is Reversed by Paternal Deletion of the Gsα Imprint Control Region

    Science.gov (United States)

    Xie, Tao; Chen, Min; Gavrilova, Oksana; Lai, Edwin W.; Liu, Jie; Weinstein, Lee S.

    2008-01-01

    The G protein α-subunit Gsα mediates receptor-stimulated cAMP production and is imprinted with reduced expression from the paternal allele in specific tissues. Disruption of the Gsα maternal (but not paternal) allele leads to severe obesity, hypertriglyceridemia, and insulin resistance in mice and obesity in patients with Albright hereditary osteodystrophy. Paternal deletion of a Gsα imprint control region (1A) leads to loss of tissue-specific Gsα imprinting. To determine whether the metabolic abnormalities resulting from disruption of the Gsα maternal allele could be reversed by loss of paternal Gsα imprinting, females with a heterozygous Gsα exon 1 deletion were mated to males with heterozygous deletion of the imprint control region (1A) to generate mice with maternal Gsα deletion (E1m−), paternal 1A deletion (1Ap−), double mutants (E1m−:1Ap−), and wild type. E1m− mice developed obesity, glucose intolerance, insulin resistance, and hypertriglyceridemia, which were all normalized by the paternal 1A deletion in E1m−:1Ap− mice. Obesity in E1m− was associated with reduced energy expenditure and sympathetic nerve activity, and these were also normalized in E1m−:1Ap− mice. 1Ap− mice had reduced body weight associated with proportional decreases in fat and lean mass as well as increased activity levels. The metabolic phenotype resulting from maternal Gsα deletion is rescued by a genetic lesion that leads to loss of tissue-specific Gsα imprinting, consistent with this phenotype being a direct consequence of Gsα imprinting in one or more specific tissues. PMID:18202131

  20. Correlates of protection following vaccination of mice with gene deletion mutants of Francisella tularensis subspecies tularensis strain, SCHU S4 that elicit varying degrees of immunity to systemic and respiratory challenge with wild-type bacteria.

    Science.gov (United States)

    Ryden, Patrik; Twine, Susan; Shen, Hua; Harris, Gregory; Chen, Wangxue; Sjostedt, Anders; Conlan, Wayne

    2013-05-01

    Francisella tularensis subspecies tularensis is an extremely virulent facultative intracellular bacterial pathogen capable of causing significant mortality in humans when inhaled. Consequently, subspecies tularensis was developed as a biological weapon more than 50 years ago. To counter this threat the US Army empirically developed a live vaccine strain, F. tularensis LVS, from the less virulent holarctica subspecies. In human experiments LVS afforded substantial protection against transdermal challenge with clinical subspecies tularensis strain, SCHU S4, but lesser protection against infection initiated by inhalation of the pathogen. Several regulatory and clinical issues remain unresolved for this vaccine, including the absence of a robust correlate of protection. To try to address this, we have developed several defined gene deletion mutants of SCHU S4 that elicit varying degrees of protection in a mouse dermal or respiratory challenge model. In the present study, we have examined whether host immune responses to immunization with such live vaccine candidates can serve as correlates of protection. Antibody responses were unable to distinguish between effective and ineffective vaccine strains. However, several cytokine responses to vaccination showed some promise. Especially, serum levels of TNFα, IFNγ, and MCP-1 between days 4 and 7 after vaccination appear to correlate with protection against respiratory challenge. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Heterozygous Polg mutation causes motor dysfunction due to mtDNA deletions

    Science.gov (United States)

    Fuke, Satoshi; Kametani, Mizue; Yamada, Kazuyuki; Kasahara, Takaoki; Kubota-Sakashita, Mie; Kujoth, Gregory C; Prolla, Tomas A; Hitoshi, Seiji; Kato, Tadafumi

    2014-01-01

    Objective Mutations in nuclear-encoded mitochondrial DNA (mtDNA) polymerase (POLG) are known to cause autosomal dominant chronic progressive external ophthalmoplegia (adCPEO) with accumulation of multiple mtDNA deletions in muscles. However, no animal model with a heterozygous Polg mutation representing mtDNA impairment and symptoms of CPEO has been established. To understand the pathogenic mechanism of CPEO, it is important to determine the age dependency and tissue specificity of mtDNA impairment resulting from a heterozygous mutation in the Polg gene in an animal model. Methods We assessed behavioral phenotypes, tissue-specific accumulation of mtDNA deletions, and its age dependency in heterozygous PolgD257A knock-in mice carrying a proofreading-deficient mutation in the Polg. Results Heterozygous PolgD257A knock-in mice exhibited motor dysfunction in a rotarod test. Polg+/D257A mice had significant accumulation of multiple mtDNA deletions, but did not show significant accumulation of point mutations or mtDNA depletion in the brain. While mtDNA deletions increased in an age-dependent manner regardless of the tissue even in Polg+/+ mice, the age-dependent accumulation of mtDNA deletions was enhanced in muscles and in the brain of Polg+/D257A mice. Interpretation Heterozygous PolgD257A knock-in mice showed tissue-specific, age-dependent accumulation of multiple mtDNA deletions in muscles and the brain which was likely to result in neuromuscular symptoms. Polg+/D257A mice may be used as an animal model of adCPEO associated with impaired mtDNA maintenance. PMID:25540805

  2. Mouse Rad1 deletion enhances susceptibility for skin tumor development

    Directory of Open Access Journals (Sweden)

    Wang Xiangyuan

    2010-03-01

    Full Text Available Abstract Background Cells are constantly exposed to stresses from cellular metabolites as well as environmental genotoxins. DNA damage caused by these genotoxins can be efficiently fixed by DNA repair in cooperation with cell cycle checkpoints. Unrepaired DNA lesions can lead to cell death, gene mutation and cancer. The Rad1 protein, evolutionarily conserved from yeast to humans, exists in cells as monomer as well as a component in the 9-1-1 protein complex. Rad1 plays crucial roles in DNA repair and cell cycle checkpoint control, but its contribution to carcinogenesis is unknown. Results To address this question, we constructed mice with a deletion of Mrad1. Matings between heterozygous Mrad1 mutant mice produced Mrad1+/+ and Mrad1+/- but no Mrad1-/- progeny, suggesting the Mrad1 null is embryonic lethal. Mrad1+/- mice demonstrated no overt abnormalities up to one and half years of age. DMBA-TPA combinational treatment was used to induce tumors on mouse skin. Tumors were larger, more numerous, and appeared earlier on the skin of Mrad1+/- mice compared to Mrad1+/+ animals. Keratinocytes isolated from Mrad1+/- mice had significantly more spontaneous DNA double strand breaks, proliferated slower and had slightly enhanced spontaneous apoptosis than Mrad1+/+ control cells. Conclusion These data suggest that Mrad1 is important for preventing tumor development, probably through maintaining genomic integrity. The effects of heterozygous deletion of Mrad1 on proliferation and apoptosis of keratinocytes is different from those resulted from Mrad9 heterozygous deletion (from our previous study, suggesting that Mrad1 also functions independent of Mrad9 besides its role in the Mrad9-Mrad1-Mhus1 complex in mouse cells.

  3. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    2010-08-01

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  4. Altered Ultrasonic Vocalization and Impaired Learning and Memory in Angelman Syndrome Mouse Model with a Large Maternal Deletion from Ube3a to Gabrb3

    Science.gov (United States)

    Jiang, Yong-hui; Pan, Yanzhen; Zhu, Li; Landa, Luis; Yoo, Jong; Spencer, Corinne; Lorenzo, Isabel; Brilliant, Murray; Noebels, Jeffrey; Beaudet, Arthur L.

    2010-01-01

    Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  5. Id2 deletion attenuates Apc-deficient ileal tumor formation

    Directory of Open Access Journals (Sweden)

    Kyoko Biyajima

    2015-08-01

    Full Text Available The expression level of inhibitor of DNA binding 2 (Id2 is increased in colorectal carcinomas and is positively correlated with poor prognosis. However, the functional significance of Id2 in intestinal tumorigenesis has not been fully defined using genetic approaches. Here, we show that Id2 promotes ileal tumor initiation in Apc-deficient mice. Expression of Id2 was stimulated by Wnt signaling through the enhancer region of the Id2 promoter at the early stage of tumorigenesis in Apc+/Δ716 (ApcΔ716 mice. Genetic depletion of Id2 in ApcΔ716 mice caused ∼80% reduction in the number of ileal polyps, but had little effect on tumor size. Notably, the lack of Id2 increased the number of apoptotic cells in the normal crypt epithelium of the mice. Furthermore, DNA microarray analysis revealed that the expression level of Max dimerization protein 1 (Mxd1, known as a c-Myc antagonist, was specifically increased by Id2 deletion in the ileal intestinal epithelium of ApcΔ716 mice. In contrast, the protein level of c-Myc, but not the mRNA level, was decreased by loss of Id2 in these mice. These results indicate that loss of Id2 inhibits tumor initiation by up-regulation of Mxd1 and down-regulation of c-Myc in ApcΔ716 mice.

  6. Mouse fukutin deletion impairs dystroglycan processing and recapitulates muscular dystrophy

    Science.gov (United States)

    Beedle, Aaron M.; Turner, Amy J.; Saito, Yoshiaki; Lueck, John D.; Foltz, Steven J.; Fortunato, Marisa J.; Nienaber, Patricia M.; Campbell, Kevin P.

    2012-01-01

    Dystroglycan is a transmembrane glycoprotein that links the extracellular basement membrane to cytoplasmic dystrophin. Disruption of the extensive carbohydrate structure normally present on α-dystroglycan causes an array of congenital and limb girdle muscular dystrophies known as dystroglycanopathies. The essential role of dystroglycan in development has hampered elucidation of the mechanisms underlying dystroglycanopathies. Here, we developed a dystroglycanopathy mouse model using inducible or muscle-specific promoters to conditionally disrupt fukutin (Fktn), a gene required for dystroglycan processing. In conditional Fktn-KO mice, we observed a near absence of functionally glycosylated dystroglycan within 18 days of gene deletion. Twenty-week-old KO mice showed clear dystrophic histopathology and a defect in glycosylation near the dystroglycan O-mannose phosphate, whether onset of Fktn excision driven by muscle-specific promoters occurred at E8 or E17. However, the earlier gene deletion resulted in more severe phenotypes, with a faster onset of damage and weakness, reduced weight and viability, and regenerating fibers of smaller size. The dependence of phenotype severity on the developmental timing of muscle Fktn deletion supports a role for dystroglycan in muscle development or differentiation. Moreover, given that this conditional Fktn-KO mouse allows the generation of tissue- and timing-specific defects in dystroglycan glycosylation, avoids embryonic lethality, and produces a phenotype resembling patient pathology, it is a promising new model for the study of secondary dystroglycanopathy. PMID:22922256

  7. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  8. Uterine deletion of Trp53 compromises antioxidant responses in mouse decidua

    Energy Technology Data Exchange (ETDEWEB)

    Burnum, Kristin E.; Hirota, Yasushi; Baker, Erin Shammel; Yoshie, Mikihiro; Ibrahim, Yehia M.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Daikoku, Takiko; Dey, Sudhansu K.

    2012-09-01

    Preterm birth is a global health issue impacting both mothers and children. However, the etiology of preterm birth is not clearly understood. From our recent finding that premature decidual senescence with terminal differentiation is a cause of preterm birth in mice with uterine Trp53 deletion, encoding p53 protein, led us to explore other potential factors that are related to preterm birth. Utilizing proteomics approaches, here we show that 183 candidate proteins cause significant changes in decidua with Trp53 deletion as compared to normal decidua. Functional categorization of these proteins unveiled new pathways that are influenced by p53. In particular, downregulation of a cluster of antioxidant proteins in p53 deficient decidua suggests that increased oxidative stress could be one cause of preterm birth in mice with uterine deletion of Trp53.

  9. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons

    Science.gov (United States)

    Andrieux, Joris; Roubertoux, Pierre L.; Metwaly, Mehdi; Jacq, Bernard; Fatmi, Ahmed; Had-Aissouni, Laurence; Kwan, Kenneth Y.; Salin, Pascal; Carlier, Michèle; Liedén, Agne; Rudd, Eva; Shinawi, Marwan; Vincent-Delorme, Catherine; Cuisset, Jean-Marie; Lemaitre, Marie-Pierre; Abderrehamane, Fatimetou; Duban, Bénédicte; Lemaitre, Jean-François; Woolf, Adrian S.; Bockenhauer, Detlef; Severac, Dany; Dubois, Emeric; Zhu, Ying; Sestan, Nenad; Garratt, Alistair N.; Kerkerian-Le Goff, Lydia; Fasano, Laurent

    2016-01-01

    TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, mice heterozygous for Tshz3 deletion show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. PMID:27668656

  10. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  11. Hepatic deletion of Smad7 in mouse leads to spontaneous liver dysfunction and aggravates alcoholic liver injury.

    Directory of Open Access Journals (Sweden)

    Lu Zhu

    Full Text Available BACKGROUND: TGF-β has been known to play an important role in various liver diseases including fibrosis and alcohol-induced fatty liver. Smad7 is an intracellular negative regulator of TGF-β signaling. It is currently unclear whether endogenous Smad7 has an effect on liver function and alcoholic liver damage. METHODOLOGY/PRINCIPAL FINDINGS: We used Cre/loxP system by crossing Alb-Cre mice with Smad7(loxP/loxP mice to generate liver-specific deletion of Smad7 with loss of the indispensable MH2 domain. Alcoholic liver injury was achieved by feeding mice with a liquid diet containing 5% ethanol for 6 weeks, followed by a single dose of ethanol gavage. Deletion of Smad7 in the liver was associated with increased Smad2/3 phosphorylation in the liver or upon TGF-β treatment in primary hepatocytes. The majority of mice with liver specific deletion of Smad7 (Smad7(liver-KO were viable and phenotypically normal, accompanied by only slight or no reduction of Smad7 expression in the liver. However, about 30% of Smad7(liver-KO mice with high efficiency of Smad7 deletion had spontaneous liver dysfunction, demonstrated as low body weight, overall deterioration, and increased serum levels of AST and ALT. Degeneration and elevated apoptosis of liver cells were observed with these mice. TGF-β-induced epithelial to mesenchymal transition (EMT was accelerated in Smad7-deleted primary hepatocytes. In addition, alcohol-induced liver injury and steatosis were profoundly aggravated in Smad7 deficient mice, associated with upregulation of critical genes involved in lipogenesis and inflammation. Furthermore, alcohol-induced ADH1 expression was significantly abrogated by Smad7 deletion in hepatocytes. CONCLUSION/SIGNIFICANCE: In this study, we provided in vivo evidence revealing that endogenous Smad7 plays an important role in liver function and alcohol-induced liver injury.

  12. Conditional deletion of Jak2 reveals an essential role in hematopoiesis throughout mouse ontogeny: implications for Jak2 inhibition in humans.

    Directory of Open Access Journals (Sweden)

    Sung O Park

    Full Text Available Germline deletion of Jak2 in mice results in embryonic lethality at E12.5 due to impaired hematopoiesis. However, the role that Jak2 might play in late gestation and postnatal life is unknown. To understand this, we utilized a conditional knockout approach that allowed for the deletion of Jak2 at various stages of prenatal and postnatal life. Specifically, Jak2 was deleted beginning at either mid/late gestation (E12.5, at postnatal day 4 (PN4, or at ∼2 months of age. Deletion of Jak2 beginning at E12.5 resulted in embryonic death characterized by a lack of hematopoiesis. Deletion beginning at PN4 was also lethal due to a lack of erythropoiesis. Deletion of Jak2 in young adults was characterized by blood cytopenias, abnormal erythrocyte morphology, decreased marrow hematopoietic potential, and splenic atrophy. However, death was observed in only 20% of the mutants. Further analysis of these mice suggested that the increased survivability was due to an incomplete deletion of Jak2 and subsequent re-population of Jak2 expressing cells, as conditional deletion in mice having one floxed Jak2 allele and one null allele resulted in a more severe phenotype and subsequent death of all animals. We found that the deletion of Jak2 in the young adults had a differential effect on hematopoietic lineages; specifically, conditional Jak2 deletion in young adults severely impaired erythropoiesis and thrombopoiesis, modestly affected granulopoiesis and monocytopoiesis, and had no effect on lymphopoiesis. Interestingly, while the hematopoietic organs of these mutant animals were severely affected by the deletion of Jak2, we found that the hearts, kidneys, lungs, and brains of these same mice were histologically normal. From this, we conclude that Jak2 plays an essential and non-redundant role in hematopoiesis during both prenatal and postnatal life and this has direct implications regarding the inhibition of Jak2 in humans.

  13. Chromosome 5q33 deletions associated with congenital heart defects.

    Science.gov (United States)

    Starkovich, Molly; Lalani, Seema R; Mercer, Catherine L; Scott, Daryl A

    2016-12-01

    Congenital heart defects (CHD) are present in over 1% of all newborns and are the leading cause of birth-defect-related deaths in the United States. We describe two male subjects with CHD, one with an atrial septal defect, a ventricular septal defect, and pulmonary artery stenosis; and the other with tetralogy of Fallot and a right aortic arch, who carry partially overlapping, de novo deletions of chromosome 5q33. The maximum region of overlap between these deletions encompasses HAND1 and SAP30L, two genes that have previously been shown to play a role in cardiac development. HAND1 encodes a basic helix-loop-helix transcription factor. Cardiac-specific ablation of Hand1 in mice causes septal, valvular, and outflow tract defects. SAP30L, its paralog SAP30, and other SAP proteins form part of a multi-subunit complex involved in transcriptional regulation via histone deacetylation. Morpholino knockdown of sap30L in zebrafish, which do not have a distinct sap30 gene, leads to cardiac hypoplasia and cardiac insufficiency. We subsequently identified two other individuals with chromosomal deletions involving HAND1 and SAP30L in whom cardiac-related medical problems were not described. These observations suggest that haploinsufficiency of HAND1 and/or SAP30L may contribute to the development of CHD, although the contribution of other genes on chromosome 5q33 cannot be excluded. Our findings also suggest that the penetrance of CHD associated with 5q33 deletions is incomplete and may be influenced by other genetic, environmental or stochastic factors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. 1p36 deletion syndrome: an update

    Directory of Open Access Journals (Sweden)

    Jordan VK

    2015-08-01

    Full Text Available Valerie K Jordan,1 Hitisha P Zaveri,2 Daryl A Scott1,2 1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Abstract: Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. Keywords: chromosome 1p36, chromosome deletion, 1p36 deletion syndrome, monosomy 1p36

  15. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  16. 76 FR 22680 - Procurement List; Deletions

    Science.gov (United States)

    2011-04-22

    ... impact on a substantial number of small entities. The major factors considered for this certification... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY: This...

  17. The chromosome 9q subtelomere deletion syndrome

    NARCIS (Netherlands)

    Stewart, D.R.; Kleefstra, T.

    2007-01-01

    The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals

  18. Central 22q11.2 Deletions

    NARCIS (Netherlands)

    Rump, Patrick; de Leeuw, Nicole; van Essen, Anthonie J.; Verschuuren - Bemelmans, Corien C.; Veenstra-Knol, Hermine E.; Swinkels, Marielle E. M.; Oostdijk, Wilma; Ruivenkamp, Claudia; Reardon, Willie; de Munnik, Sonja; Ruiter, Mariken; Frumkin, Ayala; Lev, Dorit; Evers, Christina; Sikkema-Raddatz, Birgit; Dijkhuizen, Trijnie; van Ravenswaaij-Arts, Conny M.

    2014-01-01

    22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with

  19. Exploring a neurogenic basis of velopharyngeal dysfunction in Tbx1 mutant mice: no difference in volumes of the nucleus ambiguus

    NARCIS (Netherlands)

    Spruijt, Nicole E.; Rana, M. Sameer; Christoffels, Vincent M.; Mink van der Molen, Aebele B.

    2013-01-01

    Velopharyngeal hypotonia seems to be an important factor in velopharyngeal dysfunction in 22q11.2 deletion syndrome, but the etiology is not understood. Because TBX1 maps within the typical 22q11.2 deletion and Tbx1-deficient mice phenocopy many findings in patients with the 22q11.2 deletion

  20. Estrogen-mediated renoprotection following cardiac arrest and cardiopulmonary resuscitation is robust to GPR30 gene deletion.

    Directory of Open Access Journals (Sweden)

    Michael P Hutchens

    Full Text Available Acute kidney injury is a serious,sexually dimorphic perioperative complication, primarily attributed to hypoperfusion. We previously found that estradiol is renoprotective after cardiac arrest and cardiopulmonary resuscitation in ovariectomized female mice. Additionally, we found that neither estrogen receptor alpha nor beta mediated this effect. We hypothesized that the G protein estrogen receptor (GPR30 mediates the renoprotective effect of estrogen.Ovariectomized female and gonadally intact male wild-type and GPR30 gene-deleted mice were treated with either vehicle or 17β-estradiol for 7 days, then subjected to cardiac arrest and cardiopulmonary resuscitation. Twenty four hours later, serum creatinine and urea nitrogen were measured, and histologic renal injury was evaluated by unbiased stereology.In both males and females, GPR30 gene deletion was associated with reduced serum creatinine regardless of treatment. Estrogen treatment of GPR30 gene-deleted males and females was associated with increased preprocedural weight. In ovariectomized female mice, estrogen treatment did not alter resuscitation, but was renoprotective regardless of GPR30 gene deletion. In males, estrogen reduced the time-to-resuscitate and epinephrine required. In wild-type male mice, serum creatinine was reduced, but neither serum urea nitrogen nor histologic outcomes were affected by estrogen treatment. In GPR30 gene-deleted males, estrogen did not alter renal outcomes. Similarly, renal injury was not affected by G1 therapy of ovariectomized female wild-type mice.Treatment with 17β-estradiol is renoprotective after whole-body ischemia-reperfusion in ovariectomized female mice irrespective of GPR30 gene deletion. Treatment with the GPR30 agonist G1 did not alter renal outcome in females. We conclude GPR30 does not mediate the renoprotective effect of estrogen in ovariectomized female mice. In males, estrogen therapy was not renoprotective. Estrogen treatment of GPR30

  1. Prenatal diagnosis of terminal 11q deletion

    OpenAIRE

    Simão, Laurentino; Brito, Filomena; Silva, Marisa; Marques, Bárbara; Furtado, José; Ventura, Catarina; Caetano, Paula; Dias, Ivone; Correia, Hildeberto

    2011-01-01

    The majority of 11q deletion cases described may be included in the “distal 11q deletion syndrome”, or Jacobsen syndrome. This is a rare but clinically recognizable condition with an incidence of 1/ 100,000 births. The most common clinical features are psychomotor delay, characteristic facial dysmorphism and malformations of the heart, kidney, genitalia, central nervous system and skeleton. Patients usually have visible deletions of chromosomal bands 11q23, 11q24, and/or 11q25. Approximately ...

  2. Osteocyte-specific deletion of Fgfr1 suppresses FGF23.

    Directory of Open Access Journals (Sweden)

    Zhousheng Xiao

    Full Text Available Increases in fibroblastic growth factor 23 (FGF23 or Fgf23 production by osteocytes result in hypophosphatemia and rickets in the Hyp mouse homologue of X-linked hypophosphatemia (XLH. Fibroblastic growth factor (FGF signaling has been implicated in the pathogenesis of Hyp. Here, we conditionally deleted FGF receptor 1 (FGFR1 or Fgfr1 in osteocytes of Hyp mice to investigate the role of autocrine/paracrine FGFR signaling in regulating FGF23 production by osteocytes. Crossing dentin matrix protein 1 (Dmp1-Cre;Fgfr1null/+ mice with female Hyp;Fgfr1flox/flox mice created Hyp and Fgfr1 (Fgfr1Dmp1-cKO-null mice (Hyp;Fgfr1Dmp1-cKO with a 70% decrease in bone Fgfr1 transcripts. Fgfr1Dmp1-cKO-null mice exhibited a 50% reduction in FGF23 expression in bone and 3-fold reduction in serum FGF23 concentrations, as well as reductions in sclerostin (Sost, phosphate regulating endopeptidase on X chromosome (PHEX or Phex, matrix extracellular phosphoglycoprotein (Mepe, and Dmp1 transcripts, but had no demonstrable alterations in phosphate or vitamin D homeostasis or skeletal morphology. Hyp mice had hypophosphatemia, reductions in 1,25(OH2D levels, rickets/osteomalacia and elevated FGF2 expression in bone. Compared to Hyp mice, compound Hyp;Fgfr1Dmp1-cKO-null mice had significant improvement in rickets and osteomalacia in association with a decrease in serum FGF23 (3607 to 1099 pg/ml, an increase in serum phosphate (6.0 mg/dl to 9.3 mg/dl and 1,25(OH2D (121±23 to 192±34 pg/ml levels, but only a 30% reduction in bone FGF23 mRNA expression. FGF23 promoter activity in osteoblasts was stimulated by FGFR1 activation and inhibited by overexpression of a dominant negative FGFR1(TK-, PLCγ and MAPK inhibitors. FGF2 also stimulated the translation of an FGF23 cDNA transfected into osteoblasts via a FGFR1 and PI3K/Akt-dependent mechanism. Thus, activation of autocrine/paracrine FGF pathways is involved in the pathogenesis of Hyp through FGFR1-dependent regulation of FGF

  3. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus

    2015-01-01

    Generation of multiple genomic alterations is currently a time consuming process. Here, a method was established that enables highly efficient and simultaneous deletion of multiple genes in Escherichia coli. A temperature sensitive plasmid containing arabinose inducible lambda Red recombineering...... genes and a rhamnose inducible flippase recombinase was constructed to facilitate fast marker-free deletions. To further speed up the procedure, we integrated the arabinose inducible lambda Red recombineering genes and the rhamnose inducible FLP into the genome of E. coli K-12 MG1655. This system...... enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains...

  4. 78 FR 77106 - Procurement List; Deletions

    Science.gov (United States)

    2013-12-20

    ..., the following products and services are deleted from the Procurement List: Products Tongs, Food...: Switchboard Operation Service, Department of Justice, FBI Academy, Quantico, VA NPA: Rappahannock Goodwill Industries, Inc., Fredericksburg, VA Contracting Activity: DEPT OF JUSTICE, FEDERAL BUREAU OF INVESTIGATION...

  5. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    Science.gov (United States)

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A 660-Kb deletion with antagonistic effects on fertility and milk production segregates at high frequency in Nordic Red cattle

    DEFF Research Database (Denmark)

    Kadri, Naveen Kumar; Sahana, Goutam; Charlier, Carole

    2014-01-01

    to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation....... This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other...... traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part...

  7. Neuronal Deletion of Ghrelin Receptor Almost Completely Prevents Diet-Induced Obesity.

    Science.gov (United States)

    Lee, Jong Han; Lin, Ligen; Xu, Pingwen; Saito, Kenji; Wei, Qiong; Meadows, Adelina G; Bongmba, Odelia Y N; Pradhan, Geetali; Zheng, Hui; Xu, Yong; Sun, Yuxiang

    2016-08-01

    Ghrelin signaling has major effects on energy and glucose homeostasis, but it is unknown whether ghrelin's functions are centrally and/or peripherally mediated. The ghrelin receptor, growth hormone secretagogue receptor (GHS-R), is highly expressed in the brain and detectable in some peripheral tissues. To understand the roles of neuronal GHS-R, we generated a mouse line where Ghsr gene is deleted in all neurons using synapsin 1 (Syn1)-Cre driver. Our data showed that neuronal Ghsr deletion abolishes ghrelin-induced spontaneous food intake but has no effect on total energy intake. Remarkably, neuronal Ghsr deletion almost completely prevented diet-induced obesity (DIO) and significantly improved insulin sensitivity. The neuronal Ghsr-deleted mice also showed improved metabolic flexibility, indicative of better adaption to different fuels. In addition, gene expression analysis suggested that hypothalamus and/or midbrain might be the sites that mediate the effects of GHS-R in thermogenesis and physical activity, respectively. Collectively, our results indicate that neuronal GHS-R is a crucial regulator of energy metabolism and a key mediator of DIO. Neuronal Ghsr deletion protects against DIO by regulating energy expenditure, not by energy intake. These novel findings suggest that suppressing central ghrelin signaling may serve as a unique antiobesity strategy. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  8. Deletion of presynaptic adenosine A1 receptors impairs the recovery of synaptic transmission after hypoxia.

    Science.gov (United States)

    Arrigoni, E; Crocker, A J; Saper, C B; Greene, R W; Scammell, T E

    2005-01-01

    Adenosine protects neurons during hypoxia by inhibiting excitatory synaptic transmission and preventing NMDA receptor activation. Using an adeno-associated viral (AAV) vector containing Cre recombinase, we have focally deleted adenosine A(1) receptors in specific hippocampal regions of adult mice. Recently, we found that deletion of A(1) receptors in the CA1 area blocks the postsynaptic responses to adenosine in CA1 pyramidal neurons, and deletion of A(1) receptors in CA3 neurons abolishes the presynaptic effects of adenosine on the Schaffer collateral input [J Neurosci 23 (2003) 5762]. In the current study, we used this technique to delete A(1) receptors focally from CA3 neurons to investigate whether presynaptic A(1) receptors protect synaptic transmission from hypoxia. We studied the effects of prolonged (1 h) hypoxia on the evoked field excitatory postsynaptic potentials (fEPSPs) in the CA1 region using in vitro slices. Focal deletion of the presynaptic A(1) receptors on the Schaffer collateral input slowed the depression of the fEPSPs in response to hypoxia and impaired the recovery of the fEPSPs after hypoxia. Delayed responses to hypoxia linearly correlated with impaired recovery. These findings provide direct evidence that the neuroprotective role of adenosine during hypoxia depends on the rapid inhibition of synaptic transmission by the activation of presynaptic A(1) receptors.

  9. Glucocerebrosidase 2 gene deletion rescues type 1 Gaucher disease.

    Science.gov (United States)

    Mistry, Pramod K; Liu, Jun; Sun, Li; Chuang, Wei-Lien; Yuen, Tony; Yang, Ruhua; Lu, Ping; Zhang, Kate; Li, Jianhua; Keutzer, Joan; Stachnik, Agnes; Mennone, Albert; Boyer, James L; Jain, Dhanpat; Brady, Roscoe O; New, Maria I; Zaidi, Mone

    2014-04-01

    The inherited deficiency of the lysosomal glucocerebrosidase (GBA) due to mutations in the GBA gene results in Gaucher disease (GD). A vast majority of patients present with nonneuronopathic, type 1 GD (GD1). GBA deficiency causes the accumulation of two key sphingolipids, glucosylceramide (GL-1) and glucosylsphingosine (LysoGL-1), classically noted within the lysosomes of mononuclear phagocytes. How metabolites of GL-1 or LysoGL-1 produced by extralysosomal glucocerebrosidase GBA2 contribute to the GD1 pathophysiology is not known. We recently recapitulated hepatosplenomegaly, cytopenia, hypercytokinemia, and the bone-formation defect of human GD1 through conditional deletion of Gba in Mx1-Cre(+):GD1 mice. Here we show that the deletion of Gba2 significantly rescues the GD1 clinical phenotype, despite enhanced elevations in GL-1 and LysoGL-1. Most notably, the reduced bone volume and bone formation rate are normalized. These results suggest that metabolism of GL-1 or LysoGL-1 into downstream bioactive lipids is a major contributor to the bone-formation defect. Direct testing revealed a strong inhibition of osteoblast viability by nanomolar concentrations of sphingosine, but not of ceramide. These findings are consistent with toxicity of high circulating sphingosine levels in GD1 patients, which decline upon enzyme-replacement therapy; serum ceramide levels remain unchanged. Together, complementary results from mice and humans affected with GD1 not only pinpoint sphingosine as being an osteoblast toxin, but also set forth Gba2 as a viable therapeutic target for the development of inhibitors to ameliorate certain disabling consequences of GD1.

  10. Deletion of the GluA1 AMPA Receptor Subunit Alters the Expression of Short-Term Memory

    Science.gov (United States)

    Sanderson, David J.; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.

    2011-01-01

    Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice.…

  11. NLRP3 deletion protects from hyperoxia-induced acute lung injury.

    Science.gov (United States)

    Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Cox, Ruan; Huynh, Bao; Ramanathan, Gurukumar Kollongod; Venugopal, Rajan Babu; Allen-Gipson, Diane S; Lockey, Richard F; Kolliputi, Narasaiah

    2013-07-15

    Inspiration of a high concentration of oxygen, a therapy for acute lung injury (ALI), could unexpectedly lead to reactive oxygen species (ROS) production and hyperoxia-induced acute lung injury (HALI). Nucleotide-binding domain and leucine-rich repeat PYD-containing protein 3 (NLRP3) senses the ROS, triggering inflammasome activation and interleukin-1β (IL-1β) production and secretion. However, the role of NLRP3 inflammasome in HALI is unclear. The main aim of this study is to determine the effect of NLRP3 gene deletion on inflammatory response and lung epithelial cell death. Wild-type (WT) and NLRP3(-/-) mice were exposed to 100% O2 for 48-72 h. Bronchoalveolar lavage fluid and lung tissues were examined for proinflammatory cytokine production and lung inflammation. Hyperoxia-induced lung pathological score was suppressed in NLRP3(-/-) mice compared with WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNFα, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 were attenuated in NLRP3(-/-) mice. NLRP3 deletion decreased lung epithelial cell death and caspase-3 levels and a suppressed NF-κB levels compared with WT controls. Taken together, this research demonstrates for the first time that NLRP3-deficient mice have suppressed inflammatory response and blunted lung epithelial cell apoptosis to HALI.

  12. Radiation-Induced Deletions in Mouse Spermatogonia are Usually Large (over 200 kb) and Contain Little Sequence Similarity at the Junctions.

    Science.gov (United States)

    Kodaira, Mieko; Asakawa, Jun-Ichi; Nakamura, Nori

    2017-06-01

    Ionizing radiation can induce mutations, and the majority of radiation-induced mutations in mammalian cells are deletions. The most critical types of radiation-induced DNA damage are DNA double-strand breaks, and these breaks are repaired by either the homologous recombination (HR) pathway or the non-homologous end joining (NHEJ) pathway. The HR pathway is not as mutagenic as the NHEJ pathway, and it is expected that radiation-induced deletions would usually have little sequence similarity around the deletion junction points. Here we report sequence data from the regions around the rejoined junctions of 33 de novo copy-number mutations (27 deletions and 6 duplications) obtained from offspring sired by male mice that were irradiated at the spermatogonia stage and from nonirradiated controls. The results indicate that deletions can be classified into three major groups. In group 1, nine deletions were found to share long blocks of similar sequences (200-6,000 bp) at the junctions and the deletion size varied extensively (1 kb to 2 Mb) (e.g., illegitimate recombination). In group 2, five deletions shared short identical sequences (0-7 bp) at the junctions, and the deletion sizes were shorter than 200 kb (e.g., micro-homology-mediated repair). Additional three-deletion candidates of this group were also found but turned out to be inherited from mosaic parents. They are therefore not included in germline mutations. In group 3, twelve deletions shared little sequence similarity (only 0-2 bp) at the junctions (likely due to NHEJ repair) and deletion sizes were longer than 200 kb. Group 1 consisted of deletions found in both spontaneous and irradiated genomes and thus, were probably caused by spontaneous events during meiosis or DNA replication. Group 2 consisted mainly of deletions found in nonexposed genomes. Group 3 consisted primarily of deletions that occurred in the irradiated genomes. Among the duplications, we found no indication of any association with radiation

  13. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  14. Fecal Corticosterone Levels in RCAN1 Mutant Mice

    OpenAIRE

    Rakowski-Anderson, Tammy; Wong, Helen; Rothermel, Beverly; Cain, Peter; Lavilla, Carmencita; Pullium, Jennifer K; Hoeffer, Charles

    2012-01-01

    Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RC...

  15. Deletion of murine choline dehydrogenase results in diminished sperm motility.

    Science.gov (United States)

    Johnson, Amy R; Craciunescu, Corneliu N; Guo, Zhong; Teng, Ya-Wen; Thresher, Randy J; Blusztajn, Jan K; Zeisel, Steven H

    2010-08-01

    Choline dehydrogenase (CHDH) catalyzes the conversion of choline to betaine, an important methyl donor and organic osmolyte. We have previously identified single nucleotide polymorphisms (SNPs) in the human CHDH gene that, when present, seem to alter the activity of the CHDH enzyme. These SNPs occur frequently in humans. We created a Chdh(-/-) mouse to determine the functional effects of mutations that result in decreased CHDH activity. Chdh deletion did not affect fetal viability or alter growth or survival of these mice. Only one of eleven Chdh(-/-) males was able to reproduce. Loss of CHDH activity resulted in decreased testicular betaine and increased choline and PCho concentrations. Chdh(+/+) and Chdh(-/-) mice produced comparable amounts of sperm; the impaired fertility was due to diminished sperm motility in the Chdh(-/-) males. Transmission electron microscopy revealed abnormal mitochondrial morphology in Chdh(-/-) sperm. ATP content, total mitochondrial dehydrogenase activity and inner mitochondrial membrane polarization were all significantly reduced in sperm from Chdh(-/-) animals. Mitochondrial changes were also detected in liver, kidney, heart, and testis tissues. We suggest that men who have SNPs in CHDH that decrease the activity of the CHDH enzyme could have decreased sperm motility and fertility.

  16. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  17. Selective Deletion of Renin-b in the Brain Alters Drinking and Metabolism.

    Science.gov (United States)

    Shinohara, Keisuke; Nakagawa, Pablo; Gomez, Javier; Morgan, Donald A; Littlejohn, Nicole K; Folchert, Matthew D; Weidemann, Benjamin J; Liu, Xuebo; Walsh, Susan A; Ponto, Laura L; Rahmouni, Kamal; Grobe, Justin L; Sigmund, Curt D

    2017-11-01

    The brain-specific isoform of renin (Ren-b) has been proposed as a negative regulator of the brain renin-angiotensin system (RAS). We analyzed mice with a selective deletion of Ren-b which preserved expression of the classical renin (Ren-a) isoform. We reported that Ren-b(Null) mice exhibited central RAS activation and hypertension through increased expression of Ren-a, but the dipsogenic and metabolic effects in Ren-b(Null) mice are unknown. Fluid intake was similar in control and Ren-b(Null) mice at baseline and both exhibited an equivalent dipsogenic response to deoxycorticosterone acetate-salt. Dehydration promoted increased water intake in Ren-b(Null) mice, particularly after deoxycorticosterone acetate-salt. Ren-b(Null) and control mice exhibited similar body weight when fed a chow diet. However, when fed a high-fat diet, male Ren-b(Null) mice gained significantly less weight than control mice, an effect blunted in females. This difference was not because of changes in food intake, energy absorption, or physical activity. Ren-b(Null) mice exhibited increased resting metabolic rate concomitant with increased uncoupled protein 1 expression and sympathetic nerve activity to the interscapular brown adipose tissue, suggesting increased thermogenesis. Ren-b(Null) mice were modestly intolerant to glucose and had normal insulin sensitivity. Another mouse model with markedly enhanced brain RAS activity (sRA mice) exhibited pronounced insulin sensitivity concomitant with increased brown adipose tissue glucose uptake. Altogether, these data support the hypothesis that the brain RAS regulates energy homeostasis by controlling resting metabolic rate, and that Ren-b deficiency increases brain RAS activity. Thus, the relative level of expression of Ren-b and Ren-a may control activity of the brain RAS. © 2017 American Heart Association, Inc.

  18. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  19. Minimal Homozygous Endothelial Deletion of Eng with VEGF Stimulation is Sufficient to Cause Cerebrovascular Dysplasia in the Adult Mouse

    Science.gov (United States)

    Choi, Eun-Jung; Walker, Espen J.; Shen, Fanxia; Oh, S. Paul; Arthur, Helen M.; Young, William L.; Su, Hua

    2013-01-01

    Background Brain arteriovenous malformations (bAVMs) represent a high risk for hemorrhagic stroke, leading to significant neurological morbidity and mortality in young adults. The etiopathogenesis of bAVM remains unclear. Research progress has been hampered by the lack of animal models. Hereditary Hemorrhagic Telangiectasia (HHT) patients with haploinsufficiency of endoglin (ENG, HHT1) or activin receptor-like kinase 1 (ALK1, HHT2) have a higher incidence of bAVM than the general population. We previously induced cerebrovascular dysplasia in the adult mouse brain that resembles human bAVM through Alk1 deletion plus vascular endothelial growth factor (VEGF) stimulation. We hypothesized that Eng deletion plus VEGF stimulation would induce a similar degree of cerebrovascular dysplasia as the Alk1-deleted brain. Methods Ad-Cre (an adenoviral vector expressing Cre recombinase) and AAV-VEGF (an adeno-associated viral vector expressing VEGF) were co-injected into the basal ganglia of 8–10 week old Eng2f/2f (exons 5–6 flanked by loxP sites), Alk12f/2f (exons 4–6 flanked by loxP sites) and wild-type (WT) mice. Vascular density, dysplasia index and gene deletion efficiency were analyzed 8 weeks later. Results AAV-VEGF induced a similar degree of angiogenesis in the brain with or without Alk1- or Eng-deletion. Abnormally patterned and dilated dysplastic vessels were found in the viral vector-injected region of Alk12f/2f and Eng2f/2f brain sections, but not in WT. Alk12f/2f mice had about 1.8-fold higher dysplasia index than Eng2f/2f mice (4.6 ± 1.9 vs. 2.5 ± 1.1, p dysplasia index with the gene deletion efficiency (Alk12f/2f: 16% and Eng2f/2f: 1%), we found that about 8-fold higher dysplasia was induced per copy of Eng deletion (2.5) than that of Alk1 deletion (0.3). ENG-negative endothelial cells were detected in the Ad-Cre-treated brain of Eng2f/2f mice, suggesting homozygous deletion of Eng in the cells. VEGF induced more severe vascular dysplasia in the Ad

  20. Synergistic and Additive Properties of the Beta-Globin Locus Control Region (LCR) Revealed by 5′HS3 Deletion Mutations: Implication for LCR Chromatin Architecture

    OpenAIRE

    Fang, Xiangdong; Sun, Jin; Xiang, Ping; Yu, Man; Navas, Patrick A.; Peterson, Kenneth R.; Stamatoyannopoulos, George; Li, Qiliang

    2005-01-01

    Deletion of the 234-bp core element of the DNase I hypersensitive site 3 (5′HS3) of the locus control region (LCR) in the context of a human beta-globin locus yeast artificial chromosome (β-YAC) results in profound effects on globin gene expression in transgenic mice. In contrast, deletion of a 2.3-kb 5′HS3 region, which includes the 234-bp core sequence, has a much milder phenotype. Here we report the effects of these deletions on chromatin structure in the beta-globin locus of adult erythro...

  1. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9

    Science.gov (United States)

    Carroll, Kelli J.; Makarewich, Catherine A.; McAnally, John; Anderson, Douglas M.; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart. PMID:26719419

  2. A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9.

    Science.gov (United States)

    Carroll, Kelli J; Makarewich, Catherine A; McAnally, John; Anderson, Douglas M; Zentilin, Lorena; Liu, Ning; Giacca, Mauro; Bassel-Duby, Rhonda; Olson, Eric N

    2016-01-12

    Clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas)9 genomic editing has revolutionized the generation of mutant animals by simplifying the creation of null alleles in virtually any organism. However, most current approaches with this method require zygote injection, making it difficult to assess the adult, tissue-specific functions of genes that are widely expressed or which cause embryonic lethality when mutated. Here, we describe the generation of cardiac-specific Cas9 transgenic mice, which express high levels of Cas9 in the heart, but display no overt defects. In proof-of-concept experiments, we used Adeno-Associated Virus 9 (AAV9) to deliver single-guide RNA (sgRNA) that targets the Myh6 locus exclusively in cardiomyocytes. Intraperitoneal injection of postnatal cardiac-Cas9 transgenic mice with AAV9 encoding sgRNA against Myh6 resulted in robust editing of the Myh6 locus. These mice displayed severe cardiomyopathy and loss of cardiac function, with elevation of several markers of heart failure, confirming the effectiveness of this method of adult cardiac gene deletion. Mice with cardiac-specific expression of Cas9 provide a tool that will allow rapid and accurate deletion of genes following a single injection of AAV9-sgRNAs, thereby circumventing embryonic lethality. This method will be useful for disease modeling and provides a means of rapidly editing genes of interest in the heart.

  3. Deletion of p66Shc longevity gene protects against experimental diabetic glomerulopathy by preventing diabetes-induced oxidative stress.

    Science.gov (United States)

    Menini, Stefano; Amadio, Lorena; Oddi, Giovanna; Ricci, Carlo; Pesce, Carlo; Pugliese, Francesco; Giorgio, Marco; Migliaccio, Enrica; Pelicci, PierGiuseppe; Iacobini, Carla; Pugliese, Giuseppe

    2006-06-01

    p66(Shc) regulates both steady-state and environmental stress-dependent reactive oxygen species (ROS) generation. Its deletion was shown to confer resistance to oxidative stress and protect mice from aging-associated vascular disease. This study was aimed at verifying the hypothesis that p66(Shc) deletion also protects from diabetic glomerulopathy by reducing oxidative stress. Streptozotocin-induced diabetic p66(Shc) knockout (KO) mice showed less marked changes in renal function and structure, as indicated by the significantly lower levels of proteinuria, albuminuria, glomerular sclerosis index, and glomerular and mesangial areas. Glomerular content of fibronectin and collagen IV was also lower in diabetic KO versus wild-type mice, whereas apoptosis was detected only in diabetic wild-type mice. Serum and renal tissue advanced glycation end products and plasma isoprostane 8-epi-prostaglandin F2alpha levels and activation of nuclear factor kappaB (NF-kappaB) were also lower in diabetic KO than in wild-type mice. Mesangial cells from KO mice grown under high-glucose conditions showed lower cell death rate, matrix production, ROS levels, and activation of NF-kappaB than those from wild-type mice. These data support a role for oxidative stress in the pathogenesis of diabetic glomerulopathy and indicate that p66(Shc) is involved in the molecular mechanism(s) underlying diabetes-induced oxidative stress and oxidant-dependent renal injury.

  4. Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

    Directory of Open Access Journals (Sweden)

    Can Peng

    Full Text Available Nicotinic acetylcholine receptors containing α4 subunits (α4β2* nAChRs are critical for nicotinic cholinergic transmission and the addictive action of nicotine. To identify specific activities of these receptors in the adult mouse brain, we coupled targeted deletion of α4 nAChR subunits with behavioral and and electrophysiological measures of nicotine sensitivity. A viral-mediated Cre/lox approach allowed us to delete α4 from ventral midbrain (vMB neurons. We used two behavioral assays commonly used to assess the motivational effects of drugs of abuse: home-cage oral self-administration, and place conditioning. Mice lacking α4 subunits in vMB consumed significantly more nicotine at the highest offered nicotine concentration (200 μg/mL compared to control mice. Deletion of α4 subunits in vMB blocked nicotine-induced conditioned place preference (CPP without affecting locomotor activity. Acetylcholine-evoked currents as well as nicotine-mediated increases in synaptic potentiation were reduced in mice lacking α4 in vMB. Immunostaining verified that α4 subunits were deleted from both dopamine and non-dopamine neurons in the ventral tegmental area (VTA. These results reveal that attenuation of α4* nAChR function in reward-related brain circuitry of adult animals may increase nicotine intake by enhancing the rewarding effects and/or reducing the aversive effects of nicotine.

  5. Altered nicotine reward-associated behavior following α4 nAChR subunit deletion in ventral midbrain.

    Science.gov (United States)

    Peng, Can; Engle, Staci E; Yan, Yijin; Weera, Marcus M; Berry, Jennifer N; Arvin, Matthew C; Zhao, Guiqing; McIntosh, J Michael; Chester, Julia A; Drenan, Ryan M

    2017-01-01

    Nicotinic acetylcholine receptors containing α4 subunits (α4β2* nAChRs) are critical for nicotinic cholinergic transmission and the addictive action of nicotine. To identify specific activities of these receptors in the adult mouse brain, we coupled targeted deletion of α4 nAChR subunits with behavioral and and electrophysiological measures of nicotine sensitivity. A viral-mediated Cre/lox approach allowed us to delete α4 from ventral midbrain (vMB) neurons. We used two behavioral assays commonly used to assess the motivational effects of drugs of abuse: home-cage oral self-administration, and place conditioning. Mice lacking α4 subunits in vMB consumed significantly more nicotine at the highest offered nicotine concentration (200 μg/mL) compared to control mice. Deletion of α4 subunits in vMB blocked nicotine-induced conditioned place preference (CPP) without affecting locomotor activity. Acetylcholine-evoked currents as well as nicotine-mediated increases in synaptic potentiation were reduced in mice lacking α4 in vMB. Immunostaining verified that α4 subunits were deleted from both dopamine and non-dopamine neurons in the ventral tegmental area (VTA). These results reveal that attenuation of α4* nAChR function in reward-related brain circuitry of adult animals may increase nicotine intake by enhancing the rewarding effects and/or reducing the aversive effects of nicotine.

  6. Delete-m jackknife for unequal m

    NARCIS (Netherlands)

    Busing, FMTA; Van Der Leeden, R

    In this paper, the delete-mj jackknife estimator is proposed. This estimator is based on samples obtained from the original sample by successively removing mutually exclusive groups of unequal size. In a Monte Carlo simulation study, a hierarchical linear model was used to evaluate the role of

  7. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li

    2014-01-01

    modification of the classical union-find data structure that supports delete, as well as makeset and union operations, in constant worst-case time, while still supporting find operations in O(log n) worst-case time and O(α_M/N_(n)) amortized time. Our analysis supplies, in particular, a very concise potential...

  8. Nature of frequent deletions in CEBPA.

    Science.gov (United States)

    Fuchs, Ota; Kostecka, Arnost; Provaznikova, Dana; Krasna, Blazena; Brezinova, Jana; Filkukova, Jitka; Kotlin, Roman; Kouba, Michal; Kobylka, Petr; Neuwirtova, Radana; Jonasova, Anna; Caniga, Miroslav; Schwarz, Jiri; Markova, Jana; Maaloufova, Jacqueline; Sponerova, Dana; Novakova, Ludmila; Cermak, Jaroslav

    2009-01-01

    C/EBPalpha (CCAAT/enhancer binding protein alpha) belongs to the family of leucine zipper transcription factors and is necessary for transcriptional control of granulocyte, adipocyte and hepatocyte differentiation, glucose metabolism and lung development. C/EBPalpha is encoded by an intronless gene. CEBPA mutations cause a myeloid differentiation block and were detected in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), multiple myeloma and non-Hodgkin's lymphoma (NHL) patients. In this study we identified in 41 individuals from 824 screened individuals (290 AML patients, 382 MDS patients, 56 NHL patients and 96 healthy individuals) a single class of 23 deletions in CEBPA gene which involved a direct repeat of at least 2 bp. These mutations are characterised by the loss of one of two same repeats at the ends of deleted sequence. Three most frequent repeats included in these deletions in CEBPA gene are CGCGAG (493-498_865-870), GCCAAGCAGC (508-517_907-916) and GG (486-487_885-886), all according to GenBank accession no. NM_004364.2. A mechanism for deletion formation between two repetitive sequences can be recombination events in the repair process. Double-stranded cut in DNA can initiate these recombination events of adjacent DNA sequences.

  9. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Erah

    Pharmacotherapy Group,. Faculty of Pharmacy, University of Benin,. Benin City, 300001 Nigeria. All rights reserved. Available online at http://www.tjpr.org. Research Article. Angiotensin Converting Enzyme Insertion/Deletion. Gene Polymorphism: An Observational Study among. Diabetic Hypertensive Subjects in Malaysia.

  10. Deletion 5q35.3

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F.; Tedrowe, N.A.; Tolworthy, J.A.; Patterson, R.M.; Ryan, S.G. [Univ. of Texas Health Science Center, San Antonio, TX (United States); Young, R.S. [Central Texas Perinatal Associates, Austin, TX (United States)

    1994-06-01

    The authors report on a 15-month-old boy with a de novo deletion of the terminal band of 5q, macrocephaly, mild retrognathia, anteverted nares with low flat nasal bridge, telecanthus, minor earlobe anomalies, bellshaped chest, diastasis recti, short fingers, and mild developmental delay.

  11. Grin1 receptor deletion within CRF neurons enhances fear memory.

    Directory of Open Access Journals (Sweden)

    Georgette Gafford

    Full Text Available Corticotropin releasing factor (CRF dysregulation is implicated in mood and anxiety disorders such as posttraumatic stress disorder (PTSD. CRF is expressed in areas engaged in fear and anxiety processing including the central amygdala (CeA. Complicating our ability to study the contribution of CRF-containing neurons to fear and anxiety behavior is the wide variety of cell types in which CRF is expressed. To manipulate specific subpopulations of CRF containing neurons, our lab has developed a mouse with a Cre recombinase gene driven by a CRF promoter (CRFp3.0Cre (Martin et al., 2010. In these studies, mice that have the gene that encodes NR1 (Grin1 flanked by loxP sites (floxed were crossed with our previously developed CRFp3.0Cre mouse to selectively disrupt Grin1 within CRF containing neurons (Cre+/fGrin1+. We find that disruption of Grin1 in CRF neurons did not affect baseline levels of anxiety, locomotion, pain sensitivity or exploration of a novel object. However, baseline expression of Grin1 was decreased in Cre+/fGrin1+ mice as measured by RTPCR. Cre+/fGrin1+ mice showed enhanced auditory fear acquisition and retention without showing any significant effect on fear extinction. We measured Gria1, the gene that encodes AMPAR1 and the CREB activator Creb1 in the amygdala of Cre+/fGrin1+ mice after fear conditioning. Both Gria1 and Creb1 were enhanced in the amygdala after training. To determine if the Grin1-expressing CRF neurons within the CeA are responsible for the enhancement of fear memory in adults, we infused a lentivirus with Cre driven by a CRF promoter (LV pCRF-Cre/fGrin1+ into the CeA of floxed Grin1 mice. Cre driven deletion of Grin1 specifically within CRF expressing cells in the CeA also resulted in enhanced fear memory acquisition and retention. Altogether, these findings suggest that selective disruption of Grin1 within CeA CRF neurons strongly enhances fear memory.

  12. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  13. Deletion of ghrelin prevents aging-associated obesity and muscle dysfunction without affecting longevity.

    Science.gov (United States)

    Guillory, Bobby; Chen, Ji-An; Patel, Shivam; Luo, Jiaohua; Splenser, Andres; Mody, Avni; Ding, Michael; Baghaie, Shiva; Anderson, Barbara; Iankova, Blaga; Halder, Tripti; Hernandez, Yamileth; Garcia, Jose M

    2017-08-01

    During aging, decreases in energy expenditure and locomotor activity lead to body weight and fat gain. Aging is also associated with decreases in muscle strength and endurance leading to functional decline. Here, we show that lifelong deletion of ghrelin prevents development of obesity associated with aging by modulating food intake and energy expenditure. Ghrelin deletion also attenuated the decrease in phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and downstream mediators in muscle, and increased the number of type IIa (fatigue resistant, oxidative) muscle fibers, preventing the decline in muscle strength and endurance seen with aging. Longevity was not affected by ghrelin deletion. Treatment of old mice with pharmacologic doses of ghrelin increased food intake, body weight, and muscle strength in both ghrelin wild-type and knockout mice. These findings highlight the relevance of ghrelin during aging and identify a novel AMPK-dependent mechanism for ghrelin action in muscle. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Deletion of ASK1 Protects against Hyperoxia-Induced Acute Lung Injury.

    Directory of Open Access Journals (Sweden)

    Jutaro Fukumoto

    Full Text Available Apoptosis signal-regulating kinase 1 (ASK1, a member of the MAPK kinase kinase kinase (MAP3K family, is activated by various stimuli, which include oxidative stress, endoplasmic reticulum (ER stress, calcium influx, DNA damage-inducing agents and receptor-mediated signaling through tumor necrosis factor receptor (TNFR. Inspiration of a high concentration of oxygen is a palliative therapy which counteracts hypoxemia caused by acute lung injury (ALI-induced pulmonary edema. However, animal experiments so far have shown that hyperoxia itself could exacerbate ALI through reactive oxygen species (ROS. Our previous data indicates that ASK1 plays a pivotal role in hyperoxia-induced acute lung injury (HALI. However, it is unclear whether or not deletion of ASK1 in vivo protects against HALI. In this study, we investigated whether ASK1 deletion would lead to attenuation of HALI. Our results show that ASK1 deletion in vivo significantly suppresses hyperoxia-induced elevation of inflammatory cytokines (i.e. IL-1β and TNF-α, cell apoptosis in the lung, and recruitment of immune cells. In summary, the results from the study suggest that deletion of ASK1 in mice significantly inhibits hyperoxic lung injury.

  15. Fine structure mapping and deletion analysis of the murine piebald locus

    Energy Technology Data Exchange (ETDEWEB)

    Metallinos, D.L.; Tilghman, S.M. (Princeton Univ., NJ (United States)); Oppenheimer, A.J. (Harvard Medical School, Boston, MA (United States)); Rinchik, E.M.; Russell, L.B. (Oak Ridge National Laboratory, TN (United States)); Dietrich, W. (Whitehead Institute for Biomedical Research, Cambridge, MA (United States))

    1994-01-01

    Piebald (s) is a recessive mutation that affects the development of two cell types of neural crest origin: melanocytes, responsible for pigment synthesis in the skin, and enteric ganglia, which innervate the lower bowel. As a result, mice carrying piebald mutations exhibit white spotting in the coat and aganglionic megacolon. Previously the gene had been localized to the distal half of mouse chromosome 14. To determine its precise location relative to molecular markers, an intersubspecific backcross was generated. Two anchor loci of chromosome 14, slaty and hypogonadal, in addition to simple sequence length repeat markers, were used to localize s to a 2-cM interval defined by the markers D14Mit38 and D14Mit42. The molecular markers were also used to characterize nine induced s alleles. Three of these mutations exhibited no deletions or rearrangements of the flanking markers, whereas the other six had two or more of these markers deleted. The extent of the deletions was found to be consistent with the severity of the homozygous phenotype. The location of deletion breakpoints in the induced alleles, coupled with the recombination breakpoints in the backcross progeny, provide useful molecular landmarks to define the location of the piebald gene.

  16. Deletion of TRAAK potassium channel affects brain metabolism and protects against ischemia.

    Directory of Open Access Journals (Sweden)

    Christophe Laigle

    Full Text Available Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K⁺ channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K⁺ channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak⁻/⁻ mice using a combination of in vivo magnetic resonance imaging (MRI techniques and multinuclear magnetic resonance spectroscopy (MRS methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak⁻/⁻ mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak⁺/⁺ mice. Upon ischemia, Traak⁻/⁻ mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak⁺/⁺ mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak⁻/⁻ mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke.

  17. Two unrelated children with overlapping 6q25.3 deletions, motor speech disorders, and language delays.

    Science.gov (United States)

    Peter, Beate; Lancaster, Hope; Vose, Caitlin; Fares, Amna; Schrauwen, Isabelle; Huentelman, Matthew

    2017-10-01

    Interstitial and terminal 6q25 deletions are associated with developmental delays, hypotonia, eye pathologies, craniofacial dysmorphologies, and structural brain anomalies. In most cases, speech and language deficits are not described in detail. We report on a case (Patient 1, age 7 years) with a de novo 6q25.3-qter deletion, 11.1 Mb long and encompassing 108 genes, and a case (Patient 2, age 5 years) with an inherited interstitial 6q25.3 deletion, located within Patient 1's deletion region and 403 kb long, the smallest 6q25 deletion reported to date. Both children have hypotonia, motor speech disorders, and expressive language delays. Patient 1's speech was characterized by childhood apraxia of speech (CAS) and dysarthria. Other findings include developmental delay, ataxic cerebral palsy, optic nerve dysplagia, and atypical brain morphologies regarding the corpus callosum and gyration patterns, a clinical profile that closely matches a previously reported case with a nearly identical deletion. Patient 2 had speech characterized by CAS and typical nonverbal processing abilities. His father, a carrier, had typical speech and language but showed difficulties with complex motor speech and hand motor tasks, similar to other adults with residual signs of CAS. The small deletion in this family contains the IGF2R-AIRN-SLC22A2-SLC22A3 gene cluster, which is associated with imprinting and maternal-specific expression of Igf2R, Slc22a2, and Slc22a3 in mice, whereas imprinting in humans is a polymorphic trait. The shared phenotypes in the two patients might be associated with the deletion of the gene cluster. © 2017 Wiley Periodicals, Inc.

  18. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... deletion syndrome is caused by a deletion of genetic material from a specific region in the long (q) ... This rearrangement is called a balanced translocation . No genetic material is gained or lost in a balanced translocation, ...

  19. Impaired neurogenesis by HIV-1-Gp120 is rescued by genetic deletion of fatty acid amide hydrolase enzyme.

    Science.gov (United States)

    Avraham, H K; Jiang, S; Fu, Y; Rockenstein, E; Makriyannis, A; Wood, J; Wang, L; Masliah, E; Avraham, S

    2015-10-01

    The HIV-envelope glycoprotein Gp120 is involved in neuronal injury and is associated with neuro-AIDS pathogenesis in the brain. Endocannabinoids are important lipid ligands in the CNS regulating neural functions, and their degeneration is controlled by hydrolysing enzymes such as the fatty acid amide hydrolase (FAAH). Here, we examined whether in vivo genetic deletion of Faah gene prevents HIV-1 Gp120-mediated effects on neurogenesis. We generated new GFAP/Gp120 transgenic (Tg) mice that have genetic deletion of Faah gene by mating glial fribillary acidic protein (GFAP)/Gp120 Tg mice with Faah-/- mice. Neurogenesis and cell death were assessed by immunocytochemical analysis. Endocannabinoid levels in the brain of the double GFAP/Gp120//Faah-/- mice were similar to those observed in Faah-/- mice. However, unlike the impaired neurogenesis observed in GFAP/Gp120 Tg mice and Faah-/- mice, these GFAP/Gp120//Faah-/ mice showed significantly improved neurogenesis in the hippocampus, indicated by a significant increase in neuroblasts and neuronal cells, an increase in BrdU(+) cells and doublecortin positive cells (DCX(+) ), and an increase in the number of PCNA. Furthermore, a significant decrease in astrogliosis and gliogenesis was observed in GFAP/Gp120//Faah-/-mice and neurogenesis was stimulated by neural progenitor cells (NPCs) and/or the newly formed NPC niches characterized by increased COX-2 expression and elevated levels of PGE2 . In vivo genetic ablation of Faah, resulted in enhanced neurogenesis through modulation of the newly generated NPC niches in GFAP/Gp120//Faah-/- mice. This suggests a novel approach of using FAAH inhibitors to enhance neurogenesis in HIV-1 infected brain. © 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society.

  20. Immunization with an Attenuated Severe Acute Respiratory Syndrome Coronavirus Deleted in E Protein Protects Against Lethal Respiratory Disease

    Science.gov (United States)

    Netland, Jason; DeDiego, Marta L.; Zhao, Jincun; Fett, Craig; Álvarez, Enrique; Nieto-Torres, José L.; Enjuanes, Luis; Perlman, Stanley

    2010-01-01

    The Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) caused substantial morbidity and mortality in 2002-2003. Deletion of the envelope (E) protein modestly diminished virus growth in tissue culture but abrogated virulence in animals. Here, we show that immunization with rSARS-CoV-ΔE or SARS-CoV-Δ[E,6-9b] (deleted in accessory proteins (6,7a,7b,8a,8b,9b) in addition to E) nearly completely protected BALB/c mice from fatal respiratory disease caused by mouse-adapted SARS-CoV and partly protected hACE2 Tg mice from lethal disease. hACE2 Tg mice, which express the human SARS-CoV receptor, are extremely susceptible to infection. We also show that rSARS-CoV-ΔE and rSARS-CoV-Δ[E,6-9b] induced anti-virus T cell and antibody responses. Further, the E-deleted viruses were stable after 16 blind passages through tissue culture cells, with only a single mutation in the surface glycoprotein detected. The passaged virus remained avirulent in mice. These results suggest that rSARS-CoV-ΔE is an efficacious vaccine candidate that might be useful if SARS recurred. PMID:20110095

  1. Deletion of von Hippel–Lindau Protein Converts Renin-Producing Cells into Erythropoietin-Producing Cells

    Science.gov (United States)

    Paliege, Alexander; Willam, Carsten; Schwarzensteiner, Ilona; Schucht, Kathrin; Neymeyer, Hanna; Sequeira-Lopez, Maria Luisa S.; Bachmann, Sebastian; Gomez, R. Ariel; Eckardt, Kai-Uwe; Kurtz, Armin

    2013-01-01

    States of low perfusion pressure of the kidney associate with hyperplasia or expansion of renin-producing cells, but it is unknown whether hypoxia-triggered genes contribute to these changes. Here, we stabilized hypoxia-inducible transcription factors (HIFs) in mice by conditionally deleting their negative regulator, Vhl, using the Cre/loxP system with renin-1d promoter-driven Cre expression. Vhl −/−REN mice were viable and had normal BP. Deletion of Vhl resulted in constitutive accumulation of HIF-2α in afferent arterioles and glomerular cells and HIF-1α in collecting duct cells of the adult kidney. The preglomerular vascular tree developed normally, but far fewer renin-expressing cells were present, with more than 70% of glomeruli not containing renin cells at the typical juxtaglomerular position. Moreover, these mice had an attenuated expansion of renin-producing cells in response to a low-salt diet combined with an ACE inhibitor. However, renin-producing cells of Vhl −/−REN mice expressed the erythropoietin gene, and they were markedly polycythemic. Taken together, these results suggest that hypoxia-inducible genes, regulated by VHL, are essential for normal development and physiologic adaptation of renin-producing cells. In addition, deletion of Vhl shifts the phenotype of juxtaglomerular cells from a renin- to erythropoietin-secreting cell type, presumably in response to HIF-2 accumulation. PMID:23393316

  2. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    Science.gov (United States)

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  3. Tph2 gene deletion enhances amphetamine-induced hypermotility: effect of 5-HT restoration and role of striatal noradrenaline release.

    Science.gov (United States)

    Carli, Mirjana; Kostoula, Chrysaugi; Sacchetti, Giuseppina; Mainolfi, Pierangela; Anastasia, Alessia; Villani, Claudia; Invernizzi, Roberto William

    2015-11-01

    Variants of tryptophan hydroxylase-2 (Tph2), the gene encoding enzyme responsible for the synthesis of brain serotonin (5-HT), have been associated with neuropsychiatric disorders, substance abuse and addiction. This study assessed the effect of Tph2 gene deletion on motor behavior and found that motor activity induced by 2.5 and 5 mg/kg amphetamine was enhanced in Tph2(-/-) mice. Using the in vivo microdialysis technique we found that the ability of amphetamine to stimulate noradrenaline (NA) release in the striatum was reduced by about 50% in Tph2(-/-) mice while the release of dopamine (DA) was not affected. Tph2 deletion did not affect the release of NA and DA in the prefrontal cortex. The role of endogenous 5-HT in enhancing the effect of amphetamine was confirmed showing that treatment with the 5-HT precursor 5-hydroxytryptophan (10 mg/kg) restored tissue and extracellular levels of brain 5-HT and the effects of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. Treatment with the NA precursor dihydroxyphenylserine (400 mg/kg) was sufficient to restore the effect of amphetamine on striatal NA release and motor activity in Tph2(-/-) mice. These findings indicate that amphetamine-induced hyperactivity is attenuated by endogenous 5-HT through the inhibition of striatal NA release. Tph2(-/-) mice may be a useful preclinical model to assess the role of 5-HT-dependent mechanisms in the action of psychostimulants. Acute sensitivity to the motor effects of amphetamine has been associated to increased risk of psychostimulant abuse. Here, we show that deletion of Tph2, the gene responsible for brain 5-HT synthesis, enhances the motor effect of amphetamine in mice through the inhibition of striatal NA release. This suggests that Tph2(-/-) mice is a useful preclinical model to assess the role of 5-HT-dependent mechanisms in psychostimulants action. Tph2, tryptophan hydroxylase-2. © 2015 International Society for Neurochemistry.

  4. Deletion of leptin signaling in vagal afferent neurons results in hyperphagia and obesity.

    Science.gov (United States)

    de Lartigue, Guillaume; Ronveaux, Charlotte C; Raybould, Helen E

    2014-09-01

    The vagal afferent pathway senses hormones released from the gut in response to nutritional cues and relays these signals to the brain. We tested the hypothesis that leptin resistance in vagal afferent neurons (VAN) is responsible for the onset of hyperphagia by developing a novel conditional knockout mouse to delete leptin receptor selectively in sensory neurons (Nav1.8/LepR (fl/fl) mice). Chow fed Nav1.8/LepR (fl/fl) mice weighed significantly more and had increased adiposity compared with wildtype mice. Cumulative food intake, meal size, and meal duration in the dark phase were increased in Nav1.8/LepR (fl/fl) mice; energy expenditure was unaltered. Reduced satiation in Nav1.8/LepR (fl/fl) mice is in part due to reduced sensitivity of VAN to CCK and the subsequent loss of VAN plasticity. Crucially Nav1.8/LepR (l/fl) mice did not gain further weight in response to a high fat diet. We conclude that disruption of leptin signaling in VAN is sufficient and necessary to promote hyperphagia and obesity.

  5. Deletion of the Imprinted Gene Grb10 Promotes Hematopoietic Stem Cell Self-Renewal and Regeneration.

    Science.gov (United States)

    Yan, Xiao; Himburg, Heather A; Pohl, Katherine; Quarmyne, Mamle; Tran, Evelyn; Zhang, Yurun; Fang, Tiancheng; Kan, Jenny; Chao, Nelson J; Zhao, Liman; Doan, Phuong L; Chute, John P

    2016-11-01

    Imprinted genes are differentially expressed by adult stem cells, but their functions in regulating adult stem cell fate are incompletely understood. Here we show that growth factor receptor-bound protein 10 (Grb10), an imprinted gene, regulates hematopoietic stem cell (HSC) self-renewal and regeneration. Deletion of the maternal allele of Grb10 in mice (Grb10m/+ mice) substantially increased HSC long-term repopulating capacity, as compared to that of Grb10+/+ mice. After total body irradiation (TBI), Grb10m/+ mice demonstrated accelerated HSC regeneration and hematopoietic reconstitution, as compared to Grb10+/+ mice. Grb10-deficient HSCs displayed increased proliferation after competitive transplantation or TBI, commensurate with upregulation of CDK4 and Cyclin E. Furthermore, the enhanced HSC regeneration observed in Grb10-deficient mice was dependent on activation of the Akt/mTORC1 pathway. This study reveals a function for the imprinted gene Grb10 in regulating HSC self-renewal and regeneration and suggests that the inhibition of Grb10 can promote hematopoietic regeneration in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  7. Liver-Specific Deletion of Phosphatase and Tensin Homolog Deleted on Chromosome 10 Significantly Ameliorates Chronic EtOH-Induced Increases in Hepatocellular Damage.

    Directory of Open Access Journals (Sweden)

    Colin T Shearn

    Full Text Available Alcoholic liver disease is a significant contributor to global liver failure. In murine models, chronic ethanol consumption dysregulates PTEN/Akt signaling. Hepatospecific deletion of phosphatase and tensin homolog deleted on chromosome 10 (PTENLKO mice possess constitutive activation of Akt(s and increased de novo lipogenesis resulting in increased hepatocellular steatosis. This makes PTENLKO a viable model to examine the effects of ethanol in an environment of preexisting steatosis. The aim of this study was to determine the impact of chronic ethanol consumption and the absence of PTEN (PTENLKO compared to Alb-Cre control mice (PTENf/f on hepatocellular damage as evidenced by changes in lipid accumulation, protein carbonylation and alanine amino transferase (ALT. In the control PTENf/f animals, ethanol significantly increased ALT, liver triglycerides and steatosis. In contrast, chronic ethanol consumption in PTENLKO mice decreased hepatocellular damage when compared to PTENLKO pair-fed controls. Consumption of ethanol elevated protein carbonylation in PTENf/f animals but had no effect in PTENLKO animals. In PTENLKO mice, overall hepatic mRNA expression of genes that contribute to GSH homeostasis as well as reduced glutathione (GSH and oxidized glutathione (GSSG concentrations were significantly elevated compared to respective PTENf/f counterparts. These data indicate that during conditions of constitutive Akt activation and steatosis, increased GSH homeostasis assists in mitigation of ethanol-dependent induction of oxidative stress and hepatocellular damage. Furthermore, data herein suggest a divergence in EtOH-induced hepatocellular damage and increases in steatosis due to polyunsaturated fatty acids downstream of PTEN.

  8. 49 CFR 7.6 - Deletion of identifying detail.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Deletion of identifying detail. 7.6 Section 7.6... To Be Made Public by DOT § 7.6 Deletion of identifying detail. Whenever it is determined to be necessary to prevent a clearly unwarranted invasion of personal privacy, identifying details will be deleted...

  9. Rac1 deletion causes thymic atrophy.

    Directory of Open Access Journals (Sweden)

    Lukas Hunziker

    Full Text Available The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation.

  10. Deletion of chromosome 13 in Moebius syndrome.

    Science.gov (United States)

    Slee, J J; Smart, R D; Viljoen, D L

    1991-01-01

    A girl aged 2 1/2 years with Moebius syndrome was found to have a deletion of band q12.2 in chromosome 13 (46,XX,del(13)(q12.2]. This is the second report concerning involvement of chromosome 13q and Moebius syndrome. The observation raises the possibility that a gene responsible for Moebius syndrome is located in this region of chromosome 13. Images PMID:1870098

  11. Deletion of chromosome 13 in Moebius syndrome.

    OpenAIRE

    Slee, J J; Smart, R D; Viljoen, D L

    1991-01-01

    A girl aged 2 1/2 years with Moebius syndrome was found to have a deletion of band q12.2 in chromosome 13 (46,XX,del(13)(q12.2]. This is the second report concerning involvement of chromosome 13q and Moebius syndrome. The observation raises the possibility that a gene responsible for Moebius syndrome is located in this region of chromosome 13.

  12. Chromosome 11q13 deletion syndrome

    OpenAIRE

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee; Eun, Baik-Lin

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the ...

  13. Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis.

    Science.gov (United States)

    Mahdaviani, Kiana; Benador, Ilan Y; Su, Shi; Gharakhanian, Raffi A; Stiles, Linsey; Trudeau, Kyle M; Cardamone, Maria; Enríquez-Zarralanga, Violeta; Ritou, Eleni; Aprahamian, Tamar; Oliveira, Marcus F; Corkey, Barbara E; Perissi, Valentina; Liesa, Marc; Shirihai, Orian S

    2017-07-01

    BAT-controlled thermogenic activity is thought to be required for its capacity to prevent the development of insulin resistance. This hypothesis predicts that mediators of thermogenesis may help prevent diet-induced insulin resistance. We report that the mitochondrial fusion protein Mitofusin 2 (Mfn2) in BAT is essential for cold-stimulated thermogenesis, but promotes insulin resistance in obese mice. Mfn2 deletion in mice through Ucp1-cre (BAT-Mfn2-KO) causes BAT lipohypertrophy and cold intolerance. Surprisingly however, deletion of Mfn2 in mice fed a high fat diet (HFD) results in improved insulin sensitivity and resistance to obesity, while impaired cold-stimulated thermogenesis is maintained. Improvement in insulin sensitivity is associated with a gender-specific remodeling of BAT mitochondrial function. In females, BAT mitochondria increase their efficiency for ATP-synthesizing fat oxidation, whereas in BAT from males, complex I-driven respiration is decreased and glycolytic capacity is increased. Thus, BAT adaptation to obesity is regulated by Mfn2 and with BAT-Mfn2 absent, BAT contribution to prevention of insulin resistance is independent and inversely correlated to whole-body cold-stimulated thermogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Molecular refinement of the 1p36 deletion syndrome reveals size diversity and a preponderance of maternally derived deletions.

    Science.gov (United States)

    Wu, Y Q; Heilstedt, H A; Bedell, J A; May, K M; Starkey, D E; McPherson, J D; Shapira, S K; Shaffer, L G

    1999-02-01

    The deletion of chromosome 1p36 is a newly recognized, relatively common contiguous gene deletion syndrome with a variable phenotype. The clinical features have recently been delineated and molecular analysis indicates that the prevalence of certain phenotypic features appears to correlate with deletion size. Phenotype/genotype comparisons have allowed the assignment of certain clinical features to specific deletion intervals, significantly narrowing the regions within which to search for candidate genes. We have extensively characterized the deletion regions in 30 cases using microsatellite markers and fluorescence in situ hybridization analyses. The map order of 28 microsatellite markers spanning the deletion region was obtained by a combination of genotypic analysis and physical mapping. The deletion region was divided into six intervals and breakpoints were found to cluster in mainly two regions. Molecular analysis of the deletions showed that two patients had complex re-arrangements; these cases shared their distal and proximal breakpoints in the two common breakpoint regions. Of the de novo deletions ( n = 28) in whichparental samples were available and the analysis was informative ( n = 27), there were significantly morematernally derived deletions ( n = 21) than paternally derived deletions ( n = 6) (chi1(2) = 8.35, P deletion panel have delineated specific areas in which to focus the search for the causative genes for the features of this syndrome.

  15. Lung development is not necessary for diaphragm development in mice.

    Science.gov (United States)

    Arkovitz, Marc S; Hyatt, Brian A; Shannon, John M

    2005-09-01

    Congenital diaphragmatic hernia affects approximately 1 in every 2000 live births. The etiology of these diaphragmatic defects is unknown. Using mice with a targeted deletion of fibroblast growth factor 10 (FGF10), which display a complete lack of lung tissue, we have examined the relationship between lung hypoplasia and diaphragmatic development. The diaphragms of FGF10 null mice were examined at 2 embryonic time-points and compared with their heterozygous and wild-type littermates. FGF10 null mice had phenotypically normal diaphragms when compared with wild-type littermates at both time-points studied. Normal diaphragm development appears to occur independent of lung development in mice.

  16. Deletion of Rb1 induces both hyperproliferation and cell death in murine germinal center B cells.

    Science.gov (United States)

    He, Zhiwen; O'Neal, Julie; Wilson, William C; Mahajan, Nitin; Luo, Jun; Wang, Yinan; Su, Mack Y; Lu, Lan; Skeath, James B; Bhattacharya, Deepta; Tomasson, Michael H

    2016-03-01

    The retinoblastoma gene (RB1) has been implicated as a tumor suppressor in multiple myeloma (MM), yet its role remains unclear because in the majority of cases with 13q14 deletions, un-mutated RB1 remains expressed from the retained allele. To explore the role of Rb1 in MM, we examined the functional consequences of single- and double-copy Rb1 loss in germinal center B cells, the cells of origin of MM. We generated mice without Rb1 function in germinal center B cells by crossing Rb1(Flox/Flox) with C-γ-1-Cre (Cγ1) mice expressing the Cre recombinase in class-switched B cells in a p107(-/-) background to prevent p107 from compensating for Rb1 loss (Cγ1-Rb1(F/F)-p107(-/-)). All mice developed normally, but B cells with two copies of Rb1 deleted (Cγ1-Rb1(F/F)-p107(-/-)) exhibited increased proliferation and cell death compared with Cγ1-Rb1(+/+)-p107(-/-) controls ex vivo. In vivo, Cγ1-Rb1(F/F)-p107(-/-) mice had a lower percentage of splenic B220+ cells and reduced numbers of bone marrow antigen-specific secreting cells compared with control mice. Our data indicate that Rb1 loss induces both cell proliferation and death in germinal center B cells. Because no B-cell malignancies developed after 1 year of observation, our data also suggest that Rb1 loss is not sufficient to transform post-germinal center B cells and that additional, specific mutations are likely required to cooperate with Rb1 loss to induce malignant transformation. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  17. Cortical GluN2B deletion attenuates punished suppression of food reward-seeking.

    Science.gov (United States)

    Radke, Anna K; Nakazawa, Kazu; Holmes, Andrew

    2015-10-01

    Compulsive behavior, which is a hallmark of psychiatric disorders such as addiction and obsessive-compulsive disorder, engages corticostriatal circuits. Previous studies indicate a role for corticostriatal N-methyl-D-aspartate receptors (NMDARs) in mediating compulsive-like responding for drugs of abuse, but the specific receptor subunits controlling reward-seeking in the face of punishment remain unclear. The current study assessed the involvement of corticostriatal GluN2B-containing NMDARs in measures of persistent and punished food reward-seeking. Mice with genetic deletion of GluN2B in one of three distinct neuronal populations, cortical principal neurons, forebrain interneurons, or striatal medium spiny neurons, were tested for (1) sustained food reward-seeking when reward was absent, (2) reward-seeking under a progressive ratio schedule of reinforcement, and (3) persistent reward-seeking after a footshock punishment. Mutant mice with genetic deletion of GluN2B in cortical principal neurons demonstrated attenuated suppression of reward-seeking during punishment. These mice performed normally on other behavioral measures, including an assay for pain sensitivity. Mutants with interneuronal or striatal GluN2B deletions were normal on all behavioral assays. Current findings offer novel evidence that loss of GluN2B-containing NMDARs expressed on principal neurons in the cortex results in reduced punished food reward-seeking. These data support the involvement of GluN2B subunit in cortical circuits regulating cognitive flexibility in a variety of settings, with implications for understanding the basis of inflexible behavior in neuropsychiatric disorders including obsessive-compulsive disorders (OCD) and addictions.

  18. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer.

    Science.gov (United States)

    Patra, Krushna C; Wang, Qi; Bhaskar, Prashanth T; Miller, Luke; Wang, Zebin; Wheaton, Will; Chandel, Navdeep; Laakso, Markku; Muller, William J; Allen, Eric L; Jha, Abhishek K; Smolen, Gromoslaw A; Clasquin, Michelle F; Robey, Brooks; Hay, Nissim

    2013-08-12

    Accelerated glucose metabolism is a common feature of cancer cells. Hexokinases catalyze the first committed step of glucose metabolism. Hexokinase 2 (HK2) is expressed at high level in cancer cells, but only in a limited number of normal adult tissues. Using Hk2 conditional knockout mice, we showed that HK2 is required for tumor initiation and maintenance in mouse models of KRas-driven lung cancer, and ErbB2-driven breast cancer, despite continued HK1 expression. Similarly, HK2 ablation inhibits the neoplastic phenotype of human lung and breast cancer cells in vitro and in vivo. Systemic Hk2 deletion is therapeutic in mice bearing lung tumors without adverse physiological consequences. Hk2 deletion in lung cancer cells suppressed glucose-derived ribonucleotides and impaired glutamine-derived carbon utilization in anaplerosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury.

    Science.gov (United States)

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-27

    Krüppel-like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen-inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non-SMCs including endothelial cells (ECs), we determined if Tie2 promoter-dependent deletion of Klf4 in ECs and hematopoietic cells affected injury-induced neointimal formation. Klf4 conditional knockout (cKO) mice were generated by breeding Tie2-Cre mice and Klf4 floxed mice, and their phenotype was analyzed after carotid ligation injury. Results showed that injury-induced repression of SMC differentiation markers was unaffected by Tie2 promoter-dependent Klf4 deletion. However, of interest, neointimal formation was significantly enhanced in Klf4-cKO mice 21 days following carotid injury. Moreover, Klf4-cKO mice exhibited an augmented proliferation rate, enhanced accumulation of macrophages and T lymphocytes, and elevated expression of cell adhesion molecules including vascular cell adhesion molecule-1 (Vcam1) and E-selectin in injured arteries. Mechanistic analyses in cultured ECs revealed that Klf4 inhibited tumor necrosis factor-α-induced expression of Vcam1 through blocking the binding of nuclear factor-κB to the Vcam1 promoter. These results provide evidence that Klf4 in non-SMCs such as ECs regulates neointimal formation by repressing arterial inflammation following vascular injury.

  20. Deletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

    Science.gov (United States)

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Background Krüppel‐like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen‐inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non‐SMCs including endothelial cells (ECs), we determined if Tie2 promoter‐dependent deletion of Klf4 in ECs and hematopoietic cells affected injury‐induced neointimal formation. Methods and Results Klf4 conditional knockout (cKO) mice were generated by breeding Tie2‐Cre mice and Klf4 floxed mice, and their phenotype was analyzed after carotid ligation injury. Results showed that injury‐induced repression of SMC differentiation markers was unaffected by Tie2 promoter‐dependent Klf4 deletion. However, of interest, neointimal formation was significantly enhanced in Klf4‐cKO mice 21 days following carotid injury. Moreover, Klf4‐cKO mice exhibited an augmented proliferation rate, enhanced accumulation of macrophages and T lymphocytes, and elevated expression of cell adhesion molecules including vascular cell adhesion molecule–1 (Vcam1) and E‐selectin in injured arteries. Mechanistic analyses in cultured ECs revealed that Klf4 inhibited tumor necrosis factor‐α–induced expression of Vcam1 through blocking the binding of nuclear factor‐κB to the Vcam1 promoter. Conclusions These results provide evidence that Klf4 in non‐SMCs such as ECs regulates neointimal formation by repressing arterial inflammation following vascular injury. PMID:24470523

  1. DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn's disease

    DEFF Research Database (Denmark)

    Renner, Marcus; Bergmann, Gaby; Krebs, Inge

    2007-01-01

    BACKGROUND & AIMS: Impaired mucosal defense plays an important role in the pathogenesis of Crohn's disease (CD), one of the main subtypes of inflammatory bowel disease (IBD). Deleted in malignant brain tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein with predominant......, immunohistochemistry, and mRNA in situ hybridization. Genetic polymorphisms within DMBT1 were analyzed in an Italian IBD case-control sample. Dmbt1(-/-) mice were generated, characterized, and analyzed for their susceptibility to dextran sulfate sodium-induced colitis. RESULTS: DMBT1 levels correlate with disease...

  2. Deletion of Krüppel‐Like Factor 4 in Endothelial and Hematopoietic Cells Enhances Neointimal Formation Following Vascular Injury

    OpenAIRE

    Yoshida, Tadashi; Yamashita, Maho; Horimai, Chihiro; Hayashi, Matsuhiko

    2014-01-01

    Background Krüppel‐like factor 4 (Klf4) is involved in a variety of cellular functions by activating or repressing the transcription of multiple genes. Results of previous studies showed that tamoxifen‐inducible global deletion of the Klf4 gene in mice accelerated neointimal formation following vascular injury, in part via enhanced proliferation of smooth muscle cells (SMCs). Because Klf4 is also expressed in non‐SMCs including endothelial cells (ECs), we determined if Tie2 promoter‐dependent...

  3. De novo deletion of HOXB gene cluster in a patient with failure to thrive, developmental delay, gastroesophageal reflux and bronchiectasis.

    Science.gov (United States)

    Pajusalu, Sander; Reimand, Tiia; Uibo, Oivi; Vasar, Maire; Talvik, Inga; Zilina, Olga; Tammur, Pille; Õunap, Katrin

    2015-01-01

    We report a female patient with a complex phenotype consisting of failure to thrive, developmental delay, congenital bronchiectasis, gastroesophageal reflux and bilateral inguinal hernias. Chromosomal microarray analysis revealed a 230 kilobase deletion in chromosomal region 17q21.32 (arr[hg19] 17q21.32(46 550 362-46 784 039)×1) encompassing only 9 genes - HOXB1 to HOXB9. The deletion was not found in her mother or father. This is the first report of a patient with a HOXB gene cluster deletion involving only HOXB1 to HOXB9 genes. By comparing our case to previously reported five patients with larger chromosomal aberrations involving the HOXB gene cluster, we can suppose that HOXB gene cluster deletions are responsible for growth retardation, developmental delay, and specific facial dysmorphic features. Also, we suppose that bilateral inguinal hernias, tracheo-esophageal abnormalities, and lung malformations represent features with incomplete penetrance. Interestingly, previously published knock-out mice with targeted heterozygous deletion comparable to our patient did not show phenotypic alterations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Two new large deletions of the AVPR2 gene causing nephrogenic diabetes insipidus and a review of previously published deletions.

    Science.gov (United States)

    Anesi, Laura; de Gemmis, Paola; Galla, Daniela; Hladnik, Uros

    2012-10-01

    In this paper, we report two new original deletions and present an extended review of the previously characterized AVPR2 gene deletions to better understand the underlying deletion mechanisms. The two novel deletions were defined using polymerase chain reaction mapping and junction fragment sequencing. Bioinformatic analysis was performed on both the previously mapped deletions and the novel ones through several web tools. In our two patients with nephrogenic diabetes insipidus, we found a 23 755 bp deletion and a 9264 bp deletion both comprising the entire AVPR2 gene and part of the ARHGAP4 gene. Through bioinformatic studies, the smallest overlapping region as well as several motifs and repeats that are known to promote rearrangements were confirmed. Through this study, it was determined that the deletion mechanisms in the AVPR2 region do not follow the rules of non-allelic homologous recombination. Two of the 13 deletions can be attributed to the fork stalling and template switching (FoSTeS) mechanism, whereas the remaining 11 deletions could be caused either by non-homologous end joining or by the FoSTeS mechanism. Although no recurrence was found, several groupings of deletion breakpoints were identified.

  5. Nod2 mediates susceptibility to Yersinia pseudotuberculosis in mice.

    Directory of Open Access Journals (Sweden)

    Ulrich Meinzer

    Full Text Available Nucleotide oligomerisation domain 2 (NOD2 is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.

  6. Protective Role of Aldose Reductase Deletion in an Animal Model of Oxygen-Induced Retinopathy

    Directory of Open Access Journals (Sweden)

    Zhongjie Fu

    2011-05-01

    Full Text Available Retinopathy of prematurity (ROP is a common disease occurred in premature babies. Both vascular abnormality and neural dysfunction of the retina were reported, and oxidative stress was involved. Previously, it has been showed that deficiency of aldose reductase (AR, the rate-limiting enzyme in polyol pathway, lowered oxidative stress. Here, the effect of AR deletion on neonatal retinal injury was investigated by using a mouse model of ROP (oxygen-induced retinopathy, OIR. Seven-day-old pups were exposed to 75% oxygen for 5 days and then returned to room air. The vascular changes and neuronal/glial responses were examined and compared between wild-type and AR-deficient OIR mice. Significantly reduced vaso-obliterated area, blood vessel leakage, and early revascularization were observed in AR-deficient OIR mice. Moreover, reduced amacrine cells and less distorted strata were observed in AR-deficient OIR mice. Less astrocytic immunoreactivity and reduced Müller cell gliosis were also observed in AR-deficient mice. After OIR, nitrotyrosine immunoreactivity and poly (ADP-ribose (PAR translocation, which are two oxidative stress markers, were decreased in AR-deficient mice. Significant decrease in VEGF, pho-Erk1/2, pho-Akt, and pho-I?B expression was found in AR-deficient OIR retinae. Thus, these observations suggest that the deficiency of aldose reductase may protect the retina in the OIR model.

  7. Selective deletion of Connexin 40 in renin-producing cells impairs renal baroreceptor function and is associated with arterial hypertension

    Science.gov (United States)

    Wagner, Charlotte; Jobs, Alexander; Schweda, Frank; Kurtz, Lisa; Kurt, Birguel; Sequeira Lopez, Maria L.; Gomez, R. Ariel; van Veen, Toon A.B.; de Wit, Cor; Kurtz, Armin

    2011-01-01

    Renin-producing juxtaglomerular cells are connected to each other and to endothelial cells of afferent arterioles by gap junctions containing Connexin 40 (Cx40), abundantly expressed by these two cell types. Here, we generated mice with cell-specific deletion of Cx40 in endothelial and in renin-producing cells, as its global deletion caused local dissociation of renin-producing cells from endothelial cells, renin hypersecretion, and hypertension. In mice lacking endothelial Cx40, the blood pressure, renin-producing cell distribution, and the control of renin secretion were similar to wild-type mice. In contrast, mice deficient for Cx40 in renin-producing cells were hypertensive and these cells were ectopically localized. Although plasma renin activity and kidney renin mRNA levels of these mice were not different from controls, the negative regulation of renin secretion by pressure was inverted to a positive feedback in kidneys lacking Cx40 in renin-producing cells. Thus, our findings show that endothelial Cx40 is not essential for the control of renin expression and/or release. Cx40 in renin-producing cells is required for their correct positioning in the juxtaglomerular area and the control of renin secretion by pressure. PMID:20686449

  8. Sequence analysis of 17 NRXN1 deletions

    DEFF Research Database (Denmark)

    Hoeffding, Louise Kristine Enggaard; Hansen, Thomas; Ingason, Andrés

    2014-01-01

    into the molecular mechanisms governing such genomic rearrangements may increase our understanding of disease pathology and evolutionary processes. Here we analyse 17 carriers of non-recurrent deletions in the NRXN1 gene, which have been associated with neurodevelopmental disorders, e.g. schizophrenia, autism......Genome instability plays fundamental roles in human evolution and phenotypic variation within our population. This instability leads to genomic rearrangements that are involved in a wide variety of human disorders, including congenital and neurodevelopmental disorders, and cancers. Insight...

  9. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  10. Deletion of the amino acid transporter Slc6a14 suppresses tumour growth in spontaneous mouse models of breast cancer.

    Science.gov (United States)

    Babu, Ellappan; Bhutia, Yangzom D; Ramachandran, Sabarish; Gnanaprakasam, Jaya P; Prasad, Puttur D; Thangaraju, Muthusamy; Ganapathy, Vadivel

    2015-07-01

    SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo. In the present study, we interrogated the role of this transporter in breast cancer by deleting Slc6a14 in mice and monitoring the consequences of this deletion in models of spontaneous breast cancer (Polyoma middle T oncogene-transgenic mouse and mouse mammary tumour virus promoter-Neu-transgenic mouse). Slc6a14-knockout mice are viable, fertile and phenotypically normal. The plasma amino acids were similar in wild-type and knockout mice and there were no major compensatory changes in the expression of other amino acid transporter mRNAs. There was also no change in mammary gland development in the knockout mouse. However, when crossed with PyMT-Tg mice or MMTV/Neu (mouse mammary tumour virus promoter-Neu)-Tg mice, the development and progression of breast cancer were markedly decreased on Slc6a14(-/-) background. Analysis of transcriptomes in tumour tissues from wild-type mice and Slc6a14-null mice indicated no compensatory changes in the expression of any other amino acid transporter mRNA. However, the tumours from the null mice showed evidence of amino acid starvation, decreased mTOR signalling and decreased cell proliferation. These studies demonstrate that SLC6A14 is critical for the maintenance of amino acid nutrition and optimal mammalian target of rapamycin (mTOR) signalling in ER+ breast cancer and that the transporter is a potential target for development of a novel class of anti-cancer drugs targeting amino acid nutrition in tumour cells. © 2015 Authors; published by Portland Press Limited.

  11. Targeted deletion of RANKL in M cell inducer cells by the Col6a1-Cre driver.

    Science.gov (United States)

    Nagashima, Kazuki; Sawa, Shinichiro; Nitta, Takeshi; Prados, Alejandro; Koliaraki, Vasiliki; Kollias, George; Nakashima, Tomoki; Takayanagi, Hiroshi

    2017-11-04

    The gut-associated lymphoid tissues (GALTs), including Peyer's patches (PPs), cryptopatches (CPs) and isolated lymphoid follicles (ILFs), establish a host-microbe symbiosis by the promotion of immune reactions against gut microbes. Microfold cell inducer (MCi) cells in GALTs are the recently identified mesenchymal cells that express the cytokine RANKL and initiate bacteria-specific immunoglobulin A (IgA) production via induction of microfold (M) cell differentiation. In the previous study, the Twist2-Cre driver was utilized for gene deletion in mesenchymal cells including MCi cells. In order to investigate MCi cells more extensively, it will be necessary to develop experimental tools in addition to the Twist2-Cre driver mice and characterize such drivers in specificity and efficiency. Here we show that M cell differentiation and IgA production are impaired in the targeted deletion of RANKL by the Col6a1-Cre driver. We compared Col6a1-Cre with Twist2-Cre in terms of the specificity for mesenchymal cells in GALTs. Col6a1-Cre CAG-CAT-EGFP mice exhibited EGFP expression in podoplanin+CD31- cells including MCi cells, while Twist2-Cre mice were shown to target endothelial cells and podoplanin+CD31- cells. Tnfsf11fl/ΔCol6a1-Cre mice exhibited the absence of M cells and severe IgA reduction together with an alteration in gut microbial composition. Moreover, we analyzed germ free mice to test whether changes in the microbiota are the cause of M cell deficiency. M cell differentiation was normal in the CPs/ILFs of germ free mice, indicating that MCi cells induce M cells independently of microbial colonization. This study demonstrates that Col6a1-Cre driver mice are as useful as Twist2-Cre driver mice for functional analyses of GALT-resident mesenchymal cells, including MCi cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Both genetic deletion and pharmacological blockade of lysophosphatidic acid LPA1 receptor results in increased alcohol consumption.

    Science.gov (United States)

    Castilla-Ortega, Estela; Pavón, Francisco Javier; Sánchez-Marín, Laura; Estivill-Torrús, Guillermo; Pedraza, Carmen; Blanco, Eduardo; Suárez, Juan; Santín, Luis; Rodríguez de Fonseca, Fernando; Serrano, Antonia

    2016-04-01

    Lysophosphatidic acid species (LPA) are lipid bioactive signaling molecules that have been recently implicated in the modulation of emotional and motivational behaviors. The present study investigates the consequences of either genetic deletion or pharmacological blockade of lysophosphatidic acid receptor-1 (LPA1) in alcohol consumption. The experiments were performed in alcohol-drinking animals by using LPA1-null mice and administering the LPA1 receptor antagonist Ki16425 in both mice and rats. In the two-bottle free choice paradigm, the LPA1-null mice preferred the alcohol more than their wild-type counterparts. Whereas the male LPA1-null mice displayed this higher preference at all doses tested, the female LPA1-null mice only consumed more alcohol at 6% concentration. The male LPA1-null mice were then further characterized, showing a notably increased ethanol drinking after a deprivation period and a reduced sleep time after acute ethanol administration. In addition, LPA1-null mice were more anxious than the wild-type mice in the elevated plus maze test. For the pharmacological experiments, the acute administration of the antagonist Ki16425 consistently increased ethanol consumption in both wild-type mice and rats; while it did not modulate alcohol drinking in the LPA1-null mice and lacked intrinsic rewarding properties and locomotor effects in a conditioned place preference paradigm. In addition, LPA1-null mice exhibited a marked reduction on the expression of glutamate-transmission-related genes in the prefrontal cortex similar to those described in alcohol-exposed rodents. Results suggest a relevant role for the LPA/LPA1 signaling system in alcoholism. In addition, the LPA1-null mice emerge as a new model for genetic vulnerability to excessive alcohol drinking. The pharmacological manipulation of LPA1 receptor arises as a new target for the study and treatment of alcoholism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Acetylcholinesterase (AChE) gene modification in transgenic animals: functional consequences of selected exon and regulatory region deletion.

    Science.gov (United States)

    Camp, Shelley; Zhang, Limin; Marquez, Michael; de la Torre, Brian; Long, Jeffery M; Bucht, Goran; Taylor, Palmer

    2005-12-15

    AChE is an alternatively spliced gene. Exons 2, 3 and 4 are invariantly spliced, and this sequence is responsible for catalytic function. The 3' alternatively spliced exons, 5 and 6, are responsible for AChE disposition in tissue [J. Massoulie, The origin of the molecular diversity and functional anchoring of cholinesterases. Neurosignals 11 (3) (2002) 130-143; Y. Li, S. Camp, P. Taylor, Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268 (8) (1993) 5790-5797]. The splice to exon 5 produces the GPI anchored form of AChE found in the hematopoietic system, whereas the splice to exon 6 produces a sequence that binds to the structural subunits PRiMA and ColQ, producing AChE expression in brain and muscle. A third alternative RNA species is present that is not spliced at the 3' end; the intron 3' of exon 4 is used as coding sequence and produces the read-through, unanchored form of AChE. In order to further understand the role of alternative splicing in the expression of the AChE gene, we have used homologous recombination in stem cells to produce gene specific deletions in mice. Alternatively and together exon 5 and exon 6 were deleted. A cassette containing the neomycin gene flanked by loxP sites was used to replace the exon(s) of interest. Tissue analysis of mice with exon 5 deleted and the neomycin cassette retained showed very low levels of AChE expression, far less than would have been anticipated. Only the read-through species of the enzyme was produced; clearly the inclusion of the selection cassette disrupted splicing of exon 4 to exon 6. The selection cassette was then deleted in exon 5, exon 6 and exons 5 + 6 deleted mice by breeding to Ella-cre transgenic mice. AChE expression in serum, brain and muscle has been analyzed. Another AChE gene targeted mouse strain involving a region in the first intron, found to be critical for AChE expression in muscle cells [S. Camp, L. Zhang, M. Marquez, B

  14. Human neutrophil elastase-mediated goblet cell metaplasia is attenuated in TACE-deficient mice.

    Science.gov (United States)

    Park, Jin-Ah; Sharif, Asma S; Shiomi, Tetsuya; Kobzik, Lester; Kasahara, David I; Tschumperlin, Daniel J; Voynow, Judith; Drazen, Jeffrey M

    2013-05-15

    Neutrophilic inflammation is associated with chronic airway diseases. It has been observed that human neutrophil elastase (HNE), which is secreted by active neutrophils during inflammation, induces both mucin overproduction and goblet cell metaplasia. Several in vitro studies suggest that tumor necrosis factor-α converting enzyme (TACE) regulates the signaling axis that mediates HNE-induced mucin overproduction; however, it is unknown whether TACE performs a similar function in HNE-induced goblet cell metaplasia in vivo. We conducted this study to determine whether the inactivation of Tace gene expression attenuates HNE-induced goblet cell metaplasia in mice. Deletion of Tace is lethal shortly after birth in mice; therefore, we utilized Tace(flox/flox)R26CreER(+/-) mice and induced conditional deletion of Tace using a tamoxifen injection. Wild-type mice were given tamoxifen to control for its effect. Tace conditional deletion mice and wild-type mice were exposed to HNE via nasal instillation three times at 3-day intervals, and the lungs were harvested on day 11 after initial HNE exposure. Using periodic acid-Schiff staining and MUC5AC immunohistochemical staining to visualize goblet cells in the lungs, we found that HNE induced goblet cell metaplasia in the wild-type mice and that HNE-induced goblet cell metaplasia was significantly attenuated in the Tace conditional deletion mice. These findings suggest that TACE could be a potential target in the treatment of goblet cell metaplasia in patients with chronic airway diseases.

  15. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice

    DEFF Research Database (Denmark)

    Hansen, Pernille B; Hashimoto, Seiji; Briggs, Josie

    2003-01-01

    In the present experiments we examined the renovascular constrictor effects of ANG II in the chronic and complete absence of A1 adenosine receptors (A1AR) using mice with targeted deletion of the A1AR gene. Glomerular filtration rate (GFR) was not different between A1AR +/+ and A1AR -/- mice unde...

  16. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity

    DEFF Research Database (Denmark)

    Beck Jørgensen, Sebastian; O'Neill, Hayley M; Sylow, Lykke

    2013-01-01

    Obesity is associated with chronic low-grade inflammation that contributes to defects in energy metabolism and insulin resistance. Suppressor of cytokine signaling (SOCS)-3 expression is increased in skeletal muscle of obese humans. SOCS3 inhibits leptin signaling in the hypothalamus and insulin...... deleted in skeletal muscle (SOCS MKO). The SOCS3 MKO mice had normal muscle development, body mass, adiposity, appetite, and energy expenditure compared with wild-type (WT) littermates. Despite similar degrees of obesity when fed a high-fat diet, SOCS3 MKO mice were protected against the development...... of hyperinsulinemia and insulin resistance because of enhanced skeletal muscle insulin receptor substrate 1 (IRS1) and Akt phosphorylation that resulted in increased skeletal muscle glucose uptake. These data indicate that skeletal muscle SOCS3 does not play a critical role in regulating muscle development or energy...

  17. Method for introducing unidirectional nested deletions

    Science.gov (United States)

    Dunn, J.J.; Quesada, M.A.; Randesi, M.

    1999-07-27

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector. The cloning vector has an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe. 1 fig.

  18. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  19. Whole genome HBV deletion profiles and the accumulation of preS deletion mutant during antiviral treatment

    Directory of Open Access Journals (Sweden)

    Zhang Dake

    2012-12-01

    Full Text Available Abstract Background Hepatitis B virus (HBV, because of its error-prone viral polymerase, has a high mutation rate leading to widespread substitutions, deletions, and insertions in the HBV genome. Deletions may significantly change viral biological features complicating the progression of liver diseases. However, the clinical conditions correlating to the accumulation of deleted mutants remain unclear. In this study, we explored HBV deletion patterns and their association with disease status and antiviral treatment by performing whole genome sequencing on samples from 51 hepatitis B patients and by monitoring changes in deletion variants during treatment. Clone sequencing was used to analyze preS regions in another cohort of 52 patients. Results Among the core, preS, and basic core promoter (BCP deletion hotspots, we identified preS to have the highest frequency and the most complex deletion pattern using whole genome sequencing. Further clone sequencing analysis on preS identified 70 deletions which were classified into 4 types, the most common being preS2. Also, in contrast to the core and BCP regions, most preS deletions were in-frame. Most deletions interrupted viral surface epitopes, and are possibly involved in evading immuno-surveillance. Among various clinical factors examined, logistic regression showed that antiviral medication affected the accumulation of deletion mutants (OR = 6.81, 95% CI = 1.296 ~ 35.817, P = 0.023. In chronic carriers of the virus, and individuals with chronic hepatitis, the deletion rate was significantly higher in the antiviral treatment group (Fisher exact test, P = 0.007. Particularly, preS2 deletions were associated with the usage of nucleos(tide analog therapy (Fisher exact test, P = 0.023. Dynamic increases in preS1 or preS2 deletions were also observed in quasispecies from samples taken from patients before and after three months of ADV therapy. In vitro experiments demonstrated that

  20. Muscle-specific deletion of SOCS3 increases the early inflammatory response but does not affect regeneration after myotoxic injury.

    Science.gov (United States)

    Swiderski, Kristy; Thakur, Savant S; Naim, Timur; Trieu, Jennifer; Chee, Annabel; Stapleton, David I; Koopman, René; Lynch, Gordon S

    2016-01-01

    Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 μg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α , and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7 , MyoD , and Myogenin indicated SOCS3 deletion had no

  1. Deletion of the c-kit protooncogene in the human developmental defect piebald trait

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, R.A.; Stastny, V.; Zneimer, S. (Univ. of Texas, Dallas (United States)); Saltman, D.L. (Genelabs, Inc., Redwood City, CA (United States))

    1991-12-01

    The protooncogene c-kit is critical for development of hematopoietic stem cells, germ cells, and melanoblasts in the mouse. Homozygous mutations of this gene in the mouse cause anemia, infertility, and albinism, whereas heterozygous mutant mice usually exhibit only a white forehead blaze and depigmentation of the ventral body, tail, and feet. The heterozygous mouse phenotype is very similar to human piebald trait, which is characterized by a congenital white hair forelock and ventral and extremity depigmentation. To investigate the possibility that alterations in the human c-kit gene may be a cause of piebald trait, DNA from seven unrelated affected individuals was examined by Southern blot analysis. One subject, although cytogenetically normal, has a heterozygous deletion of the c-kit protooncogene. This deletion encompasses the entire coding region for c-kit and also involves the closely linked gene for platelet-derived growth factor receptor {alpha}. These findings provide molecular evidence mapping piebald trait to the c-kit locus on chromosome 4. Although the authors cannot exclude the involvement of other closely linked genes, the demonstration of a genomic c-kit deletion in one subject with piebald trait and the marked concordance of the human and mouse phenotypes provide strong evidence for the role of c-kit in the development of human melanocytes and in the pathogenesis of piebald trait.

  2. ELKS2α/CAST Deletion Selectively Increases Neurotransmitter Release at Inhibitory Synapses

    Science.gov (United States)

    Kaeser, Pascal S.; Deng, Lunbin; Chávez, Andrés E.; Liu, Xinran; Castillo, Pablo E.; Südhof, Thomas C.

    2009-01-01

    SUMMARY The presynaptic active zone is composed of a protein-network that contains ELKS2α (a.k.a. CAST) as a central component. Here we demonstrate that in mice, deletion of ELKS2α caused a large increase in inhibitory but not excitatory neurotransmitter release, and potentiated the size, but not the properties, of the readily-releasable pool of vesicles at inhibitory synapses. Quantitative electron-microscopy revealed that the ELKS2α deletion did not change the number of docked vesicles or other ultrastructural parameters of synapses, except for a small decrease in synaptic vesicle numbers. The ELKS2α deletion did, however, alter the excitatory/inhibitory balance and exploratory behaviors, possibly as a result of the increased synaptic inhibition. Thus, different from previous studies indicating that ELKS2α is essential for mediating neurotransmitter release, our results suggest that ELKS2α normally restricts release and limits the size of the readily-releasable pool of synaptic vesicles at the active zone of inhibitory synapses. PMID:19874790

  3. ELKS2alpha/CAST deletion selectively increases neurotransmitter release at inhibitory synapses.

    Science.gov (United States)

    Kaeser, Pascal S; Deng, Lunbin; Chávez, Andrés E; Liu, Xinran; Castillo, Pablo E; Südhof, Thomas C

    2009-10-29

    The presynaptic active zone is composed of a protein network that contains ELKS2alpha (a.k.a. CAST) as a central component. Here we demonstrate that in mice, deletion of ELKS2alpha caused a large increase in inhibitory, but not excitatory, neurotransmitter release, and potentiated the size, but not the properties, of the readily-releasable pool of vesicles at inhibitory synapses. Quantitative electron microscopy revealed that the ELKS2alpha deletion did not change the number of docked vesicles or other ultrastructural parameters of synapses, except for a small decrease in synaptic vesicle numbers. The ELKS2alpha deletion did, however, alter the excitatory/inhibitory balance and exploratory behaviors, possibly as a result of the increased synaptic inhibition. Thus, as opposed to previous studies indicating that ELKS2alpha is essential for mediating neurotransmitter release, our results suggest that ELKS2alpha normally restricts release and limits the size of the readily-releasable pool of synaptic vesicles at the active zone of inhibitory synapses.

  4. A homozygous deletion in GRID2 causes a human phenotype with cerebellar ataxia and atrophy.

    Science.gov (United States)

    Utine, G Eda; Haliloğlu, Göknur; Salanci, Bilge; Çetinkaya, Arda; Kiper, P Özlem; Alanay, Yasemin; Aktas, Dilek; Boduroğlu, Koray; Alikaşifoğlu, Mehmet

    2013-07-01

    GRID2 is a member of the ionotropic glutamate receptor family of excitatory neurotransmitter receptors. GRID2 encodes the glutamate receptor subunit delta-2, selectively expressed in cerebellar Purkinje cells. The phenotype associated with loss of GRID2 function was described only in mice until now, characterized by different degrees of cerebellar ataxia and usually relatively mild abnormalities of the cerebellum. This work describes for the first time the human phenotype associated with homozygous partial deletion of GRID2 in 3 children in one large consanguineous Turkish family. Homozygous deletion of exons 3 and 4 of GRID2 (94 153 589-94 298 037 bp) in the proband and similarly affected cousins, and heterozygous deletions in parental DNA were shown using Affymetrix® 6.0 single-nucleotide polymorphism array, confirmed by real-time polymerase chain reaction. The phenotype includes nystagmus, hypotonia with marked developmental delay in gross motor skills in early infancy followed by a static encephalopathy course with development of cerebellar ataxia, oculomotor apraxia, and pyramidal tract involvement.

  5. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    Science.gov (United States)

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice (versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  7. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors.

    Directory of Open Access Journals (Sweden)

    Roopali Yadav

    Full Text Available The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1 and glutamate δ2 (GluD2 receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.

  8. Impact on Experimental Colitis of Vitamin D Receptor Deletion in Intestinal Epithelial or Myeloid Cells.

    Science.gov (United States)

    Leyssens, Carlien; Verlinden, Lieve; De Hertogh, Gert; Kato, Shigeaki; Gysemans, Conny; Mathieu, Chantal; Carmeliet, Geert; Verstuyf, Annemieke

    2017-07-01

    Inflammatory bowel diseases are gastrointestinal diseases that include Crohn disease and ulcerative colitis. The chronic inflammation is thought to result from an excessive inflammatory response to environmental factors such as luminal bacteria in genetically predisposed individuals. Studies have revealed that mice with impaired vitamin D signaling are more susceptible to experimental colitis. To better understand the contribution of vitamin D signaling in different cells of the gut to this disease, we investigated the effects of intestinal-specific or myeloid vitamin D receptor deletion. Our study addressed the importance of vitamin D receptor expression in intestinal epithelial cells using intestine-specific vitamin D receptor null mice and the contribution of vitamin D receptor expression in macrophages and granulocytes using myeloid-specific vitamin D receptor null mice in a dextran sodium sulfate model for experimental colitis. Loss of intestinal vitamin D receptor expression had no substantial effect on the clinical parameters of colitis and did not manifestly change mucosal cytokine expression. Inactivation of the vitamin D receptor in macrophages and granulocytes marginally affected colitis-associated symptoms but resulted in increased proinflammatory cytokine and increased β-defensin-1 expression in the colon descendens of mice with colitis. Intestinal deletion of the vitamin D receptor did not aggravate symptoms of chemically induced colitis. Loss of the vitamin D receptor in macrophages and granulocytes mildly affected colitis-associated symptoms but greatly increased proinflammatory cytokine expression in the inflamed colon, suggesting a prominent role for innate immune cell vitamin D signaling in controlling gut inflammation. Copyright © 2017 Endocrine Society.

  9. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy.

    Science.gov (United States)

    Moc, Courtney; Taylor, Amy E; Chesini, Gino P; Zambrano, Cristina M; Barlow, Melissa S; Zhang, Xiaoxue; Gustafsson, Åsa B; Purcell, Nicole H

    2015-02-01

    To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. To investigate the in vivo requirement for 'physiological' control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  10. Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors.

    Science.gov (United States)

    Yadav, Roopali; Gupta, Subhash C; Hillman, Brandon G; Bhatt, Jay M; Stairs, Dustin J; Dravid, Shashank M

    2012-01-01

    The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.

  11. Recurrence and variability of germline EPCAM deletions in Lynch syndrome.

    Science.gov (United States)

    Kuiper, Roland P; Vissers, Lisenka E L M; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renée C; Hogervorst, Frans B L; Gille, Johan J P; Redeker, Bert; Tops, Carli M J; van Gijn, Marielle E; van den Ouweland, Ans M W; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J; Syngal, Sapna; Culver, Julie O; Graham, Tracy; Chan, Tsun L; Nagtegaal, Iris D; van Krieken, J Han J M; Schackert, Hans K; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J L

    2011-04-01

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like families for the presence of EPCAM deletions. We identified 27 novel independent MSH2-deficient families from multiple geographical origins with varying deletions all encompassing the 3' end of EPCAM, but leaving the MSH2 gene intact. Within The Netherlands and Germany, EPCAM deletions appeared to represent at least 2.8% and 1.1% of the confirmed Lynch syndrome families, respectively. MSH2 promoter methylation was observed in epithelial tissues of all deletion carriers tested, thus confirming silencing of MSH2 as the causative defect. In a total of 45 families, 19 different deletions were found, all including the last two exons and the transcription termination signal of EPCAM. All deletions appeared to originate from Alu-repeat mediated recombination events. In 17 cases regions of microhomology around the breakpoints were found, suggesting nonallelic homologous recombination as the most likely mechanism. We conclude that 3' end EPCAM deletions are a recurrent cause of Lynch syndrome, which should be implemented in routine Lynch syndrome diagnostics. © 2011 Wiley-Liss, Inc.

  12. 76 FR 13362 - Procurement List Proposed Additions and Deletion

    Science.gov (United States)

    2011-03-11

    ... Hood, TX. NPA: Skookum Educational Programs, Bremerton, WA. Contracting Activity: Department of the... service is proposed for deletion from the Procurement List: Service Service Type/Location: Recycling...

  13. Deletion of Efemp1 Is Protective Against the Development of Sub-RPE Deposits in Mouse Eyes.

    Science.gov (United States)

    Stanton, James B; Marmorstein, Alan D; Zhang, Youwen; Marmorstein, Lihua Y

    2017-03-01

    EFEMP1 (fibulin-3) is mutated in Malattia Leventinese/Doyne's honeycomb retinal dystrophy (ML/DHRD), an inherited macular dystrophy similar to AMD. Both ML/DHRD and AMD are characterized by the presence of sub-RPE deposits. Efemp1 knockout mice do not develop sub-RPE deposits. This study was to test whether sub-RPE deposits can be induced in Efemp1 knockout mice by experimentally applied stress conditions that cause wild-type mice to develop sub-RPE deposits. Efemp1 knockout and control mice at 6, 18, or 24 months old were fed with a synthetic high-fat diet (HFD). Beginning 1 month after starting the HFD, one group of mice was exposed to cigarette smoke daily for 1 month, and another group of mice was subjected to photochemical injury every other day for 2 weeks from a 488-nm argon laser. After the treatments, histologic analysis was performed to assess whether sub-RPE deposits were induced. Basal laminar deposits (BLamDs), a form of sub-RPE deposits, were observed in the 18- and 24-month-old wild-type mice but not in Efemp1 knockout mice in any age groups after exposure to HFD and cigarette smoke or laser injury. Mice lacking fibulin-3 do not develop sub-RPE deposits. Environmental oxidative stressors (HFD/cigarette smoke or HFD/laser) known to cause BLamD formation in wild-type mice failed to induce BLamD formation in Efemp1 knockout mice. These results suggest that fibulin-3 is a central player in the development of BLamD, and deletion of fibulin-3 is protective against the development of BLamD.

  14. PTEN deletion from adult-generated dentate granule cells disrupts granule cell mossy fiber axon structure.

    Science.gov (United States)

    LaSarge, Candi L; Santos, Victor R; Danzer, Steve C

    2015-03-01

    Dysregulation of the mTOR-signaling pathway is implicated in the development of temporal lobe epilepsy. In mice, deletion of PTEN from hippocampal dentate granule cells leads to mTOR hyperactivation and promotes the rapid onset of spontaneous seizures. The mechanism by which these abnormal cells initiate epileptogenesis, however, is unclear. PTEN-knockout granule cells develop abnormally, exhibiting morphological features indicative of increased excitatory input. If these cells are directly responsible for seizure genesis, it follows that they should also possess increased output. To test this prediction, dentate granule cell axon morphology was quantified in control and PTEN-knockout mice. Unexpectedly, PTEN deletion increased giant mossy fiber bouton spacing along the axon length, suggesting reduced innervation of CA3. Increased width of the mossy fiber axon pathway in stratum lucidum, however, which likely reflects an unusual increase in mossy fiber axon collateralization in this region, offsets the reduction in boutons per axon length. These morphological changes predict a net increase in granule cell innervation of CA3. Increased diameter of axons from PTEN-knockout cells would further enhance granule cell communication with CA3. Altogether, these findings suggest that amplified information flow through the hippocampal circuit contributes to seizure occurrence in the PTEN-knockout mouse model of temporal lobe epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A new method for simultaneous gene deletion and down-regulation in Brucella melitensis Rev.1.

    Science.gov (United States)

    Saeedinia, Ali Reza; Zeinoddini, Mehdi; Soleimani, Masoud; Sadeghizadeh, Majid

    2015-01-01

    In this study, our aim was to integrate an antisense expression cassette in bacterial chromosome for providing a long-term expression down-regulation in a bid to develop a new approach for simultaneous deletion and down-regulation of target genes in bacterial system. Therefore, we were used this approach for simultaneous deletion of the perosamine synthetase (per) gene and down-regulation of the virB1 expression in Brucella melitensis Rev.1. The per gene, which is one of the LPS O-chain coding genes, was replaced by homologous recombination with an antisense virB1 expression cassette together with kanamycin resistance cassette (kan(R)). Deletion of the per gene was characterized by PCR analysis and DNA sequencing. The expression of antisense virB1 cassette was confirmed by RT-PCR. Down-regulation of the virB1 mRNA expression was quantified by real-time RT-PCR using virB1 specific primers relative to the groEL reference gene. The survival rate of mutant strain was evaluated by CFU count in the BALB/c mice. The virB1 mRNA expression was down-regulated on average 10-fold in mutant strain as compared to parental strain. The loss of per gene function and decrease of the virB1 mRNA expression resulted in reduced entry and survival of the mutant Rev.1 strain in BALB/c mice splenocytes. We propose that this method can be used for simultaneous regulation of multiple genes expression. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Fumarate Hydratase Deletion in Pancreatic β Cells Leads to Progressive Diabetes

    Directory of Open Access Journals (Sweden)

    Julie Adam

    2017-09-01

    Full Text Available We explored the role of the Krebs cycle enzyme fumarate hydratase (FH in glucose-stimulated insulin secretion (GSIS. Mice lacking Fh1 in pancreatic β cells (Fh1βKO mice appear normal for 6–8 weeks but then develop progressive glucose intolerance and diabetes. Glucose tolerance is rescued by expression of mitochondrial or cytosolic FH but not by deletion of Hif1α or Nrf2. Progressive hyperglycemia in Fh1βKO mice led to dysregulated metabolism in β cells, a decrease in glucose-induced ATP production, electrical activity, cytoplasmic [Ca2+]i elevation, and GSIS. Fh1 loss resulted in elevated intracellular fumarate, promoting succination of critical cysteines in GAPDH, GMPR, and PARK 7/DJ-1 and cytoplasmic acidification. Intracellular fumarate levels were increased in islets exposed to high glucose and in islets from human donors with type 2 diabetes (T2D. The impaired GSIS in islets from diabetic Fh1βKO mice was ameliorated after culture under normoglycemic conditions. These studies highlight the role of FH and dysregulated mitochondrial metabolism in T2D.

  17. Radiation leukemogenesis in mice: loss of PU.1 on chromosome 2 in CBA and C57BL/6 mice after irradiation with 1 GeV/nucleon 56Fe ions, X rays or gamma rays. Part I. Experimental observations.

    Science.gov (United States)

    Peng, Yuanlin; Brown, Natalie; Finnon, Rosemary; Warner, Christy L; Liu, Xianan; Genik, Paula C; Callan, Matthew A; Ray, F Andrew; Borak, Thomas B; Badie, Christophe; Bouffler, Simon D; Ullrich, Robert L; Bedford, Joel S; Weil, Michael M

    2009-04-01

    Since deletion of the PU.1 gene on chromosome 2 is a crucial acute myeloid leukemia (AML) initiating step in the mouse model, we quantified PU.1 deleted cells in the bone marrow of gamma-, X- and 56Fe-ion-irradiated mice at various times postirradiation. Although 56Fe ions were initially some two to three times more effective than X or gamma rays in inducing PU.1 deletions, by 1 month postirradiation, the proportions of cells with PU.1 deletions were similar for the HZE particles and the sparsely ionizing radiations. These results indicate that while 56Fe ions are more effective in inducing PU.1 deletions, they are also more effective in causing collateral damage that removes hit cells from the bone marrow. After X, gamma or 56Fe-ion irradiation, AML-resistant C57BL/6 mice have fewer cells with PU.1 deletions than CBA mice, and those cells do not persist in the bone marrow of the C57B6/6 mice. Our findings suggest that quantification of PU.1 deleted bone marrow cells 1 month postirradiation can be used as surrogate for the incidence of radiation-induced AML measured in large-scale mouse studies. If so, PU.1 loss could be used to systematically assess the potential leukemogenic effects of other ions and energies in the space radiation environment.

  18. Targeted deletion of the murine Lgr4 gene decreases lens epithelial cell resistance to oxidative stress and induces age-related cataract formation.

    Directory of Open Access Journals (Sweden)

    Jun Zhu

    Full Text Available Oxidative stress contributes to the formation of cataracts. The leucine rich repeat containing G protein-coupled receptor 4 (LGR4, also known as GPR48, is important in many developmental processes. Since deletion of Lgr4 has previously been shown to lead to cataract formation in mice, we sought to determine the specific role that Lgr4 plays in the formation of cataracts. Initially, the lens opacities of Lgr4(-/- mice at different ages without ocular anterior segment dysgenesis (ASD were evaluated with slit-lamp biomicroscopy. Lenses from both Lgr4(-/- and wild-type mice were subjected to oxidation induced protein denaturation to assess the ability of the lens to withstand oxidation. The expression of antioxidant enzymes was evaluated with real-time quantitative PCR. Phenotypically, Lgr4(-/- mice showed earlier onset of lens opacification and higher incidence of cataract formation compared with wild-type mice of similar age. In addition, Lgr4(-/- mice demonstrated increased sensitivity to environmental oxidative damage, as evidenced by altered protein expression. Real-time quantitative PCR showed that two prominent antioxidant defense enzymes, catalase (CAT and superoxidase dismutase-1 (SOD1, were significantly decreased in the lens epithelial cells of Lgr4(-/- mice. Our results suggest that the deletion of Lgr4 can lead to premature cataract formation, as well as progressive deterioration with aging. Oxidative stress and altered expression of several antioxidant defense enzymes contribute to the formation of cataracts.

  19. Chromosome subband 17p11.2 deletion: a minute deletion syndrome.

    Science.gov (United States)

    Lockwood, D; Hecht, F; Dowman, C; Hecht, B K; Rizkallah, T H; Goodwin, T M; Allanson, J

    1988-11-01

    Interstitial deletion of the short arm of chromosome 17 was detected in three unrelated patients with mental retardation and multiple congenital malformations. These patients were identified at a single centre over a six month period suggesting that del(17) (p11.2p11.2) is not a rare constitutional chromosome rearrangement. Comparison of the phenotypic features in a total of 19 patients with del(17)(p11.2p11.2) shows a consistent clinical phenotype with moderate to severe mental retardation, microbrachycelphaly, prominent forehead, broad face, flat midface, prognathism, short, broad hands, and behavioural anomalies such as self-mutilation. The sex ratio is unremarkable, parental ages are normal, and survival is usually unimpaired. Chromosome resolution of at least 500 bands appears necessary to detect this deletion.

  20. AZFc deletion detected in a newborn with prenatally diagnosed Yq deletion.

    Science.gov (United States)

    Tóth, A; Tardy, E P; Gombos, S; Hajdu, K; Bátorfi, J; Krausz, C

    2001-04-01

    A case of prenatally diagnosed Yq deletion is described. Fluorescence in situ hybridisation (FISH) was used to identify the abnormal chromosome and to exclude mosaicism. Based on the cytogenetic result and the ultrasound investigation the pregnancy was continued. A newborn with normal male genitalia was delivered. Microdeletion analysis of the Yq showed the absence of the AZFc region. This type of deletion has been described as being associated with azoospermia or oligozoospermia with a progressive decrease of sperm number over time. Long-term andrological follow-up of the newborn will be necessary with eventual cryoconservation of sperm at early adulthood. The present report proposes that AZF analysis combined with FISH has an important role in accurate genetic counselling in sex chromosome anomalies. Copyright 2001 John Wiley & Sons, Ltd.

  1. Paradoxical leanness in the imprinting-centre deletion mouse model for Prader-Willi syndrome.

    Science.gov (United States)

    Golding, David M; Rees, Daniel J; Davies, Jennifer R; Relkovic, Dinko; Furby, Hannah V; Guschina, Irina A; Hopkins, Anna L; Davies, Jeffrey S; Resnick, James L; Isles, Anthony R; Wells, Timothy

    2017-01-01

    Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by loss of paternal gene expression from 15q11-q13, is characterised by growth retardation, hyperphagia and obesity. However, as single gene mutation mouse models for this condition display an incomplete spectrum of the PWS phenotype, we have characterised the metabolic impairment in a mouse model for 'full' PWS, in which deletion of the imprinting centre (IC) abolishes paternal gene expression from the entire PWS cluster. We show that PWS-ICdel mice displayed postnatal growth retardation, with reduced body weight, hyperghrelinaemia and marked abdominal leanness; proportionate retroperitoneal, epididymal/omental and inguinal white adipose tissue (WAT) weights being reduced by 82%, 84% and 67%, respectively. PWS-ICdel mice also displayed a 48% reduction in proportionate interscapular brown adipose tissue (isBAT) weight with significant 'beiging' of abdominal WAT, and a 2°C increase in interscapular surface body temperature. Maintenance of PWS-ICdel mice under thermoneutral conditions (30°C) suppressed the thermogenic activity in PWS-ICdel males, but failed to elevate the abdominal WAT weight, possibly due to a normalisation of caloric intake. Interestingly, PWS-ICdel mice also showed exaggerated food hoarding behaviour with standard and high-fat diets, but despite becoming hyperphagic when switched to a high-fat diet, PWS-ICdel mice failed to gain weight. This evidence indicates that, unlike humans with PWS, loss of paternal gene expression from the PWS cluster in mice results in abdominal leanness. Although reduced subcutaneous insulation may lead to exaggerated heat loss and thermogenesis, abdominal leanness is likely to arise from a reduced lipid storage capacity rather than increased energy utilisation in BAT. © 2017 The authors.

  2. Sensory Neuron-Specific Deletion of TRPA1 Results in Mechanical Cutaneous Sensory Deficits

    Science.gov (United States)

    2017-01-01

    Abstract The nonselective cation channel transient receptor potential ankyrin 1 (TRPA1) is known to be a key contributor to both somatosensation and pain. Recent studies have implicated TRPA1 in additional physiologic functions and have also suggested that TRPA1 is expressed in nonneuronal tissues. Thus, it has become necessary to resolve the importance of TRPA1 expressed in primary sensory neurons, particularly since previous research has largely used global knock-out animals and chemical TRPA1 antagonists. We therefore sought to isolate the physiological relevance of TRPA1 specifically within sensory neurons. To accomplish this, we used Advillin-Cre mice, in which the promoter for Advillin is used to drive expression of Cre recombinase specifically within sensory neurons. These Advillin-Cre mice were crossed with Trpa1fl/fl mice to generate sensory neuron-specific Trpa1 knock-out mice. Here, we show that tissue-specific deletion of TRPA1 from sensory neurons produced strong deficits in behavioral sensitivity to mechanical stimulation, while sensitivity to cold and heat stimuli remained intact. The mechanical sensory deficit was incomplete compared to the mechanosensory impairment of TRPA1 global knock-out mice, in line with the incomplete (∼80%) elimination of TRPA1 from sensory neurons in the tissue-specific Advillin-Cre knock-out mice. Equivalent findings were observed in tissue-specific knock-out animals originating from two independently-generated Advillin-Cre lines. As such, our results show that sensory neuron TRPA1 is required for mechanical, but not cold, responsiveness in noninjured skin. PMID:28303259

  3. Lack of association of insertion/deletion polymorphism in ...

    African Journals Online (AJOL)

    In the present preliminary study the insertion/deletion polymorphism within angiotensin converting enzyme gene is not likely to be associated with nephropathy in type 2 diabetic patients of Punjabi population of Pakistan. Key words: Angiotensin converting enzymes, insertion/deletion polymorphism, albuminuria and type 2 ...

  4. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    Science.gov (United States)

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p otitis media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.

  5. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  6. Prenatal diagnosis of mosaicism for 11q terminal deletion.

    Science.gov (United States)

    Valduga, M; Cannard, V Latger; Philippe, C; Romana, S; Miton, A; Droulle, P; Foliguet, B; Lecompte, T; Jonveaux, P

    2007-01-01

    The phenotype of 11q terminal deletion also known as Jacobsen syndrome is a clinically well known entity whose diagnosis in infancy and childhood is based on clinical examination, hematological and cytogenetic findings. Hematological features in Jacobsen syndrome are very similar to those reported in Paris-Trousseau syndrome (PTS) which is also associated with11q terminal deletion. Karyotype analysis shows a variable terminal deletion from 11q23 sub-band extending to the telomere. Most often in patients with Jacobsen syndrome, this chromosomal deletion is present in all metaphases. We report on the identification of a distal 11q deletion in mosaic (20% of deleted cells) in a fetus ascertained after amniocentesis for maternal serum screening test indicative for Down syndrome. The present case is the third prenatal diagnosis of a mosaic for a distal 11q deletion with the lowest mosaicism rate. The 2D-ultrasound examination and cord blood hematological studies were useful to estimate the prognosis at term, considering the contribution of the mosaicism rate to the phenotypic variability in Jacobsen syndrome. The identification of mosaicism for distal 11q deletion is a very rare event in prenatal diagnosis. This case illustrates the complexity in genetic counselling for prenatally ascertained partial monosomy 11qter in mosaic.

  7. Phosphatase and tensin homologue deleted on chromosome 10 ...

    African Journals Online (AJOL)

    Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor suppressor gene deleted or mutated in many human cancers such as glioblastoma, spinal tumors, prostate, bladder, adrenals, thyroid, breast, endometrium, and colon cancers. They result from loss of heterozygosity (LOH) for the PTEN ...

  8. Generalised deletion designs | Gachii | African Journal of Science ...

    African Journals Online (AJOL)

    In this paper asymmetrical single replicate factorial designs are constructed from symmetrical single replicate factorial designs using the deletion technique. The study is along the lines of Voss(1986), Chauhan(1989) and Gachii and Odhiambo(1997). We give results for the general order deletion designs of the form sn-m1(s ...

  9. Using Topic Modeling and Text Embeddings to Predict Deleted Tweets

    Energy Technology Data Exchange (ETDEWEB)

    Potash, Peter J.; Bell, Eric B.; Harrison, Joshua J.

    2016-02-29

    Predictive models for tweet deletion have been a relatively unexplored area of Twitter-related computational research. We first approach the deletion of tweets as a spam detection problem, applying a small set of handcrafted features to improve upon the current state-of-the- art in predicting deleted tweets. Next, we apply our approach to a dataset of deleted tweets that better reflects the current deletion rate. Since tweets are deleted for reasons beyond just the presence of spam, we apply topic modeling and text embeddings in order to capture the semantic content of tweets that can lead to tweet deletion. Our goal is to create an effective model that has a low-dimensional feature space and is also language-independent. A lean model would be computationally advantageous processing high-volumes of Twitter data, which can reach 9,885 tweets per second. Our results show that a small set of spam-related features combined with word topics and character-level text embeddings provide the best f1 when trained with a random forest model. The highest precision of the deleted tweet class is achieved by a modification of paragraph2vec to capture author identity.

  10. Deletion of calponin 2 in macrophages alters cytoskeleton-based functions and attenuates the development of atherosclerosis.

    Science.gov (United States)

    Liu, Rong; Jin, J-P

    2016-10-01

    Arterial atherosclerosis is an inflammatory disease. Macrophages play a major role in the pathogenesis and progression of atherosclerotic lesions. Modulation of macrophage function is a therapeutic target for the treatment of atherosclerosis. Calponin is an actin-filament-associated regulatory protein that inhibits the activity of myosin-ATPase and dynamics of the actin cytoskeleton. Encoded by the gene Cnn2, calponin isoform 2 is expressed at significant levels in macrophages. Deletion of calponin 2 increases macrophage migration and phagocytosis. In the present study, we investigated the effect of deletion of calponin 2 in macrophages on the pathogenesis and development of atherosclerosis. The results showed that macrophages isolated from Cnn2 knockout mice ingested a similar level of acetylated low-density lipoprotein (LDL) to that of wild type (WT) macrophages but the resulting foam cells had significantly less hindered velocity of migration. Systemic or myeloid cell-specific Cnn2 knockouts effectively attenuated the development of arterial atherosclerosis lesions with less macrophage infiltration in apolipoprotein E knockout mice. Consistently, calponin 2-null macrophages produced less pro-inflammatory cytokines than that of WT macrophages, and the up-regulation of pro-inflammatory cytokines in foam cells was also attenuated by the deletion of calponin 2. Calponin 2-null macrophages and foam cells have significantly weakened cell adhesion, indicating a role of cytoskeleton regulation in macrophage functions and inflammatory responses, and a novel therapeutic target for the treatment of arterial atherosclerosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    Science.gov (United States)

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ∼2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Frequency of KLK3 gene deletions in the general population.

    Science.gov (United States)

    Rodriguez, Santiago; Al-Ghamdi, Osama A; Guthrie, Philip Ai; Shihab, Hashem A; McArdle, Wendy; Gaunt, Tom; Alharbi, Khalid K; Day, Ian Nm

    2017-07-01

    Background One of the kallikrein genes ( KLK3) encodes prostate-specific antigen, a key biomarker for prostate cancer. A number of factors, both genetic and non-genetic, determine variation of serum prostate-specific antigen concentrations in the population. We have recently found three KLK3 deletions in individuals with very low prostate-specific antigen concentrations, suggesting a link between abnormally reduced KLK3 expression and deletions of KLK3. Here, we aim to determine the frequency of kallikrein gene 3 deletions in the general population. Methods The frequency of KLK3 deletions in the general population was estimated from the 1958 Birth Cohort sample ( n = 3815) using amplification ratiometry control system. In silico analyses using PennCNV were carried out in the same cohort and in NBS-WTCCC2 in order to provide an independent estimation of the frequency of KLK3 deletions in the general population. Results Amplification ratiometry control system results from the 1958 cohort indicated a frequency of KLK3 deletions of 0.81% (3.98% following a less stringent calling criterion). From in silico analyses, we found that potential deletions harbouring the KLK3 gene occurred at rates of 2.13% (1958 Cohort, n = 2867) and 0.99% (NBS-WTCCC2, n = 2737), respectively. These results are in good agreement with our in vitro experiments. All deletions found were in heterozygosis. Conclusions We conclude that a number of individuals from the general population present KLK3 deletions in heterozygosis. Further studies are required in order to know if interpretation of low serum prostate-specific antigen concentrations in individuals with KLK3 deletions may offer false-negative assurances with consequences for prostate cancer screening, diagnosis and monitoring.

  13. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  14. Targeted deletion of Aqp4 promotes the formation of astrocytic gap junctions.

    Science.gov (United States)

    Katoozi, Shirin; Skauli, Nadia; Rahmani, Soulmaz; Camassa, Laura M A; Boldt, Henning B; Ottersen, Ole P; Amiry-Moghaddam, Mahmood

    2017-12-01

    Aquaporin-4 (AQP4) is the predominant water channel in the brain and is expressed in high density in astrocytes. By fluxing water along osmotic gradients, AQP4 contributes to brain volume and ion homeostasis. Here we ask whether deletion of Aqp4 leads to upregulation of the gap junctional proteins connexin-43 (Cx43) and connexin-30 (Cx30). These molecules couple adjacent astrocytes to each other and allow water and ions to redistribute within the astrocyte syncytium. Immunogold analysis of parietal cortex and hippocampus showed that the number of gap junctions per capillary profile is increased in AQP4 knockout (AQP4 KO) mice. The most pronounced changes were observed for Cx43 in hippocampus where the number of connexin labeled gap junctions increased by 100% following AQP4 KO. Western blot analysis of whole tissue homogenates showed no change in the amount of Cx43 or Cx30 protein after AQP4 KO. However, AQP4 KO led to a significant increase in the amount of Cx43 in a Triton X-100 insoluble fraction. This fraction is associated with connexin assembly into gap junctional plaques in the plasma membrane. In line with our immunoblot data, RT-qPCR showed no significant increase in Cx43 and Cx30 mRNA levels after AQP4 KO. Our findings suggest that AQP4 KO leads to increased aggregation of Cx43 into gap junctions and provide a putative mechanistic basis for the enhanced tracer coupling in hippocampi of AQP4 KO mice. The increased number of gap junctions in AQP4 deficient mice may explain why Aqp4 deletion has rather modest effects on brain volume and K+ homeostasis.

  15. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

    Directory of Open Access Journals (Sweden)

    I-Ching Wang

    Full Text Available The Forkhead Box m1 (Foxm1 protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/- mice prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA/butylated hydroxytoluene (BHT. Decreased lung tumorigenesis in epFoxm1(-/- mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha, a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.

  16. ZnT3 Gene Deletion Reduces Colchicine-Induced Dentate Granule Cell Degeneration

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    2017-10-01

    Full Text Available Our previous study demonstrated that colchicine-induced dentate granule cell death is caused by blocking axonal flow and the accumulation of intracellular zinc. Zinc is concentrated in the synaptic vesicles via zinc transporter 3 (ZnT3, which facilitates zinc transport from the cytosol into the synaptic vesicles. The aim of the present study was to identify the role of ZnT3 gene deletion on colchicine-induced dentate granule cell death. The present study used young (3–5 months mice of the wild-type (WT or the ZnT3−/− genotype. Colchicine (10 µg/kg was injected into the hippocampus, and then brain sections were evaluated 12 or 24 h later. Cell death was evaluated by Fluoro-Jade B; oxidative stress was analyzed by 4-hydroxy-2-nonenal; and dendritic damage was detected by microtubule-associated protein 2. Zinc accumulation was detected by N-(6-methoxy-8-quinolyl-para-toluenesulfonamide (TSQ staining. Here, we found that ZnT3−/− reduced the number of degenerating cells after colchicine injection. The ZnT3−/−-mediated inhibition of cell death was accompanied by suppression of oxidative injury, dendritic damage and zinc accumulation. In addition, ZnT3−/− mice showed more glutathione content than WT mice and inhibited neuronal glutathione depletion by colchicine. These findings suggest that increased neuronal glutathione by ZnT3 gene deletion prevents colchicine-induced dentate granule cell death.

  17. Identification of sites of STAT3 action in the female reproductive tract through conditional gene deletion.

    Directory of Open Access Journals (Sweden)

    Rebecca L Robker

    Full Text Available The STAT3 transcription factor is a pleiotropic transducer of signalling by hormones, growth factors and cytokines that has been identified in the female reproductive tract from oocytes and granulosa cells of the ovary to uterine epithelial and stromal cells. In the present study we used transgenic models to investigate the importance of STAT3 for reproductive performance in these different tissues. The Cre-LoxP system was used to delete STAT3 in oocytes by crossing Stat3fl/fl with Zp3-cre+ mice, or in ovarian granulosa cells and uterine stroma by crossing with Amhr2-Cre+ mice. Surprisingly, deletion of STAT3 in oocytes had no effect on fertility indicating that the abundance of STAT3 protein in maturing oocytes and fertilized zygotes is not essential to these developmental stages. In Stat3fl/fl;Amhr2-cre+ females impaired fertility was observed through significantly fewer litters and smaller litter size. Ovulation rate, oocyte fertilization and development to blastocyst were unaffected in this line; however, poor recombination efficiency in granulosa cells had yielded no net change in STAT3 protein abundance. In contrast, uteri from these mice showed STAT3 protein depletion selectively from the stomal compartment. A significant reduction in number of viable fetuses on gestational day 18, increased fetal resorptions and disrupted placental morphology were evident causes of the reduced fertility. In conclusion, this study defines an important role for STAT3 in uterine stromal cells during embryo implantation and the development of a functional placenta.

  18. 'Deletion rescue' by mitotic 11q uniparental disomy in a family with recurrence of 11q deletion Jacobsen syndrome.

    Science.gov (United States)

    Johnson, J P; Haag, M; Beischel, L; McCann, C; Phillips, S; Tunby, M; Hansen, J; Schwanke, C; Reynolds, J F

    2014-04-01

    We describe a family with recurrent 11q23-qter deletion Jacobsen syndrome in two affected brothers, with unique mosaic deletion 'rescue' through development of uniparental disomy (UPD) in the mother and one of the brothers. Inheritance studies show that the deleted chromosome is of maternal origin in both boys, and microarray shows a break near the ASAM gene. Parental lymphocyte chromosomes were normal. However, the mother is homozygous in lymphocytes for all loci within the deleted region in her sons, and presumably has UPD for this region. In addition, she is mosaic for the 11q deletion seen in her sons at a level of 20-30% in skin fibroblasts. We hypothesize that one of her #11 chromosomes shows fragility, that breakage at 11q23 occurred with telomeric loss in some cells, but 'rescue' from the deletion occurred in most cells by the development of mitotic UPD. She apparently carries the 11q deletion in her germ line resulting in recurrence of the syndrome. The older son is mosaic for the 11q cell line (70-88%, remainder 46,XY), and segmental UPD11 'rescue' apparently also occurred in his cytogenetically normal cells. This is a novel phenomenon restoring disomy to an individual with a chromosomal deletion. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  20. Enhanced Nociception in Angelman Syndrome Model Mice.

    Science.gov (United States)

    McCoy, Eric S; Taylor-Blake, Bonnie; Aita, Megumi; Simon, Jeremy M; Philpot, Benjamin D; Zylka, Mark J

    2017-10-18

    Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by mutation or deletion of the maternal UBE3A allele. The maternal UBE3A allele is expressed in nearly all neurons of the brain and spinal cord, whereas the paternal UBE3A allele is repressed by an extremely long antisense transcript ( UBE3A-ATS ). Little is known about expression of UBE3A in the peripheral nervous system, where loss of maternal UBE3A might contribute to AS phenotypes. Here we sought to examine maternal and paternal Ube3a expression in DRGs neurons and to evaluate whether nociceptive responses were affected in AS model mice (global deletion of maternal Ube3a allele; Ube3a m -/ p + ). We found that most large-diameter proprioceptive and mechanosensitive DRG neurons expressed maternal Ube3a and paternal Ube3a-ATS In contrast, most small-diameter neurons expressed Ube3a biallelically and had low to undetectable levels of Ube3a-ATS Analysis of single-cell DRG transcriptomes further suggested that Ube3a is expressed monoallelically in myelinated large-diameter neurons and biallelically in unmyelinated small-diameter neurons. Behavioral responses to some noxious thermal and mechanical stimuli were enhanced in male and female AS model mice; however, nociceptive responses were not altered by the conditional deletion of maternal Ube3a in the DRG. These data suggest that the enhanced nociceptive responses in AS model mice are due to loss of maternal Ube3a in the central, but not peripheral, nervous system. Our study provides new insights into sensory processing deficits associated with AS. SIGNIFICANCE STATEMENT Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss or mutation of the maternal UBE3A allele. While sensory processing deficits are frequently associated with AS, it is currently unknown whether Ube3a is expressed in peripheral sensory neurons or whether maternal deletion of Ube3a affects somatosensory responses. Here, we found that Ube3a is primarily expressed

  1. Molecular analysis of deletions in the human beta-globin gene cluster: deletion junctions and locations of breakpoints.

    Science.gov (United States)

    Henthorn, P S; Smithies, O; Mager, D L

    1990-02-01

    DNA fragments that contain the deletion junction regions of four independent deletions involving the human beta-globin gene cluster have been isolated and cloned. The fragments were isolated from individuals with the conditions referred to as Sicilian (delta beta)zero-thalassemia, Turkish G gamma+(A gamma delta beta)zero-thalassemia, Black G gamma+(A gamma delta beta)zero-thalassemia, and HPFH-2. The sequences of the deletion junctions and of the normal DNA surrounding their 3' breakpoints were determined and compared to the previously determined sequences of normal DNA surrounding their 5' breakpoints. These comparisons show that the deletions were the result of nonhomologous recombinational events. Two of the deletion junctions contain "orphan" nucleotides, while the other two show very limited amounts of "junctional homology." Both types of junctions are common among recombination events in mammalian cells and we discuss a simple joining scheme that could account for the junctions reported here. Unlike other deletions in this cluster and in other gene clusters, none of the eight deletion breakpoints examined here occurred within Alu family repeats. To examine the significance of deletion breakpoints within various sequence categories, we analyzed the data from a well-defined set of deletions within this locus. In contrast to deletions in the alpha-globin gene cluster, the occurrence of breakpoints in Alu family repetitive sequences is not statistically significant within the beta-globin gene cluster. However, breakpoints do occur within transcriptional units of the beta-globin gene cluster more frequently than expected by chance alone. We conclude from our analysis that the mechanisms of DNA joining are not locus or location specific, but at least a portion of the mechanisms of chromosomal breakages do show locus specificity.

  2. Long-Term Enrichment Enhances the Cognitive Behavior of the Aging Neurogranin Null Mice without Affecting Their Hippocampal LTP

    Science.gov (United States)

    Huang, Freesia L.; Huang, Kuo-Ping; Boucheron, Catherine

    2007-01-01

    Neurogranin (Ng), a PKC substrate, is abundantly expressed in brain regions important for cognitive functions. Deletion of Ng caused severe deficits in spatial learning and LTP in the hippocampal CA1 region of mice. These Ng-/- mice also exhibit deficits in the amplification of their hippocampal signaling pathways critical for learning and memory.…

  3. Chromosome subband 17p11.2 deletion: a minute deletion syndrome.

    OpenAIRE

    Lockwood, D.; Hecht, F; Dowman, C; Hecht, B K; Rizkallah, T H; Goodwin, T M; Allanson, J

    1988-01-01

    Interstitial deletion of the short arm of chromosome 17 was detected in three unrelated patients with mental retardation and multiple congenital malformations. These patients were identified at a single centre over a six month period suggesting that del(17) (p11.2p11.2) is not a rare constitutional chromosome rearrangement. Comparison of the phenotypic features in a total of 19 patients with del(17)(p11.2p11.2) shows a consistent clinical phenotype with moderate to severe mental retardation, ...

  4. Targeted deletion of Atg5 reveals differential roles of autophagy in keratin K5-expressing epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Sukseree, Supawadee [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Rossiter, Heidemarie; Mildner, Michael [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Pammer, Johannes [Institute of Clinical Pathology, Medical University of Vienna, Vienna (Austria); Buchberger, Maria; Gruber, Florian [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Watanapokasin, Ramida [Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok (Thailand); Tschachler, Erwin [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria); Eckhart, Leopold, E-mail: leopold.eckhart@meduniwien.ac.at [Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna (Austria)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We generated mice lacking Atg5 and autophagy in keratin K5-positive epithelia. Black-Right-Pointing-Pointer Suppression of autophagy in thymic epithelium was not associated with signs of autoimmunity. Black-Right-Pointing-Pointer Autophagy was required for normal terminal differentiation of preputial gland cells. Black-Right-Pointing-Pointer Autophagy-deficient cells of the preputial glands degraded nuclear DNA prematurely. -- Abstract: Autophagy contributes to the homeostasis of many tissues, yet its role in epithelia is incompletely understood. A recent report proposed that Atg5-dependent autophagy in thymic epithelial cells is essential for their function in the negative selection of self-reactive T-cells and, thus, for the suppression of tissue inflammation. Here we crossed mice carrying floxed alleles of the Atg5 gene with mice expressing the Cre recombinase under the control of the keratin K5 promoter to suppress autophagy in all K5-positive epithelia. The efficiency of autophagy abrogation was confirmed by immunoanalyses of LC3, which was converted to the autophagy-associated LC3-II form in normal but not Atg5-deficient cells, and of p62, which accumulated in Atg5-deficient cells. Mice carrying the epithelium-specific deletion of Atg5 showed normal weight gain, absence of tissue inflammation, and a normal morphology of the thymic epithelium. By contrast, autophagy-deficient epithelial cells of the preputial gland showed aberrant eosinophilic staining in histology and premature degradation of nuclear DNA during terminal differentiation. Taken together, the results of this study suggest that autophagy is dispensable for the suppression of autoimmunity by thymic epithelial cells but essential for normal differentiation of the preputial gland in mice.

  5. Beta-cell specific deletion of Dicer1 leads to defective insulin secretion and diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Martins Kalis

    Full Text Available Mature microRNAs (miRNAs, derived through cleavage of pre-miRNAs by the Dicer1 enzyme, regulate protein expression in many cell-types including cells in the pancreatic islets of Langerhans. To investigate the importance of miRNAs in mouse insulin secreting β-cells, we have generated mice with a β-cells specific disruption of the Dicer1 gene using the Cre-lox system controlled by the rat insulin promoter (RIP. In contrast to their normoglycaemic control littermates (RIP-Cre(+/- Dicer1(Δ/wt, RIP-Cre(+/-Dicer1(flox/flox mice (RIP-Cre Dicer1(Δ/Δ developed progressive hyperglycaemia and full-blown diabetes mellitus in adulthood that recapitulated the natural history of the spontaneous disease in mice. Reduced insulin gene expression and concomitant reduced insulin secretion preceded the hyperglycaemic state and diabetes development. Immunohistochemical, flow cytometric and ultrastructural analyses revealed altered islet morphology, marked decreased β-cell mass, reduced numbers of granules within the β-cells and reduced granule docking in adult RIP-Cre Dicer1(Δ/Δ mice. β-cell specific Dicer1 deletion did not appear to disrupt fetal and neonatal β-cell development as 2-week old RIP-Cre Dicer1(Δ/Δ mice showed ultrastructurally normal β-cells and intact insulin secretion. In conclusion, we have demonstrated that a β-cell specific disruption of the miRNAs network, although allowing for apparently normal β-cell development, leads to progressive impairment of insulin secretion, glucose homeostasis and diabetes development.

  6. Hearing Loss in a Mouse Model of 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Fuchs, Jennifer C.; Zinnamon, Fhatarah A.; Taylor, Ruth R.; Ivins, Sarah; Scambler, Peter J.; Forge, Andrew; Tucker, Abigail S.; Linden, Jennifer F.

    2013-01-01

    22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM. PMID:24244619

  7. Striatal-enriched protein tyrosine phosphatase modulates nociception: evidence from genetic deletion and pharmacological inhibition.

    Science.gov (United States)

    Azkona, Garikoitz; Saavedra, Ana; Aira, Zigor; Aluja, David; Xifró, Xavier; Baguley, Tyler; Alberch, Jordi; Ellman, Jonathan A; Lombroso, Paul J; Azkue, Jon J; Pérez-Navarro, Esther

    2016-02-01

    The information from nociceptors is processed in the dorsal horn of the spinal cord by complex circuits involving excitatory and inhibitory interneurons. It is well documented that GluN2B and ERK1/2 phosphorylation contributes to central sensitization. Striatal-enriched protein tyrosine phosphatase (STEP) dephosphorylates GluN2B and ERK1/2, promoting internalization of GluN2B and inactivation of ERK1/2. The activity of STEP was modulated by genetic (STEP knockout mice) and pharmacological (recently synthesized STEP inhibitor, TC-2153) approaches. STEP(61) protein levels in the lumbar spinal cord were determined in male and female mice of different ages. Inflammatory pain was induced by complete Freund's adjuvant injection. Behavioral tests, immunoblotting, and electrophysiology were used to analyze the effect of STEP on nociception. Our results show that both genetic deletion and pharmacological inhibition of STEP induced thermal hyperalgesia and mechanical allodynia, which were accompanied by increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Striatal-enriched protein tyrosine phosphatase heterozygous and knockout mice presented a similar phenotype. Furthermore, electrophysiological experiments showed that TC-2153 increased C fiber-evoked spinal field potentials. Interestingly, we found that STEP(61) protein levels in the lumbar spinal cord inversely correlated with thermal hyperalgesia associated with age and female gender in mice. Consistently, STEP knockout mice failed to show age-related thermal hyperalgesia, although gender-related differences were preserved. Moreover, in a model of inflammatory pain, hyperalgesia was associated with increased phosphorylation-mediated STEP(61) inactivation and increased pGluN2B(Tyr1472) and pERK1/2(Thr202/Tyr204)levels in the lumbar spinal cord. Collectively, the present results underscore an important role of spinal STEP activity in the modulation of nociception.

  8. Lessons from Tau-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yazi D. Ke

    2012-01-01

    Full Text Available Both Alzheimer's disease (AD and frontotemporal dementia (FTD are characterized by the deposition of hyperphosphorylated forms of the microtubule-associated protein tau in neurons and/or glia. This unifying pathology led to the umbrella term “tauopathies” for these conditions, also emphasizing the central role of tau in AD and FTD. Generation of transgenic mouse models expressing human tau in the brain has contributed to the understanding of the pathomechanistic role of tau in disease. To reveal the physiological functions of tau in vivo, several knockout mouse strains with deletion of the tau-encoding MAPT gene have been established over the past decade, using different gene targeting constructs. Surprisingly, when initially introduced tau knockout mice presented with no overt phenotype or malformations. The number of publications using tau knockout mice has recently markedly increased, and both behavioural changes and motor deficits have been identified in aged mice of certain strains. Moreover, tau knockout mice have been instrumental in identifying novel functions of tau, both in cultured neurons and in vivo. Importantly, tau knockout mice have significantly contributed to the understanding of the pathophysiological interplay between Aβ and tau in AD. Here, we review the literature that involves tau knockout mice to summarize what we have learned so far from depleting tau in vivo.

  9. Performance of quantum cloning and deleting machines over coherence

    Science.gov (United States)

    Karmakar, Sumana; Sen, Ajoy; Sarkar, Debasis

    2017-10-01

    Coherence, being at the heart of interference phenomena, is found to be an useful resource in quantum information theory. Here we want to understand quantum coherence under the combination of two fundamentally dual processes, viz., cloning and deleting. We found the role of quantum cloning and deletion machines with the consumption and generation of quantum coherence. We establish cloning as a cohering process and deletion as a decohering process. Fidelity of the process will be shown to have connection with coherence generation and consumption of the processes.

  10. Mosaic DCX deletion causes subcortical band heterotopia in males.

    Science.gov (United States)

    Quélin, Chloé; Saillour, Yoann; Souville, Isabelle; Poirier, Karine; N'guyen-Morel, Marie Ange; Vercueil, Laurent; Millisher-Bellaiche, Anne Elodie; Boddaert, Nathalie; Dubois, Fanny; Chelly, Jamel; Beldjord, Cherif; Bahi-Buisson, Nadia

    2012-11-01

    Subcortical band heterotopia (SBH) is a neuronal migration disorder usually described in females carrying heterozygous mutations in the X-linked doublecortin (DCX) gene. Hemizygous DCX mutations in males result in lissencephaly. Recently, exonic deletions of DCX resulting in a severer form of agyria have been reported. Nevertheless, rare male patients with SBH have been described with somatic mosaicism of point mutations. Here, we identified a somatic mosaicism for a deletion of exon 4 in the DCX gene in a male patient with SBH detected prenatally. This finding points to the possible implication of mosaic deletions in the DCX gene in unexplained forms of SBH and may allow for detection of SBH prenatally.

  11. Precise mapping of 17 deletion breakpoints within the central hotspot deletion region (introns 50 and 51) of the DMD gene.

    Science.gov (United States)

    Esposito, Gabriella; Tremolaterra, Maria Roberta; Marsocci, Evelina; Tandurella, Igor Cm; Fioretti, Tiziana; Savarese, Maria; Carsana, Antonella

    2017-12-01

    Exon deletions in the human DMD gene, which encodes the dystrophin protein, are the molecular defect in 50-70% of cases of Duchenne/Becker muscular dystrophies. Deletions are preferentially clustered in the 5' (exons 2-20) and the central (exons 45-53) region of DMD, likely because local DNA structure predisposes to specific breakage or recombination events. Notably, innovative therapeutic strategies may rescue dystrophin function by homology-based specific targeting of sequences within the central DMD hot spot deletion region. To further study molecular mechanisms that generate such frequent genome variations and to identify residual intronic sequences, we sequenced 17 deletion breakpoints within introns 50 and 51 of DMD and analyzed the surrounding genomic architecture. There was no breakpoint clustering within the introns nor extensive homology between sequences adjacent to each junction. However, at or near the breakpoint, we found microhomology, short tandem repeats, interspersed repeat elements and short sequence stretches that predispose to DNA deletion or bending. Identification of such structural elements contributes to elucidate general mechanisms generating deletion within the DMD gene. Moreover, precise mapping of deletion breakpoints and localization of repeated elements are of interest, because residual intronic sequences may be targeted by therapeutic strategies based on genome editing correction.

  12. Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure.

    Science.gov (United States)

    Drägert, Katja; Bhattacharya, Indranil; Pellegrini, Giovanni; Seebeck, Petra; Azzi, Abdelhalim; Brown, Steven A; Georgiopoulou, Stavroula; Held, Ulrike; Blyszczuk, Przemyslaw; Arras, Margarete; Humar, Rok; Hall, Michael N; Battegay, Edouard; Haas, Elvira

    2015-08-01

    The mammalian target of rapamycin complex 2 (mTORC2) contains the essential protein RICTOR and is activated by growth factors. mTORC2 in adipose tissue contributes to the regulation of glucose and lipid metabolism. In the perivascular adipose tissue, mTORC2 ensures normal vascular reactivity by controlling expression of inflammatory molecules. To assess whether RICTOR/mTORC2 contributes to blood pressure regulation, we applied a radiotelemetry approach in control and Rictor knockout (Rictor(aP2KO)) mice generated using adipocyte protein-2 gene promoter-driven CRE recombinase expression to delete Rictor. The 24-hour mean arterial pressure was increased in Rictor(aP2KO) mice, and the physiological decline in mean arterial pressure during the dark period was impaired. In parallel, heart rate and locomotor activity were elevated during the dark period with a pattern similar to blood pressure changes. This phenotype was associated with mild cardiomyocyte hypertrophy, decreased cardiac natriuretic peptides, and their receptor expression in adipocytes. Moreover, clock gene expression was reduced or phase-shifted in perivascular adipose tissue. No differences in clock gene expression were observed in the master clock suprachiasmatic nucleus, although Rictor gene expression was also lower in brain of Rictor(aP2KO) mice. Thus, this study highlights the importance of RICTOR/mTORC2 for interactions between vasculature, adipocytes, and brain to tune physiological outcomes, such as blood pressure and locomotor activity. © 2015 American Heart Association, Inc.

  13. Vhl deletion in osteoblasts boosts cellular glycolysis and improves global glucose metabolism.

    Science.gov (United States)

    Dirckx, Naomi; Tower, Robert J; Mercken, Evi M; Vangoitsenhoven, Roman; Moreau-Triby, Caroline; Breugelmans, Tom; Nefyodova, Elena; Cardoen, Ruben; Mathieu, Chantal; Van der Schueren, Bart; Confavreux, Cyrille B; Clemens, Thomas L; Maes, Christa

    2018-02-12

    The skeleton has emerged as an important regulator of systemic glucose homeostasis, with osteocalcin and insulin representing prime mediators of the interplay between bone and energy metabolism. However, genetic evidence indicates that osteoblasts can influence global energy metabolism through additional, as yet unknown, mechanisms. Here, we report that constitutive or postnatally induced deletion of the hypoxia signaling pathway component von Hippel-Lindau (VHL) in skeletal osteolineage cells of mice led to high bone mass as well as hypoglycemia and increased glucose tolerance, not accounted for by osteocalcin or insulin. In vitro and in vivo data indicated that Vhl-deficient osteoblasts displayed massively increased glucose uptake and glycolysis associated with upregulated HIF-target gene expression, resembling the Warburg effect that typifies cancer cells. Overall, the glucose consumption by the skeleton was increased in the mutant mice, as revealed by 18F-FDG radioactive tracer experiments. Moreover, the glycemia levels correlated inversely with the level of skeletal glucose uptake, and pharmacological treatment with the glycolysis inhibitor dichloroacetate (DCA), which restored glucose metabolism in Vhl-deficient osteogenic cells in vitro, prevented the development of the systemic metabolic phenotype in the mutant mice. Altogether, these findings reveal a novel link between cellular glucose metabolism in osteoblasts and whole-body glucose homeostasis, controlled by local hypoxia signaling in the skeleton.

  14. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile.

    Directory of Open Access Journals (Sweden)

    Huaishan Wang

    Full Text Available Translocator Protein (18kDa, TSPO is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het x Het or KO x KO breeding were consistent with Mendel's Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj's findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis.

  15. Conditional deletion of Tgfbr2 in hypertrophic chondrocytes delays terminal chondrocyte differentiation.

    Science.gov (United States)

    Sueyoshi, Tatsuya; Yamamoto, Koji; Akiyama, Haruhiko

    2012-07-01

    Transforming growth factor β (Tgfb) signaling plays an important role in endochondral ossification. Previous studies of mice in which the Tgfb type II receptor gene (Tgfbr2) was deleted in the limb bud mesenchymal cells or differentiated chondrocytes showed defects in the development of the long bones or the axial skeleton, respectively. Here, we generated mouse embryos in which the Tgfbr2 gene was ablated in hypertrophic chondrocytes. These mice exhibited delays in both the hypertrophic conversion of proliferating chondrocytes and the subsequent terminal chondrocyte differentiation. The expression domains of Col10a1, Matrix metalloproteinase 13, and Osteopontin were small, and the expression of Vascular endothelial growth factor and Platelet endothelial cell adhesion molecule was downregulated. The calcification of the bone collar in the mutant mice was markedly delayed and the periosteum was thin, possibly because of the downregulation of Indian hedgehog expression. We conclude that Tgfb signaling in hypertrophic chondrocytes positively regulates terminal chondrocyte differentiation, angiogenesis in calcified cartilage, and osteogenesis in the bone collar, at least partly through Indian hedgehog signaling in vivo. Copyright © 2012 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  16. Deletion of ADORA2B from myeloid cells dampens lung fibrosis and pulmonary hypertension.

    Science.gov (United States)

    Karmouty-Quintana, Harry; Philip, Kemly; Acero, Luis F; Chen, Ning-Yuan; Weng, Tingting; Molina, Jose G; Luo, Fayong; Davies, Jonathan; Le, Ngoc-Bao; Bunge, Isabelle; Volcik, Kelly A; Le, Thanh-Thuy T; Johnston, Richard A; Xia, Yang; Eltzschig, Holger K; Blackburn, Michael R

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a lethal, fibroproliferative disease. Pulmonary hypertension (PH) can develop secondary to IPF and increase mortality. Alternatively, activated macrophages (AAMs) contribute to the pathogenesis of both IPF and PH. Here we hypothesized that adenosine signaling through the ADORA2B on AAMs impacts the progression of these disorders and that conditional deletion of ADORA2B on myeloid cells would have a beneficial effect in a model of these diseases. Conditional knockout mice lacking ADORA2B on myeloid cells (Adora2B(f/f)-LysM(Cre)) were exposed to the fibrotic agent bleomycin (BLM; 0.035 U/g body weight, i.p.). At 14, 17, 21, 25, or 33 d after exposure, SpO2, bronchoalveolar lavage fluid (BALF), and histologic analyses were performed. On day 33, lung function and cardiovascular analyses were determined. Markers for AAM and mediators of fibrosis and PH were assessed. Adora2B(f/f)-LysM(Cre) mice presented with attenuated fibrosis, improved lung function, and no evidence of PH compared with control mice exposed to BLM. These findings were accompanied by reduced expression of CD206 and arginase-1, markers for AAMs. A 10-fold reduction in IL-6 and a 5-fold decrease in hyaluronan, both linked to lung fibrosis and PH, were also observed. These data suggest that activation of the ADORA2B on macrophages plays an active role in the pathogenesis of lung fibrosis and PH. © FASEB.

  17. RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor-β and Increasing Resistance to Apoptosis.

    Science.gov (United States)

    Hagiwara, Shinji; Sourris, Karly; Ziemann, Mark; Tieqiao, Wu; Mohan, Muthukumar; McClelland, Aaron D; Brennan, Eoin; Forbes, Josephine; Coughlan, Melinda; Harcourt, Brooke; Penfold, Sally; Wang, Bo; Higgins, Gavin; Pickering, Raelene; El-Osta, Assam; Thomas, Merlin C; Cooper, Mark E; Kantharidis, Phillip

    2018-02-15

    Signalling via the receptor of advanced glycation end-products (RAGE) although complex and not fully elucidated in the setting of diabetes, is considered a key injurious pathway in the development of diabetic nephropathy (DN). We report here that RAGE deletion resulted in increased expression of fibrotic (collagen I and IV, fibronectin) and the inflammatory marker, MCP-1 in primary mouse mesangial cells (MC) and in kidney cortex. RNA-seq analysis in MCs from RAGE -/- and wild type mice confirmed these observations. Nevertheless, despite these gene expression changes a decreased responsiveness to transforming growth factor-β was identified in RAGE -/- mice. Furthermore, RAGE deletion conferred a more proliferative phenotype in MCs and reduced susceptibility to staurosporine-induced apoptosis. RAGE restoration experiments in RAGE -/- MCs largely reversed these gene expression changes resulting in reduced expression of fibrotic and inflammatory markers. This study highlights that protection against DN in RAGE KO mice is likely in part to be due the result of decreased responsiveness to growth factor stimulation and an anti-apoptotic phenotype in mesangial cells. Furthermore, it extends our understanding of the role of RAGE in the progression of DN since RAGE appears to play a key role in modulating the sensitivity of the kidney to injurious stimuli such as prosclerotic cytokines. © 2018 by the American Diabetes Association.

  18. Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations.

    Science.gov (United States)

    Cunningham, Kirk; Uchida, Yutaka; O'Donnell, Erin; Claudio, Estefania; Li, Wenling; Soneji, Kosha; Wang, Hongshan; Mukouyama, Yoh-suke; Siebenlist, Ulrich

    2011-08-15

    Cerebral cavernous malformations (CCM) are irregularly shaped and enlarged capillaries in the brain that are prone to hemorrhage, resulting in headaches, seizures, strokes and even death in patients. The disease affects up to 0.5% of the population and the inherited form has been linked to mutations in one of three genetic loci, CCM1, CCM2 and CCM3. To understand the pathophysiology underlying the vascular lesions in CCM, it is critical to develop a reproducible mouse genetic model of this disease. Here, we report that limited conditional ablation of Ccm2 in young adult mice induces observable neurological dysfunction and reproducibly results in brain hemorrhages whose appearance is highly reminiscent of the lesions observed in human CCM patients. We first demonstrate that conventional or endothelial-specific deletion of Ccm2 leads to fatal cardiovascular defects during embryogenesis, including insufficient vascular lumen formation as well as defective arteriogenesis and heart malformation. These findings confirm and extend prior studies. We then demonstrate that the inducible deletion of Ccm2 in adult mice recapitulates the CCM-like brain lesions in humans; the lesions display disrupted vascular lumens, enlarged capillary cavities, loss of proper neuro-vascular associations and an inflammatory reaction. The CCM lesions also exhibit damaged neuronal architecture, the likely cause of neurologic defects, such as ataxia and seizure. These mice represent the first CCM2 animal model for CCM and should provide the means to elucidate disease mechanisms and evaluate therapeutic strategies for human CCM.

  19. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors.

    Directory of Open Access Journals (Sweden)

    Cecilia Csölle

    Full Text Available Recent investigations have revealed that the genetic deletion of P2X7 receptors (P2rx7 results in an antidepressant phenotype in mice. However, the link between the deficiency of P2rx7 and changes in behavior has not yet been explored. In the present study, we studied the effect of genetic deletion of P2rx7 on neurochemical changes in the hippocampus that might underlie the antidepressant phenotype. P2X7 receptor deficient mice (P2rx7-/- displayed decreased immobility in the tail suspension test (TST and an attenuated anhedonia response in the sucrose preference test (SPT following bacterial endotoxin (LPS challenge. The attenuated anhedonia was reproduced through systemic treatments with P2rx7 antagonists. The activation of P2rx7 resulted in the concentration-dependent release of [(3H]glutamate in P2rx7+/+ but not P2rx7-/- mice, and the NR2B subunit mRNA and protein was upregulated in the hippocampus of P2rx7-/- mice. The brain-derived neurotrophic factor (BDNF expression was higher in saline but not LPS-treated P2rx7-/- mice; the P2rx7 antagonist Brilliant blue G elevated and the P2rx7 agonist benzoylbenzoyl ATP (BzATP reduced BDNF level. This effect was dependent on the activation of NMDA and non-NMDA receptors but not on Group I metabotropic glutamate receptors (mGluR1,5. An increased 5-bromo-2-deoxyuridine (BrdU incorporation was also observed in the dentate gyrus derived from P2rx7-/- mice. Basal level of 5-HT was increased, whereas the 5HIAA/5-HT ratio was lower in the hippocampus of P2rx7-/- mice, which accompanied the increased uptake of [(3H]5-HT and an elevated number of [(3H]citalopram binding sites. The LPS-induced elevation of 5-HT level was absent in P2rx7-/- mice. In conclusion there are several potential mechanisms for the antidepressant phenotype of P2rx7-/- mice, such as the absence of P2rx7-mediated glutamate release, elevated basal BDNF production, enhanced neurogenesis and increased 5-HT bioavailability in the hippocampus.

  20. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene.

    Science.gov (United States)

    Chao, B N; Baldwin, W H; Healey, J F; Parker, E T; Shafer-Weaver, K; Cox, C; Jiang, P; Kanellopoulou, C; Lollar, P; Meeks, S L; Lenardo, M J

    2016-02-01

    ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a

  1. Non-deletion mutations in Egyptian patients with Duchenne ...

    African Journals Online (AJOL)

    . Molecular analysis included Polymerase Chain Reaction (PCR) followed by multiplex ligation-dependent probe amplification (MLPA) to those patients with no deletion by PCR. Direct sequencing of the whole dystrophin gene was done to ...

  2. Genetics Home Reference: proximal 18q deletion syndrome

    Science.gov (United States)

    ... can range from mild to severe. In particular, vocabulary and the production of speech (expressive language skills) ... Some affected individuals have an unusually large head size ( macrocephaly ). People with proximal 18q deletion syndrome often ...

  3. 42 CFR 401.118 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... Deletion of identifying details. When CMS publishes or otherwise makes available an opinion or order, statement of policy, or other record which relates to a private party or parties, the name or names or other...

  4. Production planning and coronal stop deletion in spontaneous speech

    National Research Council Canada - National Science Library

    James Tanner; Morgan Sonderegger; Michael Wagner

    2017-01-01

    .... We examine coronal stop deletion (CSD), a variable process conditioned by preceding and upcoming phonological context, in a corpus of spontaneous British English speech, as a means of investigating a number of variables associated with planning...

  5. Additions and deletions to the known cerambycidae (Coleoptera) of Bolivia

    Science.gov (United States)

    An additional 137 species and two tribes are added to the known cerambycid fauna of Bolivia while 12 species are deleted. Comments and statistics regarding the growth of knowledge on the Bolivian Cerambycid fauna and species endemicity are included....

  6. In Vitro and In Vivo Attenuation of Vesicular Stomatitis Virus (VSV) by Phosphoprotein Deletion.

    Science.gov (United States)

    Wongthida, Phonphimon; Jengarn, Juggragarn; Narkpuk, Jaraspim; Koonyosying, Pongpisid; Srisutthisamphan, Kanjana; Wanitchang, Asawin; Leaungwutiwong, Pornsawan; Teeravechyan, Samaporn; Jongkaewwattana, Anan

    2016-01-01

    Vesicular stomatitis virus (VSV) is highly immunogenic and able to stimulate both innate and adaptive immune responses. However, its ability to induce adverse effects has held back the use of VSV as a potential vaccine vector. In this study we developed VSV-ΔP, a safe yet potent replication-defective recombinant VSV in which the phosphoprotein (P) gene was deleted. VSV-ΔP replicated only in supporting cells expressing P (BHK-P cells) and at levels more than 2 logs lower than VSV. In vivo studies indicated that the moderate replication of VSV-ΔP in vitro was associated with the attenuation of this virus in the mouse model, whereas mice intracranially injected with VSV succumbed to neurotoxicity. Furthermore, we constructed VSV and VSV-ΔP expressing a variety of antigens including hemagglutinin-neuraminidase (HN) from Newcastle disease virus (NDV), hemagglutinin (HA) from either a 2009 H1N1 pandemic influenza virus (pdm/09) or the avian H7N9. VSV and VSV-ΔP incorporated the foreign antigens on their surface resulting in induction of robust neutralizing antibody, serum IgG, and hemagglutination inhibition (HAI) titers against their corresponding viruses. These results indicated that VSV with P gene deletion was attenuated in vitro and in vivo, and possibly expressed the foreign antigen on its surface. Therefore, the P gene-deletion strategy may offer a potentially useful and safer approach for attenuating negative-sense RNA viruses which use phosphoprotein as a cofactor for viral replication.

  7. In Vitro and In Vivo Attenuation of Vesicular Stomatitis Virus (VSV by Phosphoprotein Deletion.

    Directory of Open Access Journals (Sweden)

    Phonphimon Wongthida

    Full Text Available Vesicular stomatitis virus (VSV is highly immunogenic and able to stimulate both innate and adaptive immune responses. However, its ability to induce adverse effects has held back the use of VSV as a potential vaccine vector. In this study we developed VSV-ΔP, a safe yet potent replication-defective recombinant VSV in which the phosphoprotein (P gene was deleted. VSV-ΔP replicated only in supporting cells expressing P (BHK-P cells and at levels more than 2 logs lower than VSV. In vivo studies indicated that the moderate replication of VSV-ΔP in vitro was associated with the attenuation of this virus in the mouse model, whereas mice intracranially injected with VSV succumbed to neurotoxicity. Furthermore, we constructed VSV and VSV-ΔP expressing a variety of antigens including hemagglutinin-neuraminidase (HN from Newcastle disease virus (NDV, hemagglutinin (HA from either a 2009 H1N1 pandemic influenza virus (pdm/09 or the avian H7N9. VSV and VSV-ΔP incorporated the foreign antigens on their surface resulting in induction of robust neutralizing antibody, serum IgG, and hemagglutination inhibition (HAI titers against their corresponding viruses. These results indicated that VSV with P gene deletion was attenuated in vitro and in vivo, and possibly expressed the foreign antigen on its surface. Therefore, the P gene-deletion strategy may offer a potentially useful and safer approach for attenuating negative-sense RNA viruses which use phosphoprotein as a cofactor for viral replication.

  8. Microarray-based optimization to detect genomic deletion mutations

    Directory of Open Access Journals (Sweden)

    Eric J. Belfield

    2014-12-01

    Full Text Available We performed array comparative genome hybridization (aCGH analyses of five Arabidopsis thaliana mutants with genomic deletions ranging in size from 4 bp to >5 kb. We used the Roche NimbleGen Arabidopsis CGH 3 × 720 K whole genome custom tiling array to optimize deletion detection. Details of the microarray design and hybridization data have been deposited at the NCBI GEO repository with accession number GSE55327.

  9. Microarray-based optimization to detect genomic deletion mutations.

    Science.gov (United States)

    Belfield, Eric J; Brown, Carly; Gan, Xiangchao; Jiang, Caifu; Baban, Dilair; Mithani, Aziz; Mott, Richard; Ragoussis, Jiannis; Harberd, Nicholas P

    2014-12-01

    We performed array comparative genome hybridization (aCGH) analyses of five Arabidopsis thaliana mutants with genomic deletions ranging in size from 4 bp to > 5 kb. We used the Roche NimbleGen Arabidopsis CGH 3 × 720 K whole genome custom tiling array to optimize deletion detection. Details of the microarray design and hybridization data have been deposited at the NCBI GEO repository with accession number GSE55327.

  10. Posterior amorphous corneal dystrophy caused by a de novo deletion.

    Science.gov (United States)

    Odent, S; Casteels, I; Cassiman, C; Dieltiëns, M; Hua, M-T; Devriendt, K

    2017-01-01

    We present a newborn diagnosed with posterior amorphous corneal dystrophy (PACD). PACD is a rare disorder with partial or complete posterior lamellar corneal opacification. Genetic screening showed a deletion of chromosome 12q21.33-q22 containing the identified four small leucine-rich proteoglycans (SLRP's) associated with this particular dystrophy. Neither parents were carrier of the deletion. To our knowledge, this is the first report of a de novo mutation causing PACD.

  11. Conditional deletion of epithelial IKKβ impairs alveolar formation through apoptosis and decreased VEGF expression during early mouse lung morphogenesis

    Directory of Open Access Journals (Sweden)

    Li Changgong

    2011-10-01

    Full Text Available Abstract Background Alveolar septation marks the beginning of the transition from the saccular to alveolar stage of lung development. Inflammation can disrupt this process and permanently impair alveolar formation resulting in alveolar hypoplasia as seen in bronchopulmonary dysplasia in preterm newborns. NF-κB is a transcription factor central to multiple inflammatory and developmental pathways including dorsal-ventral patterning in fruit flies; limb, mammary and submandibular gland development in mice; and branching morphogenesis in chick lungs. We have previously shown that epithelial overexpression of NF-κB accelerates lung maturity using transgenic mice. The purpose of this study was to test our hypothesis that targeted deletion of NF-κB signaling in lung epithelium would impair alveolar formation. Methods We generated double transgenic mice with lung epithelium-specific deletion of IKKβ, a known activating kinase upstream of NF-κB, using a cre-loxP transgenic recombination strategy. Lungs of resulting progeny were analyzed at embryonic and early postnatal stages to determine specific effects on lung histology, and mRNA and protein expression of relevant lung morphoreulatory genes. Lastly, results measuring expression of the angiogenic factor, VEGF, were confirmed in vitro using a siRNA-knockdown strategy in cultured mouse lung epithelial cells. Results Our results showed that IKKβ deletion in the lung epithelium transiently decreased alveolar type I and type II cells and myofibroblasts and delayed alveolar formation. These effects were mediated through increased alveolar type II cell apoptosis and decreased epithelial VEGF expression. Conclusions These results suggest that epithelial NF-κB plays a critical role in early alveolar development possibly through regulation of VEGF.

  12. Deletion of K1/K10 does not impair epidermal stratification but affects desmosomal structure and nuclear integrity.

    Science.gov (United States)

    Wallace, Lee; Roberts-Thompson, Leiann; Reichelt, Julia

    2012-04-01

    Keratins K1 and K10 are the most abundant proteins in the upper epidermis where they polymerize to form intermediate filaments (IFs). In addition to their well-established function in providing epidermal stability, K1/K10 (i.e. the dimer between K1 and K10) IFs are supposed to be important for terminal epidermal differentiation and barrier formation. It was previously shown that the imbalanced deletion of one of the partner keratins, K10, disturbed epidermal homoeostasis, although stability was provided by compensatory upregulation of K5/K14, which formed IFs together with the remaining K1. Here, we show that deletion of both partner keratins, K1 and K10, results in lethal postnatal skin fragility in mice. Krt1(-/-);Krt10(-/-) mice revealed that K1/K10 IFs are unexpectedly dispensable for epidermal stratification. Although the stratum corneum was less compact and cornified envelope differentiation was impaired, a dye exclusion assay showed that the development of a functional water barrier was surprisingly independent from the presence of K1/K10 IFs. The deletion of K1/K10 was not compensated by any other keratin pair such as the basal epidermal keratins K5/K14, and electron microscopy revealed total absence of IFs in the suprabasal epidermis. Although plakoglobin was unchanged, the expression of the desmosomal proteins desmoplakin, desmocollin 1 and desmoglein 1 were altered and suprabasal desmosomes were smaller in Krt1(-/-);Krt10(-/-) than in wild-type epidermis suggesting an involvement of K1/K10 IFs in desmosome dynamics. Furthermore, Krt1(-/-);Krt10(-/-) mice showed premature loss of nuclei during epidermal differentiation and lower levels of emerin, lamin A/C and Sun1, revealing a previously unknown function for IFs in maintaining nuclear integrity in the upper epidermis.

  13. The ubiquitous ‘cancer mutational signature’ 5 occurs specifically in cancers with deleted FHIT alleles

    Science.gov (United States)

    Volinia, Stefano; Druck, Teresa; Paisie, Carolyn A.; Schrock, Morgan S.; Huebner, Kay

    2017-01-01

    The FHIT gene is located at the fragile FRA3B locus where activation by carcinogen-induced and endogenous replication stress causes FHIT deletions even in normal cells over a lifetime. Our lab has shown that loss of FHIT expression causes genome instability and provides single-strand DNA substrates for APOBEC3B hypermutation, in line with evidence that FHIT locus deletions occur in many cancers. Based on these biological features, we hypothesized that FHIT loss drives development of COSMIC mutational signature 5 and here provide evidence, including data mining of >6,500 TCGA samples, that FHIT is the cancer-associated gene with copy number alterations correlating most significantly with signature 5 mutation rate. In addition, tissues of Fhit-deficient mice exhibit a mutational signature strongly resembling signature 5 (cosine similarity value = 0.89). We conclude that FHIT loss is a molecular determinant for signature 5 mutations, which occur in all cancer types early in cancer development, are clock-like, and accelerated by carcinogen exposure. Loss of FHIT caretaker function may be a predictive and preventive marker for cancer development. PMID:29254236

  14. The ubiquitous 'cancer mutational signature' 5 occurs specifically in cancers with deleted FHIT alleles.

    Science.gov (United States)

    Volinia, Stefano; Druck, Teresa; Paisie, Carolyn A; Schrock, Morgan S; Huebner, Kay

    2017-11-24

    The FHIT gene is located at the fragile FRA3B locus where activation by carcinogen-induced and endogenous replication stress causes FHIT deletions even in normal cells over a lifetime. Our lab has shown that loss of FHIT expression causes genome instability and provides single-strand DNA substrates for APOBEC3B hypermutation, in line with evidence that FHIT locus deletions occur in many cancers. Based on these biological features, we hypothesized that FHIT loss drives development of COSMIC mutational signature 5 and here provide evidence, including data mining of >6,500 TCGA samples, that FHIT is the cancer-associated gene with copy number alterations correlating most significantly with signature 5 mutation rate. In addition, tissues of Fhit-deficient mice exhibit a mutational signature strongly resembling signature 5 (cosine similarity value = 0.89). We conclude that FHIT loss is a molecular determinant for signature 5 mutations, which occur in all cancer types early in cancer development, are clock-like, and accelerated by carcinogen exposure. Loss of FHIT caretaker function may be a predictive and preventive marker for cancer development.

  15. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration.

    Directory of Open Access Journals (Sweden)

    Alexander Schulz

    Full Text Available In contrast to axons of the central nervous system (CNS, axons of the peripheral nervous system (PNS show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2, has recently been shown to have RhoA regulatory functions in PNS neurons-in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery.

  16. STAT5 deletion in macrophages alters ductal elongation and branching during mammary gland development.

    Science.gov (United States)

    Brady, Nicholas J; Farrar, Michael A; Schwertfeger, Kathryn L

    2017-08-01

    Macrophages are required for proper mammary gland development and maintaining tissue homeostasis. However, the mechanisms by which macrophages regulate this process remain unclear. Here, we identify STAT5 as an important regulator of macrophage function in the developing mammary gland. Analysis of mammary glands from mice with STAT5-deficient macrophages demonstrates delayed ductal elongation, enhanced ductal branching and increased epithelial proliferation. Further analysis reveals that STAT5 deletion in macrophages leads to enhanced expression of proliferative factors such as Cyp19a1/aromatase and IL-6. Mechanistic studies demonstrate that STAT5 binds directly to the Cyp19a1 promoter in macrophages to suppress gene expression and that loss of STAT5 results in enhanced stromal expression of aromatase. Finally, we demonstrate that STAT5 deletion in macrophages cooperates with oncogenic initiation in mammary epithelium to accelerate the formation of estrogen receptor (ER)-positive hyperplasias. These studies establish the importance of STAT5 in macrophages during ductal morphogenesis in the mammary gland and demonstrate that altering STAT5 function in macrophages can affect the development of tissue-specific disease. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Neuropathological features in a female fetus with OPHN1 deletion and cerebellar hypoplasia.

    Science.gov (United States)

    Rocas, Delphine; Alix, Eudeline; Michel, Jessica; Cordier, Marie-Pierre; Labalme, Audrey; Guilbert, Hélène; Till, Marianne; Schluth-Bolard, Caroline; de Haas, Pascale; Massardier, Jérôme; Portes, Vincent des; Edery, Patrick; Touraine, Renaud; Guibaud, Laurent; Vasiljevic, Alexandre; Sanlaville, Damien

    2013-05-01

    We report the case of a 33-year-old pregnant woman. The third-trimester ultrasound scan during pregnancy revealed fetal bilateral ventricular dilatation, macrosomia and a transverse diameter of the cerebellum at the 30th centile. A brain MRI scan at 31 weeks of gestation led to a diagnosis of hypoplasia of the cerebellar vermis without hemisphere abnormalities and a non compressive expansion of the cisterna magna. The fetal karyotype was 46,XX. The pregnancy was terminated and array-CGH analysis of the fetus identified a 238 kb de novo deletion on chromosome Xp12, encompassing part of OPHN1 gene. Further studies revealed a completely skewed pattern of X inactivation. OPHN1 is involved in X-linked mental retardation (XLMR) with cerebellar hypoplasia and encodes a Rho-GTPase-activating protein called oligophrenin-1, which is produced throughout the developing mouse brain and in the hippocampus and Purkinje cells of the cerebellum in adult mice. Neuropathological examination of the female fetus revealed cerebellar hypoplasia and the heterotopia of Purkinje cells at multiple sites in the white matter of the cerebellum. This condition mostly affects male fetuses in humans. We report here the first case of a de novo partial deletion of OPHN1, with radiological and neuropathological examination, in a female fetus. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. Lkb1 deletion promotes ectopic lipid accumulation in muscle progenitor cells and mature muscles.

    Science.gov (United States)

    Shan, Tizhong; Zhang, Pengpeng; Bi, Pengpeng; Kuang, Shihuan

    2015-05-01

    Excessive intramyocellular triglycerides (muscle lipids) are associated with reduced contractile function, insulin resistance, and Type 2 diabetes, but what governs lipid accumulation in muscle is unclear. Here we report a role of Lkb1 in regulating lipid metabolism in muscle stem cells and their descendent mature muscles. We used Myod(Cre) and Lkb1(flox/flox) mice to specifically delete Lkb1 in myogenic cells including stem and differentiated cells, and examined the lipid accumulation and gene expression of myoblasts cultured from muscle stem cells (satellite cells). Genetic deletion of Lkb1 in myogenic progenitors led to elevated expression of lipogenic genes and ectopic lipid accumulation in proliferating myoblasts. Interestingly, the Lkb1-deficient myoblasts differentiated into adipocyte-like cells upon adipogenic induction. However, these adipocyte-like cells maintained myogenic gene expression with reduced ability to form myotubes efficiently. Activation of AMPK by AICAR prevented ectopic lipid formation in the Lkb1-null myoblasts. Notably, Lkb1-deficient muscles accumulated excessive lipids in vivo in response to high-fat diet feeding. These results demonstrate that Lkb1 acts through AMPK to limit lipid deposition in muscle stem cells and their derivative mature muscles, and point to the possibility of controlling muscle lipid content using AMPK activating drugs. © 2014 Wiley Periodicals, Inc.

  19. Conditional beta1-integrin gene deletion in neural crest cells causes severe developmental alterations of the peripheral nervous system

    DEFF Research Database (Denmark)

    Pietri, Thomas; Eder, Olivier; Breau, Marie Anne

    2004-01-01

    Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-....... There was an almost complete absence of Schwann cells and sensory axon segregation and defective maturation in neuromuscular synaptogenesis. Thus, beta1-integrins are important for the control of embryonic and postnatal peripheral nervous system development....

  20. Ccr2 deletion dissociates cavity size and tau pathology after mild traumatic brain injury.

    Science.gov (United States)

    Gyoneva, Stefka; Kim, Daniel; Katsumoto, Atsuko; Kokiko-Cochran, O Nicole; Lamb, Bruce T; Ransohoff, Richard M

    2015-12-03

    Millions of people experience traumatic brain injury (TBI) as a result of falls, car accidents, sports injury, and blast. TBI has been associated with the development of neurodegenerative conditions such as Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). In the initial hours and days, the pathology of TBI comprises neuronal injury, breakdown of the blood-brain barrier, and inflammation. At the cellular level, the inflammatory reaction consists of responses by brain-resident microglia, astrocytes, and vascular elements as well as infiltration of peripheral cells. After TBI, signaling by chemokine (C-C motif) ligand 2 (CCL2) to the chemokine (C-C motif) receptor 2 (CCR2) is a key regulator of brain infiltration by monocytes. We utilized mice with one or both copies of Ccr2 disrupted by red fluorescent protein (RFP, Ccr2 (RFP/+) and Ccr2 (RFP/RFP) ). We subjected these mice to the mild lateral fluid percussion model of TBI and examined several pathological outcomes 3 days later in order to determine the effects of altered monocyte entry into the brain. Ccr2 deletion reduced monocyte infiltration, diminished lesion cavity volume, and lessened axonal damage after mild TBI, but the microglial reaction to the lesion was not affected. We further examined phosphorylation of the microtubule-associated protein tau, which aggregates in brains of people with TBI, AD, and CTE. Surprisingly, Ccr2 deletion was associated with increased tau mislocalization to the cell body in the cortex and hippocampus by tissue staining and increased levels of phosphorylated tau in the hippocampus by Western blot. Disruption of CCR2 enhanced tau pathology and reduced cavity volume in the context of TBI. The data reveal a complex role for CCR2(+) monocytes in TBI, as monitored by cavity volume, axonal damage, and tau phosphorylation.

  1. Conditional Deletion ofRic-8bin Olfactory Sensory Neurons Leads to Olfactory Impairment.

    Science.gov (United States)

    Machado, Cleiton F; Nagai, Maíra H; Lyra, Cassandra S; Reis-Silva, Thiago M; Xavier, André M; Glezer, Isaias; Felicio, Luciano F; Malnic, Bettina

    2017-12-13

    The olfactory system can discriminate a vast number of odorants. This ability derives from the existence of a large family of odorant receptors expressed in the cilia of the olfactory sensory neurons. Odorant receptors signal through the olfactory-specific G-protein subunit, Gαolf. Ric-8b, a guanine nucleotide exchange factor, interacts with Gαolf and can amplify odorant receptor signal transduction in vitro To explore the function of Ric-8b in vivo , we generated a tissue specific knock-out mouse by crossing OMP-Cre transgenic mice to Ric-8b floxed mice. We found that olfactory-specific Ric-8b knock-out mice of mixed sex do not express the Gαolf protein in the olfactory epithelium. We also found that in these mice, the mature olfactory sensory neuron layer is reduced, and that olfactory sensory neurons show increased rate of cell death compared with wild-type mice. Finally, behavioral tests showed that the olfactory-specific Ric-8b knock-out mice show an impaired sense of smell, even though their motivation and mobility behaviors remain normal. SIGNIFICANCE STATEMENT Ric-8b is a guanine nucleotide exchange factor (GEF) expressed in the olfactory epithelium and in the striatum. Ric-8b interacts with the olfactory Gαolf subunit, and can amplify odorant signaling through odorant receptors in vitro However, the functional significance of this GEF in the olfactory neurons in vivo remains unknown. We report that deletion of Ric-8b in olfactory sensory neurons prevents stable expression of Gαolf. In addition, we demonstrate that olfactory neurons lacking Ric-8b (and consequently Gαolf) are more susceptible to cell death. Ric-8b conditional knock-out mice display impaired olfactory guided behavior. Our results reveal that Ric-8b is essential for olfactory function, and suggest that it may also be essential for Gαolf-dependent functions in the brain. Copyright © 2017 the authors 0270-6474/17/3712202-12$15.00/0.

  2. Parathyroid-Specific Deletion of Klotho Unravels a Novel Calcineurin-Dependent FGF23 Signaling Pathway That Regulates PTH Secretion

    Science.gov (United States)

    Olauson, Hannes; Lindberg, Karolina; Amin, Risul; Sato, Tadatoshi; Jia, Ting; Goetz, Regina; Mohammadi, Moosa; Andersson, Göran; Lanske, Beate; Larsson, Tobias E.

    2013-01-01

    Klotho acts as a co-receptor for and dictates tissue specificity of circulating FGF23. FGF23 inhibits PTH secretion, and reduced Klotho abundance is considered a pathogenic factor in renal secondary hyperparathyroidism. To dissect the role of parathyroid gland resident Klotho in health and disease, we generated mice with a parathyroid-specific Klotho deletion (PTH-KL−/−). PTH-KL−/− mice had a normal gross phenotype and survival; normal serum PTH and calcium; unaltered expression of the PTH gene in parathyroid tissue; and preserved PTH response and sensitivity to acute changes in serum calcium. Their PTH response to intravenous FGF23 delivery or renal failure did not differ compared to their wild-type littermates despite disrupted FGF23-induced activation of the MAPK/ERK pathway. Importantly, calcineurin-NFAT signaling, defined by increased MCIP1 level and nuclear localization of NFATC2, was constitutively activated in PTH-KL−/− mice. Treatment with the calcineurin-inhibitor cyclosporine A abolished FGF23-mediated PTH suppression in PTH-KL−/− mice whereas wild-type mice remained responsive. Similar results were observed in thyro-parathyroid explants ex vivo. Collectively, we present genetic and functional evidence for a novel, Klotho-independent, calcineurin-mediated FGF23 signaling pathway in parathyroid glands that mediates suppression of PTH. The presence of Klotho-independent FGF23 effects in a Klotho-expressing target organ represents a paradigm shift in the conceptualization of FGF23 endocrine action. PMID:24348262

  3. Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes

    Directory of Open Access Journals (Sweden)

    Longnecker Richard

    2005-11-01

    Full Text Available Abstract Background Prader-Willi and Angelman syndrome (PWS and AS patients typically have an ~5 Mb deletion of human chromosome 15q11-q13, of opposite parental origin. A mouse model of PWS and AS has a transgenic insertion-deletion (TgPWS/TgAS of chromosome 7B/C subsequent to paternal or maternal inheritance, respectively. In this study, we define the deletion endpoints and examine the impact on expression of flanking genes. Results Using molecular and cytological methods we demonstrate that 13 imprinted and 11 non-imprinted genes are included in the TgPWS/TgAS deletion. Normal expression levels were found in TgPWS brain for genes extending 9.1- or 5.6-Mb centromeric or telomeric of the deletion, respectively. Our molecular cytological studies map the proximal deletion breakpoint between the Luzp2 and Siglec-H loci, and we show that overall mRNA levels of Luzp2 in TgPWS and TgAS brain are significantly reduced by 17%. Intriguingly, 5' Chrna7 shows 1.7-fold decreased levels in TgPWS and TgAS brain whereas there is a ≥15-fold increase in expression in neonatal liver and spleen of these mouse models. By isolating a Chrna7-Tg fusion transcript from TgAS mice, we mapped the telomeric deletion breakpoint in Chrna7 intron 4. Conclusion Based on the extent of the deletion, TgPWS/TgAS mice are models for PWS/AS class I deletions. Other than for the first gene promoters immediately outside the deletion, since genes extending 5.6–9.1 Mb away from each end of the deletion show normal expression levels in TgPWS brain, this indicates that the transgene array does not induce silencing and there are no additional linked rearrangements. Using gene expression, non-coding conserved sequence (NCCS and synteny data, we have genetically mapped a putative Luzp2 neuronal enhancer responsible for ~33% of allelic transcriptional activity. The Chrna7 results are explained by hypothesizing loss of an essential neuronal transcriptional enhancer required for ~80% of

  4. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Science.gov (United States)

    Portmann, Thomas; Ellegood, Jacob; Dolen, Gul; Bader, Patrick L.; Grueter, Brad A.; Goold, Carleton; Fisher, Elaine; Clifford, Katherine; Rengarajan, Pavitra; Kalikhman, David; Loureiro, Darren; Saw, Nay L.; Zhengqui, Zhou; Miller, Michael A.; Lerch, Jason P.; Henkelman, Mark; Shamloo, Mehrdad; Malenka, Robert C.; Crawley, Jacqueline N.; Dolmetsch, Ricardo E.

    2014-01-01

    Summary A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−). We found elevated numbers of striatal medium spiny neurons (MSNs) expressing the dopamine D2 receptor (Drd2+) and fewer dopamine-sensitive (Drd1+) neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism. PMID:24794428

  5. P16 (INK4a) Deletion Ameliorated Renal Tubulointerstitial Injury in a Stress-induced Premature Senescence Model of Bmi-1 Deficiency.

    Science.gov (United States)

    Jin, Jianliang; Tao, Jianguo; Gu, Xin; Yu, Zhenzhen; Wang, Rong; Zuo, Guoping; Li, Qing; Lv, Xianhui; Miao, Dengshun

    2017-08-08

    To determine whether p16 (INK4a) deletion ameliorated renal tubulointerstitial injury by inhibiting a senescence-associated secretory phenotype (SASP) in Bmi-1-deficient (Bmi-1 (-/-)) mice, renal phenotypes were compared among 5-week-old Bmi-1 and p16 (INK4a) double-knockout, and Bmi-1 (-/-) and wild-type mice. Fifth-passage renal interstitial fibroblasts (RIFs) from the three groups were analyzed for senescence and proliferation. The effect of Bmi-1 deficiency on epithelial-to-mesenchymal transition (EMT) was examined in Bmi-1-knockdown human renal proximal tubular epithelial (HK2) cells, which were treated with concentrated conditioned medium (CM) from the fifth-passage renal interstitial fibroblasts (RIFs) of above three group mice or with exogenous TGF-β1. Our results demonstrated that p16 (INK4a) deletion largely rescued renal aging phenotypes caused by Bmi-1 deficiency, including impaired renal structure and function, decreased proliferation, increased apoptosis, senescence and SASP, DNA damage, NF-κB and TGF-β1/Smad signal activation, inflammatory cell infiltration, and tubulointerstitial fibrosis and tubular atrophy. P16 (INK4a) deletion also promoted proliferation, reduced senescence and SASP of RIFs and subsequently inhibited EMT of Bmi-1-knockdown HK2 cells. TGF-β1 further induced the EMT of Bmi-1-knockdown HK2 cells. Thus, p16 (INK4a) positive senescent cells would be a therapeutic target for preventing renal tubulointerstitial injury.

  6. Behavioral Abnormalities and Circuit Defects in the Basal Ganglia of a Mouse Model of 16p11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Thomas Portmann

    2014-05-01

    Full Text Available A deletion on human chromosome 16p11.2 is associated with autism spectrum disorders. We deleted the syntenic region on mouse chromosome 7F3. MRI and high-throughput single-cell transcriptomics revealed anatomical and cellular abnormalities, particularly in cortex and striatum of juvenile mutant mice (16p11+/−. We found elevated numbers of striatal medium spiny neurons (MSNs expressing the dopamine D2 receptor (Drd2+ and fewer dopamine-sensitive (Drd1+ neurons in deep layers of cortex. Electrophysiological recordings of Drd2+ MSN revealed synaptic defects, suggesting abnormal basal ganglia circuitry function in 16p11+/− mice. This is further supported by behavioral experiments showing hyperactivity, circling, and deficits in movement control. Strikingly, 16p11+/− mice showed a complete lack of habituation reminiscent of what is observed in some autistic individuals. Our findings unveil a fundamental role of genes affected by the 16p11.2 deletion in establishing the basal ganglia circuitry and provide insights in the pathophysiology of autism.

  7. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Science.gov (United States)

    Walker, Kendall R; Modgil, Amit; Albrecht, David; Lomoio, Selene; Haydon, Philip G; Moss, Stephen J; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer's disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  8. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission

    Science.gov (United States)

    Albrecht, David; Lomoio, Selene; Haydon, Philip G.; Moss, Stephen J.; Tesco, Giuseppina

    2016-01-01

    Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3) is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1), which is required for production of the Alzheimer’s disease (AD)-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC). Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates. PMID:27192432

  9. Genetic Deletion of the Clathrin Adaptor GGA3 Reduces Anxiety and Alters GABAergic Transmission.

    Directory of Open Access Journals (Sweden)

    Kendall R Walker

    Full Text Available Golgi-localized γ-ear-containing ARF binding protein 3 (GGA3 is a monomeric clathrin adaptor that has been shown to regulate the trafficking of the Beta-site APP-cleaving enzyme (BACE1, which is required for production of the Alzheimer's disease (AD-associated amyloid βpeptide. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that depletion of GGA3 results in increased BACE1 levels and activity owing to impaired lysosomal trafficking and degradation. We further demonstrated the role of GGA3 in the regulation of BACE1 in vivo by showing that BACE1 levels are increased in the brain of GGA3 null mice. We report here that GGA3 deletion results in novelty-induced hyperactivity and decreased anxiety-like behaviors. Given the pivotal role of GABAergic transmission in the regulation of anxiety-like behaviors, we performed electrophysiological recordings in hippocampal slices and found increased phasic and decreased tonic inhibition in the dentate gyrus granule cells (DGGC. Moreover, we found that the number of inhibitory synapses is increased in the dentate gyrus of GGA3 null mice in further support of the electrophysiological data. Thus, the increased GABAergic transmission is a leading candidate mechanism underlying the reduced anxiety-like behaviors observed in GGA3 null mice. All together these findings suggest that GGA3 plays a key role in GABAergic transmission. Since BACE1 levels are elevated in the brain of GGA3 null mice, it is possible that at least some of these phenotypes are a consequence of increased processing of BACE1 substrates.

  10. Intestine-specific Mttp deletion decreases mortality and prevents sepsis-induced intestinal injury in a murine model of Pseudomonas aeruginosa pneumonia.

    Directory of Open Access Journals (Sweden)

    Jessica A Dominguez

    Full Text Available BACKGROUND: The small intestine plays a crucial role in the pathophysiology of sepsis and has been referred to as the "motor" of the systemic inflammatory response. One proposed mechanism is that toxic gut-derived lipid factors, transported in mesenteric lymph, induce systemic injury and distant organ failure. However, the pathways involved are yet to be defined and the role of intestinal chylomicron assembly and secretion in transporting these lipid factors is unknown. Here we studied the outcome of sepsis in mice with conditional, intestine-specific deletion of microsomal triglyceride transfer protein (Mttp-IKO, which exhibit a block in chylomicron assembly together with lipid malabsorption. METHODOLOGY/PRINCIPAL FINDINGS: Mttp-IKO mice and controls underwent intratracheal injection with either Pseudomonas aeruginosa or sterile saline. Mttp-IKO mice exhibited decreased seven-day mortality, with 0/20 (0% dying compared to 5/17 (29% control mice (p<0.05. This survival advantage in Mttp-IKO mice, however, was not associated with improvements in pulmonary bacterial clearance or neutrophil infiltration. Rather, Mttp-IKO mice exhibited protection against sepsis-associated decreases in villus length and intestinal proliferation and were also protected against increased intestinal apoptosis, both central features in control septic mice. Serum IL-6 levels, a major predictor of mortality in human and mouse models of sepsis, were elevated 8-fold in septic control mice but remained unaltered in septic Mttp-IKO mice. Serum high density lipoprotein (HDL levels were reduced in septic control mice but were increased in septic Mttp-IKO mice. The decreased levels of HDL were associated with decreased hepatic expression of apolipoprotein A1 in septic control mice. CONCLUSIONS/SIGNIFICANCE: These studies suggest that strategies directed at blocking intestinal chylomicron secretion may attenuate the progression and improve the outcome of sepsis through effects

  11. Aspm sustains postnatal cerebellar neurogenesis and medulloblastoma growth in mice.

    Science.gov (United States)

    Williams, Scott E; Garcia, Idoia; Crowther, Andrew J; Li, Shiyi; Stewart, Alyssa; Liu, Hedi; Lough, Kendall J; O'Neill, Sean; Veleta, Katherine; Oyarzabal, Esteban A; Merrill, Joseph R; Shih, Yen-Yu Ian; Gershon, Timothy R

    2015-11-15

    Alterations in genes that regulate brain size may contribute to both microcephaly and brain tumor formation. Here, we report that Aspm, a gene that is mutated in familial microcephaly, regulates postnatal neurogenesis in the cerebellum and supports the growth of medulloblastoma, the most common malignant pediatric brain tumor. Cerebellar granule neuron progenitors (CGNPs) express Aspm when maintained in a proliferative state by sonic hedgehog (Shh) signaling, and Aspm is expressed in Shh-driven medulloblastoma in mice. Genetic deletion of Aspm reduces cerebellar growth, while paradoxically increasing the mitotic rate of CGNPs. Aspm-deficient CGNPs show impaired mitotic progression, altered patterns of division orientation and differentiation, and increased DNA damage, which causes progenitor attrition through apoptosis. Deletion of Aspm in mice with Smo-induced medulloblastoma reduces tumor growth and increases DNA damage. Co-deletion of Aspm and either of the apoptosis regulators Bax or Trp53 (also known as p53) rescues the survival of neural progenitors and reduces the growth restriction imposed by Aspm deletion. Our data show that Aspm functions to regulate mitosis and to mitigate DNA damage during CGNP cell division, causes microcephaly through progenitor apoptosis when mutated, and sustains tumor growth in medulloblastoma. © 2015. Published by The Company of Biologists Ltd.

  12. Disruption of the GH Receptor Gene in Adult Mice Increases Maximal Lifespan in Females

    DEFF Research Database (Denmark)

    Junnila, Riia K.; Duran-Ortiz, Silvana; Suer, Ozan

    2016-01-01

    GH and IGF-1 are important for a variety of physiological processes including growth, development, and aging. Mice with reduced levels of GH and IGF-1 have been shown to live longer than wild-type controls. Our laboratory has previously found that mice with a GH receptor gene knockout (GHRKO) from...... affect metabolism and longevity. Thus, we produced adult-onset GHRKO (aGHRKO) mice by disrupting the Ghr gene at 6 weeks of age. We found that aGHRKO mice replicate many of the beneficial effects observed in long-lived GHRKO mice. For example, aGHRKO mice, like GHRKO animals, displayed retarded growth...... carry germline mutations. Importantly, the effect of a long-term suppression of the GH/IGF-1 axis during adulthood, as would be considered for human therapeutic purposes, has not been tested. The goal of this study was to determine whether temporally controlled Ghr gene deletion in adult mice would...

  13. Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice.

    Science.gov (United States)

    Lapatto, Risto; Pallais, J Carl; Zhang, Dongsheng; Chan, Yee-Ming; Mahan, Amy; Cerrato, Felecia; Le, Wei Wei; Hoffman, Gloria E; Seminara, Stephanie B

    2007-10-01

    The G protein-coupled receptor Gpr54 and its ligand metastin (derived from the Kiss1 gene product kisspeptin) are key gatekeepers of sexual maturation. Gpr54 knockout mice demonstrate hypogonadotropic hypogonadism, but until recently, the phenotype of Kiss1 knockout mice was unknown. This report describes the reproductive phenotypes of mice carrying targeted deletions of Kiss1 or Gpr54 on the same genetic background. Both Kiss1 and Gpr54 knockout mice are viable but infertile and have abnormal sexual maturation; the majority of males lack preputial separation, and females have delayed vaginal opening and absence of estrous cycling. Kiss1 and Gpr54 knockout males have significantly smaller testes compared with controls. Gpr54 knockout females have smaller ovaries and uteri than wild-type females. However, Kiss1 knockout females demonstrate two distinct phenotypes: half have markedly reduced gonadal weights similar to those of Gpr54 knockout mice, whereas half exhibit persistent vaginal cornification and have gonadal weights comparable with those of wild-type females. FSH levels in both Kiss1 and Gpr54 knockout males and females are significantly lower than in controls. When injected with mouse metastin 43-52, a Gpr54 agonist, Gpr54 knockout mice fail to increase gonadotropins, whereas Kiss1 knockout mice respond with increased gonadotropin levels. In summary, both Kiss1 and Gpr54 knockout mice have abnormal sexual maturation consistent with hypogonadotropic hypogonadism, although Kiss1 knockout mice appear to be less severely affected than their receptor counterparts. Kiss1 knockout females demonstrate a bimodal phenotypic variability, with some animals having higher gonadal weight, larger vaginal opening, and persistent vaginal cornification.

  14. Human Genomic Deletions Generated by SVA-Associated Events.

    Science.gov (United States)

    Lee, Jungnam; Ha, Jungsu; Son, Seung-Yeol; Han, Kyudong

    2012-01-01

    Mobile elements are responsible for half of the human genome. Among the elements, L1 and Alu are most ubiquitous. They use L1 enzymatic machinery to move in their host genomes. A significant amount of research has been conducted about these two elements. The results showed that these two elements have played important roles in generating genomic variations between human and chimpanzee lineages and even within a species, through various mechanisms. SVA elements are a third type of mobile element which uses the L1 enzymatic machinery to propagate in the human genome but has not been studied much relative to the other elements. Here, we attempt the first identification of the human genomic deletions caused by SVA elements, through the comparison of human and chimpanzee genome sequences. We identified 13 SVA recombination-associated deletions (SRADs) and 13 SVA insertion-mediated deletions (SIMDs) in the human genome and characterized them, focusing on deletion size and the mechanisms causing the events. The results showed that the SRADs and SIMDs have deleted 15,752 and 30,785 bp, respectively, in the human genome since the divergence of human and chimpanzee and that SRADs were caused by two different mechanisms, nonhomologous end joining and nonallelic homologous recombination.

  15. Scalable Design of Paired CRISPR Guide RNAs for Genomic Deletion.

    Directory of Open Access Journals (Sweden)

    Carlos Pulido-Quetglas

    2017-03-01

    Full Text Available CRISPR-Cas9 technology can be used to engineer precise genomic deletions with pairs of single guide RNAs (sgRNAs. This approach has been widely adopted for diverse applications, from disease modelling of individual loci, to parallelized loss-of-function screens of thousands of regulatory elements. However, no solution has been presented for the unique bioinformatic design requirements of CRISPR deletion. We here present CRISPETa, a pipeline for flexible and scalable paired sgRNA design based on an empirical scoring model. Multiple sgRNA pairs are returned for each target, and any number of targets can be analyzed in parallel, making CRISPETa equally useful for focussed or high-throughput studies. Fast run-times are achieved using a pre-computed off-target database. sgRNA pair designs are output in a convenient format for visualisation and oligonucleotide ordering. We present pre-designed, high-coverage library designs for entire classes of protein-coding and non-coding elements in human, mouse, zebrafish, Drosophila melanogaster and Caenorhabditis elegans. In human cells, we reproducibly observe deletion efficiencies of ≥50% for CRISPETa designs targeting an enhancer and exonic fragment of the MALAT1 oncogene. In the latter case, deletion results in production of desired, truncated RNA. CRISPETa will be useful for researchers seeking to harness CRISPR for targeted genomic deletion, in a variety of model organisms, from single-target to high-throughput scales.

  16. Molecular studies of deletions at the human steroid sulfatase locus

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, L.J.; Yen, P.; Pomerantz, D.; Martin, E.; Rolewic, L.; Mohandas, T. (Univ. of California, Los Angeles (USA))

    1989-11-01

    The human steroid sulfatase gene (STS) is located on the distal X chromosome short arm close to the pseudoautosomal region but in a segment of DNA that is unique to the X chromosome. In contrast to most X chromosome-encoded genes, STS expression is not extinguished during the process of X chromosome inactivation. Deficiency of STS activity produced the syndrome of X chromosome-linked ichthyosis, which is one of the most common inborn errors of metabolism in man. Approximately 90% of STS{sup {minus}} individuals have large deletions at the STS locus. The authors and others have found that the end points of such deletions are heterogeneous in their location. One recently ascertained subject was observed to have a 40-kilobase deletion that is entirely intragenic, permitting the cloning and sequencing of the deletion junction. Studies of this patient and of other X chromosome sequences in other subjects permit some insight into the mechanism(s) responsible for generating frequent deletions on the short arm of the X chromosome.

  17. An emerging phenotype of proximal 11q deletions.

    Science.gov (United States)

    Melis, Daniela; Genesio, Rita; Cozzolino, Mariarosaria; Del Giudice, Ennio; Mormile, Angela; Imperati, Floriana; Ronga, Valentina; Della Casa, Roberto; Nitsch, Lucio; Andria, Generoso

    2010-01-01

    Few reports of small interstitial chromosome 11q deletions are reported in the literature and no clear genotype-phenotype correlation has been demonstrated. We describe a five years old boy who was referred to our attention because of the presence of ptosis of the left eyelid, iris coloboma and developmental delay. Clinical examination also revealed the presence of dysmorphic features including: low frontal hairline, flat profile, round face, full cheeks, periorbital fullness, hypertelorism, broad nasal bridge, down-turned corners of the mouth. Cytogenetic analysis, performed by array-CGH (resolution 1 Mb), revealed a deletion of chromosome 11q13.5q14.2. The present case represents a further patient described in the literature with a small interstitial deletion of chromosome 11q. Our patient shares the dysmorphic features and the presence of developmental delay with the previously reported patients with overlapping proximal 11q deletion. Considering these clinical and cytogenetic similarities, we suggest the existence of an emerging syndrome associated to proximal 11q deletions. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  18. Astrocytic beta 2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice

    NARCIS (Netherlands)

    Jensen, Cathy Joanna; Demol, Frauke; Bauwens, Romy; Kooijman, Ron; Massie, Ann; Villers, Agnes; Ris, Laurence; De Keyser, Jacques

    2016-01-01

    In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the beta

  19. Deletion of protease-activated receptor 2 prolongs survival of scrapie-inoculated mice

    Czech Academy of Sciences Publication Activity Database

    Matěj, R.; Olejár, Tomáš; Janoušková, O.; Holada, K.

    2012-01-01

    Roč. 93, č. 9 (2012), s. 2057-2061 ISSN 0022-1317 Institutional support: RVO:67985823 Keywords : protease-activated receptor (PAR2) * scrapie * neurodegenerative disorders Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 3.127, year: 2012

  20. Effect of 5'-flanking sequence deletions on expression of the human insulin gene in transgenic mice

    DEFF Research Database (Denmark)

    Fromont-Racine, M; Bucchini, D; Madsen, O

    1990-01-01

    Expression of the human insulin gene was examined in transgenic mouse lines carrying the gene with various lengths of DNA sequences 5' to the transcription start site (+1). Expression of the transgene was demonstrated by 1) the presence of human C-peptide in urine, 2) the presence of specific...... of the transgene was observed in cell types other than beta-islet cells....

  1. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice

    OpenAIRE

    Asami Oji; Taichi Noda; Yoshitaka Fujihara; Haruhiko Miyata; Yeon Joo Kim; Masanaga Muto; Kaori Nozawa; Takafumi Matsumura; Ayako Isotani; Masahito Ikawa

    2016-01-01

    Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse e...

  2. Deletion of PPAR-γ in immune cells enhances susceptibility to antiglomerular basement membrane disease

    Directory of Open Access Journals (Sweden)

    Cristen Chafin

    2010-10-01

    Full Text Available Cristen Chafin2, Sarah Muse2, Raquel Hontecillas5, Josep Bassaganya-Riera5, David L Caudell2, Samuel K Shimp III4, M Nichole Rylander4, John Zhang6, Liwu Li3, Christopher M Reilly1,21Virginia College of Osteopathic Medicine, 2Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 3Department of Biological Sciences, 4Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 5Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; 6Medical University of SC, Charleston, SC, USAAbstract: Activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPAR-γ has been shown to be immunoregulatory in autoimmune diseases by inhibiting production of a number of inflammatory mediators. We investigated whether PPAR-γ gene deletion in hematopoietic cells would alter disease pathogenesis in the antiglomerular basement membrane (anti-GBM mouse model. PPAR-γ+/+ and PPAR-γ-/- mice were immunized with rabbit antimouse GBM antibodies and lipopolysaccharide and evaluated for two weeks. Although both the PPAR-γ+/+ and PPAR-γ-/- mice had IgG deposition in the glomerulus and showed proteinuria two weeks after injection, glomerular and tubulointerstitial disease in PPAR-γ-/- mice were significantly more severe compared with the PPAR-γ+/+ animals. We observed that the PPAR-γ-/- mice had decreased CD4+CD25+ regulatory T cells and an increased CD8+:CD4+ ratio as compared with the PPAR-γ+/+ mice, suggesting that PPAR-γ has a role in the regulation of T cells. Furthermore, plasma interleukin-6 levels were significantly increased in the PPAR-γ-/- mice at two weeks as compared with the PPAR-γ+/+ animals. Taken together, these studies show that

  3. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    OpenAIRE

    Tanaka, Daisuke; Nakada, Kazuto; Takao, Keizo; Ogasawara, Emi; Kasahara, Atsuko; Sato, Akitsugu; Yonekawa, Hiromichi; Miyakawa, Tsuyoshi; Hayashi, Jun-Ichi

    2008-01-01

    Abstract Background Mitochondrial DNA (mtDNA) with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice) with heteroplasmy for wild-type and pathogenically deleted (Δ) mtDNA...

  4. Reliable communication over non-binary insertion/deletion channels

    CERN Document Server

    Yazdani, Raman

    2012-01-01

    We consider the problem of reliable communication over non-binary insertion/deletion channels where symbols are randomly deleted from or inserted in the transmitted sequence and all symbols are corrupted by additive white Gaussian noise. To this end, we utilize the inherent redundancy achievable in non-binary symbol sets by first expanding the symbol set and then allocating part of the bits associated with each symbol to watermark symbols. The watermark sequence, known at the receiver, is then used by a forward-backward algorithm to provide soft information for an outer code which decodes the transmitted sequence. Through numerical results and discussions, we evaluate the performance of the proposed solution and show that it leads to significant system ability to detect and correct insertions/deletions. We also provide estimates of the maximum achievable information rates of the system, compare them with the available bounds, and construct practical codes capable of approaching these limits.

  5. A Rare Syndrome of Deletion in 2 Siblings

    Directory of Open Access Journals (Sweden)

    Aravindhan Veerapandiyan MBBS

    2017-08-01

    Full Text Available The Glutamate receptor, ionotropic, delta 2 gene codes for an ionotropic glutamate delta-2 receptor, which is selectively expressed in cerebellar Purkinje cells, and facilitates cerebellar synapse organization and transmission. The phenotype associated with the deletion of Glutamate receptor, ionotropic, delta 2 gene in humans was initially defined in 2013. In this case report, the authors describe 2 brothers who presented with developmental delay, tonic upward gaze, nystagmus, oculomotor apraxia, hypotonia, hyperreflexia, and ataxia. They were found to have a homozygous intragenic deletion within the Glutamate receptor, ionotropic, delta 2 gene at exon 2. Our patients serve as an addition to the literature of previously reported children with this rare clinical syndrome associated with Glutamate receptor, ionotropic, delta 2 deletion.

  6. Targeted deletion of Kcne2 causes gastritis cystica profunda and gastric neoplasia.

    Directory of Open Access Journals (Sweden)

    Torsten K Roepke

    2010-07-01

    Full Text Available Gastric cancer is the second leading cause of cancer death worldwide. Predisposing factors include achlorhydria, Helicobacter pylori infection, oxyntic atrophy and TFF2-expressing metaplasia. In parietal cells, apical potassium channels comprising the KCNQ1 alpha subunit and the KCNE2 beta subunit provide a K(+ efflux current to facilitate gastric acid secretion by the apical H(+K(+ATPase. Accordingly, genetic deletion of murine Kcnq1 or Kcne2 impairs gastric acid secretion. Other evidence has suggested a role for KCNE2 in human gastric cancer cell proliferation, independent of its role in gastric acidification. Here, we demonstrate that 1-year-old Kcne2(-/- mice in a pathogen-free environment all exhibit a severe gastric preneoplastic phenotype comprising gastritis cystica profunda, 6-fold increased stomach mass, increased Ki67 and nuclear Cyclin D1 expression, and TFF2- and cytokeratin 7-expressing metaplasia. Some Kcne2(-/- mice also exhibited pyloric polypoid adenomas extending into the duodenum, and neoplastic invasion of thin walled vessels in the sub-mucosa. Finally, analysis of human gastric cancer tissue indicated reduced parietal cell KCNE2 expression. Together with previous findings, the results suggest KCNE2 disruption as a possible risk factor for gastric neoplasia.

  7. Genetic deletion of the EGFR ligand epigen does not affect mouse embryonic development and tissue homeostasis.

    Science.gov (United States)

    Dahlhoff, Maik; Schäfer, Matthias; Wolf, Eckhard; Schneider, Marlon R

    2013-02-15

    The epidermal growth factor receptor (EGFR) is a tyrosine kinase receptor with manifold functions during development, tissue homeostasis and disease. EGFR activation, the formation of homodimers or heterodimers (with the related ERBB2-4 receptors) and downstream signaling is initiated by the binding of a family of structurally related growth factors, the EGFR ligands. Genetic deletion experiments clarified the biological function of all family members except for the last characterized ligand, epigen. We employed gene targeting in mouse embryonic stem cells to generate mice lacking epigen expression. Loss of epigen did not affect mouse development, fertility, or organ physiology. Quantitative RT-PCR analysis revealed increased expression of betacellulin and EGF in a few organs of epigen-deficient mice, suggesting a functional compensation by these ligands. In conclusion, we completed the genetic analysis of EGFR ligands and show that epigen has non-essential functions or functions that can be compensated by other EGFR ligands during growth and tissue homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Deletion of Protein Kinase C λ in POMC Neurons Predisposes to Diet-Induced Obesity.

    Science.gov (United States)

    Dorfman, Mauricio D; Krull, Jordan E; Scarlett, Jarrad M; Guyenet, Stephan J; Sajan, Mini P; Damian, Vincent; Nguyen, Hong T; Leitges, Michael; Morton, Gregory J; Farese, Robert V; Schwartz, Michael W; Thaler, Joshua P

    2017-04-01

    Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons. © 2017 by the American Diabetes Association.

  9. Sex-Specific Protection of Osteoarthritis by Deleting Cartilage Acid Protein 1.

    Directory of Open Access Journals (Sweden)

    Xianpeng Ge

    Full Text Available Cartilage acidic protein 1 (CRTAC1 was recently identified as an elevated protein in the synovial fluid of patients with osteoarthritis (OA by a proteomic analysis. This gene is also upregulated in both human and mouse OA by transcriptomic analysis. The objective of this study was to characterize the expression and function of CRTAC1 in OA. Here, we first confirm the increase of CRTAC1 in cartilage biopsies from OA patients undergoing joint replacement by real-time PCR and immunohistochemistry. Furthermore, we report that proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha upregulate CRTAC1 expression in primary human articular chondrocytes and synovial fibroblasts. Genetic deletion of Crtac1 in mice significantly inhibited cartilage degradation, osteophyte formation and gait abnormalities of post-traumatic OA in female, but not male, animals undergoing the destabilization of medial meniscus (DMM surgery. Taken together, CRTAC1 is upregulated in the osteoarthritic joint and directly induced in chondrocytes and synovial fibroblasts by pro-inflammatory cytokines. This molecule is necessary for the progression of OA in female mice after DMM surgery and thus represents a potential therapy for this prevalent disease, especially for women who demonstrate higher rates and more severe OA.

  10. Deletion of Suppressor of Cytokine Signaling 3 from Forebrain Neurons Delays Infertility and Onset of Hypothalamic Leptin Resistance in Response to a High Caloric Diet.

    Science.gov (United States)

    McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M

    2016-07-06

    The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the

  11. Genetic deletion of Rnd3 results in aqueductal stenosis leading to hydrocephalus through up-regulation of Notch signaling.

    Science.gov (United States)

    Lin, Xi; Liu, Baohui; Yang, Xiangsheng; Yue, Xiaojing; Diao, Lixia; Wang, Jing; Chang, Jiang

    2013-05-14

    Rho family guanosine triphosphatase (GTPase) 3 (Rnd3), a member of the small Rho GTPase family, is involved in the regulation of cell actin cytoskeleton dynamics, cell migration, and proliferation through the Rho kinase-dependent signaling pathway. We report a role of Rnd3 in the pathogenesis of hydrocephalus disorder. Mice with Rnd3 genetic deletion developed severe obstructive hydrocephalus with enlargement of the lateral and third ventricles, but not of the fourth ventricles. The cerebral aqueducts in Rnd3-null mice were partially or completely blocked by the overgrowth of ependymal epithelia. We examined the molecular mechanism contributing to this Rnd3-deficiency-mediated hydrocephalus and found that Rnd3 is a regulator of Notch signaling. Rnd3 deficiency, through either gene deletion or siRNA knockdown, resulted in a decrease in Notch intracellular domain (NICD) protein degradation. However, there was no correlated change in mRNA change, which in turn led to an increase in NICD protein levels. Immunoprecipitation analysis demonstrated that Rnd3 and NICD physically interacted, and that down-regulation of Rnd3 attenuated NICD protein ubiquitination. This eventually enhanced Notch signaling activity and promoted aberrant growth of aqueduct ependymal cells, resulting in aqueduct stenosis and the development of congenital hydrocephalus. Inhibition of Notch activity rescued the hydrocephalus disorder in the mutant animals.

  12. Deletion of CB2 cannabinoid receptors reduces synaptic transmission and long-term potentiation in the mouse hippocampus.

    Science.gov (United States)

    Li, Yong; Kim, Jimok

    2016-03-01

    The effects of cannabinoids are mostly mediated by two types of cannabinoid receptors--CB1 receptors in the nervous system and CB2 receptors in the immune system. However, CB2 cannabinoid receptors have recently been discovered in the brain and also implicated in neurophysiological functions. The deletion of CB2 receptors in mice induces long-term memory deficits and schizophrenia-like behaviors, implying that endogenous activity of CB2 receptors might be involved in neuropsychiatric effects. Little is known about the cellular mechanisms by which physiological activation of CB2 receptors modulates neuronal functions. We aimed to determine how deletion of CB2 receptors in mice affects synaptic transmission and plasticity. Electrophysiological and morphological studies indicated that CB2 receptor knockout resulted in decreases in excitatory synaptic transmission, long-term potentiation, and dendritic spine density in the hippocampus. Our data imply that endogenous activity of CB2 receptors might contribute to the maintenance of synaptic functions and the expression of normal long-term potentiation. This study provides insights into the role of CB2 cannabinoid receptors in regulating cognitive functions such as long-term memory. © 2016 Wiley Periodicals, Inc.

  13. On the Zero-Error Capacity Threshold for Deletion Channels

    CERN Document Server

    Kash, Ian A; Thaler, Justin; Ullman, Jonathan

    2011-01-01

    We consider the zero-error capacity of deletion channels. Specifically, we consider the setting where we choose a codebook ${\\cal C}$ consisting of strings of $n$ bits, and our model of the channel corresponds to an adversary who may delete up to $pn$ of these bits for a constant $p$. Our goal is to decode correctly without error regardless of the actions of the adversary. We consider what values of $p$ allow non-zero capacity in this setting. We suggest multiple approaches, one of which makes use of the natural connection between this problem and the problem of finding the expected length of the longest common subsequence of two random sequences.

  14. Jacobsen syndrome: chromosome deletion at 11q23.

    Science.gov (United States)

    Clang, D R; LaBaere, R J

    1998-10-01

    A male infant delivered at term to unrelated parents was found to have multiple dysmorphic facial characteristics, abnormal head shape, anemia, thrombocytopenia, a prominent holosystolic heart murmur with multiple cardiac defects, hypotonia, and was small for his gestational age. Karotype revealed a de novo deletion of the long arm of chromosome 11, del (11)(q23), which has been previously described as Jacobsen syndrome. Recent studies have demonstrated that a folate-sensitive fragile site at 11q, band 23, (11q23) may be responsible for this deletion and possibly other syndromes as well.

  15. Fecal corticosterone levels in RCAN1 mutant mice.

    Science.gov (United States)

    Rakowski-Anderson, Tammy; Wong, Helen; Rothermel, Beverly; Cain, Peter; Lavilla, Carmencita; Pullium, Jennifer K; Hoeffer, Charles

    2012-04-01

    Regulator of calcineurin 1 (RCAN1) is related to the expression of human neurologic disorders such as Down syndrome, Alzheimer disease, and chromosome 21q deletion syndrome. We showed here that RCAN1-knockout mice exhibit reduced innate anxiety as indicated by the elevated-plus maze. To examine whether glucocorticoids contribute to this phenotype, we measured fecal corticosterone in male wildtype and RCAN1-knockout mice and in male and female transgenic mice with neuronal overexpression of RCAN1 (Tg-RCAN1(TG)). We found no difference in fecal corticosterone levels of RCAN1-knockout mice and their wildtype littermates. As expected, we found differences between sexes in fecal corticosterone levels. In addition, we found higher levels of excreted corticosterone in Tg-RCAN1(TG) female mice as compared with female wildtype mice. Our data indicate normal diurnal corticosterone production in RCAN1 mutant mice and do not suggest a causal role in either the cognitive or anxiety phenotypes exhibited by RCAN1-knockout mice.

  16. Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague.

    Science.gov (United States)

    van Lier, Christina J; Sha, Jian; Kirtley, Michelle L; Cao, Anthony; Tiner, Bethany L; Erova, Tatiana E; Cong, Yingzi; Kozlova, Elena V; Popov, Vsevolod L; Baze, Wallace B; Chopra, Ashok K

    2014-06-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.

  17. Deletion of Braun Lipoprotein and Plasminogen-Activating Protease-Encoding Genes Attenuates Yersinia pestis in Mouse Models of Bubonic and Pneumonic Plague

    Science.gov (United States)

    van Lier, Christina J.; Sha, Jian; Kirtley, Michelle L.; Cao, Anthony; Tiner, Bethany L.; Erova, Tatiana E.; Cong, Yingzi; Kozlova, Elena V.; Popov, Vsevolod L.; Baze, Wallace B.

    2014-01-01

    Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4+ and CD8+ T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection. PMID:24686064

  18. Dmbt1 does not affect a Western style diet-induced liver damage in mice

    DEFF Research Database (Denmark)

    Reichold, Astrid; Brenner, Sibylle A; Förster-Fromme, Karin

    2013-01-01

    Western style diet fed groups gained significant more weight than the controls and developed a mild non-alcoholic steatohepatitis. The presence/absence of functional Deleted in malignant brain tumors 1 had no effect on parameters like food intake, weight gain, fasting glucose, and liver damage....... These results suggest that Deleted in malignant brain tumors 1 plays a minor part on the development of a diet-induced liver damage in mice....... of non-alcoholic fatty liver disease. Concerning liver diseases, it is known that Deleted in malignant brain tumors 1 is amongst others related to liver injury and repair. In addition Deleted in malignant brain tumors 1 seems to play a role in regard to the maintenance of the intestinal homeostasis...

  19. d Subunit-Containing GABA[subscript A] Receptor Prevents Overgeneralization of Fear in Adult Mice

    Science.gov (United States)

    Zhang, Wen-Hua; Zhou, Jin; Pan, Han-Qing; Wang, Xiao-Yang; Liu, Wei-Zhu; Zhang, Jun-Yu; Yin, Xiao-Ping; Pan, Bing-Xing

    2017-01-01

    The role of d subunit-containing GABA[subscript A] receptor (GABA[subscript A](d)R) in fear generalization is uncertain. Here, by using mice with or without genetic deletion of GABA[subscript A](d)R and using protocols in which the conditioned tone stimuli were cross presented with different nonconditioned stimuli, we observed that when the two…

  20. Conditional Deletion of TAK1 in T Cells Reveals a Pivotal Role of TCRαβ+ Intraepithelial Lymphocytes in Preventing Lymphopenia-Associated Colitis.

    Directory of Open Access Journals (Sweden)

    Hideki Sanjo

    Full Text Available The kinase TAK is required for the development of conventional and regulatory T cells. We previously reported that mice with conditional deletion of TAK1 in T cells (Lck-cre:TAK1fl/fl mice exhibited severe T lymphopenia, and were nevertheless predisposed to spontaneous colitis with unknown etiology. Here we focused on the immunopathological mechanism in colitic Lck-cre:TAK1fl/fl mice. We found that 'leaky' CD4+ T cells retaining TAK1 acquired inflammatory phenotypes that contribute to disease onset in Lck-cre:TAK1fl/fl mice. Furthermore, the gut microbiota-triggered signaling was also a key event leading to the pathogenesis. We discovered that Lck-cre:TAK1fl/fl mice were almost completely devoid of TCRαβ+CD8α+ intestinal intraepithelial lymphocytes (IELs and this was largely due to the developmental defect of the thymic precursors by TAK1 deficiency. Remarkably, transfer of TCRαβ+CD8α+ IELs from wild-type mice ameliorated colitis in Lck-cre:TAK1fl/fl mice. Taken together, our current study highlighted the emerging role of TAK1 in configuring the gut-specialized T cell subset, which regulates mucosal homeostasis under lymphopenic conditions.

  1. Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability.

    Directory of Open Access Journals (Sweden)

    Christina Grau

    Full Text Available By searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2 and the MAGE family member D1 gene (MAGED1. Deletions of this ~430 kb region have not been previously implicated in human disease. Duplications of GSPT2 have been documented in individuals with intellectual disability, but the phenotypic consequences of a loss of GSPT2 function have not been elucidated in humans or mouse models. Changes in MAGED1 have not been associated with intellectual disability in humans, but loss of MAGED1 function is associated with neurocognitive and neurobehavioral phenotypes in mice. In all cases, the Xp11.22 deletion was inherited from an unaffected mother. Studies performed on DNA from one of these mothers did not show evidence of skewed X-inactivation. These results suggest that deletions of an ~430 kb region on chromosome Xp11.22 that encompass CENPVL1, CENPVL2, GSPT2 and MAGED1 cause a distinct X-linked syndrome characterized by intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly. Loss of GSPT2 and/or MAGED1 function may contribute to the intellectual disability and developmental delay seen in males with these deletions.

  2. Xp11.22 deletions encompassing CENPVL1, CENPVL2, MAGED1 and GSPT2 as a cause of syndromic X-linked intellectual disability.

    Science.gov (United States)

    Grau, Christina; Starkovich, Molly; Azamian, Mahshid S; Xia, Fan; Cheung, Sau Wai; Evans, Patricia; Henderson, Alex; Lalani, Seema R; Scott, Daryl A

    2017-01-01

    By searching a clinical database of over 60,000 individuals referred for array-based CNV analyses and online resources, we identified four males from three families with intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly who carried small, overlapping deletions of Xp11.22. The maximum region of overlap between their deletions spanned ~430 kb and included two pseudogenes, CENPVL1 and CENPVL2, whose functions are not known, and two protein coding genes-the G1 to S phase transition 2 gene (GSPT2) and the MAGE family member D1 gene (MAGED1). Deletions of this ~430 kb region have not been previously implicated in human disease. Duplications of GSPT2 have been documented in individuals with intellectual disability, but the phenotypic consequences of a loss of GSPT2 function have not been elucidated in humans or mouse models. Changes in MAGED1 have not been associated with intellectual disability in humans, but loss of MAGED1 function is associated with neurocognitive and neurobehavioral phenotypes in mice. In all cases, the Xp11.22 deletion was inherited from an unaffected mother. Studies performed on DNA from one of these mothers did not show evidence of skewed X-inactivation. These results suggest that deletions of an ~430 kb region on chromosome Xp11.22 that encompass CENPVL1, CENPVL2, GSPT2 and MAGED1 cause a distinct X-linked syndrome characterized by intellectual disability, developmental delay, hypotonia, joint hypermobility and relative macrocephaly. Loss of GSPT2 and/or MAGED1 function may contribute to the intellectual disability and developmental delay seen in males with these deletions.

  3. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo

    Directory of Open Access Journals (Sweden)

    Bettler Bernhard

    2009-11-01

    Full Text Available Abstract Background γ-aminobutyric acid (GABA is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABAA and metabotropic (GABAB receptors. GABAB receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABAB receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABAB receptors is unclear. Results In order to elucidate the functional relevance of GABAB receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABAB(1 subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABAB(1-/- mice. Lack of the GABAB(1 subunit precludes the assembly of functional GABAB receptor. We analyzed SNS-GABAB(1-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABAB(1-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABAB(1 expression in nociceptors. Conclusion This study addressed contribution of GABAB receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABAB agonist was significantly

  4. Temporal control of gene deletion in sensory ganglia using a tamoxifen-inducible Advillin-Cre-ERT2 recombinase mouse

    Directory of Open Access Journals (Sweden)

    Lau Joanne

    2011-12-01

    Full Text Available Abstract Background Tissue-specific gene deletion has proved informative in the analysis of pain pathways. Advillin has been shown to be a pan-neuronal marker of spinal and cranial sensory ganglia. We generated BAC transgenic mice using the Advillin promoter to drive a tamoxifen-inducible CreERT2 recombinase construct in order to be able to delete genes in adult animals. We used a floxed stop ROSA26LacZ reporter mouse to examine functional Cre expression, and analysed the behaviour of mice expressing Cre recombinase. Results We used recombineering to introduce a CreERT2 cassette in place of exon 2 of the Advillin gene into a BAC clone (RPCI23-424F19 containing the 5' region of the Advillin gene. Transgenic mice were generated using pronuclear injection. The resulting AvCreERT2 transgenic mice showed a highly specific expression pattern of Cre activity after tamoxifen induction. Recombinase activity was confined to sensory neurons and no expression was found in other organs. Less than 1% of neurons showed Cre expression in the absence of tamoxifen treatment. Five-day intraperitoneal treatment with tamoxifen (2 mg per day induced Cre recombination events in ≈90% of neurons in dorsal root and cranial ganglia. Cell counts of dorsal root ganglia (DRG from transgenic animals with or without tamoxifen treatment showed no neuronal cell loss. Sensory neurons in culture showed ≈70% induction after 3 days treatment with tamoxifen. Behavioural tests showed no differences between wildtype, AvCreERT2 and tamoxifen-treated animals in terms of motor function, responses to light touch and noxious pressure, thermal thresholds as well as responses to inflammatory agents. Conclusions Our results suggest that the inducible pan-DRG AvCreERT2 deleter mouse strain is a useful tool for studying the role of individual genes in adult sensory neuron function. The pain phenotype of the Cre-induced animal is normal; therefore any alterations in pain processing can be

  5. Variations in angiotensin-converting enzyme gene insertion/deletion ...

    Indian Academy of Sciences (India)

    Unknown

    The pattern of angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism in the Indian population is poorly known. In order to determine the status of the polymorphism, young unrelated male army recruits were screened. The population had cultural and linguistic differences and lived in an ...

  6. [An updated review of 1p36 deletion (monosomy) syndrome].

    Science.gov (United States)

    Bello, Sabina; Rodríguez-Moreno, Antonio

    The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level. Approximately 100 cases have been documented since 1981. This rare disease is the most common subtelomeric-micro-deletion syndrome. In situ hybridization with fluorescence (FISH) and array-comparative genomic hybridization (CGH-array) are at present the two best diagnostic techniques. There is currently no effective medical treatment for this disease. Copyright © 2016 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. A novel contiguous deletion involving NDP, MAOBitalic> and ...

    Indian Academy of Sciences (India)

    The contiguous deletion of NDP and its neighbouring genes, MAOA/B and EFHC2, reportedly leads to syndromic clinical features such as microcephaly, intellectual disability, and epilepsy. Herewe report a novel contiguous microdeletion of theNDPregion containing theMAOBandEFHC2genes,which causes eye defects but ...

  8. Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria

    NARCIS (Netherlands)

    Acehan, Devrim; Khuchua, Zaza; Houtkooper, Riekelt H.; Malhotra, Ashim; Kaufman, Johanna; Vaz, Frédéric M.; Ren, Mindong; Rockman, Howard A.; Stokes, David L.; Schlame, Michael

    2009-01-01

    Tafazzin is a conserved mitochondrial protein that is required to maintain normal content and composition of cardiolipin. We used electron tomography to investigate the effect of tafazzin deletion on mitochondrial structure and found that cellular differentiation plays a crucial role in the

  9. 78 FR 71581 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2013-11-29

    ... significant impact on a substantial number of small entities. The major factors considered for this... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds products and a service to the Procurement List that will be...

  10. 78 FR 75912 - Procurement List; Addition and Deletion

    Science.gov (United States)

    2013-12-13

    ... action will not have a significant impact on a substantial number of small entities. The major factors... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Addition and Deletion AGENCY: Committee for...

  11. 76 FR 30924 - Procurement List Additions and Deletions

    Science.gov (United States)

    2011-05-27

    ... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds products and services to the Procurement List that will be...

  12. 75 FR 56996 - Procurement List Additions and Deletions

    Science.gov (United States)

    2010-09-17

    ... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for... Procurement List. SUMMARY: This action adds a product and a service to the Procurement List that will be...

  13. 75 FR 75461 - Procurement List; Proposed Additions and Deletion

    Science.gov (United States)

    2010-12-03

    ... impact on a substantial number of small entities. The major factors considered for this certification... impact on a substantial number of small entities. The major factors considered for this certification... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Additions and Deletion AGENCY...

  14. 78 FR 53733 - Procurement List Additions and Deletions

    Science.gov (United States)

    2013-08-30

    ... significant impact on a substantial number of small entities. The major factors considered for this... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for...

  15. 78 FR 29119 - Procurement List; Additions and Deletion

    Science.gov (United States)

    2013-05-17

    ... significant impact on a substantial number of small entities. The major factors considered for this... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletion AGENCY: Committee for... Procurement List. SUMMARY: This action adds products and services to the Procurement List that will be...

  16. 75 FR 65305 - Procurement List; Proposed Addition and Deletions

    Science.gov (United States)

    2010-10-22

    ... impact on a substantial number of small entities. The major factors considered for this certification... impact on a substantial number of small entities. The major factors considered for this certification... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Addition and Deletions AGENCY...

  17. 75 FR 25210 - Procurement List Proposed Additions and Deletions

    Science.gov (United States)

    2010-05-07

    ... not have a significant impact on a substantial number of small entities. The major factors considered... action will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Additions and Deletions AGENCY...

  18. 77 FR 20795 - Procurement List Proposed Addition and Deletion

    Science.gov (United States)

    2012-04-06

    ... significant impact on a substantial number of small entities. The major factors considered for this... impact on a substantial number of small entities. The major factors considered for this certification... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Proposed Addition and Deletion AGENCY...

  19. 75 FR 16755 - Procurement List Additions and Deletions

    Science.gov (United States)

    2010-04-02

    ... impact on a substantial number of small entities. The major factors considered for this certification... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List Additions and Deletions AGENCY: Committee for...

  20. 75 FR 38468 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2010-07-02

    ... a significant impact on a substantial number of small entities. The major factors considered for... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for...

  1. 76 FR 41768 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2011-07-15

    ... a significant impact on a substantial number of small entities. The major factors considered for... will not have a significant impact on a substantial number of small entities. The major factors... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for...

  2. 76 FR 13361 - Procurement List; Additions and Deletions

    Science.gov (United States)

    2011-03-11

    ... significant impact on a substantial number of small entities. The major factors considered for this... impact on a substantial number of small entities. The major factors considered for this certification... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Additions and Deletions AGENCY: Committee for...

  3. Commentary: The Thrill of Professionalization and the Agony of Deletes

    Science.gov (United States)

    Waite, Susan Field; Leavell, Judy A.

    2006-01-01

    Although some teacher educators hoped that the creation and use of standards would help to professionalize teaching, the discourse of standards and accountability is now being used to erode teacher education. Many teacher educators who anticipated the thrill of professionalization through standards are now experiencing the agony of deletes,…

  4. Population stratification of a common APOBEC gene deletion polymorphism.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Kidd

    2007-04-01

    Full Text Available The APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene. We developed a PCR-based genotyping assay, characterized 1,277 human diversity samples, and found that the frequency of the deletion allele varies significantly among major continental groups (global FST = 0.2843. The deletion is rare in Africans and Europeans (frequency of 0.9% and 6%, more common in East Asians and Amerindians (36.9% and 57.7%, and almost fixed in Oceanic populations (92.9%. Despite a worldwide frequency of 22.5%, analysis of data from the International HapMap Project reveals that no single existing tag single nucleotide polymorphism may serve as a surrogate for the deletion variant, emphasizing that without careful analysis its phenotypic impact may be overlooked in association studies. Application of haplotype-based tests for selection revealed potential pitfalls in the direct application of existing methods to the analysis of genomic structural variation. These data emphasize the importance of directly genotyping structural variation in association studies and of accurately resolving variant breakpoints before proceeding with more detailed population-genetic analysis.

  5. Lack of Association of Insertion/Deletion Polymorphism in ...

    African Journals Online (AJOL)

    DRNAQSHAB

    2012-01-19

    Jan 19, 2012 ... Key words: Angiotensin converting enzymes, insertion/deletion polymorphism, albuminuria and type 2 diabetes mellitus. INTRODUCTION. Diabetic nephropathy is a leading cause of diabetic. *Corresponding author. E-mail: naeemrashid37@hotmail.com, naeem.ff.sbs@pu.edu.pk. Tel: +92 42 99231534.

  6. The insertion/deletion polymorphism of angiotensin-converting ...

    African Journals Online (AJOL)

    The association between type 2 diabetes mellitus (T2DM) and essential hypertension (EH) is not well understood. Both conditions result from an interaction of multiple genetic (ethnic) and environmental (geographical) factors. One possible genetic determinant is the angiotensin-converting enzyme (ACE) insertion/deletion ...

  7. Genetics Home Reference: 22q11.2 deletion syndrome

    Science.gov (United States)

    ... Center, Seattle, Washington Children's Hospital of Philadelphia Cincinnati Children's Hospital Medical Center Disease InfoSearch: 22q11.2 Deletion Syndrome Emory University School of Medicine Genetics Education Materials for School Success (GEMSS) MalaCards: chromosome 22q11. ...

  8. A large deletion on chromosome 11 in acute intermittent porphyria.

    Science.gov (United States)

    Di Pierro, Elena; Besana, Valeria; Moriondo, Valeria; Brancaleoni, Valentina; Tavazzi, Dario; Casalgrandi, Giovanna; Ventura, Paolo; Rocchi, Emilio; Cappellini, Maria Domenica

    2006-01-01

    Acute intermittent porphyria (AIP) is an autosomal disorder caused by molecular abnormalities in the gene coding for hydroxymethylbilane synthase (HMBS), the third enzyme in the heme biosynthetic pathway. So far, more than 242 different mutations responsible for AIP have been identified in this gene. In an Italian family with typical clinical and biochemical signs of AIP, no mutation was found by direct sequencing of the entire hydroxymethylbilane synthase gene (HMBS). All the symptomatic patients showed apparent homozygosity and absence of mendelian segregation for eleven common polymorphisms along the gene. Excluding interference of polymorphisms in the primer sites, we assumed the presence of a complete HMBS gene deletion. In order to identify the size of this deletion, single nucleotide polymorphisms (SNPs) analysis was extended to flanking genes, H2A Histone Family member X (H2AFX) and Dolichyl-Phosphate N-Acetylglucosamine Phosphotransferase 1 (DPAGT1), downstream and Vacuolar protein sorting 11 (VPS11), upstream. Heterozygous polymorphisms in the VPS11 and DPAGT1 genes were found. Thus, we performed a Long-PCR with primers situated in regions outside the homozygous polymorphisms and we identified a double deletion with inversion on chromosome 11 (g22516974_22524062del7088, g22524062_22524278inv216, g22524278_22531093del6815). Even if the deletions include the entire HMBS and H2AFX genes and 1463 bp of the final portion of DPAGT1 gene, our patients had no other symptoms than AIP.

  9. 78 FR 37524 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2013-06-21

    .... NSN: 8020-00-NIB-0006--Trimmer, Edge, Paint, Refillable, 4\\3/ 4\\ W x 3\\1/2\\ H NSN: 8020-00-NIB-0008..., John F. Kennedy Space Center, Mail Stop: OP-OS, Kennedy Space Center, FL. NPA: Anthony Wayne... and Space Administration, Kennedy Space Center, Kennedy Space Center, FL Deletions The following...

  10. Allelic prevalence of intron 3 insertion/deletion genetic ...

    African Journals Online (AJOL)

    Leila Fallahzadeh-Abarghooei

    2015-03-18

    XRCC4; OMIM: 194363), plays an important role in repair of DNA double-strand breaks via non-homologous end joining pathway. In order to find the allelic prevalence of an insertion/deletion polymorphism in intron 3 of XRCC4 ...

  11. Further delineation of the chromosome 14q terminal deletion syndrome

    NARCIS (Netherlands)

    van Karnebeek, Clara D. M.; Quik, Safira; Sluijter, Sigrid; Hulsbeek, Miriam M. F.; Hoovers, Jan M. N.; Hennekam, Raoul C. M.

    2002-01-01

    A patient with hypotonia, blepharophimosis, ptosis, a bulbous nose, a long philtrum, upturned corners of the mouth, and mild developmental delay was found to have a small subtelomeric deletion of the long arm of chromosome 14 (q32.31-qter). In comparing her phenotype with previously reported

  12. 77 FR 60969 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2012-10-05

    ... Activity: Defense Logistics Agency Troop Support, Philadelphia, PA. Coverage: C-List for 100% of the requirement of the Department of Defense, as aggregated by the Defense Logistics Agency Troop Support... Activity: Dept. of the Army, W071 Endist Kansas City, Kansas City, MO. Deletions The following products are...

  13. Genetic Counseling for the 22q11.2 Deletion

    Science.gov (United States)

    McDonald-McGinn, Donna M.; Zackai, Elaine H.

    2008-01-01

    Because of advances in palliative medical care, children with the 22q11.2 deletion syndrome are surviving into adulthood. An increase in reproductive fitness will likely follow necessitating enhanced access to genetic counseling for these patients and their families. Primary care physicians/obstetric practitioners are in a unique position to…

  14. 77 FR 27737 - Procurement List; Proposed Additions and Deletions

    Science.gov (United States)

    2012-05-11

    ... disabilities, and deletes a product and service previously furnished by such agencies. Comments Must Be.... NPA: Goodwill Industries of San Antonio, San Antonio, TX. Contracting Activity: Medcom Health Care... 615, 616 and 9625, Fort Leonard Wood, MO. NPA: Challenge Unlimited, Inc., Alton, IL. Contracting...

  15. QR in Child Grammar: Evidence from Antecedent-Contained Deletion

    Science.gov (United States)

    Syrett, Kristen; Lidz, Jeffrey

    2009-01-01

    We show that 4-year-olds assign the correct interpretation to antecedent-contained deletion (ACD) sentences because they have the correct representation of these structures. This representation involves Quantifier Raising (QR) of a Quantificational Noun Phrase (QNP) that must move out of the site of the verb phrase in which it is contained to…

  16. 37 CFR 2.35 - Adding, deleting, or substituting bases.

    Science.gov (United States)

    2010-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2010-07-01 2010-07-01 false Adding, deleting, or substituting bases. 2.35 Section 2.35 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE, DEPARTMENT OF COMMERCE RULES OF PRACTICE IN TRADEMARK CASES The Written Application § 2.35 Adding...

  17. Oncolytic Replication of E1b-Deleted Adenoviruses

    Directory of Open Access Journals (Sweden)

    Pei-Hsin Cheng

    2015-11-01

    Full Text Available Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viralmRNAexport, and cell cycle disruption.

  18. Alu recombination-mediated structural deletions in the chimpanzee genome.

    Directory of Open Access Journals (Sweden)

    Kyudong Han

    2007-10-01

    Full Text Available With more than 1.2 million copies, Alu elements are one of the most important sources of structural variation in primate genomes. Here, we compare the chimpanzee and human genomes to determine the extent of Alu recombination-mediated deletion (ARMD in the chimpanzee genome since the divergence of the chimpanzee and human lineages ( approximately 6 million y ago. Combining computational data analysis and experimental verification, we have identified 663 chimpanzee lineage-specific deletions (involving a total of approximately 771 kb of genomic sequence attributable to this process. The ARMD events essentially counteract the genomic expansion caused by chimpanzee-specific Alu inserts. The RefSeq databases indicate that 13 exons in six genes, annotated as either demonstrably or putatively functional in the human genome, and 299 intronic regions have been deleted through ARMDs in the chimpanzee lineage. Therefore, our data suggest that this process may contribute to the genomic and phenotypic diversity between chimpanzees and humans. In addition, we found four independent ARMD events at orthologous loci in the gorilla or orangutan genomes. This suggests that human orthologs of loci at which ARMD events have already occurred in other nonhuman primate genomes may be "at-risk" motifs for future deletions, which may subsequently contribute to human lineage-specific genetic rearrangements and disorders.

  19. Non-deletion mutations in Egyptian patients with Duchenne ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-04-19

    Apr 19, 2014 ... Abstract Duchenne muscular dystrophy (DMD) is the most common form of muscular dystro- phies affecting approximately 1:3500 male live births. Deletion of the dystrophi